Science.gov

Sample records for ag nanoparticles embedded

  1. Preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels.

    PubMed

    Im, Hee-Jung; Lee, Byung Cheol; Yeon, Jei-Won

    2013-11-01

    Ag nanoparticles, used for halogen (especially iodine) adsorption and an evaluation of halogen behavior, were embedded in synthesized inorganic-organic hybrid gels. In particular, an irradiation method using an electron beam plays a part in introducing Ag nanoparticles to the organofunctionalized silica gels from AgNO3 solutions in a simple way at atmospheric pressure and room temperature. For preparation of the Ag nanoparticle-embedded inorganic-organic hybrid gels, ligands of ethylenediamine (NH2CH2CH2NH-, TMSen) and mercapto (HS-) functionalized three-dimensional porous SiO2 sol-gels were first synthesized through hydrolysis and condensation reactions, and Ag nanoparticles were then embedded into the ethylenediamine- and mercapto-anchored silica gels each, through electron-beam irradiation. The addition of ligands yielded larger average pore sizes than the absence of any ligand. Moreover, the ethylenediamine ligand led to looser structures and better access of the Ag nanoparticles to the ethylenediamine-anchored gel. As a result, more Ag nanoparticles were introduced into the ethylenediamine-anchored gel. The preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels are discussed in detail. PMID:24245307

  2. Preparation and antibacterial performance testing of Ag nanoparticles embedded biological materials

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyun; Gao, Guanhui; Sun, Chengjun; Zhu, Yaoyao; Qu, Lingyun; Jiang, Fenghua; Ding, Haibing

    2015-03-01

    In this study, we developed an environmentally friendly chemistry strategy to synthesize Ag nanoparticles (Ag-NPs) embedded biological material, powdered mussel shell (PMS). With the PMS as scaffolds and surfactant, Ag nanoparticles of controllable size dispersed uniformly on it via liquid chemical reduction approach. Morphologies and characteristics of synthesized Ag-NPs/PMS hybrids were analyzed with TEM, SEM and XPS. Antibacterial properties were investigated with Gram-positive bacteria (Arthrobacter sulfureus (A. sulfureus) YACS14, Staphylococcus aureus (S. aureus)) and Gram-negative bacteria (Vibrio anguillarum (V. anguillarum) MVM425, Escherichia coli (E. coli)). The antimicrobial results illustrated that Ag-NPs/PMS composites have antibacterial effect on both sea water and fresh water bacteria with a better effect on sea water bacteria. The degree of antibacterial effect is directly related to the amount of Ag released from Ag-NPs/PMS.

  3. Subsurface Synthesis and Characterization of Ag Nanoparticles Embedded in MgO

    SciTech Connect

    Vilayur Ganapathy, Subramanian; Devaraj, Arun; Colby, Robert J.; Pandey, Archana; Varga, Tamas; Shutthanandan, V.; Manandhar, Sandeep; El-Khoury, Patrick Z.; Kayani, Asghar N.; Hess, Wayne P.; Thevuthasan, Suntharampillai

    2013-03-08

    Metal nanoparticles exhibit localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the dielectric medium surrounding it. LSPR causes field enhancement near the surface of the nanoparticle making them interesting candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix form hotspots which are prime locations for LSPR spectroscopy and sensing. This study involves synthesizing partially buried Ag nanoparticles in MgO and investigating the characteristics of this material system. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 10000C for 10 and 30 hours. A detailed optical and structural characterization was carried out to understand the evolution of Ag nanoparticle microstructure and size distribution inside the MgO matrix. Micro x-ray diffraction (MicroXRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes as seen from aberration corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  4. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO.

    PubMed

    Vilayurganapathy, S; Devaraj, A; Colby, R; Pandey, A; Varga, T; Shutthanandan, V; Manandhar, S; El-Khoury, P Z; Kayani, Asghar; Hess, W P; Thevuthasan, S

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag(+) ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles. PMID:23403363

  5. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    NASA Astrophysics Data System (ADS)

    Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  6. Enhanced resistive switching effect in Ag nanoparticle embedded BaTiO{sub 3} thin films

    SciTech Connect

    Au, K.; Wang, Juan; Bao, Z. Y.; Dai, J. Y.; Gao, X. S.; Liu, J. M.

    2013-07-14

    Ag nanoparticle (NP) embedded BaTiO{sub 3} (BTO) thin films on SrRuO{sub 3}-coated SrTiO{sub 3} (STO) substrates are prepared by the integrated nanocluster beam deposition and laser-molecular beam epitaxy. Enhanced resistive switching, up to an ON/OFF ration of 10{sup 4}, has been achieved at low switching voltage (less than 1 V) without a forming voltage. These characteristics make such nanocomposite film very promising for application of low voltage non-volatile random access memory. The enhanced resistive switching effect may be attributed to the charge storage effect of the Ag nanoparticles and easy formation of Ag filament inside the BTO film.

  7. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF. PMID:26035249

  8. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate.

    PubMed

    Wolf, Steffen; Rensberg, Jura; Johannes, Andreas; Thomae, Rainer; Smit, Frederick; Neveling, Retief; Moodley, Mathew; Bierschenk, Thomas; Rodriguez, Matias; Afra, Boshra; Bin Hasan, Shakeeb; Rockstuhl, Carsten; Ridgway, Mark; Bharuth-Ram, Krish; Ronning, Carsten

    2016-04-01

    Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic (84)Kr and (197)Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm(-1) in the top layer of the samples. Due to the high electronic energy losses of the irradiating ions, molten ion tracks are formed inside the lithium niobate in which the elongated Ag nanoparticles are formed. This process is strongly dependent on the initial particle size and leads to a broad aspect ratio distribution. Extinction spectra of the samples feature the extinction maximum with shoulders on either side. While the maximum is caused by numerous remaining spherical nanoparticles, the shoulders can be attributed to elongated particles. The latter could be verified by COMSOL simulations. The extinction spectra are thus a superposition of the spectra of all individual particles. PMID:26902734

  9. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate

    NASA Astrophysics Data System (ADS)

    Wolf, Steffen; Rensberg, Jura; Johannes, Andreas; Thomae, Rainer; Smit, Frederick; Neveling, Retief; Moodley, Mathew; Bierschenk, Thomas; Rodriguez, Matias; Afra, Boshra; Hasan, Shakeeb Bin; Rockstuhl, Carsten; Ridgway, Mark; Bharuth-Ram, Krish; Ronning, Carsten

    2016-04-01

    Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic 84Kr and 197Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm-1 in the top layer of the samples. Due to the high electronic energy losses of the irradiating ions, molten ion tracks are formed inside the lithium niobate in which the elongated Ag nanoparticles are formed. This process is strongly dependent on the initial particle size and leads to a broad aspect ratio distribution. Extinction spectra of the samples feature the extinction maximum with shoulders on either side. While the maximum is caused by numerous remaining spherical nanoparticles, the shoulders can be attributed to elongated particles. The latter could be verified by COMSOL simulations. The extinction spectra are thus a superposition of the spectra of all individual particles.

  10. Ag nanoparticles-embedded surface plasmonic InGaN-based solar cells via scattering and localized field enhancement.

    PubMed

    Shim, Jae-Phil; Choi, Sang-Bae; Kong, Duk-Jo; Seo, Dong-Ju; Kim, Hyung-Jun; Lee, Dong-Seon

    2016-07-11

    Ag nanoparticles are embedded in intentionally etched micro-circle p-GaN holes by means of a thermal agglomeration process to enhance the light absorption efficiency in InGaN/GaN multi-quantum-well (MQW) solar cells. The Ag nanoparticles are theoretically and experimentally verified to generate the plasmon light scattering and the localized field enhancement near the MQW absorption layer. The external quantum efficiency enhancement at a target wavelength region is demonstrated by matching the plasmon resonance of Ag nanoparticles, resulting in a Jsc improvement of 9.1%. Furthermore, the Ag-nanoparticle-embedded InGaN solar cell is effectively fabricated considering the carrier extraction that more than 70% of F.F. and 2.2 V of high Voc are simultaneously attained. PMID:27410903

  11. Magnetic anisotropy and magnetization dynamics of Fe nanoparticles embedded in Cr and Ag matrices

    NASA Astrophysics Data System (ADS)

    Peddis, D.; Qureshi, M. T.; Baker, S. H.; Binns, C.; Roy, M.; Laureti, S.; Fiorani, D.; Nordblad, P.; Mathieu, R.

    2015-11-01

    Static and dynamical magnetic properties of Fe nanoparticles (NPs) embedded in non-magnetic (Ag) and antiferromagnetic (Cr) matrices with a volume filling fraction (VFF) of 10% have been investigated. In both Fe@Ag and Fe@Cr nanocomposites, the Fe NPs have a narrow size distribution, with a mean particle diameter around 2 nm. In both samples, the saturation magnetization reaches that of Fe bulk bcc, suggesting the absence of alloying with the matrices. The coercivity at 5 K is much larger in Fe@Cr than in Fe@Ag as a result of the strong interaction between the Fe NPs and the Cr matrix. Temperature-dependent magnetization and ac-susceptibility measurements point out further evidence of the enhanced interparticle interaction in the Fe@Cr system. While the behaviour of Fe@Ag indicates the presence of weakly interacting magnetic monodomain particles with a wide distribution of blocking temperatures, Fe@Cr behaves like a superspin glass produced by the magnetic interactions between NPs.

  12. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Qianwen; Zheng, Xuanli; He, Jialun; Wang, Weiping; Fu, Mingming; Cao, Yiyan; Li, Heng; Wu, Yaping; Chen, Ting; Zhang, Chunmiao; Chen, Xiaohong; Yu, Binbin; Li, Shuping; Kang, Junyong; Wu, Zhiming

    2016-07-01

    Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed that the position of noble metal NPs significantly influenced the coupling of the LSPR-enhanced electromagnetic field with FM materials. Furthermore, nanostructures embedded with noble metals demonstrated an improved capability to efficiently use the electromagnetic field compared to other structures. The Faraday rotation of ZnO/Ag(NPs)/Fe was enhanced 58 fold compared to that of the ZnO(film)/Fe. This work provides a basis for the design of nanoarchitectures for miniaturized high-performance magneto-optical devices.

  13. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles.

    PubMed

    Liu, Qianwen; Zheng, Xuanli; He, Jialun; Wang, Weiping; Fu, Mingming; Cao, Yiyan; Li, Heng; Wu, Yaping; Chen, Ting; Zhang, Chunmiao; Chen, Xiaohong; Yu, Binbin; Li, Shuping; Kang, Junyong; Wu, Zhiming

    2016-01-01

    Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed that the position of noble metal NPs significantly influenced the coupling of the LSPR-enhanced electromagnetic field with FM materials. Furthermore, nanostructures embedded with noble metals demonstrated an improved capability to efficiently use the electromagnetic field compared to other structures. The Faraday rotation of ZnO/Ag(NPs)/Fe was enhanced 58 fold compared to that of the ZnO(film)/Fe. This work provides a basis for the design of nanoarchitectures for miniaturized high-performance magneto-optical devices. PMID:27403716

  14. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles

    PubMed Central

    Liu, Qianwen; Zheng, Xuanli; He, Jialun; Wang, Weiping; Fu, Mingming; Cao, Yiyan; Li, Heng; Wu, Yaping; Chen, Ting; Zhang, Chunmiao; Chen, Xiaohong; Yu, Binbin; Li, Shuping; Kang, Junyong; Wu, Zhiming

    2016-01-01

    Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed that the position of noble metal NPs significantly influenced the coupling of the LSPR-enhanced electromagnetic field with FM materials. Furthermore, nanostructures embedded with noble metals demonstrated an improved capability to efficiently use the electromagnetic field compared to other structures. The Faraday rotation of ZnO/Ag(NPs)/Fe was enhanced 58 fold compared to that of the ZnO(film)/Fe. This work provides a basis for the design of nanoarchitectures for miniaturized high-performance magneto-optical devices. PMID:27403716

  15. Controlled protein embedment onto Au/Ag core-shell nanoparticles for immuno-labeling of nanosilver surface.

    PubMed

    Lee, In Hwan; Lee, Jeong Min; Jung, Yongwon

    2014-05-28

    Difficulties in stable conjugation of biomolecules to nanosilver surfaces have severely limited the use of silver nanostructures in biological applications. Here, we report a facile antibody conjugation onto gold/silver (Au/Ag) core-shell nanoparticles by stable and uniform embedment of an antibody binding protein, protein G, in silver nanoshells. A rigid helical peptide linker with a terminal cysteine residue was fused to protein G. A mixture of the peptide-fused protein G and space-filling free peptide was reacted with gold nanoparticles (AuNPs) to form a protein G-linked peptide layer on the particle surface. Uniform silver nanoshells were successfully formed on these protein G-AuNPs, while stably embedding protein G-linked peptide layers. Protein G specifically targets the Fc region of an antibody and thus affords properly orientated antibodies on the particle surface. Compared to Au nanoparticles of similar size with randomly adsorbed antibodies, the present immuno-labeled Au/Ag core-shell nanoparticles offered nearly 10-fold higher sensitivities for naked-eye detection of surface bound antigens. In addition, small dye molecules that were bonded to the peptide layer on Au nanoparticles exhibited highly enhanced surface-enhanced Raman scattering (SERS) signals upon Ag shell formation. The present strategy provides a simple but efficient way to conjugate antibodies to nanosilver surfaces, which will greatly facilitate wider use of the superior optical properties of silver nanostructures in biological applications. PMID:24801432

