Science.gov

Sample records for ag nanoparticles deposited

  1. Deposition of Au and Ag nanoparticles on PEDOT.

    PubMed

    Danieli, Tamar; Colleran, John; Mandler, Daniel

    2011-12-01

    The deposition of Au and Ag, locally and from bulk solution, on poly(3,4-ethylenedioxythiophene) (PEDOT) was studied. Specifically, PEDOT was electrochemically polymerized onto a glassy carbon (GC) electrode and used for bulk deposition of Au and Ag from their respective ions dissolved in the solution as well as for the local deposition of these metals using scanning electrochemical microscopy (SECM). These two sets of experiments were utilized to investigate the difference between Au and Ag electrochemical deposition on PEDOT. In particular, SECM experiments, which were conducted by the controlled anodic dissolution of Au and Ag microelectrodes close to GC/PEDOT, probed the effect of different PEDOT oxidation states on local deposition. The current-time transients recorded during the deposition, combined with scanning electron microscopy and EDX analysis provided insight into the reduction processes. AuCl(4)(-) and Ag(+) ions were electrochemically reduced at a potential equal to and more negative than the ions redox potentials (0.4 and 0.2 V, respectively) and more positive than -0.7 V, where the PEDOT starts transforming into the reduced, i.e. insulating, state. We found that the electroreduction of Ag(+) ions was diffusion-controlled and the PEDOT film served as a simple conductor. On the other hand, the reduction of AuCl(4)(-) ions was enhanced on GC/PEDOT as compared with bare GC, indicating that PEDOT catalyzes the reduction of AuCl(4)(-) to Au. PMID:21993698

  2. 1,10-Phenanthroline as an accelerator for Ag nanoparticle-catalysed electroless copper deposition

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Ru; Chou, Nan-Kuang; Li, Cheng-Hsing; Chen, Ho-Rei; Lee, Chien-Liang

    2014-10-01

    1,10-Phenanthroline (phen) can be successfully used as an accelerator for Ag-catalysed electroless copper deposition (ECD) processes. Electrochemical quartz crystal microbalance analyses indicate that the mass activity in terms of thickness of deposited Cu layer and average ECD rate within a deposition time of 110 s for Ag nanoparticles activated by phen are 7.86 × 10-3 μm μg-1 and 1.43 × 10-4 μm μg-1 s-1, respectively, whereas Ag nanoparticles without phen cannot catalyse the reaction. Furthermore, Tafel and cyclic voltammetric results show that the addition of phen to the ECD bath significantly enhances the ability of the Ag nanoparticles to catalyse the oxidation of HCHO and suppresses the formation of CuO.

  3. Synthesis of silver nanoparticles deposited on silica by γ-irradiation and preparation of PE/Ag nano compound masterbatches

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Kim Lan; Trinh Nguyen, Thuy Ai; Phu Dang, Van; Duy Nguyen, Ngoc; Le, Anh Quoc; Hien Nguyen, Quoc

    2013-12-01

    Silver nanoparticles (AgNPs) deposited on silica were synthesized by gamma Co-60 irradiation of Ag+ dispersion in silica/ethanol/water mixture (9/80/20:w/v/v). The reduction of Ag+ is occurred by hydrated electron (e-aq) and hydrogen atom (H•) generated during radiolysis of ethanol/water. The conversion doses (Ag+ → Ag0) were determined by UV-Vis spectroscopy. The synthesized AgNPs/silica were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD), which showed the size of AgNPs to be in the range of 5-40 nm for Ag+ concentrations from 5 to 20 mM. Masterbatches of PE/AgNPs/silica compound with silver content from 250 to 1000 mg kg-1 were also prepared. These masterbatches can be suitably used for various applications such as antimicrobial food containers and packing films, etc.

  4. Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kawamura, Go; Ohmi, Hayato; Tan, Wai Kian; Lockman, Zainovia; Muto, Hiroyuki; Matsuda, Atsunori

    2015-05-01

    Dye-sensitized solar cells composed of a photoanode of Ag nanoparticle (NP)-deposited TiO2 nanotube (TNT) arrays were fabricated. The TNT arrays were prepared by anodizing Ti films on fluorine-doped tin oxide (FTO)-coated glass substrates. Efficient charge transportation through the ordered nanostructure of TNT arrays should be carried out compared to conventional particulate TiO2 electrodes. However, it has been a big challenge to grow TNT arrays on FTO glass substrates with the lengths needed for sufficient light-harvesting (tens of micrometers). In this work, we deposited Ag nanoparticles (NPs) on the wall of TNT arrays to enhance light-harvesting property. Dye-sensitized solar cells with these Ag NP-deposited TNT arrays yielded a higher power conversion efficiency (2.03 %) than those without Ag NPs (1.39 %).

  5. Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition.

    PubMed

    Yang, Chia-Cheng; Wan, Chi-Chao; Wang, Yung-Yun

    2004-11-15

    Ag/Pd nanoparticles have been synthesized with a reactive alcohol-type surfactant, sodium dodecyl sulfate (SDS), without the presence of an external reducing agent. Both UV-vis absorption spectra and X-ray diffraction patterns for the bimetallic and physical mixtures of individual nanoparticles revealed the formation of a bimetallic structure. Based on this method, an ordered 3D grapelike nanostructure was formed, possibly due to transformation of the liquid crystal phase of the micelles. Data from the energy-dispersive X-ray analysis show that the composition of bimetallic nanoparticle is approximately equal to the feeing solution. Furthermore, the Ag/Pd nanoparticles exhibit distinct catalyst for electroless copper deposition and may be a substitute for the conventional palladium system, which is expensive and unstable in operation. PMID:15464808

  6. Influence of size, shape and core–shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx

    PubMed Central

    Pinotti, Daniele; Spadaro, Maria Chiara; Paolicelli, Guido; Grillo, Vincenzo; Valeri, Sergio; Pasquali, Luca; Bergamini, Luca; Corni, Stefano

    2015-01-01

    Summary Ag and Ag@MgO core–shell nanoparticles (NPs) with a diameter of d = 3–10 nm were obtained by physical synthesis methods and deposited on Si with its native ultrathin oxide layer SiOx (Si/SiOx). Scanning electron microscopy and transmission electron microscopy (TEM) images of bare Ag NPs revealed the presence of small NP aggregates caused by diffusion on the surface and agglomeration. Atomic resolution TEM gave evidence of the presence of crystalline multidomains in the NPs, which were due to aggregation and multitwinning occurring during NP growth in the nanocluster source. Co-deposition of Ag NPs and Mg atoms in an oxygen atmosphere gave rise to formation of a MgO shell matrix surrounding the Ag NPs. The behaviour of the surface plasmon resonance (SPR) excitation in surface differential reflectivity (SDR) spectra with p-polarised light was investigated for bare Ag and Ag@MgO NPs. It was shown that the presence of MgO around the Ag NPs caused a red shift of the plasmon excitation, and served to preserve its existence after prolonged (five months) exposure to air, realizing the possibility of technological applications in plasmonic devices. The Ag NP and Ag@MgO NP film features in the SDR spectra could be reproduced by classical electrodynamics simulations by treating the NP-containing layer as an effective Maxwell Garnett medium. The simulations gave results in agreement with the experiments when accounting for the experimentally observed aggregation. PMID:25821680

  7. Deposition of bimetallic Au/Ag clusters by the method of laser deposition of nanoparticles from colloidal systems

    NASA Astrophysics Data System (ADS)

    Antipov, A. A.; Arakelian, S. M.; Kutrovskaya, S. V.; Kucherik, A. O.; Vartanian, T. A.

    2014-02-01

    A method of formation of bimetallic clusters on the surface of optically transparent media is proposed. Nanoparticles of noble metals were obtained by laser ablation into a liquid. Clusters were formed by means of colloidal deposition of nanoparticles. Cluster morphology after deposition was studied by means of atomic force and scanning electron microscopy. We demonstrate transformation of the transmission spectrum of obtained structures before and after laser-induced aggregation.

  8. Hydrogen treatment-improved uniform deposition of Ag nanoparticles on ZnO nanorod arrays and their visible-light photocatalytic and surface-enhanced Raman scattering properties

    PubMed Central

    2013-01-01

    ZnO nanorod arrays were synthesized by chemical bath deposition. After heat treatment in hydrogen or air, Ag nanoparticles were deposited on ZnO nanorod arrays by photo-reduction method. The size of Ag nanoparticles as well as the surface morphology, structure, composition, and optical property of ZnO nanorod arrays before and after the deposition of Ag nanoparticles were characterized by SEM, XRD, EDS, and UV/VIS/NIR spectrophotometer. As compared to the samples with heat treatment in air or without heat treatment, the ZnO nanorod arrays after heat treatment in hydrogen allowed Ag nanoparticles to be deposited more uniformly, densely, and numerously. Also, they exhibited higher efficiency for the visible light-driven photocatalytic degradation of Rhodamine 6G (R6G) dye. The effects of the amount of Ag nanoparticles, initial dye concentration, and temperature on the photocatalytic degradation efficiency were investigated. Furthermore, they also exhibited better surface-enhanced Raman scattering property for the detection of R6G dyes. PMID:23866904

  9. Invoking Direct Exciton-Plasmon Interactions by Catalytic Ag Deposition on Au Nanoparticles: Photoelectrochemical Bioanalysis with High Efficiency.

    PubMed

    Ma, Zheng-Yuan; Xu, Fei; Qin, Yu; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-04-19

    In this work, direct exciton-plasmon interactions (EPI) between CdS quantum dots (QDs) and Ag nanoparticles (NPs) were invoked ingeniously by catalytic Ag deposition on Au NPs for the stimulation of high efficient damping effect toward the excitonic responses in CdS QDs, on the basis of which a novel photoelectrochemical (PEC) bioanalytical format was achieved for sensitive microRNA detection. Specifically, upon the configurational change from the hairpin probe DNA to the "Y"-shaped ternary conjugate consisting of the original probe DNA, assistant DNA, and the target microRNA, the alkaline phosphatase (ALP) catalytic chemistry would then trigger the transition of the interparticle interplay from the CdS QDs-Au NPs to the CdS QDs-Ag NPs systems for the microRNA detection due to the dependence of the photocurrent quenching on the target concentration. This work not only provided a unique method for EPI generation among the PEC nanosystems but also offered a versatile and general protocol for future PEC bioanalysis development. PMID:27023112

  10. Laser induced forward transfer of Ag nanoparticles ink deposition and characterization

    NASA Astrophysics Data System (ADS)

    Makrygianni, M.; Kalpyris, I.; Boutopoulos, C.; Zergioti, I.

    2014-04-01

    In this work, we report on the printing of silver nanoparticles (Ag NPs) ink by means of laser-induced forward transfer (LIFT) process. The optimum conditions for printing circular shaped features using a Nd:YAG laser at 266 nm have been examined. A study of the influence of the laser fluence and the use of a pre-coated intermediate layer (sacrificial layer) on the donor substrate was performed in order to understand how these parameters affect the printed droplets morphology. We also provide a detailed discussion of the influence of the annealing temperature on the printed features morphology and on their resistivity. Based on these results, the conditions have been determined for printing uniform circular shaped droplets with a diameter as small as 25 μm and an average thickness of 150 nm. Atomic force microscopy on the cured printed droplets revealed a uniform surface morphology with no coffee ring effect. Finally, conductive features with reasonably low resistivity (approximately eleven times that of bulk silver) and at sufficiently low sintering temperatures (100-150 °C) were produced on silicon oxide on silicon and flexible polyimide substrates.

  11. Plasmon enhanced CdS-quantum dot sensitized solar cell using ZnO nanorods array deposited with Ag nanoparticles as photoanode

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Ahmadi, V.; Yousefi rad, M.; Kohnehpoushi, S.

    2015-04-01

    CdS-quantum dot sensitized solar cell using ZnO nanorods (ZnO NRs) array deposited with Ag nanoparticles (Ag NPs) as photoanode was fabricated. Light absorption effect of Ag NPs on improvement of the cell performance was investigated. Performance improvement of metal nanoparticles (MNPs) was controlled by the structure design and architecture. Different decorations and densities of Ag NPs were utilized on the photoanode. Results showed that using 5% Ag NPs in the photoanode results in the increased efficiency, fill factor, and circuit current density from 0.28% to 0.60%, 0.22 to 0.29, and 2.18 mA/cm2 to 3.25 mA/cm2, respectively. Also, incident photon-to-current efficiencies (IPCE) results showed that cell performance improvement is related to enhanced absorption in the photoanode, which is because of the surface plasmonic resonance and light scattering of Ag NPs in the photoanode. Measurements of electrochemical impedance spectroscopy revealed that hole transfer kinetics increases with introduction of Ag NPs into photoanode. Also, it is shown that chemical capacitance increases with introduction of Ag NPs. Such increase can be attributed to the surface palsmonic resonance of Ag NPs which leads to absorption of more light in the photoanode and generation of more photoelectron in the photoanode.

  12. Photocatalytic Properties of TiO2 Thin Films Modified with Ag and Pt Nanoparticles Deposited by Gas Flow Sputtering.

    PubMed

    Maicu, M; Glöss, D; Frach, Peter; Hecker, D; Gerlach, G; Córdoba, José M

    2015-09-01

    In this work, a gas flow sputtering (GFS) process which allows the production and deposition of metal nanoparticles (NPs) in a vacuum environment is described. Aim of the study is to prove the potential of this technology for the fabrication of new TiO2 films with enhanced photocatalytic properties. For this purpose, Ag and Pt NPs have been produced and deposited on photocatalytic float glass coated with TiO2 thin films by magnetron sputtering. The influence of the process parameters and of the metal amount on the final properties of the particles (quantity, size, size distribution, oxidation state etc.,) was widely investigated. Moreover, the effect of the NPs on the photocatalytic activity of the resulting materials was evaluated for the case of the decomposition of stearic acid (SA) during UV-A irradiation. The reduction of the water contact angle (WCA) during the irradiation period was measured in order to test the photo-induced super-hydrophilicity (PSH). PMID:26716202

  13. Synthesis of Ag or Pt nanoparticle-deposited TiO2 nanorods for the highly efficient photoreduction of CO2 to CH4

    NASA Astrophysics Data System (ADS)

    Wang, Qingli; Dong, Peimei; Huang, Zhengfeng; Zhang, Xiwen

    2015-10-01

    Ag or Pt-deposited TiO2 nanocomposites were prepared by a simple method, in which oriented TiO2 nanorods were synthesized by a hydrothermal method and a noble metal (Ag or Pt) was deposited on TiO2 by photocatalytic reduction under UV irradiation. The oriented TiO2 nanorods with Ag or Pt nanoparticles (<20 nm) exhibited high CO2 photoreduction efficiency, with CH4 yield rates up to 16.0 ppm/g h and 10.8 ppm/g h, respectively, considerably higher than that of the pure TiO2 nanorods (4.2 ppm/g h). The improvement in the CH4 yield was attributed to the formation of a Schottky barrier and surface plasmon resonance.

  14. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.

    PubMed

    Kim, Richard S; Zhu, Jinfeng; Park, Jeung Hun; Li, Lu; Yu, Zhibin; Shen, Huajun; Xue, Mei; Wang, Kang L; Park, Gyechoon; Anderson, Timothy J; Pei, Qibing

    2012-06-01

    We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells. PMID:22714293

  15. NMR investigation of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Son, Kwanghyo; Jang, Zeehoon

    2013-01-01

    109Ag nuclear magnetic resonance (NMR) and relaxation measurements have been performed on two powder samples of Ag nanoparticles with average sizes of 20 nm and 80 nm. The measurements have been done in an external field of 9.4 T and in the temperature range 10 K < T < 280 K. The 109Ag NMR spectra for both samples have close to Lorentzian shapes and turn out to be mixtures of homogeneous and inhomogeneous lines. The linewidth Δ ν at room temperature is 1.3 kHz for both samples and gradually increases with decreasing temperature. Both the Knight shift ( K) and the nuclear spin-lattice relaxation rate (1/ T 1) are observed to be almost identical to the values reported for the bulk Ag metal, whereby the Korringa ratio R(= K 2 T 1 T/S) is found to be 2.0 for both samples in the investigated temperature range.

  16. Surface plasmon resonances of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition at different compositions and temperatures

    SciTech Connect

    Verma, Shweta Rao, B. T.; Detty, A. P.; Kukreja, L. M.; Ganesan, V.; Phase, D. M.; Rai, S. K.; Bose, A.; Joshi, S. C.

    2015-04-07

    We studied localized surface plasmon resonances (LSPR) at different compositions, substrate temperatures, and mass thicknesses of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition. The LSPRs were pronounced at all compositions of the films grown at high substrate temperature of about 300 °C as compared to those grown at room temperature. The alloy formation and composition of the films were determined using X-ray photoelectron and energy dispersive spectroscopy. Films' mass thickness and compositional uniformity along the thickness were determined using X-ray reflectometry and secondary ion mass spectroscopy. Atomic force microscopic analysis revealed the formation of densely packed nanoparticles of increasing size with the number of laser ablation pulses. The LSPR wavelength red shifted with increasing either Au percentage or film mass thickness and corresponding LSPR tuning was obtained in the range of 450 to 690 nm. The alloy dielectric functions obtained from three different models were compared and the optical responses of the nanoparticle films were calculated from modified Yamaguchi effective medium theory. The tuning of LSPR was found to be due to combined effect of change in intrinsic and extrinsic parameters mainly the composition, morphology, particle-particle, and particle-substrate interactions.

  17. Synthesis of polydopamine at the femtoliter scale and confined fabrication of Ag nanoparticles on surfaces.

    PubMed

    Guardingo, M; Esplandiu, M J; Ruiz-Molina, D

    2014-10-25

    Nanoscale polydopamine motifs are fabricated on surfaces by deposition of precursor femtolitre droplets using an AFM tip and employed as confined reactors to fabricate Ag nanoparticle patterns by in situ reduction of a Ag(+) salt. PMID:25195667

  18. Bimetallic Pt-Ag and Pd-Ag nanoparticles

    SciTech Connect

    Lahiri, Debdutta; Bunker, Bruce; Mishra, Bhoopesh; Zhang, Zhenyuan; Meisel, Dan; Doudna, C. M.; Bertino, M. F.; Blum, Frank D.; Tokuhiro, A. T.; Chattopadhyay, Soma; Shibata, Tomohiro; Terry, Jeff

    2005-04-19

    We report studies of bimetallic nanoparticles with 15%–16% atomic crystal parameters size mismatch. The degree of alloying was also probed in a 2-nm Pt core ssmallest attainable core sized of Pt–Ag nanoparticles scompletely immiscible in bulkd and 20-nm-diameter Pd–Ag nanowires scompletely miscible in bulkd. Particles were synthesized radiolytically, and depending on the initial parameters, they assume spherical or cylindrical snanowired morphologies. In all cases, the metals are seen to follow their bulk alloying characteristics. Also, Pt and Ag segregate in both spherical and wire forms, which indicates that strain due to crystallographic mismatch overcomes the excess surface free energy in the small particles. The Pd–Ag nanowires alloy similar to previously reported spherical Pd–Ag particles of similar diameter and composition

  19. Bimetallic Pt-Ag and Pd-Ag nanoparticles

    SciTech Connect

    Lahiri, Debdutta; Bunker, Bruce; Mishra, Bhoopesh; Zhang, Zhenyuan; Meisel, Dan; Doudna, C.M.; Bertino, M. F.; Blum, Frank D.; Tokuhiro, A.T.; Chattopadhyay, Soma; Shibata, Tomohiro; Terry, Jeff

    2005-05-01

    We report studies of bimetallic nanoparticles with 15%-16% atomic crystal parameters size mismatch. The degree of alloying was probed in a 2-nm Pt core (smallest attainable core size) of Pt-Ag nanoparticles (completely immiscible in bulk) and 20-nm-diameter Pd-Ag nanowires (completely miscible in bulk). Particles were synthesized radiolytically, and depending on the initial parameters, they assume spherical or cylindrical (nanowire) morphologies. In all cases, the metals are seen to follow their bulk alloying characteristics. Pt and Ag segregate in both spherical and wire forms, which indicates that strain due to crystallographic mismatch overcomes the excess surface free energy in the small particles. The Pd-Ag nanowires alloy similar to previously reported spherical Pd-Ag particles of similar diameter and composition.

  20. Morphological and electrochemical characterization of electrodeposited Zn–Ag nanoparticle composite coatings

    SciTech Connect

    Punith Kumar, M.K.; Srivastava, Chandan

    2013-11-15

    Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn–Ag composite coatings. The Zn–Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, 1 and 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanoparticles, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn–Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn–Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits. - Highlights: • Synthesis of Ag nanoparticles with an average size of 23 nm • Fabrication of Zn/nano Ag composite coating on mild steel • Composite coatings showed better corrosion resistance. • Optimization of particle concentration is necessary.

  1. Synthesis and deposition of metal nanoparticles by gas condensation process

    SciTech Connect

    Maicu, Marina Glöß, Daniel; Frach, Peter; Schmittgens, Ralph; Gerlach, Gerald; Hecker, Dominic

    2014-03-15

    In this work, the synthesis of Pt and Ag nanoparticles by means of the inert gas phase condensation of sputtered atomic vapor is presented. The process parameters (power, sputtering time, and gas flow) were varied in order to study the relationship between deposition conditions and properties of the nanoparticles such as their quantity, size, and size distribution. Moreover, the gas phase condensation process can be combined with a plasma enhanced chemical vapor deposition procedure in order to deposit nanocomposite coatings consisting of metallic nanoparticles embedded in a thin film matrix material. Selected examples of application of the generated nanoparticles and nanocomposites are discussed.

  2. Spin coating of Ag nanoparticles: Effect of reduction

    SciTech Connect

    Ansari, A. A. Sartale, S. D.

    2014-04-24

    A surfactant free method for the growth of Ag nanoparticles on glass substrate by spin coating of Ag ions solution followed by chemical reduction in aqueous hydrazine hydrate (HyH) solution has been presented. Appearance of surface plasmon resonance confirms the formation of Ag nanoparticles. Morphology and absorbance spectra of Ag nanoparticles films are used to examine effect of hydrazine concentration on the growth of Ag nanoparticles. SEM images show uniformly distributed Ag nanoparticles. Rate constant was found to be dependent on HyH concentration as a consequence influence particle size.

  3. Study of structural modification of PVA by incorporating Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Saini, Isha; Sharma, Annu; Rozra, Jyoti; Aggarwal, Sanjeev; Dhiman, Rajnish; Sharma, Pawan K.

    2016-05-01

    Nanocomposites of PVA with Ag nanoparticles dispersed in it were synthesized using solution casting method. The morphology and size distribution of Ag nanoparticles embedded in PVA matrix were obtained by transmission electron microscopy (TEM) and Field emission scanning electron microscopy (FE-SEM). Raman spectroscopy was used to examine structural changes taking place inside polyvinyl alcohol (PVA) matrix due to incorporation of Ag nanoparticle. Raman analysis indicates that Ag nanoparticles interact with PVA through H-bonding.

  4. Real-Time Imaging of the Formation of Au-Ag Core-Shell Nanoparticles.

    PubMed

    Tan, Shu Fen; Chee, See Wee; Lin, Guanhua; Bosman, Michel; Lin, Ming; Mirsaidov, Utkur; Nijhuis, Christian A

    2016-04-27

    We study the overgrowth process of silver-on-gold nanocubes in dilute, aqueous silver nitrate solution in the presence of a reducing agent, ascorbic acid, using in situ liquid-cell electron microscopy. Au-Ag core-shell nanostructures were formed via two mechanistic pathways: (1) nuclei coalescence, where the Ag nanoparticles absorbed onto the Au nanocubes, and (2) monomer attachment, where the Ag atoms epitaxially deposited onto the Au nanocubes. Both pathways lead to the same Au-Ag core-shell nanostructures. Analysis of the Ag deposition rate reveals the growth modes of this process and shows that this reaction is chemically mediated by the reducing agent. PMID:27043921

  5. Photocurrent enhancements of organic solar cells by altering dewetting of plasmonic Ag nanoparticles

    PubMed Central

    Fleetham, Tyler; Choi, Jea-Young; Choi, Hyung Woo; Alford, Terry; Jeong, Doo Seok; Lee, Taek Sung; Lee, Wook Seong; Lee, Kyeong-Seok; Li, Jian; Kim, Inho

    2015-01-01

    Incorporation of metal nanoparticles into active layers of organic solar cells is one of the promising light trapping approaches. The size of metal nanoparticles is one of key factors to strong light trapping, and the size of thermally evaporated metal nanoparticles can be tuned by either post heat treatment or surface modification of substrates. We deposited Ag nanoparticles on ITO by varying nominal thicknesses, and post annealing was carried out to increase their size in radius. PEDOT:PSS was employed onto the ITO substrates as a buffer layer to alter the dewetting behavior of Ag nanoparticles. The size of Ag nanoparticles on PEDOT:PSS were dramatically increased by more than three times compared to those on the ITO substrates. Organic solar cells were fabricated on the ITO and PEDOT:PSS coated ITO substrates with incorporation of those Ag nanoparticles, and their performances were compared. The photocurrents of the cells with the active layers on PEDOT:PSS with an optimal choice of the Ag nanoparticles were greatly enhanced whereas the Ag nanoparticles on the ITO substrates did not lead to the photocurrent enhancements. The origin of the photocurrent enhancements with introducing the Ag nanoparticles on PEDOT:PSS are discussed. PMID:26388104

  6. Photocurrent enhancements of organic solar cells by altering dewetting of plasmonic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Fleetham, Tyler; Choi, Jea-Young; Choi, Hyung Woo; Alford, Terry; Jeong, Doo Seok; Lee, Taek Sung; Lee, Wook Seong; Lee, Kyeong-Seok; Li, Jian; Kim, Inho

    2015-09-01

    Incorporation of metal nanoparticles into active layers of organic solar cells is one of the promising light trapping approaches. The size of metal nanoparticles is one of key factors to strong light trapping, and the size of thermally evaporated metal nanoparticles can be tuned by either post heat treatment or surface modification of substrates. We deposited Ag nanoparticles on ITO by varying nominal thicknesses, and post annealing was carried out to increase their size in radius. PEDOT:PSS was employed onto the ITO substrates as a buffer layer to alter the dewetting behavior of Ag nanoparticles. The size of Ag nanoparticles on PEDOT:PSS were dramatically increased by more than three times compared to those on the ITO substrates. Organic solar cells were fabricated on the ITO and PEDOT:PSS coated ITO substrates with incorporation of those Ag nanoparticles, and their performances were compared. The photocurrents of the cells with the active layers on PEDOT:PSS with an optimal choice of the Ag nanoparticles were greatly enhanced whereas the Ag nanoparticles on the ITO substrates did not lead to the photocurrent enhancements. The origin of the photocurrent enhancements with introducing the Ag nanoparticles on PEDOT:PSS are discussed.

  7. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  8. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  9. SERS detection and antibacterial activity from uniform incorporation of Ag nanoparticles with aligned Si nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yun; Hsu, Li-Jen; Hsiao, Po-Hsuan; Yu, Chang-Tze Ricky

    2015-11-01

    We present a facile, reliable and controllable two-steps electroless deposition for uniformly decorating the silver (Ag) nanoparticles (NPs) on the highly aspect ratio of silicon (Si) nanowire arrays. Different from the direct Ag-loading process, which is normally challenged by the non-uniform coating of Ag, the formation of Ag NPs using such innovative electroless process is no longer to be limited at top nanowire surfaces solely; instead, each Ag+/Si interface can initiate the galvanic reduction of Ag+ ions, thus resulting in the uniform formation of Ag NPs on the entire Si nanowire arrays. In addition, systematic explorations of surface-enhanced Raman scattering (SERS) capability as well as antibacterial activity of the Ag/Si-incorporated nanostructures were performed, and the optimized Ag loadings on Si nanowire-based substrates along with the kinetic investigations were further revealed, which may benefit their practical applications in sensing, medical and biological needs.

  10. Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Cacha, Brian Joseph Gonda

    Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).

  11. Thermal Behavior of Ag Micro/Nano Wires Formed by Low-Temperature Sintering of Ag Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Zhong, Yinghui; Li, Dongxue; Wang, Pan; Cai, Yuwei; Duan, Zhiyong

    2015-12-01

    Ag nanoparticles of 30 nm size were deposited onto a Si substrate to form Ag microwires. The nanoparticles were transformed into continuous Ag wires with low-temperature heat treatment at temperatures not higher than 200°C. The morphology, electrical properties, and interface of the sintered Ag nanoparticle wires are described. It is shown that the neck between the nanoparticles begins to form at 150°C, and obvious metallization was found at 170°C. The changes of the crystal structure of the Ag wires at different sintering temperatures were analyzed by x-ray diffractometry. The grain boundary resistance decreased as the crystal grain size increased above 130 nm. The corresponding resistivity of the microstructure is close to that of the bulk. Through the comparison between the Mayadas-Shatzkes's model and experimental data, the range of the grain boundary reflection coefficient C at different temperatures is obtained. This research lays the foundation for the study of nanoimprint lithography with a pseudoplastic metal nanoparticle fluid.

  12. Mediator and label free estimation of stress biomarker using electrophoretically deposited Ag@AgO-polyaniline hybrid nanocomposite.

    PubMed

    Kaushik, Ajeet; Vasudev, Abhay; Arya, Sunil K; Bhansali, Shekhar

    2013-12-15

    Cortisol, a steroid hormone, is an important biomarker for psychological stress and its detection is gaining prominence for personalized health monitoring. In present work, electrophoretically deposited nanocomposite films of polyaniline (PANI) and core-shell Ag@AgO nanoparticles (NP~5 nm) have been explored as an electro-active nanostructured platform for Anti-cortisol antibody (Anti-Cab) immobilization for electrochemical immunosensing of cortisol. Covalent binding of Anti-Cab onto Ag@AgO-PANI nanocomposite was achieved using EDC/NHS chemistry, which results in the amide bond formation between amino groups of PANI and COOH groups of anti-Cab. Nonspecific binding sites on the immunosensing electrodes were blocked using bovine serum albumin (BSA). The uniform distribution of electro-active and surface charged Ag@AgO NP in PANI matrix results in a nanoporous granular morphology (roughness~10 nm) that provides a functionalized conductive microenvironment for Anti-Cab immobilization. The BSA/Anti-Cab/Ag@AgO-PANI/Au bioelectrodes have been characterized using electrochemical impedance technique (EIS), cyclic voltammetric (CV) technique and atomic force microscopic (AFM) technique, respectively. In CV studies nanocomposite exhibited characteristic response current peak corresponding to AgO NP (0.25 V) with large magnitude of current response and resulted in high electron transport at the electrode-electrolyte interface without a mediator. Electrochemical response studies via CV for the fabricated BSA/Anti-Cab/Ag@AgO-PANI/Au immunosensor as a function of cortisol concentration exhibited a wide linear detection range of 1 pM-1 µM, a detection limit of 0.64 pM mL(-1)(lower than ELISA), and high sensitivity 66 µA M(-1) with a regression coefficient of 0.998. The findings of present work may explore the application of Ag@AgO-PANI hybrid nanocomposite to detect cortisol and other biomarkers for point-of-care application. PMID:23831854

  13. Raman gas sensing of modified Ag nanoparticle SERS

    NASA Astrophysics Data System (ADS)

    Myoung, NoSoung; Yoo, Hyung Keun; Hwang, In-Wook

    2014-03-01

    Recent progress in modified Surface Enhanced Raman Scattering (SERS) using Ag nanoparticles makes them promising optical technique for direct gas sensing of interest. However, SERS has been shown to provide sub ppb level detection of the compounds in the vapor phase. The major problem with the sensitivity scaling-up was in the development of fabrication technology for stability and reproducibility of SERS substrates. We report an optimization of 1-propanethiol coated multiple Ag nanoparticle layers on SiO2 substrate as well as new records of real-time, simultaneous vapor phase detection of toluene and 1-2 dichlorobenzene by the radiation of fiber optic coupled 785 nm diode laser and spectrograph. Multiple depositions of Ag NPs were loaded on SiO2 and soaked in 1-propanethiol solution for 24 hours to modify the surface into hydrophobic due to the characteristics of vapor phase of our interests. Raman bands at 1003 cm-1 and 1130 cm-1 for toluene and 12DCB, respectively were compared to 1089 cm-1 and each gas concentration in 1000 mL flask were calculated as a function of each vapor phase ratio. The saturation of toluene and 12DCB were limited only by 800 ppm and the detectable range was 0.6-800 ppm.

  14. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  15. Studies on electronic structure of interfaces between Ag and gelatin for stabilization of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Uchida, Takayuki

    2015-06-01

    Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst’s equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix.

  16. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    PubMed Central

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  17. Artificial silver sulfide Ag2S: Crystal structure and particle size in deposited powders

    NASA Astrophysics Data System (ADS)

    Sadovnikov, S. I.; Gusev, A. I.; Rempel, A. A.

    2015-07-01

    Chemical deposition from aqueous solutions of silver nitrate and sodium sulfide was used for synthesis of coarse-crystalline and nanocrystalline silver sulfide Ag2S powders. Sodium citrate was used as a complexing and stabilizing agent during synthesis. X-ray diffraction study shows that synthesized Ag2S powders have monoclinic (space group P21/c) α-Ag2S acanthite type crystal structure. The unit cell of artificial monoclinic silver sulfide Ag2S contains four Ag2S formula units and has the following parameters: a = 0.42264 nm, b = 0.69282 nm, c = 0.95317 nm and β = 125.554°. The size of silver sulfide particles in deposited powders was estimated by the X-ray diffraction and BET methods. By varying the ratio between the concentrations of reagents in the initial reaction mixture it is possible to deposit Ag2S nanoparticles with average size ranging in the interval from ∼1000 to ∼30 nm. Ag2S nanopowders have no deformation distortions of the crystal lattice practically because the microstrains ε in the synthesized powders do not exceed 0.15%. All the Ag2S powders with different particle size have an identical morphology.

  18. Temperature dependent effects during Ag deposition on Cu(110)

    SciTech Connect

    Taylor, T.N.; Muenchausen, R.E.; Hoffbauer, M.A.; Denier van der Gon, A.W.; van der Veen, J.F.; FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam )

    1989-01-01

    The composition, structure, and morphology of ultrathin films grown by Ag deposition on Cu(110) were monitored as a function of temperature using low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and medium energy ion scattering (MEIS). Aligned backscattering measurements with 150 keV He ions indicate that the Ag resides on top of the Cu and there is no significant surface compound formation. Measurements with LEED show that the Ag is initially confined to the substrate troughs. Further deposition forces the Ag out of the troughs and results in a split c(2 {times} 4) LEED pattern, which is characteristic of a distorted Ag(111) monolayer template. As verified by both AES and MEIS measurements, postmonolayer deposition of Ag on Cu(110) at 300K leads to a pronounced 3-dimensional clustering. Ion blocking analysis of the Ag clusters show that the crystallites have a (110)-like growth orientation, implying that the Ag monolayer template undergoes a rearrangement. These data are confirmed by low temperature LEED results in the absence of clusters, which indicate that Ag multilayers grow from a Ag--Cu interface where the Ag is captured in the troughs. Changes observed in the film structure and morphology are consistent with a film growth mechanism that is driven by overlayer strain response to the substrate corrugation. 16 refs., 4 figs.

  19. Surface spin polarization induced ferromagnetic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsun; Li, Wen-Hsien; Wu, Sheng Yun

    2016-05-01

    We report on the observation of ferromagnetic spin polarized moments in 4.5 nm Ag nanoparticles. Both ferromagnetic and diamagnetic responses to an applied magnetic field were detected. The spin polarized moments shown under non-linear thermoinduced magnetization appeared on the surface atoms, rather than on all the atoms in particles. The saturation magnetization departed substantially from the Bloch T3/2-law, showing the existence of magnetic anisotropy. The Heisenberg ferromagnetic spin wave model for Ha-aligned moments was then employed to identify the magnetic anisotropic energy gap of ~0.12 meV. Our results may be understood by assuming the surface magnetism model, in which the surface atoms give rise to polarized moments while the core atoms produce diamagnetic responses.

  20. Transient electron energy distribution in supported Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Merschdorf, M.; Kennerknecht, C.; Willig, K.; Pfeiffer, W.

    2002-11-01

    The electron relaxation in Ag nanoparticles supported on graphite is investigated by time-resolved multiphoton photoemission spectroscopy. The photoemission spectra map the transient electron energy distribution in the nanoparticles and reveal the internal thermalization and cooling of the electron gas. The excess energy stored in the electron gas is calculated using the free-electron model. In contrast to the behaviour of isolated nanoparticles the energy loss rate from the electron gas increases with the pump fluence. This indicates that the electron gas equilibration in Ag nanoparticles on graphite is modified by excited electron transport.

  1. Polyvinyl alcohol electrospun nanofibers containing Ag nanoparticles used as sensors for the detection of biogenic amines

    NASA Astrophysics Data System (ADS)

    Marega, Carla; Maculan, Jenny; Rizzi, Gian Andrea; Saini, Roberta; Cavaliere, Emanuele; Gavioli, Luca; Cattelan, Mattia; Giallongo, Giuseppe; Marigo, Antonio; Granozzi, Gaetano

    2015-02-01

    Polyvinyl alcohol (PVA) electrospun nanofibers containing Ag nanoparticles (NPs) have been deposited on glass substrates. The aim of the work was to test the feasibility of this approach for the detection of biogenic amines by using either the Ag localized surface plasmon resonance quenching caused by the adsorption of amines on Ag NPs or by detecting the amines by surface enhanced Raman spectroscopy (SERS) after adsorption, from the gas phase, on the metal NPs. Two different approaches have been adopted. In the first one an ethanol/water solution containing AgNO3 was used directly in the electrospinning apparatus. In this way, a simple heat treatment of the nanofibers mat was sufficient to obtain the formation of Ag NPs inside the nanofibers and a partial cross-link of PVA. In the second procedure, the Ag NPs were deposited on PVA nanofibers by using the supersonic cluster beam deposition method, so that a beam of pure Ag NPs of controlled size was obtained. Exposure of the PVA mat to the beam produced a uniform distribution of the NPs on the nanofibers surface. Ethylendiamine vapors and volatile amines released from fresh shrimp meat were chemisorbed on the nanofibers mats. A SERS spectrum characterized by a diagnostic Ag-N stretching vibration at 230 cm-1 was obtained. The results allow to compare the two different approaches in the detection of ammines.

  2. Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Nemanich, Robert J.

    2011-05-01

    This research addresses the wavelength dependence of the fabrication of Ag nanostructures through photoinduced deposition using single crystal ferroelectric lithium niobate as a template. The photoinduced deposition involves ultraviolent light illumination of polarity patterned lithium niobate while immersed in a AgNO3 solution. The results focus on the differences of the Ag nanostructure formation process on the positive and negative domains and domain boundaries. The results indicate that for below-band-gap excitation, a very low density of nanostructures is observed. However, for all above-gap-excitation wavelengths, deposition occurs on both polarity surfaces and at the domain boundaries. The density is greatest at the domain boundaries and reduced densities of smaller nanostructures are observed to form on both the positive and negative domains. The deposition on the domain surfaces is greatest for the shortest wavelengths, whereas the domain selectivity is increased for wavelengths just above the band gap. The external screening and weak band bending of single crystal lithium niobate introduces an enhanced electric field at the domain boundary. The enhanced electric field leads to migration of electrons to the domain boundary and consequently enhanced formation of Ag nanoparticles along the boundary. The variation in the reduction rate versus illumination wavelength is attributed to the light absorption depth and the competition between the photochemical and photoelectric deposition processes. To explore the transition from surface to bulk screening of the polarization charge, oxygen implanted PPLN surfaces were prepared and used for the Ag photoinduced deposition. Consistent with the transition to internal (bulk) screening, the Ag nanoparticle formation on the oxygen implanted PPLN surfaces showed suppressed boundary nanowire formation.

  3. Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida).

    PubMed

    Shoults-Wilson, W A; Zhurbich, Oksana I; McNear, David H; Tsyusko, Olga V; Bertsch, Paul M; Unrine, Jason M

    2011-03-01

    Silver nanoparticles have been incorporated into a wide variety of consumer products, ideally acting as antimicrobial agents. Silver exposure has long been known to cause toxic effects to a wide variety of organisms, making large scale production of silver nanoparticles a potential hazard to environmental systems. Here we describe the first evidence that an organism may be able to sense manufactured nanoparticles in a complex, environmentally relevant exposure and that the presence of nanoparticles alters the organism's behavior. We found that earthworms (Eisenia fetida) consistently avoid soils containing silver nanoparticles and AgNO(3) at similar concentrations of Ag. However, avoidance of silver nanoparticles occurred over 48 h, while avoidance of AgNO(3) was immediate. It was determined that avoidance of silver nanoparticles could not be explained by release of silver ions or any changes in microbial communities caused by the introduction of Ag. This leads us to conclude that the earthworms were in some way sensing the presence of nanoparticles over the course of a 48 h exposure and choosing to avoid exposure to them. Our results demonstrate that nanoparticle interactions with organisms may be unpredictable and that these interactions may result in ecologically significant effects on behavior at environmentally relevant concentrations. PMID:21229389

  4. Beet Juice-Induced Green Fabrication of Plasmonic AgCl/Ag Nanoparticles

    EPA Science Inventory

    A simple, green, and fast approach (complete within 5 min) was explored for the fabrication of hybrid AgCl/Ag plasmonic nanoparticles under microwave (MW) irradiation. In this method, beet juice served as a reducing reagent, which is an abundant sugar-rich agricultural produce. I...

  5. Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings

    NASA Astrophysics Data System (ADS)

    Tanahashi, Ichiro; Harada, Yoshiyuki

    2014-06-01

    Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, the absorption peak due to the localized surface plasmon resonance (LSPR) of Ag nanoparticles was observed at 440 nm. Strong Surface-enhanced Raman scattering (SERS) signals of Rhodamine 6G adsorbed on the Ag/TiO2-coated wings were clearly observed using the 514.5-nm line of an Ar+ laser. The Ag/TiO2-coated wings can be a promising candidate for naturally inspired SERS substrates.

  6. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-01

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10‑5 Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  7. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum.

    PubMed

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-16

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10(-5) Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains. PMID:27487089

  8. Synthesis and biosensor application of Ag@Au bimetallic nanoparticles based on localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Arsalani, S.; Neishaboorynejad, T.

    2014-05-01

    This work demonstrates a simple method for synthesizing gold-silver bimetallic nanoparticles (Ag@Au BNPs). Ag@Au BNPs on the carbon thin film are prepared by co-deposition of RF-sputtering and RF-PECVD using acetylene gas and gold-silver target. X-ray diffraction analysis indicates that Au and Ag NPs with FCC crystal structure are formed in our samples. From AFM image and data, average particles size of gold and silver are estimated to be about 5 and 8 nm, respectively. XRD profile and localized surface plasmon resonance (LSPR) spectroscopy indicate that Ag NPs in Ag@Au BNPs composite have a more chemical activity with respect to bare Ag NPs. Biosensor application of Ag@Au BNPs without probe immobilization is introduced too. The change in LSPR absorption peak of Ag@Au BNPs in presence of DNA primer decamer (ten-deoxycytosine) at fM concentrations is investigated. The LSPR absorption peak of Au NPs has a blue shift and the LSPR absorption peak of Ag NPs has a red shift by addition of DNA primer and under DNA exposure up to 1 h. Our sample shows a good response to low concentration of DNA and has a short response time. Both of these are prerequisite for applying this sample as LSPR biosensor chip.

  9. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods

    NASA Astrophysics Data System (ADS)

    Choudhury, Rupasree; Majumder, Manna; Roy, Dijendra Nath; Basumallick, Srijita; Misra, Tarun Kumar

    2016-06-01

    Silver nanoparticles (Ag NPs) are now widely used as antibacterial and antifungal materials in different consumer products. We report here the preparation of Ag NPs by neem leaves extract (Azadirachta) reduction and trisodium citrate-sodium borohydride reduction methods, and study of their phytotoxicity. The nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and atomic force microscopy (AFM) techniques. Both neem-coated and citrate-coated Ag NPs exhibit surface plasmon around 400 nm, and their average sizes measured by AFM are about 100 and 20 nm, respectively. Antibacterial and antifungal activities of these nanomaterials have been studied by simple pea seed germination and disk diffusion methods. It has been observed from the growth of root and shoot, citrate-coated Ag NPs significantly affect seedling growth, but neem-coated Ag NPs exhibit somehow mild toxicity toward germination process due to the nutrient supplements from neem. On the other hand, antifungal activity of neem-coated Ag NPs has been found much higher than that of citrate-coated Ag NPs due to the combined effects of antifungal activity of neem and Ag NPs. Present research primarily indicates a possible application of neem-coated Ag NPs as a potential fungicide.

  10. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods

    NASA Astrophysics Data System (ADS)

    Choudhury, Rupasree; Majumder, Manna; Roy, Dijendra Nath; Basumallick, Srijita; Misra, Tarun Kumar

    2016-06-01

    Silver nanoparticles (Ag NPs) are now widely used as antibacterial and antifungal materials in different consumer products. We report here the preparation of Ag NPs by neem leaves extract ( Azadirachta) reduction and trisodium citrate-sodium borohydride reduction methods, and study of their phytotoxicity. The nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and atomic force microscopy (AFM) techniques. Both neem-coated and citrate-coated Ag NPs exhibit surface plasmon around 400 nm, and their average sizes measured by AFM are about 100 and 20 nm, respectively. Antibacterial and antifungal activities of these nanomaterials have been studied by simple pea seed germination and disk diffusion methods. It has been observed from the growth of root and shoot, citrate-coated Ag NPs significantly affect seedling growth, but neem-coated Ag NPs exhibit somehow mild toxicity toward germination process due to the nutrient supplements from neem. On the other hand, antifungal activity of neem-coated Ag NPs has been found much higher than that of citrate-coated Ag NPs due to the combined effects of antifungal activity of neem and Ag NPs. Present research primarily indicates a possible application of neem-coated Ag NPs as a potential fungicide.

  11. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol

    NASA Astrophysics Data System (ADS)

    An, Changhua; Wang, Jizhuang; Jiang, Wen; Zhang, Meiyu; Ming, Xijuan; Wang, Shutao; Zhang, Qinhui

    2012-08-01

    Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO2. For example, reduction of CO2 under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO2 into useful organic compounds.Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO2. For example, reduction of CO2 under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO2

  12. Enhanced resistive switching effect in Ag nanoparticle embedded BaTiO{sub 3} thin films

    SciTech Connect

    Au, K.; Wang, Juan; Bao, Z. Y.; Dai, J. Y.; Gao, X. S.; Liu, J. M.

    2013-07-14

    Ag nanoparticle (NP) embedded BaTiO{sub 3} (BTO) thin films on SrRuO{sub 3}-coated SrTiO{sub 3} (STO) substrates are prepared by the integrated nanocluster beam deposition and laser-molecular beam epitaxy. Enhanced resistive switching, up to an ON/OFF ration of 10{sup 4}, has been achieved at low switching voltage (less than 1 V) without a forming voltage. These characteristics make such nanocomposite film very promising for application of low voltage non-volatile random access memory. The enhanced resistive switching effect may be attributed to the charge storage effect of the Ag nanoparticles and easy formation of Ag filament inside the BTO film.

  13. Highly luminescent material based on Alq3:Ag nanoparticles.

    PubMed

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2013-09-01

    Tris (8-hydroxyquinoline) aluminum (Alq3) is an organic semiconductor molecule, widely used as an electron transport layer, light emitting layer in organic light-emitting diodes and a host for fluorescent and phosphorescent dyes. In this work thin films of pure and silver (Ag), cupper (Cu), terbium (Tb) doped Alq3 nanoparticles were synthesized using the physical vapor condensation method. They were fabricated on glass substrates and characterized by X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectroscopy, atomic force microscope (AFM), UV-visible absorption spectra and studied for their photoluminescence (PL) properties. SEM and AFM results show spherical nanoparticles with size around 70-80 nm. These nanoparticles have almost equal sizes and a homogeneous size distribution. The maximum absorption of Alq3 nanoparticles is observed at 300 nm, while the surface plasmon resonant band of Ag doped sample appears at 450 nm. The PL emission spectra of Tb, Cu and Ag doped Alq3 nanoparticles show a single broad band at around 515 nm, which is similar to that of the pure one, but with enhanced PL intensity. The sample doped with Ag at a concentration ratio of Alq3:Ag = 1:0.8 is found to have the highest PL intensity, which is around 2 times stronger than that of the pure one. This enhancement could be attributed to the surface plasmon resonance of Ag ions that might have increased the absorption and then the quantum yield. These remarkable result suggest that Alq3 nanoparticles incorporated with Ag ions might be quite useful for future nano-optoelectronic devices. PMID:23653126

  14. Heat-induced spinodal decomposition of Ag-Cu nanoparticles.

    PubMed

    Sopoušek, Jiří; Zobač, Ondřej; Buršík, Jiří; Roupcová, Pavla; Vykoukal, Vít; Brož, Pavel; Pinkas, Jiří; Vřešt'ál, Jan

    2015-11-14

    Solvothermal synthesis was used for Ag-Cu nanoparticle (NP) preparation from metallo-organic precursors. The detailed NP characterization was performed to obtain information about nanoparticle microstructure and both phase and chemical compositions. The resulting nanoparticles exhibited chemical composition inside a FCC_Ag + FCC_Cu two-phase region. The microstructure study was performed by various methods of electron microscopy including high-resolution transmission electron microscopy (HRTEM) at an atomic scale. The HRTEM and X-ray diffraction studies showed that the prepared nanoparticles form the face centred cubic (FCC) crystal lattice where the silver atoms are randomly mixed with copper. The CALPHAD approach was used for predicting the phase diagram of the Ag-Cu system in both macro- and nano-scales. The predicted spinodal decomposition of the metastable Ag-Cu nanoparticles was experimentally induced by heating on an X-ray powder diffractometer (HT XRD). The nucleation of the Cu-rich phase was detected and its growth was studied. Changes in the Ag-rich phase were observed in situ by X-ray diffraction under vacuum. The heat treatment was conducted at different maximum temperatures up to 450 °C and the resulting particle product was analysed. The experiments were complemented by differential scanning calorimetry (DSC) measurements up to liquidus temperature. The start temperatures of the spinodal phase transformation and particle aggregation were evaluated. PMID:25929324

  15. Laser generated Ag and Ag-Au composite nanoparticles for refractive index sensor

    NASA Astrophysics Data System (ADS)

    Navas, M. P.; Soni, R. K.

    2014-09-01

    Localized surface plasmon resonance (LSPR) wavelength of metal nanoparticles (NPs) is highly sensitive to size, shape and the surrounding medium. Metal targets were laser ablated in liquid for preparation of spherical Ag and Ag@Au core-shell NP colloidal solution for refractive index sensing. The LSPR peak wavelength and broadening of the NPs were monitored in different refractive index liquid. Quasi-static Mie theory simulation results show that refractive index sensitivity of Ag, Ag-Au alloy and Ag@Au core-shell NPs increases nearly linearly with size and shell thickness. However, the increased broadening of the LSPR peak with size, alloy concentration and Au shell thickness restricts the sensing resolution of these NPs. Figure-of-merit (FOM) was calculated to optimize the size of Ag NPs, concentration of Ag-Au alloy NPs and Au shell thickness of Ag@Au core-shell NPs. The refractive index sensitivity (RIS) and FOM were optimum in the size range 20-40 nm for Ag NPs. Laser generated Ag@Au NPs of Au shell thickness in the range of 1-2 nm showed optimum FOM, where thin layer of Au coating can improve the stability of Ag NPs.

  16. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract.

    PubMed

    Philip, Daizy

    2009-07-15

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size approximately 15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (111) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications. PMID:19324587

  17. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2009-07-01

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size ˜15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (1 1 1) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications.

  18. Extranuclear dynamics of 111Ag(→111Cd) doped in AgI nanoparticles

    NASA Astrophysics Data System (ADS)

    Sato, W.; Mizuuchi, R.; Irioka, N.; Komatsuda, S.; Kawata, S.; Taoka, A.; Ohkubo, Y.

    2014-08-01

    Dynamic behavior of the extranuclear field relative to the 111Ag(→111Cd) probe nucleus introduced in a superionic conductor silver iodide (AgI) was investigated by means of the time-differential perturbed angular correlation technique. For poly-N-vinyl-2-pyrrolidone (PVP)-coated AgI nanoparticles, we observed nuclear spin relaxation of the probe at room temperature. This result signifies that Ag+ ions in the polymer-coated sample make hopping motion from site to site at this low temperature. The activation energy for the dynamic motion was successfully estimated to be 46(10) meV. The first atomic-level observation of the temperature-dependent dynamic behavior of Ag+ ions in the polymer-coated AgI is reported.

  19. Chemical and phase distributions in a multilayered organic matter-Ag nanoparticle thin film system

    NASA Astrophysics Data System (ADS)

    Michel, F. M.; Levard, C.; Wang, Y.; Choi, Y.; Eng, P.; Brown, G. E.

    2010-12-01

    Rapid development of nanotechnologies raises concern regarding the environmental impact of nanoparticles on ecosystems. Among the types of nanoparticles currently in production, metallic silver is the most widely used in nanotechnology (1). Synthetic Ag nanoparticles (Ag-NPs) are most often used for their antimicrobial and antifungal properties that are, in part, explained by the release of highly toxic Ag+ species (2). While such properties are desirable in certain applied cases, the release of Ag-NPs and soluble Ag+ species to the environment is expected to impact biota as well as soil and water quality (3). With the production of Ag-NPs projected to increase (1), the amount of Ag-NPs that will be released to the environment through waste streams is also likely to increase. As such, a deeper understanding of the fundamental processes associated with Ag-NPs toxicity and reactivity is needed to evaluate their impact on the environment. We have studied the interaction during aging of poly-acrylic acid (PAA) and Ag-NPs with average particle sizes of 20 ±5 nm. The sample studied was composed of thin films of PAA and Ag-NPs deposited on a Si-wafer support. PAA served as a model compound and a simplified surrogate for exopolysaccharide, an organic substance produced through metabolic activity by most microorganisms. We applied a novel combination of long-period x-ray standing wave fluorescence yield (XSW-FY) spectroscopy, grazing-incidence x-ray diffraction (GI-XRD), and XRD-based standing wave profiles (XSW-XRD) to obtain chemical- and phase-specific information on this sample. After 24 hours, we observed the formation of AgCl(s) in the PAA film of the sample, which suggests oxidation and dissolution of a portion of the Ag-NPs during aging, resulting in the release of Ag+. In addition, we see partitioning of Cl and Br, both present initially in the PAA, to the intact Ag-NPs thin film. To our knowledge, this is the first application of this suite of techniques to this

  20. Transport of stabilized engineered silver (Ag) nanoparticles through porous sandstones

    NASA Astrophysics Data System (ADS)

    Neukum, Christoph; Braun, Anika; Azzam, Rafig

    2014-03-01

    Engineered nanoparticles are increasingly applied in consumer products and concerns are rising regarding their risk as potential contaminants or carriers for colloid-facilitated contaminant transport. Engineered silver nanoparticles (AgNP) are among the most widely used nanomaterials in consumer products. However, their mobility in groundwater has been scarcely investigated. In this study, transport of stabilized AgNP through porous sandstones with variations in mineralogy, pore size distribution and permeability is investigated in laboratory experiments with well-defined boundary conditions. The AgNP samples were mainly characterized by asymmetric flow field-flow fractionation coupled to a multi-angle static laser light detector and ultraviolet-visible spectroscopy for determination of particle size and concentration. The rock samples are characterized by mercury porosimetry, flow experiments and solute tracer tests. Solute and AgNP breakthrough was quantified by applying numerical models considering one kinetic site model for particle transport. The transport of AgNP strongly depends on pore size distribution, mineralogy and the solution ionic strength. Blocking of attachment sites results in less reactive transport with increasing application of AgNP mass. AgNPs were retained due to physicochemical filtration and probably due to straining. The results demonstrate the restricted applicability of AgNP transport parameters determined from simplified experimental model systems to realistic environmental matrices.

  1. [Three-dimensional vertically aligned CNTs coated by Ag nanoparticles for surface-enhanced Raman scattering].

    PubMed

    Zhang, Xiao-Lei; Zhang, Jie; Fan, Tuo; Ren, Wen-Jie; Lai, Chun-Hong

    2014-09-01

    In order to make surface-enhanced Raman scattering (SERS) substrates contained more "hot spots" in a three-dimensional (3D) focal volume, and can be adsorbed more probe molecules and metal nanoparticles, to obtain stronger Raman spectral signal, a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman enhancement is presented. The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD). A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering. The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs. The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs, as the annealing temperature is different , pitch size, morphology and space between the silver nanoparticles is vary. Rhodamine 6G is served as the probe analyte. Raman spectrum measurement indicates that: the higher the concentration of R6G, the stronger the Raman intensity, but R6G concentration increase with the enhanced Raman intensity varies nonlinearly; when annealing temperature is 450 °C, the average size of silver nanoparticles is about 100 to 120 nm, while annealing temperature is 400 °C, the average size is about 70 nm, and the Raman intensity of 450 °C is superior to the annealing temperature that of 400 °C and 350 °C. PMID:25532342

  2. Atomic oxygen flux determined by mixed-phase Ag/Ag2O deposition

    SciTech Connect

    Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.

    2010-11-01

    The flux of atomic oxygen generated in a electron cyclotron resonance (ECR) microwave plasma source was quantified by two different methods. The commonly applied approach of monitoring the frequency change of a silver-coated quartz crystal microbalance (QCM) deposition rate monitor as the silver is oxidized was found to underestimate the atomic oxygen flux by an order of magnitude compared to a more direct deposition approach. In the mixed-phase Ag/Ag2O deposition method, silver films were deposited in the presence of the plasma such that the films were partially oxidized to Ag2O; x-ray photoelectron spectroscopy (XPS) was utilized for quantification of the oxidized fraction. The inaccuracy of the QCM oxidation method was tentatively attributed to efficient catalytic recombination of O atoms on the silver surface.

  3. Resonant surface enhancement of Raman scattering of Ag nanoparticles on silicon substrates fabricated by dc sputtering

    SciTech Connect

    Fang Yingcui; Li Xiaxi; Blinn, Kevin; Mahmoud, Mahmoud A.; Liu Meilin

    2012-09-15

    Ag nanoparticles (AgNPs) were deposited onto silicon substrates by direct current (dc) magnetron sputtering. The influences of sputtering power and sputtering time on the AgNP film morphology were studied using atomic force microscopy. The particle size was successfully tuned from 19 nm to 53 nm by varying the sputtering time at a dc power of 10 W. When Rhodamine 6 G (R6G) was used as the probe molecule, the AgNP films showed significant surface enhanced Raman scattering effect. In particular, it is found that larger particles show stronger enhancement for lower concentrations of R6G while smaller particles display stronger enhancement for higher concentrations of R6G.

  4. Deposition of Gold Nanoparticles on Polystyrene Spheres by Electroless Metal Plating Technique

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Tadaki, Y.; Nagao, D.; Konno, M.

    2007-03-01

    A previous method proposed for gold deposition on silica spheres (Kobayashi et al., 2005) was extended to uniform deposition of Au nanoparticles on submicron-sized polystyrene spheres. This method consisted of surface-modification and elecroless Au plating. The chemical agents examined for the surface-modification were sodium persulfate, 3- aminopropyltrimethoxysilane, polyelectrolytes and polyvinylpyrrolidone. The elecroless Au plating included three steps: (1) the adsorption of Sn2+ ions took place on surface of silica particles, (2) Ag+ ions added were reduced and simultaneously adsorbed to the surface, while Sn2+ oxidized to Sn4+, and (3) Au+ ions added were reduced and deposited on the Ag surface. TEM observation revealed that Au nanoparticles with sizes of 8-25 nm were uniformly deposited on the polystyrene spheres that were modified with polyvinylpyrrolidone. The Au nanoparticle deposition was confirmed by UV-VIS absorption spectroscopy.

  5. Spectroscopic Study on Eu3+ Doped Borate Glasses Containing Ag Nanoparticles and Ag Aggregates.

    PubMed

    Fu, Shaobo; Zheng, Hui; Zhang, Jinsu; Li, Xiangping; Sun, Jiashi; Hua, Ruinian; Dong, Bin; Xia, Haiping; Chen, Baojiu

    2015-01-01

    Transparent Eu(3+)-doped borate glasses containing Ag nanoparticles and Ag aggregates with composition (40 - x) CaO-59.5B2O3-0.5Eu2O3-xAgNO3 were prepared by a simple one-step melt-quenching technique. The X-ray diffraction (XRD) patterns of the glasses reveal amorphous structural properties and no diffraction peaks belonging to metal Ag particles. Ag particles and Ag aggregates were observed from the absorption spectra. Effective energy transfers from the Ag aggregates to the Eu3+ ions were observed in the excitation spectra from monitoring the intrinsic emission of Eu3+x .5D0 --> 7F2. The glasses with higher Ag content can be effectively excited by light in a wide wavelength region, indicating that these glasses have potential application in the solid state lighting driven by semiconductor light emitting diodes (LEDs). The emission spectra of the samples with higher Ag contents exhibit plenteous spectral components covering the full visible region from violet to red, thus indicating that these glass materials possess an excellent and tunable color rendering index. The color coordinates for all the glass samples were calculated by using the intensity-corrected emission spectra and the standard data issued by the CIE (Commission International de l' Eclairage) in 1931. It was found that the color coordinates for most samples with higher Ag contents fall into the white region in the color space. PMID:26328363

  6. Trimetallic nanostructures: the case of AgPd/Pt multiply twinned nanoparticles

    PubMed Central

    Khanal, Subarna; Bhattarai, Nabraj; Velázquez-Salazar, J. Jesús; Bahena, Daniel; Soldano, German; Ponce, Arturo; Mariscal, Marcelo M.; Mejía-Rosales, Sergio; José-Yacamán, Miguel

    2013-01-01

    We report the synthesis, structural characterization, and atomistic simulations of AgPd/Pt trimetallic (TM) nanoparticles. Two types of structure were synthesized using a relatively facile chemical method: multiply twinned core-shell, and hollow particles. The nanoparticles were small in size, with an average diameter of 11 nm and a narrow distribution, and their characterization by aberration corrected scanning transmission electron microscopy allowed us to probe the structure of the particles at atomistic level. In some nanoparticles, the formation of a hollow structure was also observed, that facilitates the alloying of Ag and Pt in the shell region and the segregation of Ag atoms in the surface, affecting the catalytic activity and stability. We also investigated the growth mechanism of the nanoparticles using grand canonical Monte Carlo simulations, and we have found that Pt regions grow at overpotentials on the AgPd nanoalloys, forming 3D islands at the early stages of the deposition process. We found very good agreement between the simulated structures and those observed experimentally. PMID:24165796

  7. One-pot synthesis and transfer of PMMA/Ag photonic nanocomposites by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Karoutsos, V.; Koutselas, I.; Orfanou, P.; Mpatzaka, Th.; Vasileiadis, M.; Vassilakopoulou, A.; Vainos, N. A.; Perrone, A.

    2015-08-01

    Nanocomposite films comprising metallic nanoparticles in polymer matrices find increasing use in emerging photonic, electronic and microsystem applications owing to their tailored advanced functionalities. The versatile development of such films based on poly-methyl-methacrylate (PMMA) matrix having embedded Ag nanoparticles is addressed here. Two low-cost one-pot chemical methods for the synthesis of bulk target nanocomposite materials are demonstrated. These nanocomposites are subsequently transferred via pulsed laser deposition using 193 nm ArF excimer laser radiation, producing films maintaining the structural and functional properties. Both target- and laser-deposited materials have been thoroughly characterized using microscopic, spectroscopic and thermal analysis methods. Infrared spectra demonstrated the close molecular PMMA chain similarity for both target and film materials, though structural alterations identified by thermal analysis proved the enhanced characteristics of films grown. High-resolution electron microscopy proved the transfer of Ag nanoparticles sized 10-50 nm. Visible absorption peaked in the spectral range of 430-440 nm and attributed to the Ag nanocomposite plasmonic response verifying the transfer of the functional performance from target to film.