  16. Plasmonic properties of Ag nanoparticles embedded in GeO2-SiO2 matrix by atom beam sputtering.

    PubMed

    Mohapatra, Satyabrata

    2016-02-01

    Nanocomposite thin films containing Ag nanoparticles embedded in the GeO2-SiO2 matrix were synthesized by the atom beam co-sputtering technique. The structural, optical and plasmonic properties and the chemical composition of the nanocomposite thin films were studied by transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX), UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). UV-visible absorption studies on Ag-SiO2 nanocomposites revealed the presence of a strong localized surface plasmon resonance (LSPR) peak characteristic of Ag nanoparticles at 413 nm, which showed a blue shift of 26 nm (413 to 387 nm) along with a significant broadening and drastic decrease in intensity with the incorporation of 16 at% of Ge into the SiO2 matrix. TEM studies on Ag-GeO2-SiO2 nanocomposite thin films confirmed the presence of Ag nanoparticles with an average size of 3.8 nm in addition to their aggregates with an average size of 16.2 nm. Thermal annealing in air resulted in strong enhancement in the intensity of the LSPR peak, which showed a regular red shift of 51 nm (from 387 to 438 nm) with the increase in annealing temperature up to 500 °C. XPS studies showed that annealing in air resulted in oxidation of excess Ge atoms in the nanocomposite into GeO2. Our work demonstrates the possibility of controllably tuning the LSPR of Ag nanoparticles embedded in the GeO2-SiO2 matrix by single-step thermal annealing, which is interesting for optical applications. PMID:26766559

  17. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-05-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10‑7 M to 10‑2 M with a low detection limit of 10‑8 M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors.

  18. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-01-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10(-7) M to 10(-2) M with a low detection limit of 10(-8) M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors. PMID:27184729

  19. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-01-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10−7 M to 10−2 M with a low detection limit of 10−8 M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors. PMID:27184729

  20. Redox-Robust Pentamethylferrocene Polymers and Supramolecular Polymers, and Controlled Self-Assembly of Pentamethylferricenium Polymer-Embedded Ag, AgI, and Au Nanoparticles.

    PubMed

    Gu, Haibin; Ciganda, Roberto; Castel, Patricia; Vax, Amélie; Gregurec, Danijela; Irigoyen, Joseba; Moya, Sergio; Salmon, Lionel; Zhao, Pengxiang; Ruiz, Jaime; Hernández, Ricardo; Astruc, Didier

    2015-12-01

    We report the first pentamethylferrocene (PMF) polymers and the redox chemistry of their robust polycationic pentamethylferricenium (PMFium) analogues. The PMF polymers were synthesized by ring-opening metathesis polymerization (ROMP) of a PMF-containing norbornene derivative by using the third-generation Grubbs ruthenium metathesis catalyst. Cyclic voltammetry studies allowed us to determine confidently the number of monomer units in the polymers through the Bard-Anson method. Stoichiometric oxidation by using ferricenium hexafluorophosphate quantitatively and instantaneously provided fully stable (even in aerobic solutions) blue d(5) Fe(III) metallopolymers. Alternatively, oxidation of the PMF-containing polymers was conducted by reactions with Ag(I) or Au(III) , to give PMFium polymer-embedded Ag and Au nanoparticles (NPs). In the presence of I2 , oxidation by using Ag(I) gave polymer-embedded Ag/AgI NPs and AgNPs at the surface of AgI NPs. Oxidation by using Au(III) also produced an Au(I) intermediate that was trapped and characterized. Engineered single-electron transfer reactions of these redox-robust nanomaterial precursors appear to be a new way to control their formation, size, and environment in a supramolecular way. PMID:26494439

  1. Random lasing in Eu3+ doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation

    NASA Astrophysics Data System (ADS)

    Xu, Xuhui; Zhang, Wenfei; Jin, Limin; Qiu, Jianbei; Yu, Siu Fung

    2015-10-01

    We report the observation of random lasing from Eu3+ doped borate glass ceramic films embedded with Ag nanoparticles through three-photon absorption at room temperature. Under 1179 nm ultrashort femtosecond pulse excitation, discrete sharp peaks with linewidth ~0.4 nm emerge randomly from a broad emission band with peak wavelength at ~612 nm. In addition, the number of sharp peaks increases with the increase of excitation power. We also show that the emission spectrum varies with different observation angles and the corresponding lasing threshold is dependent on the excitation area. Hence, we verify unambiguously that the Eu3+ doped borate glass ceramic film supports random lasing action via three-photon absorption excitation. In addition, Ag nanoparticles, which act as light scatterers, allow the formation of random microcavities inside the bulk film.

  2. Spectroellipsometric characterization and modeling of plasmonic diamond-like carbon nanocomposite films with embedded Ag nanoparticles.

    PubMed

    Yaremchuk, Iryna; Meškinis, Šarunas; Fitio, Volodymyr; Bobitski, Yaroslav; Šlapikas, Kestutis; Čiegis, Arvydas; Balevičius, Zigmas; Selskis, Algirdas; Tamulevičius, Sigitas

    2015-01-01

    Diamond-like carbon nanocomposite films with embedded silver nanoparticles are considered experimentally (spectroellipsometric characterization) and theoretically (modeling of optical properties). Metallic nanocomposite films were synthesized by reactive magnetron sputtering and were studied by transmission electron microscope (TEM) and atomic force microscope (AFM). The optical constants of the films were determined from spectroscopic ellipsometry measurements and were modeled using the Maxwell-Garnett approximations. Comparison between the extended and renormalized Maxwell-Garnett theory was conducted. Surface plasmon resonance peak have been found to be strongly dependent on the shape of nanoparticles and interaction between them. PMID:25977645

  3. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

    PubMed

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. PMID:27612736

  4. Enhancement of photo-response via surface plasmon resonance induced by Ag nano-particles embedded in ZnO

    NASA Astrophysics Data System (ADS)

    Li, Gaoming; Zhang, Jingwen; Chen, Guangde; Ye, Honggang; Duan, Xiangyang; Hou, Xun

    2016-09-01

    Surface plasmon resonance can be exploited to improve the performance of the photodetectors. However, it may cause the increase of dark current as a side effect. The enhancement of responsivity is highly dependent on the device structure involving SPR and the situations of the metal nano-particles. In this paper, we reported the responsivity enhancement of the ZnO UV detectors with SPR based on a structure in which Ag nano-particles are embedded in ZnO film, without the apparent increase of dark current. We found that the characteristic wavelength for SPR absorption is 380 nm, well predicted by Mie theory. And the spectral responsivity peak value increases from 472 mA/W to 10.522 A/W, by 22.3 times. The good matching between enhancement spectra and SPR absorption spectra confirms that the responsivity enhancement is resulted from SPR. Our results are of great importance in improving the photodetectors based on SPR effects, which may be widely used in light detection.

  5. Synthesis and characterization of nano ZnO, nano Ag/ZnO composite & nano-particles embedded polymers

    NASA Astrophysics Data System (ADS)

    Are, Thilak Reddy

    Zinc oxide and silver/zinc oxide nano particles were synthesized by a simple precipitation method in the presence of polyvinylpyrrolidone (PVP). The presence of polyvinylpyrrolidone prevents agglomeration and allows the formation of nano sized particles. Characterization of synthesized nano particles were carried out using X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and the average sizes were determined by zeta seizer. The X-ray diffraction shows that the prepared particles were poorly crystalline. The DSC results show that the prepared particles are highly stable and no phase changes were observed when heated from room temperature to 500°C. Scanning electron microscopic observation shows that the particles are uniformly distributed with similar shape. Zeta seizer results show that the prepared particles are nano-particles with average size of about 100 nm. The prepared Zinc oxide nano particles were embedded into the polycaprolactone (PCL) polymer to study the effect of embedding zinc oxide nanoparticle on PCL crystallinity and mechanical properties. ZnO nano particles were successfully embedded into the polymer using in-situ and non-in-situ embedding processes. Characterization of PCL embedded with ZnO nanoparticles was performed by X-ray diffraction technique and scanning electron microscope. Crystallinity studies were done by using differential scanning calorimetry and the results show that the polymer embedded using an in situ process showed a decrease in crystallinity compared to the polymer embedded using a non-insitu process.

  6. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Fei; Hou, Xiangshu; Xu, Kun

    2015-10-01

    Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core-shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H2O2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core-shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum.

  7. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core-shell nanoparticles.

    PubMed

    Kang, Fei; Hou, Xiangshu; Xu, Kun

    2015-10-01

    Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core-shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H2O2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core-shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum. PMID:26376788

  8. Random lasing in Eu³⁺ doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation.

    PubMed

    Xu, Xuhui; Zhang, Wenfei; Jin, Limin; Qiu, Jianbei; Yu, Siu Fung

    2015-10-21

    We report the observation of random lasing from Eu(3+) doped borate glass ceramic films embedded with Ag nanoparticles through three-photon absorption at room temperature. Under 1179 nm ultrashort femtosecond pulse excitation, discrete sharp peaks with linewidth ∼0.4 nm emerge randomly from a broad emission band with peak wavelength at ∼612 nm. In addition, the number of sharp peaks increases with the increase of excitation power. We also show that the emission spectrum varies with different observation angles and the corresponding lasing threshold is dependent on the excitation area. Hence, we verify unambiguously that the Eu(3+) doped borate glass ceramic film supports random lasing action via three-photon absorption excitation. In addition, Ag nanoparticles, which act as light scatterers, allow the formation of random microcavities inside the bulk film. PMID:26377118

  9. Study of structural modification of PVA by incorporating Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Saini, Isha; Sharma, Annu; Rozra, Jyoti; Aggarwal, Sanjeev; Dhiman, Rajnish; Sharma, Pawan K.

    2016-05-01

    Nanocomposites of PVA with Ag nanoparticles dispersed in it were synthesized using solution casting method. The morphology and size distribution of Ag nanoparticles embedded in PVA matrix were obtained by transmission electron microscopy (TEM) and Field emission scanning electron microscopy (FE-SEM). Raman spectroscopy was used to examine structural changes taking place inside polyvinyl alcohol (PVA) matrix due to incorporation of Ag nanoparticle. Raman analysis indicates that Ag nanoparticles interact with PVA through H-bonding.

  10. The effect of Ni pre-implantation on surface morphology and optical absorption properties of Ag nanoparticles embedded in SiO2

    NASA Astrophysics Data System (ADS)

    Shen, Yanyan; Qi, Ting; Qiao, Yu; Yu, Shengwang; Hei, Hongjun; He, Zhiyong

    2016-02-01

    The effect of Ni ion fluence on Ag nucleation and particle growth was investigated by sequentially implantation of 60 keV Ni ions at fluences of 1 × 1016, 5 × 1016, 1 × 1017 ions/cm2 and 70 keV Ag ions at a fluence of 5 × 1016 ions/cm2. Due to the modification of the deposition and accumulation process of Ag implants caused by Ni pre-implantation, the surface morphology, structures, and optical absorption properties of the Ag nanoparticles (NPs) depends strongly on the Ni fluences. UV-vis absorption spectroscopy study showed that the introducing of Ni atoms lead to intensity decrease in the Ag SPR band. Remarkable local concentration increase of Ag profiles appeared for the sample pre-implanted by Ni ions of 5.0 × 1016 ions/cm2. In particular, the AgNi alloy NPs with dual absorption peaks centered at 406 nm and 563 nm have been formed after 600 °C annealing in Ar atmosphere. However, at a low fluence of 1.0 × 1016 ions/cm2, only small increase of the local Ag concentration than the Ag ions singly implanted sample can be observed. At a high fluence of 1.0 × 1017 ions/cm2, lots Ag atoms are trapped close to the surface, which result in heavy sputtering loss of Ag atoms and the sublimation of Ag atoms after 600 °C annealing.

  11. NMR investigation of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Son, Kwanghyo; Jang, Zeehoon

    2013-01-01

    109Ag nuclear magnetic resonance (NMR) and relaxation measurements have been performed on two powder samples of Ag nanoparticles with average sizes of 20 nm and 80 nm. The measurements have been done in an external field of 9.4 T and in the temperature range 10 K < T < 280 K. The 109Ag NMR spectra for both samples have close to Lorentzian shapes and turn out to be mixtures of homogeneous and inhomogeneous lines. The linewidth Δ ν at room temperature is 1.3 kHz for both samples and gradually increases with decreasing temperature. Both the Knight shift ( K) and the nuclear spin-lattice relaxation rate (1/ T 1) are observed to be almost identical to the values reported for the bulk Ag metal, whereby the Korringa ratio R(= K 2 T 1 T/S) is found to be 2.0 for both samples in the investigated temperature range.