  8. Silver or gold deposition onto magnetite nanoparticles by using plant extracts as reducing and stabilizing agents.

    PubMed

    Norouz Dizaji, Araz; Yilmaz, Mehmet; Piskin, Erhan

    2016-06-01

    In this paper, we describe an environmentally friendly procedure to produce silver (Ag) or gold (Au)-deposited magnetite nanoparticles by using plant extracts (Ligustrum vulgare) as reducing and stabilizing agents. Firstly, magnetite nanoparticles (∼6 nm) with superparamagnetic properties - SPIONs - were synthesized by co-precipitation of Fe(+ 2) and Fe(+ 3) ions. Color changes indicated the differing amounts of Au and Ag ions reduced and deposited on to the SPIONs when the plant extracts were used. UV-vis and transmission electron microscope (TEM) with energy dispersive X-ray (EDX) apparatus confirmed the metallic deposition. Magnetic saturation decreased when the amount of the metallic deposition increased, which was measured by vibrating sample magnetometry (VSM). Due to the molecules coming into contact with - and even remaining on - the surface of the nanoparticles after aggressive washing procedures, the Ag/Au-deposited SPIONs were stable, and almost no agglomeration was observed for months. Fourier Transform Infrared (FTIR) spectra depicted that functional groups such as carboxylic and ketone groups, which are most probably responsible for the reduction and stabilization of Ag/Au- carrying magnetite nanoparticles, originated from the plant extract. The proposed route was facile, viable, and reproducible, and it should be stressed that nanoparticles do contain only safe biomolecules as stabilizing agents on their surfaces. PMID:25801040

  9. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation

    NASA Astrophysics Data System (ADS)

    González-Castillo, Jr.; Rodriguez, E.; Jimenez-Villar, E.; Rodríguez, D.; Salomon-García, I.; de Sá, Gilberto F.; García-Fernández, T.; Almeida, DB; Cesar, CL; Johnes, R.; Ibarra, Juana C.

    2015-10-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag+ concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM).

  10. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation.

    PubMed

    González-Castillo, J R; Rodriguez, E; Jimenez-Villar, E; Rodríguez, D; Salomon-García, I; de Sá, Gilberto F; García-Fernández, T; Almeida, D B; Cesar, C L; Johnes, R; Ibarra, Juana C

    2015-12-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag(+) concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM). PMID:26464175

  11. Stability of Ag nanoparticles dispersed in amphiphilic organic matrix

    NASA Astrophysics Data System (ADS)

    Suvorova, Elena I.; Klechkovskaya, Vera V.; Kopeikin, Victor V.; Buffat, Philippe A.

    2005-02-01

    Nano- and thin-film technologies based on novel systems associating metals particles to polymer matrix open a broad range of different applications. Such composites were found to be more efficient and safe, for instance, in biomedical needs. The Ag/poly(N-vinyl-2-pyrrolidone) (Ag/PVP) composite investigated in the present work is a new bactericide mean applied in complicated cases of infected burns and purulent wounds. High-resolution transmission electron microscopy (HRTEM) and X-ray energy-dispersive (EDS) microanalysis were used to bring chemical and structural information in a study of the properties and stability of thin-film nanocomposite whih consisted of Ag nanoparticles dispersed in water-soluble organic matrix poly(N-vinyl-2-pyrrolidone). The nanostructural investigation of Ag/PVP composite by HRTEM and EDS exposed to SO 2 and H 2S from the atmosphere and some traces of S-containing substances explains the limited stability of this system by a structural modification associated with a phase change and formation of Ag 2S and Ag 2SO 3. However, formation of the hardly water-soluble Ag 2S and Ag 2SO 3 salts may play an important role in the suppression of bacterial growth. On the one hand, silver could block S-H groups in vital proteins and conduced to their destruction, in that way revealing the antibacterial power. On the other hand, antiseptic properties of Ag consist in binding the products of the protein decay.

  12. Transport of silver nanoparticles (AgNPs) in soil.

    PubMed

    Sagee, Omer; Dror, Ishai; Berkowitz, Brian

    2012-07-01

    The effect of soil properties on the transport of silver nanoparticles (AgNPs) was studied in a set of laboratory column experiments, using different combinations of size fractions of a Mediterranean sandy clay soil. The AgNPs with average size of ~30nm yielded a stable suspension in water with zeta potential of -39mV. Early breakthrough of AgNPs in soil was observed in column transport experiments. AgNPs were found to have high mobility in soil with outlet relative concentrations ranging from 30% to 70%, depending on experimental conditions. AgNP mobility through the column decreased when the fraction of smaller soil aggregates was larger. The early breakthrough pattern was not observed for AgNPs in pure quartz columns nor for bromide tracer in soil columns, suggesting that early breakthrough is related to the nature of AgNP transport in natural soils. Micro-CT and image analysis used to investigate structural features of the soil, suggest that soil aggregate size strongly affects AgNP transport in natural soil. The retention of AgNPs in the soil column was reduced when humic acid was added to the leaching solution, while a lower flow rate (Darcy velocity of 0.17cm/min versus 0.66cm/min) resulted in higher retention of AgNPs in the soil. When soil residual chloride was exchanged by nitrate prior to column experiments, significantly improved mobility of AgNPs was observed in the soil column. These findings point to the importance of AgNP-soil chemical interactions as a retention mechanism, and demonstrate the need to employ natural soils rather than glass beads or quartz in representative experimental investigations. PMID:22516207

  13. Colloidally deposited nanoparticle wires for biophysical detection

    NASA Astrophysics Data System (ADS)

    Shen, Sophie C.; Liu, Wen-Tao; Diao, Jia-Jie

    2015-12-01

    Among the techniques developed to prepare nanoparticle wires for multiple applications, the colloidal deposition method at interface has been regarded as cost-efficient and eco-friendly, and hence has attracted an increasing amount of research attention. In this report, the recent developments in preparing nanoparticle wires and integrated nanoparticle wire arrays using this technique have been reviewed. Furthermore, we have also discussed the application of these nanoparticle structures in detecting chemical and biological molecules. Project supported by the Fundamental Research Funds for the Central Universities through Xi’an Jiaotong University and the National Key Basic Research Program of China (Grant No. 2015CB856304).

  14. Sacrificial Silver Nanoparticles: Reducing GeI2 To Form Hollow Germanium Nanoparticles by Electroless Deposition.

    PubMed

    Nolan, Bradley M; Chan, Eric K; Zhang, Xinming; Muthuswamy, Elayaraja; van Benthem, Klaus; Kauzlarich, Susan M

    2016-05-24

    Herein we report the electroless deposition of Ge onto sacrificial Ag nanoparticle (NP) templates to form hollow Ge NPs. The formation of AgI is a necessary component for this reaction. Through a systematic study of surface passivating ligands, we determined that tri-n-octylphosphine is necessary to facilitate the formation of hollow Ge NPs by acting as a transport agent for GeI2 and the oxidized Ag(+) cation (i.e., AgI product). Annular dark-field (ADF) scanning transmission electron microscopy (STEM) imaging of incomplete reactions revealed Ag/Ge core/shell NPs; in contrast, completed reactions displayed hollow Ge NPs with pinholes which is consistent with the known method for dissolution of the nanotemplate. Characterization of the hollow Ge NPs was performed by transmission electron microscopy, ADF-STEM, energy-dispersive X-ray spectroscopy, UV-vis spectrophotometry, and Raman spectroscopy. The galvanic replacement reaction of Ag with GeI2 offers a versatile method for controlling the structure of Ge nanomaterials. PMID:27096547

  15. [Ag25(SR)18](-): The "Golden" Silver Nanoparticle.

    PubMed

    Joshi, Chakra P; Bootharaju, Megalamane S; Alhilaly, Mohammad J; Bakr, Osman M

    2015-09-16

    Silver nanoparticles with an atomically precise molecular formula [Ag25(SR)18](-) (-SR: thiolate) are synthesized, and their single-crystal structure is determined. This synthesized nanocluster is the only silver nanoparticle that has a virtually identical analogue in gold, i.e., [Au25(SR)18](-), in terms of number of metal atoms, ligand count, superatom electronic configuration, and atomic arrangement. Furthermore, both [Ag25(SR)18](-) and its gold analogue share a number of features in their optical absorption spectra. This unprecedented molecular analogue in silver to mimic gold offers the first model nanoparticle platform to investigate the centuries-old problem of understanding the fundamental differences between silver and gold in terms of nobility, catalytic activity, and optical property. PMID:26322865

  16. Transport and Deposition of Electrosprayed Nanoparticles

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas; Chiarot, Paul

    2015-11-01

    In an electrospray, high electric potentials are utilized to generate a fine aerosol of a conductive solvent. For this study, the solvent consisted of nanoparticles dispersed in alcohol. The nanoparticle suspensions act as printable nanoparticle inks. In this process, a glass capillary tube is held as a high electric potential relative to a grounded reference plate located below the tip. Droplets are ejected from the tube and are directed towards the ground plate. If the solvent is sufficiently volatile, it will rapidly evaporate while the droplets are in flight (due to the high surface area to volume ratio) leaving behind dry, highly charged nanoparticles. The droplets/nanoparticles are deposited onto a target substrate that is place onto the grounded plate. The transport of any individual droplet/nanoparticle from the emitter tip to the target substrate is a stochastic process. This transport can be modeled using a Monte Carlo simulation. The probability of an individual particle being deposited at a given location on the target substrate is directly related to the electric potential at that location. In other words, the probability function that determines the deposition is directly related to the electric potential at the substrate. The total potential is comprised of the applied electric potential required to generate the electrospray, the induced charge on the surface of the target dielectric, and the charge on the individual particles themselves. We report on the structure of droplet/nanoparticle deposits printed using electrospray. The evolution of the deposit is investigated over time using experimental studies and Monte Carlo simulations. The deposit structure passes through four distinct regimes that are characterized by repeatable bulk features.

  17. Controlled preparation of Ag nanoparticle films by a modified photocatalytic method on TiO2 films with Ag seeds for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Fu, Xin; Pan, Lujun; Li, Shuai; Wang, Qiao; Qin, Jun; Huang, Yingying

    2016-02-01

    Uniform Ag nanoparticle (NP) films were synthesized by a modified photocatalytic method on TiO2 films with Ag seeds for surface-enhanced Raman scattering, which combine the advantages of the spurting method (high nucleation density) and the traditional photocatalytic method (suitable particle size). The Ag seeds were prepared by magnetron sputtering with different time, which would adjust the distribution and transfer of electrons on the surface of TiO2 film in the process of photocatalytic reduction. The distribution and morphology of Ag NP films can be adjusted by the sputtering time and the UV irradiation time. The Raman enhancement of as-prepared Ag NP films was calculated by finite-difference time-domain to validate the experiment data. It is found that the Ag NP films synthesized on TiO2 films with suitable pre-deposited Ag seeds exhibit a much higher Raman enhancement activity than the optimum Ag NP film synthesized directly on the TiO2 film without Ag seeds.

  18. Photochromic silver nanoparticles fabricated by sputter deposition

    SciTech Connect

    Okumu, J.; Dahmen, C.; Sprafke, A.N.; Luysberg, M.; Plessen, G. von; Wuttig, M.

    2005-05-01

    In this study a simple route to preparing photochromic silver nanoparticles in a TiO{sub 2} matrix is presented, which is based upon sputtering and subsequent annealing. The formation of silver nanoparticles with sizes of some tens of nanometers is confirmed by x-ray diffraction and transmission electron microscopy. The inhomogeneously broadened particle-plasmon resonance of the nanoparticle ensemble leads to a broad optical-absorption band, whose spectral profile can be tuned by varying the silver load and the annealing temperature. Multicolor photochromic behavior of this Ag-TiO{sub 2} system upon irradiation with laser light is demonstrated and discussed in terms of a particle-plasmon-assisted electron transfer from the silver nanoparticles to TiO{sub 2} and subsequent trapping by adsorbed molecular oxygen. The electron depletion in the nanoparticles reduces the light absorption at the wavelength of irradiation. A gradual recovery of the absorption band is observed after irradiation, which is explained with a slow thermal release of electrons from the oxygen trapping centers and subsequent capture into the nanoparticles. The recovery can be accelerated by ultraviolet irradiation; the explanation for this observation is that electrons photoexcited in the TiO{sub 2} are captured into the nanoparticles and restore the absorption band.

  19. Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method

    NASA Astrophysics Data System (ADS)

    Chook, Soon Wei; Chia, Chin Hua; Zakaria, Sarani; Ayob, Mohd Khan; Chee, Kah Leong; Huang, Nay Ming; Neoh, Hui Min; Lim, Hong Ngee; Jamal, Rahman; Rahman, Raha Mohd Fadhil Raja Abdul

    2012-09-01

    Silver nanoparticles and silver-graphene oxide nanocomposites were fabricated using a rapid and green microwave irradiation synthesis method. Silver nanoparticles with narrow size distribution were formed under microwave irradiation for both samples. The silver nanoparticles were distributed randomly on the surface of graphene oxide. The Fourier transform infrared and thermogravimetry analysis results showed that the graphene oxide for the AgNP-graphene oxide (AgGO) sample was partially reduced during the in situ synthesis of silver nanoparticles. Both silver nanoparticles and AgGO nanocomposites exhibited stronger antibacterial properties against Gram-negative bacteria ( Salmonella typhi and Escherichia coli) than against Gram-positive bacteria ( Staphyloccocus aureus and Staphyloccocus epidermidis). The AgGO nanocomposites consisting of approximately 40 wt.% silver can achieve antibacterial performance comparable to that of neat silver nanoparticles.

  20. An ultrasensitive, uniform and large-area surface-enhanced Raman scattering substrate based on Ag or Ag/Au nanoparticles decorated Si nanocone arrays

    NASA Astrophysics Data System (ADS)

    Zhang, P. P.; Gao, J.; Sun, X. H.

    2015-01-01

    Large-area and highly ordered Si nanocone arrays decorated with Ag or Au/Ag nanoparticles have been fabricated via a mask-free lithography with reaction ion etching, followed by metal deposition process. Ultrasensitive surface enhanced Raman scattering signals with an enhancement factor of 1012 were achieved even at the concentration of the Rhodamine 6G as low as 10-15 M. The surface-enhanced Raman spectroscopy (SERS) substrate was also applied on the detection of Sudan I dye and the Raman signals were substantially enhanced as well. The stability of the SERS substrate can be significantly improved by covering Ag nanoparticles with Au thin layer, which maintain a high SERS performance even after one month storage. This nanofabrication process appears to be a feasible approach to prepare uniform and reproducible SERS-active substrates with high sensitivity and stability for practical SERS applications.

  1. Ag/FeCo/Ag core/shell/shell magnetic nanoparticles with plasmonic imaging capability.

    PubMed

    Takahashi, Mari; Mohan, Priyank; Nakade, Akiko; Higashimine, Koichi; Mott, Derrick; Hamada, Tsutomu; Matsumura, Kazuaki; Taguchi, Tomohiko; Maenosono, Shinya

    2015-02-24

    Magnetic nanoparticles (NPs) have been used to separate various species such as bacteria, cells, and proteins. In this study, we synthesized Ag/FeCo/Ag core/shell/shell NPs designed for magnetic separation of subcellular components like intracellular vesicles. A benefit of these NPs is that their silver metal content allows plasmon scattering to be used as a tool to observe detection by the NPs easily and semipermanently. Therefore, these NPs are considered a potential alternative to existing fluorescent probes like dye molecules and colloidal quantum dots. In addition, the Ag core inside the NPs suppresses the oxidation of FeCo because of electron transfer from the Ag core to the FeCo shell, even though FeCo is typically susceptible to oxidation. The surfaces of the Ag/FeCo/Ag NPs were functionalized with ε-poly-L-lysine-based hydrophilic polymers to make them water-soluble and biocompatible. The imaging capability of the polymer-functionalized NPs induced by plasmon scattering from the Ag core was investigated. The response of the NPs to a magnetic field using liposomes as platforms and applying a magnetic field during observation by confocal laser scanning microscopy was assessed. The results of the magnetophoresis experiments of liposomes allowed us to calculate the magnetic force to which each liposome was subjected. PMID:25614919

  2. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film

    NASA Astrophysics Data System (ADS)

    Wang, Long-De; Zhang, Tong; Zhang, Xiao-Yang; Song, Yuan-Jun; Li, Ruo-Zhou; Zhu, Sheng-Qing

    2014-03-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence.

  3. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    NASA Astrophysics Data System (ADS)

    Ambaye, Almaz

    Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa are the etiological agents of several infectious diseases. Antibiotic resistance by these three microbes has emerged as a prevalent problem due in part to the misuse of existing antibiotics and the lack of novel antibiotics. Nanoparticles have emerged as an alternative antibacterial agents to conventional antibiotics owing to their high surface area to volume ratio and their unique chemical and physical properties. Among the nanoparticles, silver nanoparticles have gained increasing attention because silver nanoparticles exhibit antibacterial activity against a range of gram positive and gram negative bacteria. Nanoparticles of well-defined chemistry and morphology can be used in broad biomedical applications, especially in bone tissue engineering applications, where bone infection by bacteria can be acute and lethal. It is commonly noted in the literature that the activity of nanoparticles against microorganisms is dependent upon the size and concentration of the nanoparticles as well as the chemistry of stabilizing agent. To the best of our knowledge, a comprehensive study that evaluates the antibacterial activity of well characterized silver nanoparticles in particular Bovine Serum Albumin (BSA) stabilized against S. aureus and E. coli and cytotoxicity level of BSA stabilized silver nanoparticles towards osteoblast cells (MC3T3-E1) is currently lacking. Therefore, the primary objective of this study was to characterize protein conjugated silver nanoparticles prepared by chemical reduction of AgNO3 and BSA mixture. The formation of Ag/BSA nanoparticles was studied by UV-Vis spectroscopy. The molar ratio of silver to BSA in the Ag/BSA nanoparticles was established to be 27+/- 3: 1, based on Thermogravimetric Analysis and Atomic Absorption Spectroscopy. Based on atomic force microscopy, dynamic light scattering,and transmission electron microscopy(TEM) measurements, the particle size (diameter) of

  4. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    USGS Publications Warehouse

    Luoma, Samuel N.; Tasha Stoiber; Croteau, Marie-Noele; Isabelle Romer; Ruth Merrifeild; Jamie Lead

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  5. Accelerated CO2 transport on surface of AgO nanoparticles in ionic liquid BMIMBF4

    PubMed Central

    Ji, Dahye; Kang, Yong Soo; Kang, Sang Wook

    2015-01-01

    The AgO nanoparticles were utilized for a CO2 separation membrane. The AgO nanoparticles were successfully generated in ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF4) by favorable interaction between the surface of particles and the counteranion of BMIMBF4. The generated AgO nanoparticles were confirmed by TEM, and the average size was 20 nm. Coordinative interactions of dissociated AgO particles with BMIM+BF4− were investigated by FT-Raman spectroscopy. When the ionic liquid BMIMBF4 containing AgO nanoparticles was utilized as a CO2 separation membrane, the separation performance was largely enhanced. PMID:26549605

  6. Modeling Electrospray Deposition of Nanoparticle Inks

    NASA Astrophysics Data System (ADS)

    Li, Ao; Fideles da Silva, Jefferson; Yong, Xin

    2015-11-01

    Electrospray of nanoparticle inks is of great importance to the manufacturing of functional materials. In this study, we develop a new three-dimensional multiphysics method to model the electrospray of colloidal suspension to a flat substrate. The Lagrangian Particle Tracking (LPT) transport equation is coupled to mass and heat transfer using convective droplet vaporization model, which allow us to track each particle-laden ink droplets and dry nanoparticles in the electrospray plume and probe the deposit structures. Herein, we consider dilute inks that are experimentally relevant, assuming monodisperse nanoparticles. We characterize the overall statistics of the plume and the dynamics of individual ink droplet or dry nanoparticle. It is shown that the segregation effect affects not only primary and satellite droplets but also dry nanoparticles. We observe nanoparticles deposit structure changing process, in particular time evolution of the density profile along radial direction. Our results show that the region of high nanoparticle density transitioning from only the edge to both the edge and center, which agrees with previous experimental studies.

  7. One-pot synthesis of Ag nanoparticle-coated Pb-based glass frit used in crystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Gan, Weiping; Tang, Hongbo; Li, Yingfen; Yang, Chao

    2015-03-01

    Deposition of Ag nanoparticles onto the surface of commercial Pb-based glass frit was conducted via a novel and facile one-pot procedure—a modified polyol process. The procedure included two steps: a 5-min pretreatment of the glass frit at 25 °C in a sonication bath and a 1-h electroless plating at 75 °C in a water bath, which only involved AgNO3 and ethylene glycol but without stabilizing agent. The silver-coated glass frit particles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma emission spectrometer and energy dispersive spectroscopy. It was found that the glass frit particles were homogeneously coated with dense crystalline Ag nanoparticles with an average diameter of 15 nm on the surfaces. Electrical performance of the solar cells was improved after the deposition.

  8. Nanoparticle Ag-enhanced textured-powder Bi-2212/Ag wire technology

    NASA Astrophysics Data System (ADS)

    Kellams, J. N.; McIntyre, P.; Pogue, N.; Vandergrifft, J.

    2015-12-01

    A new approach to the preparation of cores for Bi-2212/Ag wire is being developed. Nanoparticle Ag is homogeneously dispersed in Bi-2212 fine powder, and the mixture is uniaxially compressed to form highly textured, cold-sintered core rods. The rods can be assembled in a silver matrix, drawn to form multifilament wire, and restacked and drawn to form multifilament wire. Preliminary studies using tablet geometry demonstrate that a nonmelt heat treatment produces densification, grain growth, intergrowth among grains, and macroscopic current transport. The status of the development is reported.

  9. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions

    PubMed Central

    Chen, Dong; Li, Chengyin; Liu, Hui; Ye, Feng; Yang, Jun

    2015-01-01

    Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd2+ precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal. PMID:26144550

  10. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol.

    PubMed

    An, Changhua; Wang, Jizhuang; Jiang, Wen; Zhang, Meiyu; Ming, Xijuan; Wang, Shutao; Zhang, Qinhui

    2012-09-21

    Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO(2). For example, reduction of CO(2) under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO(2) into useful organic compounds. PMID:22869008

  11. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting

    NASA Astrophysics Data System (ADS)

    Ge, Ming-Zheng; Cao, Chun-Yan; Li, Shu-Hui; Tang, Yu-Xin; Wang, Lu-Ning; Qi, Ning; Huang, Jian-Ying; Zhang, Ke-Qin; Al-Deyab, S. S.; Lai, Yue-Kun

    2016-02-01

    An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion.An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm

  12. Functionalization of Ag nanoparticles using local hydrophilic pool segment designed on their particle surface

    NASA Astrophysics Data System (ADS)

    Iijima, Motoyuki; Kurumiya, Aki; Esashi, Junki; Miyazaki, Hayato; Kamiya, Hidehiro

    2014-10-01

    The preparation of SiO2-coated Ag nanoparticles dispersible in various organic solvents has been achieved using a solgel reaction of tetraethylorthosilicate (TEOS), in the localized hydrophilic pool segments designed on Ag nanoparticle surfaces. First, oleylamine-capped core Ag nanoparticles were synthesized, followed by ligand exchange with polyethyleneimine (PEI) and further adsorption of an anionic surfactant comprising hydrophilic polyethylene glycol (PEG) chains and hydrophobic alkyl chains, which has previously been reported to improve the stability of nanoparticles in various solvents. Then, a reaction of TEOS with the localized hydrophilic PEI layer on the Ag nanoparticles' surface was conducted by stirring a toluene/TEOS solution of surface-modified Ag nanoparticles at various temperatures. It was found that a SiO2 layer was successfully formed on Ag nanoparticles when the reaction temperature was increased to 60 °C. It was also found, however, that at this elevated temperature, the primary particle size of Ag nanoparticles increased to several tens of nm, attributable to the dissolution and re-reduction of Ag+. Because the surface modifier, PEI and anionic surfactant all remained on the nanoparticle surface during the SiO2 coating process, the prepared SiO2-coated Ag nanoparticles were found to be dispersible in various organic solvents near to their primary particle size.

  13. Synthesis of Cu core Ag shell nanoparticles using chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chinh Trinh, Dung; Dung Dang, Thi My; Khanh Huynh, Kim; Fribourg-Blanc, Eric; Chien Dang, Mau

    2015-01-01

    A simple chemical reduction method is used to prepare colloidal bimetallic Cu-Ag core-shell (Cu@Ag) nanoparticles. Polyvinyl pyrrolidone (PVP) was used as capping agent, and ascorbic acid (C6H8O6) and sodium borohydride (NaBH4) were used as reducing agents. The obtained Cu@Ag nanoparticles were characterized by powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectrophotometry. The influence of [Ag]/[Cu] molar ratios on the formation of Ag coatings on the Cu particles was investigated. From the TEM results we found that the ratio [Ag+]/[Cu2+] = 0.2 is the best for the stability of Cu@Ag nanoparticles with an average size of 22 nm. It is also found out that adding ammonium hydroxide (NH4OH) makes the obtained Cu@Ag nanoparticles more stable over time when pure deionized water is used as solvent.

  14. M4Ag44(p-MBA)30 Molecular Nanoparticles

    NASA Astrophysics Data System (ADS)

    Conn, Brian E.

    In recent years, molecular nanoparticles have attracted much attention due to their unique physical, optical, and electronic properties. The properties of molecular nanoparticles are shown to deviate from their larger bulk counterparts, due to quantum confinement effects and large surface-to-volume ratios. As the size of the nanoparticle shrinks to a cluster of metal atoms (<3 nm in diameter), there is an emergence of a HOMO-LUMO band gap, which is not present in transitional d-block metals. The HOMO-LUMO band gap gives rise to discrete electronic states, leading to new chemical and physical properties. Molecular nanoparticles have had a substantial impact across a diverse range of fields, including catalysis, sensing, photochemistry, optoelectronic, energy conversion, and medicine. Currently many of the synthetic procedures for molecular nanoparticles require low temperatures, long incubation times, multistep purification and hazardous reagents that produce low yields and polydisperse molecular nanoparticles with poor stability. Although silver has very desirable physical properties, good relative abundance and low cost, gold molecular nanoparticles have been widely favored owing to their proved stability and ease of use. Unlike gold, silver is notorious for its susceptibility to oxidation, i.e., tarnishing, which has limited the development of silver-based nanotechnologies. Despite two decades of synthetic efforts, silver molecular nanoparticles that are inert or have long-term stability have remained unrealized. Herein we report a simple synthetic protocol for producing ultrastable M4Ag44(p-MBA)30 nanoparticles as a single-sized molecular product and in exceptionally large quantities. The stability, purity, and yield are substantially better than other metal nanoparticles, including gold, due to several stabilization mechanisms. Also, reported are the structural and mechanical properties of extended crystalline solids of Na4Ag44(p-MBA)30 from large-scale quantum

  15. Size-Selected Ag Nanoparticles with Five-Fold Symmetry

    PubMed Central

    2009-01-01

    Silver nanoparticles were synthesized using the inert gas aggregation technique. We found the optimal experimental conditions to synthesize nanoparticles at different sizes: 1.3 ± 0.2, 1.7 ± 0.3, 2.5 ± 0.4, 3.7 ± 0.4, 4.5 ± 0.9, and 5.5 ± 0.3 nm. We were able to investigate the dependence of the size of the nanoparticles on the synthesis parameters. Our data suggest that the aggregation of clusters (dimers, trimer, etc.) into the active zone of the nanocluster source is the predominant physical mechanism for the formation of the nanoparticles. Our experiments were carried out in conditions that kept the density of nanoparticles low, and the formation of larges nanoparticles by coalescence processes was avoided. In order to preserve the structural and morphological properties, the impact energy of the clusters landing into the substrate was controlled, such that the acceleration energy of the nanoparticles was around 0.1 eV/atom, assuring a soft landing deposition. High-resolution transmission electron microscopy images showed that the nanoparticles were icosahedral in shape, preferentially oriented with a five-fold axis perpendicular to the substrate surface. Our results show that the synthesis by inert gas aggregation technique is a very promising alternative to produce metal nanoparticles when the control of both size and shape are critical for the development of practical applications. PMID:20596397

  16. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles.

    PubMed

    San-Miguel, Miguel A; da Silva, Edison Z; Zannetti, Sonia M; Cilense, Mario; Fabbro, Maria T; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements. PMID:27114472

  17. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles

    NASA Astrophysics Data System (ADS)

    San-Miguel, Miguel A.; da Silva, Edison Z.; Zannetti, Sonia M.; Cilense, Mario; Fabbro, Maria T.; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements.

  18. Olfactory deposition of inhaled nanoparticles in humans

    PubMed Central

    Garcia, Guilherme J. M.; Schroeter, Jeffry D.; Kimbell, Julia S.

    2016-01-01

    Context Inhaled nanoparticles can migrate to the brain via the olfactory bulb, as demonstrated in experiments in several animal species. This route of exposure may be the mechanism behind the correlation between air pollution and human neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Objectives This manuscript aims to (1) estimate the dose of inhaled nanoparticles that deposit in the human olfactory epithelium during nasal breathing at rest and (2) compare the olfactory dose in humans with our earlier dose estimates for rats. Materials and methods An anatomically-accurate model of the human nasal cavity was developed based on computed tomography scans. The deposition of 1–100 nm particles in the whole nasal cavity and its olfactory region were estimated via computational fluid dynamics (CFD) simulations. Our CFD methods were validated by comparing our numerical predictions for whole-nose deposition with experimental data and previous CFD studies in the literature. Results In humans, olfactory dose of inhaled nanoparticles is highest for 1–2 nm particles with approximately 1% of inhaled particles depositing in the olfactory region. As particle size grows to 100 nm, olfactory deposition decreases to 0.01% of inhaled particles. Discussion and conclusion Our results suggest that the percentage of inhaled particles that deposit in the olfactory region is lower in humans than in rats. However, olfactory dose per unit surface area is estimated to be higher in humans due to their larger minute volume. These dose estimates are important for risk assessment and dose-response studies investigating the neurotoxicity of inhaled nanoparticles. PMID:26194036

  19. Highly quasi-monodisperse ag nanoparticles on titania nanotubes by impregnative aqueous ion exchange.

    PubMed

    Toledo-Antonio, J A; Cortes-Jácome, M A; Angeles-Chavez, C; López-Salinas, E; Quintana, P

    2009-09-01

    Silver nanoparticles were homogenously dispersed on titania nanotubes (NT), which were prepared by alkali hydrothermal methodology and dried at 373 K. Ag(+) incorporation was done by impregnative ion exchange of aqueous silver nitrate onto NT. First, Ag(+) ions incorporate into the layers of nanotube walls, and then, upon heat treatment under N(2) at 573 and 673 K, they migrate and change into Ag(2)O and Ag(0) nanoparticles, respectively. In both cases, Ag nanoparticles are highly dispersed, decorating the nanotubes in a polka-dot pattern. The Ag particle size distribution is very narrow, being ca. 4 +/- 2 nm without any observable agglomeration. The reduction of Ag(2)O into Ag(0) octahedral nanoparticles occurs spontaneously and topotactically when annealing, without the aid of any reducing agent. The population of Ag(0) nanoparticles can be controlled by adjusting the annealing temperature. An electron charge transfer from NT support to Ag(0) nanoparticles, because of a strong interaction, is responsible for considerable visible light absorption in Ag(0) nanoparticles supported on NT. PMID:19485374

  20. Effect of Synthesis Techniques on Crystallization and Optical Properties of Ag-Cu Bimetallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiong, Ziye; Qin, Fen; Huang, Po-Shun; Nettleship, Ian; Lee, Jung-Kun

    2016-04-01

    Silver (Ag)-copper (Cu) bimetallic nanoparticles (NPs) were synthesized by the reduction of silver nitrate and copper (II) acetate monohydrate using ethylene glycol in a microwave (MW) heating system with controlled reaction times ranging from 5 min to 30 min. The molar ratio Ag/Cu was varied from 1:1 to 1:3. The effect of reaction conditions on the bimetallic NPs structures and compositions were characterized by x-ray photoelectron spectroscopy, x-ray diffraction and transmission electron microscopy. The average particle size was approximately 150 nm. The surface plasmon resonance (SPR) of Ag-Cu bimetallic NPs was investigated by monitoring the SPR band peak behavior via UV/Vis spectrophotometry. The resonance peak positions and peak widths varied due to the different structures of the bimetallic NPs created under the synthesis conditions. In the MW heating method, the reduction of Cu was increased and Cu was inhomogeneously deposited over the Ag cores. As the composition of Cu becoming higher in the Ag-Cu bimetallic NPs, the absorption between 400 nm to 600 nm was greatly enhanced.

  1. Fabrication of Ag-Decorated CaTiO₃ Nanoparticles and Their Enhanced Photocatalytic Activity for Dye Degradation.

    PubMed

    Xian, T; Yang, H; Huo, Y S; Ma, J Y; Zhang, H M; Su, J Y; Feng, W J

    2016-01-01

    CaTiO₃nanoparticles of 30-40 nm in size were synthesized via a polyacrylamide gel route. Ag nanoparticles with size of 8-16 nm were deposited onto CaTiO₃particles by a photochemical reduction method to yield CaTiO₃@Ag composites. The photocatalytic activity of prepared samples was evaluated by degrading methyl orange under ultraviolet irradiation. It is demonstrated that Ag-decorated CaTiO₃ particles exhibit an enhanced photocatalytic activity compared to bare CaTiO₃ particles. After 60 min of photocatalysis, the degradation percentage of MO increases from 54% for bare CaTiO₃particles to 72% for CaTiO₃@Ag composites. This can be explained by the fact that photogenerated electrons are captured by Ag nanoparticles and photogenerated holes are therefore increasingly available to react with OH⁻/H₂O to generate hydroxyl (·OH) radicals. ·OH radicals were detected by fluorimetry using terephthalic acid as a probe molecule, revealing an enhanced yield on the irradiated CaTiO₃@Ag composites. In addition, it is found that the addition of ethanol, which acts as an ·OH scavenger, leads to a quenching of ·OH radicals and simultaneous decrease in the photocatalytic efficiency. This suggests that ·OH radicals are the dominant active species responsible for the dye degradation. PMID:27398489

  2. Development of a new direct liquid injection system for nanoparticle deposition by chemical vapor deposition using nanoparticle solutions.

    PubMed

    Vervaele, Mattias; De Roo, Bert; Deschaume, Olivier; Rajala, Markku; Guillon, Herve; Sousa, Marilyne; Bartic, Carmen; Van Haesendonck, Chris; Seo, Jin Won; Locquet, Jean-Pierre

    2016-02-01

    Nanoparticles of different materials are already in use for many applications. In some applications, these nanoparticles need to be deposited on a substrate in a fast and reproducible way. We have developed a new direct liquid injection system for nanoparticle deposition by chemical vapor deposition using a liquid nanoparticle precursor. The system was designed to deposit nanoparticles in a controlled and reproducible way by using two direct liquid injectors to deliver nanoparticles to the system. The nanoparticle solution is first evaporated and then the nanoparticles flow onto a substrate inside the vacuum chamber. To allow injection and evaporation of the liquid, a direct liquid injection and vaporization system are mounted on top of the process chamber. The deposition of the nanoparticles is controlled by parameters such as deposition temperature, partial pressure of the gases, and flow rate of the nanoparticle suspension. The concentration of the deposited nanoparticles can be varied simply by changing the flow rate and deposition time. We demonstrate the capabilities of this system using gold nanoparticles. The selected suspension flow rates were varied between 0.25 and 1 g/min. AFM analysis of the deposited samples showed that the aggregation of gold nanoparticles is well controlled by the flow and deposition parameters. PMID:26931885

  3. Development of a new direct liquid injection system for nanoparticle deposition by chemical vapor deposition using nanoparticle solutions

    NASA Astrophysics Data System (ADS)

    Vervaele, Mattias; De Roo, Bert; Deschaume, Olivier; Rajala, Markku; Guillon, Herve; Sousa, Marilyne; Bartic, Carmen; Van Haesendonck, Chris; Seo, Jin Won; Locquet, Jean-Pierre

    2016-02-01

    Nanoparticles of different materials are already in use for many applications. In some applications, these nanoparticles need to be deposited on a substrate in a fast and reproducible way. We have developed a new direct liquid injection system for nanoparticle deposition by chemical vapor deposition using a liquid nanoparticle precursor. The system was designed to deposit nanoparticles in a controlled and reproducible way by using two direct liquid injectors to deliver nanoparticles to the system. The nanoparticle solution is first evaporated and then the nanoparticles flow onto a substrate inside the vacuum chamber. To allow injection and evaporation of the liquid, a direct liquid injection and vaporization system are mounted on top of the process chamber. The deposition of the nanoparticles is controlled by parameters such as deposition temperature, partial pressure of the gases, and flow rate of the nanoparticle suspension. The concentration of the deposited nanoparticles can be varied simply by changing the flow rate and deposition time. We demonstrate the capabilities of this system using gold nanoparticles. The selected suspension flow rates were varied between 0.25 and 1 g/min. AFM analysis of the deposited samples showed that the aggregation of gold nanoparticles is well controlled by the flow and deposition parameters.

  4. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Wang, Huiqiao; Liu, Jinbin; Wu, Xuan; Tong, Zhonghua; Deng, Zhaoxiang

    2013-05-01

    Water-dispersible two-dimensional (2D) assemblies of Au@Ag core-shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO@Au nanosheets (namely GO@Au@Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au@Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au@Ag nanoparticles. The antibacterial efficacy of GO@Au@Ag is less sensitive to the existence of Cl-, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO@Au@Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials.

  5. Preparation of conducting silver paste with Ag nanoparticles prepared by e-beam irradiation

    NASA Astrophysics Data System (ADS)

    Sohn, Jong Hwa; Pham, Long Quoc; Kang, Hyun Suk; Park, Ji Hyun; Lee, Byung Cheol; Kang, Young Soo

    2010-11-01

    Conducting silver paste was prepared by using Ag nanoparticles which were synthesized by e-beam irradiation method (from KAERI); its conductivity was comparatively determined with Ag nanoparticles which were prepared by thermolysis method (commercial). The silver nanoparticles with the diameter of approximately 150 nm size prepared by e-beam irradiation were mixed with glass frit and sintered for 1 h at 500 °C. It is presumably concluded that the wt% of silver nanoparticle, size distribution and homogenous dispersibility of Ag nanoparticles in the pastes are the critical factors for the high conductivity of the paste. Among the various wt% of silver nanoparticle in the conducting silver pastes, silver paste with 90 wt% of silver nanoparticle has the highest conductivity as 1.6×10 4 S cm -1. This conductivity value is 1.6 times higher than the Ag pastes which were prepared with silver nanoparticles obtained by thermolysis method.

  6. Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages

    NASA Astrophysics Data System (ADS)

    Veronesi, G.; Aude-Garcia, C.; Kieffer, I.; Gallon, T.; Delangle, P.; Herlin-Boime, N.; Rabilloud, T.; Carrière, M.

    2015-04-01

    Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag+ ions in cellulo; the chemical environment of recombined Ag+ ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides the fraction of Ag+ ions released from the AgNPs under a given exposure condition and highlights their complexation with thiolate groups; the ab initio modelling of the extended spectra allows measuring the Ag-S bond length in cellulo. Dissolution rates depend on the exposure scenario, chronicity leading to higher Ag+ release than acute exposure; Ag-S bond lengths are 2.41 +/- 0.03 Å and 2.38 +/- 0.01 Å in acute and chronic exposure respectively, compatible with digonal AgS2 coordination. Glutathione is identified as the most likely putative ligand for Ag+. The proposed method offers a scope for the investigation of metallic nanoparticle dissolution and recombination in cellular models.Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag+ ions in cellulo; the chemical environment of recombined Ag+ ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides

  7. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation.

    PubMed

    Larue, Camille; Castillo-Michel, Hiram; Sobanska, Sophie; Cécillon, Lauric; Bureau, Sarah; Barthès, Véronique; Ouerdane, Laurent; Carrière, Marie; Sarret, Géraldine

    2014-01-15

    The impact of engineered nanomaterials on plants, which act as a major point of entry of contaminants into trophic chains, is little documented. The foliar pathway is even less known than the soil-root pathway. However, significant inputs of nanoparticles (NPs) on plant foliage may be expected due to deposition of atmospheric particles or application of NP-containing pesticides. The uptake of Ag-NPs in the crop species Lactuca sativa after foliar exposure and their possible biotransformation and phytotoxic effects were studied. In addition to chemical analyses and ecotoxicological tests, micro X-ray fluorescence, micro X-ray absorption spectroscopy, time of flight secondary ion mass spectrometry and electron microscopy were used to localize and determine the speciation of Ag at sub-micrometer resolution. Although no sign of phytotoxicity was observed, Ag was effectively trapped on lettuce leaves and a thorough washing did not decrease Ag content significantly. We provide first evidence for the entrapment of Ag-NPs by the cuticle and penetration in the leaf tissue through stomata, for the diffusion of Ag in leaf tissues, and oxidation of Ag-NPs and complexation of Ag(+) by thiol-containing molecules. Such type of information is crucial for better assessing the risk associated to Ag-NP containing products. PMID:24275476

  8. Enhanced photochemistry of ethyl chloride on Ag nanoparticles.

    PubMed

    Toker, Gil; Bespaly, Alexander; Zilberberg, Liat; Asscher, Micha

    2015-02-11

    Enhanced photodecomposition of ethyl chloride (EC) adsorbed on SiO2/Si (100) supported silver nanoparticles (Ag NPs) under ultrahigh vacuum (UHV) conditions has been studied in order to assess the potential contribution of plasmonic effects. The cross section for photodecomposition of EC and overall photoyield were found to increase with increasing photon energy regardless of the plasmon resonant wavelength and with Ag coverage without any noticeable particle size effect. The influence of EC-Ag NPs separation distance on the rate of EC decomposition was studied in order to examine potential local electric field influence on the photodissociation process. Long (∼5 nm) photoactivity decay distance has been observed which excludes local surface plasmon dominance in the photodecomposition event. These findings suggest that the alignment of excited electron energy and adsorbate affinity levels is central for efficient photochemical reactions, whereas short-range electric field enhancement by plasmon excitation on top and at the immediate vicinity of silver nanoparticles does not have any measurable effect. PMID:25555201

  9. Surface-enhanced Raman scattering from Ag nanoparticles formed by visible laser irradiation of thermally annealed AgO{sub x} thin films

    SciTech Connect

    Fujimaki, Makoto; Awazu, Koichi; Tominaga, Junji; Iwanabe, Yasuhiko

    2006-10-01

    Visible laser irradiation of AgO{sub x} thin films forms Ag nanoparticles, which then results in surface-enhanced Raman scattering (SERS). The efficiency of this Ag nanoparticle formation strongly depends on the properties of the AgO{sub x} thin films. Thermal annealing causes changes in physical properties such as deoxidization of the films and aggregation of Ag atoms in the films. In the present research, the effects of the changes induced by thermal annealing on SERS efficiency were examined. It was found that AgO{sub x} thin films annealed at 300 deg. C for 5 min in a N{sub 2} atmosphere were suitable for the formation of Ag nanoparticles effective for SERS, while films that were not annealed were not. From these results, it was deduced that the Ag aggregation resulting from thermal annealing in AgO{sub x} thin films promotes the Ag nanoparticle formation.

  10. Deposition of gold nanoparticles on silica spheres by electroless metal plating technique.

    PubMed

    Kobayashi, Yoshio; Tadaki, Yohei; Nagao, Daisuke; Konno, Mikio

    2005-03-15

    A previously proposed method for metal deposition with silver [Kobayashi et al., Chem. Mater. 13 (2001) 1630] was extended to uniform deposition of gold nanoparticles on submicrometer-sized silica spheres. The present method consisted of three steps: (1) the adsorption of Sn(2+) ions took place on surface of silica particles, (2) Ag(+) ions added were reduced and simultaneously adsorbed to the surface, while Sn(2+) was oxidized to Sn(4+), and (3) Au(+) ions added were reduced and deposited on the Ag surface. TEM observation, X-ray diffractometry, and UV-vis absorption spectroscopy revealed that gold metal nanoparticles with an average particle size of 13 nm and a crystal size of 5.1 nm were formed on the silica spheres with a size of 273 nm at an Au concentration of 0.77 M. PMID:15721938

  11. One pot green synthesis of Ag, Au and Au-Ag alloy nanoparticles using isonicotinic acid hydrazide and starch.

    PubMed

    Malathi, Sampath; Ezhilarasu, Tamilarasu; Abiraman, Tamilselvan; Balasubramanian, Sengottuvelan

    2014-10-13

    Gold-silver alloy nanoparticles were synthesized via chemical reduction of varying mole fractions of chloroauric acid (HAuCl4) and silver nitrate (AgNO3) by environmentally benign isonicotinic acid hydrazide (INH) in the presence of starch as a capping agent in aqueous medium. The absorption spectra of Au-Ag nanoparticles show blue shift with increasing silver content indicating the formation of alloy nanoparticles. When the Ag content in the alloy decreases the size of the nanoparticles increases and as a result of which the oxidation potential also increases. The emission maximum undergoes a red shift from 443 to 614 nm. The nanoparticles are monodisperse and spherical with an average particle size of 3-18 nm. The catalytic behavior of alloy nanoparticles indicate that the rate constant for the reduction of 4-nitro phenol to 4-amino phenol increases exponentially from metallic Ag to metallic Au as Au content increases in the Au-Ag alloy nanoparticles. PMID:25037410

  12. Synthesis of triangular Au core-Ag shell nanoparticles

    SciTech Connect

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali . E-mail: msastry@tatachemicals.com

    2007-07-03

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

  13. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting.

    PubMed

    Ge, Ming-Zheng; Cao, Chun-Yan; Li, Shu-Hui; Tang, Yu-Xin; Wang, Lu-Ning; Qi, Ning; Huang, Jian-Ying; Zhang, Ke-Qin; Al-Deyab, S S; Lai, Yue-Kun

    2016-03-01

    An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ ≥ 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion. PMID:26878901

  14. Spectral investigation of nonlinear local field effects in Ag nanoparticles

    SciTech Connect

    Sato, Rodrigo Takeda, Yoshihiko; Ohnuma, Masato; Oyoshi, Keiji

    2015-03-21

    The capability of Ag nanoparticles to modulate their optical resonance condition, by optical nonlinearity, without an external feedback system was experimentally demonstrated. These optical nonlinearities were studied in the vicinity of the localized surface plasmon resonance (LSPR), using femtosecond pump-and-probe spectroscopy with a white-light continuum probe. Transient transmission changes ΔT/T exhibited strong photon energy and particle size dependence and showed a complex and non-monotonic change with increasing pump light intensity. Peak position and change of sign redshift with increasing pump light intensity demonstrate the modulation of the LSPR. These features are discussed in terms of the intrinsic feedback via local field enhancement.

  15. Coating geometry of Ag, Ti, Co, Ni, and Al nanoparticles on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Stranges, F.; Xu, F.

    2015-04-01

    We present a morphology study on laser ablation produced metal nanoparticles (NPs) deposited on carbon nanotube (CNT) substrates. We analyzed the coating geometry and topography by processing AFM and SEM images. Our results show that Ag NPs aggregate together to form large agglomerates, that Ti NPs are well dispersed on the substrate surface forming a quasi-continuous layer, and that Co, Ni, and Al NPs coat quite uniformly CNTs and locally grow in a layer like fashion. We interpret the coating and clustering geometries in terms of cohesion, surface, and interfacial energies and diffusion barriers. Fractal analysis of composites morphology suggests the formation of structures with a smoother topography relative to pure carbon nanotubes for reactive metal nanoparticles.

  16. Application of a new coordination compound for the preparation of AgI nanoparticles

    SciTech Connect

    Mohandes, Fatemeh; Salavati-Niasari, Masoud

    2013-10-15

    Graphical abstract: Silver iodide nanoparticles have been sonochemically synthesized by using silver salicylate complex, [Ag(HSal)], as silver precursor. A series of control experiments were carried out to investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures. - Highlights: • Silver salicylate as a new precursor was applied to fabricate γ-AgI nanoparticles. • To further decrease the particle size of AgI, SDS was used as surfactant. • The effect of preparation parameters on the particle size of AgI was investigated. - Abstract: AgI nanoparticles have been sonochemically synthesized by using silver salicylate, [Ag(HSal)], as silver precursor. To investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures, several experiments were carried out. The products were characterized by SEM, TEM, XRD, TGA/DTA, UV–vis, and FT-IR. Based on the experimental findings in this research, it was found that the size of AgI nanoparticles was dramatically dependent on the silver precursor, sonochemical irradiation, and surfactant concentration. Sodium dodecyl sulfate (SDS) was applied as surfactant. When the concentration of SDS was 0.055 mM, very uniform sphere-like AgI nanoparticles with grain size of about 25–30 nm were obtained. These results indicated that the high concentration of SDS could prevent the aggregation between colloidal nanoparticles due to its steric hindrance effect.

  17. Self-assembled Ag nanoparticle network passivated by a nano-sized ZnO layer for transparent and flexible film heaters

    SciTech Connect

    Seo, Ki-Won; Kim, Han-Ki; Kim, Min-Yi; Chang, Hyo-Sik

    2015-12-15

    We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs). The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, the TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.

  18. Sensitive and selective detection of Ag+ in aqueous solutions using Fe3O4@Au nanoparticles as smart electrochemical nanosensors.

    PubMed

    Yang, Huicui; Liu, Xiaoxiao; Fei, Ruihua; Hu, Yonggang

    2013-11-15

    Owing to the selective deposition reaction on the surface of magnetic nanoparticles, we reported a simple and selective magnetic electrochemical method for the detection of Ag(+) ions in aqueous solutions. The analyte deposited on the nanoparticles was brought to the surface of a homemade magnetic electrode and detected electrochemically in 0.1 mol/L KCl solution based on the reaction of Ag0 transferred to AgCl. Under the optimal conditions, the linear response range of Ag(+) ions was 0.117-17.7 μmol/L (R(2)=0.9909) with a detection limit of 59 nmol/L (S/N=3). A series of repeatability measurements 1.0 μmol/L Ag(+) gave reproducible results with a relative standard deviation (RSD) of 4.5% (n=11). The interference from other metal cations can be eliminated by adding EDTA as a co-additive to mask the metal cations. The recoveries ranging from 98.6% to 103.99% after standard additions demonstrate that this sensor has great potential in practical applications. The advantages of this developed method include remarkable simplicity, low cost, and no requirement for probe preparation, among others. PMID:24148443

  19. Reversibly phototunable TiO{sub 2} photonic crystal modulated by Ag nanoparticles' oxidation/reduction

    SciTech Connect

    Liu Jian; Zhou Jinming; Ye Changqing; Li Mingzhu; Wang Jingxia; Jiang Lei; Song Yanlin

    2011-01-10

    We report a reversibly phototunable photonic crystal system whose reflectance at the stop band position can be modulated by alternating UV/visible (UV/Vis) irradiation. The phototunable system consists of Ag nanoparticles and TiO{sub 2} photonic crystal. The stop bands intensity of Ag loaded TiO{sub 2} photonic crystals were found to be dependent on the redox states of Ag nanoparticles. The quasi 'on' and 'off' states of the stop band were reversibly modulated by the Ag nanoparticles' oxidation/reduction through alternating UV/Vis light irradiation.

  20. Dendritic macromolecules supported Ag nanoparticles as efficient catalyst for the reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Safari, Javad; Zarnegar, Zohre; Sadeghi, Masoud; Enayati-Najafabadi, Azadeh

    2016-12-01

    Polymer supported Ag nanoparticles, generated in situ by silver nitrate (AgNO3) reduction under reaction conditions, catalyzed the hydrogenation of 4-nitrophenol with high efficiency in water at room temperature in the presence of an excess amount of NaBH4. Amphiphilic linear-dendritic copolymers containing a poly(ethylene glycol) (PEG) core and poly(2-ethyl-2-oxazoline)-poly(ε-caprolactone) arms were able to load the Ag nanoparticles. The Ag nanoparticles with a diameter of 8-10 nm were found to show a comparable catalytic activity towards formation of the aromatic amine as single product with short reaction time.

  1. Direct deposition of YBCO on polished Ag substrates by pulsed laser deposition.

    SciTech Connect

    Ma, B.; Li, M.; Koritala, R. E.; Fisher, B. L.; Dorris, S. E.; Maroni, V. A.; Miller, D. J.; Balachandran, U.

    2002-09-15

    YBCO thin films were directly deposited on mechanically polished nontextured silver (Ag) substrates at elevated temperature by pulsed laser deposition with various inclination angles of 35, 55, and 72. Strong fiber texture, with the c-axis parallel to the substrate normal was detected by X-ray diffraction pole figure analysis. Atomic force microscopy and scanning electron microscopy images revealed that a few a-axis-oriented grains were dispersed on the top surface of the YBCO films. Transmission electron microscopy revealed dense amorphous layer at the interface between the YBCO film and the Ag substrate. Energy dispersive spectrum analysis indicates that the YBCO film deposited on the Ag substrate is slightly Cu-deficient. A YBCO film deposited at 755 C and an inclination angle of 55 exhibited {Tc} = 90 K. Transport critical current density measured by the four-probe method at 77 K in self-field was 2.7 x 10{sup 5}A/cm2. This work demonstrated a simple and inexpensive method to fabricate YBCO-coated conductors with high critical current density.

  2. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics

    NASA Astrophysics Data System (ADS)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Jong Lee, Yung; Lee, Hyuck Mo

    2015-11-01

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  3. Microscopic Investigation of Chemoselectivity in Ag-Pt-Fe3O4 Heterotrimer Formation: Mechanistic Insights and Implications for Controlling High-Order Hybrid Nanoparticle Morphology.

    PubMed

    Hodges, James M; Morse, James R; Williams, Mary Elizabeth; Schaak, Raymond E

    2015-12-16

    Three-component hybrid nanoparticle heterotrimers, which are important multifunctional constructs that underpin diverse applications, are commonly synthesized by growing a third domain off of a two-component heterodimer seed. However, because heterodimer seeds expose two distinct surfaces that often can both support nucleation and growth, selectively targeting one particular surface is critical for exclusively accessing a desired configuration. Understanding and controlling nucleation and growth therefore enables the rational formation of high-order hybrid nanoparticles. Here, we report an in-depth microscopic investigation that probes the chemoselective addition of Ag to Pt-Fe3O4 heterodimer seeds to form Ag-Pt-Fe3O4 heterotrimers. We find that the formation of the Ag-Pt-Fe3O4 heterotrimers initiates with indiscriminate Ag nucleation onto both the Pt and Fe3O4 surfaces of Pt-Fe3O4, followed by surface diffusion and coalescence of Ag onto the Pt surface to form the Ag-Pt-Fe3O4 product. Control experiments reveal that the size of the Ag domain of Ag-Pt-Fe3O4 correlates with the overall surface area of the Pt-Fe3O4 seeds, which is consistent with the coalescence of Ag through a surface-mediated process and can also be exploited to tune the size of the Ag domain. Additionally, we observe that small iron oxide islands on the Pt surface of the Pt-Fe3O4 seeds, deposited during the formation of Pt-Fe3O4, define the morphology of the Ag domain, which in turn influences its optical properties. These results provide unprecedented microscopic insights into the pathway by which Ag-Pt-Fe3O4 heterotrimer nanoparticles form and uncover new design guidelines for the synthesis of high-order hybrid nanoparticles with precisely targeted morphologies and properties. PMID:26599998

  4. Transformation of AgCl nanoparticles in a sewer system--A field study.

    PubMed

    Kaegi, Ralf; Voegelin, Andreas; Sinnet, Brian; Zuleeg, Steffen; Siegrist, Hansruedi; Burkhardt, Michael

    2015-12-01

    Silver nanoparticles (Ag-NP) are increasingly used in consumer products and their release during the use phase may negatively affect aquatic ecosystems. Research efforts, so far, have mainly addressed the application and use of metallic Ag(0)-NP. However, as shown by recent studies on the release of Ag from textiles, other forms of Ag, especially silver chloride (AgCl), are released in much larger quantities than metallic Ag(0). In this field study, we report the release of AgCl-NP from a point source (industrial laundry that applied AgCl-NP during a piloting phase over a period of several months to protect textiles from bacterial regrowth) to the public sewer system and investigate the transformation of Ag during its transport in the sewer system and in the municipal wastewater treatment plant (WWTP). During the study period, the laundry discharged ~85 g of Ag per day, which dominated the Ag loads in the sewer system from the respective catchment (72-95%) and the Ag in the digested WWTP sludge (67%). Combined results from electron microscopy and X-ray absorption spectroscopy revealed that the Ag discharged from the laundry to the sewer consisted of about one third AgCl and two thirds Ag2S, both forms primarily occurring as nanoparticles with diameters<100 nm. During the 800 m transport in the sewer channel to the nearby WWTP, corresponding to a travel time of ~30 min, the remaining AgCl was transformed into nanoparticulate Ag2S. Ag2S-NP also dominated the Ag speciation in the digested sludge. In line with results from earlier studies, the very low Ag concentrations measured in the effluent of the WWTP (<0.5 μg L(-1)) confirmed the very high removal efficiency of Ag from the wastewater stream (>95%). PMID:25582606

  5. Preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels.

    PubMed

    Im, Hee-Jung; Lee, Byung Cheol; Yeon, Jei-Won

    2013-11-01

    Ag nanoparticles, used for halogen (especially iodine) adsorption and an evaluation of halogen behavior, were embedded in synthesized inorganic-organic hybrid gels. In particular, an irradiation method using an electron beam plays a part in introducing Ag nanoparticles to the organofunctionalized silica gels from AgNO3 solutions in a simple way at atmospheric pressure and room temperature. For preparation of the Ag nanoparticle-embedded inorganic-organic hybrid gels, ligands of ethylenediamine (NH2CH2CH2NH-, TMSen) and mercapto (HS-) functionalized three-dimensional porous SiO2 sol-gels were first synthesized through hydrolysis and condensation reactions, and Ag nanoparticles were then embedded into the ethylenediamine- and mercapto-anchored silica gels each, through electron-beam irradiation. The addition of ligands yielded larger average pore sizes than the absence of any ligand. Moreover, the ethylenediamine ligand led to looser structures and better access of the Ag nanoparticles to the ethylenediamine-anchored gel. As a result, more Ag nanoparticles were introduced into the ethylenediamine-anchored gel. The preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels are discussed in detail. PMID:24245307

  6. A Personal Nanoparticle Respiratory Deposition (NRD) Sampler

    PubMed Central

    Cena, Lorenzo G.; Anthony, T. Renée; Peters, Thomas M.

    2016-01-01

    A lightweight (60 g), personal nanoparticle respiratory deposition (NRD) sampler was developed to selectively collect particles smaller than 300 nm similar to their typical deposition in the respiratory tract. The sampler operates at 2.5 Lpm and consists of a respirable cyclone fitted with an impactor and a diffusion stage containing mesh screens. The cut-point diameter of the impactor was determined to be 300 nm with a sharpness σ = 1.53. The diffusion stage screens collect particles with an efficiency that matches the deposition efficiency of particles smaller than 300 nm in the respiratory tract. Impactor separation performance was unaffected by loading at typical workplace levels (p-value = 0.26). With chemical analysis of the diffusion media, the NRD sampler can be used to directly assess exposures to nanoparticles of a specific composition apart from other airborne particles. The pressure drop of the NRD sampler is sufficiently low to permit its operation with conventional, belt-mounted sampling pumps. PMID:21718022

  7. The effect of Ag nanoparticles on PC3 cells ultraweak bioluminescence

    NASA Astrophysics Data System (ADS)

    Hossu, Marius; Zou, Xiaoju; Ma, Lun; Chen, Wei

    2011-03-01

    Ultraweak intrinsic bioluminescence of cancer cell is a noninvasive method of assessing bioenergetic status of the investigated cells. This weak emission generated by PC3 cell line was measured during various stages of growth with or without the presence of Ag nanoparticles. The comparison between nanoparticles concentration, bioluminescence and cell survival showed that even though Ag nanoparticles doesn't significantly affect cell survival at used concentration it affects cell metabolism, possibly making them more susceptible to other form of therapies.

  8. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves.

    PubMed

    Mondal, Samiran; Roy, Nayan; Laskar, Rajibul A; Sk, Ismail; Basu, Saswati; Mandal, Debabrata; Begum, Naznin Ara

    2011-02-01

    In this paper, we have demonstrated for the first time, the superb efficiency of aqueous extract of dried leaves of mahogany (Swietenia mahogani JACQ.) in the rapid synthesis of stable monometallic Au and Ag nanoparticles and also Au/Ag bimetallic alloy nanoparticles having spectacular morphologies. Our method was clean, nontoxic and environment friendly. When exposed to aqueous mahogany leaf extract, competitive reduction of Au(III) and Ag(I) ions present simultaneously in same solution leads to the production of bimetallic Au/Ag alloy nanoparticles. UV-visible spectroscopy was used to monitor the kinetics of nanoparticles formation. UV-visible spectroscopic data and TEM images revealed the formation of bimetallic Au/Ag alloy nanoparticles. Mahogany leaf extract contains various polyhydroxy limonoids which are responsible for the reduction of Au(III) and Ag(I) ions leading to the formation and stabilization of Au and Ag nanopaticles. PMID:21030220

  9. Surface modification of additive manufactured Ti6Al4V alloy with Ag nanoparticles: wettability and surface morphology study

    NASA Astrophysics Data System (ADS)

    Chudinova, E.; Surmeneva, M.; Koptioug, A.; Sharonova, A.; Loza, K.; Surmenev, R.

    2016-02-01

    In this work, the use of electrophoretic deposition to modify the surface of Ti6Al4V alloy fabricated via additive manufacturing technology is reported. Poly(vinylpyrrolidone) (PVP)-stabilized silver nanoparticles (AgNPs) had a spherical shape with a diameter of the metallic core of 100±20 nm and ζ -potential -15 mV. The AgNPs- coated Ti6Al4V alloy was studied in respect with its chemical composition and surface morphology, water contact angle, hysteresis, and surface free energy. The results of SEM microphotography analysis showed that the AgNPs were homogeneously distributed over the surface. Hysteresis and water contact angle measurements revealed the effect of the deposited AgNPs layer, namely an increased water contact angle and decreased contact angle hysteresis. However, the average water contact angle was 125° for PVP-stabilized-AgNPs-coated surface, whereas ethylene glycol gave the average contact angle of 17°. A higher surface energy is observed for AgNPs-coated Ti6Al4V surface (70.17 mN/m) compared with the uncoated surface (49.07 mN/m).

  10. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties.

    PubMed

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-01-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells. PMID:25852401

  11. Silver nanoparticles deposited inverse opal film as a highly active and uniform SERS substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Junhong; Lin, Jian; Li, Xiuhua; Zhao, Guannan; Zhang, Wenjun

    2015-08-01

    Ag-decorated TiO2 inverse opal films (ATIO) with high surface-enhanced Raman scattering (SERS) enhancement were prepared using an electroless deposition process. The Ag nanoparticles (NPs) are well-dispersed and deposited on the edge of macroporous walls. The structure and optical properties of the sample ATIO have been characterized. The Ag-loading cycles and pore sizes of TiO2 inverse opal are the key factors determining the magnitude of SERS signal enhancement. The optimized ATIO samples exhibit high SERS signal enhancement ability and reproducibility. The enhancement factor about 104 and the detection limit of 10-10 M for R6G were achieved. The further application in detecting malachite green is demonstrated. A limit of detection approximately 10-9 M was achieved. The results show that the ATIO nanostructure is promising for using as sensor substrates in SERS applications.

  12. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions

    PubMed Central

    Hsueh, Yi-Huang; Lin, Kuen-Song; Ke, Wan-Ju; Hsieh, Chien-Te; Chiang, Chao-Lung; Tzou, Dong-Ying; Liu, Shih-Tung

    2015-01-01

    The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10–50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation. PMID:26669836

  13. Size selected cluster deposition on well characterized surfaces: Ag{sub n}/Pd(100)

    SciTech Connect

    Vandoni, G.; Felix, C.; Harbich, W.; Monot, R.; Buttet, J.; Massobrio, C.

    1997-06-20

    We study the deposition of Ag ions, and size selected Ag{sub 7} and Ag{sub 19} cluster ions on Pd(100) at total kinetic energies of 20 eV and 95 eV using Thermal Energy Atom Scattering and Molecular Dynamics simulations. We find that at all energies Ag atoms are implanted into the substrate and Pd atoms are ejected in the adlayer. The experimental results in the case of Ag{sub 7} can be understood in taking into account both implantation of Ag atoms and heavy fragmentation. In the case of Ag{sub 19} the deposition leads at low temperature to non compact structures localized around the impact point. We propose a model in which morphology changes take place between 200 K and 300 K resulting in well separated compact structures formed of Ag and Pd adatoms.

  14. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

    PubMed

    Haldar, Krishna Kanta; Kundu, Simanta; Patra, Amitava

    2014-12-24

    Bimetallic core-shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core-shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core-shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV-vis study confirm the formation of core-shell nanoparticles. We have examined the catalytic activity of these core-shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core-shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core-shell nanoparticles, and the Au100/Ag bimetallic core-shell nanoparticle is found to be 12-fold more active than that of the pure Au nanoparticles with 100 nm diameter. Thus, the catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles. PMID:25456348

  15. In Situ EXAFS and TEM Investigations of Ag Nanoparticles in Glass

    SciTech Connect

    Schneider, R.; Dubiel, M.; Haug, J.; Hofmeister, H.

    2007-02-02

    Ag particle-glass composites produced by ion exchange processes of soda-lime glasses were investigated by EXAFS spectroscopy at the Ag K-edge. The spectra measured at 10 K were used to characterize the structure of nanoparticles as a result of ion exchange. The evolution of Ag K-edge EXAFS oscillations measured by in situ heating at 823 K as a function of time clearly shows an increase of Ag-Ag distance and coordination number caused by annealing. Together with transmission electron microscopy characterization a preferred growth of Ag particles with respect to nucleation has been found that leads to increased particle sizes in deeper glass regions.

  16. Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale

    NASA Astrophysics Data System (ADS)

    Sheny, D. S.; Mathew, Joseph; Philip, Daizy

    2011-06-01

    Present study reports a green chemistry approach for the biosynthesis of Au, Ag, Au-Ag alloy and Au core-Ag shell nanoparticles using the aqueous extract and dried powder of Anacardium occidentale leaf. The effects of quantity of extract/powder, temperature and pH on the formation of nanoparticles are studied. The nanoparticles are characterized using UV-vis and FTIR spectroscopies, XRD, HRTEM and SAED analyses. XRD studies show that the particles are crystalline in the cubic phase. The formation of Au core-Ag shell nanoparticles is evidenced by the dark core and light shell images in TEM and is supported by the appearance of two SPR bands in the UV-vis spectrum. FTIR spectra of the leaf powder before and after the bioreduction of nanoparticles are used to identify possible functional groups responsible for the reduction and capping of nanoparticles. Water soluble biomolecules like polyols and proteins are expected to bring about the bio-reduction.

  17. Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish.

    PubMed

    Osborne, Olivia J; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Yu, Xuechen; Wang, Xiang; Lin, Shuo; Xia, Tian; Nel, André E

    2015-10-27

    We studied adult zebrafish to determine whether the size of 20 and 110 nm citrate-coated silver nanoparticles (AgC NPs) differentially impact the gills and intestines, known target organs for Ag toxicity in fish. Following exposure for 4 h, 4 days, or 4 days plus a 7 day depuration period, we obtained different toxicokinetic profiles for different particle sizes, as determined by Ag content of the tissues. Ionic AgNO3 served as a positive control. The gills showed a significantly higher Ag content for the 20 nm particles at 4 h and 4 days than the 110 nm particles, while the values were more similar in the intestines. Both particle types were retained in the intestines even after depuration. These toxicokinetics were accompanied by striking size-dependent differences in the ultrastructural features and histopathology in the target organs in response to the particulates. Ag staining of the gills and intestines confirmed prominent Ag deposition in the basolateral membranes for the 20 nm but not for the 110 nm particles. Furthermore, it was possible to link the site of tissue deposition to disruption of the Na(+)/K(+) ion channel, which is also localized to the basolateral membrane. This was confirmed by a reduction in ATPase activity and immunohistochemical detection of the α subunit of this channel in both target organs, with the 20 nm particles causing significantly higher inhibition and disruption than the larger size particles or AgNO3. These results demonstrate the importance of particle size in determining the hazardous impact of AgNPs in the gills and intestines of adult zebrafish. PMID:26327297

  18. Structural and Critical Behaviors of Ag Rough Films Deposited on Liquid Substrates

    NASA Astrophysics Data System (ADS)

    Ye, Gao-xiang; Feng, Chun-mu; Zhang, Qi-rui; Ge, Hong-liang; Zhang, Xuan-jia

    1996-10-01

    A new Ag rough film system, deposited on silicone oil surfaces by rf-magnetron sputtering method, has been fabricated. The chrysanthemum-like surface morphology at micron length scale is observed. It is proposed that the anomalous critical behavior mainly results from the relative shift between the Ag atom clusters and the substrate. The discussion of the deposition mechanism is also presented.

  19. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells

    PubMed Central

    Katsumiti, Alberto; Gilliland, Douglas; Arostegui, Inmaculada; Cajaraville, Miren P.

    2015-01-01

    Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag. PMID:26061169

  20. The effect of Ni pre-implantation on surface morphology and optical absorption properties of Ag nanoparticles embedded in SiO2

    NASA Astrophysics Data System (ADS)

    Shen, Yanyan; Qi, Ting; Qiao, Yu; Yu, Shengwang; Hei, Hongjun; He, Zhiyong

    2016-02-01

    The effect of Ni ion fluence on Ag nucleation and particle growth was investigated by sequentially implantation of 60 keV Ni ions at fluences of 1 × 1016, 5 × 1016, 1 × 1017 ions/cm2 and 70 keV Ag ions at a fluence of 5 × 1016 ions/cm2. Due to the modification of the deposition and accumulation process of Ag implants caused by Ni pre-implantation, the surface morphology, structures, and optical absorption properties of the Ag nanoparticles (NPs) depends strongly on the Ni fluences. UV-vis absorption spectroscopy study showed that the introducing of Ni atoms lead to intensity decrease in the Ag SPR band. Remarkable local concentration increase of Ag profiles appeared for the sample pre-implanted by Ni ions of 5.0 × 1016 ions/cm2. In particular, the AgNi alloy NPs with dual absorption peaks centered at 406 nm and 563 nm have been formed after 600 °C annealing in Ar atmosphere. However, at a low fluence of 1.0 × 1016 ions/cm2, only small increase of the local Ag concentration than the Ag ions singly implanted sample can be observed. At a high fluence of 1.0 × 1017 ions/cm2, lots Ag atoms are trapped close to the surface, which result in heavy sputtering loss of Ag atoms and the sublimation of Ag atoms after 600 °C annealing.

  1. Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS

    PubMed Central

    Liu, Fanxin; Tang, Chaojun; Zhan, Peng; Chen, Zhuo; Ma, Hongtao; Wang, Zhenlin

    2014-01-01

    We have demonstrated the plasmonic characteristics of an ultrathin tetrahedral amorphous carbon (ta-C) film coated with Ag nanoparticles. The simulation result shows that, under resonant and non-resonant excitations, the strongest plasmonic electric field of 1 nm ta-C coated Ag nanoparticle is not trapped within the ta-C layer but is released to its outside surface, while leaving the weaker electric field inside ta-C layer. Moreover, this outside plasmonic field shows higher intensity than that of uncoated Ag nanoparticle, which is closely dependent on the excitation wavelength and size of Ag particles. These observations are supported by the SERS measurements. We expect that the ability for ultrathin ta-C coated Ag nanoparticles as the SERS substrates to detect low concentrations of target biomolecules opens the door to the applications where it can be used as a detection tool for integrated, on-chip devices. PMID:24675437

  2. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle.

    PubMed

    Sakai, Hideki; Kanda, Takashi; Shibata, Hirobumi; Ohkubo, Takahiro; Abe, Masahiko

    2006-04-19

    Core/shell-type titania nanocapsules containing a single Ag nanoparticle were prepared. Ag nanoparticles were prepared using the reduction of silver nitrate with hydrazine in the presence of cetyltrimethylammonium bromide (CTAB) as protective agent. The sol-gel reaction of titanium tetraisopropoxide (TTIP) was used to prepare core/shell-type titania nanocapsules with CTAB-coated Ag nanoparticles as the core. TEM observations revealed that the size of the core (Ag particle) and the thickness of the shell (titania) of the core/shell particles obtained are about 10 nm and 5-10 nm, respectively. In addition, the nanocapsules were found to be dispersed in the medium as individual particles without aggregation. Moreover, titania coating caused the surface plasmon absorption of Ag nanoparticles to shift toward the longer wavelength side. PMID:16608315

  3. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - an unexpected overdose effect decreasing their antibacterial efficacy.

    PubMed

    Roguska, A; Belcarz, A; Pisarek, M; Ginalska, G; Lewandowska, M

    2015-06-01

    Enhancement of biocompatibility and antibacterial properties of implant materials is potentially beneficial for their practical value. Therefore, the use of metallic and metallic oxide nanoparticles as antimicrobial coatings components which induce minimized antibacterial resistance receives currently particular attention. In this work, TiO2 nanotubes layers loaded with ZnO and Ag nanoparticles were designed for biomedical coatings and delivery systems and evaluated for antimicrobial activity. TiO2 nanotubes themselves exhibited considerable and diameter-dependent antibacterial activity against planktonic Staphylococcus epidermidis cells but favored bacterial adhesion. Loading of nanotubes with moderate amount of ZnO nanoparticles significantly diminished S. epidermidis cell adhesion and viability just after 1.5h contact with modified surfaces. However, an increase of loaded ZnO amount unexpectedly altered the structure of nanoparticle-nanolayer, caused partial closure of nanotube interior and significantly reduced ZnO solubility and antibacterial efficacy. Co-deposition of Ag nanoparticles enhanced the antibacterial properties of synthesized coatings. However, the increase of ZnO quantity on Ag nanoparticles co-deposited surfaces favored the adhesion of bacterial cells. Thus, ZnO/Ag/TiO2 nanotube composite layers may be promising delivery systems for combating post-operative infections in hard tissue replacement procedures. However, the amount of loaded antibacterial agents must be carefully balanced to avoid the overdose and reduced efficacy. PMID:25842121

  4. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells.

    PubMed

    Yun, Juyoung; Hwang, Sun Hye; Jang, Jyongsik

    2015-01-28

    Improving the light-harvesting properties of photoanodes is promising way to enhance the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). We synthesized Au@Ag core/shell nanoparticles decorated TiO2 hollow nanoparticles (Au@Ag/TiO2 HNPs) via sol-gel reaction and chemical deposition. The Au@Ag/TiO2 HNPs exhibited multifunctions from Au@Ag core/shell NPs (Au@Ag CSNPs) and TiO2 hollow nanoparticles (TiO2 HNPs). These Au@Ag CSNPs exhibited strong and broadened localized surface plasmon resonance (LSPR), together with a large specific surface area of 129 m(2) g(-1), light scattering effect, and facile oxidation-reduction reaction of electrolyte from TiO2 HNPs, which resulted in enhancement of the light harvesting. The optimum PCE of η = 9.7% was achieved for the DSSCs using photoanode materials based on TiO2 HNPs containing Au@Ag/TiO2 HNPs (0.2 wt % Au@Ag CSNPs with respect to TiO2 HNPs), which outperformed by 24% enhancement that of conventional photoanodes formed using P25 (η = 7.8%). PMID:25562329

  5. Facile synthesis of monodisperse of hollow mesoporous SiO2 nanoparticles and in-situ growth of Ag nanoparticles for antibacterial.

    PubMed

    Xu, Peng; Liang, Juan; Cao, Xiaoyong; Tang, Jingen; Gao, Juan; Wang, Liying; Shao, Wei; Gao, Qinwei; Teng, Zhaogang

    2016-07-15

    Monodispersed hollow mesoporous silica nanoparticles (HMSNs) are successfully synthesized via a facile dual template method, in which poly(styrene-co-methyl methacrylate-co-methacrylic acid) (PS-PMMA-PMAA) particles are used as hard template for producing the hollow structure and cetyltrimethylammonium bromide (CTAB) used for introducing the mesopores in the silica shells. The obtained HMSNs possess uniform diameter and morphology, and the shell of which could be adjusted by changing the addition of silicon precursor. The synthesized HMSNs have been characterized by transmission electron microscopy (TEM) and nitrogen physisorption. Furthermore, the HMSNs are used as support for in-situ deposition of silver nanoparticles (Ag NPs) using n-butylamine as reducing agent for AgNO3 in ethanol. Significantly, Ag NPs were successfully supported in the HMSNs without any aggregation. The Ag-deposited HMSNs showed excellent dispersibility in ethanol and water, and their antibacterial activity against Escherichia coli (E. coli) ATCC 25922 and Staphylococcus aureus (S. aureus) ATCC 6538 have been demonstrated. Therefore, the unique nanostructure based on the HMSNs provided a useful platform for the fabrication of antibacterial agent with superior activity and accessibility. And also, it is expected to be a significant template for the synthesis of other novel nanostructures. PMID:27115332

  6. Synergistic effect of Ag nanoparticle-decorated graphene oxide and carbon fiber on electrical actuation of polymeric shape memory nanocomposites

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Liang, Fei; Gou, Jihua; Leng, Jinsong; Du, Shanyi

    2014-08-01

    This study reports an effective approach of significantly improving electrical properties and recovery performance of shape memory polymer (SMP) nanocomposite, of which its shape recovery was triggered by electrically resistive Joule heating. Reduced graphene oxide (GOs) self-assembled and grafted onto carbon fiber, were used to enhance the interfacial bonding with the SMP matrix via van der Waals force and covalent bond, respectively. A layer of Ag nanoparticles was synthesized from Ag+ solution and chemically deposited onto GO assemblies. These Ag nanoparticles were expected to bridge the gap between GO and improve the electrical conductivity. The experimental results reveal that the electrical conductivity of the SMP nanocomposite was significantly improved via the synergistic effect between Ag nanoparticle-decorated GO and carbon fiber. Finally, the electrically induced shape memory effect of the SMP nanocomposite was achieved, and the temperature distribution in the SMP nanocomposites was recorded and monitored. An effective approach was demonstrated to produce the electro-activated SMP nanocomposites and the resistive Joule heating was viable at a low electrical voltage below 10 V.

  7. Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation

    NASA Astrophysics Data System (ADS)

    Navaladian, S.; Viswanathan, B.; Varadarajan, T. K.; Viswanath, R. P.

    2008-01-01

    Anisotropic silver nanoparticles (NPs) have been synthesized rapidly using microwave irradiation by the decomposition of silver oxalate in a glycol medium using polyvinyl pyrolidone (PVP) as the capping agent. The obtained Ag nanoparticles have been characterized by UV-visible spectroscopy, powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) studies. Anisotropic Ag nanoparticles of average size around 30 nm have been observed in the case of microwave irradiation for 75 s whereas spherical particles of a size around 5-6 nm are formed for 60 s of irradiation. The texture coefficient and particle size calculated from XRD patterns of anisotropic nanoparticles reveal the preferential orientation of (111) facets in the Ag sample. Ethylene glycol is found to be a more suitable medium than diethylene glycol. A plausible mechanism has been proposed for the formation of anisotropic Ag nanoparticles from silver oxalate.

  8. Facile Decoration of Polyaniline Fiber with Ag Nanoparticles for Recyclable SERS Substrate.

    PubMed

    Mondal, Sanjoy; Rana, Utpal; Malik, Sudip

    2015-05-20

    Facile synthesis of polyaniline@Ag composite has been successfully demonstrated by a simple solution-dipping method using high-aspect-ratio benzene tetracarboxylic acid-doped polyaniline (BDP) fiber as a nontoxic reducing agent as well as template cum stabilizer. In BDP@Ag composite, BDP fibers are decorated with spherical Ag nanoparticles (Ag NPs), and the population of Ag NPs on BDP fibers is controlled by changing the molar concentration of AgNO3. Importantly, Ag-NP-decorated BDP fibers (BDP@Ag composites) have been evolved as a sensitive materials for the detection of trace amounts of 4-mercaptobenzoic acid and rhodamine 6G as an analyte of surface-enhanced Raman scattering (SERS), and the detection limit is down to nanomolar concentrations with excellent recyclability. Furthermore, synthesized BDP@Ag composites are applied simultaneously as an active SERS substrate and a superior catalyst for reduction of 4-nitrothiophenol. PMID:25912640

  9. Preparation and antibacterial performance testing of Ag nanoparticles embedded biological materials

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyun; Gao, Guanhui; Sun, Chengjun; Zhu, Yaoyao; Qu, Lingyun; Jiang, Fenghua; Ding, Haibing

    2015-03-01

    In this study, we developed an environmentally friendly chemistry strategy to synthesize Ag nanoparticles (Ag-NPs) embedded biological material, powdered mussel shell (PMS). With the PMS as scaffolds and surfactant, Ag nanoparticles of controllable size dispersed uniformly on it via liquid chemical reduction approach. Morphologies and characteristics of synthesized Ag-NPs/PMS hybrids were analyzed with TEM, SEM and XPS. Antibacterial properties were investigated with Gram-positive bacteria (Arthrobacter sulfureus (A. sulfureus) YACS14, Staphylococcus aureus (S. aureus)) and Gram-negative bacteria (Vibrio anguillarum (V. anguillarum) MVM425, Escherichia coli (E. coli)). The antimicrobial results illustrated that Ag-NPs/PMS composites have antibacterial effect on both sea water and fresh water bacteria with a better effect on sea water bacteria. The degree of antibacterial effect is directly related to the amount of Ag released from Ag-NPs/PMS.

  10. Growth of CdS Nanorods and Deposition of Silver Nanoparticles.

    PubMed

    Zhao, Jie; Yang, Fanghong; Yang, Ping

    2015-05-01

    Systematic investigations have been done to deposit silver nanoparticles on seeded CdS nanorods. The CdS nanorods were synthesized by using CdS nanocrystals as seeds being indexed to the cubic structure (zinc-blende) and tetradecylphosphonic acid as surfactants to enable preferential growth on the reactive {001} facets. Ostwald ripening process occurred during the growth of CdS nanorods. Ag/CdS heterostructures were obtained through a facile method in which oleylamine was employed as reducing agents under an elevated temperature. Exposing CdS nanorods to Ag+ ions resulted in Ag domains depositing on the tips of the nanorods or defected sites embedding in the nanorod surfaces. Ag domains formed separate nuclei and grew quickly at a high concentration of AgNO3 solution. We further focused on discussing the morphology formation mechanism and optical properties of the heterostructures and the nanorods. The as-synthesized Ag/CdS heterostructures can facilitate charge separation at the metal-semiconductor interface. Herein, it opens up an application possibility of enhancing photocatalytic processes and other devices. PMID:26505026

  11. A novel Ag catalyzation process using swelling impregnation method for electroless Ni deposition on Kevlar® fiber

    NASA Astrophysics Data System (ADS)

    Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong

    2015-12-01

    A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.

  12. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film

    PubMed Central

    2014-01-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence. PMID:24685186

  13. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film.

    PubMed

    Wang, Long-De; Zhang, Tong; Zhang, Xiao-Yang; Song, Yuan-Jun; Li, Ruo-Zhou; Zhu, Sheng-Qing

    2014-01-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence. PMID:24685186

  14. A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water

    NASA Astrophysics Data System (ADS)

    Hamad, Abubaker; Li, Lin; Liu, Zhu

    2015-09-01

    Although there have been large quantities of published work in laser generation of nanoparticles, it is still unclear on the comparative role of laser wavelengths and pulse widths in controlling the nanoparticle sizes, morphology and production rate. In this investigation, Ag, Au and TiO2 nanoparticles were synthesised by nanosecond ( λ = 532 nm, τ = 5 ns), picosecond ( λ = 1064 nm, τ = 10 ps) and femtosecond ( λ = 800 nm, τ = <100 fs) pulse lasers in deionised water. They are compared, in terms of their optical absorption spectra, morphology, size distribution and production rates, characterised by UV-Vis spectroscopy and transmission electron microscopy. The ablation rates of both Ag and Ti samples were shown as a function of laser pulse energy and water level above the samples. The average size of nanoparticles (10-50 nm) was found to be smaller for the shorter wavelength (532 nm) nanosecond pulsed laser compared with those of picosecond and femtosecond lasers, demonstrating a more dominating role of laser wavelength than pulse width in particle size control. The ps laser generated more spherical Ag nanoparticles than those with the ns and fs lasers. Under the same laser processing conditions, Au nanoparticles are smaller than Ag and TiO2, with the latter, the largest. The nanoparticle production rate is relatively independent upon laser types, wavelengths and pulse lengths, but largely determined by the laser fluence and energy deposited.

  15. Mixed-valence metal oxide nanoparticles as electrochemical half-cells: substituting the Ag/AgCl of reference electrodes by CeO(2-x) nanoparticles.

    PubMed

    Nagarale, Rajaram K; Hoss, Udo; Heller, Adam

    2012-12-26

    Cations of mixed valence at surfaces of metal oxide nanoparticles constitute electrochemical half-cells, with potentials intermediate between those of the dissolved cations and those in the solid. When only cations at surfaces of the particles are electrochemically active, the ratio of electrochemically active/all cations is ~0.1 for 15 nm diameter CeO(2-x) particles. CeO(2-x) nanoparticle-loaded hydrogel films on printed carbon and on sputtered gold constitute reference electrodes having a redox potential similar to that of Ag/AgCl in physiological (0.14 M) saline solutions. In vitro the characteristics of potentially subcutaneously implantable glucose monitoring sensors made with CeO(2-x) nanoparticle reference electrodes are undistinguishable from those of sensors made with Ag/AgCl reference electrodes. Cerium is 900 times more abundant than silver, and commercially produced CeO(2-x) nanoparticle solutions are available at prices well below those of the Ag/AgCl pastes used in the annual manufacture of ~10(9) reference electrodes of glucose monitoring strips for diabetes management. PMID:23171288

  16. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    NASA Astrophysics Data System (ADS)

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-03-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system.

  17. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    PubMed Central

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system. PMID:24608736

  18. Attempt of Deposition of Ag-Doped Amorphous Carbon Film by Ag-Cathode DC Plasma with CH4 Flow.

    PubMed

    Tsubota, Toshiki; Kuratsu, Kazuhiro; Murakami, Naoya; Ohno, Teruhisa

    2015-06-01

    A simple DC plasma apparatus having large Ag cathode with CH4 flow was used for the attempt to prepare Ag-doped amorphous carbon film. As the gaseous source, CH4 and the additive (N2 or Ar) were used for the plasma process. When N2 was the additive, the substrate surfaces after the plasma process were electrical conductor although high electrical resistance. The growth rate of the deposits decreased with increasing the amount of N2, and the deposits contained nitrogen. Although the small amount of silver was detected by XPS, the peak for Ag may not be in the carbon deposit but be in interlayer formed at Ar etching process. When Ar was the additive, the substrate surfaces after the plasma process were also electrical conductor although high electrical resistance. The growth rate of the deposits was almost independent of the amount of Ar, and the deposits contained no argon. The small XPS peaks for Ag may not be in the carbon deposit but be in interlayer formed at Ar etching process. Both the prepared samples had high antibiotic property. The method of this study could be used for the surface reforming with amorphous carbon coating having electrical conductivity and antibiotic property. PMID:26369089

  19. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza.

    PubMed

    Jiang, Hong-Sheng; Li, Ming; Chang, Feng-Yi; Li, Wei; Yin, Li-Yan

    2012-08-01

    Silver nanoparticles (AgNPs) are commonly used in consumer products for their antibacterial activity. Silver nanoparticles may adversely influence organisms when released into the environment. The present study investigated the effect of AgNPs on the growth, morphology, and physiology of the aquatic plant duckweed (Spirodela polyrhiza). The toxicity of AgNPs and AgNO(3) was also compared. The results showed that silver content in plant tissue increased significantly with higher concentrations of AgNPs and AgNO(3) . Silver nanoparticles and AgNO(3) significantly decreased plant biomass, caused colonies of S. polyrhiza to disintegrate, and also resulted in root abscission. Physiological analysis showed that AgNPs and AgNO(3) significantly decreased plant tissue nitrate-nitrogen content, chlorophyll a (Chl a) content, chlorophyll a/b (Chl a/b), and chlorophyll fluorescence (Fv/Fm). Changes in soluble carbohydrate and proline content were also detected after both AgNO(3) and AgNPs treatment. However, after 192 h of recovery, total chlorophyll content increased, and Fv/Fm returned to control level. Median effective concentration (EC50) values for Chl a and phosphate content showed that AgNO(3) was more toxic than AgNPs (EC50 values: 16.10 ± 0.75 vs 7.96 ± 0.81 and 17.33 ± 4.47 vs 9.14 ± 2.89 mg Ag L(-1) , respectively), whereas dry-weight EC50 values showed that AgNPs were more toxic than AgNO(3) (13.39 ± 1.06 vs 17.67 ± 1.16 mg Ag L(-1) ). PMID:22639346

  20. Oxidative Stress Mechanisms Caused by Ag Nanoparticles (NM300K) are Different from Those of AgNO3: Effects in the Soil Invertebrate Enchytraeus crypticus

    PubMed Central

    Ribeiro, Maria J.; Maria, Vera L.; Scott-Fordsmand, Janeck J.; Amorim, Mónica J. B.

    2015-01-01

    The mechanisms of toxicity of Ag nanoparticles (NPs) are unclear, in particular in the terrestrial environment. In this study the effects of AgNP (AgNM300K) were assessed in terms of oxidative stress in the soil worm Enchytraeus crypticus, using a range of biochemical markers [catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR), total glutathione (TG), metallothionein (MT), lipid peroxidation (LPO)]. E. crypticus were exposed during 3 and 7 days (d) to the reproduction EC20, EC50 and EC80 levels of both AgNP and AgNO3. AgNO3 induced oxidative stress earlier (3 d) than AgNP (7 d), both leading to LPO despite the activation of the anti-redox system. MT increased only for AgNP. The Correspondence Analysis showed a clear separation between AgNO3 and AgNP, with e.g., CAT being the main descriptor for AgNP for 7 d. LPO, GST and GPx were for both 3 and 7 d associated with AgNO3, whereas MT and TG were associated with AgNP. These results may reflect a delay in the effects of AgNP compared to AgNO3 due to the slower release of Ag+ ions from the AgNP, although this does not fully explain the observed differences, i.e., we can conclude that there is a nanoparticle effect. PMID:26287225

  1. Reducing Strength Prevailing at Root Surface of Plants Promotes Reduction of Ag+ and Generation of Ag0/Ag2O Nanoparticles Exogenously in Aqueous Phase

    PubMed Central

    Pardha-Saradhi, Peddisetty; Yamal, Gupta; Peddisetty, Tanuj; Sharmila, Peddisetty; Nagar, Shilpi; Singh, Jyoti; Nagarajan, Rajamani; Rao, Kottapalli S.

    2014-01-01

    Potential of root system of plants from wide range of families to effectively reduce membrane impermeable ferricyanide to ferrocyanide and blue coloured 2,6-dichlorophenol indophenol (DCPIP) to colourless DCPIPH2 both under non-sterile and sterile conditions, revealed prevalence of immense reducing strength at root surface. As generation of silver nanoparticles (NPs) from Ag+ involves reduction, present investigations were carried to evaluate if reducing strength prevailing at surface of root system can be exploited for reduction of Ag+ and exogenous generation of silver-NPs. Root system of intact plants of 16 species from 11 diverse families of angiosperms turned clear colorless AgNO3 solutions, turbid brown. Absorption spectra of these turbid brown solutions showed silver-NPs specific surface plasmon resonance peak. Transmission electron microscope coupled with energy dispersive X-ray confirmed the presence of distinct NPs in the range of 5–50 nm containing Ag. Selected area electron diffraction and powder X-ray diffraction patterns of the silver NPs showed Bragg reflections, characteristic of crystalline face-centered cubic structure of Ag0 and cubic structure of Ag2O. Root system of intact plants raised under sterile conditions also generated Ag0/Ag2O-NPs under strict sterile conditions in a manner similar to that recorded under non-sterile conditions. This revealed the inbuilt potential of root system to generate Ag0/Ag2O-NPs independent of any microorganism. Roots of intact plants reduced triphenyltetrazolium to triphenylformazon and impermeable ferricyanide to ferrocyanide, suggesting involvement of plasma membrane bound dehydrogenases in reduction of Ag+ and formation of Ag0/Ag2O-NPs. Root enzyme extract reduced triphenyltetrazolium to triphenylformazon and Ag+ to Ag0 in presence of NADH, clearly establishing potential of dehydrogenases to reduce Ag+ to Ag0, which generate Ag0/Ag2O-NPs. Findings presented in this manuscript put forth a novel, simple

  2. Wet chemical synthesis and characterization of AgGaSe{sub 2} nanoparticles

    SciTech Connect

    Sugan, S.; Dhanasekaran, R.

    2013-06-03

    AgGaSe{sub 2} compound semiconductor nanoparticles were synthesized by wet chemical method using mercaptoacetic acid as a capping agent at room temperature. The synthesized powders belong to chalcopyrite structure confirmed by powder XRD. The surface morphology and crystalline size were observed by high resolution scanning electron microscope (HR-SEM). The stoichiometric composition of AgGaSe{sub 2} nanoparticles was confirmed by Energy dispersive X-ray (EDX) analysis. Different functional group vibrations of mercaptoacetic acid capped nanoparticles were studied using FT-IR spectrum. The absorbance and optical bandgap of the nanoparticles were determined using diffuse reflectance spectroscopy (DRS).

  3. Enhanced performances in inverted small molecule solar cells by Ag nanoparticles.

    PubMed

    Jin, Fangming; Chu, Bei; Li, Wenlian; Su, Zisheng; Zhao, Haifeng; Lee, C S

    2014-12-15

    We demonstrate a highly efficient inverted small molecular solar cell with integration of Ag nanoparticles (NPs) into the devices. The optimized device based on thermal evaporated Ag NPs provides a power conversion efficiency (PCE) of 4.87%, which offers 33% improvement than that of the reference device without Ag NPs. Such a high efficiency is mainly attributed to the improved electrical properties by virtue of the modification of the surface of ITO with Ag NPs and the enhanced light harvesting due to localized surface plasmon resonance (LSPR). The more detail enhanced mechanism of the PCE by introduction of Ag NPs is also discussed. PMID:25607480

  4. Solution structure of peptide AG4 used to form silver nanoparticles

    SciTech Connect

    Lee, Eunjung; Kim, Dae-Hee; Woo, Yoonkyung; Hur, Ho-Gil; Lim, Yoongho

    2008-11-21

    The preparation of silver nanoparticles (AgNPs) is of great interest due to their various biological activities, such as observed in their antimicrobial and wound healing actions. Moreover, the formation of AgNPs using silver-binding peptide has certain advantages because they can be made in aqueous solution at ambient temperature. The solution structure of the silver-binding peptide AG4 was determined using nuclear magnetic resonance spectroscopy, and the site of the AG4 interaction with AgNPs was elucidated.

  5. Loading Ag nanoparticles on Cd(II) boron imidazolate framework for photocatalysis

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zhang, De-Xiang; Chen, Shumei; Wen, Tian

    2016-05-01

    An amine-functionalized Cd(II) boron imidazolate framework (BIF-77) with three-dimensional open structure has been successfully synthesized, which can load Ag nanoparticles (NPs) for photocatalytic degradation of methylene blue (MB).

  6. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae.

    PubMed

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-01-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag(+), C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag(+), and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs. PMID:27615743

  7. Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wang, Qingyao; Qiao, Jianlei; Jin, Rencheng; Xu, Xiaohui; Gao, Shanmin

    2015-03-01

    Plasmonic photosensitizer AgBr/Ag nanospheres supported on TiO2 nanotube arrays (TiO2 NTs) are prepared by successive ionic layer adsorption and reaction (SILAR) technique followed by photoreduction methods. The structural and surface morphological properties of AgBr/Ag nanoparticles sensitized TiO2 NTs and their photoelectrochemical performance are investigated and discussed. A detailed formation mechanism of the TiO2 NTs/AgBr/Ag is proposed. The TiO2 NTs/AgBr/Ag exhibit excellent photocurrent and photoelectrocatalytic activities under visible light irradiation. Efficient utilization of solar energy to create electron-hole pairs is attributed to the significant visible light response and surface plasmon resonance of Ag nanoparticles. This finding indicates that the high photosensitivity of the TiO2 NTs-based surface plasmon resonance materials could be applied toward the development of new plasmonic visible-light-sensitive photovoltaic fuel cells and photocatalysts.

  8. Noble metals (Ag, Au) nanoparticles addition effects on superconducting properties of CuTl-1223 phase

    NASA Astrophysics Data System (ADS)

    Jabbar, Abdul; Mumtaz, Muhammad; Nadeem, Kashif

    2015-03-01

    Low anisotropic (Cu0.5Tl0.5) Ba2Ca2Cu3O10 - δ (CuTl-1223) high temperature superconducting phase was synthesized by solid-state reaction, silver (Ag) nanoparticles were prepared by sol-gel method and gold (Au) nanoparticles were extracted from colloidal solution. We added Ag and Au nanoparticles in CuTl-1223 matrix separately with same concentration during the final sintering process to get (M)x/CuTl-1223; M = Ag nanoparticles or Au nanoparticles (x = 0 and 1.0 wt.%) nano-superconductor composites. We investigated and compared the effects of these noble metals nanoparticles addition on structural, morphological and superconducting transport properties of CuTl-1223 phase. The crystal structure of the host CuTl-1223 superconducting phase was not affected significantly after the addition of these nanoparticles. The enhancement of superconducting properties was observed after the addition of both Ag and Au nanoparticles, which is most probably due to improved inter-grains weak-links and reduction of defects such as oxygen deficiencies, etc. The reduction of normal state room temperature resistivity is the finger prints of the reduction of barriers and facilitation to the carriers transport across the inter-crystallite sites due to improved inter-grains weak-links. The greater improvement of superconducting properties in Ag nanoparticles added samples is attributed to the higher conductivity of silver as compared to gold, which also suits for practical applications due to lower cost and easy synthesis of Ag nanoparticles as compared to Au nanoparticles.

  9. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    DOE PAGESBeta

    Paik, Haemin; Choi, Yoon -Young; Hong, Seungbum; No, Kwangsoo

    2015-09-04

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increasemore » of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. The enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles.« less

  10. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    SciTech Connect

    Paik, Haemin; Choi, Yoon -Young; Hong, Seungbum; No, Kwangsoo

    2015-09-04

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increase of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. The enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles.

  11. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    PubMed Central

    Paik, Haemin; Choi, Yoon-Young; Hong, Seungbum; No, Kwangsoo

    2015-01-01

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increase of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. These enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles. PMID:26336795

  12. Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles.

    PubMed

    Furman, Olha; Usenko, Sascha; Lau, Boris L T

    2013-02-01

    As engineered nanoparticles (NPs) are increasingly used, their entry into the environment has become an important topic for water sustainability. Recent investigations point to the critical role of natural organic matter (NOM) in altering the persistence of NPs by complexing with their surfaces. The NP-NOM complex, in turn, is the new entity that may potentially influence subsequent fate of NPs. To understand the relative impact of humic (HA) and fulvic fraction of NOM on the stability and mobility of silver nanoparticles (AgNPs), a combination of dynamic light scattering and quartz crystal microgravimetry with dissipation monitoring was used. In the absence of unbound NOM, (1) surface modification on either AgNP or silica substrate by different NOM fractions could lead to substantial changes in the extent and kinetics of AgNP aggregation and deposition, and (2) HA has a greater capability to enhance the transport of AgNPs by reducing their aggregation and deposition. With unbound NOM, HA seems to compete more successfully for binding sites on the substrate under electrostatically favorable conditions and formed a steric layer to prevent subsequent deposition of AgNPs. These findings highlighted the importance of NOM fraction in the overall environmental partitioning of AgNPs. PMID:23298221

  13. Growth of Ag nanoparticles using plasma-modified multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tseng, Chun-Hao; Chen, Chuh-Yung

    2008-01-01

    This study presents a novel method for preparing multi-walled carbon nanotubes (MWNTs) grafted with a poly(2-hydroxyethyl methacrylate) (HEMA)-silver complex (CNTs-HEMA-Ag complex) through plasma-induced grafting polymerization. The characteristics of the MWNTs after being grafted with HEMA polymer are monitored by Fourier transform infrared (FT-IR) spectroscopy. The chelating groups in the HEMA polymer grafted on the surface of the CNTs-HEMA are the coordination sites for chelating silver ions, and are further used as nanotemplates for the growing of Ag nanoparticles (quantum dots). Transmission electron microscopy (TEM) reveals that the particle size of Ag nanoparticles on the CNT surfaces increases with the Ag+ chelating concentration, reaction time, and reaction temperature. Moreover, the crystalline phase of Ag nanoparticles is identified by using x-ray diffraction (XRD). In addition, high-resolution x-ray photoelectron spectroscopy (XPS) is used to characterize the functional groups on the surface of the MWNTs after chemical modification through plasma treatment; it demonstrates that the growing amount of the Ag nanoparticles on the nanotubes increases with the Ag+ chelating concentration due to the blocking effect of the Ag particles forming on the MWNTs.

  14. Kinetic study of Pt nanocrystal deposition on Ag nanowires with clean surfaces via galvanic replacement

    PubMed Central

    2012-01-01

    Without using any templates or surfactants, this study develops a high-yield process to prepare vertical Ag-Pt core-shell nanowires (NWs) by thermally assisted photoreduction of Ag NWs and successive galvanic replacement between Ag and Pt ions. The clean surface of Ag nanowires allows Pt ions to reduce and deposit on it and forms a compact sheath comprising Pt nanocrystals. The core-shell structural feature of the NWs thus produced has been demonstrated via transmission electron microscopy observation and Auger electron spectroscopy elemental analysis. Kinetic analysis suggests that the deposition of Pt is an interface-controlled reaction and is dominated by the oxidative dissolution of Ag atoms. The boundaries in between Pt nanocrystals may act as microchannels for the transport of Ag ions during galvanic replacement reactions. PMID:22559242

  15. Ag Nanodots Emitters Embedded in a Nanocrystalline Thin Film Deposited on Crystalline Si Solar Cells.

    PubMed

    Park, Seungil; Ryu, Sel Gi; Ji, HyungYong; Kim, Myeong Jun; Peck, Jong Hyeon; Kim, Keunjoo

    2016-06-01

    We fabricated crystalline Si solar cells with the inclusion of various Ag nanodots into the additional emitters of nanocrystallite Si thin films. The fabricated process was carried out on the emitter surface of p-n junction for the textured p-type wafer. The Ag thin films were deposited on emitter surfaces and annealed at various temperatures. The amorphous Si layers were also deposited on the Ag annealed surfaces by hot-wire chemical vapor deposition and then the deposited layers were doped by the second n-type doping process to form an additional emitter. From the characterization, both the Ag nanodots and the deposited amorphous Si thin films strongly reduce photo-reflectances in a spectral region between 200-400 nm. After embedding Ag nanodots in nanocrystallite Si thin films, a conversion efficiency of the sample with added emitter was achieved to 15.1%, which is higher than the 14.1% of the reference sample and the 14.7% of the de-posited sample with a-Si:H thin film after the Ag annealing process. The additional nanocrystallite emitter on crystalline Si with Ag nanodots enhances cell properties. PMID:27427665

  16. Deposition and biokinetics of inhaled nanoparticles

    PubMed Central

    2010-01-01

    Particle biokinetics is important in hazard identification and characterization of inhaled particles. Such studies intend to convert external to internal exposure or biologically effective dose, and may help to set limits in that way. Here we focus on the biokinetics of inhaled nanometer sized particles in comparison to micrometer sized ones. The presented approach ranges from inhaled particle deposition probability and retention in the respiratory tract to biokinetics and clearance of particles out of the respiratory tract. Particle transport into the blood circulation (translocation), towards secondary target organs and tissues (accumulation), and out of the body (clearance) is considered. The macroscopically assessed amount of particles in the respiratory tract and secondary target organs provides dose estimates for toxicological studies on the level of the whole organism. Complementary, microscopic analyses at the individual particle level provide detailed information about which cells and subcellular components are the target of inhaled particles. These studies contribute to shed light on mechanisms and modes of action eventually leading to adverse health effects by inhaled nanoparticles. We review current methods for macroscopic and microscopic analyses of particle deposition, retention and clearance. Existing macroscopic knowledge on particle biokinetics and microscopic views on particle organ interactions are discussed comparing nanometer and micrometer sized particles. We emphasize the importance for quantitative analyses and the use of particle doses derived from real world exposures. PMID:20205860

  17. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles.

    PubMed

    Chaffin, Elise; O'Connor, Ryan T; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ∼410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods. PMID:27497571

  18. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaffin, Elise; O'Connor, Ryan T.; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ˜410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.

  19. Low emissivity Ag/Ta/glass multilayer thin films deposited by sputtering

    SciTech Connect

    Park, Sun Ho; Lee, Kee Sun; Sivasankar Reddy, A.

    2011-09-15

    Ta is deposited on a glass substrate as an interlayer for the two-dimensional growth of Ag thin films because Ta has good thermal stability and can induce a negative surface-energy change in Ag/glass. From the transmission electron microscopy results, we concluded that the Ag crystals in the bottom layer (seemingly on Ag/Ta) were flattened; this was rarely observed in the three-dimensional growth mode. Comparing Ag/Ta/glass with Ag/glass, we found that the Ta interlayer was effective in reducing both the resistance and the emissivity, accompanied by the relatively high transmittance in the visible region. In particular, Ag(9 nm)/Ta(1 nm)/glass film showed 0.08 of the emissivity, including {approx}61% of the transmittance in the visible region (wavelength: 550 nm).

  20. Morphology and electrochemical behavior of Ag-Cu nanoparticle-doped amalgams.

    PubMed

    Chung, Kwok-Hung; Hsiao, Li-Yin; Lin, Yu-Sheng; Duh, Jenq-Gong

    2008-05-01

    The aim of this study was to introduce Ag-Cu phase nanopowder as an additive to improve the corrosion behavior of dental amalgams. A novel Ag-Cu nanopowder was synthesized by the precipitation method. An amalgam alloy powder (World-Cap) was added and mixed with 5 wt.% and 10 wt.% of Ag-Cu nanopowders, respectively, to form experimental amalgam alloy powders. The original alloy powder was used as a control. Alloy powders were examined using X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy and electron probe microanalysis. Amalgam disk specimens of metallurgically prepared were tested in 0.9% NaCl solution using electrochemical methods. The changes in the corrosion potential and anodic polarization characteristics were determined. Corrosion potential data were analyzed statistically (n=3, analysis of variance, Tukey's test, p<0.05). The diameters of lamellar structure Ag-Cu nanoparticles were measured to be approximately 30 nm. The composition of the Ag-Cu nanoparticles determined by TEM-energy-dispersive spectroscopy was 56.28 at.% Ag-43.72 at.% Cu. A light-shaded phase was found mixing with dark Cu-Sn reaction particles in the reaction zones of Ag-Cu nanoparticle-doped amalgams. The Ag-Cu nanoparticle-doped amalgams exhibited zero current potentials more positive than the control (p<0.05) and no current peak was observed at -325mV that related to Ag-Hg phase and Cu6Sn5 phase in anodic polarization curves. The results indicated that the corrosion resistance of high-copper single-composition amalgam could be improved by Ag-Cu nanoparticle-doping. PMID:18321799

  1. Classification of Broken Hill-Type Pb-Zn-Ag Deposits: A Refinement

    NASA Astrophysics Data System (ADS)

    Spry, P. G.; Teale, G. S.; Steadman, J. A.

    2009-05-01

    Broken Hill Hill-type Pb-Zn-Ag (BHT) deposits constitute some of the largest ore deposits in the world. The Broken Hill deposit is the largest accumulation of Pb, Zn, and Ag on Earth and the Cannington deposit is currently the largest silver deposit. Characteristic features of BHT deposits include: 1. high Pb+Zn+Ag values with Pb > Zn; 2. Metamorphism to amphibolite-granulite facies; 3. Paleo-to Mesoprotoerozoic clastic metasedimentary host rocks; 4. Sulfides that are spatially associated with bimodal (felsic and mafic) volcanic rocks, and stratabound gahnite- and garnet-bearing rocks and iron formations, 5. Stacked orebodies with characteristic Pb:Zn:Ag ratios and skarn-like Fe-Mn-Ca-F gangue assemblages, and the presence of Cu, Au, Bi, As, and Sb; and 6. Sulfur-poor assemblages. Broken Hill (Australia) has a prominent footwall feeder zone whereas other BHT deposits have less obvious alteration zones (footwall garnet spotting and stratabound alteration haloes). Deposits previously regarded in the literature as BHT deposits are Broken Hill, Cannington, Oonagalabie, Menninie Dam, and Pegmont (Australia), Broken Hill, Swartberg, Big Syncline, and Gamsberg (South Africa), Zinkgruvan (Sweden), Sullivan, Cottonbelt, and Foster River (Canada), and Boquira (Brazil). Of these deposits, only the Broken Hill (Australia, South Africa), Pinnacles, Cannington, Pegmont, and Swartberg deposits are BHT deposits. Another BHT deposit includes the Green Parrot deposit, Jervois Ranges (Northern Territory). The Foster River, Gamsberg, and Sullivan deposits are considered to be "SEDEX deposits with BHT affinities", and the Oonagalabie, Green Mountain (Colorado), and Zinkgruvan are "VMS deposits with BHT affinities". In the Broken Hill area (Australia), Corruga-type Pb-Zn-Ag deposits occur in calc-silicate rocks and possess some BHT characteristics; the Big Syncline, Cottonbelt, Menninie Dam, and Saxberget deposits are Corruga-type deposits. SEDEX deposits with BHT affinities, VMS

  2. Bio-inspired sustainable and green synthesis of plasmonic Ag/AgCl nanoparticles for enhanced degradation of organic compound from aqueous phase.

    PubMed

    Devi, Th Babita; Ahmaruzzaman, M

    2016-09-01

    In the current study, we report the utilization of the biogenic potential of Benincasa hispida (ash gourd) peel extract for the synthesis of Ag embedded AgCl nanoparticles nanoparticles (Ag/AgCl NPs) without the use of any external organic solvents. The appearance of dark brown color from the pale yellow color confirmed the formation of Ag/AgCl nanoparticles which was further validated by absorbance peak using UV-visible spectroscopy. The phytochemicals (flavones) present in the B. hispida peel extract acts as a reducing/stabilizing agents. The morphology and size of the synthesized NPs were characterized by transmission electron microscope (TEM), selected area electron microscope (SAED) and high resolution transmission electron microscope (HR-TEM). FT-IR spectra of the B. hispida peel extract and after the development of nanoparticles are determined to identify the functional groups responsible for the conversion of metal ions to metal nanoparticles. The synthesized nanoparticles showed an excellent photocatalytic property in the degradation of toxic dye like malachite green oxalate under sunlight irradiation. For the first time, malachite green oxalate dye was degraded by Ag/AgCl nanoparticles under sunlight irradiation. PMID:27246560

  3. Subsurface Synthesis and Characterization of Ag Nanoparticles Embedded in MgO

    SciTech Connect

    Vilayur Ganapathy, Subramanian; Devaraj, Arun; Colby, Robert J.; Pandey, Archana; Varga, Tamas; Shutthanandan, V.; Manandhar, Sandeep; El-Khoury, Patrick Z.; Kayani, Asghar N.; Hess, Wayne P.; Thevuthasan, Suntharampillai

    2013-03-08

    Metal nanoparticles exhibit localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the dielectric medium surrounding it. LSPR causes field enhancement near the surface of the nanoparticle making them interesting candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix form hotspots which are prime locations for LSPR spectroscopy and sensing. This study involves synthesizing partially buried Ag nanoparticles in MgO and investigating the characteristics of this material system. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 10000C for 10 and 30 hours. A detailed optical and structural characterization was carried out to understand the evolution of Ag nanoparticle microstructure and size distribution inside the MgO matrix. Micro x-ray diffraction (MicroXRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes as seen from aberration corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  4. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO.

    PubMed

    Vilayurganapathy, S; Devaraj, A; Colby, R; Pandey, A; Varga, T; Shutthanandan, V; Manandhar, S; El-Khoury, P Z; Kayani, Asghar; Hess, W P; Thevuthasan, S

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag(+) ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles. PMID:23403363

  5. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    NASA Astrophysics Data System (ADS)

    Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  6. Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola)

    PubMed Central

    Mendes, Luís André; Maria, Vera L.; Scott-Fordsmand, Janeck J.; Amorim, Mónica J. B.

    2015-01-01

    The effects of nanomaterials have been primarily assessed based on standard ecotoxicity guidelines. However, by adapting alternative measures the information gained could be enhanced considerably, e.g., studies should focus on more mechanistic approaches. Here, the environmental risk posed by the presence of silver nanoparticles (Ag NM300K) in soil was investigated, anchoring population and cellular level effects, i.e., survival, reproduction (28 days) and oxidative stress markers (0, 2, 4, 6, 10 days). The standard species Folsomia candida was used. Measured markers included catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (TG), metallothionein (MT) and lipid peroxidation (LPO). Results showed that AgNO3 was more toxic than AgNPs at the population level: reproduction EC20 and EC50 was ca. 2 and 4 times lower, respectively. At the cellular level Correspondence Analysis showed a clear separation between AgNO3 and AgNP throughout time. Results showed differences in the mechanisms, indicating a combined effect of released Ag+ (MT and GST) and of AgNPs (CAT, GR, TG, LPO). Hence, clear advantages from mechanistic approaches are shown, but also that time is of importance when measuring such responses. PMID:26473892

  7. Deposition of adherent Ag-Ti duplex films on ceramics in a multiple-cathode sputter deposition system

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.

    1992-01-01

    The adhesion of Ag films deposited on oxide ceramics can be increased by first depositing intermediate films of active metals such as Ti. Such duplex coatings can be fabricated in a widely used three target sputter deposition system. It is shown here that the beneficial effect of the intermediate Ti film can be defeated by commonly used in situ target and substrate sputter cleaning procedures which result in Ag under the Ti. Auger electron spectroscopy and wear testing of the coatings are used to develop a cleaning strategy resulting in an adherent film system.

  8. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic.

    PubMed

    Wang, Peng; Menzies, Neal W; Lombi, Enzo; Sekine, Ryo; Blamey, F Pax C; Hernandez-Soriano, Maria C; Cheng, Miaomiao; Kappen, Peter; Peijnenburg, Willie J G M; Tang, Caixian; Kopittke, Peter M

    2015-01-01

    Silver nanoparticles (NPs) are used in more consumer products than any other nanomaterial and their release into the environment is unavoidable. Of primary concern is the wastewater stream in which most silver NPs are transformed to silver sulfide NPs (Ag2S-NPs) before being applied to agricultural soils within biosolids. While Ag2S-NPs are assumed to be biologically inert, nothing is known of their effects on terrestrial plants. The phytotoxicity of Ag and its accumulation was examined in short-term (24 h) and longer-term (2-week) solution culture experiments with cowpea (Vigna unguiculata L. Walp.) and wheat (Triticum aestivum L.) exposed to Ag2S-NPs (0-20 mg Ag L(-1)), metallic Ag-NPs (0-1.6 mg Ag L(-1)), or ionic Ag (AgNO3; 0-0.086 mg Ag L(-1)). Although not inducing any effects during 24-h exposure, Ag2S-NPs reduced growth by up to 52% over a 2-week period. This toxicity did not result from their dissolution and release of toxic Ag(+) in the rooting medium, with soluble Ag concentrations remaining below 0.001 mg Ag L(-1). Rather, Ag accumulated as Ag2S in the root and shoot tissues when plants were exposed to Ag2S-NPs, consistent with their direct uptake. Importantly, this differed from the form of Ag present in tissues of plants exposed to AgNO3. For the first time, our findings have shown that Ag2S-NPs exert toxic effects through their direct accumulation in terrestrial plant tissues. These findings need to be considered to ensure high yield of food crops, and to avoid increasing Ag in the food chain. PMID:25686712

  9. Genesis of Middle Miocene Yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Saunders, J. A.; Unger, D. L.; Kamenov, G. D.; Fayek, M.; Hames, W. E.; Utterback, W. C.

    2008-09-01

    heated meteoric water to create precious metal ore-forming fluids. Colloidal nanoparticles of Au-Ag alloy (electrum), naumannite (Ag2Se), silica, and adularia, likely nucleated at depth, traveled upward, and deposited where they grew large enough to aggregate along vein walls. Silica and gold colloids have been reported in hot springs from Yellowstone National Park, suggesting that such processes may continue to some extent to the present. However, it is possible that the initial development of the mantle plume led to a major but short-lived “distillation” process which led to the mid-Miocene bonanza ore-forming event.

  10. Bimetallic PdAg nanoparticle arrays from monolayer films of diblock copolymer micelles

    NASA Astrophysics Data System (ADS)

    Ehret, E.; Beyou, E.; Mamontov, G. V.; Bugrova, T. A.; Prakash, S.; Aouine, M.; Domenichini, B.; Cadete Santos Aires, F. J.

    2015-07-01

    The self-assembly technique provides a highly efficient route to generate well-ordered structures on a nanometer scale. In this paper, well-ordered arrays of PdAg alloy nanoparticles on flat substrates with narrow distributions of particle size (6-7 nm) and interparticle spacing (about 60 nm) were synthesized by the block copolymer micelle approach. A home-made PS-b-P4VP diblock copolymer was prepared to obtain a micellar structure in toluene. Pd and Ag salts were then successfully loaded in the micellar core of the PS-b-P4VP copolymer. A self-assembled monolayer of the loaded micelles was obtained by dipping the flat substrate in the solution. At this stage, the core of the micelles was still loaded with the metal precursor rather than with a metal. Physical and chemical reducing methods were used to reduce the metal salts embedded in the P4VP core into PdAg nanoparticles. HRTEM and EDX indicated that Pd-rich PdAg alloy nanoparticles were synthesized by chemical or physical reduction; UV-visible spectroscopy observations confirmed that metallic PdAg nanoparticles were quickly formed after chemical reduction; XPS measurements revealed that the PdAg alloy nanoparticles were in a metallic state after a short time of exposure to O2 plasma and after hydrazine reduction.

  11. Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure

    NASA Astrophysics Data System (ADS)

    Gutierrez Fuentes, R.; Pescador Rojas, J. A.; Jiménez-Pérez, J. L.; Sanchez Ramirez, J. F.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.

    2008-11-01

    The thermal diffusivity of Au/Ag nanoparticles with core/shell structure, at different compositions (Au/Ag = 3/1, 1/1, 1/3, 1/6), was measured by using the mismatched mode of the dual-beam thermal lens (TL) technique. This study determines the effect of the bimetallic composition on the thermal diffusivity of the nanofluids. In these results we find a lineal increment of the nanofluid it thermal diffusivity when the Ag shell thickness is increased. Our results show that the nanoparticle structure is an important parameter to improve the heat transport in composites and nanofluids. These results could have importance for applications in therapies and photothermal deliberation of drugs. Complementary measurements with UV-vis spectroscopy and TEM, were used to characterize the Au(core)/Ag(shell) nanoparticles.

  12. Controlled formation of ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution.

    PubMed

    Huber, Klaus; Witte, Thomas; Hollmann, Jutta; Keuker-Baumann, Susanne

    2007-02-01

    A new tool is presented to control formation of Ag nanoparticles. Small amounts of silver ions were added to dilute solutions of long-chain sodium polyacrylates (NaPA). Four NaPA samples covering a molar mass regime of 97 kD < or = Mw < or = 650 kD have been used. With amounts of added Ag(+) as low as 1-2% of the COO(-) groups of the polyanionic chains, significant changes could already be induced in the NaPA coils with 650 kD. If the NaPA concentration was kept below 0.1 g/L, the coils with 650 kD exhibited a significant coil shrinking in stable solutions. At larger NaPA concentrations, addition of Ag+ initiates an aggregation of the polyacrylate coils toward compact structures. Coil shrinking and aggregation was revealed by means of time-resolved static light scattering. If exposed to UV-radiation, small Ag particles formed within the shrunken anionic polyacrylate coils. The Ag nanoparticles were identified by means of an enhanced light scattering and a characteristic plasmon absorption band around 410 nm. No such Ag particle formation could be observed even at 5 times larger concentrations of Ag(+) and NaPA if the two smallest polyacrylate samples have been used under otherwise equal conditions. This molar mass sensitive response of NaPA to Ag(+)-addition suggests an interesting phenomenon: if the coil size of the NaPa chains, which act as Ag(+) collectors, is large enough, local Ag(+) concentration in these coil-shaped Ag(+) containers exceeds a critical value, and irradiation with UV generates Ag nanoparticles. PMID:17263389

  13. Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates.

    PubMed

    Wang, Zhiwei; Meng, Guowen; Huang, Zhulin; Li, Zhongbo; Zhou, Qitao

    2014-12-21

    We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS "hot spots" are generated from the electromagnetic coupling of the densely distributed Ag-NPs, and the semiconducting ZnO-mesoporous-NSs also have chemical supporting enhancement and distinct molecule adsorbing abilities, the composite SERS-substrates demonstrate high SERS-sensitivity with good signal reproducibility. As a trial for potential applications, the composite SERS-substrates were used to identify pesticides and highly toxic polychlorinated biphenyls (PCBs), and low concentrations down to 10(-7) M for methyl parathion and 5 × 10(-6) M for PCB-77 were reached, respectively, showing promising potential for the SERS-based rapid detection of toxic organic pollutants in the environment. PMID:25382607

  14. In situ preparation of monodispersed Ag/polyaniline/Fe3O4 nanoparticles via heterogeneous nucleation

    PubMed Central

    2013-01-01

    Acrylic acid and styrene were polymerized onto monodispersed Fe3O4 nanoparticles using a grafting copolymerization method. Aniline molecules were then bonded onto the Fe3O4 nanoparticles by electrostatic self-assembly and further polymerized to obtain uniform polyaniline/Fe3O4 (PANI/Fe3O4) nanoparticles (approximately 35 nm). Finally, monodispersed Ag/PANI/Fe3O4 nanoparticles were prepared by an in situ reduction reaction between emeraldine PANI and silver nitrate. Fourier transform infrared and UV-visible spectrometers and a transmission electron microscope were used to characterize both the chemical structure and the morphology of the resulting nanoparticles. PMID:23819820

  15. Synthesis and characterization of AgCl nanoparticles produced by laser ablation of Ag in NaCl solution

    NASA Astrophysics Data System (ADS)

    Mahmoodi, Afsaneh; Shoorshinie, Seyedeh Zahra; Dorranian, Davoud

    2016-04-01

    In this work, the structural and optical properties of silver chloride nanoparticles produced by laser ablation of Ag plate in NaCl solution were investigated. Five different concentrations of NaCl solution were used as the ablation environment. The beam of a Q-switched Nd:YAG laser of 1064 nm wavelength and 7 ns pulse width was employed to irradiate the Ag target in NaCl solutions. Fluence of laser pulse was 1.5 J/cm2, and repetition rate was 5 Hz. Samples were prepared using 1500 pulses. Produced nanoparticles were characterized using UV-visible-NIR absorption, and transmission spectrum, transmission electron microscopy, scanning electron microscopy, X-ray diffraction pattern, photoluminescence spectrum, and dynamic light scattering method. Results show that laser ablation is a promising method to produce AgCl nanoparticles. Size of nanoparticles, their lattice structure, and bandgap energy as well as the production rate may be controlled by the concentration of NaCl in the ablation environment.

  16. Synthesis of wheatear-like ZnO nanoarrays decorated with Ag nanoparticles and its improved SERS performance through hydrogenation.

    PubMed

    Shan, Yufeng; Yang, Yong; Cao, Yanqin; Fu, Chaoli; Huang, Zhengren

    2016-04-01

    Semiconductor/noble metal composite SERS substrates have been extensively studied due to their unique bifunctionality. In this work, wheatear-like ZnO nanoarrarys have been fabricated via a modified low-temperature solution method. The hierarchical nanostructures that are constructed by stacked nanoflakes and long whiskers of ZnO possess a substantial number of characteristic nano corners and edges, which are proved to be beneficial to deposit more Ag nanoparticles (NPs). Furthermore, hydrogenated wheatear-like ZnO/AgNP composite substrates are achieved via a safe and facile solid hydrogen source (NaBH4). The hydrogenated ZnO/AgNPs (H-ZnO/Ag) substrates exhibit greatly improved SERS activity in detecting R6G molecules with an enhancement factor (EF) up to ∼0.49 × 10(8), over two orders of magnitude higher than that of the substrates before hydrogenation. The outstanding SERS performance of wheatear-like H-ZnO/Ag substrates benefits from the emerging porous structure of ZnO and abundant surface defects introduced by hydrogenation. In addition, the as-prepared substrates also show high detection sensitivity, good repeatability and recyclability, indicating great potential for practical applications. PMID:26916627

  17. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi

    PubMed Central

    Kim, Sang Woo; Jung, Jin Hee; Lamsal, Kabir; Kim, Yun Seok; Min, Ji Seon

    2012-01-01

    This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs. PMID:22783135

  18. Photo-catalytic activity of Plasmonic Ag@AgCl nanoparticles (synthesized via a green route) for the effective degradation of Victoria Blue B from aqueous phase.

    PubMed

    Devi, Th Babita; Begum, Shamima; Ahmaruzzaman, M

    2016-07-01

    This study reports a green process for the fabrication of Ag@AgCl (silver@silver chloride) nanoparticles by using Aquilaria agallocha (AA) leaves juice without using any external reagents. The effect of various reaction parameters, such as reaction temperature, reaction time and concentration of Aquilaria agallocha leaves juice in the formation of nanoparticles have also been investigated. From the FTIR spectra of leaves juice and phytochemicals test, it was found that flavonoids present in the leaves are responsible for the reduction of Ag(+) ions to Ag(0) species and leads to the formation of Ag@AgCl NPs. The synthesized Ag@AgCl NPs were utilized for the removal of toxic and hazardous dyes, such as Victoria Blue B from aqueous phase. Approximately, 99.46% degradation of Victoria Blue B dye were observed with Ag@AgCl NPs. Furthermore, the photocatalytic activity of the Ag@AgCl nanoparticles was unchanged after 5cycles of operation. PMID:27152674

  19. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope

    PubMed Central

    Salaheldin, Taher A.; Husseiny, Sherif M.; Al-Enizi, Abdullah M.; Elzatahry, Ahmed; Cowley, Alan H.

    2016-01-01

    Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD) pattern, high-resolution transmission electron Microscopy (HRTEM) and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM) to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity. PMID:26950118

  20. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  1. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope.

    PubMed

    Salaheldin, Taher A; Husseiny, Sherif M; Al-Enizi, Abdullah M; Elzatahry, Ahmed; Cowley, Alan H

    2016-01-01

    Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD) pattern, high-resolution transmission electron Microscopy (HRTEM) and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM) to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity. PMID:26950118

  2. Preparation of Ag deposited TiO2 (Ag/TiO2) composites and investigation on visible-light photocatalytic degradation activity in magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Ma, C. H.; Wang, J.; Li, S. G.; Li, Y.

    2014-12-01

    In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.