  12. Ag doped silicon nitride nanocomposites for embedded plasmonics

    NASA Astrophysics Data System (ADS)

    Bayle, M.; Bonafos, C.; Benzo, P.; Benassayag, G.; Pécassou, B.; Khomenkova, L.; Gourbilleau, F.; Carles, R.

    2015-09-01

    The localized surface plasmon-polariton resonance (LSPR) of noble metal nanoparticles (NPs) is widely exploited for enhanced optical spectroscopies of molecules, nonlinear optics, photothermal therapy, photovoltaics, or more recently in plasmoelectronics and photocatalysis. The LSPR frequency depends not only of the noble metal NP material, shape, and size but also of its environment, i.e., of the embedding matrix. In this paper, Ag-NPs have been fabricated by low energy ion beam synthesis in silicon nitride (SiNx) matrices. By coupling the high refractive index of SiNx to the relevant choice of dielectric thickness in a SiNx/Si bilayer for an optimum antireflective effect, a very sharp plasmonic optical interference is obtained in mid-range of the visible spectrum (2.6 eV). The diffusion barrier property of the host SiNx matrix allows for the introduction of a high amount of Ag and the formation of a high density of Ag-NPs that nucleate during the implantation process. Under specific implantation conditions, in-plane self-organization effects are obtained in this matrix that could be the result of a metastable coarsening regime.

  13. Ag doped silicon nitride nanocomposites for embedded plasmonics

    SciTech Connect

    Bayle, M.; Bonafos, C. Benzo, P.; Benassayag, G.; Pécassou, B.; Carles, R.; Khomenkova, L.; Gourbilleau, F.

    2015-09-07

    The localized surface plasmon-polariton resonance (LSPR) of noble metal nanoparticles (NPs) is widely exploited for enhanced optical spectroscopies of molecules, nonlinear optics, photothermal therapy, photovoltaics, or more recently in plasmoelectronics and photocatalysis. The LSPR frequency depends not only of the noble metal NP material, shape, and size but also of its environment, i.e., of the embedding matrix. In this paper, Ag-NPs have been fabricated by low energy ion beam synthesis in silicon nitride (SiN{sub x}) matrices. By coupling the high refractive index of SiN{sub x} to the relevant choice of dielectric thickness in a SiN{sub x}/Si bilayer for an optimum antireflective effect, a very sharp plasmonic optical interference is obtained in mid-range of the visible spectrum (2.6 eV). The diffusion barrier property of the host SiN{sub x} matrix allows for the introduction of a high amount of Ag and the formation of a high density of Ag-NPs that nucleate during the implantation process. Under specific implantation conditions, in-plane self-organization effects are obtained in this matrix that could be the result of a metastable coarsening regime.

  14. Plasmonic modification of electron-longitudinal-optical phonon coupling in Ag-nanoparticle embedded InGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Llopis, Antonio; Pereira, Sérgio M. S.; Watson, Ian M.; Neogi, Arup

    2014-09-01

    Surface plasmon enhanced GaN and InGaN quantum wells (QWs) show promise for use as room-temperature light emitters. The effectiveness of the plasmon enhancement, however, is limited by the strong electron/hole and longitudinal optical phonon coupling found in the III-V nitrides. The electron-phonon coupling within semiconductor QWs has been modified using silver nanoparticles embedded within the QWs. Direct evidence is provided for this change via confocal Raman spectroscopy of the samples. This evidence is augmented by Angle-dependent photoluminescence experiments which show the alteration of the electron-phonon coupling strength through measurement of the emitted phonon replicas. Together these demonstrate a direct modification of carrier-phonon interactions within the system, opening up the possibility of controlling the coupling strength to produce high-efficiency room-temperature light emitters.

  15. Optical Properties of Free and Embedded Small Nanoparticles

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan

    2008-03-01

    It is well known that the absorption spectra, as well as the effective dielectric function, of nanoparticles in vacuum or surrounded by a dielectric medium can be obtained by classical Mie and Maxwell-Garnett theories. A limit as to how the particles can be for the theory to apply has not been established. Here I present theoretical results on the optical properties of small Ag, Au, and Si and Ge nanoparticles with tens of atoms in vacuum and in an embedded dielectric medium obtained from first-principles density-functional calculations. In particular, I will discuss the role that d-electron play on the optical properties of Ag and Au nanoparticles, and the cases when classical Mie and Maxwell-Garnett theories can be applied for nanoparticles of just few atoms in size and whose atoms are in bulk-like and not bulk-like positions. Comparison will be made for nanoparticles in vacuum and embedded in an alumina matrix. The quantum-mechanical results indicate that small nanoparticles in alumina can have an imprint on the effective dielectric function that is several times larger than would be predicted by Maxwell-Garnett theory for same-size particles. This work was supported by a GOALI NSF grant, DOE, the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and Alcoa Inc. Collaborators: S. ögüt, K. Jackson, J. Jellinek, A. Halabica. R. F. Haglund, R. Magruder, S.J. Pennycook and S.T. Pantelides.

  16. Bimetallic Pt-Ag and Pd-Ag nanoparticles

    SciTech Connect

    Lahiri, Debdutta; Bunker, Bruce; Mishra, Bhoopesh; Zhang, Zhenyuan; Meisel, Dan; Doudna, C. M.; Bertino, M. F.; Blum, Frank D.; Tokuhiro, A. T.; Chattopadhyay, Soma; Shibata, Tomohiro; Terry, Jeff

    2005-04-19

    We report studies of bimetallic nanoparticles with 15%–16% atomic crystal parameters size mismatch. The degree of alloying was also probed in a 2-nm Pt core ssmallest attainable core sized of Pt–Ag nanoparticles scompletely immiscible in bulkd and 20-nm-diameter Pd–Ag nanowires scompletely miscible in bulkd. Particles were synthesized radiolytically, and depending on the initial parameters, they assume spherical or cylindrical snanowired morphologies. In all cases, the metals are seen to follow their bulk alloying characteristics. Also, Pt and Ag segregate in both spherical and wire forms, which indicates that strain due to crystallographic mismatch overcomes the excess surface free energy in the small particles. The Pd–Ag nanowires alloy similar to previously reported spherical Pd–Ag particles of similar diameter and composition

  17. Bimetallic Pt-Ag and Pd-Ag nanoparticles

    SciTech Connect

    Lahiri, Debdutta; Bunker, Bruce; Mishra, Bhoopesh; Zhang, Zhenyuan; Meisel, Dan; Doudna, C.M.; Bertino, M. F.; Blum, Frank D.; Tokuhiro, A.T.; Chattopadhyay, Soma; Shibata, Tomohiro; Terry, Jeff

    2005-05-01

    We report studies of bimetallic nanoparticles with 15%-16% atomic crystal parameters size mismatch. The degree of alloying was probed in a 2-nm Pt core (smallest attainable core size) of Pt-Ag nanoparticles (completely immiscible in bulk) and 20-nm-diameter Pd-Ag nanowires (completely miscible in bulk). Particles were synthesized radiolytically, and depending on the initial parameters, they assume spherical or cylindrical (nanowire) morphologies. In all cases, the metals are seen to follow their bulk alloying characteristics. Pt and Ag segregate in both spherical and wire forms, which indicates that strain due to crystallographic mismatch overcomes the excess surface free energy in the small particles. The Pd-Ag nanowires alloy similar to previously reported spherical Pd-Ag particles of similar diameter and composition.

  18. Surface-enhanced Raman scattering from 4-aminothiophenol molecules embedded inside Ag coated gold nanorods

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Boris N.

    2016-04-01

    Here we report on the preparation of uniform Au@Ag core/shell nanorods with a controllable Ag shell thickness. 4- aminothiophenol molecules, used as the Raman reporters, were placed between the Au core and the Ag shell. The dependence of Raman intensity on the inside/surface location of the reporter molecules was studied. The interior molecules showed a strong and uniform Raman intensity, at least an order of magnitude higher than that of the molecules on the nanoparticle surface. In contrast to usual surface-functionalized Raman tags, aggregation and clustering of nanoparticles with embedded molecules decreased the SERS signal. The findings from this study provide the basis for a novel technique of low analyte concentration detection based on high SERS response inside the core/shell metal nanostructures.

  19. Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded PMMA nanofiber

    PubMed Central

    Cheng, Chang; Xu, Xiaohao; Lei, Hongxiang; Li, Baojun

    2016-01-01

    The integration of surface plasmon with waveguide is a strategy for lab-on-a-chip compatible optical trapping. Here, we report a method for trapping of nanoparticles using a silver nanowire (AgNW) embedded poly(methyl methacrylate) (PMMA) nanofiber with the assistance of surface plasmon polaritons (SPPs). The nanoparticles (polystyrene, 700 nm diameter) are transported along the nanofiber and ultimately trapped at the AgNW embedded region because of the enhanced optical gradient force towards the nanofiber exerted on the nanoparticles and optical potential well generated by the excitation of SPPs. The low optical power requirement and the easy fabrication of the AgNW-embedded nanofiber with broad range of wavelength for SPPs are advantageous to the applications in optofluidics and plasmofluidics. PMID:26843143

  20. Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded PMMA nanofiber

    NASA Astrophysics Data System (ADS)

    Cheng, Chang; Xu, Xiaohao; Lei, Hongxiang; Li, Baojun

    2016-02-01

    The integration of surface plasmon with waveguide is a strategy for lab-on-a-chip compatible optical trapping. Here, we report a method for trapping of nanoparticles using a silver nanowire (AgNW) embedded poly(methyl methacrylate) (PMMA) nanofiber with the assistance of surface plasmon polaritons (SPPs). The nanoparticles (polystyrene, 700 nm diameter) are transported along the nanofiber and ultimately trapped at the AgNW embedded region because of the enhanced optical gradient force towards the nanofiber exerted on the nanoparticles and optical potential well generated by the excitation of SPPs. The low optical power requirement and the easy fabrication of the AgNW-embedded nanofiber with broad range of wavelength for SPPs are advantageous to the applications in optofluidics and plasmofluidics.

  1. Synthesis and characterization of nano Cdo/NiO, nano Ag/ZnO composites & Ag/Zno embedded polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Godasu, Rahul

    Nanoparticles are finest structures whose size composition is within nanometer range. Thus nanoparticles are a collection of atoms bonded together with structural radius less than 100 nm. Nanocomposites are multiphase solid materials where one of the phases has one, two or three dimensions of less than 100 mn. Nano composites are prepared to improve mechanical, electrical, thermal, optical, electrochemical, catalytic properties from its parent materials. For instance, blend of nanoparticles with a polymer are called polymer nanocomposites. Nanostructured composites like Cadmium oxide/Nickel oxide (CdO/NiO) and silver/zinc oxide (Ag/ZnO) were prepared. Characterization of these prepared nanocomposites were carried out using X-ray powder diffraction, Differential scanning calorimetry, Scanning electron microscopy and the average sizes were determined using zeta sizer. Results obtained using characterization methods were in agreement stating that we were successful in synthesizing composites. The prepared Ag/ZnO nano composite was embedded in PCL polymer and we made films of PCL embedded with nano composite. The SEM image of the 5% Ag/ZnO embedded film clearly shows two regions, which indicates that Ag/ZnO nano composite was successfully embedded into the polymer using a non insitu method. SEM results also showed that the Zinc Oxide nano particles were successfully embedded into the polymer .

  2. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts.

    PubMed

    Gao, Ang; Hang, Ruiqiang; Huang, Xiaobo; Zhao, Lingzhou; Zhang, Xiangyu; Wang, Lin; Tang, Bin; Ma, Shengli; Chu, Paul K

    2014-04-01

    A versatile strategy to endow biomaterials with long-term antibacterial ability without compromising the cytocompatibility is highly desirable to combat biomaterial related infection. TiO2 nanotube (NT) arrays can significantly enhance the functions of many cell types including osteoblasts thus having promising applications in orthopedics, orthodontics, as well as other biomedical fields. In this study, TiO2 NT arrays with Ag2O nanoparticle embedded in the nanotube wall (NT-Ag2O arrays) are prepared on titanium (Ti) by TiAg magnetron sputtering and anodization. Well-defined NT arrays containing Ag concentrations in a wide range from 0 to 15 at % are formed. Ag incorporation has little influence on the NT diameter, but significantly decreases the tube length. Crystallized Ag2O nanoparticles with diameters ranging from 5 nm to 20 nm are embedded in the amorphous TiO2 nanotube wall and this unique structure leads to controlled release of Ag(+) that generates adequate antibacterial activity without showing cytotoxicity. The NT-Ag2O arrays can effectively kill Escherichia coli and Staphylococcus aureus even after immersion for 28 days, demonstrating the long lasting antibacterial ability. Furthermore, the NT-Ag2O arrays have no appreciable influence on the osteoblast viability, proliferation, and differentiation compared to the Ag free TiO2 NT arrays. Ag incorporation even shows some favorable effects on promoting cell spreading. The technique reported here is a versatile approach to develop biomedical coatings with different functions. PMID:24529392

  3. Alloyed nanoparticle-embedded alumina nanocermet film: A new attempt to improve the thermotolerance

    NASA Astrophysics Data System (ADS)

    Tu, C. J.; Gao, J. H.; Hui, S.; Lou, D.; Zhang, H. L.; Liang, L. Y.; Jin, A. P.; Zou, Y. S.; Cao, H. T.