  3. Raman Spectroscopy of the Reaction of Thin Films of Solid-State Benzene with Vapor-Deposited Ag, Mg, and Al

    SciTech Connect

    Schalnat, Matthew C.; Hawkridge, Adam M.; Pemberton, Jeanne E.

    2011-07-21

    Thin films of solid-state benzene at 30 K were reacted with small quantities of vapor-deposited Ag, Mg, and Al under ultrahigh vacuum, and products were monitored using surface Raman spectroscopy. Although Ag and Mg produce small amounts of metal–benzene adduct products, the resulting Raman spectra are dominated by surface enhancement of the normal benzene modes from metallic nanoparticles suggesting rapid Ag or Mg metallization of the film. In contrast, large quantities of Al adduct products are observed. Vibrational modes of the products in all three systems suggest adducts that are formed through a pathway initiated by an electron transfer reaction. The difference in reactivity between these metals is ascribed to differences in ionization potential of the metal atoms; ionization potential values for Ag and Mg are similar but larger than that for Al. These studies demonstrate the importance of atomic parameters, such as ionization potential, in solid-state metal–organic reaction chemistry.

  4. Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam.

    PubMed

    Braun, Anika; Klumpp, Erwin; Azzam, Rafig; Neukum, Christoph

    2015-12-01

    It is considered inevitable that the increasing production and application of engineered nanoparticles will lead to their release into the environment. However, the behavior of these materials under environmentally relevant conditions is still only poorly understood. In this study the transport and deposition behavior of engineered surfactant stabilized silver nanoparticles (AgNPs) in water saturated porous media was investigated in transport experiments with glass beads as reference porous medium and in two natural soils under various hydrodynamic and hydrochemical conditions. The transport and retention processes of AgNPs in the porous media were elucidated by inverse modeling and possible particle size changes occurring during the transport through the soil matrix were analyzed with flow field-flow fractionation (FlFFF). A high mobility of AgNPs was observed in loamy sand under low ionic strength (IS) conditions and at high flow rates. The transport was inhibited at low flow rates, at higher IS, in the presence of divalent cations and in a more complex, fine-grained silty loam. The slight decrease of the mean particle size of the AgNPs in almost all experiments indicates size selective filtration processes and enables the exclusion of homoaggregation processes. PMID:25527873

  5. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition

    PubMed Central

    Lu, Xiong; Zhang, Bailin; Wang, Yingbo; Zhou, Xianli; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio; Ding, Yonghui; Leng, Yang

    2011-01-01

    Hydroxyapatite (HA) coatings on titanium (Ti) substrates have attracted much attention owing to the combination of good mechanical properties of Ti and superior biocompatibility of HA. Incorporating silver (Ag) into HA coatings is an effective method to impart the coatings with antibacterial properties. However, the uniform distribution of Ag is still a challenge and Ag particles in the coatings are easy to agglomerate, which in turn affects the applications of the coatings. In this study, we employed pulsed electrochemical deposition to co-deposit HA and Ag simultaneously, which realized the uniform distribution of Ag particles in the coatings. This method was based on the use of a well-designed electrolyte containing Ag ions, calcium ions and l-cysteine, in which cysteine acted as the coordination agent to stabilize Ag ions. The antibacterial and cell culture tests were used to evaluate the antibacterial properties and biocompatibility of HA/Ag composite coatings, respectively. The results indicated the as-prepared coatings had good antibacterial properties and biocompatibility. However, an appropriate silver content should be chosen to balance the biocompatibility and antibacterial properties. Heat treatments promoted the adhesive strength and enhanced the biocompatibility without sacrificing the antibacterial properties of the HA/Ag coatings. In summary, this study provided an alternative method to prepare bioactive surfaces with bactericidal ability for biomedical devices. PMID:20880853

  6. Sonophotocatalytic degradation of dye C.I. Acid Orange 7 by TiO2 and Ag nanoparticles immobilized on corona pretreated polypropylene non-woven fabric.

    PubMed

    Marković, Darka; Šaponjić, Zoran; Radoičić, Marija; Radetić, Tamara; Vodnik, Vesna; Potkonjak, Branislav; Radetić, Maja

    2015-05-01

    This study discusses the possibility of using corona pre-treated polypropylene (PP) non-woven fabric as a support for immobilization of colloidal TiO2 and Ag nanoparticles in order to remove dye C.I. Acid Orange 7 from aqueous solution. Dye removal efficiency by sonocatalysis, photocatalysis and sonophotocatalysis was evaluated on corona pre-treated fabric loaded with TiO2 nanoparticles, corona pre-treated fabric double loaded with TiO2 nanoparticles and corona pre-treated fabrics loaded with TiO2 nanoparticles before and after deposition of Ag nanoparticles. In addition, the stability of PP non-woven fabric during these processes was investigated. The substrates were characterized by SEM, EDX and AAS analyses. The change of the dye concentration was evaluated by UV-VIS spectrophotometry. Unlike sonocatalysis and photocatalysis, complete dye removal from both solution and non-woven fabric was obtained already after 240-270 min of sonophotocatalysis. Corona pre-treated PP non-woven fabric loaded with Ag nanoparticles prior to deposition of TiO2 nanoparticles provided excellent degradation efficiency and superior reusability. Sonophotocatalytic degradation of dye in the presence of all investigated samples was the most prominent in acidic conditions. Although this nanocomposite system ensured fast discoloration of dye solution, TOC values of water measured after sonophotocatalysis were not satisfactory because of PP degradation. Therefore, it is suggested to include TOC evaluation in each case study where different supports for TiO2 nanoparticles are used since these nanoparticles may guarantee the dye removal from solution but the stability of support could be problematic causing even more serious environmental impact. PMID:25487219

  7. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria

    NASA Astrophysics Data System (ADS)

    Cui, Li; Chen, Shaode; Zhang, Kaisong

    2015-02-01

    Ag nanoparticles (NPs) have been extensively utilized in surface-enhanced Raman scattering (SERS) spectroscopy for bacterial identification. However, Ag NPs are toxic to bacteria. Whether such toxicity can affect SERS features of bacteria and interfere with bacterial identification is still unknown and needed to explore. Here, by carrying out a comparative study on non-toxic Au NPs with that on toxic Ag NPs, we investigated the influence of nanoparticle concentration and incubation time on bacterial SERS spectral variance, both of which were demonstrated to be closely related to the toxicity of Ag NPs. Sensitive spectral alterations were observed on Ag NPs with increase of NPs concentration or incubation time, accompanied with an obvious decrease in number of viable bacteria. In contrast, SERS spectra and viable bacterial number on Au NPs were rather constant under the same conditions. A further analysis on spectral changes demonstrated that it was cell response (i.e. metabolic activity or death) to the toxicity of Ag NPs causing spectral variance. However, biochemical responses to the toxicity of Ag were very different in different bacteria, indicating the complex toxic mechanism of Ag NPs. Ag NPs are toxic to a great variety of organisms, including bacteria, fungi, algae, protozoa etc., therefore, this work will be helpful in guiding the future application of SERS technique in various complex biological systems.

  8. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria.

    PubMed

    Cui, Li; Chen, Shaode; Zhang, Kaisong

    2015-02-25

    Ag nanoparticles (NPs) have been extensively utilized in surface-enhanced Raman scattering (SERS) spectroscopy for bacterial identification. However, Ag NPs are toxic to bacteria. Whether such toxicity can affect SERS features of bacteria and interfere with bacterial identification is still unknown and needed to explore. Here, by carrying out a comparative study on non-toxic Au NPs with that on toxic Ag NPs, we investigated the influence of nanoparticle concentration and incubation time on bacterial SERS spectral variance, both of which were demonstrated to be closely related to the toxicity of Ag NPs. Sensitive spectral alterations were observed on Ag NPs with increase of NPs concentration or incubation time, accompanied with an obvious decrease in number of viable bacteria. In contrast, SERS spectra and viable bacterial number on Au NPs were rather constant under the same conditions. A further analysis on spectral changes demonstrated that it was cell response (i.e. metabolic activity or death) to the toxicity of Ag NPs causing spectral variance. However, biochemical responses to the toxicity of Ag were very different in different bacteria, indicating the complex toxic mechanism of Ag NPs. Ag NPs are toxic to a great variety of organisms, including bacteria, fungi, algae, protozoa etc., therefore, this work will be helpful in guiding the future application of SERS technique in various complex biological systems. PMID:25291503

  9. Immobilization of Ag-deposited Au nanoprisms by thiol-coupling and oil-coating methods

    NASA Astrophysics Data System (ADS)

    Noda, Yuta; Hayakawa, Tomokatsu

    2016-01-01

    We have demonstrated the immobilization of Ag-deposited Au (Au@Ag) nanoprisms on glass substrates by two different methods: self-assembly on a thiol-modified glass (thiol-coupling method) and evaporation of the Au@Ag nanoprism colloidal solution in silicone oil (oil-coating method). In the thiol-coupling method, the Au@Ag nanoprisms were well dispersed and accumulated on the substrates as single or stacked layers. On the other hand, the oil-coating method allowed Au@Ag nanoprisms to accumulate as multilayers without excessive agglomeration. The multilayers of Au@Ag nanoprisms were subjected to surface-enhanced Raman scattering (SERS), and a very low concentration (2.1 × 10-5 M) of rhodamine 6G molecules was sensitively detected.

  10. Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola).

    PubMed

    Mendes, Luís André; Maria, Vera L; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2015-10-01

    The effects of nanomaterials have been primarily assessed based on standard ecotoxicity guidelines. However, by adapting alternative measures the information gained could be enhanced considerably, e.g., studies should focus on more mechanistic approaches. Here, the environmental risk posed by the presence of silver nanoparticles (Ag NM300K) in soil was investigated, anchoring population and cellular level effects, i.e., survival, reproduction (28 days) and oxidative stress markers (0, 2, 4, 6, 10 days). The standard species Folsomia candida was used. Measured markers included catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (TG), metallothionein (MT) and lipid peroxidation (LPO). Results showed that AgNO₃ was more toxic than AgNPs at the population level: reproduction EC₂₀ and EC₅₀ was ca. 2 and 4 times lower, respectively. At the cellular level Correspondence Analysis showed a clear separation between AgNO₃ and AgNP throughout time. Results showed differences in the mechanisms, indicating a combined effect of released Ag⁺ (MT and GST) and of AgNPs (CAT, GR, TG, LPO). Hence, clear advantages from mechanistic approaches are shown, but also that time is of importance when measuring such responses. PMID:26473892

  11. Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres.

    PubMed

    Li, Cuiping; Li, Xueyuan; Duan, Xuelan; Li, Guangjie; Wang, Jiaqiang

    2014-12-15

    Halloysite nanotube supported Ag nanoparticles heteroarchitectures have been prepared through a very simple electroless plating method. Robust Ag nanocrystals can be reproducibly fabricated by soaking halloysite nanotubes in ethanolic solutions of AgNO3 and butylamine. By simply adjusting the molar ratio of AgNO3 and butylamine, Ag nanoparticles with tunable size and quantity on halloysite nanotube are achieved. It reveals that the Ag nanoparticles are well-dispersed on the surface of halloysite nanotubes. The halloysite nanotube supported Ag nanoparticles heteroarchitectures can serve as active catalysts for the polymerization of an alkylsilane C18H37SiH3 with water to form silanol/siloxane composite microspheres and exhibit interesting superhydrophobicity ascribed to the micro/nanobinary structure. PMID:25268813

  12. Fabrication of uniformly dispersed Ag nanoparticles loaded TiO{sub 2} nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation

    SciTech Connect

    Yi, Junhui; Zhang, Shengsen; Wang, Hongjuan; Yu, Hao; Peng, Feng

    2014-12-15

    Graphical abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method, which exhibited the enhanced photoelectrochemical and photocatalytic performances under visible-light irradiation due to the more effective separation of photo-generated electron–hole pairs and faster interfacial charge transfer. - Highlights: • Highly dispersed Ag nanoparticles (NPs) are successfully prepared by polyol method. • Ag NPs are uniformly loaded on the surface of the TiO{sub 2} nanotube arrays (NTs). • Ag/TiO{sub 2}-NTs exhibit the enhanced photocatalytic activity under visible-light. • The enhanced photocurrent is explained by electrochemical impedance spectroscopy. - Abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method. The as-prepared Ag/TiO{sub 2}-NTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–vis diffusion reflectance spectroscopy. Photoelectrochemical behaviors were investigated via photocurrent response and electrochemical impedance spectroscopy (EIS). Photocatalytic activity of Ag/TiO{sub 2}-NTs was evaluated by degradation of acid orange II under visible light irradiation. The results showed that photocatalytic efficiency of Ag/TiO{sub 2}-NTs is more than 5 times higher than that of pure TiO{sub 2} NTs. Comparing with the electrochemical deposition method, the photocatalytic activity of Ag/TiO{sub 2}-NTs prepared by polyol method has been obviously increased.

  13. Green and Tunable Decoration of Graphene with Spherical Nanoparticles Based on Laser Ablation in Water: A Case of Ag Nanoparticle/Graphene Oxide Sheet Composites.

    PubMed

    He, Hui; Wang, Haibo; Li, Kai; Zhu, Jun; Liu, Jianshuang; Meng, Xiangdong; Shen, Xiaoshuang; Zeng, Xianghua; Cai, Weiping

    2016-02-23

    A simple and green strategy is presented to decorate graphene with nanoparticles, based on laser ablation of targets in graphene auqeous solution. Ag and graphene oxide (GO) are chosen as model materials. The surface of GO sheets is strongly anchored with spherical Ag nanoparticles. The density and size of the Ag nanoparticles can be easily tuned by laser ablation conditions. Further, the GO sheets can be decorated with other nanoparticles from simple metals or semiconductors to multicomponent hybrids. Additionally, the Ag nanoparticle/GO sheet colloids can be utilized as blocks to build three-dimensional structures, such as sandwich membranes by evaporation-induced self-assembly. These graphene-based composite materials could be very useful in catalysis, sensors, and nanodevices. Particularly, the Ag nanoparticle/GO sheet sandwich composite membranes exhibit excellent surface-enhanced Raman scattering performance and possess the huge potential in trace-detecting persistent organic pollutants in the environment. PMID:26840791

  14. Luminescence of fixed site Ag nanoclusters in a simple oxyfluoride glass host and plasmon absorption of amorphous Ag nanoparticles in a complex oxyfluoride glass host

    NASA Astrophysics Data System (ADS)

    Shestakov, Mikhail V.; Meledina, Maria; Turner, Stuart; Baekelant, Wouter; Verellen, Niels; Chen, Xianmei; Hofkens, Johan; Van Tendeloo, Gustaaf; Moshchalkov, Victor V.

    2015-01-01

    Ag nanocluster-doped glasses have been prepared by a conventional melt-quenching method. The effect of melt temperature and dwell time on the formation of Ag nanoclusters and Ag nanoparticles in simple host oxyfluoride glasses has been studied. The increase of melt temperature and dwell time results in the dissolution of Ag nanoparticles and substantial red-shift of absorption and photoluminescence spectra of the prepared glasses. The quantum yield of the glasses is ~ 5% and does not depend on melt temperature and dwell time. The prepared glasses may be used as red phosphors or down-conversion layers for solar-cells.

  15. Si NW network by Ag nanoparticle assisted etching and TiO2/Si NWs as photodetector

    NASA Astrophysics Data System (ADS)

    Bhowmik, Kishan; Mondal, Aniruddha

    2015-03-01

    Glancing angle deposited silver (Ag) nanoparticles (NPs) were employed to fabricate the silicon (Si) nanowire (NW) network on p-type Si substrate. The Si NWs were characterized by X-ray diffraction, which shows the (311) oriented single crystalline nature. The FEG-SEM images show that the nanowire diameters are in the order of 60-180 nm. The photoluminescence emission at 525 nm was recognized from the Si NWs. The Ag-TiO2 contacts exhibit Schottky behavior and higher photoconduction was observed for TiO2-Si NW detector than that of TiO2 Thin film under illumination up to 2.5 V applied potential. A threefold enhanced photodetection for the Silicon nanowire device was observed compared to the TiO2 thin film device, under applied voltages of 0.4-1.5 V. [Figure not available: see fulltext.

  16. Formation of Ag Nanoparticles on β-Ag2WO4 through Electron Beam Irradiation: A Synergetic Computational and Experimental Study.

    PubMed

    Roca, Roman A; Gouveia, Amanda F; Lemos, Pablo S; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-09-01

    In the present work, a combined theoretical and experimental study was performed on the structure, optical properties, and growth of Ag nanoparticles in metastable β-Ag2WO4 microcrystals. This material was synthesized using the precipitation method without the presence of surfactants. The structural behavior was analyzed using X-ray diffraction and Raman and infrared spectroscopy. Field-emission scanning electron microscopy revealed the presence of irregular spherical-like Ag nanoparticles on the β-Ag2WO4 microcrystals, which were induced by electron beam irradiation under high vacuum conditions. A detailed analysis of the optimized β-Ag2WO4 geometry and theoretical results enabled interpretation of both the Raman and infrared spectra and provided deeper insight into rationalizing the observed morphology. In addition, first-principles calculations, within the quantum theory of atoms in molecules framework, provided an in-depth understanding of the nucleation and early evolution of Ag nanoparticles. The Ag nucleation and formation is the result of structural and electronic changes of the [AgO6] and [AgO5] clusters as a constituent building block of β-Ag2WO4, which is consistent with Ag metallic formation. PMID:27533109

  17. Gamma ray irradiated AgFeO{sub 2} nanoparticles with enhanced gas sensor properties

    SciTech Connect

    Wang, Xiuhua; Shi, Zhijie; Yao, Shangwu; Liao, Fan; Ding, Juanjuan; Shao, Mingwang

    2014-11-15

    AgFeO{sub 2} nanoparticles were synthesized via a facile hydrothermal method and irradiated by various doses of gamma ray. The products were characterized with X-ray powder diffraction, UV–vis absorption spectrum and transmission electron microscope. The results revealed that the crystal structure, morphology and size of the samples remained unchanged after irradiation, while the intensity of UV–Vis spectra increased with irradiation dose increasing. In addition, gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including the optimum operating temperature and sensitivity, which might be ascribed to the generation of defects. - Graphical abstract: Gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including sensitivity and optimum operating temperature, which might be ascribed to the generation of defects. - Highlights: • AgFeO{sub 2} nanoparticles were synthesized and irradiated with gamma ray. • AgFeO{sub 2} nanoparticles were employed to fabricate gas sensors to detect ethanol. • Gamma ray irradiation improved the sensitivity and optimum operating temperature.

  18. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    EPA Science Inventory

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  19. Electroless Deposition of Silver Nanoparticles on Graphene Oxide Surface and Its Applications for the Detection of Hydrogen Peroxide

    SciTech Connect

    Zhu, Jun; Kim, KeunSoo; Liu, Zhenxian; Feng, Huan; Hou, Shifeng

    2014-09-29

    We developed a new process to decorate graphene oxide (GO) with silver nanoparticles through electroless deposition technique, which was performed by treating GO with Sn2+ first and then with Ag+. Furthermore, silver nanoparticles-GO (AgNPs-GO) nanocomposites were prepared by this technique. The process was monitored using UV-vis spectroscopy, Raman spectroscopy and transmission electron microscopy (TEM). The electrochemical behaviour of AgNPs-GO modified glassy carbon electrode was investigated by cyclic voltammetry. The potential application of this technique for hydrogen peroxide detection was tested with a range from 10 µM to 20 mM with a detection limit of 0.5 µM.

  20. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach

    SciTech Connect

    Valodkar, Mayur; Modi, Shefaly; Pal, Angshuman; Thakore, Sonal

    2011-03-15

    Research highlights: {yields} Synthesis of novel nanosized copper-silver alloys of different compositions. {yields} Completely green approach for synthesis of water soluble bimetallic nanoparticle. {yields} Interesting anti-bacterial activity of as synthesized metal and alloy nanoparticle. -- Abstract: Metallic and bimetallic nanoparticles of copper and silver in various proportions were prepared by microwave assisted chemical reduction in aqueous medium using the biopolymer, starch as a stabilizing agent. Ascorbic acid was used as the reducing agent. The silver and copper nanoparticles exhibited surface plasmon absorption resonance maxima (SPR) at 416 and 584 nm, respectively; while SPR for the Cu-Ag alloys appeared in between depending on the alloy composition. The SPR maxima for bimetallic nanoparticles changes linearly with increasing copper content in the alloy. Transmission electron micrograph (TEM) showed monodispersed particles in the range of 20 {+-} 5 nm size. Both silver and copper nanoparticles exhibited emission band at 485 and 645 nm, respectively. The starch-stabilized nanoparticles exhibited interesting antibacterial activity with both gram positive and gram negative bacteria at micromolar concentrations.

  1. Co-deposited thin films of YBa 2Cu 3O 7-δ-Ag

    NASA Astrophysics Data System (ADS)

    Moshfegh, A. Z.; Wang, Y. Q.; Sun, Y. Y.; Mesarwi, A.; Hor, P. H.; Ignatiev, A.

    1993-12-01

    The fabrication of high-temperature superconducting YBa 2Cu 3O 7-δ-Ag thin films has been investigated using a high-pressure Ag coevaporation-DC sputtering technique. Various analytical techniques including X-ray diffraction (XRD), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), electron probe microanalysis (EPMA), energy dispersive X-ray analysis (EDX), and Tc measurement have been utilized for characterization of the films. Highly reproducible c-oriented (00 l) films have been prepared in-situ at a relatively low growth temperature (≃670°C) by this technique. The transition temperatures Tc gradually decreased with added Ag from 90 K (0 at.% Ag) to 72 K (22.3 at.% Ag) for the films deposited on MgO (100) substrates. X-ray diffraction indicated that the Ag is in the metallic state as a separate phase with respect to the YBCO and that the c-lattice parameter of the grown films remained unchanged with Ag addition. Surface morphology of the YBCO-Ag films exhibited a particulate-type structure with the grain size increasing as the Ag content increased. The temperature coefficient of the normalized resistance, d R( T)/ R(280 K)/d T, was also noticed to decrease for the Ag- containing samples as compared to Ag-free YBCO films. AES depth profiling identified Ag residing mainly at the YBCO/MgO interface. The effect of Ag addition to the films has been described by a particle growth model.

  2. [Effect of Eu ions on the Ag nanoparticles precipitation and their optical properties in borate glasses].

    PubMed

    Liu, Zhi-liang; Jiao, Qing; Qiu, Jian-bei

    2014-08-01

    Eu-Ag co-doped borate glasses were prepared by the high temperature solid method in the present work. Absorption and emission spectra were employed to investigate the precipitation of Ag nanoparticles, which is influenced by the network form B2O3 and the co-doped Eu ions. It was found in the absorption spectra of Eu-Ag co-doped sample that a broad band centered at about 410 nm emerged and their intensity decreased with the increase in the BZ 03 concentration. Meanwhile, under the excitation of 340 nm, a broad emission band was observed in the wavelength range of 350-600 nm, which belongs to the blue-green light of Ag aggregates. The intensity of the Ag aggregates presented an increasing tendency with the increase in the B2O3 contents. The weak characteristic emission of Ag aggregates and Eu3+ was observed respectively in their singly doped samples. It is concluded that both their emissions get significant enhancement when Eu ions and Ag ions are used for co-doping the sample. In addition, the increased absorption of Ag nanoparticles was detected with the increase in the Eu ions concentration. Herein, the mechanism behind Eu3+ contribution to the precipitation of Ag nanoparticles is discussed in detail. The luminescence properties of borate glasses can be controlled by the microstructure of the borate glasses. Therefore, the white emission can be realized by the adjustment of glass structure and Eu ions concentration, owing to the red light from Eu3+ : (5)D0-->(7)Fj electronic transition and the blue-green light form the broad emission of Ag aggregates. The borate glasses are expected to be the candidates for the light-emission diode (LED) luminescent materials. PMID:25508714

  3. [Effect of Eu ions on the Ag nanoparticles precipitation and their optical properties in borate glasses].

    PubMed

    Liu, Zhi-liang; Jiao, Qing; Qiu, Jian-bei

    2014-08-01

    Eu-Ag co-doped borate glasses were prepared by the high temperature solid method in the present work. Absorption and emission spectra were employed to investigate the precipitation of Ag nanoparticles, which is influenced by the network form B2O3 and the co-doped Eu ions. It was found in the absorption spectra of Eu-Ag co-doped sample that a broad band centered at about 410 nm emerged and their intensity decreased with the increase in the BZ 03 concentration. Meanwhile, under the excitation of 340 nm, a broad emission band was observed in the wavelength range of 350-600 nm, which belongs to the blue-green light of Ag aggregates. The intensity of the Ag aggregates presented an increasing tendency with the increase in the B2O3 contents. The weak characteristic emission of Ag aggregates and Eu3+ was observed respectively in their singly doped samples. It is concluded that both their emissions get significant enhancement when Eu ions and Ag ions are used for co-doping the sample. In addition, the increased absorption of Ag nanoparticles was detected with the increase in the Eu ions concentration. Herein, the mechanism behind Eu3+ contribution to the precipitation of Ag nanoparticles is discussed in detail. The luminescence properties of borate glasses can be controlled by the microstructure of the borate glasses. Therefore, the white emission can be realized by the adjustment of glass structure and Eu ions concentration, owing to the red light from Eu3+ : (5)D0-->(7)Fj electronic transition and the blue-green light form the broad emission of Ag aggregates. The borate glasses are expected to be the candidates for the light-emission diode (LED) luminescent materials. PMID:25474935

  4. Size and alloying induced shift in core and valence bands of Pd-Ag and Pd-Cu nanoparticles

    SciTech Connect

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2014-03-28

    In this report, X-ray photoelectron spectroscopy studies have been carried out on Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles having identical sizes corresponding to mobility equivalent diameters of 60, 40, and 20 nm. The nanoparticles were prepared by the gas phase synthesis method. The effect of size on valence and core levels in metal and alloy nanoparticles has been studied by comparing the values to those with the 60 nm nanoparticles. The effect of alloying has been investigated by comparing the valence and core level binding energies of Pd-Cu and Pd-Ag alloy nanoparticles with the corresponding values for Pd, Ag, and Cu nanoparticles of identical sizes. These effects have been explained in terms of size induced lattice contractions, alloying induced charge transfer, and hybridization effects. The observation of alloying and size induced binding energy shifts in bimetallic nanoparticles is important from the point of view of hydrogen reactivity.

  5. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A.

    2013-07-01

    Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur-Ag-SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV-visible diffuse reflectance spectra (UV-vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag-SnO2 and Cur-Ag-SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur-Ag-SnO2 shows better photocatalytic activity than that of Ag-SnO2 and SnO2. The superior photocatalytic activity of Cur-Ag-SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur-Ag-SnO2 were tested.

  6. The disinfection performance and mechanisms of Ag/lysozyme nanoparticles supported with montmorillonite clay.

    PubMed

    Jiang, Jing; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Chang, Ying-Na; Song, Biao; Deng, Can-Hui; Liu, Hong-Yu

    2016-11-01

    The fabrication of montmorillonite (Mt) decorated with lysozyme-modified silver nanoparticles (Ag/lyz-Mt) was reported. The lysozyme (lyz) was served as both reducing and capping reagent. Coupling the bactericidal activity of the lyz with AgNPs, along with the high porous structure and large specific surface area of the Mt, prevented aggregation of AgNPs and promoted nanomaterial-bacteria interactions, resulting in a greatly enhanced bactericidal capability against both Gram positive and Gram negative bacteria. This paper systematically elucidated the bactericidal mechanisms of Ag/lyz-Mt. Direct contact between the Ag/lyz-Mt surface and the bacterial cell was essential to the disinfection. Physical disruption of bacterial membrane was considered to be one of the bactericidal mechanisms of Ag/lyz-Mt. Results revealed that Ag(+) was involved in the bactericidal activity of Ag/lyz-Mt via tests conducted using Ag(+) scavengers. A positive ROS (reactive oxygen species) scavenging test indirectly confirmed the involvement of ROS (O2(-), H2O2, and OH) in the bactericidal mechanism. Furthermore, the concentrations of individual ROS were quantified. Results showed that Ag/lyz-Mt nanomaterial could be a promising bactericide for water disinfection. PMID:27318738

  7. Sequential laser and ultrasonic wave generation of TiO2@Ag core-shell nanoparticles and their anti-bacterial properties.

    PubMed

    Hamad, Abubaker Hassan; Li, Lin; Liu, Zhu; Zhong, Xiang Li; Wang, Tao

    2016-02-01

    Core-shell nanoparticles have unusual physical, chemical and biological properties. Until now, for the Ag and TiO2 combination, only Ag core and TiO2 shell nanoparticles have been practically demonstrated. In this investigation, novel TiO2@Ag core-shell (TiO2 core and Ag shell) nanoparticles were produced via ultrasonic vibration of Ag-TiO2 compound nanoparticles. A bulk Ti/Ag alloy plate was used to generate colloidal Ag-TiO2 compound nanoparticles via picosecond laser ablation in deionised water. The colloidal nanoparticles were then sonicated in an ultrasonic bath to generate TiO2@Ag core-shell nanoparticles. They were characterised using a UV-VIS spectrometer, transmission electron microscopy (TEM), high-angle annular dark-field-Scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The Ag-TiO2 compound and the TiO2@Ag core-shell nanoparticles were examined for their antibacterial activity against Escherichia coli (E. coli) JM109 strain bacteria and compared with those of Ag and TiO2 nanoparticles. The antibacterial activity of the core-shell nanoparticles was slightly better than that of the compound nanoparticles at the same concentration under standard laboratory light conditions and both were better than the TiO2 nanoparticles but not as good as the Ag nanoparticles. PMID:26714980

  8. Plasmonic effect of spray-deposited Au nanoparticles on the performance of inverted organic solar cells.

    PubMed

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2014-09-21

    Gold nanoparticles with varying sizes were prepared by the spray process under an electric field (DC voltages of 0 V and 1 kV applied to the nozzle) for studying their role in inverted organic solar cells (ITO/Au/ZnO/P3HT:PCBM/Ag). The application of electric field during the spray process resulted in a smaller size (35 nm as compared to 70 nm without the electric field) of the nanoparticles with more uniform distribution. This gave rise to a difference in the surface plasmon resonance (SPR) effect created by the gold nanoparticles (Au NPs), which then affected the solar cell performance. The photovoltaic performances of plasmonic inverted organic solar cells (ITO/Au/ZnO/P3HT:PCBM/Ag) using spray-deposited Au and ZnO layers (both at 1 kV) showed improved efficiency. Fast exciton quenching in the P3HT:PCBM layer was achieved by using a spray-deposited Au layer in between ITO and ZnO layers. The absorption spectra and internal power conversion efficiency (IPCE) curve showed that the Au nanoparticles provide significant plasmonic broadband light absorption enhancement which resulted in the enhancement of the JSC value. Maximum efficiency of 3.6% was achieved for the inverted organic solar cell (IOSC) with an exceptionally high short circuit current density of ∼15 mA cm(-2) which is due to the additional photon absorption and the corresponding increase observed in the IPCE spectrum. The spray technique can be easily applied for the direct formation of Au nanoparticles in the fabrication of IOSC with improved performance over a large area. PMID:25100621

  9. Preparation and catalytic ability to reduce hydrogen peroxide of Ag nanoparticles highly dispersed via hyperbranched copolymer

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Yang, Weiying; Yang, Jie; He, Linghao; Sun, Jing; Song, Rui; Ma, Zhi; Huang, Wei

    2011-03-01

    Highly dispersed Ag nanoparticles, stabilized by hyperbranched copolymers (HPCs), were prepared by chemical reduction in toluene. These Ag NPs were used further for the fabrication of a hydrogen peroxide (H2O2) sensor, by which a good catalytic ability for the reduction of H2O2 was found.Highly dispersed Ag nanoparticles, stabilized by hyperbranched copolymers (HPCs), were prepared by chemical reduction in toluene. These Ag NPs were used further for the fabrication of a hydrogen peroxide (H2O2) sensor, by which a good catalytic ability for the reduction of H2O2 was found. Electronic supplementary information (ESI) available: Structure and structure parameters of the HPCs, and UV-vis and XPS spectra of the NPs . See DOI: 10.1039/c0nr00567c

  10. Prediction of size distribution of Ag nanoparticles synthesized via gamma-ray radiolysis

    NASA Astrophysics Data System (ADS)

    Liang, Jia-liang; Shen, Sheng-wen; Ye, Sheng-ying; Ye, Lü-meng

    2015-09-01

    The spherical shape Ag nanoparticles synthesized via gamma-ray radiolysis were observed with the transmission electron microscope (TEM). Diameters of Ag nanoparticles were measured from the TEM photographs. Statistical analysis showed that the particle diameter complied with a linear-converted Poisson distribution. The distribution parameter, which was the average of diameters, was related to the ultraviolet-visible spectrum peak position of the nanosilver collosol. An empirical equation was established to predicting size distribution of Ag nanoparticles with the peak position. Nanosilver of different sizes could be synthesized by adjusting the intensity of γ-irradiation, the kind and the addition amount of the stabilizing agent. Because particle size affects the physiochemical properties of nanosilver material, results of this paper would be of practical significance for the application of nanosilver.

  11. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity

    PubMed Central

    Prasad, TNVKV; Elumalai, EK

    2011-01-01

    Objective To formulate a simple rapid procedure for bioreduction of silver nanoparticles using aqueous leaves extract of Moringa oleifera (M. oleifera). Methods 10 mL of leaf extract was mixed to 90 mL of 1 mM aqueous of AgNO3 and was heated at 60 - 80 °C for 20 min. A change from brown to reddish color was observed. Characterization using UV-Vis spectrophotometry, Transmission Electron Microscopy (TEM) was performed. Results TEM showed the formation of silver nanoparticles with an average size of 57 nm. Conclusions M. oleifera demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). Biological methods are good competents for the chemical procedures, which are eco-friendly and convenient. PMID:23569809

  12. Beet juice utilization: Expeditious green synthesis of nobel metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves

    EPA Science Inventory

    Metal nanoparticles of Ag, Au, Pt, and Pd were prepared in aqueous solutions via a rapid microwave-assisted green method using beet juice, an abundant sugar-rich agricultural produce, served as both a reducing and a capping reagent. The Ag nanoparticles with capping prepared by b...

  13. The characteristics of novel bimodal Ag-TiO2 nanoparticles generated by hybrid laser-ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Hamad, Abubaker; Li, Lin; Liu, Zhu; Zhong, Xiang Li; Burke, Grace; Wang, Tao

    2016-04-01

    Silver-titania (Ag-TiO2) nanoparticles with smaller Ag nanoparticles attached to larger TiO2 nanoparticles were generated by hybrid ultrasonic vibration and picosecond laser ablation of Ag and Ti bulk targets in deionised water, for the first time. The laser has a wavelength of 1064 nm and a pulse duration of 10 ps. It was observed that without the ultrasonic vibration, Ag and TiO2 nanoparticles did not combine, thus the role of ultrasonic vibration is essential. In addition, colloidal TiO2 and Ag nanoparticles were generated separately for comparison under the same laser beam characteristics and process conditions. The absorption spectra of colloidal Ag-TiO2 cluster nanoparticles were examined by UV-Vis spectroscopy, and size distribution was characterised using transmission electron microscopy. The morphology and composition of Ag-TiO2 nanoparticles were examined using scanning transmission electron microscopy in high-angle annular dark field, and energy-dispersive X-ray spectroscopy. The crystalline structures were investigated by X-ray diffraction. The size of larger TiO2 particles was in the range 30-150 nm, and the smaller-sized Ag nanoparticles attached to the TiO2 was mainly in the range of 10-15 nm. The yield is more than 50 % with the remaining nanoparticles in the form of uncombined Ag and TiO2. The nanoparticles generated had strong antibacterial effects as tested against E. coli. A discussion is given on the role of ultrasonic vibration in the formation of Ag-TiO2 hybrid nanoparticles by picosecond laser ablation.

  14. Studies on interaction of colloidal Ag nanoparticles with Bovine Serum Albumin (BSA).

    PubMed

    Ravindran, Aswathy; Singh, Anupam; Raichur, Ashok M; Chandrasekaran, N; Mukherjee, Amitava

    2010-03-01

    Biofunctionalization of noble metal nanoparticles like Ag, Au is essential to obtain biocompatibility for specific biomedical applications. Silver nanoparticles are being increasingly used in bio-sensing applications owing to excellent optoelectronic properties. Among the serum albumins, the most abundant proteins in plasma, a wide range of physiological functions of Bovine Serum Albumin (BSA) has made it a model system for biofunctionalization. In absence of adequate prior reports, this study aims to investigate the interaction between silver nanoparticles and BSA. The interaction of BSA [0.05-0.85% concentrations] with Ag nanoparticles [50ppm concentration] in aqueous dispersion was studied through UV-vis spectral changes, morphological and surface structural changes. At pH 7, which is more than the isoelectric point of BSA, a decrease in absorbance at plasmon peak of uninteracted nanoparticles (425nm) was noted till 0.45% BSA, beyond that a blue shift towards 410nm was observed. The blue shift may be attributed to enhanced electron density on the particle surfaces. Increasing pH to 12 enhanced the blue shift further to 400nm. The conformational changes in BSA at alkaline pH ranges and consequent hydrophobic interactions also played an important role. The equilibrium adsorption data fitted better to Freundlich isotherm compared to Langmuir curve. The X-ray diffraction study revealed complete coverage of Ag nanoparticles by BSA. The scanning electron microscopic study of the interacted nanoparticles was also carried out to decipher morphological changes. This study established that tailoring the concentration of BSA and pH of the interaction it was possible to reduce aggregation of nanoparticles. Biofunctionalized Ag nanoparticles with reduced aggregation will be more amenable towards bio-sensing applications. PMID:19896812

  15. Surface modification of oleylamine-capped Ag-Cu nanoparticles to fabricate low-temperature-sinterable Ag-Cu nanoink.

    PubMed

    Kim, Na Rae; Lee, Yung Jong; Lee, Changsoo; Koo, Jahyun; Lee, Hyuck Mo

    2016-08-26

    By treating oleylamine (OA)-capped Ag-Cu nanoparticles with tetramethylammonium hydroxide (TMAH), we obtained metal nanoparticles that are suspended in polar solvents and sinterable at low temperatures. The simple process with ultra sonication enables synthesis of monodispersed and high purity nanoparticles in an organic base, where the resulting nanoparticles are dispersible in polar solvents such as ethanol and isopropyl alcohol. To investigate the surface characteristics, we conducted Fourier-transform infrared and zeta-potential analyses. After thermal sintering at 200 °C, which is approximately 150 °C lower than the thermal decomposition temperature of OA, an electrically conductive thin film was obtained. Electrical resistivity measurements of the TMAH-treated ink demonstrate that surface modified nanoparticles have a low resistivity of 13.7 × 10(-6) Ω cm. These results confirm the prospects of using low-temperature sinterable nanoparticles as the electrode layer for flexible printed electronics without damaging other stacked polymer layers. PMID:27454465

  16. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: green chemistry approach.

    PubMed

    Tamuly, Chandan; Hazarika, Moushumi; Borah, Sarat Ch; Das, Manash R; Boruah, Manas P

    2013-02-01

    The synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Piper pedicellatum C.DC leaf extract is demonstrated here. The rapid formation of stable Ag and Au nanoparticles has been found using P. pedicellatum C.DC leaf extract in aqueous medium at normal atmospheric condition. Competitive reduction of Ag(+) and Au(3+) ions present simultaneously in solution during exposure to P. pedicellatum C.DC leaf extract leads to the synthesis of bimetallic Ag-Au nanoparticles in solution. Transmission electron microscopy (TEM) analysis revealed that the Ag nanoparticles predominantly form spherical in shape with the size range of 2.0±0.5-30.0±1.2 nm. In case of Au nanoparticles, the particles are spherical in shape along with few triangular, hexagonal and pentagonal shaped nanoparticles also observed. X-ray diffraction (XRD) studies revealed that the nanoparticles were face centered cubic (fcc) in shape. Fourier transform infrared spectroscopy (FTIR) showed nanoparticles were capped with plant compounds. The chemical constituents, viz. catechin, gallic acid, courmaric acid and protocatechuic acid of the leaf extract were identified which may act as a reducing, stabilizing and capping agent. The expected reaction mechanism in the formation of Ag and Au nanoparticles is also reported. PMID:23107941

  17. Photoluminescence of Ag-doped ZnSe nanowires synthesized by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X. T.; Ip, K. M.; Li, Quan; Hark, S. K.

    2005-05-01

    Photoluminescence of Ag-doped ZnSe nanowires synthesized by metalorganic chemical vapor deposition is investigated in the temperature range from 10to300K. Ag impurities were introduced into the ZnSe nanowires during the growing process. Some dominating Ag-related centers are found. Especially, the strong zero-phonon bound exciton luminescence with energy near 2.747eV is attributed to a neutral AgZn acceptor complex. This is because the emission peak at the same energy is observed only in the photoluminescence spectrum of the Ag-doped bulk ZnSe. A new luminescence peak at 2.842eV is attributed to the recombination of excitons bound to ionized acceptors (I2h) in the hexagonal phase of ZnSe nanowires. The physical origins of the emissions are briefly discussed.

  18. Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena).

    PubMed

    Cruz, Diana; Falé, Pedro L; Mourato, Ana; Vaz, Pedro D; Serralheiro, M Luisa; Lino, Ana Rosa L

    2010-11-01

    The purpose of this study was to develop a simple biological method for the synthesis of Ag nanoparticles (AgNPs) using Lippia citriodora leaves aqueous extract as reducing agent. Transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), and visible absorption spectroscopy (UV-vis) confirmed the reduction of silver ions to AgNPs. Stable, spherical crystalline AgNPs with well defined dimensions (average size of 15-30 nm) were obtained, on treating aqueous silver nitrate with the plant leaf aqueous extract. The kinetic of particles formation was proportional to the effect of reducing agent concentration and was enhanced by the increase of temperature from 25 degrees C to 95 degrees C. Time, temperature and extract concentration did not influence significantly the shape and size of nanoparticles. In order to identify the compounds responsible for the bioreduction of silver ions and stabilization of the AgNPs formed, we investigated the constituents of L. citriodora aqueous extract by high performance liquid chromatography (HPLC) and mass spectrometry (MS). The main compounds found were verbascoside, isoverbascoside, chrysoeriol-7-O-diglucoronide and luteonin-7-O-diglucoronide. The data obtained suggests that the isoverbascoside compound is responsible for Ag(+) ions reduction and act as capping agents of the nanoparticles afterwards. PMID:20655710

  19. Thermal degradation mechanism of triangular Ag@SiO2 nanoparticles.

    PubMed

    Gangishetty, Mahesh K; Scott, Robert W J; Kelly, Timothy L

    2016-06-14

    Triangular silver nanoparticles are promising materials for light harvesting applications because of their strong plasmon bands; these absorption bands are highly tunable, and can be varied over the entire visible range based on the particle size. A general concern with these materials is that they are unstable at elevated temperatures. When thermally annealed, they suffer from changes to the particle morphology, which in turn affects their optical properties. Because of this stability issue, these materials cannot be used in applications requiring elevated temperatures. In order to address this problem, it is important to first understand the degradation mechanism. Here, we measure the changes in particle morphology, oxidation state, and coordination environment of Ag@SiO2 nanotriangles caused by thermal annealing. UV-vis spectroscopy and TEM reveal that upon annealing the Ag@SiO2 nanotriangles in air, the triangular cores are truncated and smaller nanoparticles are formed. Ag K-edge X-ray absorption spectroscopy (XANES and EXAFS) shows that the small particles consist of Ag(0), and that there is a decrease in the Ag-Ag coordination number with an increase in the annealing temperature. We hypothesize that upon annealing Ag in air, it is first oxidized to AgxO, after which it subsequently decomposes back to well-dispersed Ag(0) nanoparticles. In contrast, when the Ag@SiO2 nanotriangles are annealed in N2, since there is no possibility of oxidation, no small particles are formed. Instead, the triangular core rearranges to form a disc-like shape. PMID:26875498

  20. Novel method for the preparation of core-shell nanoparticles with movable Ag core and polystyrene loop shell

    SciTech Connect

    Liu Weijun; Zhang Zhicheng . E-mail: lwj3600@ustc.edu; He Weidong; Zheng Cheng; Ge Xuewu; Li, Jian; Liu Huarong; Jiang Hao

    2006-04-15

    Core/shell nanoparticles with movable silver (Ag) core and polystyrene (PSt) shell (Ag at PSt nanoparticle) were successfully synthesized at room temperature and under ambient pressure via two steps: {gamma}-irradiation and interfacial-initiated polymerization. Firstly, mono-dispersed Ag nanoparticles with diameters 20 nm were synthesized in inversed microemulsion by reducing silver nitrate under {gamma}-irradiation. Then, Ag nanoparticles were coated with PSt via interfacial-initiated polymerization with cumene hydroperoxide/ferrous sulfate/disodium ethylenediaminetetraacetate/sodium formaldehyde sulfoxylate (CHPO-Fe {sup 2+}-EDTA-SFS) as the redox initiation pair. The resulted Ag at PSt nanoparticles were identified by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS)

  1. Impact of ZnO and Ag Nanoparticles on Bacterial Growth and Viability

    NASA Astrophysics Data System (ADS)

    Olson, M. S.; Digiovanni, K. A.

    2007-12-01

    Hundreds of consumer products containing nanomaterials are currently available in the U.S., including computers, clothing, cosmetics, sports equipment, medical devices and product packaging. Metallic nanoparticles can be embedded in or coated on product surfaces to provide antimicrobial, deodorizing, and stain- resistant properties. Although these products have the potential to provide significant benefit to the user, the impact of these products on the environment remains largely unknown. The purpose of this project is to study the effect of metallic nanoparticles released to the environment on bacterial growth and viability. Inhibition of bacterial growth was tested by adding doses of suspended ZnO and Ag nanoparticles into luria broth prior to inoculation of Escherichia coli cells. ZnO particles (approximately 40 nm) were obtained commercially and Ag particles (12-14 nm) were fabricated by reduction of silver nitrate with sodium borohydride. Toxicity assays were performed to test the viability of E. coli cells exposed to both ZnO and Ag nanoparticles using the LIVE/DEAD BacLight bacterial viability kit (Invitrogen). Live cells stain green whereas cells with compromised membranes that are considered dead or dying stain red. Cells were first grown, stained, and exposed to varying doses of metallic nanoparticles, and then bacterial viability was measured hourly using fluorescence microscopy. Results indicate that both ZnO and Ag nanoparticles inhibit the growth of E. coli in liquid media. Preliminary results from toxicity assays confirm the toxic effect of ZnO and Ag nanoparticles on active cell cultures. Calculated death rates resulting from analyses of toxicity studies will be presented.

  2. Monodispersed bimetallic PdAg nanoparticles with twinned structures: formation and enhancement for the methanol oxidation.

    PubMed

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd₈₀Ag₂₀, Pd₆₅Ag₃₅ and Pd₄₆Ag₅₄ can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd₈₀Ag₂₀ nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system. PMID:24608736

  3. Large-scale fabrication of polymer/Ag core-shell nanorod array as flexible SERS substrate by combining direct nanoimprint and electroless deposition

    NASA Astrophysics Data System (ADS)

    Liu, Sisi; Xu, Zhimou; Sun, Tangyou; Zhao, Wenning; Wu, Xinghui; Ma, Zhichao; Xu, Haifeng; He, Jian; Chen, Cunhua

    2014-06-01

    We demonstrate a highly sensitive surface-enhanced Raman scattering (SERS) substrate, which consists of Ag nanoparticles (NPs) assembled on the surface of a nanopatterned polymer film. The fabrication route of a polymer/Ag core-shell nanorod (PACSN) array employed a direct nanoimprint technique to create a high-resolution polymer nanorod array. The obtained nanopatterned polymer film was subjected to electroless deposition to form a sea-cucumber-like Ag shell over the surface of the polymer nanorod. The morphology and structures of PACSNs were analyzed by using scanning electron microscopy and X-ray diffraction. The as-synthesized PACSNs exhibited a remarkable SERS activity and Raman signal reproducibility to rhodamine 6G, and a concentration down to 10-12 M can be identified. The effect of electroless deposition time of Ag NPs onto the polymer nanorod surface was investigated. It was found that the electroless deposition time played an important role in SERS activity. Our results revealed that the combination of direct nanoimprint and electroless deposition provided a convenient and cost-effective way for large-scale fabrication of reliable SERS substrates without the requirement of expensive instruments.

  4. Instantly AgNPs deposition through facile solventless technique for poly-functional cotton fabrics.

    PubMed

    Emam, Hossam E; Saleh, N H; Nagy, Khaled S; Zahran, M K

    2016-03-01

    Nowadays, functional clothes are employed for human body protection in addition to be fashionable clothes. Hence functionalization of clothes increases the attention of scientists and business. In the current study, poly-functional cotton fabric was carried out by instantly deposition of AgNPs using two solventless techniques namely; sorption and padding. Sorption technique was exhibited extremely high efficiency than padding one by ca. 10 times. By using the same concentrations of AgNO3, Ag content was ranged 69.3-6094.8 mg/kg and 33.8-609.3 mg/kg for sorption and padding, respectively. After AgNPs deposition, fabrics color was turned to gray-reddish yellow. By applying 5912.3 mgAg/kg fabric, bacterial reduction and UPF value were reached 99% and 12.59. Bacterial reduction and UPF were lessened to 90% and 10.19 after 20 washings. These findings proved that the direct AgNPs deposition into cotton using solventless/sorption technique is applicable in manufacturing of antibacterial/UV resistant fabrics with acquired decorative color. PMID:26708429

  5. Low-temperature ferromagnetic properties in Co-doped Ag{sub 2}Se nanoparticles

    SciTech Connect

    Yang, Fengxia E-mail: xia9020@hust.edu.cn; Yu, Gen; Han, Chong; Liu, Tingting; Zhang, Duanming; Xia, Zhengcai E-mail: xia9020@hust.edu.cn

    2014-01-06

    β-Ag{sub 2}Se is a topologically nontrivial insulator. The magnetic properties of Co-doped Ag{sub 2}Se nanoparticles with Co concentrations up to 40% were investigated. The cusp of zero-field-cooling magnetization curves and the low-temperature hysteresis loops were observed. With increasing concentration of Co{sup 2+} ions mainly substituting Ag{sub I} sites in the Ag{sub 2}Se structure, the resistivity, Curie temperature T{sub c}, and magnetization increased. At 10 T, a sharp drop of resistance near T{sub c} was detected due to Co dopants. The ferromagnetic behavior in Co-doped Ag{sub 2}Se might result from the intra-layer ferromagnetic coupling and surface spin. This magnetic semiconductor is a promising candidate in electronics and spintronics.

  6. The enhanced SERS effect of Ag/ZnO nanoparticles through surface hydrophobic modification

    NASA Astrophysics Data System (ADS)

    Li, Zhenjiang; Zhu, Kaixing; Zhao, Qian; Meng, Alan

    2016-07-01

    Ag/ZnO nanocomposites modified by a mixture of stearic acid (SA) and polyvinylpyrrolidone (PVP) were obtained using a heating reflux method. Fourier transform infrared spectroscopy (FT-IR) suggests that organic SA/PVP was bonded onto the surface of Ag/ZnO nanocrystals, converting the wettability property of the nanostructures from hydrophilic to hydrophobic. The modified Ag/ZnO nanostructures were confirmed as effective Raman substrates, with a 3-fold signal enhancement compared to the ordinary hydrophilic Ag/ZnO substrate for detecting Rh B molecules due to the hydrophobic condensation effect. It is expected that the modified Ag/ZnO nanoparticles have potential for SERS-based rapid detection of molecules.

  7. The role of Ag nanoparticles in inverted polymer solar cells: Surface plasmon resonance and backscattering centers

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Shen, Liang; Meng, Fanxu; Zhang, Jiaqi; Xie, Wenfa; Yu, Wenjuan; Guo, Wenbin; Jia, Xu; Ruan, Shengping

    2013-03-01

    Here, we demonstrate silver (Ag) nanoparticles (NPs) existing in molybdenum trioxide (MoO3) buffer layers can improve the photocurrent by surface plasmon resonance (SPR) and backscattering enhancement. The device structure is glass/indium tin oxides/titanium dioxide (TiO2)/regioregular poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester/MoO3/Ag NPs/MoO3/Ag. Compared to the device without Ag NPs, the short current density (Jsc) is improved from 7.76 ± 0.14 mA/cm2 to 8.89 ± 0.12 mA/cm2, and the power conversion efficiency is also enhanced from 2.70% ± 0.11% to 3.35% ± 0.08%. The transmittance spectra show that the device with Ag NPs has weaker transmittance than the device without, which could be attributed to the photons absorption of Ag NPs and light scattering by Ag NPs. The absorption profile of the devices with or without Ag NPs is simulated using finite-difference time-domain methods. It is approved that the Ag NPs result in the absorption improvement by SPR and backscattering enhancement.

  8. Mildly reduced graphene oxide-Ag nanoparticle hybrid films for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Li, Xiaocheng; Tay, Beng Kang; Li, Junshuai; Tan, Dunlin; Tan, Chong Wei; Liang, Kun

    2012-04-01

    Large-area mildly reduced graphene oxide (MR-GO) monolayer films were self-assembled on SiO2/Si surfaces via an amidation reaction strategy. With the MR-GO as templates, MR-GO-Ag nanoparticle (MR-GO-Ag NP) hybrid films were synthesized by immersing the MR-GO monolayer into a silver salt solution with sodium citrate as a reducing agent under UV illumination. SEM image indicated that Ag NPs with small interparticle gap are uniformly distributed on the MR-GO monolayer. Raman spectra demonstrated that the MR-GO monolayer beneath the Ag NPs can effectively quench the fluorescence signal emitted from the Ag films and dye molecules under laser excitation, resulting in a chemical enhancement (CM). The Ag NPs with narrow gap provided numerous hot spots, which are closely related with electromagnetic mechanism (EM), and were believed to remarkably enhance the Raman signal of the molecules. Due to the co-contribution of the CM and EM effects as well as the coordination mechanism between the MR-GO and Ag NPs, the MR-GO-Ag NP hybrid films showed more excellent Raman signal enhancement performance than that of either Ag films or MR-GO monolayer alone. This will further enrich the application of surface-enhanced Raman scattering in molecule detection.

  9. Green synthesis of halloysite nanotubes supported Ag nanoparticles for photocatalytic decomposition of methylene blue

    NASA Astrophysics Data System (ADS)

    Zou, MeiLing; Du, MingLiang; Zhu, Han; Xu, CongSheng; Fu, YaQin

    2012-08-01

    Using tea polyphenols (TPs) as a reductant, Ag nanoparticles (AgNPs) supported on halloysite nanotubes (HNTs) were simply and greenly synthesized for the photocatalytic decomposition of methylene blue (MB). HNTs were initially functionalized by N-β-aminoethyl-γ-aminopropyl trimethoxysilane (AEAPTMS) to introduce amino groups to form N-HNTs to fasten the AgNPs; then AgNPs were synthesized and ‘anchored’ on the surface of the HNTs. Fourier transform infrared spectroscopy was employed to testify the amino groups on the surface of the HNTs. Transmission electron microscopy, field-emission scanning electron microscopy and x-ray diffraction were utilized to characterize the structure and morphology of the synthesized HNTs supported by the AgNPs (AgNPs@N-HNTs). The results showed that the AgNPs had been synthesized and ‘anchored’ onto the surface of the HNTs with a diameter of about 20-30 nm. X-ray photoelectron spectroscopy analysis revealed the chelating interaction between the AgNPs and N atoms together with the TP molecular. The photocatalytic activity of the as-prepared AgNPs@N-HNTs catalyst was evaluated by decomposition of MB; the results showed that the prepared catalyst exhibited excellent catalytic activity and high adsorption capability to MB.

  10. Ag/Pd core-shell nanoparticles by a successive method: Pulsed laser ablation of Ag in water and reduction reaction of PdCl2

    NASA Astrophysics Data System (ADS)

    Mottaghi, N.; Ranjbar, M.; Farrokhpour, H.; Khoshouei, M.; Khoshouei, A.; Kameli, P.; Salamati, H.; Tabrizchi, M.; Jalilian-Nosrati, M.

    2014-02-01

    In this study Ag/Pd nanoparticles (NPs) have been fabricated by a successive method; first, colloids of Ag nanoparticles (NPs) have been prepared in water by pulsed laser ablation in liquid (PLAL) method. Then PdCl2 solution (up to 0.2 g/l) were added to the as-prepared or aged colloidal Ag NPs. Characterizations were done using UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmissions electron microscopy (TEM) techniques. Spectroscopy data showed that surface plasmon resonance (SPR) peaks of as-prepared Ag NPs at about λ = 400 nm were completely extinguished after addition of PdCl2 solution while this effect was not observed when aged Ag NPs are used. XRD and XPS results revealed that by addition of the PdCl2 solution into the as-prepared Ag NPs, metallic palladium, and silver chloride composition products are generated. TEM images revealed that as a result of this reaction, single and core-shell nanoparticles are obtained and their average sizes are 2.4 nm (Ag) and 3.2 nm (Ag/Pd). The calculated d-spacing values form XRD data with observations on high magnification TEM images were able to explain the chemical nature of different parts of Ag/Pd NPs.

  11. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF. PMID:26035249

  12. Depositing Adherent Ag Films On Ti Films On Alumina

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.

    1995-01-01

    Report discusses cleaning of ceramic (principally, alumina) substrates in preparation for sputter deposition of titanium intermediate films on substrates followed by sputter deposition of outer silver films. Principal intended application, substrates sliding parts in advanced high-temperature heat engines, and outer silver films serve as solid lubricants: lubricating properties described in "Solid Lubricant for Alumina" (LEW-15495).

  13. Nanoparticle-Assisted Diffusion Brazing of Metal Microchannel Arrays: Nanoparticle Synthesis, Deposition, and Characterization

    NASA Astrophysics Data System (ADS)

    Eluri, Ravindranadh T.

    Microchannel process technology (MPT) offers several advantages to the field of nanomanufacturing: 1) improved process control over very short time intervals owing to shorter diffusional distances; and 2) reduced reactor size due to high surface area to volume ratios and enhanced heat and mass transfer. The objective of this thesis was to consider how nanomaterials, produced in part using MPT, could be used to solve problems associated with the fabrication of MPT devices. Specifically, many MPT devices are produced using transient liquid-phase brazing involving an electroplated interlayer consisting of a brazing alloy designed for melting temperature suppression. Unfortunately, these alloys can form brittle secondary phases which significantly reduce bond strength. In contrast, prior efforts have shown that it is possible to leverage the size-dependent properties of nanomaterials to suppress brazing temperatures. In this prior work, thin films of off-the-shelf elemental nanoparticles were used as interlayers yielding joints with improved mechanical properties. In the present investigation, efforts have been made to characterize the synthesis and deposition of various elemental nanoparticle suspensions for use in the transient liquid-phase brazing of aluminum and stainless steel. Advances were used to demonstrate the nanoparticle-assisted diffusion brazing of a microchannel array. In the first section, a silver nanoparticle (AgNP) interlayer was produced for the diffusion brazing of heat exchanger aluminum. Efforts are made to examine the effect of braze filler particle size (˜5 nm and ˜50 nm) and processing parameters (heating rate: 5ºC/min and 25ºC/min; brazing temperature: 550ºC and 570ºC) on thin coupons of diffusion-brazed 3003 Al. A tensile strength of 69.7 MPa was achieved for a sample brazed at 570°C for 30 min under 1 MPa with an interlayer thickness of approximately 7 microm. Further suppression of the brazing temperature to 500ºC was achieved by

  14. Exposure Medium: Key in Identifying Free Ag+ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia magna

    PubMed Central

    Shen, Mo-Hai; Zhou, Xiao-Xia; Yang, Xiao-Ya; Chao, Jing-Bo; Liu, Rui; Liu, Jing-Fu

    2015-01-01

    It is still not very clear what roles the various Ag species play in the toxicity of silver nanoparticles (AgNPs). In this study, we found that traditional exposure media result in uncontrollable but consistent physicochemical transformation of AgNPs, causing artifacts in determination of median lethal concentration (LC50) and hindering the identification of Ag species responsible for the acute toxicity of AgNPs to Daphnia magna. This obstacle was overcome by using 8 h exposure in 0.1 mmol L−1 NaNO3 medium, in which we measured the 8-h LC50 of seven AgNPs with different sizes and coatings, and determined the concentrations of various Ag species. The LC50 as free Ag+ of the seven AgNPs (0.37–0.44 μg L−1) agreed very well with that of AgNO3 (0.40 μg L−1), and showed the lowest value compared to that as total Ag, total Ag+, and dissolved Ag, demonstrating free Ag+ is exclusively responsible for the acute toxicity of AgNPs to D. magna, while other Ag species in AgNPs have no contribution to the acute toxicity. Our results demonstrated the great importance of developing appropriate exposure media for evaluating risk of nanomaterials. PMID:25858866

  15. Exposure Medium: Key in Identifying Free Ag+ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia magna

    NASA Astrophysics Data System (ADS)

    Shen, Mo-Hai; Zhou, Xiao-Xia; Yang, Xiao-Ya; Chao, Jing-Bo; Liu, Rui; Liu, Jing-Fu

    2015-04-01

    It is still not very clear what roles the various Ag species play in the toxicity of silver nanoparticles (AgNPs). In this study, we found that traditional exposure media result in uncontrollable but consistent physicochemical transformation of AgNPs, causing artifacts in determination of median lethal concentration (LC50) and hindering the identification of Ag species responsible for the acute toxicity of AgNPs to Daphnia magna. This obstacle was overcome by using 8 h exposure in 0.1 mmol L-1 NaNO3 medium, in which we measured the 8-h LC50 of seven AgNPs with different sizes and coatings, and determined the concentrations of various Ag species. The LC50 as free Ag+ of the seven AgNPs (0.37-0.44 μg L-1) agreed very well with that of AgNO3 (0.40 μg L-1), and showed the lowest value compared to that as total Ag, total Ag+, and dissolved Ag, demonstrating free Ag+ is exclusively responsible for the acute toxicity of AgNPs to D. magna, while other Ag species in AgNPs have no contribution to the acute toxicity. Our results demonstrated the great importance of developing appropriate exposure media for evaluating risk of nanomaterials.

  16. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging.

    PubMed

    Shi, Jinjin; Wang, Lei; Zhang, Jing; Ma, Rou; Gao, Jun; Liu, Yan; Zhang, Chaofeng; Zhang, Zhenzhong

    2014-07-01

    In this study, a GO@Ag nanocomposite was synthesized by chemical deposition of Ag nanoparticles onto graphene oxide (GO) through a hydro thermal reaction, and doxorubicin (DOX), one of the most effective drugs against a wide range of cancers, was employed as the model drug and linked to GO@Ag via ester bonds with a very high drug loading efficiency (∼82.0%, weight ratio of DOX/GO@Ag), then GO@Ag-DOX was functionalized by DSPE-PEG2000-NGR, giving GO@Ag-DOX with active tumor-targeting capacity and excellent stability in physiological solutions. The release profiles of DOX from GO@Ag-DOX-NGR showed strong dependences on near-infrared (NIR) laser and the SPR effect of Ag nanoparticles. Compared with free DOX in an in vivo murine tumor model, GO@Ag-DOX-NGR afforded much higher antitumor efficacy without obvious toxic effects to normal organs owing to 8.4-fold higher DOX uptake of tumor and 1.7-fold higher DOX released in tumor with NIR laser than the other tissues. Besides, in this work, GO@Ag-DOX-NGR not only served as a powerful tumor diagnostic X-ray contrast agent, but also as a strong agent for photothermal ablation of tumor, the ability of GO@Ag-DOX-NGR nanoparticles to combine the local specific chemotherapy with external photothermal therapy (PTT) significantly improved the therapeutic efficacy. GO@Ag-DOX-NGR showed excellent chem-photothermal therapeutic efficacy, tumor-targeting property, NIR laser-controlled drug releasing function and X-ray imaging ability, demonstrating that there is a great potential of GO@Ag-DOX-NGR for cancer diagnosis and therapy. PMID:24746963

  17. Bioaccumulation of Zn and Ag Nanoparticles in the Earthworms (Eisenia fetida)

    NASA Astrophysics Data System (ADS)

    Ha, Lee Seung; Sung-Dae, Kim; Yi, Yang Song; Byeong-Gweon, Lee

    2014-05-01

    Many studies are carried out to evaluate environmental effects of engineered nanoparticles (ENPs). Most of the previous studies primarily focused on the effects of nanoparticles into the aquatic environment and human. Model studies predict that ENPs released into environment would transferred primarily to the soil of the terrestrial environment. Despite this prediction, biogeochemical behavior of ENPs in soil environment as well as bioavailability of ENPs to soil-dwelling organisms such as earthworm, springtail, isopod and nematodes are poorly understood. The main goal of this study was to compare the bioaccumulation factor (BAFs) and subcellular partitioning of nanoparticles in the soil-dwelling earthworm (Eisenia fetida) from ENP (ZnO and Ag nanoparticles) or ionic metal (Zn2+, Ag+) contaminated soil. And the sequential extraction was also used to determine the mobility of metals in soil which could be used as to predict bioavailability and compare that with bioaccumulation factor. The radiotracer method was employed to trace the transfer of ENPs and ionic metal among different environmental media and animals. Radiolabeled 65ZnO, 110mAgNPs coated with PVP or citrate were synthesized in the laboratory and their chemical and biological behavior was compared to ionic 65Zn and 110mAg. The BAFs of Zn and Ag in the earthworms were determined after animals exposed to the contaminated soils. After the 7 days of elimination phase, subcellular partitioning of metals were also obtained. BAF for ZnO(0.06) was 31 times lower than that for Zn ion (1.86), suggesting that ZnO was less bioavailable than its ionic form from contaminated soil. On the other hands, BAFs for AgNPs coated with PVP (0.12) or with citrate (0.11) were comparable to those for Ag ion (0.17), indicating that Ag from contaminated soil was bioavailable in a similar rate regardless of chemical forms. The subcellular partitioning results showed that bioaccumulated Zn from Zn ion and ZnO contaminated soil were

  18. External quantum efficiency and photovoltaic performance of silicon cells deposited with aluminum, indium, and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ho, Wen-Jeng; Hu, Chia-Hua; Yeh, Chien-Wu; Lee, Yi-Yu

    2016-08-01

    In this study, the plasmonic light scattering of aluminum (Al), indium (In), and sliver (Ag) nanoparticles (NPs) deposited on silicon solar cells was demonstrated. For comparison, the dimensions of all NPs were maintained at 17–25 nm with a coverage of approximately 30–40% through the control of film deposition and thermal annealing conditions. Absorbance and surface plasmon Raman scattering were used to examine the different localized surface plasmon resonances (LSPRs) of the proposed NPs. Optical reflectance, external quantum efficiency (EQE) response, and photovoltaic current density–voltage characteristics under AM 1.5G illumination were used to confirm the contribution of the plasmonic light scattering of the NPs. The conversion efficiencies of the solar cells with Al, In, and Ag NPs increased 1.21-, 1.23-, and 1.17-fold, respectively, compared with that of the reference bare Si solar cell. The EQE response and photovoltaic performance revealed that Al and In NPs produced broadband plasmonic light scattering and increased efficiency, far exceeding the results obtained using Ag NPs.

  19. Geochemistry of the Patricia Zn-Pb-Ag Deposit (paguanta, NE Chile)

    NASA Astrophysics Data System (ADS)

    Chinchilla Benavides, D.; Merinero Palomares, R.; Piña García, R.; Ortega Menor, L.; Lunar Hernández, R.

    2013-12-01

    The Patricia Zn-Pb-Ag ore deposit is located within the Paguanta mining project, situated at the northern end of the Andean Oligocene Porphyry Copper Belt of Chile. The sulfide mineralization occurs as W-E oriented veins hosted in volcanic rocks, mainly andesite (pyroclastic, ash and lavas), of Upper Cretaceous to Middle Tertiary age. The ore mineralogy (obtained by EMPA analyses) comprises in order of abundance, pyrite, sphalerite (5.5 - 10.89 wt % Fe, 9.8-19 % molar FeS and 0.52 wt % Cd), galena, arsenopyrite, chalcopyrite and Ag-bearing sulfosalts. The veins show a zoned and banded internal structure with pyrite at the edges and sphalerite in the center. The Ag occurs mostly as Ag-Cu-Sb sulfosalts, in order of abundance: series freibergite - argentotennantite -polybasite and stephanite. Other minor Ag phases such as argentite, pyrargirite and diaphorite were also identified. These Ag phases are typically associated with the base-metal sulfides. Freibergite occurs filling voids within sphalerite, chalcopyrite and at the contact between sphalerite and galena. Polybasite, stephanite, pyrargirite and argentite are mostly in close association with freibergite. In the case of diaphorite, it commonly occurs filling voids between galena crystals or as inclusions within galena. Some minor Ag-bearing sulfosalts are also identified between pyrite crystals. The alteration minerals are dominated by chlorite, illite and kaolinite. The gangue minerals consist of quartz and carbonates identified by XRD as kutnahorite. We obtained linear correlation statistically significant only for Ag, As Au, Cd, Cu, Pb, Sb and Zn and therefore we generated an enhanced scatter plot matrix of these elements. Bulk rock analyses (ICP/MS and XRF) of drill cores show that Ag is strongly and positively correlated with Pb and As, moderately with Cd, Sb, Au and Zn and weakly with Cu, while Au is moderately and positively correlated with Ag, As, Cd, Sb and Zn and weakly with Cu and Pb. These results

  20. Ag(I)-triggered one-pot synthesis of Ag nanoparticles onto natural nanorods as a multifunctional nanocomposite for efficient catalysis and adsorption.

    PubMed

    Tian, Guangyan; Wang, Wenbo; Mu, Bin; Kang, Yuru; Wang, Aiqin

    2016-07-01

    A multifunctional palygorskite/polyaniline/Ag nanoparticles (PAL/PANI/AgNPs) nanocomposite was prepared at room temperature using a simple one-pot in-situ polymerization reaction of aniline monomers triggered by Ag(I) on the surface of natural PAL nanorods. Ag(I) served as both the oxidant and the precursor of the AgNPs, which initiated the polymerization of aniline monomers on PAL nanorods while simultaneously being reduced to form Ag(0) nanoparticles (AgNPs). The in-situ formed AgNPs were evenly distributed on the surface of the PAL nanorods because the interfacial effect of PAL prevents their aggregation. The density and size of the AgNPs and the catalytic activity of the nanocomposites could be controlled by altering the molar ratio of aniline to Ag(I). The performance evaluation revealed that the nanocomposites could be used as highly active catalysts, which rapidly catalyzed the reduction of 4-nitrophenol (4-NP) within 2min and Congo red (CR) within 10min. The nanocomposites are also an effective adsorbent for H2PO4(-) able to remove 99.40% of H2PO4(-) (only 61.77% for raw PAL) from a solution with an initial concentration of 50mg/L. This multifunctional nanocomposite synthesized by a simple one-pot approach is a promising material for environmental applications. PMID:27054770

  1. Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition

    SciTech Connect

    Leng Jian; Yu Zhinong; Xue Wei; Zhang Ting; Jiang Yurong; Zhang Jie; Zhang Dongpu

    2010-10-15

    The structural, optical, and electrical characteristics of zinc sulfide (ZnS)/Ag/ZnS (ZAZ) multilayer films prepared by ion beam assisted deposition on k9 glass have been investigated as a function of Ag layer thickness. The characteristics of ZAZ multilayer are significantly improved up insertion of optimal Ag thickness between ZnS layers. The results show that due to bombardment of Ar ion beam, distinct Ag islands evolve into continuous Ag films at a thin Ag thickness of about 4 nm. The thinner Ag film as a thickness of 2 nm leads to high sheet resistance and low transmittance for the interface scattering induced by the Ag islands or noncontinuous films; and when the Ag thickness is over 4 nm, the ZAZ multilayer exhibits a remarkably reduced sheet resistance between 7-80 {Omega}/sq for the increase in carrier concentration and mobility of Ag layer, and a high transmittance over 90% for the interference phenomena of multilayers and low absorption and surface scattering of Ag layer. The ZAZ multilayer with 14 nm Ag film has a figure of merit up to 6.32x10{sup -2} {Omega}{sup -1}, an average transmittance over 92% and a sheet resistance of 7.1 {Omega}/sq. The results suggest that ZAZ film has better optoelectrical properties than conditional indium tin oxide single layer.

  2. Contribution of Eu ions on the precipitation of silver nanoparticles in Ag-Eu co-doped borate glasses

    SciTech Connect

    Jiao, Qing; Qiu, Jianbei; Zhou, Dacheng; Xu, Xuhui

    2014-03-01

    Graphical abstract: - Highlights: • Silver nanoparticles are precipitated from the borate glasses during the melting process without any further heat treatment. • The reduction of Eu{sup 3+} ions to Eu{sup 2+} ions is presented in this material. • The intensity of Ag{sup +} luminescence. • The introduction of Eu ions accelerated the reaction between Eu{sup 2+} ions and silver ions inducing the silver clusters formation. - Abstract: Ag{sup +} doped sodium borate glasses with different Eu ions concentration were prepared by the melt-quenching method. The absorption at about 410 nm which was caused by the surface plasmon resonance (SPR) of Ag nanoparticles (NPs) is promoted with increasing of Eu ions concentration. Meanwhile, the luminescent spectra showed that the emission intensity of Ag{sup +} decreased while that of the Ag aggregates increased simultaneously. The results indicated that the Ag ions intend to form the high-polymeric state such as Ag aggregates and nanoparticles with increasing of europium ions. Owing to the self-reduction of Eu{sup 3+} to Eu{sup 2+} in our glass system, it revealed that Ag{sup +} has been reduced by the neighboring Eu{sup 2+} which leads to the formation of Ag aggregates and the precipitation of Ag NPs in the matrix. In addition, energy transfer (ET) process from Ag{sup +}/Ag aggregates to the Eu{sup 3+} was investigated for the enhancement of Eu{sup 3+} luminescence.

  3. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    NASA Astrophysics Data System (ADS)

    Rubina, M. S.; Kamitov, E. E.; Zubavichus, Ya. V.; Peters, G. S.; Naumkin, A. V.; Suzer, S.; Vasil'kov, A. Yu.

    2016-03-01

    Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  4. Ag Nanoparticle/Polydopamine-Coated Inverse Opals as Highly Efficient Catalytic Membranes.

    PubMed

    Choi, Gwan H; Rhee, Do Kyung; Park, A Reum; Oh, Min Jun; Hong, Sunghwan; Richardson, Joseph J; Guo, Junling; Caruso, Frank; Yoo, Pil J

    2016-02-10

    Polymeric three-dimensional inverse-opal (IO) structures provide unique structural properties useful for various applications ranging from optics to separation technologies. Despite vast needs for IO functionalization to impart additional chemical properties, this task has been seriously challenged by the intrinsic limitation of polymeric porous materials that do not allow for the easy penetration of waterborne moieties or precursors. To overcome this restriction, we present a robust and straightforward method of employing a dipping-based surface modification with polydopamine (PDA) inside the IO structures, and demonstrate their application to catalytic membranes via synthetic incorporation of Ag nanoparticles. The PDA coating offers simultaneous advantages of achieving the improved hydrophilicity required for the facilitated infiltration of aqueous precursors and successful creation of nucleation sites for a reduction of growth of the Ag nanoparticles. The resulting Ag nanoparticle-incorporated IO structures are utilized as catalytic membranes for the reduction of 4-nitrophenol to its amino derivatives in the presence of NaBH4. Synergistically combined characteristics of high reactivity of Ag nanoparticles along with a greatly enhanced internal surface area of IO structures enable the implementation of remarkably improved catalytic performance, exhibiting a good conversion efficiency greater than 99% while minimizing loss in the membrane permeability. PMID:26780371

  5. Photocatalytic action of AgCl nanoparticles and its antibacterial activity.

    PubMed

    Ashok Kumar, Deenadayalan; Palanichamy, V; Roopan, Selvaraj Mohana

    2014-09-01

    The scientific community is searching for biosynthetic methods for the production of metallic nanoparticles. Biogenic pathway has now become a vast developing area of research. A novel route biological synthesis of silver chloride nanoparticles (AgCI-NPs) using aqueous leaf extract of Morindacitrifolia under ambient conditions were evaluated. Synthesized nanoparticles were confirmed by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of pH on biosynthesis of AgCI-NPs were investigated using UV-vis spectroscopy. TEM images showed that the diameter of stable AgCI-NPs were approximately 12 nm. FTIR spectra provide the evidence for the presence of protein as possible biomolecules responsible for reduction and capping of nanoparticles. The synthesized AgCI-NPs were observed to have a good catalytic activity on the reduction of methylene blue (MB) dye by M.citrifolia extract which has been confirmed by decrease in absorbance maximum values of methylene blue with respect to time using UV-vis spectroscopy and was attributed to the electron relay effect. PMID:25022464

  6. Ag nanoparticles generated using bio-reduction and -coating cause microbial killing without cell lysis.

    PubMed

    Gade, Aniket; Adams, Joshua; Britt, David W; Shen, Fen-Ann; McLean, Joan E; Jacobson, Astrid; Kim, Young-Cheol; Anderson, Anne J

    2016-04-01

    Cost-effective "green" methods of producing Ag nanoparticles (NPs) are being examined because of the potential of these NPs as antimicrobials. Ag NPs were generated from Ag ions using extracellular metabolites from a soil-borne Pythium species. The NPs were variable in size, but had one dimension less than 50 nm and were biocoated; aggregation and coating changed with acetone precipitation. They had dose-dependent lethal effects on a soil pseudomonad, Pseudomonas chlororaphis O6, and were about 30-fold more effective than Ag(+) ions. A role of reactive oxygen species in cell death was demonstrated by use of fluorescent dyes responsive to superoxide anion and peroxide accumulation. Also mutants of the pseudomonad, defective in enzymes that protect against oxidative stress, were more sensitive than the wild type strain; mutant sensitivity differed between exposure to Ag NPs and Ag(+) ions demonstrating a nano-effect. Imaging of bacterial cells treated with the biocoated Ag NPs revealed no cell lysis, but there were changes in surface properties and cell height. These findings support that biocoating the NPs results in limited Ag release and yet they retained potent antimicrobial activity. PMID:26805711

  7. Effect of incorporated PVP/Ag nanoparticles on ZnPc/C60 organic solar cells.

    PubMed

    Heo, Ilsu; Kim, Jinhyun; Yim, Sanggyu

    2013-06-01

    Various sizes of PVP-capped Ag nanoparticles were incorporated in the PEDOT:PSS layer of ZnPc/C60-based small-molecule organic solar cells. The incorporated nanoparticles partially block the incident light, but this was offset by the scattering effect and consequent increase in path lengths through the active organic layers. As a result, the overall power conversion efficiency of the cell increased by approximately 15% when nanoparticles with an average diameter of 24 nm were used. PMID:23862493

  8. Magnetic hyperthermia in brick-like Ag@Fe3O4 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Brollo, M. E. F.; Orozco-Henao, J. M.; López-Ruiz, R.; Muraca, D.; Dias, C. S. B.; Pirota, K. R.; Knobel, M.

    2016-01-01

    Heating efficiency of multifunctional Ag@Fe3O4 brick-like nanoparticles under alternating magnetic field was investigated by means of specific absorption rate (SAR) measurements, and compared with equivalent measurements for plain magnetite and dimer heteroparticles. The samples were synthesized by thermal decomposition reactions and present narrow size polydispersity and high degree of crystallinity. The SAR values are analyzed using the superparamagnetic theory, in which the basic morphology, size and dispersion of sizes play key roles. The results suggest that these novel brick-like nanoparticles are good candidates for hyperthermia applications, displaying heating efficiencies comparable with the most efficient plain nanoparticles.

  9. Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwei; Meng, Guowen; Huang, Zhulin; Li, Zhongbo; Zhou, Qitao

    2014-11-01

    We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS ``hot spots'' are generated from the electromagnetic coupling of the densely distributed Ag-NPs, and the semiconducting ZnO-mesoporous-NSs also have chemical supporting enhancement and distinct molecule adsorbing abilities, the composite SERS-substrates demonstrate high SERS-sensitivity with good signal reproducibility. As a trial for potential applications, the composite SERS-substrates were used to identify pesticides and highly toxic polychlorinated biphenyls (PCBs), and low concentrations down to 10-7 M for methyl parathion and 5 × 10-6 M for PCB-77 were reached, respectively, showing promising potential for the SERS-based rapid detection of toxic organic pollutants in the environment.We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS ``hot spots'' are generated from the electromagnetic coupling of the densely

  10. The IP6 micelle-stabilized small Ag cluster for synthesizing Ag-Au alloy nanoparticles and the tunable surface plasmon resonance effect

    NASA Astrophysics Data System (ADS)

    Wang, Na; Wen, Ying; Wang, Yao; Zhang, Rui; Chen, Xiyao; Ling, Bo; Huan, Shuangyan; Yang, Haifeng

    2012-04-01

    The stable small Ag seeds (size in diameter < 10 nm) were obtained in the presence of inositol hexakisphosphoric (IP6) micelles. Then Ag-Au bimetallic nanoparticles were synthesized through a replacement reaction with the rapid interdiffusion process between such small Ag seeds in nanoclusters and HAuCl4. Adjusting the dosage of HAuCl4 resulted in different products, which possessed unique surface plasmon resonances (SPR). The morphologies of the as-made nanoparticles were observed using transmission electron microscopy and field emission scanning electron microscopy and their compositions were determined by energy-dispersive x-ray spectroscopy. Among them, the Ag-Au alloy nanoparticles with the cauliflower-like structure had a suitable SPR for highly sensitive Raman detection application as a surface-enhanced Raman scattering (SERS) substrate with a long-term stability of six months.

  11. Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island.

    PubMed

    Xu, Jinxia; Xiao, Xiangheng; Ren, Feng; Wu, Wei; Dai, Zhigao; Cai, Guangxu; Zhang, Shaofeng; Zhou, Juan; Mei, Fei; Jiang, Changzhong

    2012-01-01

    In order to overcome the low utilization ratio of solar light and high electron-hole pair recombination rate of TiO2, the triangular Ag nanoparticle island is covered on the surface of the TiO2 thin film. Enhancement of the photocatalytic activity of the Ag/TiO2 nanocomposite system is observed. The increase of electron-hole pair generation is caused by the enhanced near-field amplitudes of localized surface plasmon of the Ag nanoparticles. The efficiently suppressed recombination of electron-hole pair caused by the metal-semiconductor contact can also enhance the photocatalytic activity of the TiO2 film. PMID:22548875

  12. Thermally switchable dispersions of thermochromic Ag2HgI4 nanoparticles.

    PubMed

    Schwiertz, Janine; Geist, André; Epple, Matthias

    2009-04-28

    Thermochromic Ag(2)HgI(4) nanoparticles were prepared by rapid precipitation from aqueous solution. Stable colloids were formed by coating the particles with four different polymers, respectively. The four resulting systems of functionalised Ag(2)HgI(4) nanoparticles were characterised with respect to their polymer content (elemental analysis), particle size (dynamic light scattering, scanning electron microscopy), optical properties in dispersion (UV spectroscopy), crystallinity (X-ray powder diffraction), and thermochromic transition temperature (differential scanning calorimetry) and also compared to the unfunctionalised bulk phase Ag(2)HgI(4). Stable dispersions with a reversible temperature-induced colour change from yellow to orange (T(trs) = 25-40 degrees C) were obtained. PMID:19352519

  13. ZnO/Ag sputtering deposition on a-Si solar cells

    SciTech Connect

    Hayashi, Katsuhiko; Kondo, Masataka; Ishikawa, Atsuo; Yamagishi, Hideo

    1994-12-31

    In order to produce large area amorphous silicon solar cell modules and to simplify the module production process, a continuous ZnO/Ag sputtering deposition process has been applied. The authors found that by means of a continuous ZnO/Ag sputtering deposition method an adhesive a-Si/electrode contact can be realized. They compared short circuit currents of Al,ZnO/Al and ZnO/Ag back side contact cells and confirmed short circuit current increase by application of ZnO/Ag back side contact. They found that the series resistance is severely dependent on the conditions during the first stage of ZnO deposition. They confirmed the reliability of ZnO/Ag structure as the back side contact through high temperature high humidity test. After 310 hours accelerated light induced degradation test which corresponds to one year light exposure the 100cm2 integrated a-Si tandem solar cell kept the efficiency higher than 8.5%.

  14. Energetics of the formation of Cu-Ag core–shell nanoparticles

    SciTech Connect

    Chandross, Michael

    2014-10-06

    Our work presents molecular dynamics and Monte Carlo simulations aimed at developing an understanding of the formation of core–shell Cu-Ag nanoparticles. The effects of surface and interfacial energies were considered and used to form a phenomenological model that calculates the energy gained upon the formation of a core–shell structure from two previously distinct, non-interacting nanoparticles. In most cases, the core–shell structure was found to be energetically favored. Specifically, the difference in energy as a function of the radii of the individual Cu and Ag particles was examined, with the assumption that a core–shell structure forms. In general, it was found that the energetic gain from forming such a structure increased with increasing size of the initial Ag particle. This result was interpreted as a result of the reduction in surface energy. Moreover, for two separate particles, both Cu and Ag contribute to the surface energy; however, for a core–shell structure, the only contribution to the surface energy is from the Ag shell and the Cu contribution is changed to a Cu–Ag interfacial energy, which is always smaller.

  15. Energetics of the formation of Cu-Ag core–shell nanoparticles

    DOE PAGESBeta

    Chandross, Michael

    2014-10-06

    Our work presents molecular dynamics and Monte Carlo simulations aimed at developing an understanding of the formation of core–shell Cu-Ag nanoparticles. The effects of surface and interfacial energies were considered and used to form a phenomenological model that calculates the energy gained upon the formation of a core–shell structure from two previously distinct, non-interacting nanoparticles. In most cases, the core–shell structure was found to be energetically favored. Specifically, the difference in energy as a function of the radii of the individual Cu and Ag particles was examined, with the assumption that a core–shell structure forms. In general, it was foundmore » that the energetic gain from forming such a structure increased with increasing size of the initial Ag particle. This result was interpreted as a result of the reduction in surface energy. Moreover, for two separate particles, both Cu and Ag contribute to the surface energy; however, for a core–shell structure, the only contribution to the surface energy is from the Ag shell and the Cu contribution is changed to a Cu–Ag interfacial energy, which is always smaller.« less

  16. Distribution of Ag in Cu-sulfides in Kupferschiefer deposit, SW Poland

    NASA Astrophysics Data System (ADS)

    Kozub, Gabriela A.

    2014-05-01

    The Cu-Ag Kupferschiefer deposit located at the Fore-Sudetic Monocline (SW Poland) is a world class deposit of stratabound type. The Cu-Ag mineralization in the deposit occurs in the Permian sedimentary rocks (Rotliegend and Zechstein) in three lithological types of ore: the dolomite, the black shale and the sandstone. Silver, next to copper, is the most important element in the Kupferschiefer deposit (Salamon 1979; Piestrzyński 2007; Pieczonka 2011). Although occurrence of the Ag-minerals such as native silver, silver amalgams, stromeyerite, jalpaite and mckinstryite, silver is mainly present in the deposit due to isomorphic substitutions in Cu-minerals such as chalcocite, bornite, tennantite, covellite and chalcopyrite. The aim of the study was to define distribution of silver in Cu-minerals and correlate occurrence of Ag-enriched Cu-sulfides with native silver and silver amalgams. Identification of minerals and textural observation were performed using field emission scanning electron microscope. Analyzes of chemical composition of Cu-sulfides were performed utilizing electron microprobe. Silver concentration in Cu sulfides ranges from 0.1 to 10.4 wt.% in chalcocite, 0.2-15.8 wt.% in bornite, 0.1-2.9 wt.% in tennantite, 0.05-0.3 wt.% in chalcopyrite and ca. 0.4 wt.% in covellite. In general, distribution of silver in Cu-minerals is irregular, as indicated by high variations of Ag concentration in each mineral. Content of Ag in Cu-sulphides, in samples where native silver and silver amalgams are not found, is lower than in samples, where native silver and silver amalgams are noted. The chemical analyzes of Ag-bearing Cu-minerals indicate decrease of Cu content in minerals with high Ag concentration. In such case, decrease of Fe content is also noted in bornite. Lack of micro-inclusions of the native silver or silver amalgams in the Cu-minerals indicates that presence of Ag is mainly related to the isomorphic substitutions. This is in agreement with previous

  17. Size dependent thermalization time of Ag nanoparticles and the surface density profile

    NASA Astrophysics Data System (ADS)

    Lopez-Bastidas, Catalina

    2009-03-01

    It is well known that the lack of d-electron screening in the s-electron spill-out region at the surface of Ag nanoparticles increases the electron-electron interaction in this region compared to the bulk. Therefore when comparing the electron-electron interaction contribution to the thermalization time of Ag nanoparticles of varying radius, smaller particles thermalize faster due to the increased surface to bulk ratio. One aspect which has not been addressed is the effect of the spatial distribution of charge at the surface of the nanoparticle. In this work it is shown that the size dependence of the thermalization time is very sensitive to the surface density profile. The electron thermalization time of conduction electrons in Ag nanoparticles as a function of the radius is calculated. The sensitivity of the scattering rate to the spatial distribution of charge at the surface of the nanostructure is analyzed using several model surface profiles. The change in surface charge distribution via charging or coating of the nanospheres is shown to be a tool for control and probing of the ultra-fast electron-electron dynamics in metallic nanoparticles.

  18. Spectroscopic monitoring on irradiation-induced formation of AuAg alloy nanoparticles by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Herbani, Yuliati; Nakamura, Takahiro; Sato, Shunichi

    2016-02-01

    The interaction of an intense femtosecond laser pulses with a neat liquid solvent has been known to produce a number of highly reactive species that are useful to induce chemical reactions in the solution through the nonlinear absorption processes. When metal ions are present in the solution, they are assumed to readily reduce by ions, radicals, molecules or excited states generated photolytically from the solvent resulting in the formation of zerovalent metal nanoalloys. If two kinds of metal precursors are involved in a reduction process, the alloying process is expected. In this work, irradiation-induced synthesis of AuAg bimetallic nanoparticle at different laser-pulse energies was examined to investigate the formation mechanism in the presence of NH4OH in the initial solution. At a given laser pulse energy (5.8 mJ/pulse), the time evolution of the UV-visible absorption spectra showed that the formation of AuAg nanoalloys most likely begin with the formation of Ag-riched alloy nanoparticles. As the reduction is started, the absorption spectrum of solution was closer to that of pure Ag nanoparticles. This indicates that the reduction rate of Ag is relatively greater than that of Au nanoparticle in the presence of ammonia. The single peak position then shifts to the red region as the irradiation time increases. After 10 min, the peak positions are between pure silver and gold peaks indicating the alloying process occurs at this stage. At low pulse energy (1.0 mJ/pulse), there was an induction time for several minutes before the absorption is detectable, and hence the alloying process is also delayed (after 20 minutes irradiation). While the formation rate of nanoparticles is more pronounced at high laser pulse energy, the formation yield is relatively the same for both laser pulse energies.

  19. Preparation of vanadium oxide thin films modified with Ag using a hybrid deposition configuration

    NASA Astrophysics Data System (ADS)

    Gonzalez-Zavala, F.; Escobar-Alarcón, L.; Solís-Casados, D. A.; Rivera-Rodríguez, C.; Basurto, R.; Haro-Poniatowski, E.

    2016-04-01

    The application of a hybrid deposition configuration, formed by the interaction of a laser ablation plasma with a flux of atomic vapor, to deposit vanadium oxide thin films modified with different amounts of silver, is reported. The effect of the amount of Ag incorporated in the films on their structural, morphological, compositional and optical properties was studied. The obtained results reveal that films with variable Ag content from 11.7 to 24.6 at.% were obtained. Depending on the silver content, the samples show very different surface morphologies. Optical characterization indicates the presence of nanostructures of Ag. Thin films containing silver exhibit better photocatalytic performances than unmodified V2O5 films. Raman spectra reveal that as the silver content is increased, the signals associated with V2O5 disappear and new modes attributed mainly to silver vanadates appear suggesting the formation of ternary compounds.

  20. Deposition of Nanostructured Thin Film from Size-Classified Nanoparticles

    NASA Technical Reports Server (NTRS)

    Camata, Renato P.; Cunningham, Nicholas C.; Seol, Kwang Soo; Okada, Yoshiki; Takeuchi, Kazuo

    2003-01-01

    Materials comprising nanometer-sized grains (approximately 1_50 nm) exhibit properties dramatically different from those of their homogeneous and uniform counterparts. These properties vary with size, shape, and composition of nanoscale grains. Thus, nanoparticles may be used as building blocks to engineer tailor-made artificial materials with desired properties, such as non-linear optical absorption, tunable light emission, charge-storage behavior, selective catalytic activity, and countless other characteristics. This bottom-up engineering approach requires exquisite control over nanoparticle size, shape, and composition. We describe the design and characterization of an aerosol system conceived for the deposition of size classified nanoparticles whose performance is consistent with these strict demands. A nanoparticle aerosol is generated by laser ablation and sorted according to size using a differential mobility analyzer. Nanoparticles within a chosen window of sizes (e.g., (8.0 plus or minus 0.6) nm) are deposited electrostatically on a surface forming a film of the desired material. The system allows the assembly and engineering of thin films using size-classified nanoparticles as building blocks.

  1. Fractal structure formation from Ag nanoparticle films on insulating substrates.

    PubMed

    Tang, Jing; Li, Zhiyong; Xia, Qiangfei; Williams, R Stanley

    2009-07-01

    Two dimensional (2D) fractal structures were observed to form from fairly uniform Ag island films (equivalent mass thicknesses of 1.5 and 5 nm) on insulating silicon dioxide surfaces (thermally grown silicon oxide on Si or quartz) upon immersion in deionized water. This result is distinctly different from the previously observed three-dimensional (3D) growth of faceted Ag nanocrystals on conductive surfaces (ITO and graphite) as the result of an electrochemical Ostwald ripening process, which also occurs on native oxide covered silicon surfaces as reported here. The fractal structures formed by diffusion-limited aggregation (DLA) of Ag species on the insulating surfaces. We present the experimental observation of this phenomenon and discuss some possible mechanisms for the DLA formation. PMID:19496573

  2. Functionalizing Aluminum Oxide by Ag Dendrite Deposition at the Anode during Simultaneous Electrochemical Oxidation of Al.

    PubMed

    Rafailović, Lidija D; Gammer, Christoph; Rentenberger, Christian; Trišović, Tomislav; Kleber, Christoph; Karnthaler, Hans Peter

    2015-11-01

    A novel synthesis strategy is presented for depositing metallic Ag at the anode during simultaneous electrochemical oxidation of Al. This unexpected result is achieved based on galvanic coupling. Metallic dendritic nanostructures well-anchored in a high surface area supporting matrix are envisioned to open up a new avenue of applications. PMID:26398487

  3. Synthesis and the enhanced visible-light-driven photocatalytic activity of BiVO4 nanocrystals coupled with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, W. Z.; Meng, Shan; Tan, Miao; Jia, L. J.; Zhou, Y. X.; Wu, Shuang; Huang, X. W.; Liang, Y. J.; Shi, H. L.

    2015-03-01

    BiVO4 nanocrystals coupled with Ag nanoparticles (Ag-BiVO4 heterogeneous nanostructures) have been prepared by a new strategy via combining a hydrothermal route with a polyol process, in which BiVO4 nanocrystals were first synthesized by a hydrothermal route, and then, Ag nanoparticles were grown on the surfaces of the presynthesized BiVO4 nanocrystals through a polyol process. The photocatalytic evaluations demonstrate that BiVO4 nanocrystals coupled with Ag nanoparticles exhibit the enhanced visible-light-driven photocatalytic activity for the degradation of methylene blue (MB) and rhodamine B (RhB). The energy alignment and diffuse reflectance property of Ag-BiVO4 heterogeneous nanostructures demonstrate that Ag nanoparticles attached on the surfaces of BiVO4 nanocrystals play double roles for the enhanced visible-light-driven photocatalytic activity. First, the Ag nanoparticles grown on the surfaces of BiVO4 nanocrystals may act as electron sinks to retard the recombination of the photogenerated electrons and holes in BiVO4 so as to improve the charge separation on its surfaces. Second, the Ag nanoparticles increase the visible light absorption of the Ag-BiVO4 photocatalyst due to surface plasmon resonance (SPR) of Ag nanoparticles. These double roles of Ag nanoparticles make Ag-BiVO4 heterogeneous nanostructures to exhibit the enhanced photocatalytic activity to decompose MB and RhB under visible light irradiation, compared to the pure BiVO4 nanocrystals. The enhanced photocatalytic activity is attributed to the charge transfer from BiVO4 to the attached Ag nanoparticles as well as SPR absorption of Ag nanoparticles. The present work not only provides an efficient route to enhance visible-light-driven photocatalytic activity of BiVO4, but also offers a new strategy for fabricating metal-semiconductor heterogeneous nanostructure photocatalysts, which are expected to show considerable potential applications in solar-driven wastewater treatment and water

  4. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles.

    PubMed

    Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han; Cho, Changsoon; Choi, Dae-Geun; Lee, Jung-Yong

    2016-06-01

    In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq(-1) and an optical transmittance of 85.4%. PMID:27187802

  5. Photostability of gold nanoparticles with different shapes: the role of Ag clusters.

    PubMed

    Attia, Yasser A; Buceta, David; Requejo, Félix G; Giovanetti, Lisandro J; López-Quintela, M Arturo

    2015-07-14

    Anisotropic gold nanostructures prepared by the seed method in the presence of Ag ions have been used to study their photostability to low-power UV irradiation (254 nm) at room temperature. It has been observed that, whereas spheres are very stable to photoirradiation, rods and prisms suffer from photocorrosion and finally dissolve completely with the production of Au(III) ions. Interpretation of these differences is based on the presence of semiconductor-like Ag clusters, adsorbed onto rods and prisms, able to photocorrode the Au nanoparticles, which are absent in the case of Au spheres. We further show direct evidence of the presence of Ag clusters in Au nanorods by XANES. These results confirm a previous hypothesis (J. Am. Chem. Soc., 2014, 136, 1182-1185) about the major influence of very stable small Ag clusters, not only on the anisotropic formation of nanostructures but also on their photostability. PMID:26068070

  6. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Ye, Feng; Yao, Qiaofeng; Cao, Hongbin; Xie, Jianping; Lee, Jim Yang; Yang, Jun

    2014-02-01

    The usefulness of Pt-based nanomaterials for catalysis can be greatly enhanced by coupling morphology engineering to the strategic presence of a second or even third metal. Here we demonstrate the design and preparation of stellated Ag-Pt bimetallic nanoparticles where significant activity difference between the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) may be realized by relegating Ag to the core or by hollowing out the core. In particular the stellated Pt surface, with an abundance of steps, edges, corner atoms, and {111} facets, is highly effective for the ORR but is ineffective for MOR. MOR activity is only observed in the presence of a Ag core through electronic coupling to the stellated Pt shell. The bimetallic Ag-Pt stellates therefore demonstrate the feasibility of tuning a Pt surface for two very different structure sensitive catalytic reactions. Stellated bimetallics may therefore be an effective platform for highly tunable catalyst designs.

  7. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning

    PubMed Central

    Liu, Hui; Ye, Feng; Yao, Qiaofeng; Cao, Hongbin; Xie, Jianping; Lee, Jim Yang; Yang, Jun

    2014-01-01

    The usefulness of Pt-based nanomaterials for catalysis can be greatly enhanced by coupling morphology engineering to the strategic presence of a second or even third metal. Here we demonstrate the design and preparation of stellated Ag-Pt bimetallic nanoparticles where significant activity difference between the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) may be realized by relegating Ag to the core or by hollowing out the core. In particular the stellated Pt surface, with an abundance of steps, edges, corner atoms, and {111} facets, is highly effective for the ORR but is ineffective for MOR. MOR activity is only observed in the presence of a Ag core through electronic coupling to the stellated Pt shell. The bimetallic Ag-Pt stellates therefore demonstrate the feasibility of tuning a Pt surface for two very different structure sensitive catalytic reactions. Stellated bimetallics may therefore be an effective platform for highly tunable catalyst designs. PMID:24495979

  8. Comparing highly ordered monolayers of nanoparticles fabricated using electrophoretic deposition: Cobalt ferrite nanoparticles versus iron oxide nanoparticles

    SciTech Connect

    Dickerson, James H.; Krejci, Alex J.; Garcia, Adriana -Mendoza; Sun, Shouheng; Pham, Viet Hung

    2015-08-01

    Ordered assemblies of nanoparticles remain challenging to fabricate, yet could open the door to many potential applications of nanomaterials. Here, we demonstrate that locally ordered arrays of nanoparticles, using electrophoretic deposition, can be extended to produce long-range order among the constituents. Voronoi tessellations along with multiple statistical analyses show dramatic increases in order compared with previously reported assemblies formed through electric field-assisted assembly. As a result, based on subsequent physical measurements of the nanoparticles and the deposition system, the underlying mechanisms that generate increased order are inferred.

  9. Selective photochemical synthesis of Ag nanoparticles on position-controlled ZnO nanorods for the enhancement of yellow-green light emission

    NASA Astrophysics Data System (ADS)

    Park, Hyeong-Ho; Zhang, Xin; Lee, Keun Woo; Sohn, Ahrum; Kim, Dong-Wook; Kim, Joondong; Song, Jin-Won; Choi, Young Su; Lee, Hee Kwan; Jung, Sang Hyun; Lee, In-Geun; Cho, Young-Dae; Shin, Hyun-Beom; Sung, Ho Kun; Park, Kyung Ho; Kang, Ho Kwan; Park, Won-Kyu; Park, Hyung-Ho

    2015-12-01

    A novel technique for the selective photochemical synthesis of silver (Ag) nanoparticles (NPs) on ZnO nanorod arrays is established by combining ultraviolet-assisted nanoimprint lithography (UV-NIL) for the definition of growth sites, hydrothermal reaction for the position-controlled growth of ZnO nanorods, and photochemical reduction for the decoration of Ag NPs on the ZnO nanorods. During photochemical reduction, the size distribution and loading of Ag NPs on ZnO nanorods can be tuned by varying the UV-irradiation time. The photochemical reduction is hypothesized to facilitate the adsorbed citrate ions on the surface of ZnO, allowing Ag ions to preferentially form Ag NPs on ZnO nanorods. The ratio of visible emission to ultraviolet (UV) emission for the Ag NP-decorated ZnO nanorod arrays, synthesized for 30 min, is 20.5 times that for the ZnO nanorod arrays without Ag NPs. The enhancement of the visible emission is believed to associate with the surface plasmon (SP) effect of Ag NPs. The Ag NP-decorated ZnO nanorod arrays show significant SP-induced enhancement of yellow-green light emission, which could be useful in optoelectronic applications. The technique developed here requires low processing temperatures (120 °C and lower) and no high-vacuum deposition tools, suitable for applications such as flexible electronics.A novel technique for the selective photochemical synthesis of silver (Ag) nanoparticles (NPs) on ZnO nanorod arrays is established by combining ultraviolet-assisted nanoimprint lithography (UV-NIL) for the definition of growth sites, hydrothermal reaction for the position-controlled growth of ZnO nanorods, and photochemical reduction for the decoration of Ag NPs on the ZnO nanorods. During photochemical reduction, the size distribution and loading of Ag NPs on ZnO nanorods can be tuned by varying the UV-irradiation time. The photochemical reduction is hypothesized to facilitate the adsorbed citrate ions on the surface of ZnO, allowing Ag ions to

  10. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han; Cho, Changsoon; Choi, Dae-Geun; Lee, Jung-Yong

    2016-05-01

    In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%.In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01896c

  11. An amperometric immunosensor for osteoproteogerin based on gold nanoparticles deposited conducting polymer.

    PubMed

    Singh, Kanika; Rahman, Md Aminur; Son, Jung Ik; Kim, Kyung Chun; Shim, Yoon-Bo

    2008-06-15

    An amperometric immunosensor was fabricated for the detection of osteoproteogerin (OPG) by covalently immobilizing a monoclonal OPG antibody (anti-OPG) onto the gold nanoparticles (AuNPs) deposited functionalized conducting polymer (5,2':5',2''-terthiophene-3'-carboxylic acid). AuNPs were electrochemically deposited onto the conducting polymer using cyclic voltammetry. The particle size of deposited AuNPs was controlled by varying the scan rate and was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The immobilization of anti-OPG was also confirmed using XPS. The principle of immunosensor was based on a competitive immunoassay between free-OPG and labeled-OPG for the active sites of anti-OPG. HRP was used as a label that electrochemically catalyzes the H(2)O(2) reduction. The catalytic reduction was monitored amperometrically at -0.4V vs. Ag/AgCl. The immunosensor showed a linear range between 2.5 and 25pg/ml and the detection limit was determined to be 2pg/ml. The proposed immunosensor was successfully applied for real human samples to detect OPG. PMID:18304799

  12. Enhanced Raman scattering and photocatalytic activity of Ag/ZnO heterojunction nanocrystals.

    PubMed

    Chen, Chongqi; Zheng, Yuanhui; Zhan, Yingying; Lin, Xingyi; Zheng, Qi; Wei, Kemei

    2011-10-01

    In this work, we study the enhancement of Raman signals and photocatalytic activity of Ag/ZnO heterojunctions with an Ag content of 1 at.%, which were synthesized by photochemical deposition of Ag nanoparticles onto pre-synthesized ZnO nanorods. A strong interaction between Ag and ZnO nanocrystals were evidenced by XPS and UV-vis spectroscopy. The binding energy of Ag nanoparticles shifts toward lower energy compared to that of pure Ag nanoparticles, revealing that electrons transfer from Ag to the ZnO nanocrystals. The red shift of the plasmon absorption peak of Ag nanoparticles in Ag/ZnO heterojunctions further confirms the strong interaction between the two components. This strong interaction, arising from the coupling between Ag and ZnO nanocrystals, is responsible for the enhancement of Raman signals and photocatalytic activity of the Ag/ZnO heterojunctions. PMID:21847472

  13. Ag Nanoparticle-Sensitized WO3 Hollow Nanosphere for Localized Surface Plasmon Enhanced Gas Sensors.

    PubMed

    Yao, Yao; Ji, Fangxu; Yin, Mingli; Ren, Xianpei; Ma, Qiang; Yan, Junqing; Liu, Shengzhong Frank

    2016-07-20

    Ag nanoparticle (NP)-sensitized WO3 hollow nanospheres (Ag-WO3-HNSs) are fabricated via a simple sonochemical synthesis route. It is found that the Ag-WO3-HNS shows remarkable performance in gas sensors. Field-emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) images reveal that the Agx-WO3 adopts the HNS structure in which WO3 forms the outer shell framework and the Ag NPs are grown on the inner wall of the WO3 hollow sphere. The size of the Ag NPs can be controlled by adjusting the addition amount of WCl6 during the reaction. The sensor Agx-WO3 exhibits extremely high sensitivity and selectivity toward alcohol vapor. In particular, the Ag(15nm)-WO3 sensor shows significantly lower operating temperature (230 °C), superior detection limits as low as 0.09 ppb, and faster response (7 s). Light illumination was found to boost the sensor performance effectively, especially at 405 and 900 nm, where the light wavelength resonates with the absorption of Ag NPs and the surface oxygen vacancies of WO3, respectively. The improved sensor performance is attributed to the localized surface plasmon resonance (LSPR) effect. PMID:27348055

  14. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity.

    PubMed

    Kang, Fuxing; Alvarez, Pedro J; Zhu, Dongqiang

    2014-01-01

    Whereas the antimicrobial mechanisms of silver have been extensively studied and exploited for numerous applications, little is known about the associated bacterial adaptation and defense mechanisms that could hinder disinfection efficacy or mitigate unintended impacts to microbial ecosystem services associated with silver release to the environment. Here, we demonstrate that extracellular polymeric substances (EPS) produced by bacteria constitute a permeability barrier with reducing constituents that mitigate the antibacterial activity of silver ions (Ag(+)). Specifically, manipulation of EPS in Escherichia coli suspensions (e.g., removal of EPS attached to cells by sonication/centrifugation or addition of EPS at 200 mg L(-1)) demonstrated its critical role in hindering intracellular silver penetration and enhancing cell growth in the presence of Ag(+) (up to 0.19 mg L(-1)). High-resolution transmission electron microscopy (HRTEM) combined with X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectrometry (EDS) analyses showed that Ag(+) was reduced to silver nanoparticles (AgNPs; 10-30 nm in diameter) that were immobilized within the EPS matrix. Fourier transform infrared (FTIR) and (13)C nuclear magnetic resonance (NMR) spectra suggest that Ag(+) reduction to AgNPs by the hemiacetal groups of sugars in EPS contributed to immobilization. Accordingly, the amount and composition of EPS produced have important implications on the bactericidal efficacy and potential environmental impacts of Ag(+). PMID:24328348

  15. Large range localized surface plasmon resonance of Ag nanoparticles films dependent of surface morphology

    NASA Astrophysics Data System (ADS)

    Yan, Lijuan; Yan, Yaning; Xu, Leilei; Ma, Rongrong; Jiang, Fengxian; Xu, Xiaohong

    2016-03-01

    Noble metal nanoparticles (NPs) have received enormous attention since it displays uniquely optical and electronic properties. In this work, we study localized surface plasmon resonances (LSPR) at different thicknesses and substrate temperatures of Ag NPs films grown by Laser Molecule Beam Epitaxy (LMBE). The LSPR wavelength can be largely tuned in the visible light range of 470 nm to 770 nm. The surface morphology is characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The average size of Ag NPs increased with the thickness increased which leading to the LSPR band broaden and wavelength red-shift. As the substrate temperature is increased from RT to 200 °C, the Ag NPs size distribution becomes homogeneous and particle shape changes from oblate spheroid to sphere, the LSPR band displays sharp, blue-shift and significantly symmetric. Obviously, the morphology of Ag NPs films is important for tuning absorption position. We obtain the cubic crystal structure of Ag NPs with a (1 1 1) main diffraction peak from the X-ray diffraction (XRD) spectra. The high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) prove that Ag NPs is polycrystal structure. The Ag NPs films with large range absorption in visible light region can composite with semiconductor to apply in various optical or photoelectric devices.

  16. Enhanced hydrogen evolution from water splitting using Fe-Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Liu, Enzhou; Liang, Xuhua; Hu, Xiaoyun; Fan, Jun

    2015-08-01

    In this paper, the Fe-Ni co-doped and Ag deposited anatase TiO2 (Fe-Ni/Ag/TiO2) nanocomposites were successfully prepared by a simple one-pot solvothermal approach. The investigations indicated that all as-prepared TiO2 samples were single anatase phase, and the impurity level was generated due to the Fe3+ or Ni2+ being located in the intrinsic band gap of TiO2, while the Ag+ ions could be transformed into metallic silver due to the reduction reaction and then loaded onto the surface of TiO2. Compared with pure TiO2, Fe-Ni/Ag/TiO2 composites with the sizes of Ag nanoparticles from 1.0 to 3.0 nm displayed the well optical property including higher visible light absorption activity and lower electron-hole pair recombination rate, and its absorption wavelength edge moved remarkably with a red shift to 700 nm. The photocatalytic water splitting was performed to produce H2 over the samples, and the experimental results indicate that Fe-Ni/Ag/TiO2 composites presented the highest H2 evolution rate, it can reach up to 793.86 μmol h-1 gcat-1 (λ > 400 nm for 6 h, energy efficiency is 0.25%), which was much higher than that of pure TiO2 for 9.57 μmol h-1 gcat-1. In addition, a tentative photocatalytic mechanism is proposed to understand the enhancement mechanism over Fe-Ni codoped and Ag deposited anatase TiO2.

  17. Direct laser writing of μ-chips based on hybrid C-Au-Ag nanoparticles for express analysis of hazardous and biological substances.

    PubMed

    Bashouti, M Y; Manshina, A; Povolotckaia, A; Povolotskiy, A; Kireev, A; Petrov, Y; Mačković, M; Spiecker, E; Koshevoy, I; Tunik, S; Christiansen, S

    2015-04-01

    Micro-chips based on organic-inorganic hybrid nanoparticles (NPs) composed of nanoalloys of gold (Au) and silver (Ag) embedded in an amorphous carbonaceous matrix (C-Au-Ag NPs) were prepared directly on a substrate by the laser-induced deposition (for short: LID) method. The C-Au-Ag NPs show a unique plasmon resonance which enhances Raman scattering of analytes, making the μ-chips suitable to detect ultra-low-volumes (10(-12) liter) and concentrations (10(-9) M) of bio-agents and a hazardous compound. These micro-chips constitute a novel, flexible solid-state device that can be used for applications in point-of-care diagnostics, consumer electronics, homeland security and environmental monitoring. PMID:25673275

  18. Sequential repetitive chemical reduction technique to study size-property relationships of graphene attached Ag nanoparticle

    NASA Astrophysics Data System (ADS)

    Haider, M. Salman; Badejo, Abimbola Comfort; Shao, Godlisten N.; Imran, S. M.; Abbas, Nadir; Chai, Young Gyu; Hussain, Manwar; Kim, Hee Taik

    2015-06-01

    The present study demonstrates a novel, systematic and application route synthesis approach to develop size-property relationship and control the growth of silver nanoparticles (AgNPs) embedded on reduced graphene oxide (rGO). A sequential repetitive chemical reduction technique to observe the growth of silver nanoparticles (AgNPs) attached to rGO, was performed on a single solution of graphene oxide (GO) and silver nitrate solution (7 runs, R1-R7) in order to manipulate the growth and size of the AgNPs. The physical-chemical properties of the samples were examined by RAMAN, XPS, XRD, SEM-EDAX, and HRTEM analyses. It was confirmed that AgNPs with diameter varying from 4 nm in first run (R1) to 50 nm in seventh run (R7) can be obtained using this technique. A major correlation between particle size and activities was also observed. Antibacterial activities of the samples were carried out to investigate the disinfection performance of the samples on the Gram negative bacteria (Escherichia coli). It was suggested that the sample obtained in the third run (R3) exhibited the highest antibacterial activity as compared to other samples, toward disinfection of bacteria due to its superior properties. This study provides a unique and novel application route to synthesize and control size of AgNPs embedded on graphene for various applications.

  19. Synthesis, Characterizations of Superparamagnetic Fe3O4-Ag Hybrid Nanoparticles and Their Application for Highly Effective Bacteria Inactivation.

    PubMed

    Tung, Le Minh; Cong, Nguyen Xuan; Huy, Le Thanh; Lan, Nguyen Thi; Phan, Vu Ngoc; Hoa, Nguyen Quang; Vinh, Le Khanh; Thinh, Nguyen Viet; Tai, Le Thanh; Ngo, Duc-The; Mølhave, Kristian; Huy, Tran Quang; Le, Anh-Tuan

    2016-06-01

    In recent years, outbreaks of infectious diseases caused by pathogenic micro-organisms pose a serious threat to public health. In this work, Fe3O4-Ag hybrid nanoparticles were synthesized by simple chemistry method and these prepared nanoparticles were used to investigate their antibacterial properties and mechanism against methicilline-resistant Staphylococcus aureus (MRSA) pathogen. The formation of dimer-like nanostructure of Fe3O4-Ag hybrid NPs was confirmed by X-ray diffraction and High-resolution Transmission Electron Microscopy. Our biological analysis revealed that the Fe3O4-Ag hybrid NPs showed more noticeable bactericidal activity than that of plain Fe3O4 NPs and Ag-NPs. We suggest that the enhancement in bactericidal activity of Fe3O4-Ag hybrid NPs might be likely from main factors such as: (i) enhanced surface area property of hybrid nanoparticles; (ii) the high catalytic activity of Ag-NPs with good dispersion and aggregation stability due to the iron oxide magnetic carrier, and (iii) large direct physical contacts between the bacterial cell membrane and the hybrid nanoparticles. The superparamagnetic hybrid nanoparticles of iron oxide magnetic nanoparticles decorated with silver nanoparticles can be a potential candidate to effectively treat infectious MRSA pathogen with recyclable capability, targeted bactericidal delivery and minimum release into environment. PMID:27427651

  20. A facile and controllable strategy to synthesize Au-Ag alloy nanoparticles within polyelectrolyte multilayer nanoreactors upon thermal reduction.

    PubMed

    Shang, Li; Jin, Lihua; Guo, Shaojun; Zhai, Junfeng; Dong, Shaojun

    2010-05-01

    A new synthesis strategy has been developed for the preparation of bimetallic gold-silver (Au-Ag) alloy nanoparticles by the virtue of polyelectrolyte multilayer (PEM) nanoreactors. By controlling the assembly conditions, gold and silver ions can be effectively loaded onto the PEM composed of polyethylenimine (PEI) and poly(acrylic acid) (PAA) simultaneously. Upon further thermal treatment, Au-Ag alloy nanoparticles with sizes of ca. 3.8 nm formed in the PEM, which were characterized in detail by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) analysis. Appearance of a single plasmon band in the visible region and lack of apparent core-shell structures in the TEM images confirm the formation of homogeneous Au-Ag alloy nanoparticles. In addition, the surface plasmon absorption band of the Au-Ag alloy nanoparticles shows linear blue-shift with increasing Ag content, which also supported the formation of alloy nanoparticles. Several key parameters of the present strategy have been investigated, which showed that pH of both the assembly solution and gold salt solution and the choice of polymers for constructing PEM, as well as the reduction approach, all played an important role in successfully synthesizing bimetallic Au-Ag nanoparticles. The formation mechanism of alloy nanoparticles has also been discussed based on the spectral evolution during the thermal reduction. PMID:20017511

  1. Deposition of Pd–Ag thin film membranes on ceramic supports for hydrogen purification/separation

    SciTech Connect

    Pereira, A.I.; Pérez, P.; Rodrigues, S.C.; Mendes, A.; Madeira, L.M.

    2015-01-15

    Highlights: • Thin film Pd–Ag membranes have been produced for hydrogen selectivity. • Magnetron sputtering yields Pd–Ag compact films for atomic H diffusion. • The thin film Pd–Ag membranes yielded a selectivity of α (H{sub 2}/N{sub 2}) = 10. - Abstract: Pd–Ag based membranes supported on porous α-Al{sub 2}O{sub 3} (doped with yttria-stabilized zirconia) were studied for hydrogen selective separation. Magnetron sputtering technique was employed for the synthesis of thin film membranes. The hydrogen permeation flux is affected by the membrane columnar structure, which is formed during deposition. From scanning electron microscopy analysis, it was observed that different sputtering deposition pressures lead to distinct columnar structure growth. X-ray diffraction patterns provided evidence of a Pd–Ag solid solution with an average crystallite domain size of 21 nm, whose preferential growth can be altered by the deposition pressure. The gas-permeation results have shown that the Pd–Ag membrane supported on porous α-Al{sub 2}O{sub 3} is selective toward H{sub 2}. For optimized membrane synthesis conditions, the permeance toward N{sub 2} is 0.076 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1} at room temperature, whereas for a pressure difference of 300 kPa the H{sub 2}-flux is of the order of ca. 0.21 mol m{sup −2} s{sup −1}, which corresponds to a permeance of 0.71 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1}, yielding a selectivity of α (H{sub 2}/N{sub 2}) = 10. These findings suggest that the membrane has a reasonable capacity to selectively permeate this gas.

  2. Fast preparation of Bi{sub 2}GeO{sub 5} nanoflakes via a microwave-hydrothermal process and enhanced photocatalytic activity after loading with Ag nanoparticles

    SciTech Connect

    Li, Zhao-Qian; Lin, Xin-Shan; Zhang, Lei; Chen, Xue-Tai; Xue, Zi-Ling

    2012-09-15

    Highlights: ► Bi{sub 2}GeO{sub 5} nanoflakes were successfully synthesized via a microwave-assisted solution-phase approach. ► Ag nanoparticles were deposited on the Bi{sub 2}GeO{sub 5} nanoflakes by a photoreduction procedure. ► Catalytic activity of the Ag/Bi{sub 2}GeO{sub 5} nanocomposite in the photo-degradation of rhodamine B (RhB) was much higher than that of pure Bi{sub 2}GeO{sub 5}. -- Abstract: In this work, a facile and rapid microwave-assisted hydrothermal route has been developed to prepare Bi{sub 2}GeO{sub 5} nanoflakes. Ag nanoparticles were subsequently deposited on the Bi{sub 2}GeO{sub 5} nanoflakes by a photoreduction procedure. The phases and morphologies of the products were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV–vis diffuse reflectance spectroscopy. Photocatalytic experiments indicate that such Ag/Bi{sub 2}GeO{sub 5} nanocomposite possesses higher photocatalytic activity for RhB degradation under UV light irradiation in comparison to pure Bi{sub 2}GeO{sub 5}. The amount of Ag in the nanocomposite affects the catalytic activity, and 3 wt% Ag showed the highest photodegradation efficiency. Moreover, the catalyst remains active after four consecutive tests. The present study provides a new strategy to design composite materials with enhanced photocatalytic activity.

  3. Decoration of crumpled rGO sheets with Ag nanoparticles by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Papailias, I.; Giannouri, M.; Trapalis, A.; Todorova, N.; Giannakopoulou, T.; Boukos, N.; Lekakou, C.

    2015-12-01

    In this work, crumpled reduced graphene oxide (rGO) nanostructures were produced using spray pyrolysis technique. Graphite oxide (GtO) prepared through a modified Hummers method was used as starting material. Water dispersions of graphene oxide (GO) were prepared and sprayed in a tube furnace at 300 °C, 500 °C and 700 °C using Argon (Ar) as carrier gas. Also, precursor dispersions with different AgNO3 concentrations were processed at the same conditions. During the treatment, the sprayed droplets underwent rapid heating and then gradual cooling until the exit of the oven, where crumpled rGO and Ag/rGO powders were collected. The prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and FT-IR spectroscopy. It was established that the crumpling of the nanosheets was slightly affected by the increase of the process temperature. Crumpled morphologies were obtained even at low temperature of 300 °C. In contrast, the degree of GO reduction was temperature dependent and increased with the increase of the temperature. The incorporation of Ag nanoparticles was evidenced by the XRD and TEM analysis with the size of the Ag nanoparticles to grow as the concentration of AgNO3 and/or the process temperature increased. SERS effect in the Raman spectra of the Ag/rGO materials was observed that reached a maximum at 500 °C. Spray pyrolysis was suggested as a simple, controllable and scalable route for the instantaneous crumpling, reduction and decoration of GO nanosheets with metal/metal oxide nanoparticles.

  4. Bactericidal and biocompatible properties of TiN/Ag multilayered films by ion beam assisted deposition.

    PubMed

    Zhao, J; Cai, X M; Tang, H Q; Liu, T; Gu, H Q; Cui, R Z

    2009-12-01

    Nanoscale TiN/Ag multilayered films of thickness 500 nm were synthesized on AISI317 stainless steel by ion beam assisted deposition (IBAD) with the modulation period of 4, 5, 6, 7.5, and 12 nm. The bactericidal and biocompatible properties of TiN/Ag multilayered films were investigated through Gram negative E. coli bacteria and L929 cells (mice fibroblast) as well as human umbilical vein endothelial cells (HUVEC). The results show that the TiN/Ag multilayered films with the modulation period of 7.5 nm possess the strongest bactericidal property. The cytotoxicity grade of TiN/Ag multilayered coating with the modulation periods of 7.5 nm, 12 nm is in 0-1 scope, which indicates this film has no cytotoxicity to L929. HUVEC on TiN/Ag multilayered film grows well and shows good cellularity. Auger electronic spectroscopy reveals the relationship between the structure of TiN/Ag multilayered film and the biomedical properties. PMID:18553178

  5. Electrospray methodologies for characterization and deposition of nanoparticles

    NASA Astrophysics Data System (ADS)

    Modesto Lopez, Luis Balam

    Electrospray is an aerosolization method that generates highly charged droplets from solutions or suspensions and, after a series of solvent evaporation -- droplet fission cycles, it results in particles carrying multiple charges. Highly charged particles are used in a variety of applications, including particle characterization, thin film deposition, nanopatterning, and inhalation studies among several others. In this work, a soft X-ray photoionization was coupled with an electrospray to obtain monodisperse, singly charged nanoparticles for applications in online size characterization with electrical mobility analysis. Photoionization with the soft X-ray charger enhanced the diffusion neutralization rate of the highly charged bacteriophages, proteins, and solid particles. The effect of nanoparticle surface charge and nanoparticle agglomeration in liquids on the electrospray process was studied experimentally and a modified expression to calculate the effective electrical conductivity of nanosuspensions was proposed. The effective electrical conductivity of TiO2 nanoparticle suspensions is strongly dependent on the electrical double layer and the agglomeration dynamics of the particles; and such dependence is more remarkable in liquids with low ionic strength. TiO2 nanoparticle agglomerates with nearly monodisperse sizes in the nanometer and submicrometer ranges were generated, by electrospraying suspensions with tuned effective electrical conductivity, and used to deposit photocatalytic films for water-splitting. Nanostructured films of iron oxide with uniform distribution of particles over the entire deposition area were formed with an electrospray system. The micro-Raman spectra of the iron oxide films showed that transverse and longitudinal optical modes are highly sensitive to the crystallize size of the electrospray-deposited films. The fabrication of films of natural light-harvesting complexes, with the aim of designing biohybrid photovoltaic devices, was

  6. Breathing Raman modes in Ag2S nanoparticles obtained from F9 zeolite matrix

    NASA Astrophysics Data System (ADS)

    Delgado-Beleño, Y.; Cortez-Valadez, M.; Martinez-Nuñez, C. E.; Britto Hurtado, R.; Alvarez, Ramón A. B.; Rocha-Rocha, O.; Arizpe-Chávez, H.; Perez-Rodríguez, A.; Flores-Acosta, M.

    2015-12-01

    Ag2S nanoparticles were synthesized with a combination of synthetic F9, silver nitrate (AgNO3) and monohydrated sodium sulfide (Na2S9H2O). An ionic exchange was achieved via hydrothermal reaction. Nanoparticles with a predominant size ranging from 2 to 3 nm were obtained through Transmission Electron Microscopy (TEM). The nanoparticles feature a phase P21/n (14) monoclinic structure. A Raman band can be observed at around 250 cm-1 in the nanoparticles. Furthermore, the vibrational properties and stability parameters of the clusters (AgS)n, (with n = 2-9) were studied by the Density Functional Theory (DFT). The approximation levels used with DFT were: Local Spin Density Approximation (LSDA) and Becke's three-parameter and the gradient corrected functional of Lee, Yang and Puar (B3LYP) in combination with the basis set LANL2DZ (the effective core potentials and associated double-zeta valence). The Radial Breathing Mode (RBM) for B3LYP was found between 227 and 295 cm-1 as well as in longer wavelengths for LSDA.

  7. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.