    2015-03-01

    This paper focuses on the enhancement of thermal stability of Ag-Al2O3 nanocermet films by means of alloying of Ag nanoparticles with Al element. The optical analysis demonstrated the AgAl embedded Al2O3 cermet films (namely, AgAl-Al2O3) possess excellent thermal tolerance even at 500 °C for 260 h under nitrogen ambient. The evolution of microstructural and chemical properties of Al2O3/AgAl-Al2O3/Al2O3 stack layers during the annealing process was comprehensively investigated, in order to grasp the thermal stability mechanism. It is believed that the enhanced thermal stability was ascribed to the formation of fresh alumina as capping layer riveted on the Ag nanoparticles surfaces, which acted as the pinning points to prevent silver element from migrating so as to maintain the expected optical properties.

  4. Spin coating of Ag nanoparticles: Effect of reduction

    SciTech Connect

    Ansari, A. A. Sartale, S. D.

    2014-04-24

    A surfactant free method for the growth of Ag nanoparticles on glass substrate by spin coating of Ag ions solution followed by chemical reduction in aqueous hydrazine hydrate (HyH) solution has been presented. Appearance of surface plasmon resonance confirms the formation of Ag nanoparticles. Morphology and absorbance spectra of Ag nanoparticles films are used to examine effect of hydrazine concentration on the growth of Ag nanoparticles. SEM images show uniformly distributed Ag nanoparticles. Rate constant was found to be dependent on HyH concentration as a consequence influence particle size.

  5. Physio-chemical and antibacterial characteristics of pressure spun nylon nanofibres embedded with functional silver nanoparticles.

    PubMed

    Xu, Z; Mahalingam, S; Rohn, J L; Ren, G; Edirisinghe, M

    2015-11-01

    A novel and facile approach to prepare hybrid nanoparticle embedded polymer nanofibers using pressurised gyration is presented. Silver nanoparticles and nylon polymer were used in this work. The polymer solution's physical properties, rotating speed and the working pressure had a significant influence on the fibre diameter and the morphology. Fibres in the range of 60-500nm were spun using 10wt.%, 15wt.% and 20wt.% nylon solutions and these bead-free fibres were processed under 0.2MPa and 0.3MPa working pressure and a rotational speed of 36,000rpm. 1-4wt.% of Ag was added to these nylon solutions and in the case of wt.% fibres in the range 50-150nm were prepared using the same conditions of pressurised gyration. Successful incorporation of the Ag nanoparticles in nylon nanofibres was confirmed by using a combination of advanced microscopical techniques and Raman spectrometry was used to study the bonding characteristics of nylon and the Ag nanoparticles. Inductively coupled plasma mass spectroscopy showed a substantial concentration of Ag ions in the nylon fibre matrix which is essential for producing effective antibacterial properties. Antibacterial activity of the Ag-loaded nanofibres shows higher efficacy than nylon nanofibres for Gram-negative Escherichia coli and Pseudomonas aeruginosa microorganisms, and both Ag nanoparticles and the Ag ions were found to be the reason for enhanced cell death in the bacterial solutions. PMID:26249581

  6. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  7. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  8. Magnetic anisotropy of embedded Co nanoparticles: Influence of the surrounding matrix

    NASA Astrophysics Data System (ADS)

    Tamion, Alexandre; Raufast, Cécile; Hillenkamp, Matthias; Bonet, Edgar; Jouanguy, J.; Canut, Bruno; Bernstein, Estella; Boisron, Olivier; Wernsdorfer, Wolfgang; Dupuis, Véronique

    2010-04-01

    We report on the magnetic properties of Co clusters embedded in four different matrices (Ag, Au, Si, and amorphous carbon). The recently developed “triple fit” method for treating conventional magnetometry data allows, together with micro-superconducting quantum interference device ( μ -SQUID) investigations, the detailed study of the influence of the surrounding matrix on the magnetic volume and the magnetic anisotropy of Co nanoparticles. While interdiffusion between matrix and Co atoms cannot be excluded in Si and amorphous C matrices, the structure of clusters embedded in the metallic matrices remains intact. Ag and Au matrices increase significantly the magnetic anisotropy energy of the Co clusters. μ -SQUID experiments indicate that the magnetic anisotropy of embedded clusters is not affected by a magnetically dead layer and that an anisotropy dispersion must be taken into account for size-selected nanoparticles.

  9. Bio-inspired sustainable and green synthesis of plasmonic Ag/AgCl nanoparticles for enhanced degradation of organic compound from aqueous phase.

    PubMed

    Devi, Th Babita; Ahmaruzzaman, M

    2016-09-01

    In the current study, we report the utilization of the biogenic potential of Benincasa hispida (ash gourd) peel extract for the synthesis of Ag embedded AgCl nanoparticles nanoparticles (Ag/AgCl NPs) without the use of any external organic solvents. The appearance of dark brown color from the pale yellow color confirmed the formation of Ag/AgCl nanoparticles which was further validated by absorbance peak using UV-visible spectroscopy. The phytochemicals (flavones) present in the B. hispida peel extract acts as a reducing/stabilizing agents. The morphology and size of the synthesized NPs were characterized by transmission electron microscope (TEM), selected area electron microscope (SAED) and high resolution transmission electron microscope (HR-TEM). FT-IR spectra of the B. hispida peel extract and after the development of nanoparticles are determined to identify the functional groups responsible for the conversion of metal ions to metal nanoparticles. The synthesized nanoparticles showed an excellent photocatalytic property in the degradation of toxic dye like malachite green oxalate under sunlight irradiation. For the first time, malachite green oxalate dye was degraded by Ag/AgCl nanoparticles under sunlight irradiation. PMID:27246560

  10. Misfit stabilized embedded nanoparticles in metallic alloys.

    PubMed

    Gornostyrev, Yu N; Katsnelson, M I

    2015-11-01

    Nanoscale inhomogeneities are typical for numerous metallic alloys and crucially important for their practical applications. At the same time, stabilization mechanisms of such a state are poorly understood. We present a general overview of the problem, together with a more detailed discussion of the prototype example, namely, Guinier-Preston zones in Al-based alloys. It is shown that coherent strain due to a misfit between inclusion and host crystal lattices plays a decisive role in the emergence of the inhomogeneous state. We suggest a model explaining the formation of ultrathin plates (with the thickness of a few lattice constants) typical for Al-Cu alloys. Discreteness of the array of misfit dislocations and long-ranged elastic interactions between them are the key ingredients of the model. This opens a way for a general understanding of the nature of (meta)stable embedded nanoparticles in practically important systems. PMID:26431075

  11. Spectroscopic enhancement in nanoparticles embedded glasses

    NASA Astrophysics Data System (ADS)

    Sahar, M. R.; Ghoshal, S. K.

    2014-09-01

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  12. Spectroscopic enhancement in nanoparticles embedded glasses

    SciTech Connect

    Sahar, M. R. Ghoshal, S. K.

    2014-09-25

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  13. Silver nanoparticles embedded mesoporous SiO₂ nanosphere: an effective anticandidal agent against Candida albicans 077.

    PubMed

    Qasim, M; Singh, Braj R; Naqvi, A H; Paik, P; Das, D

    2015-07-17

    Candida albicans is a diploid fungus that causes common infections such as denture stomatitis, thrush, urinary tract infections, etc. Immunocompromised patients can become severely infected by this fungus. Development of an effective anticandidal agent against this pathogenic fungus, therefore, will be very useful for practical application. In this work, Ag-embedded mesoporous silica nanoparticles (mSiO2@AgNPs) have successfully been synthesized and their anticandidal activities against C. albicans have been studied. The mSiO2@AgNPs nanoparticles (d ∼ 400 nm) were designed using pre-synthesized Ag nanoparticles and tetraethyl orthosilicate (TEOS) as a precursor for SiO2 in the presence of cetyltrimethyl ammonium bromide (CTAB) as an easily removable soft template. A simple, cost-effective, and environmentally friendly approach has been adopted to synthesize silver (Ag) nanoparticles using silver nitrate and leaf extract of Azadirachta indica. The mesopores, with size-equivalent diameter of the micelles (d = 4-6 nm), were generated on the SiO2 surface by calcination after removal of the CTAB template. The morphology and surface structure of mSiO2@AgNPs were characterized through x-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), particle size analysis (PSA), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET) and high-resolution transmission electron microscopy (HRTEM). The HRTEM micrograph reveals the well-ordered mesoporous structure of the SiO2 sphere. The antifungal activities of mSiO2@AgNPs on the C. albicans cell have been studied through microscopy and are seen to increase with increasing dose of mSiO2@AgNPs, suggesting mSiO2@AgNPs to be a potential antifungal agent for C. albicans 077. PMID:26119911

  14. Bimetallic PdAg nanoparticle arrays from monolayer films of diblock copolymer micelles

    NASA Astrophysics Data System (ADS)

    Ehret, E.; Beyou, E.; Mamontov, G. V.; Bugrova, T. A.; Prakash, S.; Aouine, M.; Domenichini, B.; Cadete Santos Aires, F. J.

    2015-07-01

    The self-assembly technique provides a highly efficient route to generate well-ordered structures on a nanometer scale. In this paper, well-ordered arrays of PdAg alloy nanoparticles on flat substrates with narrow distributions of particle size (6-7 nm) and interparticle spacing (about 60 nm) were synthesized by the block copolymer micelle approach. A home-made PS-b-P4VP diblock copolymer was prepared to obtain a micellar structure in toluene. Pd and Ag salts were then successfully loaded in the micellar core of the PS-b-P4VP copolymer. A self-assembled monolayer of the loaded micelles was obtained by dipping the flat substrate in the solution. At this stage, the core of the micelles was still loaded with the metal precursor rather than with a metal. Physical and chemical reducing methods were used to reduce the metal salts embedded in the P4VP core into PdAg nanoparticles. HRTEM and EDX indicated that Pd-rich PdAg alloy nanoparticles were synthesized by chemical or physical reduction; UV-visible spectroscopy observations confirmed that metallic PdAg nanoparticles were quickly formed after chemical reduction; XPS measurements revealed that the PdAg alloy nanoparticles were in a metallic state after a short time of exposure to O2 plasma and after hydrazine reduction.

  15. Base effects on fabrication of silver nanoparticles embedded silica nanocomposite for surface-enhanced Raman scattering (SERS).

    PubMed

    Kang, Homan; Kang, Taegyu; Kim, Seongyong; Kim, Jong-Ho; Jun, Bong-Hyun; Chae, Jinjoo; Park, Juyoung; Jeong, Dae-Hong; Lee, Yoon-Sik

    2011-01-01

    In this paper, we studied on the effect of organic bases in the case of ethylene glycol based fabrication of silver nanoparticles embedded silica nanocomposite (Ag SNC) without heating. Considering their chemical structures, butylamine (BA), ethanolamine (EA), triethanolamine (TEA), tributylamine (TBA), octylamine (OA) and Jeffamine 500 (JA) were used as an organic base. In addition, the effect of the concentrations of AgNO3 and organic bases on the formation of Ag SNC was also examined. In conformity with the characteristics of Ag SNC, SERS signal intensity of benzenethiol on Ag SNC was measured. As a result, the SERS signal intensity of Ag SNCs was strongly dependent on the reaction conditions. Furthermore, when reacted under the best reaction condition with concentrations of AgNO3 and OA, 3 mM and 5 mM, respectively, a large-scale production of Ag SNC was possible under the mild conditions. PMID:21446501

  16. Facile Synthesis of Au Nanoparticles Embedded in an Ultrathin Hollow Graphene Nanoshell with Robust Catalytic Performance.