    PubMed

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Vinogradova, Ekaterina; Ayon, Arturo A

    2014-09-10

    In recent years, there has been considerable interest in the use of plasmons, that is, free electron oscillations in conductors, to boost the performance of both organic and inorganic thin film solar cells. This has been driven by the possibility of employing thin active layers in solar cells in order to reduce materials costs, and is enabled by significant advances in fabrication technology. The ability of surface plasmons in metallic nanostructures to guide and confine light in the nanometer scale has opened up new design possibilities for solar cell devices. Here, we report the synthesis and characterization of highly monodisperse, reasonably stable, multipode Au/Ag bimetallic nanostructures using an inorganic additive as a ligand for photovoltaic applications. A promising surface enhanced Raman scattering (SERS) effect has been observed for the synthesized bimetallic Au/Ag multispiked nanoparticles, which compare favorably well with their Au and Ag spherical nanoparticle counterparts. The synthesized plasmonic nanostructures were incorporated on the rear surface of an ultrathin planar c-silicon/organic polymer hybrid solar cell, and the overall effect on photovoltaic performance was investigated. A promising enhancement in solar cell performance parameters, including both the open circuit voltage (VOC) and short circuit current density (JSC), has been observed by employing the aforementioned bimetallic multispiked nanoparticles on the rear surface of solar cell devices. A power conversion efficiency (PCE) value as high as 7.70% has been measured in a hybrid device with Au/Ag multispiked nanoparticles on the rear surface of an ultrathin, crystalline silicon (c-Si) membrane (∼ 12 μm). This value compares well to the measured PCE value of 6.72% for a similar device without nanoparticles. The experimental observations support the hope for a sizable PCE increase, due to plasmon effects, in thin-film, c-Si solar cells in the near future. PMID:25137194

  8. Magnetic properties of Co/Ag core/shell nanoparticles prepared by successive reactions in microemulsions

    NASA Astrophysics Data System (ADS)

    Rivas, J.; Garcia-Bastida, A. J.; Lopez-Quintela, M. A.; Ramos, C.

    2006-05-01

    Co nanoparticles with an Ag covering layer have been prepared by successive reactions in microemulsions. Their magnetic behavior was studied as a function of heat treatment. It was confirmed that, under the experimental conditions of this study, the size of the Co nuclei is limited by the reactant concentration, whereas the Ag covering is fixed by microemulsion droplet size. The as-prepared particles contain mainly Co 3O 4 nuclei, and present high effective moments that agree with the spin state of Co 3+. The observed magnetic behaviors were explained taking into account the intra- and inter-particle structural evolution of the particle assemblies annealed under different experimental conditions.

  9. A low-cost, environment-friendly and solvent-free route for synthesis of AgBr nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahsavani, Ensieh; Khalaji, Aliakbar Dehno; Feizi, Nourollah; Das, Debasis; Matalobos, Jesus Sanmartin; Kučeráková, Monika; Dušek, Michal

    2015-06-01

    We report on the synthesis of AgBr nanoparticles average size below 20 nm by from AgNO3 and a thiosemicarbazone ligand, Brcatsc [Brcatsc = 2-bromo-3-phenylpropenalthiosemicarbazone]. Brcatsc was prepared by reacting α-bromocinnam-aldehyde and thiosemicarbazide (1:1, molar ratio) in hot ethanol characterized by elemental analyses (CHN), FT-IR, 1H NMR spectroscopy and single crystal X-ray diffraction. AgBr nanoparticles were prepared by heating the mixture of AgNO3 and Brcatsc at 600 °C for 3 h under aerobic condition, and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD pattern clearly indicates the formation of AgBr nanoparticles while SEM and TEM results reveal their uniformity and purity.

  10. Ag3PO4 nanoparticles loaded on 3D flower-like spherical MoS2: a highly efficient hierarchical heterojunction photocatalyst.

    PubMed

    Wang, Li; Chai, Yuanyuan; Ren, Jia; Ding, Jing; Liu, Qianqian; Dai, Wei-Lin

    2015-09-01

    Novel 3D hierarchical Ag3PO4/MoS2 composites were successfully prepared through a facile and reproducible hydrothermal-in situ precipitation method. The 3D flower-like spherical MoS2 nanoarchitectures acted as an excellent supporting matrix for the in situ growth of Ag3PO4 nanoparticles. The photocatalytic performance of the composites and the effect of the amount of MoS2 were investigated. The obtained hierarchical Ag3PO4/MoS2 composites exhibited significantly enhanced performance for photocatalytic oxidation of Rhodamine B (RhB) compared with pure Ag3PO4 under visible light irradiation. Ag3PO4/MoS2 composites with 15 wt% of MoS2 showed the optimal photoactivity for the degradation of RhB, which was approximately 4.8 times as high as that of pure Ag3PO4. What's more, the optimal Ag3PO4/MoS2 composite also showed better photodegradation efficiency for methyl orange (MO) and p-chlorophenol (4-CP) than pure Ag3PO4. More attractively, the stability of Ag3PO4 was improved after the in situ deposition of Ag3PO4 particles on the surface of MoS2 nanoflakes due to the conductivity of MoS2 itself as electron acceptors. The enhanced performance of the hierarchical Ag3PO4/MoS2 composites under visible light was caused by a synergistic effect including the improved separation of photogenerated charge carriers, boosted light harvesting, a relatively high surface area and matching energy band structures between the two components. Interestingly, the heterostructured Ag3PO4/MoS2 composite reduced the use of the noble metal silver, thereby effectively reducing the cost of the Ag3PO4 based photocatalyst. Ultimately, a MoS2 involved photocatalytic mechanism for the hierarchical Ag3PO4/MoS2 composites was also proposed. PMID:26212501

  11. Ag nanoparticles-embedded surface plasmonic InGaN-based solar cells via scattering and localized field enhancement.

    PubMed

    Shim, Jae-Phil; Choi, Sang-Bae; Kong, Duk-Jo; Seo, Dong-Ju; Kim, Hyung-Jun; Lee, Dong-Seon

    2016-07-11

    Ag nanoparticles are embedded in intentionally etched micro-circle p-GaN holes by means of a thermal agglomeration process to enhance the light absorption efficiency in InGaN/GaN multi-quantum-well (MQW) solar cells. The Ag nanoparticles are theoretically and experimentally verified to generate the plasmon light scattering and the localized field enhancement near the MQW absorption layer. The external quantum efficiency enhancement at a target wavelength region is demonstrated by matching the plasmon resonance of Ag nanoparticles, resulting in a Jsc improvement of 9.1%. Furthermore, the Ag-nanoparticle-embedded InGaN solar cell is effectively fabricated considering the carrier extraction that more than 70% of F.F. and 2.2 V of high Voc are simultaneously attained. PMID:27410903

  12. Immobilization of Highly Dispersed Ag Nanoparticles on Carbon Nanotubes Using Electron-Assisted Reduction for Antibacterial Performance.

    PubMed

    Yan, Xiaoliang; Li, Sha; Bao, Jiehua; Zhang, Nan; Fan, Binbin; Li, Ruifeng; Liu, Xuguang; Pan, Yun-Xiang

    2016-07-13

    Silver nanoparticles (Ag NPs) supported on certain materials have been widely used as disinfectants. Yet, to date, the antibacterial activity of the supported Ag NPs is still far below optimum. This is mainly associated with the easy aggregation of Ag NPs on the supporting materials. Herein, an electron-assisted reduction (EAR) method, which is operated at temperatures as low as room temperature and without using any reduction reagent, was employed for immobilizing highly dispersed Ag NPs on aminated-CNTs (Ag/A-CNTs). The average Ag NPs size on the EAR-prepared Ag/A-CNTs is only 3.8 nm, which is much smaller than that on the Ag/A-CNTs fabricated from the traditional thermal calcination (25.5 nm). Compared with Ag/A-CNTs fabricated from traditional thermal calcination, EAR-prepared Ag/A-CNTs shows a much better antibacterial activity to E. coli/S. aureus and antifouling performance to P. subcordiformis/T. lepidoptera. This is mainly originated from the significantly enhanced Ag(+) ion releasing rate and highly dispersed Ag NPs with small size on the EAR-prepared Ag/A-CNTs. The findings from the present work are helpful for fabricating supported Ag NPs with small size and high dispersion for efficient antibacterial process. PMID:27327238

  13. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate.

    PubMed

    Wolf, Steffen; Rensberg, Jura; Johannes, Andreas; Thomae, Rainer; Smit, Frederick; Neveling, Retief; Moodley, Mathew; Bierschenk, Thomas; Rodriguez, Matias; Afra, Boshra; Bin Hasan, Shakeeb; Rockstuhl, Carsten; Ridgway, Mark; Bharuth-Ram, Krish; Ronning, Carsten

    2016-04-01

    Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic (84)Kr and (197)Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm(-1) in the top layer of the samples. Due to the high electronic energy losses of the irradiating ions, molten ion tracks are formed inside the lithium niobate in which the elongated Ag nanoparticles are formed. This process is strongly dependent on the initial particle size and leads to a broad aspect ratio distribution. Extinction spectra of the samples feature the extinction maximum with shoulders on either side. While the maximum is caused by numerous remaining spherical nanoparticles, the shoulders can be attributed to elongated particles. The latter could be verified by COMSOL simulations. The extinction spectra are thus a superposition of the spectra of all individual particles. PMID:26902734

  14. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate

    NASA Astrophysics Data System (ADS)

    Wolf, Steffen; Rensberg, Jura; Johannes, Andreas; Thomae, Rainer; Smit, Frederick; Neveling, Retief; Moodley, Mathew; Bierschenk, Thomas; Rodriguez, Matias; Afra, Boshra; Hasan, Shakeeb Bin; Rockstuhl, Carsten; Ridgway, Mark; Bharuth-Ram, Krish; Ronning, Carsten

    2016-04-01

    Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic 84Kr and 197Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm-1 in the top layer of the samples. Due to the high electronic energy losses of the irradiating ions, molten ion tracks are formed inside the lithium niobate in which the elongated Ag nanoparticles are formed. This process is strongly dependent on the initial particle size and leads to a broad aspect ratio distribution. Extinction spectra of the samples feature the extinction maximum with shoulders on either side. While the maximum is caused by numerous remaining spherical nanoparticles, the shoulders can be attributed to elongated particles. The latter could be verified by COMSOL simulations. The extinction spectra are thus a superposition of the spectra of all individual particles.

  15. An optimized nanoparticle separator enabled by electron beam induced deposition.

    PubMed

    Fowlkes, J D; Doktycz, M J; Rack, P D

    2010-04-23

    Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism for depositing/etching nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam-interaction region. Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub-50 nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular-sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects) and (2) preserved the fidelity of the spacing between nanopillars (which maximizes the size-based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing. PMID:20351412

  16. An Optimized Nanoparticle Separator Enabled by Electron Beam Induced Deposition

    SciTech Connect

    Fowlkes, Jason Davidson; Doktycz, Mitchel John; Rack, P. D.

    2010-01-01

    Size based separations technologies will inevitably benefit from advances in nanotechnology. Direct write nanofabrication provides a useful mechanism to deposit/etch nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition (EBID) was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam interaction region (BIR). Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub 50nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects), (2) preserved the fidelity of spacing between nanopillars (which maximizes the size based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.

  17. SEM Analysis of Electrophoretically-Deposited Nanoparticle Films

    NASA Astrophysics Data System (ADS)

    Verma, Neil

    Cobalt ferrite nanoparticles (20 nm) were synthesized and electrophoretically deposited onto aluminum foil, graphite paper, and carbon felt in order to study its potential as a cost-effective electrocatalyst for the oxidation of ammonium sulfite to ammonium sulfate in a proposed sulfur ammonia thermochemical cycle. Scanning electron microscopy and linear sweep voltammetry were used to characterize the deposited films and investigate their electrochemical activity. Furthermore, the effects of electrophoretic deposition conditions on deposit morphology and subsequently the effects of deposit morphology on electrochemical activity in 2 M ammonium sulfite were studied to better understand how to improve electrocatalysts. It was found that there is a critical deposit thickness for each substrate, where additional deposited particles reduce overall electrocatalytic activity of the deposits. For graphite paper, this thickness was estimated to be 3 particle layers for the EPD conditions studied. The 3 particle layer film on graphite paper resulted in a 5.5 fold increase in current density from a blank graphite paper substrate. For carbon felt, the deposit thickness threshold was calculated to be 0.13 of a particle layer for the EPD conditions studied. Moreover, this film was found to have a 4.3 fold increase in current density from a blank carbon felt substrate.

  18. Green synthesis and applications of Au-Ag bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena Kumari, M.; Jacob, John; Philip, Daizy

    2015-02-01

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenol < k2-nitrophenol < k3-nitrophenol. Thermal conductivity is measured as a function of volume fraction and it is observed that the incorporation of the alloy nanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field.

  19. Green synthesis and applications of Au-Ag bimetallic nanoparticles.

    PubMed

    Meena Kumari, M; Jacob, John; Philip, Daizy

    2015-02-25

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenolnanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field. PMID:25218228

  20. Preparation of the egg membrane bandage contained the antibacterial Ag nanoparticles

    SciTech Connect

    Zhang, Jin; Duan, Guangwen; Fu, Yunzhi; Zhao, Jinsheng

    2015-02-15

    Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous aloe leaf extracts as both the reducing and capping agent. Transmission electron microscopy analysis revealed the average size of silver nanoparticles approximately 18.05 nm. Fourier transform infrared spectroscopy observation showed the estimation of two kinds of binding sites between aqueous aloe leaf and aqueous aloe leaf with silver nanoparticles. In addition, the critical roles of the concentration of silver nitrate, temperature, and reaction time in the formation of silver nanoparticles had been illustrated. Furthermore, silver nanoparticles were deposited on egg membrane bandage, forming a new egg membrane bandage that contained silver nanoparticles that exhibiting excellent antibacterial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, which was 2.5 times stronger than the commercially available bandage. - Graphical Abstract: Display Omitted.

  1. Relationship between the Porco, Bolivia, Ag-Zn-Pb-Sn deposit and the Porco Caldera

    USGS Publications Warehouse

    Cunningham, C.G.

    1994-01-01

    The Porco Ag-Zn-Pb-Sn deposit, a major Ag producer in the 16th century and currently the major Zn producer in Bolivia, consists of a swarm of fissure-filling veins in the newly recognized Porco caldera. The caldera measures 5 km by 3 km and formed in response to the eruption of the 12 Ma crystal-rich dacitic Porco Tuff. The mineralization is associated with, and is probably genetically related to, the 8.6 Ma Huayna Porco stock. The Porco deposit consists of steeply dipping irregular and curvilinear veins that cut the intracaldera Porco Tuff about 1 km east of the Huayna Porco stock. Most of the veins are aligned along the structural margin (ring fracture) of the caldera. The ore deposit is zoned around the Huayna Porco stock. The primary Ag minerals are most abundant in the upper parts of the viens. Fluid inclusions in sphalerite stalactites have homogenization temperatures of about 225??C and salinities of about 8 wt% NaCl equiv. The stalactites and the presence of sparse vapor-rich inclusions suggest deposition of sphalerite under boiling conditions. -from Authors

  2. A composition and size controllable approach for Au-Ag alloy nanoparticles

    PubMed Central

    2012-01-01

    A capillary micro-reaction was established for the synthesis of Au-Ag alloy nanoparticles (NPs) with a flexible and controllable composition and grain size by tuning the synthesis temperature, the residence time, or the mole ratio of Au3+:Ag+. By extending the residence time from 5 to 900 s, enhancing the temperature from 120°C to 160°C, or decreasing the mole ratio of Au3+:Ag+ from 1:1 to 1:20, the composition of samples was changed continuously from Au-rich to Ag-rich. The particles became large with the increase of the residence time; however, synthesis temperatures showed less effect on the particle size change. The particle size of the Au-Ag alloy NPs with various composition could be kept by adjusting the mole ratio of Au3+:Ag+. TEM observation displayed that the as-obtained NPs were sphere-like with the smallest average size of 4.0 nm, which is half of those obtained by the traditional flask method. PMID:22513005

  3. Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF4: Yb(3+), Er(3+) Nanoparticles.

    PubMed

    Shao, Bo; Yang, Zhengwen; Wang, Yida; Li, Jun; Yang, Jianzhi; Qiu, Jianbei; Song, Zhiguo

    2015-11-18

    Rare-earth-ion-doped upconversion (UC) nanoparticles have generated considerable interest because of their potential application in solar cells, biological labeling, therapeutics, and imaging. However, the applications of UC nanoparticles were still limited because of their low emission efficiency. Photonic crystals and noble metal nanoparticles are applied extensively to enhance the UC emission of rare earth ions. In the present work, a novel substrate consisting of inverse opal photonic crystals and Ag nanoparticles was prepared by the template-assisted method, which was used to enhance the UC emission of NaYF4: Yb(3+), Er(3+) nanoparticles. The red or green UC emissions of NaYF4: Yb(3+), Er(3+) nanoparticles were selectively enhanced on the inverse opal substrates because of the Bragg reflection of the photonic band gap. Additionally, the UC emission enhancement of NaYF4: Yb(3+), Er(3+) nanoparticles induced by the coupling of metal nanoparticle plasmons and photonic crystal effects was realized on the Ag nanoparticles included in the inverse opal substrate. The present results demonstrated that coupling of Ag nanoparticle with inverse opal photonic crystals provides a useful strategy to enhance UC emission of rare-earth-ion-doped nanoparticles. PMID:26496243

  4. Generation of Localized Surface Plasmon Resonance Using Hybrid Au-Ag Nanoparticle Arrays as a Sensor of Polychlorinated Biphenyls Detection.

    PubMed

    Liu, Jing; Cai, Haoyuan; Chen, Chaoyang; Yang, Guangsong; Yang, Cheng-Fu

    2016-01-01

    In this study, the hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate periodic nanoparticle arrays (PNAs) were designed to investigate their extinction spectra of the localized surface plasmon resonances (LSPRs). First, their simulating extinction spectra were calculated by discrete dipole approximation (DDA) numerical method by changing the media refractive index. Simulation results showed that as the media refractive index was changed from 1.0 to 1.2, the maximum peak intensity of LSPRs spectra had no apparent change and the wavelength to reveal the maximum peak intensity of LSPRs spectra was shifted lower value. Polystyrene (PS) nanospheres with two differently arranged structures were used as the templates to deposit the hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate periodic PNAs by evaporation method. The hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate PNAs were grown on single crystal silicon (c-Si) substrates, and their measured extinction spectra were compared with the calculated results. Finally, the fabricated hexagonal lattices of triangular PNAs were investigated as a sensor of polychlorinated biphenyl solution (PCB-77) by observing the wavelength to reveal the maximum extinction efficiency (λmax). We show that the adhesion of β-cyclodextrins (SH-β-CD) on the hybrid Au-Ag hexagonal lattice of triangular PNAs could be used to increase the variation of λmax. We also demonstrate that the adhesion of SH-β-CD increases the sensitivity and detection effect of PCB-77 in hexagonal lattice of triangular PNAs. PMID:27527188

  5. Mechanical reinforcement of nanoparticle thin films using atomic layer deposition.

    PubMed

    Dafinone, Majemite I; Feng, Gang; Brugarolas, Teresa; Tettey, Kwadwo E; Lee, Daeyeon

    2011-06-28

    Thin films composed of nanoparticles exhibit synergistic properties, making them useful for numerous advanced applications. Nanoparticle thin films (NTFs), however, have a very low resistance to mechanical loading and abrasion, presenting a major bottleneck to their widespread use and commercialization. High-temperature sintering has been shown to improve the mechanical durability of NTFs on inorganic substrates; however, these high-temperature processes are not amenable to organic substrates. In this study, we demonstrate that the mechanical durability of TiO(2)/SiO(2) nanoparticle layer-by-layer (LbL) films on glass and polycarbonate substrates can be drastically improved using atomic layer deposition (ALD) at a relatively low temperature. The structure and physical properties of ALD-treated TiO(2)/SiO(2) nanoparticle LbL films are studied using spectroscopic ellipsometry, UV-vis spectroscopy, contact angle measurements, and nanoindentation. The composition of TiO(2)/SiO(2) LbL films as a function of ALD-cycle number is determined through solution ellipsometry, enabling the determination of the characteristic pore size of nanoparticle thin films. Mechanical durability is also investigated by abrasion tests, showing that the robustness of ALD-treated nanoparticle films is comparable to that of thermally calcined films. More importantly, ALD-treated nanoparticle films retain the original functionality of the TiO(2)/SiO(2) LbL films, such as superhydrophilicity and antireflection properties, demonstrating the utility of ALD as a reinforcement method for nanoparticle thin films. PMID:21557541

  6. Fluorescence turn-on detection of glucose via the Ag nanoparticle mediated release of a perylene probe.

    PubMed

    Li, Juanmin; Li, Yongxin; Shahzad, Sohail Anjum; Chen, Jian; Chen, Yang; Wang, Yan; Yang, Meiding; Yu, Cong

    2015-04-14

    A novel fluorescence turn-on strategy for glucose sensing is demonstrated. The fluorescence of a perylene probe could be quenched by the silver nanoparticles (Ag NPs). The Ag NPs could be etched by H2O2 generated from the enzymatic oxidation of glucose. And efficient probe fluorescence recovery was detected. PMID:25763414

  7. Enhanced hydrogenation and reduced lattice distortion in size selected Pd-Ag and Pd-Cu alloy nanoparticles

    SciTech Connect

    Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.; Khan, S. A.

    2013-10-21

    Important correlation between valence band spectra and hydrogenation properties in Pd alloy nanoparticles is established by studying the properties of size selected and monocrystalline Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles. The X-ray photoelectron spectroscopy and elastic recoil detection analysis show that size induced Pd4d centroid shift is related to enhanced hydrogenation with H/Pd ratio of 0.57 and 0.49 in Pd-Ag and Pd-Cu nanoparticles in comparison to reported bulk values of 0.2 and 0.1, respectively. Pd-alloy nanoparticles show lower hydrogen induced lattice distortion. The reduced distortion and higher hydrogen reactivity of Pd-alloy nanoparticles is important for numerous hydrogen related applications.

  8. Exchange bias in Ag/FeCo/Ag core/shell/shell nanoparticles due to partial oxidation of FeCo intermediate shell

    NASA Astrophysics Data System (ADS)

    Takahashi, Mari; Mohan, Priyank; Mott, Derrick M.; Maenosono, Shinya

    2016-03-01

    Recently we developed magnetic-plasmonic Ag/FeCo/Ag core/shell/shell nanoparticles for the purpose of biological applications. In these heterostructured nanoparticles, exchange bias is observed as a result of the formation of an interface between ferromagnetic FeCo and antiferromagnetic CoxFe1-xO due to the partial oxidation of the FeCo intermediate shell. In this study we thoroughly characterized the surface oxide layer of the FeCo shell by XPS, XRD and SQUID magnetometer.

  9. Depositing nanoparticles inside millimeter-size hollow tubing

    NASA Astrophysics Data System (ADS)

    Friedman, Alexandra; Perkas, Nina; Koltypin, Yuri; Gedanken, Aharon

    2012-01-01

    The inner and the outer walls of hollow tubing with an inner diameter of 0.4-0.9 cm and an outer diameter of 0.6-1.3 cm were coated with silver nanoparticles (NPs) by a one-step process using ultrasound irradiation. The structure and morphology of the nanoparticles (NPs) inside the hollow tubing and on the outer surface were characterized using methods such as XRD, TEM, HR-TEM, and HRSEM. The inner surface of the tubing was found to be coated with more silver than the outer surface. The coating was done on tubing made of rubber, PVC, Teflon and polyethylene. Sonochemistry is demonstrated as a method for depositing nanoparticles on the inner wall of a tube.

  10. Electrophoretic deposition of nickel zinc ferrite nanoparticles into microstructured patterns

    NASA Astrophysics Data System (ADS)

    Kelly, Stefan J.; Wen, Xiao; Arnold, David P.; Andrew, Jennifer S.

    2016-05-01

    Using DC electric fields, nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4) nanoparticles (Dh =16.6 ± 3.6 nm) are electrophoretically deposited onto silicon substrates to form dense structures defined by photoresist molds. Parameters such as electric field, bath composition, and deposition time are tuned to produce films ranging in thickness from 177 to 805 nm. The deposited films exhibit soft magnetic properties with a saturation magnetization of 60 emu/g and a coercivity of 2.6 kA/m (33 Oe). Additionally, the influence of the photoresist mold on the deposit profile is studied, and patterned films with different shapes (lines, squares, circles, etc.) are demonstrated with feature sizes down to 5 μm.

  11. Transport and deposition of Suwannee River Humic Acid/Natural Organic Matter formed silver nanoparticles on silica matrices: the influence of solution pH and ionic strength.

    PubMed

    Akaighe, Nelson; Depner, Sean W; Banerjee, Sarbajit; Sohn, Mary

    2013-07-01

    The transport and deposition of silver nanoparticles (AgNPs) formed from Ag(+) reduction by Suwannee River Humic Acid (SRHA) and Suwannee River Natural Organic Matter (SRNOM) utilizing a silica matrix is reported. The morphology and stability of the AgNPs was analyzed by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements. The percentage conversion of the initial [Ag(+)] to [AgNPs] was determined from a combination of atomic absorption (AAS) and UV-Vis spectroscopy, and centrifugation techniques. The results indicate higher AgNP transport and consequently low deposition in the porous media at basic pH conditions and low ionic strength. However, at low acidic pH and high ionic strength, especially with the divalent metallic cations, the mobility of the AgNPs in the porous media was very low, most likely due to NP aggregation. Overall, the results suggest the potential for AgNP contamination of subsurface soils and groundwater aquifers is mostly dependent on their aggregation state, controlled by the soil water and sediment ionic strength and pH. PMID:23422173

  12. Formation of diamond nanoparticle thin films by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Goto, Yosuke; Ohishi, Fujio; Tanaka, Kuniaki; Usui, Hiroaki

    2016-03-01

    Thin films of diamond nanoparticles were prepared by electrophoretic deposition (EPD) using 0.5 wt % dispersions in water, ethanol, and 2-propanol. The film growth rate increased with increasing voltage applied to the electrodes. However, an excessive increase in voltage caused the degradation of film morphology. The optimum voltage was 4 V with an electrode separation of 5 mm. The film growth rate was higher in organic solvents than in water. The deposited film had a smooth surface with an average surface roughness comparable to the size of primary particles of the source material. It is notable that the EPD films had a considerably higher physical stability than spin-coated and cast films. The stability was further improved by thermally annealing the films. IR analysis revealed that the diamond nanoparticles have carboxy and amino groups on their surfaces. It is considered that the stability of the EPD films originate from a chemical reaction between these functional groups.

  13. Tuning the properties of ZnO, hematite, and Ag nanoparticles by adjusting the surface charge.

    PubMed

    Zhang, Jianhui; Dong, Guanjun; Thurber, Aaron; Hou, Yayi; Gu, Min; Tenne, Dmitri A; Hanna, C B; Punnoose, Alex

    2012-03-01

    A poly (acryl acid) (PAA) post-treatment method is performed to modify the surface charge of ZnO nanospheres, hematite nanocubes, and Ag nanoprisms from highly positive to very negative by adjusting the PAA concentration, to and greatly modify their photoluminescence, cytotoxicity, magnetism, and surface plasmon resonance. This method provides a general way to tune the nanoparticle properties for broad physicochemical and biological applications. PMID:22298490

  14. Production of antibacterial colored viscose fibers using in situ prepared spherical Ag nanoparticles.

    PubMed

    Emam, Hossam E; Mowafi, Salwa; Mashaly, Hamada M; Rehan, Mohamed

    2014-09-22

    In situ incorporation technique was used for coloration and acquiring excellent antibacterial properties for viscose fibers by silver nanoparticles (AgNPs). AgNPs were prepared in situ and incorporated in viscose matrix directly without using any other reducing and stabilizing agents. The main objective of this research was to successfully employ the reducing and stabilizing features of cellulose to produce nanosilver-viscose composites. Coloration of fibers after in situ AgNPs incorporation is related to surface plasmon resonance of silver. Colorimetric data were recorded as a function of washings to characterize the final colored fibers. Fastness properties and silver release were all measured to study the washable and wear off properties. Depending on the silver concentration, yellowish colored fibers with different shades were produced. Good fastness properties were obtained after 20 washings without using any crosslinker or binder. The colored fibers had excellent antibacterial activities against Escherichia coli, even after 20 washings. PMID:24906741

  15. Rapid synthesis of ordered hexagonal mesoporous silica and their incorporation with Ag nanoparticles by solution plasma

    SciTech Connect

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang Yul

    2012-10-15

    Graphical abstract: Overall reactions of mesoporous silica and AgNPs-incorporated mesoporous silica syntheses by solution plasma process (SPP). Highlights: ► SPP for rapid synthesis of mesoporous silica. ► SPP for rapid synthesis of mesoporous silica and AgNPs incorporation. ► Higher surface area and larger pore diameter of mesoporous silica synthesized by SPP. -- Abstract: Rapid synthesis of silica with ordered hexagonal mesopore arrangement was obtained using solution plasma process (SPP) by discharging the mixture of P123 triblock copolymer/TEOS in acid solution. SPP, moreover, was utilized for Ag nanoparticles (AgNPs) incorporation in silica framework as one-batch process using silver nitrate (AgNO{sub 3}) solution as precursor. The turbid silicate gel was clearly observed after discharge for 1 min and the white precipitate formed at 3 min. The mesopore with hexagonal arrangement and AgNPs were observed in mesoporous silica. Two regions of X-ray diffraction patterns (2θ < 2° and 2θ = 35–90°) corresponded to the mesoporous silica and Ag nanocrystal characteristics. Comparing with mesoporous silica prepared by a conventional sol–gel route, surface area and pore diameter of mesoporous silica prepared by solution plasma were observed to be larger. In addition, the increase in Ag loading resulted in the decrease in surface area with insignificant variation in the pore diameter of mesoporous silica. SPP could be successfully utilized not only to enhance gelation time but also to increase surface area and pore diameter of mesoporous silica.

  16. One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers.

    PubMed

    Celebioglu, Asli; Aytac, Zeynep; Umu, Ozgun C O; Dana, Aykutlu; Tekinay, Turgay; Uyar, Tamer

    2014-01-01

    One-step synthesis of size-tunable silver nanoparticles (Ag-NP) incorporated into electrospun nanofibers was achieved. Initially, in situ reduction of silver salt (AgNO3) to Ag-NP was carried out in aqueous solution of polyvinyl alcohol (PVA). Here, PVA was used as reducing agent and stabilizing polymer as well as electrospinning polymeric matrix for the fabrication of PVA/Ag-NP nanofibers. Afterwards, hydroxypropyl-beta-cyclodextrin (HPβCD) was used as an additional reducing and stabilizing agent in order to control size and uniform dispersion of Ag-NP. The size of Ag-NP was ∼8 nm and some Ag-NP aggregates were observed for PVA/Ag-NP nanofibers, conversely, the size of Ag-NP decreased from ∼8 nm down to ∼2 nm within the fiber matrix without aggregation were attained for PVA/HPβCD nanofibers. The PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibers exhibited surface enhanced Raman scattering (SERS) effect. Moreover, antibacterial properties of PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibrous mats were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. PMID:24274573

  17. Enhanced formation of silver nanoparticles in Ag+-NOM-iron(II, III) systems and antibacterial activity studies.

    PubMed

    Adegboyega, Nathaniel F; Sharma, Virender K; Siskova, Karolina M; Vecerova, Renata; Kolar, Milan; Zbořil, Radek; Gardea-Torresdey, Jorge L

    2014-03-18

    This work reports the role of iron redox pair (Fe(3+)/Fe(2+)) in the formation of naturally occurring silver nanoparticles (AgNPs) in the aquatic environment. The results showed that Fe(3+) or Fe(2+) ions in the mixtures of Ag(+) and natural organic matter enhanced the formation of AgNPs. The formation of AgNPs depended on pH and types of organic matter. Increase in pH enhanced the formation of AgNPs, and humic acids as ligands showed higher formation of AgNPs compared to fulvic acids. The observed results were described by considering the potentials of redox pairs of silver and iron species and the possible species involved in reducing silver ions to AgNPs. Dynamic light scattering and transmission electron microscopy measurements of AgNPs revealed mostly bimodal size distribution with decrease in size of AgNPs due to iron species in the reaction mixture. Minimum inhibitory concentration of AgNPs needed to inhibit the growth of various bacterial species suggested the role of surfaces of tested Gram-positive and Gram-negative bacteria. Stability study of AgNPs, formed in Ag(+)-humic acid/fulvic acids-Fe(3+) mixtures over a period of several months showed high stability of the particles with significant increase in surface plasmon resonance peak. The environmental implications of the results in terms of fate, transport, and ecotoxicity of organic-coated AgNPs are briefly presented. PMID:24524189

  18. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles.

    PubMed

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-19

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO₂.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles. PMID:25757694

  19. Possible Mesozoic age of Ellenville Zn-Pb-Cu(Ag) deposit, Shawangunk Mountains, New York

    USGS Publications Warehouse

    Friedman, J.D.; Conrad, J.E.; McKee, E.H.; Mutschler, F.E.; Zartman, R.E.

    1994-01-01

    Ore textures, epithermal open-space filling of Permian structures of the Alleghanian orogeny, and largely postorogenic mineralization of the Ellenville, New York, composite Zn-Pb-Cu(Ag) vein system, provide permissive evidence for post-Permian mineralization. Isochron ages determined by 40Ar/39Ar laser-fusion techniques for K-bearing liquid inclusions in main-stage quartz from the Ellenville deposit additionally suggest a Mesozoic time of mineralization, associated with extensional formation of the Newark basin. The best 40Ar/39Ar total-fusion age range is 165 ?? 30 to 193 ?? 35 Ma. The Mesozoic 40Ar/39Ar age agrees with that of many other dated northern Appalachian Zn-Pb-Cu(Ag) deposits with near-matching lead isotope ratios, and adds new evidence of Jurassic tectonism and mineralization as an overprint to Late Paleozoic tectonism at least as far north as Ellenville (lat. 41??43???N). ?? 1994 Springer-Verlag.

  20. Ordered structure upon deposition of Ge on the monolayer silicene on Ag(111)

    NASA Astrophysics Data System (ADS)

    Chen, Han-De; Lin, Dengsung

    The growth of monolayer silicene on Ag (111) has been a hot research in recent years. The akin structure of the same group IV element: Germanene, has also been grown successfully on different metal substrates. In this investigation, Ge has been deposited by molecular beam epitaxy on the monolayer-thick silicene grown on Ag(111). Low-temperature scanning tunneling microscopy (LT-STM) has been employed to observed the surface morphology and atomic structure. On the (3 x 3)Si phase, only one Ge adatom is found on each (3 x 3)Si unit cell on two different sites, A and B. The deposited Ge adatoms prefer to settle around a unit cell that has already incorporated one Ge adatom, thereby forming two domains (3 x 3)A and (3 x 3)B. Results on (r7 x r7)Si superstructure showing local ordering will also be presented.

  1. Synthesis and Deposition of Nanoparticles Using a Hypersonically Expanded Plasma

    SciTech Connect

    Hafiz, Jami; Wang Xiaoliang; Mukherjee, Rajesh; McMurry, Peter H.; Heberlein, Joachim V.R.; Girshick, Steven L.

    2005-10-31

    Si-Ti-N nanostructured coatings were synthesized by inertial impaction of nanoparticles using a process called hypersonic plasma particle deposition (HPPD). Transmission electron microscopy on samples prepared by focused ion beam (FIB) milling show TiN nanocrystallites in an amorphous matrix. X-ray photoelectron spectroscopy results indicate the presence of amorphous Si3N4 in similar films. In-situ particle size distribution measurements show that particle size distributions peak around 14 nm under typical operating conditions.

  2. Synthesis of platinum nanoparticle electrocatalysts by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lubers, Alia Marie

    Demand for energy continues to increase, and without alternatives to fossil fuel combustion the effects on our environment will become increasingly severe. Fuel cells offer a promising improvement on current methods of energy generation; they are able to convert hydrogen fuel into electricity with a theoretical efficiency of up to 83% and interface smoothly with renewable hydrogen production. Fuel cells can replace internal combustion engines in vehicles and are used in stationary applications to power homes and businesses. The efficiency of a fuel cell is maximized by its catalyst, which is often composed of platinum nanoparticles supported on carbon. Economical production of fuel cell catalysts will promote adoption of this technology. Atomic layer deposition (ALD) is a possible method for producing catalysts at a large scale when employed in a fluidized bed. ALD relies on sequential dosing of gas-phase precursors to grow a material layer by layer. We have synthesized platinum nanoparticles on a carbon particle support (Pt/C) by ALD for use in proton exchange membrane fuel cells (PEMFCs) and electrochemical hydrogen pumps. Platinum nanoparticles with different characteristics were deposited by changing two chemistries: the carbon substrate through functionalization; and the deposition process by use of either oxygen or hydrogen as ligand removing reactants. The metal depositing reactant was trimethyl(methylcyclopentadienyl)platinum(IV). Functionalizing the carbon substrate increased nucleation during deposition resulting in smaller and more dispersed nanoparticles. Use of hydrogen produced smaller nanoparticles than oxygen, due to a gentler hydrogenation reaction compared to using oxygen's destructive combustion reaction. Synthesized Pt/C materials were used as catalysts in an electrochemical hydrogen pump, a device used to separate hydrogen fuel from contaminants. Catalysts deposited by ALD on functionalized carbon using a hydrogen chemistry were the most

  3. Characterization and Evaluation of Reverse Osmosis Membranes Modified with Ag2O Nanoparticles to Improve Performance.

    PubMed

    Al-Hobaib, Abdullah S; Al-Sheetan, Khalid M; Shaik, Mohammed Rafi; Al-Andis, Naser M; Al-Suhybani, M S

    2015-12-01

    The objective of this work was to prepare and characterize a new and highly efficient modified membrane by in situ interfacial polymerization on porous polysulfone supports. The process used m-phenylenediamine and trimesoyl chloride in hexane, incorporating silver oxide Ag2O nanoparticles of varied concentrations from 0.001 to 0.1 wt%. Ag2O nanoparticles were prepared at different sizes varying between 20 and 50 nm. The modified membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), transmission electron microscopy (TEM), and contact angle measurement. The results showed a smooth membrane surface and average surface roughness from 31 to 74 nm. Moreover, hydrophilicity improved and the contact angle decreased to 41° at 0.009 wt% silver oxide. The performances of the developed membranes were investigated by measuring permeate fluxes and salt rejection capability by passing NaCl solutions (2000 ppm) through the membranes at 225 psi. The results showed that the flux increased from 26 to 40.5 L/m(2) h, while the salt rejection was high, at 99 %, with 0.003 wt% Ag2O nanoparticles. PMID:26428014

  4. Anisotropic effective medium properties from interacting Ag nanoparticles in silicon dioxide.

    PubMed

    Menegotto, Thiago; Horowitz, Flavio

    2014-05-01

    Films containing a layer of Ag nanoparticles embedded in silicon dioxide were produced by RF magnetron sputtering. Optical transmittance measurements at several angles of incidence (from normal to 75°) revealed two surface plasmon resonance (SPR) peaks, which depend on electric field direction: one in the ultraviolet and another red-shifted from the dilute Ag/SiO₂ system resonance at 410 nm. In order to investigate the origin of this anisotropic behavior, the structural properties were determined by transmission electron microscopy, revealing the bidimensional plane distribution of Ag nanoparticles with nearly spherical shape as well as the filling factor of metal in the composite. A simple model linked to these experimental parameters allowed description of the most relevant features of the SPR positions, which, depending on the field direction, were distinctly affected by the coupling of oscillations between close nanoparticles, as described by a modified Drude-Lorentz dielectric function introduced into the Maxwell-Garnett relation. This approach allowed prediction of the resonance for light at 75° incidence from the SPR position for light at normal incidence, in good agreement with experimental observation. PMID:24921871

  5. Characterization and Evaluation of Reverse Osmosis Membranes Modified with Ag2O Nanoparticles to Improve Performance

    NASA Astrophysics Data System (ADS)

    Al-Hobaib, Abdullah S.; AL-Sheetan, Khalid M.; Shaik, Mohammed Rafi; Al-Andis, Naser M.; Al-Suhybani, M. S.

    2015-09-01

    The objective of this work was to prepare and characterize a new and highly efficient modified membrane by in situ interfacial polymerization on porous polysulfone supports. The process used m-phenylenediamine and trimesoyl chloride in hexane, incorporating silver oxide Ag2O nanoparticles of varied concentrations from 0.001 to 0.1 wt%. Ag2O nanoparticles were prepared at different sizes varying between 20 and 50 nm. The modified membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), transmission electron microscopy (TEM), and contact angle measurement. The results showed a smooth membrane surface and average surface roughness from 31 to 74 nm. Moreover, hydrophilicity improved and the contact angle decreased to 41° at 0.009 wt% silver oxide. The performances of the developed membranes were investigated by measuring permeate fluxes and salt rejection capability by passing NaCl solutions (2000 ppm) through the membranes at 225 psi. The results showed that the flux increased from 26 to 40.5 L/m2 h, while the salt rejection was high, at 99 %, with 0.003 wt% Ag2O nanoparticles.

  6. Sputter-deposition of silver nanoparticles into ionic liquid as a sacrificial reservoir in antimicrobial organosilicate nanocomposite coatings.

    PubMed

    Hamm, Steven C; Shankaran, Ravi; Korampally, Venu; Bok, Sangho; Praharaj, Snigdha; Baker, Gary A; Robertson, J David; Lee, Byung Doo; Sengupta, Shramik; Gangopadhyay, Keshab; Gangopadhyay, Shubhra

    2012-01-01

    We present a new approach for fabricating robust, regenerable antimicrobial coatings containing an ionic liquid (IL) phase incorporating silver nanoparticles (AgNPs) as a reservoir for Ag(0)/Ag(+) species within sol-gel-derived nanocomposite films integrating organosilicate nanoparticles. The IL serves as an ultralow volatility (vacuum-compatible) liquid target, allowing for the direct deposition and dispersion of a high-density AgNP "ionosol" following conventional sputtering techniques. Two like-anion ILs were investigated in this work: methyltrioctylammonium bis(trifluoromethylsulfonyl)imide, [N(8881)][Tf(2)N], and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [emim][Tf(2)N]. Silver ionosols derived from these two ILs were incorporated into silica-based sol-gel films and the resultant antimicrobial activity evaluated against Pseudomonas aeruginosa bacteria. Imaging of the surface morphologies of the as-prepared films established a link between an open macroporous film architecture and the observation of high activity. Nanocomposites based on [N(8881)][Tf(2)N] displayed excellent antimicrobial activity against P. aeruginosa over multiple cycles, reducing cell viability by 6 log units within 4 h of contact. Surprisingly, similar films prepared from [emim][Tf(2)N] presented negligible antimicrobial activity, an observation we attribute to the differing abilities of these IL cations to infiltrate the cell wall, regulating the influx of silver ions to the bacterium's interior. PMID:22235768

  7. Dynamics of the inverse MAPLE nanoparticle deposition process

    NASA Astrophysics Data System (ADS)

    Steiner, Matthew A.; Fitz-Gerald, James M.

    2015-05-01

    Matrix-assisted pulsed laser evaporation (MAPLE) is a processing technique by which laser-sensitive materials are dissolved or placed into colloidal solution with a strongly absorbing sacrificial solvent, which when frozen into a solid target and irradiated under vacuum disperses the undamaged solute material onto a desired substrate. We present an inversion of the original MAPLE process, where the irradiation of metal-based acetate precursors in solution with UV transparent water results in the deposition of inorganic nanoparticles. A theory is forwarded to explain the underlying multiscale sequence of events that control the inverse MAPLE process from acetate decomposition to nanoparticle formation and subsequent ejection. Support for this theory is provided through the analysis of deposited nanoparticles and by novel characterization of MAPLE targets post-irradiation via cryostage scanning electron microscopy. Ejection is shown to proceed through the same phase-explosion mechanism that drives conventional MAPLE, relating the two techniques and advancing the broader understanding of MAPLE deposition processes.

  8. Uniform Plasmonic Response of Colloidal Ag Patchy Particles Prepared by Swinging Oblique Angle Deposition.

    PubMed

    Bradley, Layne; Zhao, Yiping

    2016-05-17

    The plasmonic property of Ag patchy particles fabricated using a colloid monolayer and oblique angle deposition shows significant variations due to the multidomain nature of the monolayer. A swinging oblique angle deposition method is proposed to create uniform patchy particles. Both numerical calculations and experiment show that when the swinging angle is larger than 90°, the resulting plasmonic patchy particles have similar morphology and demonstrate uniform optical response that does not depend on the monolayer domain orientation. These uniform patchy plasmonic particles have great potential for plasmonic-based applications. PMID:27128221

  9. Toxicological Effects of Caco-2 Cells Following Short-Term and Long-Term Exposure to Ag Nanoparticles

    PubMed Central

    Chen, Ni; Song, Zheng-Mei; Tang, Huan; Xi, Wen-Song; Cao, Aoneng; Liu, Yuanfang; Wang, Haifang

    2016-01-01

    Extensive utilization increases the exposure of humans to Ag nanoparticles (NPs) via the oral pathway. To comprehensively address the action of Ag NPs to the gastrointestinal systems in real situations, i.e., the long-term low-dose exposure, we evaluated and compared the toxicity of three Ag NPs (20–30 nm with different surface coatings) to the human intestine cell Caco-2 after 1-day and 21-day exposures, using various biological assays. In both the short- and long-term exposures, the variety of surface coating predominated the toxicity of Ag NPs in a descending order of citrate-coated Ag NP (Ag-CIT), bare Ag NP (Ag-B), and poly (N-vinyl-2-pyrrolidone)-coated Ag NP (Ag-PVP). The short-term exposure induced cell growth inhibition and death. The cell viability loss appeared after cells were exposed to 0.7 μg/mL Ag-CIT, 0.9 μg/mL Ag-B or >1.0 μg/mL Ag-PVP for 24 h. The short-term and higher-dose exposure also induced reactive oxygen species (ROS) generation, mitochondrial damage, cell membrane leakage, apoptosis, and inflammation (IL-8 level). The long-term exposure only inhibited the cell proliferation. After 21-day exposure to 0.4 μg/mL Ag-CIT, the cell viability dropped to less than 50%, while cells exposed to 0.5 μg/mL Ag-PVP remained normal as the control. Generally, 0.3 μg/mL is the non-toxic dose for the long-term exposure of Caco-2 cells to Ag NPs in this study. However, cells presented inflammation after exposure to Ag NPs with the non-toxic dose in the long-term exposure. PMID:27338357

  10. Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Hu, Peiguang; Song, Yang; Chen, Limei; Chen, Shaowei

    2015-05-01

    1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu alloy nanoparticles with the gold concentration ranging from approximately 25 at% to 55 at%. Consistent results were obtained in UV-vis spectroscopic measurements where the nanoparticle surface plasmon resonance red-shifted almost linearly with increasing gold concentrations. The self-assembly of 1-dodecyne ligands on the nanoparticle surface was manifested in infrared spectroscopic measurements. Importantly, the resulting nanoparticles exhibited apparent electrocatalytic activity for oxygen reduction in alkaline media, and the performance was found to show a volcano variation in the Au content in the alloy nanoparticles, with the best performance observed for the samples with ca. 35.5 at% Au. The enhanced catalytic activity, as compared to pure Ag nanoparticles or even commercial Pt/C catalysts, was accounted for by the unique metal-ligand interfacial bonding interactions as well as alloying effects that increased metal-oxygen affinity.1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu alloy nanoparticles with the gold concentration ranging from approximately 25 at% to 55 at%. Consistent results were obtained in UV-vis spectroscopic measurements where the nanoparticle surface plasmon resonance red-shifted almost linearly with increasing gold

  11. Drastic nickel ion removal from aqueous solution by curcumin-capped Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Bettini, S.; Pagano, R.; Valli, L.; Giancane, G.

    2014-08-01

    A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%.A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02583k

  12. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles

    NASA Astrophysics Data System (ADS)

    Grammatikopoulos, Panagiotis; Kioseoglou, Joseph; Galea, Antony; Vernieres, Jerome; Benelmekki, Maria; Diaz, Rosa E.; Sowwan, Mukhles

    2016-05-01

    In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two separate sputter targets allows for good control over composition. Simultaneously, it involves fast kinetics and non-equilibrium processes, which can trap the nascent NPs into metastable configurations. In this study, we observed such configurations in immiscible, bi-metallic Ag-Cu NPs by scanning transmission electron microscopy (S/TEM) and electron energy-loss spectroscopy (EELS), and noticed a marked difference in the shape of NPs belonging to Ag- and Cu-rich samples. We explained the formation of Janus or Ag@Cu core/shell metastable structures on the grounds of in-flight mixed NP coalescence. We utilised molecular dynamics (MD) and Monte Carlo (MC) computer simulations to demonstrate that such configurations cannot occur as a result of nanoalloy segregation. Instead, sintering at relatively low temperatures can give rise to metastable structures, which eventually can be stabilised by subsequent quenching. Furthermore, we compared the heteroepitaxial diffusivities along various surfaces of both Ag and Cu NPs, and emphasised the differences between the sintering mechanisms of Ag- and Cu-rich NP compositions: small Cu NPs deform as coherent objects on large Ag NPs, whereas small Ag NPs dissolve into large Cu NPs, with their atoms diffusing along specific directions. Taking advantage of this observation, we propose controlled NP coalescence as a method to engineer mixed NPs of a unique, patterned core@partial-shell structure, which we refer to as a ``glass-float'' (ukidama) structure.In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two

  13. Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits.

    PubMed

    Gudadhe, Janhavi A; Yadav, Alka; Gade, Aniket; Marcato, Priscyla D; Durán, Nelson; Rai, Mahendra

    2014-12-01

    Preparation of protective coating possessing antimicrobial properties is present day need as they increase the shelf life of fruits and vegetables. In the present study, preparation of agar-silver nanoparticle film for increasing the shelf life of fruits is reported. Silver nanoparticles (Ag-NPs) biosynthesised using an extract of Ocimum sanctum leaves, were mixed with agar-agar to prepare an agar-silver nanoparticles (A-AgNp) film. This film was surface-coated over the fruits, Citrus aurantifolium (Thornless lime) and Pyrus malus (Apple), and evaluated for the determination of antimicrobial activity of A-AgNp films using disc diffusion method, weight loss and shelf life of fruits. This study demonstrates that these A-AgNp films possess antimicrobial activity and also increase the shelf life of fruits. PMID:25429496

  14. Dielectric performance of polymer-based composites containing core-shell Ag@TiO2 nanoparticle fillers

    NASA Astrophysics Data System (ADS)

    Liang, Fei; Zhang, Lu; Lu, Wen-Zhong; Wan, Qian-Xing; Fan, Gui-Fen

    2016-02-01

    This paper reports composites prepared by embedding core-shell Ag@TiO2 fillers into polytetrafluoroethylene. Ag nanoparticles were homogeneously coated with TiO2, to give a shell thickness of approximately ˜8-10 nm. The composite containing Ag@TiO2 nanoparticles with rutile shells exhibited better dielectric properties than the composite containing Ag@TiO2 nanoparticles with anatase shells. The relative permittivity (ɛr) of the composite containing 70 vol. % filler was approximately 240 at 100 Hz, which was more than 100 times higher than that of pure polytetrafluoroethylene (ɛr = 2.1). An effective medium percolation theory model is used to account for the dielectric constant of the composite.

  15. Low temperature crystalline Ag-Ni alloy formation from silver and nickel nanoparticles entrapped in a fatty acid composite film

    NASA Astrophysics Data System (ADS)

    Kumar, Ashavani; Damle, Chinmay; Sastry, Murali

    2001-11-01

    Nanoparticles of silver and nickel were grown in thermally evaporated fatty acid (stearic acid) films by immersion of the film sequentially in solutions containing Ag+ ions and Ni2+ ions. Attractive electrostatic interaction between the metal cations and the carboxylate ions in the fatty acid film leads to entrapment of the cations in the film. Thereafter, the metal ions were reduced in situ to yield nanoparticles of Ag and Ni of ˜30 nm diameter within the fatty acid matrix. Thermal treatment of the stearic acid-(silver+nickel) nanocomposite films led to the formation of a Ni-Ag alloy at ˜100 °C. Prolonged heat treatment at this temperature resulted in the phase separation of the alloy and the reformation of individual Ag and Ni nanoparticles.

  16. Effects of soil and dietary exposures to Ag nanoparticles and AgNO₃ in the terrestrial isopod Porcellionides pruinosus.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Jurkschat, Kerstin; Soares, Amadeu M V M; Loureiro, Susana

    2015-10-01

    The effects of Ag-NPs and AgNO3 on the isopod Porcellionides pruinosus were determined upon soil and dietary exposures. Isopods avoided Ag in soil, with EC50 values of ∼16.0 and 14.0 mg Ag/kg for Ag-NPs and AgNO3, respectively. Feeding inhibition tests in soil showed EC50s for effects on consumption ratio of 127 and 56.7 mg Ag/kg, respectively. Although similar EC50s for effects on biomass were observed for nanoparticulate and ionic Ag (114 and 120 mg Ag/kg dry soil, respectively), at higher concentrations greater biomass loss was found for AgNO3. Upon dietary exposure, AgNO3 was more toxic, with EC50 for effects on biomass change being >1500 and 233 mg Ag/kg for Ag-NPs and AgNO3, respectively. The difference in toxicity between Ag-NPs and AgNO3 could not be explained from Ag body concentrations. This suggests that the relation between toxicity and bioavailability of Ag-NPs differs from that of ionic Ag in soils. PMID:26071943

  17. Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles

    PubMed Central

    2013-01-01

    Background Knowledge about silver nanoparticles in soils is limited even if soils are a critical pathway for their environmental fate. In this paper, speciation results have been acquired using a silver ion selective electrode in three different soils. Results Soil organic matter and pH were the most important soil properties controlling the occurrence of silver ions in soils. In acidic soils, more free silver ions are available while in the presence of organic matter, ions were tightly bound in complexes. The evolution of the chemical speciation of the silver nanoparticles in soils was followed over six months. Conclusion During the first few hours, there appeared to be a strong sorption of the silver with soil ligands, whereas over time, silver ions were released, the final concentration being approximately 10 times higher than at the beginning. Ag release was associated with either the oxidation of the nanoparticles or a dissociation of adsorbed silver from the soil surfaces. PMID:23617903

  18. Development of Novel Cadmium-Free AgInS2 Semiconductor Nanoparticles.

    PubMed

    Yang, Wentao; Gong, Xiaoqun; Chang, Jin

    2016-03-01

    AgInS2 (AIS) semiconductor nanoparticles as the novel alternatives to cadmium- or lead-containing semiconductors have attracted much attention both on the theory and application research, based on their tunable fluorescence emission wavelengths, high photostability and low toxicity of chemical composition. The bandgap of AIS nanoparticles can be adjusted from 1.54 to 2.03 eV, which makes AIS nanocrystalline suitable for applications in solar energy conversion. Moreover, the fluorescence emission wavelengths can be tuned in the near-infrared regions, and thus make it the next-generation low-toxicity materials for the applications in bioimaging. In this review, the research progress of the AIS nanoparticles is summarized, including synthetic methods, properties and the possibilities to influence their shape and crystallographic structure. Furthermore, we discuss the potential applications of this novel material in photocatalysis, solar energy conversion and biological area. PMID:27455616

  19. Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant

    NASA Astrophysics Data System (ADS)

    Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.

    2014-05-01

    Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).

  20. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles.

    PubMed

    Grammatikopoulos, Panagiotis; Kioseoglou, Joseph; Galea, Antony; Vernieres, Jerome; Benelmekki, Maria; Diaz, Rosa E; Sowwan, Mukhles

    2016-05-14

    In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two separate sputter targets allows for good control over composition. Simultaneously, it involves fast kinetics and non-equilibrium processes, which can trap the nascent NPs into metastable configurations. In this study, we observed such configurations in immiscible, bi-metallic Ag-Cu NPs by scanning transmission electron microscopy (S/TEM) and electron energy-loss spectroscopy (EELS), and noticed a marked difference in the shape of NPs belonging to Ag- and Cu-rich samples. We explained the formation of Janus or Ag@Cu core/shell metastable structures on the grounds of in-flight mixed NP coalescence. We utilised molecular dynamics (MD) and Monte Carlo (MC) computer simulations to demonstrate that such configurations cannot occur as a result of nanoalloy segregation. Instead, sintering at relatively low temperatures can give rise to metastable structures, which eventually can be stabilised by subsequent quenching. Furthermore, we compared the heteroepitaxial diffusivities along various surfaces of both Ag and Cu NPs, and emphasised the differences between the sintering mechanisms of Ag- and Cu-rich NP compositions: small Cu NPs deform as coherent objects on large Ag NPs, whereas small Ag NPs dissolve into large Cu NPs, with their atoms diffusing along specific directions. Taking advantage of this observation, we propose controlled NP coalescence as a method to engineer mixed NPs of a unique, patterned core@partial-shell structure, which we refer to as a "glass-float" (ukidama) structure. PMID:27119383

  1. Evaluation of AgClNPs@SBA-15/IL nanoparticle-induced oxidative stress and DNA mutation in Escherichia coli.

    PubMed

    Karimi, Farrokh; Dabbagh, Somayyeh; Alizadeh, Sina; Rostamnia, Sadegh

    2016-08-01

    The bactericidal effects of silver nanoparticles have been demonstrated in the past years. Recently, the new antimicrobial compounds of silver nanoparticles with different formulations have been developed. In this work, AgClNPs@SBA-15/IL as a new compound of Ag nanoparticles, was synthesized and characterized by XRD, TEM, SEM, FTIR, and EDX. The antibacterial activity and the molecular mechanism effects of AgClNPs@SBA-15/IL nanoparticles (SNPs) on Escherichia coli DH5α cells were investigated by analyzing the growth inhibitory, H2O2 level, catalase activity, DNA mutation, and plasmid copy number following treatment with AgClNPs@SBA-15/IL nanoparticles. In experimental results, the minimum inhibitory concentration (MIC) was observed in 75 μg/ml and the antibacterial efficacy (ABE) in CFU analysis was estimated 95.3 %. In bacterial cells treated with 75 and 100 μg/ml, H2O2 level significantly increased and catalase activity decreased compared with control. The random amplified polymorphic DNA (RAPD) was used to evaluate the effect of AgClNPs@SBA-15/IL nanoparticles in DNA damages and mutation in E. coli genome. RADP-PCR results indicated different banding patterns including appearance or disappearance of bands and differences in their intensity. Cluster analysis of the RAPD-PCR results based on genetic similarity showed genetic difference between E. coli cells treated with AgClNPs@SBA-15/IL nanoparticles, and control and phylogenetic tree were divided to two clusters. Plasmid copy number analysis indicated that after 8 h incubation of E. coli cells with 50, 75, and 100 μg/ml AgClNPs@SBA-15/IL nanoparticles, copy number of pET21a (+) significantly decreased compared with control which indicating DNA replication inhibition by Ag nanoparticles. In conclusion, the results of this study indicated that AgClNPs@SBA-15/IL nanoparticles can be used as an effective bactericidal agent against bacterial cells. PMID:27209037

  2. Gold nanoparticles deposited on glass: physicochemical characterization and cytocompatibility

    NASA Astrophysics Data System (ADS)

    Reznickova, Alena; Novotna, Zdenka; Kasalkova, Nikola Slepickova; Svorcik, Vaclav

    2013-05-01

    Properties of gold films sputtered under different conditions onto borosilicate glass substrate were studied. Mean thickness of sputtered gold film was measured by gravimetry, and film contact angle was determined by goniometry. Surface morphology was examined by atomic force microscopy, and electrical sheet resistance was determined by two-point technique. The samples were seeded with rat vascular smooth muscle cells, and their adhesion and proliferation were studied. Gold depositions lead to dramatical changes in the surface morphology and roughness in comparison to pristine substrate. For sputtered gold structures, the rapid decline of the sheet resistance appears on structures deposited for the times above 100 s. The thickness of deposited gold nanoparticles/layer is an increasing function of sputtering time and current. AFM images prove the creation of separated gold islands in the initial deposition phase and a continuous gold coverage for longer deposition times. Gold deposition has a positive effect on the proliferation of vascular smooth muscle cells. Largest number of cells was observed on sample sputtered with gold for 20 s and at the discharge current of 40 mA. This sample exhibits lowest contact angle, low relative roughness, and only mild increase of electrical conductivity.

  3. Influence of temperature and precursor concentration on the synthesis of HDA-capped Ag{sub 2}Se nanoparticles

    SciTech Connect

    Mlambo, M.; Moloto, M.J.; Moloto, N.; Mdluli, P.S.

    2013-06-01

    Graphical abstract: The temperature effect on the growth and size of silver selenide nanoparticles with the size distribution and XRD patterns. Highlights: ► The HDA-capped Ag{sub 2}Se nanoparticles were synthesized via the colloidal route. ► Temperature and monomer concentration of the reaction were varied. ► The concentration as a factor influenced particles with a decrease observed as the amount of Ag{sup +} ion source is increased. ► Temperature has expected influence on the growth of particles resulting in increase as the temperature is increased. ► TEM images shows spherical particles and their orthorhombic phase from structural analysis by XRD. - Abstract: The size dependent of temperature and precursor concentration on the synthesis of hexadecylamine capped Ag{sub 2}Se nanoparticles via the colloidal route were studied using the combination of optical and structural analysis. The as-prepared Ag{sub 2}Se nanoparticles showed the quantum confinement with all the obtained absorption band edges blue-shifted from the bulk and their corresponding emission maxima displaying a red-shift from band edges characterised by UV–vis absorption and photoluminescence spectroscopy. The particle sizes were obtained from transmission electron microscopy analysis. The increase in precursor concentration resulted in a decrease in nanoparticle sizes. The increase in reaction temperature showed an increase in the nanoparticle sizes, when the critical temperature at 160 °C was reached, the nanoparticle sizes decreased.

  4. Ordered Ag nanocluster structures by vapor deposition on pre-patterned SiO2.

    PubMed

    Numazawa, Satoshi; Ranjan, Mukesh; Heinig, Karl-Heinz; Facsko, Stefan; Smith, Roger

    2011-06-01

    Highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO(2) surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well separated. Computer modeling of the growth has been performed with a lattice-based kinetic Monte Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag adatoms and ≈1 nm square surface migration ranges of Ag adatoms. It is also shown that metal nucleations can trigger even on defect free surfaces. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. PMID:21572227

  5. Size and alloying induced changes in lattice constant, core, and valance band binding energy in Pd-Ag, Pd, and Ag nanoparticles: Effect of in-flight sintering temperature

    NASA Astrophysics Data System (ADS)

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2012-07-01

    In the present study, we report the growth of size selected Pd, Ag, and Pd-Ag alloy nanoparticles by an integrated method comprising of the gas phase synthesis, electrical mobility size selection, and in-flight sintering steps. Effect of temperature during in-flight sintering on nanoparticle size, crystal structure, and electronic properties has been studied. XRD studies show lattice expansion in Pd and Ag nanoparticles and lattice contraction in Pd-Ag alloy nanoparticles on increasing the sintering temperatures. In case of Pd and Ag nanoparticles, size induced changes in lattice constants are consistent with the changes in the binding energy positions with respect to bulk values. In case of Pd-Ag alloy nanoparticles, change in nanoparticle size and composition on sintering affect the lattice constant and binding energy positions. Large changes in Pd4d valance band centroid in Pd-Ag nanoparticles are due to size and alloying effects. The results of this study are important for understanding the correlation between electronic properties and Pd-H interaction in Pd alloy nanoparticles.

  6. Nanoparticle film deposition using a simple and fast centrifuge sedimentation method

    NASA Astrophysics Data System (ADS)

    Markelonis, Andrew R.; Wang, Joanna S.; Ullrich, Bruno; Wai, Chien M.; Brown, Gail J.

    2015-04-01

    Colloidal nanoparticles (NPs) can be deposited uniformly on flat or rough and uneven substrate surfaces employing a standard centrifuge and common solvents. This method is suitable for depositing different types of nanoparticles on a variety of substrates including glass, silicon wafer, aluminum foil, copper sheet, polymer film, plastic, and paper, etc. The thickness of the films can be controlled by the amount of the colloidal nanoparticle solution used in the preparation. The method offers a fast and simple procedure compared to other currently known nanoparticle deposition techniques for studying the optical properties of nanoparticle films.

  7. One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance

    SciTech Connect

    Tian Chungui; Li Wei; Pan Kai; Zhang Qi; Tian Guohui; Zhou Wei; Fu Honggang

    2010-11-15

    Ag nanoparticles (NPs) modified ZnO microspheres (Ag/ZnO microspheres) were prepared by a facile one pot strategy in ethylene glycol (EG) medium. The EG played two important roles in the synthesis: it could act as a reaction media for the formation of ZnO and reduce Ag{sup +} to Ag{sup 0}. A series of the characterizations indicated the successful combination of Ag NPs with ZnO microspheres. It was shown that Ag modification could greatly enhance the photocatalytic efficiency of ZnO microspheres by taking the photodegradation of Rhodamine B as a model reaction. With appropriate ratio of Ag and ZnO, Ag/ZnO microspheres showed the better photocatalytic performance than commercial Degussa P-25 TiO{sub 2}. Photoluminescence and surface photovoltage spectra demonstrated that Ag modification could effectively inhibit the recombination of the photoinduced electron and holes of ZnO. This is responsible for the higher photocatalytic activity of Ag/ZnO composites. -- Graphical abstract: A 'one-pot' strategy was developed for preparing the Ag/ZnO microspheres in ethylene glycol. The composites exhibited superior photocatalytic performance for photodegradation of Rhodamine B dye in water. Display Omitted

  8. Optical Properties of Rhodamine 6G Laser Dye and Ag-Nanoparticle Aggregates

    NASA Astrophysics Data System (ADS)

    Noginov, M. A.; Drachev, V. P.

    2005-03-01

    Optical absorption and luminescence spectra of Rhodamine 6G (Rh6G) laser dye of different concentration with a solution of aggregated silver nanoparticles are studied. New emission band located near 610 nm is found at very high concentration of Rh6G and/or in a solution of Rh6G and Ag nanoparticles. Electron energy structure and optical functions of single Rh6G molecules, molecular complexes, and Rh6G molecules adsorbed on Ag(111) surface are studied by generalized gradient approximation method within density functional theory using ab initio pseudopotentials. Equilibrium geometries of the systems studied are obtained from both molecular dynamics simulations and X-ray diffraction measurements. Electronic structure of J-type molecular complexes (when two molecules aligned along their dipole moment axes) substantially differs from that of H-type aggregates (with parallel and anti-parallel molecular dipole moments). It is demonstrated that new luminescence line is associated with J-type molecular complexes. Observed modifications of optical properties of Rh6G and Rh6G+Ag complexes are explained in terms of both the changes of electronic structure of the systems and due to the electromagnetic interactions of dipole-dipole and dipole-surface types.

  9. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    NASA Astrophysics Data System (ADS)

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  10. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    PubMed Central

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-01-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films. PMID:26156001

  11. Glancing Angle Deposition of Ag on Si(111)7x7

    NASA Astrophysics Data System (ADS)

    Cobblah, A. N.; Hayden, S. T.; Chen, Yiyao; Kremenak, J.; Gramlich, M. W.; Miceli, P. F.

    2012-02-01

    Ag(111) films were vapor-deposited in ultra-high vacuum on Si(111)7x7 substrates. The angle of deposition was varied from normal incidence to 80 degrees and the films were studied by x-ray reflectivity. It is found that, even for very thin films, the film roughness increased dramatically with the angle of deposition. This poster will highlight experimental results as well as the development of a UHV chamber that enables a laboratory x-ray source to monitor low angle reflectivity during film growth. Funding is acknowledged from the Ronald E. McNair Post-baccalaureate Achievement Program and NSF DMR-0706278. Some measurements were performed on the 6IDC beam line, supported by the US-DOE (through Ames Lab, W-7405-Eng-82), at the Advanced Photon Source (US-DOE, W-31-109-Eng-38) located at Argonne National Laboratory.

  12. Deposition of silver nanoparticles on multiwalled carbon nanotubes by chemical reduction process and their antimicrobial effects

    NASA Astrophysics Data System (ADS)

    Haider, Adawiya J.; Thamir, Amin D.; Ahmed, Duha S.; Mohammad, M. R.

    2016-07-01

    In this paper, the functionalization of raw-MWCNTs involves oxidation reaction using concentrated acid mixture of HNO3:H2SO4 (1:3), via ultrasonic bath (170 W, 50 kHz) to obtain functional groups. Then Ag nanoparticles are decorated the outside over the surface of functionalized MWCNTs using a chemical reduction process resulting in the formation of(Ag/ MWCNTs) hybrid material. The results showed that outer diameter functionalized F-MWCNTs andAg nanoparticles size was about (11-80) nm and (10 to 25) nm, respectively using TEM and HRTEM. The crystallographic structure of MWCNTs using X-ray diffraction (XRD) analysis proved diffraction peaks at 38.1°, 44.3°, 64.7° and 77.4° degrees namely, Ag (111), Ag (200), Ag (220), and Ag (311) of the face-centered cubic lattice of Ag, respectively, excepting the peak at 2θ =25.6°, which correspond to the (0 0 2) reflection of the MWNTs are corresponding to Ag/MWNTs. The antimicrobial activities of Ag/MWCNTs hybrid using plate count method showed that decreasing a large number of bacteria colonies of E. coli and S. aureu with increasing the hybrid concentrations after incubation for 24h in shaker incubator with percentage of inhibition approaching 100%.

  13. Effect of ultraviolet irradiation on luminescence properties of undoped ZnS and ZnS:Ag nanoparticles

    SciTech Connect

    Qu Hua; Cao Lixin; Su Ge; Liu Wei; Sun Yuanguang; Dong Bohua

    2009-11-01

    Undoped ZnS and ZnS:Ag nanoparticles have been prepared through hydrothemal synthesis. The changes of luminescence properties induced by ultraviolet irradiation have been investigated. For both samples, the initial slight increase in luminescence is ascribed to the fast electron filling, while the succedent decrease is supposed to be caused by nonradiative pathways originating from some unknown photochemical products. The more remarkable decrease in ZnS:Ag is put down to the segregation of Ag on the surfaces of ZnS:Ag nanoparticles. Multipeaks Gaussian fitting is applied to the emission spectra. The fitting peaks around 490 nm in both samples are related with the surface states emission and the fitting peaks around 456 nm in ZnS nanoparticles and 443 nm in ZnS:Ag nanoparticles are attributed to the type of donor-acceptor pair luminescence, which corresponds to the transition between different donor levels and acceptor levels in different samples. A model of stretched exponential function is used to fit the fluorescence decay spectra. Result shows that the introduction of Ag{sup +} ions causes a spectacular lifetime shortening of ZnS. Experiment result also verifies the model as that the lifetimes of both samples are notably shortened after irradiation for 2 h.

  14. Unaffected features of BSA stabilized Ag nanoparticles after storage and reconstitution in biological relevant media.

    PubMed

    Valenti, Laura E; Giacomelli, Carla E

    2015-08-01

    Silver-coated orthopedic implants and silver composite materials have been proposed to produce local biocidal activity at low dose to reduce post-surgery infection that remains one of the major contributions to the patient morbidity. This work presents the synthesis combined with the characterization, colloidal stability in biological relevant media, antimicrobial activity and handling properties of silver nanoparticles (Ag-NP) before and after freeze dry and storage. The nanomaterial was synthesized in aqueous solution with simple, reproducible and low-cost strategies using bovine serum albumin (BSA) as the stabilizing agent. Ag-NP were characterized by means of the size distribution and morphology (UV-vis spectra, dynamic light scattering measurements and TEM images), charge as a function of the pH (zeta potential measurements) and colloidal stability in biological relevant media (UV-vis spectra and dynamic light scattering measurements). Further, the interactions between the protein and Ag-NP were evaluated by surface enhanced Raman spectroscopy (SERS) and the antimicrobial activity was tested with two bacteria strains (namely Staphylococcus aureus and Staphylococcus epidermidis) mainly present in the infections caused by implants and prosthesis in orthopedic surgery. Finally, the Ag-NP dispersed in aqueous solution were dried and stored as long-lasting powders that were easily reconstituted without losing their stability and antimicrobial properties. The proposed methods to stabilize Ag-NP not only produce stable dispersions in media of biological relevance but also long-lasting powders with optimal antimicrobial activity in the nanomolar range. This level is much lower than the cytotoxicity determined in vitro on osteoblasts, osteoclasts and osteoarthritic chondrocytes. The synthesized Ag-NP can be incorporated as additive of biomaterials or pharmaceutical products to confer antimicrobial activity in a powdered form in different formulations, dispersed in

  15. Growth and optical properties of Ag clusters deposited on poly(ethylene terephthalate).

    PubMed

    Flores-Camacho, J M; Weidlinger, G; Sun, L D; Schmidegg, K; Hohage, M; Primetzhofer, D; Bauer, P; Zeppenfeld, P

    2011-07-01

    The growth and concomitant evolution of the optical properties of Ag nano-clusters deposited on biaxially extruded poly(ethylene terephthalate) films is studied by reflectance difference spectroscopy. It is demonstrated by low energy ion scattering and simulated optical spectra that the clusters form a two-dimensional layer buried beneath the surface of the substrate. The experimental spectra are described by simulations in which different configurations of the host such as anisotropy, amorphization, and dilution are considered in an effective medium approach. The contribution of the anisotropic substrate is used to explain the resulting line shapes. We also discuss the role of the rate of change of the filling fraction with Ag coverage in the evolution of the spectra and the detection of the onset of coalescence by optical means. PMID:21597154

  16. Study of Ag-Pd bimetallic nanoparticles modified glassy carbon electrode for detection of L-cysteine

    NASA Astrophysics Data System (ADS)

    Murugavelu, M.; Karthikeyan, B.

    2014-11-01

    Ag-Pd bimetallic nanoparticles (Ag-Pd BNPs) as an enhanced sensing material with improved electronic transmission rates in the electrochemical sensing of L-cysteine (L-cys) has been reported. The morphology of Ag-Pd BNPs was characterized with X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and cyclic voltammetry (CV). Oxidation of L-cys on Ag-Pd BNPs is investigated in detail by discussing the effect of the structure and from the electrocatalytic oxidation of L-cys. We found that the Ag-Pd BNPs exhibited high electrocatalytic activity towards L-cys oxidation in neutral condition and could be used for the development of nonenzymatic L-cys sensor. Based on the efficient catalytic ability of Ag-Pd BNPs, the fabricated biosensor exhibited a wide linear range of responses to the L-cys with the concentration detection limit of nearly down to 2 mM with fast response time.

  17. Spectral anion sensing and γ-radiation induced magnetic modifications of polyphenol generated Ag-nanoparticles

    NASA Astrophysics Data System (ADS)

    Ansari, Zarina; Dhara, Susmita; Bandyopadhyay, Bilwadal; Saha, Abhijit; Sen, Kamalika

    2016-03-01

    A fast one step bio-synthesis for in situ preparation of silver nanoparticles is proposed. The method involves reduction of AgNO3 with an aqueous extract of peanut skin, which is a good source of polyphenols. The silver nanoparticles thus synthesized were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis absorption spectroscopy, Fourier Transform infrared (FTIR) spectroscopy and magnetic measurements. Effect of low dose γ irradiation during the synthesis was studied and their physico-chemical properties were compared with those produced without irradiation. On the contrary to the diamagnetic behavior of bulk silver, the silver nanoparticles thus prepared show a significant ferromagnetic moment component. Variable time exposure to γ-irradiation results in an exponential decay of ferromagnetic component. A freshly prepared solution of silver nanoparticles shows selective spectral changes towards iodide ions at trace concentration (below 50 μM) among a series of 16 other competing anions. The prepared nanoparticles are therefore suitable for anion sensing application.

  18. Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters.

    PubMed

    Hanks, Nicole A; Caruso, Joseph A; Zhang, Peng

    2015-12-01

    To study the phytoremediation capabilities of Pistia stratiotes in silver nanoparticle (AgNP) and silver ion contaminated wastewaters, individual plants were grown in media spiked with different concentrations of silver nanoparticle and silver ions (0.02, 0.2, and 2 mg L(-1)). Control experiments were carried out at the same time for comparison purposes. Visual changes in the plants were also recorded periodically during each experiment. Total silver concentrations were monitored in the media before, during, and at the termination of the experiments. In addition, analysis of total silver in plant root and leaf samples after termination were carried out to determine the effect of the different media concentrations. The results showed that P. stratiotes can survive in AgNP and ions under 0.02 mg L(-1) and contaminants are retained within the plant. The use of P. stratiotes as a phytoremediator shows potential in removing heavy metal nanoparticles and is competitive in its removal of the ion counterpart. Even higher concentrations of silver, regardless of form, can be reduced to lower levels than the World Health Organization's maximum contamination limit. PMID:26342265

  19. Polymer Assisted Core-shell Ag-C nanoparticles Synthesis via Green hydrothermal Technique

    NASA Astrophysics Data System (ADS)

    Williams, James; Mishra, Sanjay

    2009-03-01

    Core-Shell Ag-C nanoparticles were synthesized in the presence of glucose through a one-pot green hydrothermal wet chemical process. An aqueous solution of glucose and Ag nitrate was hydrothermally treated to produce porous carbonaceous shell over silver core nanoparticles. The growth of carbon shells was regulated by either of the polymers (poly) vinyl pyrrolidone (PVP) or poly vinyl alcohol (PVA). The two polymers were compared to take a measure of different tunable sizes of cores, and shells. The effects of hydrothermal temperature, time, and concentration of reagents on the final formation of nanostructures were studied using UV-vis extinction spectra, transmission electron microscope, and Raman spectroscopy. The polymer molecules were found to be incorporated into carbonaceous shell. The resulting opacity of the shell was found to be hydrothermal time and temperature dependent. The shell structure was found to be more uniform with PVP than PVA. Furthermore, the polymer concentration was found to influence size and shape of the core-silver particles as well. The core-shelled nanoparticles have surfaces with organic groups capable of assembling with different reagents that could be useful in drug-delivery, optical nanodevices or biochemistry.

  20. Large 2D-arrays of size-controllable silver nanoparticles prepared by hybrid deposition

    NASA Astrophysics Data System (ADS)

    Dieu Thuy Ung, Thi; Hoa Nguyen, Thi; Liem Nguyen, Quang

    2016-09-01

    Two main results are presented in this paper. (i) Silver nanoparticles (AgNPs) with uniform size-distribution and controllability in the range of 20–50 nm were synthesized by seeding and growing at ambient conditions. The single-crystal Ag nano-seeds were created by reduction of AgNO3 in presence of citrate surfactant at 70 °C. Then, importantly, the fresh AgCl precursor was used in the presence of polyvinylpyrrolidone to adjust the reaction rate with ascorbic acid to generate Ag for growing on the surface of single-crystal Ag nano-seeds. The AgNPs size could be well-controlled by varying the amount of Ag nano-seeds while keeping the AgCl precursor concentration to be constant. (ii) The large 2D-arrays with homogeneous and dense monolayers of AgNPs were prepared on ITO substrates by hybrid method, in which the key technological point is the surface functionalization of AgNPs using mixed alkanethiols (dodecanethiol:octadecanethiol = 6:1). We have used the fabricated 2D-arrays from the 50 nm AgNPs as a surface enhanced Raman scattering substrate to take the Raman scattering spectra of rhodamine B (RhB), glucose and viral pathogen (H5N1) at very low concentrations of 10‑10 M, 10‑12 M and 4 ng μl‑1, respectively.

  1. Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell

    PubMed Central

    Xin, Le; Zhang, Zhiyong; Wang, Zhichao; Qi, Ji; Li, Wenzhen

    2013-01-01

    A solution phase-based nanocapsule method was successfully developed to synthesize non-platinum metal catalyst—carbon supported Ag nanoparticles (Ag/C). XRD patterns and TEM image show Ag nanoparticles with a small average size (5.4 nm) and narrow size distribution (2–9 nm) are uniformly dispersed on the carbon black Vulcan XC-72 support. The intrinsic activity and pathway of oxygen reduction reaction (ORR) on the Ag/C and commercial Pt/C were investigated using rotating ring disk electrode (RRDE) tests at room temperature. The results confirmed that the 4-electron pathway of ORR proceeds on small Ag nanoparticles, and showed comparable ORR activities on the self-prepared Ag/C and a commercial Pt/C. A single H2-O2 anion exchange membrane fuel cell (AEMFC) with the Ag/C cathode catalyst exhibited an open circuit potential of 0.98 V and a peak power density of 190 mW/cm2 at 80°C. PMID:24790944

  2. Magnetic anisotropy and magnetization dynamics of Fe nanoparticles embedded in Cr and Ag matrices

    NASA Astrophysics Data System (ADS)

    Peddis, D.; Qureshi, M. T.; Baker, S. H.; Binns, C.; Roy, M.; Laureti, S.; Fiorani, D.; Nordblad, P.; Mathieu, R.

    2015-11-01

    Static and dynamical magnetic properties of Fe nanoparticles (NPs) embedded in non-magnetic (Ag) and antiferromagnetic (Cr) matrices with a volume filling fraction (VFF) of 10% have been investigated. In both Fe@Ag and Fe@Cr nanocomposites, the Fe NPs have a narrow size distribution, with a mean particle diameter around 2 nm. In both samples, the saturation magnetization reaches that of Fe bulk bcc, suggesting the absence of alloying with the matrices. The coercivity at 5 K is much larger in Fe@Cr than in Fe@Ag as a result of the strong interaction between the Fe NPs and the Cr matrix. Temperature-dependent magnetization and ac-susceptibility measurements point out further evidence of the enhanced interparticle interaction in the Fe@Cr system. While the behaviour of Fe@Ag indicates the presence of weakly interacting magnetic monodomain particles with a wide distribution of blocking temperatures, Fe@Cr behaves like a superspin glass produced by the magnetic interactions between NPs.

  3. Blood surface-enhanced Raman spectroscopy based on Ag and Au nanoparticles for nasopharyngeal cancer detection

    NASA Astrophysics Data System (ADS)

    Lin, Duo; Ge, Xiaosong; Lin, Xueliang; Chen, Guannan; Chen, Rong

    2016-05-01

    This study aims to evaluate and compare the utility of blood surface-enhanced Raman spectroscopy (SERS) based on Au or Ag nanoparticles (NPs), respectively, for detection of nasopharyngeal cancer (NPC). A rapid home-made Raman system was employed for SERS measurement, and high quality SERS spectra can be recorded from blood plasma samples belonging to 60 healthy volunteers and 100 NPC patients, using both metallic NPs. The spectral differences under Ag-SERS measurement between the normal and cancer groups are more significant than Au-SERS. Principal component analysis combined with linear discriminant analysis (PCA-LDA) was used for differentiating the two blood groups with a diagnostic sensitivity and specificity of 90% and 95%, respectively, using Ag-SERS method, which has almost a 20% improvement in diagnostic specificity in comparison to Au-SERS. This exploratory study demonstrates that blood SERS based on Ag NPs is capable of achieving a better diagnostic performance for NPC detection, and has promising potential for improving NPC screening.

  4. Enhanced Noble Gas Adsorption in Ag@MOF-74Ni

    SciTech Connect

    Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.

    2014-01-14

    Various amounts of Ag nanoparticles were successfully deposited in porous MOF-74Ni (or Ni/DOBDC) with an auto-reduction method. An optimized silver-loaded MOF-74Ni was shown to have an improved Xe adsorption capacity (15% more) at STP compared to the MOF without silver nanoparticles. The silver-loaded sample also has a higher Xe/Kr selectivity. These results are explained by the stronger interactions between polarizable Xe molecules and the well-dispersed Ag nanoparticles.

  5. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-01

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles.The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For

  6. Three-Dimensional Ordered Mesoporous MnO2-Supported Ag Nanoparticles for Catalytic Removal of Formaldehyde.

    PubMed

    Bai, Bingyang; Qiao, Qi; Arandiyan, Hamidreza; Li, Junhua; Hao, Jiming

    2016-03-01

    Three-dimensional (3D) ordered mesoporous Ag/MnO2 catalyst was prepared by impregnation method based on 3D-MnO2 and used for catalytic oxidation of HCHO. Ag nanoparticles are uniformly distributed on the polycrystalline wall of 3D-MnO2. The addition of Ag does not change the 3D ordered mesoporous structure of the Ag/MnO2, but does reduce the pore size and surface area. Ag nanoparticles provide sufficient active site for the oxidation reaction of HCHO, and Ag (111) crystal facets in the Ag/MnO2 are active faces. The 8.9% Ag/MnO2 catalyst shows a higher normalized rate (10.1 nmol·s(-1)·m(-2) at 110 °C) and TOF (0.007 s(-1) at 110 °C) under 1300 ppm of HCHO and 150 000 h(-1) of GHSV, and its apparent activation energy of the reaction is the lowest (39.1 kJ/mol). More Ag active sites, higher low-temperature reducibility, more abundant surface lattice oxygen species, oxygen vacancies, and lattice defects generated from interaction Ag with MnO2 are responsible for the excellent catalytic performance of HCHO oxidation on the 8.9% Ag/MnO2 catalyst. The 8.9% Ag/MnO2 catalyst remained highly active and stable under space velocity increasing from 60 000 to 150 000 h(-1), under initial HCHO concentration increasing from 500 to 1300 ppm, and under the presence of humidity, respectively. PMID:26629972

  7. Redox-Robust Pentamethylferrocene Polymers and Supramolecular Polymers, and Controlled Self-Assembly of Pentamethylferricenium Polymer-Embedded Ag, AgI, and Au Nanoparticles.

    PubMed

    Gu, Haibin; Ciganda, Roberto; Castel, Patricia; Vax, Amélie; Gregurec, Danijela; Irigoyen, Joseba; Moya, Sergio; Salmon, Lionel; Zhao, Pengxiang; Ruiz, Jaime; Hernández, Ricardo; Astruc, Didier

    2015-12-01

    We report the first pentamethylferrocene (PMF) polymers and the redox chemistry of their robust polycationic pentamethylferricenium (PMFium) analogues. The PMF polymers were synthesized by ring-opening metathesis polymerization (ROMP) of a PMF-containing norbornene derivative by using the third-generation Grubbs ruthenium metathesis catalyst. Cyclic voltammetry studies allowed us to determine confidently the number of monomer units in the polymers through the Bard-Anson method. Stoichiometric oxidation by using ferricenium hexafluorophosphate quantitatively and instantaneously provided fully stable (even in aerobic solutions) blue d(5) Fe(III) metallopolymers. Alternatively, oxidation of the PMF-containing polymers was conducted by reactions with Ag(I) or Au(III) , to give PMFium polymer-embedded Ag and Au nanoparticles (NPs). In the presence of I2 , oxidation by using Ag(I) gave polymer-embedded Ag/AgI NPs and AgNPs at the surface of AgI NPs. Oxidation by using Au(III) also produced an Au(I) intermediate that was trapped and characterized. Engineered single-electron transfer reactions of these redox-robust nanomaterial precursors appear to be a new way to control their formation, size, and environment in a supramolecular way. PMID:26494439

  8. Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates

    NASA Astrophysics Data System (ADS)

    Bir, F.; Khireddine, H.; Touati, A.; Sidane, D.; Yala, S.; Oudadesse, H.

    2012-07-01

    Fluoridated hydroxyapatite (FHA, Ca10(PO4)6(OH)2-xFx where 0 < x < 2 is the degree of fluoridation) and inorganic ions (Zn2+, Cu2+, Ag+) substituted fluoridated hydroxyapatite coatings (M-FHA) were deposited on the surface of medical grade 316L stainless steel samples by electrochemical deposition technique. The FHA coatings were co-substituted with antibacterial ions (Zn2+, Cu2+ or Ag+) by co-precipitation and ion-exchange methods. Characterization studies of coatings from X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX) showed that the obtained layers are monophase crystals FHA and did not contain any discernible crystalline impurity. The particles of all samples are of nano size that gives thin layers. The surface morphology, microstructure and Ca/P atomic ratio of the FHA coatings can be regulated by varying electrolyte temperature. This later affects the porosity of the coating surface and the chemical compositions of the deposits. Quantitative elemental analysis indicates that the copper, zinc and silver ions are incorporated into the Fluorohydroxyapatite. The antimicrobial effects of doped fluorohydroxyapatite coatings against pathogen bacterial strains Staphylococcus aureus were tested in liquid media. The results are promising and demonstrated that all doped FHA samples exhibit excellent antimicrobial activity "in vitro" against the microorganism, so the antimicrobial properties of the coatings developed are improved.

  9. Single molecule detection using SERS study in PVP functionalized Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Garg, Parul; Dhara, S.

    2013-02-01

    Non-spherical functionalized Ag nanoparticles (NPs) with homogenous size ˜ 40 nm have been grown using soft chemical route. Solution of silver nitrate and polyvinylpyrrolidone is reduced in excess of ethylene glycol for the preparation of the NPs. Substrates has been prepared by dip coating of the NPs on c-Si for Raman studies. Rhodamine (R6G) is used as a test molecule to study the surface enhanced Raman spectroscopy (SERS) effect. A single molecule detection of R6G along with an enhancement factor of ˜ 4×103 orders of magnitude in the intensity, for the concentration as low as 10-12 M using polymer coated Ag NPs as SERS substrates, has been achieved.

  10. Fabrication of SWCNT-Ag Nanoparticle Hybrid Included Self-Assemblies for Antibacterial Applications

    PubMed Central

    Brahmachari, Sayanti; Mandal, Subhra Kanti; Das, Prasanta Kumar

    2014-01-01

    The present article reports the development of soft nanohybrids comprising of single walled carbon nanotube (SWCNT) included silver nanoparticles (AgNPs) having superior antibacterial property. In this regard aqueous dispersing agent of carbon nanotube (CNT) containing a silver ion reducing unit was synthesised by the inclusion of tryptophan and tyrosine within the backbone of the amphiphile. The dispersions were characterized spectroscopically and microscopically using TEM, AFM and Raman spectroscopy. The nanotube-nanoparticle conjugates were prepared by the in situ photoreduction of AgNO3. The phenolate residue and the indole moieties of tyrosine and tryptophan, respectively reduces the sliver ion as well as acts as stabilizing agents for the synthesized AgNPs. The nanohybrids were characterized using TEM and AFM. The antibacterial activity of the nanohybrids was studied against Gram-positive (Bacillus subtilis and Micrococcus luteus) and Gram-negative bacteria (Escherichia coli and Klebsiella aerogenes). The SWCNT dispersions showed moderate killing ability (40–60%) against Gram-positive bacteria however no antibacterial activity was observed against the Gram negative ones. Interestingly, the developed SWCNT-amphiphile-AgNP nanohybrids exhibited significant killing ability (∼90%) against all bacteria. Importantly, the cell viability of these newly developed self-assemblies was checked towards chinese hamster ovarian cells and high cell viability was observed after 24 h of incubation. This specific killing of bacterial cells may have been achieved due to the presence of higher –SH containing proteins in the cell walls of the bacteria. The developed nanohybrids were subsequently infused into tissue engineering scaffold agar-gelatin films and the films similarly showed bactericidal activity towards both kinds of bacterial strains while allowing normal growth of eukaryotic cells on the surface of the films. PMID:25191756

  11. Photochemical Deposition of Silver Nanoparticles on Clays and Exploring Their Antibacterial Activity.

    PubMed

    Lombardo, Patrícia C; Poli, Alessandra L; Castro, Lucas F; Perussi, Janice R; Schmitt, Carla C

    2016-08-24

    Photochemical method was used to synthesize silver nanoparticles (AgNPs) in the presence of citrate or clay (SWy-1, SYn-1, and Laponite B) as stabilizers and Lucirin TPO as photoinitiator. During the photochemical synthesis, an appearance of the plasmon absorption band was seen around 400 nm, indicating the formation of AgNPs. X-ray diffraction results suggested that AgNPs prepared in SWy-1 were adsorbed into interlamellar space, and moreover, showed some clay exfoliation. In the case of SYn-1, AgNPs was not intercalated. For the AgNP/Lap B sample, the formation of an exfoliated structure occurred. Transmission electron microscopy revealed the spherical shape of AgNPs for all samples. The particle sizes obtained for AgNP/SWy-1, AgNP/SYn-1, and AgNP/Lap B were 2.6, 5.1, and 3.8 nm, respectively. AgNPs adsorbed on SYn-1 reveal nonuniform size and aggregation of some particles. However, AgNP/SWy-1 and AgNP/Lap B samples are more uniform and have diameters smaller than those prepared with SYn-1. This behavior is due to the ability to exfoliate these clays. The antibacterial activities of pure clays, AgNP/citrate, and AgNP/clays were investigated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). AgNPs in the presence of clays (AgNPs/SYn-1 and AgNPs/SWy-1) showed a lower survival index percentage compared to those obtained for pure clays and AgNPs. The AgNP/SWy-1 sample showed good antibacterial activity against both tested species and the lowest survival index of 3.9 and 4.3 against E. coli and S. aureus, respectively. AgNPs are located in the interlayer region of the SWy-1, which has acid sites. These acidic sites may contribute to the release of Ag(+) ions from the surface of AgNPs. On the other hand, Laponite B and AgNP/Lap B samples did not demonstrate any bactericidal activity. PMID:27487246

  12. W{sub 18}O{sub 49} nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst

    SciTech Connect

    Sun Shibin; Chang Xueting; Dong Lihua; Zhang Yidong; Li Zhenjiang; Qiu Yanyan

    2011-08-15

    A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W{sub 18}O{sub 49} nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W{sub 18}O{sub 49} NRs sensors exhibit superior reducing gas-sensing properties to those of bare W{sub 18}O{sub 49} NRs, and they are highly selective and sensitive to NH{sub 3}, acetone, and H{sub 2}S with short response and recovery times. The Ag/AgCl/W{sub 18}O{sub 49} NRs photocatlysts also possess higher photocatalytic performance than bare W{sub 18}O{sub 49} NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W{sub 18}O{sub 49} NRs composite were proposed. - Graphical Abstract: The Ag/AgCl nanoparticles adhered well to the W{sub 18}O{sub 49} nanorod. The Ag could act as transfer center of the photoexcited carriers, prohibiting their recombinations in both W{sub 18}O{sub 49} and AgCl. Highlights: > Ag/AgCl/W{sub 18}O{sub 49} NRs were successfully obtained via a clean photochemical route. > The Ag/AgCl nanoparticles decorated on the W{sub 18}O{sub 49} NRs possessed cladding structure. > The Ag/AgCl/W{sub 18}O{sub 49} NRs exhibited excellent gas-sensing and photocatalytic properties.

  13. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells

    NASA Astrophysics Data System (ADS)

    Urbańska, Kaja; Pająk, Beata; Orzechowski, Arkadiusz; Sokołowska, Justyna; Grodzik, Marta; Sawosz, Ewa; Szmidt, Maciej; Sysa, Paweł

    2015-03-01

    Recently, it has been shown that silver nanoparticles (AgNPs) provide a unique approach to the treatment of tumors, especially those of neuroepithelial origin. Thus, the aim of this study was to evaluate the impact of AgNPs on proliferation and activation of the intrinsic apoptotic pathway of glioblastoma multiforme (GBM) cells cultured in an in ovo model. Human GBM cells, line U-87, were placed on chicken embryo chorioallantoic membrane. After 8 days, the tumors were divided into three groups: control (non-treated), treated with colloidal AgNPs (40 μg/ml), and placebo (tumors supplemented with vehicle only). At the end of the experiment, all tumors were isolated. Assessment of cell proliferation and cell apoptosis was estimated by histological, immunohistochemical, and Western blot analyses. The results show that AgNPs can influence GBM growth. AgNPs inhibit proliferation of GBM cells and seem to have proapoptotic properties. Although there were statistically significant differences between control and AgNP groups in the AI and the levels of active caspase 9 and active caspase 3, the level of these proteins in GBM cells treated with AgNPs seems to be on the border between the spontaneous apoptosis and the induced. Our results indicate that the antiproliferative properties of silver nanoparticles overwhelm proapoptotic ones. Further research focused on the cytotoxic effect of AgNPs on tumor and normal cells should be conducted.

  14. Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis.

    PubMed

    Shih, Shao-Ju; Tzeng, Wei-Lung; Jatnika, Rifqi; Shih, Chi-Jen; Borisenko, Konstantin B

    2015-05-01

    Mesoporous bioactive glasses (MBGs) have become important bone implant materials because of their high specific surface area resulting in high bioactivity. Doping MBGs with Ag removes one of the remaining challenges to their applications, namely their lack of intrinsic antibacterial properties. In present work we demonstrate that Ag-doped MBGs can be prepared in one-step spray pyrolysis (SP) process. The SP preparation method offers the advantages of short processing times and continuous production over the sol-gel method previously used to prepare MBGs. Using scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction we demonstrate that the synthesized MBG particles have amorphous structure with nanocrystalline Ag inclusions. The scanning transmission electron microscopy-X-ray energy dispersive spectrometry of cross-sectional samples shows that the distribution of the Ag dopant nanoparticles within MBGs can be controlled by using the appropriate formulation of the precursors. The distribution of the Ag dopant nanoparticles within the MBG particles was found to affect their surface areas, bioactivities and antibacterial properties. Based on the observations, we propose a mechanism describing MBG particle formation and controlling dopant distribution. PMID:25171327

  15. Easy deposition of Ag onto polystyrene beads for developing surface-enhanced-Raman-scattering-based molecular sensors.

    PubMed

    Kim, Kwan; Lee, Hyang Bong; Park, Hyoung Kun; Shin, Kuan Soo

    2008-02-15

    We describe a very simple electroless plating method that can be used to prepare Ag-coated polystyrene beads. Robust Ag nanostructures are reproducibly fabricated by soaking polystyrene beads in ethanolic solutions of AgNO(3) and butylamine. When the molar ratio of butylamine to AgNO(3) is far below 1.0, distinct nanosized Ag particles are formed on the polystyrene beads, but by increasing the amount of butylamine, network-like Ag nanostructures are formed that possess very broad UV/vis absorption characteristics extending from the near-UV to near-infrared regions. In conformity with the UV/vis absorption characteristics, the Ag-deposited polystyrene beads were highly efficient surface-enhanced Raman scattering (SERS) substrates, with an enhancement factor estimated using 4-aminobenzenethiol (4-ABT) as a model adsorbate to be larger than 1.1x10(6). On the basis of the nature of the SERS peaks of 4-ABT, those Ag-deposited polystyrene beads were confirmed, after attaching biotin groups over 4-ABT, to selectively recognize streptavidin molecules down to concentrations of 10(-11) g mL(-1) (i.e., approximately 0.2 pM). Since a number of different molecules can be used as SERS-marker molecules (such as 4-ABT), multiple bioassays are readily accomplished via SERS after attaching appropriate host or guest molecules onto them. PMID:18001760

  16. Designed synthesis of Au/Ag/Pd trimetallic nanoparticle-based catalysts for Sonogashira coupling reactions.

    PubMed

    Venkatesan, P; Santhanalakshmi, J

    2010-07-20

    Pdnp and Pd containing trimetallic nanoparticles (tnp) are synthesized by chemical method with cetyltrimethylammonium bromide as the capping agent. Compositionally, four different tnp are prepared and the particle sizes are characterized by UV-vis spectra, HR-TEM, and XRD measurements. The catalytic activities of Pdnp and tnp are tested using the Sonogashira C-C coupling reaction. The product yield and recyclability of the recovered catalysts are studied. tnp (1:1:1) exhibited better catalysis than Pdnp, which may be due to the concerted electronic effects of the Au-Ag core onto the Pd shell atoms. PMID:20462280

  17. Ag Nanoparticles-enhanced Fluorescence of Terbium-Deferasirox Complexes for the Highly Sensitive Determination of Deferasirox.

    PubMed

    Abolhasani, Jafar; Naderali, Roza; Hassanzadeh, Javad

    2016-01-01

    We describe the effect of different sized gold and silver nanoparticles on the terbium sensitized fluorescence of deferasirox. It is indicated that silver nanostructures, especially 18 nm Ag nanoparticles (AgNPs), have a remarkable amplifying effect compared to Au nanoparticles. Based on this observation, a highly sensitive and selective method was developed for the determination of deferasirox. Effects of various parameters like AgNPs and Tb(3+) concentration and pH of media were investigated. Under the optimal conditions, a calibration curve was plotted as the fluorescence intensities versus the concentration of deferasirox in the range of 0.1 to 200 nmol L(-1), and detection limit of 0.03 nmol L(-1) was obtained. The method has good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of deferasirox in urine and pharmaceutical samples. PMID:27063708

  18. Self-organization and photo-induced formation of cyanine dye aggregates on the plasmonic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Starovoytov, Anton A.; Nabiullina, Rezida D.; Toropov, Nikita A.

    2016-04-01

    The optical properties of hybrid film based on plasmon Ag nanoparticles of different size and cyanine dyes with different length of conjugation chain depending on the relative position of the plasmon resonance and the absorption of organic molecules were studied. The absorption spectra of the films revealed several molecular forms, such as all-trans- and cisisomers, dimers and J-aggregate, which also exist in pure organic films without Ag nanoparticles. It's shown that the absorption of aggregate bands increased after exposure by nanosecond laser on the hybrid films due to photo-induced additional self-organization of aggregates. In the presence of Ag nanoparticles, laser radiation leads to the change of molecular forms at a comparatively low threshold.

  19. A Metal Bump Bonding Method Using Ag Nanoparticles as Intermediate Layer

    NASA Astrophysics Data System (ADS)

    Fu, Weixin; Nimura, Masatsugu; Kasahara, Takashi; Mimatsu, Hayata; Okada, Akiko; Shoji, Shuichi; Ishizuka, Shugo; Mizuno, Jun

    2015-11-01

    The future development of low-temperature and low-pressure bonding technology is necessary for fine-pitch bump application. We propose a bump structure using Ag nanoparticles as an intermediate layer coated on a fine-pitch Cu pillar bump. The intermediate layer is prepared using an efficient and cost-saving squeegee-coating method followed by a 100°C baking process. This bump structure can be easily flattened before the bonding process, and the low-temperature sinterability of the nanoparticles is retained. The bonding experiment was successfully performed at 250°C and 39.8 MPa and the bonding strength was comparable to that achieved via other bonding technology utilizing metal particles or porous material as bump materials.

  20. The deposition of gold nanoparticles in MWCNT forests

    NASA Astrophysics Data System (ADS)

    de Jong, Franciscus; Buffet, Adeline; Schlueter, Michael

    2015-11-01

    The deposition, i.e. transport and attachment, of small-sized particles is a basic process, on which many applications are based. The innumerable applications range from biology and medicine to engineering. Due to their promising mechanical properties multi-walled carbon nanotubes (MWCNTs) have gained increasing popularity in the past decade. A large number of dense packed vertically aligned MWCNTs form a so-called MWCNT forest. In our study we functionalized the MWCNT forest to filter gold nanoparticles from a colloidal suspension. An experimental investigation was carried out in which the particle deposition kinetics was locally determined with small-angle X-ray scattering (SAXS). Furthermore, inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to verify the local observations. It was concluded that both, SAXS and ICP-AES investigations shows very good agreement. Furthermore, an analytical deposition model was developed based on the DLVO-theory. The experimental and theoretical investigation presented here give insight in the deposition kinetics within a MWCNT forest. The results open up pathways to optimize MWCNT forests for filtering purposes.

  1. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won; Yang, Hae Woong; Ko, Young Gun; Shin, Dong Hyuk

    2015-08-01

    This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm2 for 300 s in potassium pyrophosphate (K4P2O7) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity.

  2. XAFS studies of gold and silver-gold nanoparticles in aqueous solution

    SciTech Connect

    Shibata, Tomohiro; Tostmann, Holger; Bunker, Bruce; Henglein, Arnim; Meisel, Dan; Cheong, Seong-kyun; Boyanov, Maxim

    2010-09-30

    The X-ray absorption fine structure (XAFS) of colloidal Au and Au/Ag nanoparticles (3.5 nm and 20 nm mean diameter) in an aqueous solution has been investigated. Size dependent alloying was observed upon deposition of Ag on Au core. Ag forms distinct layers around the 20 nm Au nanoparticles. In contrast, random mixing is found for Ag deposited on 3.5 nm Au particles.

  3. Enhanced photoresponse of conformal TiO{sub 2}/Ag nanorod array-based Schottky photodiodes fabricated via successive glancing angle and atomic layer deposition

    SciTech Connect

    Haider, Ali; Biyikli, Necmi; Cansizoglu, Hilal; Cansizoglu, Mehmet Fatih; Karabacak, Tansel; Okyay, Ali Kemal

    2015-01-01

    In this study, the authors demonstrate a proof of concept nanostructured photodiode fabrication method via successive glancing angle deposition (GLAD) and atomic layer deposition (ALD). The fabricated metal-semiconductor nanorod (NR) arrays offer enhanced photoresponse compared to conventional planar thin-film counterparts. Silver (Ag) metallic NR arrays were deposited on Ag-film/Si templates by utilizing GLAD. Subsequently, titanium dioxide (TiO{sub 2}) was deposited conformally on Ag NRs via ALD. Scanning electron microscopy studies confirmed the successful formation of vertically aligned Ag NRs deposited via GLAD and conformal deposition of TiO{sub 2} on Ag NRs via ALD. Following the growth of TiO{sub 2} on Ag NRs, aluminum metallic top contacts were formed to complete the fabrication of NR-based Schottky photodiodes. Nanostructured devices exhibited a photo response enhancement factor of 1.49 × 10{sup 2} under a reverse bias of 3 V.

  4. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens.

    PubMed

    Boxi, Siddhartha Sankar; Mukherjee, Khushi; Paria, Santanu

    2016-02-26

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated (•)OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling. PMID:26808118

  5. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens

    NASA Astrophysics Data System (ADS)

    Sankar Boxi, Siddhartha; Mukherjee, Khushi; Paria, Santanu

    2016-02-01

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated •OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  6. Development of a ReaxFF potential for Ag/Zn/O and application to Ag deposition on ZnO

    NASA Astrophysics Data System (ADS)

    Lloyd, A.; Cornil, D.; van Duin, A. C. T.; van Duin, D.; Smith, R.; Kenny, S. D.; Cornil, J.; Beljonne, D.

    2016-03-01

    A new empirical potential has been derived to model an Ag-Zn-O system. Additional parameters have been included into the reactive force field (ReaxFF) parameter set established for ZnO to describe the interaction between Ag and ZnO for use in molecular dynamics (MD) simulations. The reactive force field parameters have been fitted to density functional theory (DFT) calculations performed on both bulk crystal and surface structures. ReaxFF accurately reproduces the equations of state determined for silver, silver zinc alloy and silver oxide crystals via DFT. It also compares well to DFT binding energies and works of separation for Ag on a ZnO surface. The potential was then used to model single point Ag deposition on polar (000 1 bar) and non-polar (10 1 bar0) orientations of a ZnO wurtzite substrate, at different energies. Simulation results then predict that maximum Ag adsorption on a ZnO surface requires deposition energies of ≤ 10 eV.

  7. A new dielectric ta-C film coating of Ag-nanoparticle hybrids to enhance TiO2 photocatalysis.

    PubMed

    Liu, Fanxin; Tang, Chaojun; Wang, Zhenlin; Sui, Chenghua; Ma, Hongtao

    2014-03-28

    We have demonstrated a novel method to enhance TiO₂ photocatalysis by adopting a new ultrathin tetrahedral-amorphous-carbon (ta-C) film coating on Ag nanoparticles to create strong plasmonic near-field enhancement. The result shows that the decomposition rate of methylene blue on the Ag/10 Å ta-C/TiO₂ composite photocatalyst is ten times faster than that on a TiO₂ photocatalyst and three times faster than that on a Ag/TiO₂ photocatalyst. This can be ascribed to the simultaneous realization of two competitive processes: one that excites the surface plasmons (SPs) of the ta-C-film/Ag-nanoparticle hybrid and provides a higher electric field near the ta-C/TiO₂ interface compared to Ag nanoparticles alone, while the other takes advantage of the dense diamond-like ta-C layer to help reduce the transfer of photogenerated electrons from the conduction band of TiO₂ to the metallic surface, since any electron transfer will suppress the excitation of SP modes in the metal nanoparticles. PMID:24572147

  8. Internally dispersed synthesis of uniform silver nanoparticles via in situ reduction of [Ag(NH3)2]+ along natural microfibrillar substructures of cotton fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silver nanoparticles (Ag NPs) are known to have efficient antimicrobial properties, but the direct application of Ag NPs onto the surface of textiles has shown to be ineffective and raise environmental concerns because Ag NPs leach out during washing. In this study, non-leaching and stable Agcotton ...

  9. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles.

    PubMed

    Guo, Shaojun; Zhang, Xu; Zhu, Wenlei; He, Kai; Su, Dong; Mendoza-Garcia, Adriana; Ho, Sally Fae; Lu, Gang; Sun, Shouheng

    2014-10-22

    Controlling the electronic structure and surface strain of a nanoparticle catalyst has become an important strategy to tune and to optimize its catalytic efficiency for a chemical reaction. Using density functional theory (DFT) calculations, we predicted that core/shell M/CuPd (M = Ag, Au) NPs with a 0.8 or 1.2 nm CuPd2 shell have similar but optimal surface strain and composition and may surpass Pt in catalyzing oxygen reduction reactions. We synthesized monodisperse M/CuPd NPs by the coreduction of palladium acetylacetonate and copper acetylacetonate in the presence of Ag (or Au) nanoparticles with controlled shell thicknesses of 0.4, 0.75, and 1.1 nm and CuPd compositions and evaluated their catalysis for the oxygen reduction reaction in 0.1 M KOH solution. As predicted, our Ag/Cu37Pd63 and Au/Cu40Pd60 catalysts with 0.75 and 1.1 nm shells were more efficient catalysts than the commercial Pt catalyst (Fuel Cells Store), with their mass activity reaching 0.20 A/mg of noble metal at -0.1 V vs Ag/AgCl (4 M KCl); this was over 3 times higher than that (0.06 A/mg Pt) from the commercial Pt. These Ag(Au)/CuPd nanoparticles are promising non-Pt catalysts for oxygen reduction reactions. PMID:25279704

  10. Investigating the pharmacokinetics and biological distribution of silver-loaded polyphosphoester-based nanoparticles using 111Ag as a radiotracer

    PubMed Central

    Aweda, Tolulope A.; Zhang, Shiyi; Mupanomunda, Chiedza; Burkemper, Jennifer; Heo, Gyu Seong; Bandara, Nilantha; Lin, Mai; Cutler, Cathy S.; Cannon, Carolyn L.; Youngs, Wiley; Wooley, Karen L.; Lapi, Suzanne E.

    2015-01-01

    Purified 111Ag was used as a radiotracer to investigate silver loading and release, pharmacokinetics and biodistribution of polyphosphoester-based degradable shell crosslinked knedel-like (SCK) nanoparticles as a comparison to the previously reported small molecule, N-heterocyclic silver carbene complex analogue (SCC1) for the delivery of therapeutic silver ions in mouse models. Biodistribution studies were conducted by aerosol administration of 111Ag acetate, [111Ag]SCC1 and [111Ag]SCK doses directly into the lungs of C57BL/6 mice. Nebulization of the 111Ag antimicrobials resulted in an average uptake of 1.07 ± 0.12% of the total aerosolized dose given per mouse. The average dose taken into the lungs of mice was estimated to be 2.6 ± 0.3% of the dose inhaled per mouse for [111Ag]SCC1 and twice as much dose was observed for the [111Ag]SCKs (5.0 ± 0.3% and 5.9 ± 0.8% for [111Ag]aSCK and [111Ag]zSCK, respectively) at 1 h post administration (p.a.). [111Ag]SCKs also exhibited higher dose retention in the lungs; 62 – 68% for [111Ag]SCKs and 43% for [111Ag]SCC1 of the initial 1 h dose was observed in the lungs at 24 h post administration (p.a.). This study demonstrates the utility of 111Ag as a useful tool for monitoring the pharmacokinetics of silver loaded antimicrobials in vivo. PMID:25952472

  11. Investigating the pharmacokinetics and biological distribution of silver-loaded polyphosphoester-based nanoparticles using (111) Ag as a radiotracer.

    PubMed

    Aweda, Tolulope A; Zhang, Shiyi; Mupanomunda, Chiedza; Burkemper, Jennifer; Heo, Gyu Seong; Bandara, Nilantha; Lin, Mai; Cutler, Cathy S; Cannon, Carolyn L; Youngs, Wiley J; Wooley, Karen L; Lapi, Suzanne E

    2015-05-30

    Purified (111) Ag was used as a radiotracer to investigate silver loading and release, pharmacokinetics, and biodistribution of polyphosphoester-based degradable shell crosslinked knedel-like (SCK) nanoparticles as a comparison to the previously reported small molecule, N-heterocyclic silver carbene complex analog (SCC1) for the delivery of therapeutic silver ions in mouse models. Biodistribution studies were conducted by aerosol administration of (111) Ag acetate, [(111) Ag]SCC1, and [(111) Ag]SCK doses directly into the lungs of C57BL/6 mice. Nebulization of the (111) Ag antimicrobials resulted in an average uptake of 1.07 ± 0.12% of the total aerosolized dose given per mouse. The average dose taken into the lungs of mice was estimated to be 2.6 ± 0.3% of the dose inhaled per mouse for [(111) Ag]SCC1 and twice as much dose was observed for the [(111) Ag]SCKs (5.0 ± 0.3% and 5.9 ± 0.8% for [(111) Ag]aSCK and [(111) Ag]zSCK, respectively) at 1 h post administration (p.a.). [(111) Ag]SCKs also exhibited higher dose retention in the lungs; 62-68% for [(111) Ag]SCKs and 43% for [(111) Ag]SCC1 of the initial 1 h dose were observed in the lungs at 24 h p.a.. This study demonstrates the utility of (111) Ag as a useful tool for monitoring the pharmacokinetics of silver-loaded antimicrobials in vivo. PMID:25952472

  12. Synthesis of rGO-Ag nanoparticles for high-performance SERS and the adsorption geometry of 2-mercaptobenzimidazole on Ag surface

    NASA Astrophysics Data System (ADS)

    Zheng, H. L.; Yang, S. S.; Zhao, J.; Zhang, Z. C.

    2014-03-01

    The sliver nanoparticles (AgNPs) with diameters of 30˜50 nm were self-assembled onto the surfaces of reduced graphene oxide (rGO) sheets simply by mixing AgNO3 aqueous solution and GO dispersion via a synchronous reduction process. Structure and morphology of the rGO-AgNPs hybrids were well characterized. More significantly, the surface-enhanced Raman scattering (SERS) spectrum of 2-mercaptobenzimidazole (MBI) adsorbed on the solid rGO-AgNPs surface shown that the rGO-AgNPs system gives a very strong SERS intensity at in-plane vibrational modes in comparison to the out-of-plane vibrational modes. This large enhancement effect is most likely a result of charge-transfer (CT) mechanism. Based on the surface selection rules and the information provided by the highly enhanced in-plane vibrational modes, it can be found that MBI molecule was adsorbed on AgNPs surface as a thiol form via the sulphur and nitrogen atoms with a slightly tilted geometric conformation.

  13. Synthesis of ZnS:Ag,Co water-soluble blue afterglow nanoparticles and application in photodynamic activation.

    PubMed

    Ma, Lun; Zou, Xiaoju; Hossu, Marius; Chen, Wei

    2016-08-01

    Silver and cobalt co-doped ZnS (ZnS:Ag,Co) water-soluble afterglow nanoparticles were synthesized using a wet chemistry method followed by aging at room temperature. The nanoparticles had a cubic zinc blende structure with average sizes of approximately 4 nm and emitted a blue fluorescence emission centered at 441 nm due to radiative transitions from surface defects to Ag(+) luminescent centers. Intense afterglow emission peaking at 475 nm from the obtained nanoparticles was observed and was red-shifted compared to the fluorescence emission peak. X-ray photoelectron spectroscopy revealed a large increase of O/S ratio, indicating a surface oxidation process during aging. The S vacancies produced accordingly may contribute to form more electron traps and enhance afterglow. The ZnS:Ag,Co afterglow nanoparticles have a very low dark-toxicity and are applied as a light source for photodynamic therapy activation by conjugating with protoporphyrin together. Our preliminary study has shown that the ZnS:Ag,Co afterglow nanoparticles can significantly reduce the x-ray dosage used in activation and thus may be a very promising candidate for future x-ray excited photodynamic therapy in deep cancer treatment. PMID:27345100

  14. Synthesis of ZnS:Ag,Co water-soluble blue afterglow nanoparticles and application in photodynamic activation

    NASA Astrophysics Data System (ADS)

    Ma, Lun; Zou, Xiaoju; Hossu, Marius; Chen, Wei

    2016-08-01

    Silver and cobalt co-doped ZnS (ZnS:Ag,Co) water-soluble afterglow nanoparticles were synthesized using a wet chemistry method followed by aging at room temperature. The nanoparticles had a cubic zinc blende structure with average sizes of approximately 4 nm and emitted a blue fluorescence emission centered at 441 nm due to radiative transitions from surface defects to Ag+ luminescent centers. Intense afterglow emission peaking at 475 nm from the obtained nanoparticles was observed and was red-shifted compared to the fluorescence emission peak. X-ray photoelectron spectroscopy revealed a large increase of O/S ratio, indicating a surface oxidation process during aging. The S vacancies produced accordingly may contribute to form more electron traps and enhance afterglow. The ZnS:Ag,Co afterglow nanoparticles have a very low dark-toxicity and are applied as a light source for photodynamic therapy activation by conjugating with protoporphyrin together. Our preliminary study has shown that the ZnS:Ag,Co afterglow nanoparticles can significantly reduce the x-ray dosage used in activation and thus may be a very promising candidate for future x-ray excited photodynamic therapy in deep cancer treatment.

  15. Modeling the effects of surfactant, hardness, and natural organic matter on deposition and mobility of silver nanoparticles in saturated porous media.

    PubMed

    Park, Chang Min; Heo, Jiyong; Her, Namguk; Chu, Kyoung Hoon; Jang, Min; Yoon, Yeomin

    2016-10-15

    This study aims to provide insights into the mechanisms governing the deposition and retention of silver nanoparticles (AgNPs) in saturated porous media. Column experiments were conducted with quartz sand under saturated conditions to investigate the deposition kinetics of AgNPs, their mobility at different groundwater hardnesses (10-400 mg/L as CaCO3), and humic acid (HA, 0-50 mg/L as dissolved organic carbon [DOC]). An anionic surfactant, sodium dodecyl sulfate (SDS), was used as a dispersing agent to prepare a SDS-AgNPs suspension. The deposition kinetics of AgNPs were highly sensitive to the surfactant concentration, ionic strength, and cation type in solution. The breakthrough curves (BTCs) of SDS-AgNPs suggested that the transport and retention were influenced by groundwater hardness and HA. At low water hardness and high HA, high mobility of SDS-AgNPs was observed in saturated conditions. However, the retention of SDS-AgNPs increased substantially in very hard water with a low concentration of HA, because of a decreased primary energy barrier and the straining effect during the course of transport experiments. A modified clean-bed filtration theory and a two-site kinetic attachment model showed good fits with the BTCs of SDS-AgNPs. The fitted model parameters (katt and kstr) could be used successfully to describe that the retention behaviors were dominated by electrostatic and electrosteric repulsion, based on extended Derjaguin-Landau-Vaerwey-Overbeek calculations. PMID:27429353

  16. Deposition dynamics of droplet-free Si nanoparticles in Ar gas using laser ablation

    NASA Astrophysics Data System (ADS)

    Takeuchi, D.; Mizuta, T.; Makimura, T.; Yoshida, S.; Fujita, M.; Hata, K.; Shigekawa, H.; Murakami, K.

    2002-09-01

    Droplet-free deposition of Si nanoparticle films has been studied applying time-resolved imaging of Si nanoparticles formed by laser ablation of Si targets in Ar gas. We found that Si nanoparticles can be deposited not only on substrates facing to the targets but also on substrates placed beside the target. We further confirmed using a scanning tunneling microscope (STM), Si nanoparticles with sizes of 5-8 nm are deposited on substrates placed beside the target and using a scanning electron microscope (SEM) on the substrates, no droplets are observed.

  17. The Characteristics of an Antibacterial TiAgN Thin Film Coated by Physical Vapor Deposition Technique.

    PubMed

    Kang, Byeong-Mo; Jeong, Woon-Jo; Park, Gye-Choon; Yoon, Dong-Joo; Ahn, Ho-Geun; Lim, Yeong-Seog

    2015-08-01

    In this work, we found the characteristics of an antibacterial TiAgN thin film coated on the pure titanium specimen via the physical vapor deposition process (PVD). TiAgN thin films were coated using TiAg alloy targets by arc ion plating method. Changing the process parameters, the surface analysis of TiAgN thin film was observed by FE-SEM and the force of adhesion was measured with Scratch Tester. The proliferation of human gingival fibroblast (HGF) cells was examined by XTT test assay and the antibacterial properties were investigated by culturing Streptococus Mutans (KCTC 3065) using paper disk techniques. At the result of experiment, cytotoxic effects were not found and the antibacterial effects against Streptococus Mutans were appeared over 5 wt% TiAgN specimens. PMID:26369190

  18. Influence of substrate temperature on the properties of pulsed laser deposited silver nanoparticle thin films and their application in SERS detection of bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Kamakshi, Koppole; Silva, J. P. B.; Sekhar, K. C.; Marslin, Gregory; Moreira, J. Agostinho; Conde, O.; Almeida, A.; Pereira, M.; Gomes, M. J. M.

    2016-05-01

    The effect of substrate temperature ( T s) on electrical conductance, surface plasmon resonance (SPR), and surface-enhanced Raman scattering (SERS) activity of silver nanoparticle (AgNP) thin films is presented. AgNP films are grown on glass substrates by pulsed laser deposition in a controlled Ar atmosphere at a pressure of 0.1 mbar and varying T s. Different T s results in different morphologies, as observed by scanning electron microscopy. The effect of interparticle distance on the electrical conductance of AgNPs is highlighted. The current-voltage characteristics display negative resistance effect and is attributed to the charge trapping process in AgNPs. The film deposited at room temperature presents a SPR peak at λ = 460 nm, and its wavelength first increases until T s reaches 300 °C and then decreases with further increasing T s. The quantitative analysis of SERS studies reveals that SERS intensity of bovine serum albumin (BSA) adsorbed on AgNP substrate deposited at 300 °C exhibits a higher intensity as compared with that of BSA adsorbed on the SERS active substrates at any other T s.

  19. Novel magnetite nanoparticle based on BODIPY as fluorescent hybrid material for Ag(I) detection in aqueous medium.

    PubMed

    Kursunlu, Ahmed Nuri; Ozmen, Mustafa; Guler, Ersin

    2016-06-01

    This manuscript describes a highly selective and ultra-sensitive detection of Ag(I) in aqueous solution using amine coated magnetite nanoparticles modified boron-dipyrromethene by spectrofluorometer. Fe3O4 nanoparticles were synthesized by co-precipitation of Fe(2+)and Fe(3+)in an ammonia solution. Amine modified Fe3O4 was prepared by using (3-aminopropyl)triethoxysilane as silanization agent. The covalent binding of boron-dipyrromethene to amine modified Fe3O4 was confirmed by means of Fourier Transform infrared spectroscopy, transmission electron microscopy, dynamic light scattering, UV-vis and fluorimeter measurements and obtained nanoparticle-boron dipyrromethene structure. The binding abilities of nanoparticle-boron dipyrromethene towards different metal ions have been investigated by some spectroscopic methods as UV-vis, fluorescence spectroscopy, Job plot, etc. and the novel surface displayed high selectivity and sensitivity for Ag(I) among all tested metals. PMID:27130108

  20. Ferritin-mediated biomimetic synthesis of bimetallic Au-Ag nanoparticles on graphene nanosheets for electrochemical detection of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Jiku; Ni, Pengjuan; Li, Zhuang

    2015-03-01

    We demonstrated a biomimetic green synthesis of bimetallic Au-Ag nanoparticles (NPs) on graphene nanosheets (GNs). The spherical protein, ferritin (Fr), was bound onto GNs and served as the template for the synthesis of GN/Au-Ag nanohybrids. The created GN/Au-Ag nanohybrids were further utilized to fabricate a non-enzymatic amperometric biosensor for the sensitive detection of hydrogen peroxide (H2O2), and this biosensor displayed high performances to determine H2O2 with a detection limit of 20.0 × 10-6 M and a linear detection range from 2.0 μM to 7.0 mM.

  1. Electrical and optical properties of vanadium dioxide containing gold nanoparticles deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Orlianges, J.-C.; Leroy, J.; Crunteanu, A.; Mayet, R.; Carles, P.; Champeaux, C.

    2012-09-01

    Nanostructured vanadium dioxide is one of the most interesting and studied member of the vanadates family performing a reversible transition from an insulating state to a metallic state associated with a structural transition when heated above a temperature of 68 °C. On the other hand, noble metal nanoparticles (NPs) support localized surface plasmon resonance which causes selective absorption bands in the visible and near-IR regions. The purpose of this letter is to study structural, optical, and electrical properties of vanadium dioxide thin films containing gold nanoparticles synthetized using pulsed laser deposition process. Thus, we have performed x-ray diffraction, optical transmission, and four point probe electrical measurements to investigate the nanocomposite properties versus its temperature. Interestingly, we have observed switching behavior for VO2 film containing gold NPs with a resistivity contrast of four orders of magnitude and a decrease of its transition temperature.

  2. Non-covalent functionalization of graphene oxide by polyindole and subsequent incorporation of Ag nanoparticles for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Dubey, Prashant; Kumar, Ashish; Prakash, Rajiv

    2015-11-01

    Reduced graphene oxide (r-GO) sheets have been modified by polyindole (PIn) via in situ chemical oxidation method to obtain stable dispersion in water and furthermore incorporation of Ag nanoparticles (Ag NPs); the resulting Ag NPs/PIn-r-GO nanocomposite is demonstrated for electrochemical applications. Ag NPs/r-GO and PIn/GO nanocomposites have also been prepared for its comparative study with Ag NPs/PIn-r-GO. Non-covalent functionalization of GO by PIn polymer leads to PIn-GO dispersion, which is stable for several months without any precipitation. This dispersed solution is used for formation of Ag NPs/PIn-r-GO nanocomposite. Various experimental tools like UV-vis, FTIR and TEM have been used to characterize as-synthesized materials. Thereafter electrochemical performance of as-synthesized nanocomposites have been compared for their charge capacitive behaviour (without its poisoning compared to Ag NPs/r-GO) which leads to be an excellent candidate for the possible applications such as electrocatalysis, charge storage devices, etc. We observed that Ag NPs/PIn-r-GO nanocomposite exhibits better processability and electroactivity as electrode material in comparison to Ag NPs/r-GO and PIn/GO nanocomposites due to synergistic effect of individual components.

  3. Aggregation of Congo red with surfactants and Ag-nanoparticles in an aqueous solution

    NASA Astrophysics Data System (ADS)

    AL-Thabaiti, Shaeel Ahmed; Aazam, Elham Shafik; Khan, Zaheer; Bashir, Ommer

    2016-03-01

    Self aggregation, sorption, and interaction of Congo red, with cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS), Ag+ ions and silver nanoparticles have been determined spectrophotometrically. Congo red self-aggregation was identified from UV-visible spectra due to the shrinkage in an absorption band at 495 nm. The shape of the absorbance spectrum changed entirely with increasing [Congo red] but wavelength maxima remain unchanged. The molar absorptivity was found to be 9804 mol- 1 dm3 cm- 1 at 495 nm. Absorption spectra of Congo red with Ag+ ions show an isosbestic point. The complex formation constant and difference in absorption coefficients were found to be 8.5 × 104 mol- 1 dm3 and 11,764 mol- 1 dm3 cm- 1, respectively. Silver nano-particles could not be used for the catalytic degradation of Congo red because it results in the formation of a strong complex with them. Sodium dodecylsulfate did not show any significant interaction with this dye. Congo red was also used as a probe to determine the critical micellar concentration of CTAB.

  4. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity

    NASA Astrophysics Data System (ADS)

    Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.; Bald, I.

    2016-03-01

    DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. Electronic supplementary information (ESI) available: Additional information about materials and methods, designs of DNA origami templates, height profiles, additional SERS spectra, assignment of DNA

  5. LSP spectral changes correlating with SERS activation and quenching for R6G on immobilized Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Futamata, M.; Maruyama, Y.