    PubMed

    Liu, Hongyang; Wang, Jia; Feng, Zhenbao; Lin, Yangming; Zhang, Liyun; Su, Dangsheng

    2015-10-01

    Au nanoparticles (NPs) uniformly embedded into an ultrathin hollow graphene nanoshell (Au@HGN) are synthesized using a facile template-based procedure. The obtained Au@HGN catalyst exhibits robust and stable catalytic performance in the reduction of 4-nitrophenol to 4-aminophenol, compared with that of traditional Au/TiO2 and previously reported Au- and Ag-based catalysts. PMID:26280245

  17. Effects of Ag-embedment on electronic and ionic conductivities of LiMnPO4 and its performance as a cathode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Kug-Seung; Lee, Kyung Jae; Kang, Yun Sik; Shin, Tae Joo; Sung, Yung-Eun; Ahn, Docheon

    2015-08-01

    An Ag-embedded LiMnPO4 (LMP) cathode was synthesized by solid-state reaction using a 1 wt% Ag precursor. Structure, morphology, and electrical conductivity studies of Ag-embedded LMP were performed by high resolution powder X-ray diffraction, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and four probe measurements. An Ag nanoparticle (~26 nm) surrounded by several olivine crystallites within a single particle dramatically improved the overall electrical conductivity of LMP by four orders of magnitude relative to that of pristine LMP, playing roles as conducting bridges among LMP crystallites as well as particles. Rietveld analysis confirmed structural variations related to the modification of atomic bond lengths of Mn-O, P-O, and Li-O coordination due to Ag-embedment and thereby leads to facile Li ion diffusion in LMP. Consequently, although a small amount of Ag was included, the Ag-embedded LMP cathode exhibited outstanding electrochemical performances (92 mA h g-1 at 10 C) versus lithium.An Ag-embedded LiMnPO4 (LMP) cathode was synthesized by solid-state reaction using a 1 wt% Ag precursor. Structure, morphology, and electrical conductivity studies of Ag-embedded LMP were performed by high resolution powder X-ray diffraction, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and four probe measurements. An Ag nanoparticle (~26 nm) surrounded by several olivine crystallites within a single particle dramatically improved the overall electrical conductivity of LMP by four orders of magnitude relative to that of pristine LMP, playing roles as conducting bridges among LMP crystallites as well as particles. Rietveld analysis confirmed structural variations related to the modification of atomic bond lengths of Mn-O, P-O, and Li-O coordination due to Ag-embedment and thereby leads to facile Li ion diffusion in LMP. Consequently, although a small amount of Ag was included, the Ag-embedded LMP

  18. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  19. Studies on electronic structure of interfaces between Ag and gelatin for stabilization of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Uchida, Takayuki

    2015-06-01

    Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst’s equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix.

  20. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    PubMed Central

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  1. Effects of Ag-embedment on electronic and ionic conductivities of LiMnPO4 and its performance as a cathode for lithium-ion batteries.

    PubMed

    Lee, Kug-Seung; Lee, Kyung Jae; Kang, Yun Sik; Shin, Tae Joo; Sung, Yung-Eun; Ahn, Docheon

    2015-09-01

    An Ag-embedded LiMnPO4 (LMP) cathode was synthesized by solid-state reaction using a 1 wt% Ag precursor. Structure, morphology, and electrical conductivity studies of Ag-embedded LMP were performed by high resolution powder X-ray diffraction, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and four probe measurements. An Ag nanoparticle (∼26 nm) surrounded by several olivine crystallites within a single particle dramatically improved the overall electrical conductivity of LMP by four orders of magnitude relative to that of pristine LMP, playing roles as conducting bridges among LMP crystallites as well as particles. Rietveld analysis confirmed structural variations related to the modification of atomic bond lengths of Mn-O, P-O, and Li-O coordination due to Ag-embedment and thereby leads to facile Li ion diffusion in LMP. Consequently, although a small amount of Ag was included, the Ag-embedded LMP cathode exhibited outstanding electrochemical performances (92 mA h g(-1) at 10 C) versus lithium. PMID:26186268

  2. Surface spin polarization induced ferromagnetic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsun; Li, Wen-Hsien; Wu, Sheng Yun

    2016-05-01

    We report on the observation of ferromagnetic spin polarized moments in 4.5 nm Ag nanoparticles. Both ferromagnetic and diamagnetic responses to an applied magnetic field were detected. The spin polarized moments shown under non-linear thermoinduced magnetization appeared on the surface atoms, rather than on all the atoms in particles. The saturation magnetization departed substantially from the Bloch T3/2-law, showing the existence of magnetic anisotropy. The Heisenberg ferromagnetic spin wave model for Ha-aligned moments was then employed to identify the magnetic anisotropic energy gap of ~0.12 meV. Our results may be understood by assuming the surface magnetism model, in which the surface atoms give rise to polarized moments while the core atoms produce diamagnetic responses.

  3. Theoretical modeling of optical properties of Ag8 and Ag14 silver clusters embedded in an LTA sodalite zeolite cavity.

    PubMed

    Cuong, Ngo Tuan; Nguyen, Hue Minh Thi; Nguyen, Minh Tho

    2013-10-01

    Optical properties of silver Ag(n) nanoclusters are demonstrated to be dependent on their size, structure and charge state. It is found that when being contained in the sodalite cavity of LTA zeolite the tetradecanuclear hexacation silver cluster Ag14(6+) is stable. Its lower-lying states and optical spectrum are theoretically determined using the quantum chemical TD-DFT method. Its ground state possesses an outer-shell electron configuration of A1g(2)T2g(6) mimicking the s(2)p(6) valence of noble gas atoms. These frontier orbitals are constructed from 5s,5p(Ag)-AOs with contributions from framework oxygen atoms. Light absorption of Ag14(6+) embedded in the sodalite cage which is characterized by strong peaks centered at 331 and 476 nm (transitions 5s,p(Ag) → 5s,p(Ag)) leads to much longer wavelength emission. The sodalite cage, as a container, stabilizes the central Ag14(6+) cluster by electrostatic attraction. The absorption spectrum of the isovalent neutral Ag8 cluster embedded inside the same sodalite cavity is also simulated using TD-DFT and CASPT2 methods. This absorption spectrum which is similar to that of the Ag14(6+) cluster has two absorption bands in the near UV and visible regions. PMID:23936902

  4. Toxicity of Nanoparticles Embedded in Paints Compared with Pristine Nanoparticles in Mice

    PubMed Central

    Smulders, Stijn; Luyts, Katrien; Brabants, Gert; Landuyt, Kirsten Van; Kirschhock, Christine; Smolders, Erik; Golanski, Luana; Vanoirbeek, Jeroen; Hoet, Peter HM

    2014-01-01

    The unique physical and chemical properties of nanomaterials have led to their increased use in many industrial applications, including as a paint additive. For example, titanium dioxide (TiO2) engineered nanoparticles (ENPs) have well-established anti-UV, self-cleaning, and air purification effects. Silver (Ag) ENPs are renowned for their anti-microbial capabilities and silicon dioxide (SiO2) ENPs are used as fire retardants and anti-scratch coatings. In this study, the toxic effects and biodistribution of three pristine ENPs (TiO2, Ag, and SiO2), three aged paints containing ENPs (TiO2, Ag, and SiO2) along with control paints without ENPs were compared. BALB/c mice were oropharyngeally aspirated with ENPs or paint particles (20 μg/aspiration) once a week for 5 weeks and sacrificed either 2 or 28 days post final aspiration treatment. A bronchoalveolar lavage was performed and systemic blood toxicity was evaluated to ascertain cell counts, induction of inflammatory cytokines, and key blood parameters. In addition, the lung, liver, kidney, spleen, and heart were harvested and metal concentrations were determined. Exposure to pristine ENPs caused subtle effects in the lungs and negligible alterations in the blood. The most pronounced toxic effects were observed after Ag ENPs exposure; an increased neutrophil count and a twofold increase in pro-inflammatory cytokine secretion (keratinocyte chemoattractant (KC) and interleukin-1ß (IL-1ß)) were identified. The paint containing TiO2 ENPs did not modify macrophage and neutrophil counts, but mildly induced KC and IL-1ß. The paints containing Ag or SiO2 did not show significant toxicity. Biodistribution experiments showed distribution of Ag and Si outside the lung after aspiration to respectively pristine Ag or SiO2 ENPs. In conclusion, we demonstrated that even though direct exposure to ENPs induced some toxic effects, once they were embedded in a complex paint matrix little to no adverse toxicological effects were

  5. Toxicity of nanoparticles embedded in paints compared with pristine nanoparticles in mice.

    PubMed

    Smulders, Stijn; Luyts, Katrien; Brabants, Gert; Landuyt, Kirsten Van; Kirschhock, Christine; Smolders, Erik; Golanski, Luana; Vanoirbeek, Jeroen; Hoet, Peter H M

    2014-09-01

    The unique physical and chemical properties of nanomaterials have led to their increased use in many industrial applications, including as a paint additive. For example, titanium dioxide (TiO2) engineered nanoparticles (ENPs) have well-established anti-UV, self-cleaning, and air purification effects. Silver (Ag) ENPs are renowned for their anti-microbial capabilities and silicon dioxide (SiO2) ENPs are used as fire retardants and anti-scratch coatings. In this study, the toxic effects and biodistribution of three pristine ENPs (TiO2, Ag, and SiO2), three aged paints containing ENPs (TiO2, Ag, and SiO2) along with control paints without ENPs were compared. BALB/c mice were oropharyngeally aspirated with ENPs or paint particles (20 μg/aspiration) once a week for 5 weeks and sacrificed either 2 or 28 days post final aspiration treatment. A bronchoalveolar lavage was performed and systemic blood toxicity was evaluated to ascertain cell counts, induction of inflammatory cytokines, and key blood parameters. In addition, the lung, liver, kidney, spleen, and heart were harvested and metal concentrations were determined. Exposure to pristine ENPs caused subtle effects in the lungs and negligible alterations in the blood. The most pronounced toxic effects were observed after Ag ENPs exposure; an increased neutrophil count and a twofold increase in pro-inflammatory cytokine secretion (keratinocyte chemoattractant (KC) and interleukin-1ß (IL-1ß)) were identified. The paint containing TiO2 ENPs did not modify macrophage and neutrophil counts, but mildly induced KC and IL-1ß. The paints containing Ag or SiO2 did not show significant toxicity. Biodistribution experiments showed distribution of Ag and Si outside the lung after aspiration to respectively pristine Ag or SiO2 ENPs. In conclusion, we demonstrated that even though direct exposure to ENPs induced some toxic effects, once they were embedded in a complex paint matrix little to no adverse toxicological effects were

  6. Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections.

    PubMed

    Geilich, Benjamin M; van de Ven, Anne L; Singleton, Gloria L; Sepúlveda, Liuda J; Sridhar, Srinivas; Webster, Thomas J

    2015-02-28

    The rapidly diminishing number of effective antibiotics that can be used to treat infectious diseases and associated complications in a physician's arsenal is having a drastic impact on human health today. This study explored the development and optimization of a polymersome nanocarrier formed from a biodegradable diblock copolymer to overcome bacterial antibiotic resistance. Here, polymersomes were synthesized containing silver nanoparticles embedded in the hydrophobic compartment, and ampicillin in the hydrophilic compartment. Results showed for the first time that these silver nanoparticle-embedded polymersomes (AgPs) inhibited the growth of Escherichia coli transformed with a gene for ampicillin resistance (bla) in a dose-dependent fashion. Free ampicillin, AgPs without ampicillin, and ampicillin polymersomes without silver nanoparticles had no effect on bacterial growth. The relationship between the silver nanoparticles and ampicillin was determined to be synergistic and produced complete growth inhibition at a silver-to-ampicillin ratio of 1 : 0.64. In this manner, this study introduces a novel nanomaterial that can effectively treat problematic, antibiotic-resistant infections in an improved capacity which should be further examined for a wide range of medical applications. PMID:25628231

  7. Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections

    NASA Astrophysics Data System (ADS)

    Geilich, Benjamin M.; van de Ven, Anne L.; Singleton, Gloria L.; Sepúlveda, Liuda J.; Sridhar, Srinivas; Webster, Thomas J.

    2015-02-01

    The rapidly diminishing number of effective antibiotics that can be used to treat infectious diseases and associated complications in a physician's arsenal is having a drastic impact on human health today. This study explored the development and optimization of a polymersome nanocarrier formed from a biodegradable diblock copolymer to overcome bacterial antibiotic resistance. Here, polymersomes were synthesized containing silver nanoparticles embedded in the hydrophobic compartment, and ampicillin in the hydrophilic compartment. Results showed for the first time that these silver nanoparticle-embedded polymersomes (AgPs) inhibited the growth of Escherichia coli transformed with a gene for ampicillin resistance (bla) in a dose-dependent fashion. Free ampicillin, AgPs without ampicillin, and ampicillin polymersomes without silver nanoparticles had no effect on bacterial growth. The relationship between the silver nanoparticles and ampicillin was determined to be synergistic and produced complete growth inhibition at a silver-to-ampicillin ratio of 1 : 0.64. In this manner, this study introduces a novel nanomaterial that can effectively treat problematic, antibiotic-resistant infections in an improved capacity which should be further examined for a wide range of medical applications.

  8. Transient electron energy distribution in supported Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Merschdorf, M.; Kennerknecht, C.; Willig, K.; Pfeiffer, W.