    2008-10-01

    In terms of chemical enhancement in Surface Enhanced Raman Scattering (SERS), we investigated the effect of halide and other anions to rhodamine 6G (R6G) adsorbed Ag particles that were immobilized on the substrates. The residual species on chemically prepared Ag particles such as citrate or a-carbon were thoroughly substituted by various anions, e.g., Cl-, Br-, I-, SCN-, CN-, or S2O3 2- anions, whose adsorption features are elucidated by the formation constants for AgX2 ( m-1)-, here X denotes the above anions. In particular, Cl-, Br-, or SCN- ions activated SERS of R6G via intrinsic electronic interaction with Ag, whereas CN-, S2O3 2-, or I- anions quenched it due to their exclusive adsorption onto the Ag surfaces. We found that the activation process with the anions commonly yields a marked blue-shift of the coupled plasmon peak from ca. 650-700 to 500-550 nm in elastic scattering. It is rationalized by slight increase of the gap size between adjacent Ag nanoparticles by only ca. 1 nm based on theoretical simulations. This is probably caused by slight dissolution, oxidative etching, of the particles according to large formation constants of the complexes. Consequently, partly remaining negative charges on the Ag surface, and a slight increase in the gap size, providing huge electric field, facilitated R6G cations to adsorb on the nanoparticles, especially at the junction.

  6. Comparison between Ag (I) and Ni (II) removal from synthetic nuclear power plant coolant water by iron oxide nanoparticles

    PubMed Central

    2013-01-01

    The impact of effective parameters such as iron oxide nanoparticles dosage, contact time and solution pH was optimized for removal of Ag(I) and Ni(II) in the nuclear cooling system and the best conditions were compared. Nearly complete removal (97%) of Ni(II) and Ag(I) were obtained at adsorbent dosage of 40 and 20 g/L, respectively. Experiments showed that 4 hours was a good choice as optimum contact time for two ions removal. The effective parameter was pH, so that maximum removal efficiency was obtained for Ag(I) in acidic pH=3 and for Ni(II) in basic pH=10. It seems that removal of Ag(I) was controlled by adsorption-reduction mechanism, but Ni(II) could place only adsorption. Langmuir and Freundlich model was more suitable for nickel and silver removal by this adsorbent, respectively. Ag(I) and Ni(II) removal efficiency trend by this adsorbent is similar at periods but different in the concentrations, pHs and equilibrium model. The obtained results were very promising, as both Ag(I) and Ni(II) were effectively removed from synthetic wastewater and there was a possibility to remove Ag(I) very fast. Hence, the idea of using nanoparticles for application of metal ions removal from wastewaters seems to be very efficient and quite promising. PMID:24499654

  7. Polycarbonate activation for electroless plating by dimethylaminoborane absorption and subsequent nanoparticle deposition

    NASA Astrophysics Data System (ADS)

    Muench, Falk; Bohn, Sebastian; Rauber, Markus; Seidl, Tim; Radetinac, Aldin; Kunz, Ulrike; Lauterbach, Stefan; Kleebe, Hans-Joachim; Trautmann, Christina; Ensinger, Wolfgang

    2014-07-01

    Electroless plating of metal films on polymer substrates usually requires the presence of metal particles acting as catalytically active nuclei for the deposition reaction. Herein, we present a novel and versatile approach towards the activation of polycarbonate substrates with metal nanoparticles. It is based on the diffusion of dimethylaminoborane into the polymer matrix, followed by reaction of the sensitized substrates with metal salt solutions. The reducing agent uptake was controlled by changing the duration of the sensitization and the dimethylaminoborane concentration in the sensitization solution. Different seed types (Ag, Au, Pd, Pt and Rh) were deposited by variation of the activation solution. The proposed mechanism was confirmed with FTIR and TEM measurements. In addition, AFM revealed that apart from a slight roughening in the nanometer range, the surface morphology of the polymer remained unchanged, rendering the method viable for template-based nanomaterial fabrication. Due to its pronounced variability, the new technique allows to tailor the activity of polymer substrates for consecutive electroless plating. The feasibility and nanoscale homogeneity of the process were proven by the electroless fabrication of well-defined Au and Pt nanotubes in ion-track etched polycarbonate templates. The combination of features (use of simple and easily scalable wet-chemical processes, facile seed variation, high activation quality on complex surfaces) renders the outlined technique promising for the fabrication of intricate nanomaterials as well as for the metallization of macroscopic work pieces.

  8. Conformal nanocoating of zirconia nanoparticles by atomic layer deposition in a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Hakim, Luis F.; George, Steven M.; Weimer, Alan W.

    2005-07-01

    Primary zirconia nanoparticles were conformally coated with alumina ultrathin films using atomic layer deposition (ALD) in a fluidized bed reactor. Alternating doses of trimethylaluminium and water vapour were performed to deposit Al2O3 nanolayers on the surface of 26 nm zirconia nanoparticles. Transmission Fourier transform infrared spectroscopy was performed ex situ. Bulk Al2O3 vibrational modes were observed for coated particles after 50 and 70 cycles. Coated nanoparticles were also examined with transmission electron microscopy, high-resolution field emission scanning electron microscopy and energy dispersive spectroscopy. Analysis revealed highly conformal and uniform alumina nanofilms throughout the surface of zirconia nanoparticles. The particle size distribution and surface area of the nanoparticles are not affected by the coating process. Primary nanoparticles are coated individually despite their high aggregation tendency during fluidization. The dynamic aggregation behaviour of zirconia nanoparticles in the fluidized bed plays a key role in the individual coating of nanoparticles.

  9. Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia

    USGS Publications Warehouse

    Jiang, Shao-Yong; Slack, John F.; Palmer, Martin R.

    2000-01-01

    We report here Sm and Nd isotope data for hydrothermal tourmalinites and sulfide ores from the giant Sullivan Pb-Zn-Ag deposit, which occurs in the lower part of the Mesoproterozoic Purcell (Belt) Supergroup. Whole-rock samples of quartz-tourmaline tourmalinite from the footwall alteration pipe yield a Sm-Nd isochron age of 1470 ± 59 Ma, recording synsedimentary B metasomatism of clastic sediments during early evolution of the Sullivan hydrothermal system. Data for variably altered (chloritized and/or albitized) tourmalinites from the hanging wall of the deposit, which are believed to have formed originally ca. 1470 Ma, define a younger 1076 ± 77 Ma isochron because of resetting of Sm and Nd isotopes during Grenvillian metamorphism. HCl leachates of bedded Pb-Zn ore yield a Sm-Nd isochron age of 1451 ± 46 Ma, which is consistent with syngenetic-exhalative mineralization ca. 1470 Ma; this age could also reflect a slightly younger, epigenetic hydrothermal event. Results obtained for the Sullivan deposit indicate that the Sm-Nd geochronometer has the potential to directly date mineralization and alteration in stratabound sulfide deposits that are not amenable to dating by other isotope methods.

  10. Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-Yong; Slack, John F.; Palmer, Martin R.

    2000-08-01

    We report here Sm and Nd isotope data for hydrothermal tourmalinites and sulfide ores from the giant Sullivan Pb-Zn-Ag deposit, which occurs in the lower part of the Mesoproterozoic Purcell (Belt) Supergroup. Whole-rock samples of quartz-tourmaline tourmalinite from the footwall alteration pipe yield a Sm-Nd isochron age of 1470 ± 59 Ma, recording synsedimentary B metasomatism of clastic sediments during early evolution of the Sullivan hydrothermal system. Data for variably altered (chloritized and/or albitized) tourmalinites from the hanging wall of the deposit, which are believed to have formed originally ca. 1470 Ma, define a younger 1076 ± 77 Ma isochron because of resetting of Sm and Nd isotopes during Grenvillian metamorphism. HCl leachates of bedded Pb-Zn ore yield a Sm-Nd isochron age of 1451 ± 46 Ma, which is consistent with syngenetic-exhalative mineralization ca. 1470 Ma; this age could also reflect a slightly younger, epigenetic hydrothermal event. Results obtained for the Sullivan deposit indicate that the Sm-Nd geochronometer has the potential to directly date mineralization and alteration in stratabound sulfide deposits that are not amenable to dating by other isotope methods.

  11. Synthesis of Ag-doped TiO2 nanoparticles by combining laser decomposition of titanium isopropoxide and ablation of Ag for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Al-Kamal, Ahmed Kamal

    Nanostructured powders of TiO2 and Ag-doped TiO2 are synthesized by a novel pulsed-laser process that combines laser ablation of a silver (Ag) disc with laser decomposition of a titanium tetra-isopropoxide (TTIP) solution. Nanoparticles are formed by rapid condensation of vaporized species in the plasma plume generated by the high power laser, resulting in the formation of rapidly quenched Ag-doped TiO2 nanoparticles that have far-from-equilibrium or metastable structures. The uniqueness of the new ablation process is that it is a one-step process, in contrast to the two-step process developed by previous researchers in the field. Moreover, its ability to synthesize an extended-solid solution phase of Ag in TiO 2 may also be unique. The present work implies that other oxide phases, such as Al2O3, MgO and MgAl2O4, can be doped with normally insoluble metals, such as Pt and Ir, thus opening new opportunities for catalytic applications. Again, there is the prospect of being able to synthesize nanopowders of diamond, c-BN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor. A wet-chemistry method is also investigated, which has much in common with that adopted by previous workers in the field. However, photo-voltaic properties do not measure up to expectations based on published data. A possible explanation is that the selected Ag concentrations are too high, so that recombination of holes and electrons occurs via a quantum-tunneling mechanism reduces photo-activity. Future work, therefore, will investigate lower concentrations of Ag dopant in TiO2, while also examining the effects of metastable states, including extended solid solution, amorphous, and semi-crystalline structures.

  12. Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration

    NASA Astrophysics Data System (ADS)

    Nishimura, Ichiro; Huang, Yuhong; Butz, Frank; Ogawa, Takahiro; Lin, Audrey; Wang, Chiachien Jake

    2007-06-01

    We report here a new versatile method to deposit discrete hydroxyapatite (HA) nanoparticles on a titanium (Ti) implant with predisposing substrate microtopography, which exhibited an unexpectedly robust biological effect. Commercially pure Ti substrates were treated with 3-aminopropyltriethoxysilane, on which HA nanoparticles (20 nm) were deposited and chemically bonded to TiO2. The HA deposition rate was linearly related to the treatment time and HA nanoparticles were deposited on up to 50% of the substrate surface. As a result, the discrete deposition of HA nanoparticles generated novel 20-40 nm nanotopography on the Ti substrate with microtopography that was smooth (turned) or roughened by double acid etching (DAE). The experimental implants with or without HA nanoparticles were surgically placed in rat femur and an implant push-in test was performed after two weeks of healing. The deposition of HA nanoparticles on the DAE surface increased the mechanical withstanding load by 129% and 782% as compared to the control DAE and turned implants, respectively. Micro-computed tomography-based 3D bone morphometry revealed equivalent bone volumes around the DAE implant with or without HA nanoparticles. These data suggest that the discrete deposition of HA nanoparticles accelerates the early osseointegration process, likely through increased shear bonding strengths.

  13. Lithogeochemistry and fluid inclusions of an Au-Ag vein deposit in a granodiorite intrusive

    SciTech Connect

    Hahn, R.; Ikramuddin, M.

    1985-01-01

    Forty-eight samples of altered and unaltered rocks and quartz veins from the Acme mine in northeast Washington, an Au-Ag vein deposit in a granodiorite intrusive, have been analyzed for SiO/sub 2/, Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/, Feo, MgO, CaO, Na/sub 2/O, K/sub 2/O, TiO/sub 2/, MnO, P/sub 2/O/sub 5/, H/sub 2/O, CO/sub 2/, Ag, Au, Ba, Cu, Pb, Rb, Sr, Tl, and Zn. A comparison of major and trace elements shows that the altered granodiorite is enriched in SiO/sub 2/, Fe/sub 2/O/sub 3/, K/sub 2/O, Ag, Au, Ba, Cu, Pb, Rb, Tl, and Zn and depleted in Al/sub 2/O/sub 3/, FeO, MgO, CaO, Na/sub 2/O, TiO/sub 2/, MnO, P/sub 2/O/sub 5/, and Sr. The average contents of Au in unaltered and altered granodiorite and quartz veins are 9 ppb. 270 ppb and 1020 ppb respectively. The average Ba/Tl ratio in the altered samples decrease and average Rb/Sr and Tl/Sr ratios increase. K, Rb, and Tl are enriched in the altered granodiorite by factors of 1.5, 1.6, and 1.4 respectively. Tl is not enriched relative to Rb and K in the altered samples due to the high temperature of the deposit. The Ba/Tl, K/Tl and K/Rb ratios do not show complete separation of altered from unaltered samples. However, the Ba/Tl and K/Tl ratios in the quartz vein are significantly lower than the unaltered and altered granodiorite. This is due to the enrichment of Tl over K and Rb in the quartz veins. The Rb/Sr and Tl/Sr ratios are higher in the altered granodiorite and quartz veins compared to unaltered samples. The enrichment of Tl and presence of low Ba/Tl and high Rb/Sr and Tl/Sr ratios in a granodiorite indicate that the rocks are hydrothermally altered and represent a possible Au-Ag target.

  14. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Sweatlock, L. A.; Maier, S. A.; Atwater, H. A.; Penninkhof, J. J.; Polman, A.

    2005-06-01

    Linear arrays of very small Ag nanoparticles (diameter ˜10nm , spacing 0-4nm ) were fabricated in sodalime glass using an ion irradiation technique. Optical extinction spectroscopy of the arrays reveals a large polarization-dependent splitting of the collective plasmon extinction band. Depending on the preparation condition, a redshift of the longitudinal resonance as large as 1.5eV is observed. Simulations of the three-dimensional electromagnetic field evolution are used to determine the resonance energy of idealized nanoparticle arrays with different interparticle spacings and array lengths. Using these data, the experimentally observed redshift is attributed to collective plasmon coupling in touching particles and/or in long arrays of strongly coupled particles. The simulations also indicate that for closely coupled nanoparticles ( 1-2nm spacing) the electromagnetic field is concentrated in nanoscale regions ( 10dB radius: 3nm ) between the particles, with a 5000-fold local field intensity enhancement. In arrays of 1-nm -spaced particles the dipolar particle interaction extends to over 10 particles, while for larger spacing the interaction length decreases. Spatial images of the local field distribution in 12-particle arrays of touching particles reveal a particlelike coupled mode with a resonance at 1.8eV and a wirelike mode at 0.4eV .

  15. Ultrafine Au and Ag Nanoparticles Synthesized from Self-Assembled Peptide Fibers and Their Excellent Catalytic Activity.

    PubMed

    Xu, Wenlong; Hong, Yue; Hu, Yuanyuan; Hao, Jingcheng; Song, Aixin

    2016-07-18

    The self-assembly of an amphiphilic peptide molecule to form nanofibers facilitated by Ag(+) ions was investigated. Ultrafine AgNPs (NPs=nanoparticles) with an average size of 1.67 nm were synthesized in situ along the fibers due to the weak reducibility of the -SH group on the peptide molecule. By adding NaBH4 to the peptide solution, ultrafine AgNPs and AuNPs were synthesized with an average size of 1.35 and 1.18 nm, respectively. The AuNPs, AgNPs, and AgNPs/nanofibers all exhibited excellent catalytic activity toward the reduction of 4-nitrophenol, with turnover frequency (TOF) values of 720, 188, and 96 h(-1) , respectively. Three dyes were selected for catalytic degradation by the prepared nanoparticles and the nanoparticles showed selective catalysis activity toward the different dyes. It was a surprising discovery that the ultrafine AuNPs in this work had an extremely high catalytic activity toward methylene blue, with a reaction rate constant of 0.21 s(-1) and a TOF value of 1899 h(-1) . PMID:27028550

  16. Synthesis of reduced graphene oxide and enhancement of its electrical and optical properties by attaching Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Khan, Sunny; Ali, Javid; Harsh; Husain, M.; Zulfequar, M.

    2016-07-01

    Graphene has attracted the attention of the scientists and researchers because of its peculiar properties. Because of various unique properties, graphene can be used in sensing device applications, solar cells and liquid crystal display devices etc. In this research paper, we present a chemical route towards bulk production of r-GO (reduced graphene oxide). We have employed a modified method to achieve better results which is often termed as modified Hummer's and Offeman method. It is modified in terms of filtration technique. We have also attached silver nanoparticles (Ag-NP) to as synthesised r-GO. After successful growth, silver nanoparticles have been attached to r-GO by suitable treatment with AgNO3 (aq.) N/50 solution. The as grown samples were characterised by FESEM, Raman Spectroscopy and EDS to make sure that r-GO and r-GO-Ag-NP have been successfully synthesised. The electrical and optical studies of the as grown samples were performed by dc conductivity measurements and UV visible spectroscopy. The conductivity was found to have increased with attachment of Ag-NP. The optical transmittance also improved to 90% as against 70% before Ag-NP attachment. The reduced graphene oxide attached with silver nanoparticles could find promising applications in synthesis of transparent electrode materials and optoelectronic devices.

  17. Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions.

    PubMed

    Tan, Siliu; Erol, Melek; Attygalle, Athula; Du, Henry; Sukhishvili, Svetlana

    2007-09-11

    Branched polyethyleneimine (BPEI) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were used collaboratively to reduce silver nitrate under UV irradiation for the synthesis of positively charged silver nanoparticles. The effects of molar ratio of the ingredients and the molecular weight of BPEI on the particle size and distribution were investigated. The mechanism for the reduction of Ag+ ions in the BPEI/HEPES mixtures entails oxidative cleavage of BPEI chains that results in the formation of positively charged BPEI fragments enriched with amide groups as well as in the production of formaldehyde, which serves as a reducing agent for Ag+ ions. The resultant silver nanoparticles are positively charged due to protonation of surface amino groups. Importantly, these positively charged Ag nanoparticles demonstrate superior SERS activity over negatively charged citrate reduced Ag nanoparticles for the detection of thiocyanate and perchlorate ions; therefore, they are promising candidates for sensing and detection of a variety of negatively charged analytes in aqueous solutions using surface-enhanced Raman spectroscopy (SERS). PMID:17705409

  18. Simple and Sensitive Colorimetric Assay for Pb2+ Based on Glutathione Protected Ag Nanoparticles by Salt Amplification.

    PubMed

    Chen, Zhang; Li, Huidong; Chu, Lin; Liu, Chenbin; Luo, Shenglian

    2015-02-01

    A simple and sensitive colorimetric assay for Pb2+ detection has been reported using glutathione protected silver nanoparticles (AgNPs) by salt amplification. The naked AgNPs aggregate under the influence of salt. Glutathione (GSH) can bind to AgNPs via Ag-S bond, helping AgNPs to against salt-induced aggregation. However, GSH binding to AgNPs can be compromised by the interaction between Pb2+ and GSH. As a result, Pb2+-mediated aggregation of AgNPs under the influence of salt is reflected by the UV-Visible spectrum, and the qualitative and quantitative detection for Pb2+ is accomplished, with the detection range 0.5-4 µM and a detection limit of 0.5 µM. At the same time, Pb2+ in real water sample is detected. Furthermore, the high selectivity and low cost of the assay means it is promising for enviromental applications. PMID:26353676

  19. Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents.

    PubMed

    Li, Jing; Wang, Wenjing; Zhao, Liang; Rong, Li; Lan, Shijie; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2015-06-01

    Despite the success of galvanic replacement in preparing hollow nanostructures with diversified morphologies via the replacement reaction between sacrificial metal nanoparticles (NPs) seeds and less active metal ions, limited advances are made for producing branched alloy nanostructures. In this paper, we report an extended galvanic replacement for preparing branched Au-Ag NPs with Au-rich core and Ag branches using hydroquinone (HQ) as the reductant. In the presence of HQ, the preformed Ag seeds are replaceable by Au and, in turn, supply the growth of Ag branches. By altering the feed ratio of Ag seeds, HAuCl4, and HQ, the size and morphology of the NPs are tunable. Accordingly, the surface plasmon resonance absorption is tuned to near-infrared (NIR) region, making the branched NPs as potential materials in photothermal therapy. The branched NPs are further coated with polydopamine (PDA) shell via dopamine polymerization at room temperature. In comparison with bare NPs, PDA-coated branched Au-Ag (Au-Ag@PDA) NPs exhibit improved stability, biocompatibility, and photothermal performance. In vitro experiments indicate that the branched Au-Ag@PDA NPs are competitive agents for photothermal ablation of cancer cells. PMID:25969998

  20. Co-assembled thin films of Ag nanowires and functional nanoparticles at the liquid-liquid interface by shaking

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-Yi; Liu, Jian-Wei; Zhang, Chuan-Ling; Yu, Shu-Hong

    2013-05-01

    In this paper, we report the fabrication of co-assembled thin films composed of silver nanowires (NWs) and Au nanoparticles (NPs) at the liquid-liquid interface (water-chloroform) by vigorous shaking. The composition of co-assembled thin films can be controlled by adjusting the concentration of the nanosized building blocks. As a versatile interfacial assembly method, other nanoparticles such as Ag2S and Fe3O4 NPs can also be co-assembled with Ag NWs using the same procedure. Meanwhile, the co-assembly state of the obtained Au NPs and Ag NWs makes a significant contribution to the high sensitivity of surface-enhanced Raman scattering (SERS) to model the molecule 3,3'-diethylthiatricarbocyanine iodide (DTTCI). The SERS intensities show high dependence on the molar ratio of Au NPs and Ag NWs and the layer number of the co-assembled thin films. This shaking-assisted liquid-liquid assembly system has been proved to be a facile way for co-assembling nanowires and nanoparticles, and will pave a way for further applications of the macroscopic co-assemblies with novel functionalities.In this paper, we report the fabrication of co-assembled thin films composed of silver nanowires (NWs) and Au nanoparticles (NPs) at the liquid-liquid interface (water-chloroform) by vigorous shaking. The composition of co-assembled thin films can be controlled by adjusting the concentration of the nanosized building blocks. As a versatile interfacial assembly method, other nanoparticles such as Ag2S and Fe3O4 NPs can also be co-assembled with Ag NWs using the same procedure. Meanwhile, the co-assembly state of the obtained Au NPs and Ag NWs makes a significant contribution to the high sensitivity of surface-enhanced Raman scattering (SERS) to model the molecule 3,3'-diethylthiatricarbocyanine iodide (DTTCI). The SERS intensities show high dependence on the molar ratio of Au NPs and Ag NWs and the layer number of the co-assembled thin films. This shaking-assisted liquid-liquid assembly system

  1. Low cost, ultra-thin films of reduced graphene oxide-Ag nanoparticle hybrids as SERS based excellent dye sensors

    NASA Astrophysics Data System (ADS)

    Kavitha, C.; Bramhaiah, K.; John, Neena S.; Ramachandran, B. E.

    2015-06-01

    We have employed low cost-thin films of reduced graphene oxide (rGO) with Ag nanoparticle hybrids as surface enhanced Raman scattering (SERS) substrates. The hybrids are prepared by a simple one step liquid/liquid interface method. These hybrid films offer SERS hotspots to detect Rhodamine 6G (R6G) molecules till 1 nM concentration with 1 second accumulation time. The enhancement factor is of the order 108. This excellent SERS enhancement is due to coupled mechanism of surface plasmon, charge transfer and molecular resonances of Ag and R6G along with the synergic effect contributed by rGO and Ag nanoparticles in the hybrid thin film.

  2. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons

    PubMed Central

    2013-01-01

    Background Silver nanoparticles (AgNPs), owing to their effective antimicrobial properties, are being widely used in a broad range of applications. These include, but are not limited to, antibacterial materials, the textile industry, cosmetics, coatings of various household appliances and medical devices. Despite their extensive use, little is known about AgNP safety and toxicity vis-à-vis human and animal health. Recent studies have drawn attention towards potential neurotoxic effects of AgNPs, however, the primary cellular and molecular targets of AgNP action/s remain to be defined. Results Here we examine the effects of ultra fine scales (20 nm) of AgNPs at various concentrations (1, 5, 10 and 50 μg/ml) on primary rat cortical cell cultures. We found that AgNPs (at 1-50 μg/ml) not only inhibited neurite outgrowth and reduced cell viability of premature neurons and glial cells, but also induced degeneration of neuronal processes of mature neurons. Our immunocytochemistry and confocal microscopy studies further demonstrated that AgNPs induced the loss of cytoskeleton components such as the β-tubulin and filamentous actin (F-actin). AgNPs also dramatically reduced the number of synaptic clusters of the presynaptic vesicle protein synaptophysin, and the postsynaptic receptor density protein PSD-95. Finally, AgNP exposure also resulted in mitochondria dysfunction in rat cortical cells. Conclusions Taken together, our data show that AgNPs induce toxicity in neurons, which involves degradation of cytoskeleton components, perturbations of pre- and postsynaptic proteins, and mitochondrial dysfunction leading to cell death. Our study clearly demonstrates the potential detrimental effects of AgNPs on neuronal development and physiological functions and warns against its prolific usage. PMID:23782671

  3. Hyperbranched polymer functional cotton fabric for its in situ deposition of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Desuo; Jiao, Chenlu; Xiong, Jiaqing; Lin, Hong; Chen, Yuyue

    2015-06-01

    This paper describes a strategy of fabricating silver nanoparticles (Ag NPs) finished cotton fabric through in situ synthesis method. In order to endow the cotton fabric with the capability of in situ synthesis of Ag NPs without any other reagents, an amino-terminated hyperbranched polymer (HBP-NH2) was employed to functionalize the cotton fabric. To this end, cotton fabric was oxidized to generate aldehyde groups and then HBP-NH2 was grafted on the oxidized cotton fabric based on the reaction between amino groups and aldehyde groups. Due to numerous imino and amino groups in the polymer and its special three-dimensional structure, the functional cotton fabric could take initiative to capture and reduce silver ions, control the formation of Ag NPs and fix them on the cotton fabric. The sizes of Ag NPs in situ synthesized on cotton fibers range from 4 to 10 nm. The prepared Ag NPs finished cotton fabric has excellent laundering durability.

  4. Reaction efficiency and retention of poly(styrene-co-maleimide) nanoparticles deposited on fibrillated cellulose surfaces.

    PubMed

    Rastogi, Vibhore Kumar; Stanssens, Dirk; Samyn, Pieter

    2016-05-01

    Surface modification of micro- and nanofibrillated cellulose (MFC and NFC) under aqueous environment was performed by deposition of poly(styrene-co-maleimide) nanoparticles synthesized by imidization of poly(styrene-co-maleic anhydride) in presence of wax and ammonium hydroxide in variable amounts. Specifically, the influences of fiber fibrillation on nanoparticle formation (i.e., reaction efficiency) and permanent nanoparticle deposition on the fiber surface (i.e., retention) were investigated. The surface modification was mainly governed by the fiber diameter, surface charges and amount of wax. As such, the MFC affected the imidization reaction to a smaller extent (i.e., high reaction efficiency) and was more densely deposited by nanoparticles than NFC (i.e., high retention). Moreover, wax protected the fibers against fibrillation and peeling-off at high temperature and favored nanoparticle deposition. As a result, water contact angles of 142° were obtained for modified MFC in parallel with a surface coverage of 92%. PMID:26877019

  5. Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property

    PubMed Central

    Zhang, Yi; He, Xi; Ouyang, Jing; Yang, Huaming

    2013-01-01

    Palladium (Pd) nanoparticles were deposited on the surface of halloysite nanotubes (HNTs) modified with γ-aminopropyltriethoxysilane (APTES) to produce Pd/NH2-HNTs nanocomposites. The results indicated that Pd nanoparticles were densely immobilized onto NH2-HNTs with an average diameter of ~ 3 nm. The Pd distribution on the surface of silanized HNTs showed much more uniform, and the Pd nanoparticle size became smaller compared with those directly deposited onto HNTs without silanization. Systematic characterization demonstrated that APTES were chemically bonded onto HNTs, and further confirmed the bond formation between Pd and -NH2 groups, which could ensure the firm deposit of Pd nanoparticles on the surface of silanized HNTs. The as-synthesized Pd/NH2-HNTs exhibited an excellent catalytic activity in the liquid-phase hydrogenation of styrene to ethylbenzene with full conversion within 30 min. The mechanism of the deposit of Pd nanoparticles on silanized HNTs was also investigated. PMID:24126604

  6. The fabrication and photocatalytic performances of flower-like Ag nanoparticles/ZnO nanosheets-assembled microspheres

    NASA Astrophysics Data System (ADS)

    Deng, Quan; Tang, Haibin; Liu, Gang; Song, Xiaoping; Xu, Guoping; Li, Qian; Ng, Dickon H. L.; Wang, Guozhong

    2015-03-01

    A new micro/nanostructure photocatalyst, Ag nanoparticles decorated ZnO nanosheets-assembled microspheres (Ag-NPs/ZnOs), was synthesised by a two-step method. The flower-like micron-sized ZnO spheres assembled with ∼25 nm thick ZnO nanosheets were initially fabricated via a facile solvothermal method. Then, highly dispersed Ag nanoparticles (Ag-NPs) with dimension ranging from 15 to 50 nm were anchored onto the surface of the each ZnO nanosheet by the Sn(II) ion activation method. The as-prepared Ag-NPs/ZnOs demonstrated enhanced photocatalytic performance in eliminating methylene blue and methyl orange aqueous solutions under UV irradiation, showing twice faster reaction rate than the bare ZnOs. The enhanced photocatalytic activity was due to the suppression of electron/hole pair recombination and the acceleration of surface charge transfer induced by the highly dispersive Ag-NPs, which was further demonstrated by the cyclic voltammetry and impedance spectra measurements.

  7. Surface plasmon effect of Ag nanodots embedded in amorphous Si window layers deposited on Si solar cells.

    PubMed

    Park, Seungil; Ji, HyungYong; Kim, Myeong Jun; Peck, Jong Hyeon; Kim, Keunjoo

    2014-12-01

    We investigated solar cells containing temperature-dependent Ag nanodots embedded in an amorphous Si thin film layer by using hot-wire chemical vapor deposition in order to improve the properties of crystalline Si solar cells. An Ag thin film with a thickness of 10 nm was deposited by DC sputtering followed by annealing at various temperatures ranging from 250 to 850 degrees C for 15 min under N2 gas. As increasing the annealing temperature, the Ag nanodots were enlarged and the photoreflectances of the samples with Ag nanodots were lower than the reference samples in the spectral range of 200-600 nm, demonstrating the plasmon effect of Ag nanodots. The cell properties on photoluminescence spectra, quantum efficiency, and conversion efficiency were measured with the maximum values for the sample annealed at 450 degrees C, indicating that there exists an optimal size of the Ag nanodots about 15-35 nm to be effective on the enhancement of surface plasmon effect. PMID:25971039

  8. Plasmonic properties of Ag nanoparticles embedded in GeO2-SiO2 matrix by atom beam sputtering.

    PubMed

    Mohapatra, Satyabrata

    2016-02-01

    Nanocomposite thin films containing Ag nanoparticles embedded in the GeO2-SiO2 matrix were synthesized by the atom beam co-sputtering technique. The structural, optical and plasmonic properties and the chemical composition of the nanocomposite thin films were studied by transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX), UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). UV-visible absorption studies on Ag-SiO2 nanocomposites revealed the presence of a strong localized surface plasmon resonance (LSPR) peak characteristic of Ag nanoparticles at 413 nm, which showed a blue shift of 26 nm (413 to 387 nm) along with a significant broadening and drastic decrease in intensity with the incorporation of 16 at% of Ge into the SiO2 matrix. TEM studies on Ag-GeO2-SiO2 nanocomposite thin films confirmed the presence of Ag nanoparticles with an average size of 3.8 nm in addition to their aggregates with an average size of 16.2 nm. Thermal annealing in air resulted in strong enhancement in the intensity of the LSPR peak, which showed a regular red shift of 51 nm (from 387 to 438 nm) with the increase in annealing temperature up to 500 °C. XPS studies showed that annealing in air resulted in oxidation of excess Ge atoms in the nanocomposite into GeO2. Our work demonstrates the possibility of controllably tuning the LSPR of Ag nanoparticles embedded in the GeO2-SiO2 matrix by single-step thermal annealing, which is interesting for optical applications. PMID:26766559

  9. Controlled protein embedment onto Au/Ag core-shell nanoparticles for immuno-labeling of nanosilver surface.

    PubMed

    Lee, In Hwan; Lee, Jeong Min; Jung, Yongwon

    2014-05-28

    Difficulties in stable conjugation of biomolecules to nanosilver surfaces have severely limited the use of silver nanostructures in biological applications. Here, we report a facile antibody conjugation onto gold/silver (Au/Ag) core-shell nanoparticles by stable and uniform embedment of an antibody binding protein, protein G, in silver nanoshells. A rigid helical peptide linker with a terminal cysteine residue was fused to protein G. A mixture of the peptide-fused protein G and space-filling free peptide was reacted with gold nanoparticles (AuNPs) to form a protein G-linked peptide layer on the particle surface. Uniform silver nanoshells were successfully formed on these protein G-AuNPs, while stably embedding protein G-linked peptide layers. Protein G specifically targets the Fc region of an antibody and thus affords properly orientated antibodies on the particle surface. Compared to Au nanoparticles of similar size with randomly adsorbed antibodies, the present immuno-labeled Au/Ag core-shell nanoparticles offered nearly 10-fold higher sensitivities for naked-eye detection of surface bound antigens. In addition, small dye molecules that were bonded to the peptide layer on Au nanoparticles exhibited highly enhanced surface-enhanced Raman scattering (SERS) signals upon Ag shell formation. The present strategy provides a simple but efficient way to conjugate antibodies to nanosilver surfaces, which will greatly facilitate wider use of the superior optical properties of silver nanostructures in biological applications. PMID:24801432

  10. Probing the mechanism of plasma protein adsorption on Au and Ag nanoparticles with FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Mengmeng; Fu, Cuiping; Liu, Xingang; Lin, Zhipeng; Yang, Ning; Yu, Shaoning

    2015-09-01

    Protein-nanoparticle interactions are important in biomedical applications of nanoparticles and for growing biosafety concerns about nanomaterials. In this study, the interactions of four plasma proteins, human serum albumin (HSA), myoglobin (MB), hemoglobin (HB), and trypsin (TRP), with Au and Ag nanoparticles were investigated by FT-IR spectroscopy. The secondary structure of thio-proteins changed with time during incubation with Au and Ag nanoparticles, but the secondary structures of non-thio-proteins remained unchanged. The incubation time for structural changes depended on the sulfur-metal bond energy; the stronger the sulfur-metal energy, the less the time needed. H/D exchange experiments revealed that protein-NP complexes with thio-proteins were less dynamic than free proteins. No measurable dynamic differences were found between free non-thio-proteins and the protein-Au (or Ag) nanoparticle complex. Therefore, the impact of covalent bonds on the protein structure is greater than that of the electrostatic force.

  11. Molecular simulation of AG nanoparticle nucleation from solution: redox-reactions direct the evolution of shape and structure.

    PubMed

    Milek, Theodor; Zahn, Dirk

    2014-08-13

    The association of Ag(+) ions and the early stage of Ag nanoparticle nucleation are investigated from molecular dynamics simulations. Combining special techniques for tackling crystal nucleation from solution with efficient approaches to model redox-reactions, we unravel the structural evolution of forming silver nanoparticles as a function of the redox-potential in the solution. Within a range of only 1 eV, the redox-potential is demonstrated to have a drastic effect on both the inner structure and the overall shape of the forming particles. On the basis of our simulations we identify surface charge and its distribution as an atomic scale mechanism that accounts for creating/avoiding 5-fold coordination polyhedra and thus the degree of (multiple)-twinning in silver nanoparticles. PMID:25078975

  12. Oleate-Assisted Room Temperature Synthesis and High Photocatalytic Activity of Ag3PO4 Nanoparticles for no Decomposition

    NASA Astrophysics Data System (ADS)

    Huang, Lijun; Yin, Shu; Guo, Chongshen; Huang, Yunfang; Wang, Ming; Dong, Qiang; Li, Huihui; Kimura, Takeshi; Tanaka, Miyuki; Sato, Tsugio

    2012-06-01

    An oleate-assisted approach was used to synthesize nanosized spherical silver phosphate (Ag3PO4) in different solvents. The silver phosphate nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible-infrared diffuse reflectance spectroscopy (DRS), thermogravimetric analysis (TDA), and surface area measurement by nitrogen adsorption and decomposition evolution of NOx gas. The as-prepared nanoparticles showed narrow size distribution. The black colored nanoparticles could absorb most of visible light with a wavelength up to 530 nm. The DeNOx experiments revealed that the nanosized Ag3PO4 possessed a photocatalytic ability being superior to commercial P25 sample both in ultraviolet light and visible light regions.

  13. Dilute suspension flow with nanoparticle deposition in a representative nasal airway model

    NASA Astrophysics Data System (ADS)

    Shi, H.; Kleinstreuer, C.; Zhang, Z.

    2008-01-01

    The human nasal cavities with an effective length of only 10cm feature a wide array of basic flow phenomena because of their complex geometrics. Employing a realistic nasal airway model and demonstrating that laminar, quasisteady airflow can be assumed, dilute nanoparticle suspension flow and nanoparticle deposition are simulated and analyzed for 7.5⩽Q⩽20L/min and 1⩽dp⩽150nm. The understanding and quantitative assessment of mixture flow fields and local nanoparticle wall concentrations in nasal airways with a thin mucus layer are very important for estimating the health risks of inhaled toxic aerosols, determining proper drug-aerosol delivery to target sites such as the olfactory regions and developing algebraic transfer functions for overall nasal dose-response analyses. Employing a commercial software package with user-supplied programs, the validated computer modeling results can be summarized as follows: (i) Most of the air flows through the middle-to-low main passageways. Higher airflow rates result in stronger airflow in the olfactory region and relatively lower flow rates in the meatuses. (ii) Nanoparticle deposition in human nasal airways is significant for tiny nanoparticles, i.e., 1⩽dp⩽2nm, which also represent some vapors. The smaller the nanoparticle size and the lower the flow rate, the higher are the total deposition efficiencies because of stronger diffusion and longer residence times. (iii) Nanoparticles with dp<5nm flow preferentially through the middle-to-low main passageway along with the major portion of the airflow. For relatively large nanoparticles (dp⩾5nm), due to the low diffusivities, fewer particles will deposit onto the wall leaving a much thinner nanoparticle gradient layer near the wall, i.e., such nanoparticles pass through the nasal cavities more uniformly with minor wall deposition. (iv) Secondary flows may enhance nanoparticle transport and deposition, especially in the meatuses by convecting nanoparticles into these

  14. Fabrication of AgAu alloy-TiO2 core-shell nanoparticles and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-yu; Yuan, Shu-long; Yuan, Yu-zhen; Li, Xue

    2015-01-01

    In this paper, for improving the photocatalytic efficiency of titania (TiO2) nanoparticles (NPs), AgAu alloy-TiO2 core-shell NPs are fabricated via a sol-gel (SG) process in the presence of AgAu alloy NPs with block copolymer shells as templates. The photocatalytic activities of the AgAu-TiO2 NPs on the photodecomposition of methylene blue (MB) are investigated. The AgAu-TiO2 composite NPs coated with 5.0% titania related to block copolymers show higher photocatalytic activity than the other samples in which the titania contents are larger than 5.0%. The results indicate that the increase of the thickness of the TiO2 shell leads to the decrease of the photocatalytic activity.

  15. Preparation of Ag nanoparticle-decorated poly(m-phenylenediamine) microparticles and their application for hydrogen peroxide detection.

    PubMed

    Tian, Jingqi; Li, Hailong; Lu, Wenbo; Luo, Yonglan; Wang, Lei; Sun, Xuping

    2011-05-01

    The chemical oxidation polymerization of m-phenylenediamine (MPD) by ammonium persulfate (APS) at room temperature results in the formation of poly(m-phenylenediamine) (PMPD) microparticles. The subsequent treatment of such microparticles with an aqueous AgNO(3) solution produces Ag nanoparticle (AgNP)-decorated PMPD microparticles. It was found that as-formed AgNPs exhibited remarkable catalytic performance toward the reduction of hydrogen peroxide (H(2)O(2)). The enzymeless H(2)O(2) sensor constructed with such composites showed a fast amperometric response time of less than 5 s, and the corresponding linear range and detection limit were estimated to be from 0.1 to 30 mM and 4.7 µM, respectively, at a signal-to-noise ratio of 3. PMID:21387026

  16. Ag nanoparticle-ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach

    NASA Astrophysics Data System (ADS)

    Li, Zhou; Tang, Haoying; Yuan, Weiwei; Song, Wei; Niu, Yongshan; Yan, Ling; Yu, Min; Dai, Ming; Feng, Siyu; Wang, Menghang; Liu, Tengjiao; Jiang, Peng; Fan, Yubo; Wang, Zhong Lin

    2014-04-01

    A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a ‘dip-in and light-irradiation’ green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems.

  17. Ag nanoparticle-ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach.

    PubMed

    Li, Zhou; Tang, Haoying; Yuan, Weiwei; Song, Wei; Niu, Yongshan; Yan, Ling; Yu, Min; Dai, Ming; Feng, Siyu; Wang, Menghang; Liu, Tengjiao; Jiang, Peng; Fan, Yubo; Wang, Zhong Lin

    2014-04-11

    A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a 'dip-in and light-irradiation' green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems. PMID:24622377

  18. The valence band structure of Ag{sub x}Rh{sub 1–x} alloy nanoparticles

    SciTech Connect

    Yang, Anli; Sakata, Osami; Kusada, Kohei; Kobayashi, Hirokazu; Yayama, Tomoe; Ishimoto, Takayoshi; Yoshikawa, Hideki; Koyama, Michihisa; and others

    2014-10-13

    The valence band (VB) structures of face-centered-cubic Ag-Rh alloy nanoparticles (NPs), which are known to have excellent hydrogen-storage properties, were investigated using bulk-sensitive hard x-ray photoelectron spectroscopy. The observed VB spectra profiles of the Ag-Rh alloy NPs do not resemble simple linear combinations of the VB spectra of Ag and Rh NPs. The observed VB hybridization was qualitatively reproduced via a first-principles calculation. The electronic structure of the Ag{sub 0.5}Rh{sub 0.5} alloy NPs near the Fermi edge was strikingly similar to that of Pd NPs, whose superior hydrogen-storage properties are well known.

  19. Fluid inclusions and isotopic characteristics of the Jiawula Pb-Zn-Ag deposit, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Li, Tiegang; Wu, Guang; Liu, Jun; Hu, Yanqing; Zhang, Yunfu; Luo, Dafeng; Mao, Zhihao

    2015-05-01

    The large Jiawula Pb-Zn-Ag deposit is located in the Derbugan metallogenic belt of the northern Great Xing'an Range. The vein style orebodies of the deposit occur along NWW- to NNW-trending fault zones. The ore-forming process at the deposit can be divided into three stages: an early quartz-pyrite-pyrrhotite-chalcopyrite stage, a middle quartz-carbonate-pyrite-galena-sphalerite stage, and a late quartz-carbonate-pyrite stage. Sulfide Rb-Sr dating indicates that the Jiawula deposit formed at ca. 143-142 Ma. Four types of fluid inclusions have been distinguished in quartz veins including liquid-rich, gas-rich, H2O-CO2, and daughter mineral-bearing inclusions. The fluid inclusions of the early stage are mainly liquid-rich, gas-rich, and H2O-CO2 types, with a small number containing daughter minerals. Cumulatively, the types have homogenization temperatures, densities, and salinities of 304-438 °C, 0.35-1.37 g/cm3, and 0.8-44.6 wt.% NaCl eqv., respectively. Inclusions of the middle stage are mainly liquid-rich and gas-rich types, with a small amount of H2O-CO2 and daughter mineral-bearing types; their homogenization temperatures, densities, and salinities vary from 242 °C to 297 °C, 0.71 to 1.44 g/cm3, and 0.4 wt.% to 36.8 wt.% NaCl eqv., respectively. The late stage only comprises liquid-rich inclusions with homogenization temperatures, densities, and salinities of 181-238 °C, 0.81-0.90 g/cm3, and 0.2-1.9 wt.% NaCl eqv., respectively. The ore-forming fluids of the Jiawula deposit are generally characterized by moderate temperature and low salinity and density, and belong to an H2O-NaCl-CO2 ± CH4 system. The δ18Owater values calculated for ore-bearing quartz vary from -13.4‰ to -9.1‰, and the δDV-SMOW values from bulk extraction of fluid inclusion waters vary from -166‰ to -133‰, suggesting that the ore-forming fluids mainly consist of meteoric water with a small amount of magmatic water. The δ34SV-CDT values range from 1.2‰ to 8.4‰. The 206Pb/204Pb

  20. Localized Surface Plasmon-Enhanced Electroluminescence in OLEDs by Self-Assembly Ag Nanoparticle Film.

    PubMed

    He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong

    2015-12-01

    We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs. PMID:26631223

  1. Localized Surface Plasmon-Enhanced Electroluminescence in OLEDs by Self-Assembly Ag Nanoparticle Film

    NASA Astrophysics Data System (ADS)

    He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong

    2015-12-01

    We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs.

  2. New SERS-active alumina-based sorbents containing Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Yurova, Nadezhda S.; Markina, Natalia E.; Galushka, Victor V.; Burashnikova, Marina M.; Zakharevich, Andrey M.; Markin, Alexey V.; Rusanova, Tatiana Y.

    2016-04-01

    New SERS-active materials were obtained by preparation of alumina with embedded silver nanoparticles and their application both as sorbents for pre-concentration and SERS platforms was studied. The influence of ionic strength on Ag NPs size, absorption spectra and SERS signal was investigated. Synthesized materials were examined by Raman spectroscopy, scanning electron microscopy, and UV-visible spectroscopy. The optimal conditions for SERSmeasurements were chosen. Synthesized materials were applied for pre-concentration of model analytes (Rhodamine 6G, folic acid and pyrene) and their SERS detection directly within the sorbent. It was shown that the recovery of analytes could be improved by alumina modification. The combination of surface-enhanced Raman spectroscopy with preconcentration is a promising instrument for analytical applications.

  3. Ag@poly(m-phenylenediamine) core-shell nanoparticles for highly selective, multiplex nucleic acid detection.

    PubMed

    Zhang, Yingwei; Wang, Lei; Tian, Jingqi; Li, Hailong; Luo, Yonglan; Sun, Xuping

    2011-03-15

    In this letter, we report on the one-step synthesis of Ag@poly(m-phenylenediamine) core-shell nanoparticles (APCSNPs), carried out by direct mixing of aqueous silver nitrate and m-phenylenediamine solutions at room temperature. We further demonstrate the use of APCSNP as a novel fluorescent sensing platform for nucleic acid detection. In this regard, the detection of DNA is accomplished in two steps. First, APCSNP absorbs and quenches the fluorescence of dye-labeled single-stranded DNA (ssDNA) as a probe. Second, hybridizing of the probe with its target produces a double-stranded DNA (dsDNA) that detaches from APCSNP, resulting in the recovery of dye fluorescence. It suggests that this sensing system has a high selectivity down to single-base mismatch, and the results exhibit good reproducibility. Furthermore, we also demonstrate its application for the multiplex detection of nucleic acid sequences. PMID:21302954

  4. Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy.

    PubMed

    Song, Fengqi; Wang, Tingyu; Wang, Xuefeng; Xu, Changhui; He, Longbing; Wan, Jianguo; Van Haesendonck, Christian; Ringer, Simon P; Han, Min; Liu, Zongwen; Wang, Guanghou

    2010-02-01

    Anisotropic plasmon coupling in closely spaced chains of Ag nanoparticles is visualized using electron energy-loss spectroscopy in a scanning transmission electron microscope. For dimers as the simplest chain, mapping the plasmon excitations with nanometer spatial resolution and an energy resolution of 0.27 eV intuitively identifies two coupling plasmons. The in-phase mode redshifts from the ultraviolet region as the interparticle spacing is reduced, reaching the visible range at 2.7 eV. Calculations based on the discrete-dipole approximation confirm its optical activeness, where the longitudinal direction is constructed as the path for light transportation. Two coupling paths are then observed in an inflexed four-particle chain. PMID:20077517

  5. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Qianwen; Zheng, Xuanli; He, Jialun; Wang, Weiping; Fu, Mingming; Cao, Yiyan; Li, Heng; Wu, Yaping; Chen, Ting; Zhang, Chunmiao; Chen, Xiaohong; Yu, Binbin; Li, Shuping; Kang, Junyong; Wu, Zhiming

    2016-07-01

    Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed that the position of noble metal NPs significantly influenced the coupling of the LSPR-enhanced electromagnetic field with FM materials. Furthermore, nanostructures embedded with noble metals demonstrated an improved capability to efficiently use the electromagnetic field compared to other structures. The Faraday rotation of ZnO/Ag(NPs)/Fe was enhanced 58 fold compared to that of the ZnO(film)/Fe. This work provides a basis for the design of nanoarchitectures for miniaturized high-performance magneto-optical devices.

  6. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles.

    PubMed

    Liu, Qianwen; Zheng, Xuanli; He, Jialun; Wang, Weiping; Fu, Mingming; Cao, Yiyan; Li, Heng; Wu, Yaping; Chen, Ting; Zhang, Chunmiao; Chen, Xiaohong; Yu, Binbin; Li, Shuping; Kang, Junyong; Wu, Zhiming

    2016-01-01

    Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed that the position of noble metal NPs significantly influenced the coupling of the LSPR-enhanced electromagnetic field with FM materials. Furthermore, nanostructures embedded with noble metals demonstrated an improved capability to efficiently use the electromagnetic field compared to other structures. The Faraday rotation of ZnO/Ag(NPs)/Fe was enhanced 58 fold compared to that of the ZnO(film)/Fe. This work provides a basis for the design of nanoarchitectures for miniaturized high-performance magneto-optical devices. PMID:27403716

  7. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles

    PubMed Central

    Liu, Qianwen; Zheng, Xuanli; He, Jialun; Wang, Weiping; Fu, Mingming; Cao, Yiyan; Li, Heng; Wu, Yaping; Chen, Ting; Zhang, Chunmiao; Chen, Xiaohong; Yu, Binbin; Li, Shuping; Kang, Junyong; Wu, Zhiming

    2016-01-01

    Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed that the position of noble metal NPs significantly influenced the coupling of the LSPR-enhanced electromagnetic field with FM materials. Furthermore, nanostructures embedded with noble metals demonstrated an improved capability to efficiently use the electromagnetic field compared to other structures. The Faraday rotation of ZnO/Ag(NPs)/Fe was enhanced 58 fold compared to that of the ZnO(film)/Fe. This work provides a basis for the design of nanoarchitectures for miniaturized high-performance magneto-optical devices. PMID:27403716

  8. The structural studies of Ag containing TiO2-SiO2 gels and thin films deposited on steel

    NASA Astrophysics Data System (ADS)

    Adamczyk, Anna; Rokita, Magdalena

    2016-06-01

    FTIR spectroscopic structural studies of titania-silica monolith samples as well as thin films deposited on steel were described in this work. Thin films were synthesized by the sol-gel method applying the dip coating as separate one-component TiO2 and/or SiO2 layers or as two-component TiO2-SiO2 thin films. Silver nanoparticles were incorporated into the structure from pure SiO2 sol, deposited then as an additional layer in those hybrid multilayers systems. Except the spectroscopic studies, XRD diffraction, SEM microscopy with EDX analysis and AFM microscopy were applied. The structural studies allow to describe and compare the structure and the morphology of thin films, as well those Ag free as Ag containing ones, also by the comparison with the structure of bulk samples. In FTIR spectra, the band observed at about 613 cm-1 can be connected with the presence of the non-tetrahedral cation in the structure and is observed only in the spectra of Ag containing bulk samples and thin films. The bands at 435-467 cm-1 are due to the stretching vibrations of Ti-O bonds or as well to the bending vibrations of O-Si-O one. In the ranges of 779-799 cm-1 and 1027-1098 cm-1, the bands ascribed to the symmetric stretching vibrations and asymmetric vibrations of Si-O-Si connections, respectively, are observed. SEM and AFM images gave the information on the microstructure and the topography of samples surface. XRD measurements confirmed the presence of only amorphous phase in samples up to 500 °C and allowed to observe the tendency of their crystallization.

  9. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-05-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10‑7 M to 10‑2 M with a low detection limit of 10‑8 M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors.

  10. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-01-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10(-7) M to 10(-2) M with a low detection limit of 10(-8) M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors. PMID:27184729

  11. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-01-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10−7 M to 10−2 M with a low detection limit of 10−8 M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors. PMID:27184729

  12. Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces.

    PubMed

    Fragal, Vanessa H; Cellet, Thelma S P; Pereira, Guilherme M; Fragal, Elizângela H; Costa, Marco Antonio; Nakamura, Celso Vataru; Asefa, Tewodros; Rubira, Adley F; Silva, Rafael

    2016-10-01

    The in situ synthesis of silver nanoparticles (AgNPs) within covalently-modified poly(ethylene terephthalate) (PET) films possessing ultra-thin layer of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) is successfully demonstrated. The resulting polymeric films are shown to exhibit antimicrobial activities toward Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungus (Candida albicans). To make the films, first PET surfaces were subject to photo-oxidation and subsequent solid-state grafting to attach a PVA layer, followed by a PAA layer. To synthesize the AgNPs inside the films, the PVA and PAA-modified PET was soaked in AgNO3 solution and the polymeric film was modified with the Ag(+) ions via Ag(+)-carboxylate interaction, and then the Ag(+) ions-containing polymer film was subject to either photo-reduction or thermal reduction processes. The PVA and PAA thin layers attached by covalent bonds to the PET surface uniquely promoted not only the in situ synthesis but also the stabilization of AgNPs. The formation of the AgNPs was confirmed by UV-vis spectroscopy or by monitoring the surface plasmon resonance (SPR) peak associated with AgNPs. The resulting PVA and PAA ultrathin layers modified and AgNPs containing PET served as bactericide and fungicide, inhibiting the growth of bacteria and fungi on the surfaces. Given PET's versatility and common use in many commercial processes, the method can be used for producing plastic surfaces with versatile antimicrobial and antibacterial properties. PMID:27196366

  13. Chain Assemblies from Nanoparticles Synthesized by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition: The Computational View.

    PubMed

    Mishin, Maxim V; Zamotin, Kirill Y; Protopopova, Vera S; Alexandrov, Sergey E

    2015-12-01

    This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results. PMID:26682441

  14. Palladium nanoparticle deposition via precipitation: a new method to functionalize macroporous silicon

    NASA Astrophysics Data System (ADS)

    Scheen, Gilles; Bassu, Margherita; Douchamps, Antoine; Zhang, Chao; Debliquy, Marc; Francis, Laurent A.

    2014-12-01

    We present an original two-step method for the deposition via precipitation of Pd nanoparticles into macroporous silicon. The method consists in immersing a macroporous silicon sample in a PdCl2/DMSO solution and then in annealing the sample at a high temperature. The impact of composition and concentration of the solution and annealing time on the nanoparticle characteristics is investigated. This method is compared to electroless plating, which is a standard method for the deposition of Pd nanoparticles. Scanning electron microscopy and computerized image processing are used to evaluate size, shape, surface density and deposition homogeneity of the Pd nanoparticles on the pore walls. Energy-dispersive x-ray spectroscopy (EDX) and x-ray photoelectron spectroscopy (XPS) analyses are used to evaluate the composition of the deposited nanoparticles. In contrast to electroless plating, the proposed method leads to homogeneously distributed Pd nanoparticles along the macropores depth with a surface density that increases proportionally with the PdCl2 concentration. Moreover EDX and XPS analysis showed that the nanoparticles are composed of Pd in its metallic state, while nanoparticles deposited by electroless plating are composed of both metallic Pd and PdOx.

  15. Enhancement of Processability and Electrical Resistance by Use of Ag-Based Composite Inks Containing Ultrafine SAC305 Alloy Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shin, Yong Moo; Kim, Hyun-Jin; Jang, Seok Pil; Lee, Jong-Hyun

    2014-09-01

    We propose use of Ag/Sn-3.0 (wt.%) Ag-0.5 Cu (SAC305) composite ink to reduce sintering temperature, sintering time, and material costs. The SAC305 nanoparticle (NP) surfaces were not capped by any stabilizers, which are detrimental to the resistivity of the sintered tracks. Compared with commercial pure Ag ink, use of Ag/3.2 (vol.%) SAC305 composite ink containing ultrafine SAC305 NPs resulted in outstandingly enhanced processability, enabling faster sintering at low temperatures. The average sheet resistance of composite ink samples sintered for 25 min at 170°C was as low as 0.011 Ω/□, comparable with that of a pure Ag sample sintered for over 30 min at 220°C. The morphology and the differential scanning calorimetry curves enabled explanation of the changes in the sintering behavior and sheet resistance. The Ag/SAC305 clusters in the composite ink sintered at 170°C grew, on average, to ~201.1-226.1 nm as a result of faster local liquid-phase sintering, and most of the Ag particles were mutually linked, dramatically changing the microstructure.

  16. UV-assisted photocatalytic synthesis of highly dispersed Ag nanoparticles supported on DNA decorated graphene for quantitative iodide analysis.

    PubMed

    Kong, Fen-Ying; Li, Wei-Wei; Wang, Jing-Yi; Wang, Wei

    2015-07-15

    Herein, we report, for the first time, the synthesis of reduced graphene oxide-DNA-Ag (RGO-DNA-Ag) nanohybrids by ultraviolet (UV) irradiation of aqueous solutions of GO and Ag ions in the presence of DNA. The morphology and microstructure characterizations of the resultant nanohybrids reveal that the proposed method leads to the simultaneous reduction of GO and Ag ions together with efficient dispersion of Ag nanoparticles on the surface of RGO sheets. This simple and fast synthesis route is carried out at ambient conditions without using any additional chemical reducing agents, which has the potential to provide new avenues for the green fabrication of various RGO-based nanomaterials. Additionally, the RGO-DNA-Ag nanohybrids can be utilized as a novel sensing interfacial for direct determination of iodide by simple differential pulse voltammetry (DPV), without requiring any preceding preconcentration of the analyte. Based on the RGO-DNA-Ag nanohybrids modified electrode, a wide linear range of 1μM-1mM and a low detection limit of 0.2μM were obtained. This sensitive and direct method of analysis can be applied successfully to the determination of iodide in real samples. PMID:25747505

  17. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration.

    PubMed

    Lee, S-H; Bae, J; Lee, S W; Jang, J-W

    2015-11-01

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times (2530%), by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light (λ = 425-475 nm) illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ∼ V(m)) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation under blue light illumination. These results prove that the performance of non-single crystallized polymer nanowire devices can also be improved by plasmonic enhancement. PMID:26413791

  18. Spectroscopic investigations on the interactions of AgTiO2 nanoparticles with lysozyme and its influence on the binding of lysozyme with drug molecule

    NASA Astrophysics Data System (ADS)

    Revathi, R.; Rameshkumar, A.; Sivasudha, T.

    2016-01-01

    Binding of lysozyme with AgTiO2 nanoparticles was analyzed by using absorption, fluorescence, time resolved and synchronous fluorescence measurements. In the presence of AgTiO2 nanoparticles, the fluorescence intensity of lysozyme was decreased. Static type of binding was confirmed through lifetime and ground state absorption measurements. From the fluorescence quenching data, the binding constant and the number of binding sites were found to be 1.5 × 104 M-1 and 1.03, respectively. From the synchronous fluorescence spectroscopic measurements, tryptophan residue in lysozyme was found to have interaction with the nanoparticles. Further, the influence of AgTiO2 nanoparticles on the binding strength of lysozyme with a drug molecule was analyzed through fluorescence quenching methods. The presence of nanoparticles decreases the binding capability of drug with protein. Overall, the observed results will provide basic insights on the utilization of nanoparticles in drug delivery applications.

  19. Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction as a highly efficient and stable visible light photocatalyst.

    PubMed

    Liu, Chengbin; Cao, Chenghao; Luo, Xubiao; Luo, Shenglian

    2015-03-21

    A unique Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction (Ag-Ag2O/TiO2 NT) was fabricated by simple electrochemical method. Ag nanoparticles were firstly electrochemically deposited onto the surface of TiO2 NT and then were partly oxidized to Ag2O nanowires while the rest of Ag mother nanoparticles were located at the junctions of Ag2O nanowire network. The Ag-Ag2O/TiO2 NT heterostructure exhibited strong visible-light response, effective separation of photogenerated carriers, and high adsorption capacity. The integration of Ag-Ag2O self-stability structure and p-n heterojunction permitted high and stable photocatalytic activity of Ag-Ag2O/TiO2 NT heterostructure photocatalyst. Under 140-min visible light irradiation, the photocatalytic removal efficiency of both dye acid orange 7 (AO7) and industrial chemical p-nitrophenol (PNP) over Ag-Ag2O/TiO2 NT reached nearly 100% much higher than 17% for AO7 or 13% for PNP over bare TiO2 NT. After 5 successive cycles under 600-min simulated solar light irradiation, Ag-Ag2O/TiO2 NT remained highly stable photocatalytic activity. PMID:25528230

  20. Structural evolution of Ag nanoparticles during electron driven synthesis of Ag filaments on Ag2WO4: In situ observation and theoretical supporting evidence

    NASA Astrophysics Data System (ADS)

    da Silva, Edison Z.; da Silva Pereira, Wyllamanney; Andrés, Juan; Gracia, Lourdes; San-Miguel, Miguel; Longo, Elson; Longo, Valeria M.

    2015-03-01

    α - Ag2WO4 crystals irradiated by an electron beam from an electron microscope under high vacuum, nucleate metallic Ag, and form Ag metallic nanowires on the α crystals surface. In order to understand this interesting and complex behavior of the formation and growth of Ag nanowires on α-Ag2WO4 we investigated by detailed in situ transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) studies, density functional theory calculations and ab initio molecular dynamics (MD) simulations. First principle calculations point out that Ag-3 and Ag-4 atoms, located on the (100) surface, are the most energetically favorable to undergo the diffusion process to form metallic Ag. Ab initio MD simulations and nudged elastic band (NEB) method were used to investigate the minimum energy pathways for diffusion of Ag atoms to outward sites on the (100) surface. The results point out that the injection of electrons decreases the activation barrier for this diffusion step and this unusual behavior results from the presence of a lower energy barrier process. Financial support FAPESP, Project 2010/16970-0, grant (2013/02032-7), calculations performed at CENAPAD-SP.

  1. Fabrication of hematite (α-Fe2O3) nanoparticles using electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Meng, Qingling; Wang, Zuobin; Chai, Xiangyu; Weng, Zhankun; Ding, Ran; Dong, Litong

    2016-04-01

    In this work, cathodic electrochemical deposition was proposed to fabricate reproducible and homogeneous hematite (α-Fe2O3) nanoparticles on indium-tin-oxide (ITO) films. The α-Fe2O3 nanoparticles, which were quasi-hexagonally shaped, were deposited in an aqueous mixture of FeCl2 and FeCl3 at the temperatures 16.5 °C, 40 °C and 60 °C. The electrochemically deposited α-Fe2O3 nanoparticles showed excellent stability and good crystallinity. The α-Fe2O3 nanoparticles were characterized by Raman spectroscope and X-ray diffractometer (XRD). A scanning electron microscope (SEM) was used to measure the size and shape of the nanoparticles. The experiment results have shown that the size and shape of nanoparticles were determined by electrochemical deposition conditions including the deposition time, current density, reaction temperature and solution concentration. The proposed electrochemical deposition method has been proven to be a cost-effective, environment friendly and highly efficient approach in fabricating well decentralized α-Fe2O3 nanoparticles for different potential applications.

  2. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration

    NASA Astrophysics Data System (ADS)

    Lee, S.-H.; Bae, J.; Lee, S. W.; Jang, J.-W.

    2015-10-01

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times (2530%), by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light (λ = 425-475 nm) illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ~ Vm)