    2002-11-01

    The electron relaxation in Ag nanoparticles supported on graphite is investigated by time-resolved multiphoton photoemission spectroscopy. The photoemission spectra map the transient electron energy distribution in the nanoparticles and reveal the internal thermalization and cooling of the electron gas. The excess energy stored in the electron gas is calculated using the free-electron model. In contrast to the behaviour of isolated nanoparticles the energy loss rate from the electron gas increases with the pump fluence. This indicates that the electron gas equilibration in Ag nanoparticles on graphite is modified by excited electron transport.

  9. Sequential repetitive chemical reduction technique to study size-property relationships of graphene attached Ag nanoparticle

    NASA Astrophysics Data System (ADS)

    Haider, M. Salman; Badejo, Abimbola Comfort; Shao, Godlisten N.; Imran, S. M.; Abbas, Nadir; Chai, Young Gyu; Hussain, Manwar; Kim, Hee Taik

    2015-06-01

    The present study demonstrates a novel, systematic and application route synthesis approach to develop size-property relationship and control the growth of silver nanoparticles (AgNPs) embedded on reduced graphene oxide (rGO). A sequential repetitive chemical reduction technique to observe the growth of silver nanoparticles (AgNPs) attached to rGO, was performed on a single solution of graphene oxide (GO) and silver nitrate solution (7 runs, R1-R7) in order to manipulate the growth and size of the AgNPs. The physical-chemical properties of the samples were examined by RAMAN, XPS, XRD, SEM-EDAX, and HRTEM analyses. It was confirmed that AgNPs with diameter varying from 4 nm in first run (R1) to 50 nm in seventh run (R7) can be obtained using this technique. A major correlation between particle size and activities was also observed. Antibacterial activities of the samples were carried out to investigate the disinfection performance of the samples on the Gram negative bacteria (Escherichia coli). It was suggested that the sample obtained in the third run (R3) exhibited the highest antibacterial activity as compared to other samples, toward disinfection of bacteria due to its superior properties. This study provides a unique and novel application route to synthesize and control size of AgNPs embedded on graphene for various applications.

  10. Impact of ZnO and Ag Nanoparticles on Bacterial Growth and Viability

    NASA Astrophysics Data System (ADS)

    Olson, M. S.; Digiovanni, K. A.

    2007-12-01

    Hundreds of consumer products containing nanomaterials are currently available in the U.S., including computers, clothing, cosmetics, sports equipment, medical devices and product packaging. Metallic nanoparticles can be embedded in or coated on product surfaces to provide antimicrobial, deodorizing, and stain- resistant properties. Although these products have the potential to provide significant benefit to the user, the impact of these products on the environment remains largely unknown. The purpose of this project is to study the effect of metallic nanoparticles released to the environment on bacterial growth and viability. Inhibition of bacterial growth was tested by adding doses of suspended ZnO and Ag nanoparticles into luria broth prior to inoculation of Escherichia coli cells. ZnO particles (approximately 40 nm) were obtained commercially and Ag particles (12-14 nm) were fabricated by reduction of silver nitrate with sodium borohydride. Toxicity assays were performed to test the viability of E. coli cells exposed to both ZnO and Ag nanoparticles using the LIVE/DEAD BacLight bacterial viability kit (Invitrogen). Live cells stain green whereas cells with compromised membranes that are considered dead or dying stain red. Cells were first grown, stained, and exposed to varying doses of metallic nanoparticles, and then bacterial viability was measured hourly using fluorescence microscopy. Results indicate that both ZnO and Ag nanoparticles inhibit the growth of E. coli in liquid media. Preliminary results from toxicity assays confirm the toxic effect of ZnO and Ag nanoparticles on active cell cultures. Calculated death rates resulting from analyses of toxicity studies will be presented.

  11. Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida).

    PubMed

    Shoults-Wilson, W A; Zhurbich, Oksana I; McNear, David H; Tsyusko, Olga V; Bertsch, Paul M; Unrine, Jason M

    2011-03-01

    Silver nanoparticles have been incorporated into a wide variety of consumer products, ideally acting as antimicrobial agents. Silver exposure has long been known to cause toxic effects to a wide variety of organisms, making large scale production of silver nanoparticles a potential hazard to environmental systems. Here we describe the first evidence that an organism may be able to sense manufactured nanoparticles in a complex, environmentally relevant exposure and that the presence of nanoparticles alters the organism's behavior. We found that earthworms (Eisenia fetida) consistently avoid soils containing silver nanoparticles and AgNO(3) at similar concentrations of Ag. However, avoidance of silver nanoparticles occurred over 48 h, while avoidance of AgNO(3) was immediate. It was determined that avoidance of silver nanoparticles could not be explained by release of silver ions or any changes in microbial communities caused by the introduction of Ag. This leads us to conclude that the earthworms were in some way sensing the presence of nanoparticles over the course of a 48 h exposure and choosing to avoid exposure to them. Our results demonstrate that nanoparticle interactions with organisms may be unpredictable and that these interactions may result in ecologically significant effects on behavior at environmentally relevant concentrations. PMID:21229389

  12. Dielectric performance of polymer-based composites containing core-shell Ag@TiO2 nanoparticle fillers

    NASA Astrophysics Data System (ADS)

    Liang, Fei; Zhang, Lu; Lu, Wen-Zhong; Wan, Qian-Xing; Fan, Gui-Fen

    2016-02-01

    This paper reports composites prepared by embedding core-shell Ag@TiO2 fillers into polytetrafluoroethylene. Ag nanoparticles were homogeneously coated with TiO2, to give a shell thickness of approximately ˜8-10 nm. The composite containing Ag@TiO2 nanoparticles with rutile shells exhibited better dielectric properties than the composite containing Ag@TiO2 nanoparticles with anatase shells. The relative permittivity (ɛr) of the composite containing 70 vol. % filler was approximately 240 at 100 Hz, which was more than 100 times higher than that of pure polytetrafluoroethylene (ɛr = 2.1). An effective medium percolation theory model is used to account for the dielectric constant of the composite.

  13. Structural characterization of copolymer embedded magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Nedelcu, G. G.; Nastro, A.; Filippelli, L.; Cazacu, M.; Iacob, M.; Rossi, C. Oliviero; Popa, A.; Toloman, D.; Dobromir, M.; Iacomi, F.

    2015-10-01

    Small magnetic nanoparticles (Fe3O4) were synthesized by co-precipitation and coated by emulsion polymerization with poly(methyl methacrylate-co-acrylic acid) (PMMA-co-AAc) to create surface functional groups that can attach drug molecules and other biomolecules. The coated and uncoated magnetite nanoparticles were stored for two years in normal closed ships and than characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and electron paramagnetic resonance spectroscopy. The solid phase transformation of magnetite to maghemite, as well as an increase in particle size were evidenced for the uncoated nanoparticles. The coated nanoparticles preserved their magnetite structure and magnetic properties. The influences of monomers and surfactant layers on interactions between the magnetic nanoparticles evidenced that the thickness of the polymer has a significant effect on magnetic properties.

  14. Beet Juice-Induced Green Fabrication of Plasmonic AgCl/Ag Nanoparticles

    EPA Science Inventory

    A simple, green, and fast approach (complete within 5 min) was explored for the fabrication of hybrid AgCl/Ag plasmonic nanoparticles under microwave (MW) irradiation. In this method, beet juice served as a reducing reagent, which is an abundant sugar-rich agricultural produce. I...

  15. Simultaneous SERS and surface-enhanced fluorescence from dye-embedded metal core-shell nanoparticles.

    PubMed

    Zhou, Yan; Zhang, Peng

    2014-05-21

    We demonstrate a methodology to prepare Au-core-Ag-shell nanoparticles displaying both SERS and surface-enhanced fluorescence (SEF) activities simultaneously by embedding dye molecules between the core and the shell. Polyelectrolytes are used to adjust the spacing and the dye position between the core and the shell. Layer-by-layer polyelectrolyte deposition can serve as an effective and flexible way to introduce various types of dye molecules into the nanostructures. Results from the spectral measurements shed light on the intricacy between SERS and SEF. PMID:24695881

  16. Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates.

    PubMed

    Bollani, M; Bietti, S; Frigeri, C; Chrastina, D; Reyes, K; Smereka, P; Millunchick, J M; Vanacore, G M; Burghammer, M; Tagliaferri, A; Sanguinetti, S

    2014-05-23

    We fabricate site-controlled, ordered arrays of embedded Ga nanoparticles on Si, using a combination of substrate patterning and molecular-beam epitaxial growth. The fabrication process consists of two steps. Ga droplets are initially nucleated in an ordered array of inverted pyramidal pits, and then partially crystallized by exposure to an As flux, which promotes the formation of a GaAs shell that seals the Ga nanoparticle within two semiconductor layers. The nanoparticle formation process has been investigated through a combination of extensive chemical and structural characterization and theoretical kinetic Monte Carlo simulations. PMID:24784353

  17. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-01

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10‑5 Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  18. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum.

    PubMed

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-16

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10(-5) Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains. PMID:27487089

  19. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.

    PubMed

    Kim, Richard S; Zhu, Jinfeng; Park, Jeung Hun; Li, Lu; Yu, Zhibin; Shen, Huajun; Xue, Mei; Wang, Kang L; Park, Gyechoon; Anderson, Timothy J; Pei, Qibing

    2012-06-01

    We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells. PMID:22714293

  20. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods

    NASA Astrophysics Data System (ADS)

    Choudhury, Rupasree; Majumder, Manna; Roy, Dijendra Nath; Basumallick, Srijita; Misra, Tarun Kumar

    2016-06-01

    Silver nanoparticles (Ag NPs) are now widely used as antibacterial and antifungal materials in different consumer products. We report here the preparation of Ag NPs by neem leaves extract (Azadirachta) reduction and trisodium citrate-sodium borohydride reduction methods, and study of their phytotoxicity. The nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and atomic force microscopy (AFM) techniques. Both neem-coated and citrate-coated Ag NPs exhibit surface plasmon around 400 nm, and their average sizes measured by AFM are about 100 and 20 nm, respectively. Antibacterial and antifungal activities of these nanomaterials have been studied by simple pea seed germination and disk diffusion methods. It has been observed from the growth of root and shoot, citrate-coated Ag NPs significantly affect seedling growth, but neem-coated Ag NPs exhibit somehow mild toxicity toward germination process due to the nutrient supplements from neem. On the other hand, antifungal activity of neem-coated Ag NPs has been found much higher than that of citrate-coated Ag NPs due to the combined effects of antifungal activity of neem and Ag NPs. Present research primarily indicates a possible application of neem-coated Ag NPs as a potential fungicide.

  1. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods

    NASA Astrophysics Data System (ADS)

    Choudhury, Rupasree; Majumder, Manna; Roy, Dijendra Nath; Basumallick, Srijita; Misra, Tarun Kumar

    2016-06-01

    Silver nanoparticles (Ag NPs) are now widely used as antibacterial and antifungal materials in different consumer products. We report here the preparation of Ag NPs by neem leaves extract ( Azadirachta) reduction and trisodium citrate-sodium borohydride reduction methods, and study of their phytotoxicity. The nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and atomic force microscopy (AFM) techniques. Both neem-coated and citrate-coated Ag NPs exhibit surface plasmon around 400 nm, and their average sizes measured by AFM are about 100 and 20 nm, respectively. Antibacterial and antifungal activities of these nanomaterials have been studied by simple pea seed germination and disk diffusion methods. It has been observed from the growth of root and shoot, citrate-coated Ag NPs significantly affect seedling growth, but neem-coated Ag NPs exhibit somehow mild toxicity toward germination process due to the nutrient supplements from neem. On the other hand, antifungal activity of neem-coated Ag NPs has been found much higher than that of citrate-coated Ag NPs due to the combined effects of antifungal activity of neem and Ag NPs. Present research primarily indicates a possible application of neem-coated Ag NPs as a potential fungicide.

  2. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol

    NASA Astrophysics Data System (ADS)

    An, Changhua; Wang, Jizhuang; Jiang, Wen; Zhang, Meiyu; Ming, Xijuan; Wang, Shutao; Zhang, Qinhui

    2012-08-01

    Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO2. For example, reduction of CO2 under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO2 into useful organic compounds.Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO2. For example, reduction of CO2 under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO2

  3. Decorating CdTe QD-Embedded Mesoporous Silica Nanospheres with Ag NPs to Prevent Bacteria Invasion for Enhanced Anticounterfeit Applications.

    PubMed

    Gao, Yangyang; Dong, Qigeqi; Lan, Shi; Cai, Qian; Simalou, Oudjaniyobi; Zhang, Shiqi; Gao, Ge; Chokto, Harnoode; Dong, Alideertu

    2015-05-13

    Quantum dots (QDs) as potent candidates possess advantageous superiority in fluorescence imaging applications, but they are susceptible to the biological circumstances (e.g., bacterial environment), leading to fluorescence quenching or lose of fluorescent properties. In this work, CdTe QDs were embedded into mesoporous silica nanospheres (m-SiO2 NSs) for preventing QD agglomeration, and then CdTe QD-embedded m-SiO2 NSs (m-SiO2/CdTe NSs) were modified with Ag nanoparticles (Ag NPs) to prevent bacteria invasion for enhanced anticounterfeit applications. The m-SiO2 NSs, which serve as intermediate layers to combine CdTe QDs with Ag NPs, help us establish a highly fluorescent and long-term antibacterial system (i.e., m-SiO2/CdTe/Ag NSs). More importantly, CdTe QD-embedded m-SiO2 NSs showed fluorescence quenching when they encounter bacteria, which was avoided by attaching Ag NPs outside. Ag NPs are superior to CdTe QDs for preventing bacteria invasion because of the structure (well-dispersed Ag NPs), size (small diameter), and surface charge (positive zeta potentials) of Ag NPs. The plausible antibacterial mechanisms of m-SiO2/CdTe/Ag NSs toward both Gram-positive and Gram-negative bacteria were established. As for potential applications, m-SiO2/CdTe/Ag NSs were developed as fluorescent anticounterfeiting ink for enhanced imaging applications. PMID:25901940

  4. Structure and magnetism in Cr-embedded Co nanoparticles

    NASA Astrophysics Data System (ADS)

    Baker, S. H.; Kurt, M. S.; Roy, M.; Lees, M. R.; Binns, C.

    2016-02-01

    We present the results of an investigation into the atomic structure and magnetism of 2 nm diameter Co nanoparticles embedded in an antiferromagnetic Cr matrix. The nanocomposite films used in this study were prepared by co-deposition directly from the gas phase, using a gas aggregation source for the Co nanoparticles and a molecular beam epitaxy (MBE) source for the Cr matrix material. Co K and Cr K edge extended x-ray absorption fine structure (EXAFS) experiments were performed in order to investigate atomic structure in the embedded nanoparticles and matrix respectively, while magnetism was investigated by means of a vibrating sample magnetometer. The atomic structure type of the Co nanoparticles is the same as that of the Cr matrix (bcc) although with a degree of disorder. The net Co moment per atom in the Co/Cr nanocomposite films is significantly reduced from the value for bulk Co, and decreases as the proportion of Co nanoparticles in the film is decreased; for the sample with the most dilute concentration of Co nanoparticles (4.9% by volume), the net Co moment was 0.25 μ B/atom. After field cooling to below 30 K all samples showed an exchange bias, which was largest for the most dilute sample. Both the structural and magnetic results point towards a degree of alloying at the nanoparticle/matrix interface, leading to a core/shell structure in the embedded nanoparticles consisting of an antiferromagnetic CoCr alloy shell surrounding a reduced ferromagnetic Co core.

  5. Structure and magnetism in Cr-embedded Co nanoparticles.

    PubMed

    Baker, S H; Kurt, M S; Roy, M; Lees, M R; Binns, C

    2016-02-01

    We present the results of an investigation into the atomic structure and magnetism of 2 nm diameter Co nanoparticles embedded in an antiferromagnetic Cr matrix. The nanocomposite films used in this study were prepared by co-deposition directly from the gas phase, using a gas aggregation source for the Co nanoparticles and a molecular beam epitaxy (MBE) source for the Cr matrix material. Co K and Cr K edge extended x-ray absorption fine structure (EXAFS) experiments were performed in order to investigate atomic structure in the embedded nanoparticles and matrix respectively, while magnetism was investigated by means of a vibrating sample magnetometer. The atomic structure type of the Co nanoparticles is the same as that of the Cr matrix (bcc) although with a degree of disorder. The net Co moment per atom in the Co/Cr nanocomposite films is significantly reduced from the value for bulk Co, and decreases as the proportion of Co nanoparticles in the film is decreased; for the sample with the most dilute concentration of Co nanoparticles (4.9% by volume), the net Co moment was 0.25 μ B/atom. After field cooling to below 30 K all samples showed an exchange bias, which was largest for the most dilute sample. Both the structural and magnetic results point towards a degree of alloying at the nanoparticle/matrix interface, leading to a core/shell structure in the embedded nanoparticles consisting of an antiferromagnetic CoCr alloy shell surrounding a reduced ferromagnetic Co core. PMID:26740510

  6. Nanoparticle embedded enzymes for improved lateral flow sensors.

    PubMed

    Özalp, Veli C; Zeydanlı, Uğur S; Lunding, Anita; Kavruk, Murat; Öz, M Tufan; Eyidoğan, Füsun; Olsen, Lars F; Öktem, Hüseyin A

    2013-08-01

    In this study, combining the nanoparticle embedded sensors with lateral flow assays, a novel strategy for ensuring the quality of signalling in lateral flow assays (LFAs) was developed. A LFA for reactive oxygen species (ROS) is reported that is based on horse radish peroxidase (HRP) which is co-entrapped with Texas Red dextran inside porous polyacrylamide nanoparticles. In this system, enzymes are protected in the porous matrix of polyacrylamide which freely allows the diffusion of the analyte. The sensor is rapid and sensitive for quantification of hydrogen peroxide concentrations. A test solution of hydrogen peroxides was quantified with this novel LFA-ROS sensor to obtain a linear range between 1 and 25 μM. Nanoparticle embedding of enzymes is proposed here as a general strategy for developing enzyme-based lateral flow assays, eliminating adverse effects associated with biological samples. PMID:23730687

  7. Highly luminescent material based on Alq3:Ag nanoparticles.

    PubMed

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2013-09-01

    Tris (8-hydroxyquinoline) aluminum (Alq3) is an organic semiconductor molecule, widely used as an electron transport layer, light emitting layer in organic light-emitting diodes and a host for fluorescent and phosphorescent dyes. In this work thin films of pure and silver (Ag), cupper (Cu), terbium (Tb) doped Alq3 nanoparticles were synthesized using the physical vapor condensation method. They were fabricated on glass substrates and characterized by X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectroscopy, atomic force microscope (AFM), UV-visible absorption spectra and studied for their photoluminescence (PL) properties. SEM and AFM results show spherical nanoparticles with size around 70-80 nm. These nanoparticles have almost equal sizes and a homogeneous size distribution. The maximum absorption of Alq3 nanoparticles is observed at 300 nm, while the surface plasmon resonant band of Ag doped sample appears at 450 nm. The PL emission spectra of Tb, Cu and Ag doped Alq3 nanoparticles show a single broad band at around 515 nm, which is similar to that of the pure one, but with enhanced PL intensity. The sample doped with Ag at a concentration ratio of Alq3:Ag = 1:0.8 is found to have the highest PL intensity, which is around 2 times stronger than that of the pure one. This enhancement could be attributed to the surface plasmon resonance of Ag ions that might have increased the absorption and then the quantum yield. These remarkable result suggest that Alq3 nanoparticles incorporated with Ag ions might be quite useful for future nano-optoelectronic devices. PMID:23653126

  8. Heat-induced spinodal decomposition of Ag-Cu nanoparticles.

    PubMed

    Sopoušek, Jiří; Zobač, Ondřej; Buršík, Jiří; Roupcová, Pavla; Vykoukal, Vít; Brož, Pavel; Pinkas, Jiří; Vřešt'ál, Jan

    2015-11-14

    Solvothermal synthesis was used for Ag-Cu nanoparticle (NP) preparation from metallo-organic precursors. The detailed NP characterization was performed to obtain information about nanoparticle microstructure and both phase and chemical compositions. The resulting nanoparticles exhibited chemical composition inside a FCC_Ag + FCC_Cu two-phase region. The microstructure study was performed by various methods of electron microscopy including high-resolution transmission electron microscopy (HRTEM) at an atomic scale. The HRTEM and X-ray diffraction studies showed that the prepared nanoparticles form the face centred cubic (FCC) crystal lattice where the silver atoms are randomly mixed with copper. The CALPHAD approach was used for predicting the phase diagram of the Ag-Cu system in both macro- and nano-scales. The predicted spinodal decomposition of the metastable Ag-Cu nanoparticles was experimentally induced by heating on an X-ray powder diffractometer (HT XRD). The nucleation of the Cu-rich phase was detected and its growth was studied. Changes in the Ag-rich phase were observed in situ by X-ray diffraction under vacuum. The heat treatment was conducted at different maximum temperatures up to 450 °C and the resulting particle product was analysed. The experiments were complemented by differential scanning calorimetry (DSC) measurements up to liquidus temperature. The start temperatures of the spinodal phase transformation and particle aggregation were evaluated. PMID:25929324

  9. Laser generated Ag and Ag-Au composite nanoparticles for refractive index sensor

    NASA Astrophysics Data System (ADS)

    Navas, M. P.; Soni, R. K.

    2014-09-01

    Localized surface plasmon resonance (LSPR) wavelength of metal nanoparticles (NPs) is highly sensitive to size, shape and the surrounding medium. Metal targets were laser ablated in liquid for preparation of spherical Ag and Ag@Au core-shell NP colloidal solution for refractive index sensing. The LSPR peak wavelength and broadening of the NPs were monitored in different refractive index liquid. Quasi-static Mie theory simulation results show that refractive index sensitivity of Ag, Ag-Au alloy and Ag@Au core-shell NPs increases nearly linearly with size and shell thickness. However, the increased broadening of the LSPR peak with size, alloy concentration and Au shell thickness restricts the sensing resolution of these NPs. Figure-of-merit (FOM) was calculated to optimize the size of Ag NPs, concentration of Ag-Au alloy NPs and Au shell thickness of Ag@Au core-shell NPs. The refractive index sensitivity (RIS) and FOM were optimum in the size range 20-40 nm for Ag NPs. Laser generated Ag@Au NPs of Au shell thickness in the range of 1-2 nm showed optimum FOM, where thin layer of Au coating can improve the stability of Ag NPs.

  10. Silver nanoparticles embedded mesoporous SiO2 nanosphere: an effective anticandidal agent against Candida albicans 077

    NASA Astrophysics Data System (ADS)

    Qasim, M.; Singh, Braj R.; Naqvi, A. H.; Paik, P.; Das, D.

    2015-07-01

    Candida albicans is a diploid fungus that causes common infections such as denture stomatitis, thrush, urinary tract infections, etc. Immunocompromised patients can become severely infected by this fungus. Development of an effective anticandidal agent against this pathogenic fungus, therefore, will be very useful for practical application. In this work, Ag-embedded mesoporous silica nanoparticles (mSiO2@AgNPs) have successfully been synthesized and their anticandidal activities against C. albicans have been studied. The mSiO2@AgNPs nanoparticles (d ˜ 400 nm) were designed using pre-synthesized Ag nanoparticles and tetraethyl orthosilicate (TEOS) as a precursor for SiO2 in the presence of cetyltrimethyl ammonium bromide (CTAB) as an easily removable soft template. A simple, cost-effective, and environmentally friendly approach has been adopted to synthesize silver (Ag) nanoparticles using silver nitrate and leaf extract of Azadirachta indica. The mesopores, with size-equivalent diameter of the micelles (d = 4-6 nm), were generated on the SiO2 surface by calcination after removal of the CTAB template. The morphology and surface structure of mSiO2@AgNPs were characterized through x-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), particle size analysis (PSA), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET) and high-resolution transmission electron microscopy (HRTEM). The HRTEM micrograph reveals the well-ordered mesoporous structure of the SiO2 sphere. The antifungal activities of mSiO2@AgNPs on the C. albicans cell have been studied through microscopy and are seen to increase with increasing dose of mSiO2@AgNPs, suggesting mSiO2@AgNPs to be a potential antifungal agent for C. albicans 077.

  11. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract.

    PubMed

    Philip, Daizy

    2009-07-15

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size approximately 15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (111) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications. PMID:19324587

  12. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2009-07-01

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size ˜15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (1 1 1) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications.

  13. Extranuclear dynamics of 111Ag(→111Cd) doped in AgI nanoparticles

    NASA Astrophysics Data System (ADS)

    Sato, W.; Mizuuchi, R.; Irioka, N.; Komatsuda, S.; Kawata, S.; Taoka, A.; Ohkubo, Y.

    2014-08-01

    Dynamic behavior of the extranuclear field relative to the 111Ag(→111Cd) probe nucleus introduced in a superionic conductor silver iodide (AgI) was investigated by means of the time-differential perturbed angular correlation technique. For poly-N-vinyl-2-pyrrolidone (PVP)-coated AgI nanoparticles, we observed nuclear spin relaxation of the probe at room temperature. This result signifies that Ag+ ions in the polymer-coated sample make hopping motion from site to site at this low temperature. The activation energy for the dynamic motion was successfully estimated to be 46(10) meV. The first atomic-level observation of the temperature-dependent dynamic behavior of Ag+ ions in the polymer-coated AgI is reported.

  14. Transport of stabilized engineered silver (Ag) nanoparticles through porous sandstones

    NASA Astrophysics Data System (ADS)

    Neukum, Christoph; Braun, Anika; Azzam, Rafig

    2014-03-01

    Engineered nanoparticles are increasingly applied in consumer products and concerns are rising regarding their risk as potential contaminants or carriers for colloid-facilitated contaminant transport. Engineered silver nanoparticles (AgNP) are among the most widely used nanomaterials in consumer products. However, their mobility in groundwater has been scarcely investigated. In this study, transport of stabilized AgNP through porous sandstones with variations in mineralogy, pore size distribution and permeability is investigated in laboratory experiments with well-defined boundary conditions. The AgNP samples were mainly characterized by asymmetric flow field-flow fractionation coupled to a multi-angle static laser light detector and ultraviolet-visible spectroscopy for determination of particle size and concentration. The rock samples are characterized by mercury porosimetry, flow experiments and solute tracer tests. Solute and AgNP breakthrough was quantified by applying numerical models considering one kinetic site model for particle transport. The transport of AgNP strongly depends on pore size distribution, mineralogy and the solution ionic strength. Blocking of attachment sites results in less reactive transport with increasing application of AgNP mass. AgNPs were retained due to physicochemical filtration and probably due to straining. The results demonstrate the restricted applicability of AgNP transport parameters determined from simplified experimental model systems to realistic environmental matrices.

  15. Spectroscopic Study on Eu3+ Doped Borate Glasses Containing Ag Nanoparticles and Ag Aggregates.

    PubMed

    Fu, Shaobo; Zheng, Hui; Zhang, Jinsu; Li, Xiangping; Sun, Jiashi; Hua, Ruinian; Dong, Bin; Xia, Haiping; Chen, Baojiu

    2015-01-01

    Transparent Eu(3+)-doped borate glasses containing Ag nanoparticles and Ag aggregates with composition (40 - x) CaO-59.5B2O3-0.5Eu2O3-xAgNO3 were prepared by a simple one-step melt-quenching technique. The X-ray diffraction (XRD) patterns of the glasses reveal amorphous structural properties and no diffraction peaks belonging to metal Ag particles. Ag particles and Ag aggregates were observed from the absorption spectra. Effective energy transfers from the Ag aggregates to the Eu3+ ions were observed in the excitation spectra from monitoring the intrinsic emission of Eu3+x .5D0 --> 7F2. The glasses with higher Ag content can be effectively excited by light in a wide wavelength region, indicating that these glasses have potential application in the solid state lighting driven by semiconductor light emitting diodes (LEDs). The emission spectra of the samples with higher Ag contents exhibit plenteous spectral components covering the full visible region from violet to red, thus indicating that these glass materials possess an excellent and tunable color rendering index. The color coordinates for all the glass samples were calculated by using the intensity-corrected emission spectra and the standard data issued by the CIE (Commission International de l' Eclairage) in 1931. It was found that the color coordinates for most samples with higher Ag contents fall into the white region in the color space. PMID:26328363

  16. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation

    NASA Astrophysics Data System (ADS)

    González-Castillo, Jr.; Rodriguez, E.; Jimenez-Villar, E.; Rodríguez, D.; Salomon-García, I.; de Sá, Gilberto F.; García-Fernández, T.; Almeida, DB; Cesar, CL; Johnes, R.; Ibarra, Juana C.

    2015-10-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag+ concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM).

  17. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation.

    PubMed

    González-Castillo, J R; Rodriguez, E; Jimenez-Villar, E; Rodríguez, D; Salomon-García, I; de Sá, Gilberto F; García-Fernández, T; Almeida, D B; Cesar, C L; Johnes, R; Ibarra, Juana C

    2015-12-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag(+) concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM). PMID:26464175

  18. Stability of Ag nanoparticles dispersed in amphiphilic organic matrix

    NASA Astrophysics Data System (ADS)

    Suvorova, Elena I.; Klechkovskaya, Vera V.; Kopeikin, Victor V.; Buffat, Philippe A.

    2005-02-01

    Nano- and thin-film technologies based on novel systems associating metals particles to polymer matrix open a broad range of different applications. Such composites were found to be more efficient and safe, for instance, in biomedical needs. The Ag/poly(N-vinyl-2-pyrrolidone) (Ag/PVP) composite investigated in the present work is a new bactericide mean applied in complicated cases of infected burns and purulent wounds. High-resolution transmission electron microscopy (HRTEM) and X-ray energy-dispersive (EDS) microanalysis were used to bring chemical and structural information in a study of the properties and stability of thin-film nanocomposite whih consisted of Ag nanoparticles dispersed in water-soluble organic matrix poly(N-vinyl-2-pyrrolidone). The nanostructural investigation of Ag/PVP composite by HRTEM and EDS exposed to SO 2 and H 2S from the atmosphere and some traces of S-containing substances explains the limited stability of this system by a structural modification associated with a phase change and formation of Ag 2S and Ag 2SO 3. However, formation of the hardly water-soluble Ag 2S and Ag 2SO 3 salts may play an important role in the suppression of bacterial growth. On the one hand, silver could block S-H groups in vital proteins and conduced to their destruction, in that way revealing the antibacterial power. On the other hand, antiseptic properties of Ag consist in binding the products of the protein decay.

  19. Transport of silver nanoparticles (AgNPs) in soil.

    PubMed

    Sagee, Omer; Dror, Ishai; Berkowitz, Brian

    2012-07-01

    The effect of soil properties on the transport of silver nanoparticles (AgNPs) was studied in a set of laboratory column experiments, using different combinations of size fractions of a Mediterranean sandy clay soil. The AgNPs with average size of ~30nm yielded a stable suspension in water with zeta potential of -39mV. Early breakthrough of AgNPs in soil was observed in column transport experiments. AgNPs were found to have high mobility in soil with outlet relative concentrations ranging from 30% to 70%, depending on experimental conditions. AgNP mobility through the column decreased when the fraction of smaller soil aggregates was larger. The early breakthrough pattern was not observed for AgNPs in pure quartz columns nor for bromide tracer in soil columns, suggesting that early breakthrough is related to the nature of AgNP transport in natural soils. Micro-CT and image analysis used to investigate structural features of the soil, suggest that soil aggregate size strongly affects AgNP transport in natural soil. The retention of AgNPs in the soil column was reduced when humic acid was added to the leaching solution, while a lower flow rate (Darcy velocity of 0.17cm/min versus 0.66cm/min) resulted in higher retention of AgNPs in the soil. When soil residual chloride was exchanged by nitrate prior to column experiments, significantly improved mobility of AgNPs was observed in the soil column. These findings point to the importance of AgNP-soil chemical interactions as a retention mechanism, and demonstrate the need to employ natural soils rather than glass beads or quartz in representative experimental investigations. PMID:22516207

  20. PDMS embedded Ag clusters: Coalescence and cluster-matrix interaction

    NASA Astrophysics Data System (ADS)

    Roese, S.; Engemann, D.; Hoffmann, S.; Latussek, K.; Sternemann, C.; Hövel, H.

    2016-05-01

    Polydimethylsiloxane (PDMS) has proven to be a suitable embedding medium for silver clusters to prevent aggregation. In order to investigate the influence of the PDMS on the electronic and local atomic structure of the clusters the measurement of x-ray absorption near edge structure (XANES) spectra for different coverages of silver clusters in PDMS and calculations of corresponding XANES spectra have been performed. The coalescence process and the cluster-PDMS interaction were investigated with XANES.

  1. Anisotropic effective medium properties from interacting Ag nanoparticles in silicon dioxide.

    PubMed

    Menegotto, Thiago; Horowitz, Flavio

    2014-05-01

    Films containing a layer of Ag nanoparticles embedded in silicon dioxide were produced by RF magnetron sputtering. Optical transmittance measurements at several angles of incidence (from normal to 75°) revealed two surface plasmon resonance (SPR) peaks, which depend on electric field direction: one in the ultraviolet and another red-shifted from the dilute Ag/SiO₂ system resonance at 410 nm. In order to investigate the origin of this anisotropic behavior, the structural properties were determined by transmission electron microscopy, revealing the bidimensional plane distribution of Ag nanoparticles with nearly spherical shape as well as the filling factor of metal in the composite. A simple model linked to these experimental parameters allowed description of the most relevant features of the SPR positions, which, depending on the field direction, were distinctly affected by the coupling of oscillations between close nanoparticles, as described by a modified Drude-Lorentz dielectric function introduced into the Maxwell-Garnett relation. This approach allowed prediction of the resonance for light at 75° incidence from the SPR position for light at normal incidence, in good agreement with experimental observation. PMID:24921871

  2. Modified embedded-atom potential for B2-MgAg

    NASA Astrophysics Data System (ADS)

    Groh, Sébastien

    2016-08-01

    Interatomic potentials for pure Ag and Mg–Ag alloy have been developed in the framework of the second nearest-neighbors modified embedded-atom method (MEAM). The validity and the transferability of the Ag potential were obtained by calculating physical, mechanical, thermal, and dislocation related properties. Since the {1 1 1}-generalized stacking fault energy curves obtained from first-principle calculations was used to develop the Ag potential, the critical resolved shear stress to move screw dislocations in Ag single crystal is in good agreement with the experimental data. By combining the ability of the potential to predict the surface energies with its accuracy in describing dislocation properties, the potential is thought to be a predictive model for analyzing the fracture properties of Ag. In addition, the performance of the potential was tested under dynamics conditions by predicting the melting temperature, where a good agreement with experimental value was found. The Ag-MEAM potential was then coupled to an existing Mg-MEAM potential to describe the properties of the binary system MgAg. While the heat of formation, the elastic constants, and the (1 1 0) γ-surface of the MgAg compound in the B2 phase were used to parameterize the potential, heat of formation for MgAg alloys with different stoichiometry, thermal properties of the B2-MgAg compound, as well as dislocation related properties in B2-MgAg compound were tested to validate the transferability of the potential. The heat of formation of Mg5Ag2, MgAg, and MgAg3, the elastic constants and the thermal properties of B2-MgAg obtained with the proposed potential align with first-principles and experimental data. In addition, the core structure of both <0 0 1> and <1 1 1> dislocations in {1 1 0} are in agreement with theoretical predictions, and the magnitudes of the critical resolved shear stress obtained at 0 K for both slip systems partially validate the slip behavior of B2-MgAg

  3. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application.

    PubMed

    Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng

    2014-06-01

    To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications. PMID:24664672

  4. [Ag25(SR)18](-): The "Golden" Silver Nanoparticle.

    PubMed

    Joshi, Chakra P; Bootharaju, Megalamane S; Alhilaly, Mohammad J; Bakr, Osman M

    2015-09-16

    Silver nanoparticles with an atomically precise molecular formula [Ag25(SR)18](-) (-SR: thiolate) are synthesized, and their single-crystal structure is determined. This synthesized nanocluster is the only silver nanoparticle that has a virtually identical analogue in gold, i.e., [Au25(SR)18](-), in terms of number of metal atoms, ligand count, superatom electronic configuration, and atomic arrangement. Furthermore, both [Ag25(SR)18](-) and its gold analogue share a number of features in their optical absorption spectra. This unprecedented molecular analogue in silver to mimic gold offers the first model nanoparticle platform to investigate the centuries-old problem of understanding the fundamental differences between silver and gold in terms of nobility, catalytic activity, and optical property. PMID:26322865

  5. Modeling pulsed-laser melting of embedded semiconductor nanoparticles

    SciTech Connect

    Sawyer, C.A.; Guzman, J.; Boswell-Koller, C.N.; Sherburne, M.P.; Mastandrea, J.P.; Bustillo, K.C.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2011-05-18

    Pulsed-laser melting (PLM) is commonly used to achieve a fast quench rate in both thin films and nanoparticles. A model for the size evolution during PLM of nanoparticles confined in a transparent matrix, such as those created by ion-beam synthesis, is presented. A self-consistent mean-field rate equations approach that has been used successfully to model ion beam synthesis of germanium nanoparticles in silica is extended to include the PLM process. The PLM model includes classical optical absorption, multiscale heat transport by both analytical and finite difference methods, and melting kinetics for confined nanoparticles. The treatment of nucleation and coarsening behavior developed for the ion beam synthesis model is modified to allow for a non-uniform temperature gradient and for interacting liquid and solid particles with different properties. The model allows prediction of the particle size distribution after PLM under various laser fluences, starting from any particle size distribution including as-implanted or annealed simulated samples. A route for narrowing the size distribution of embedded nanoparticles is suggested, with simulated distribution widths as low as 15% of the average size.

  6. Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method

    NASA Astrophysics Data System (ADS)

    Chook, Soon Wei; Chia, Chin Hua; Zakaria, Sarani; Ayob, Mohd Khan; Chee, Kah Leong; Huang, Nay Ming; Neoh, Hui Min; Lim, Hong Ngee; Jamal, Rahman; Rahman, Raha Mohd Fadhil Raja Abdul

    2012-09-01

    Silver nanoparticles and silver-graphene oxide nanocomposites were fabricated using a rapid and green microwave irradiation synthesis method. Silver nanoparticles with narrow size distribution were formed under microwave irradiation for both samples. The silver nanoparticles were distributed randomly on the surface of graphene oxide. The Fourier transform infrared and thermogravimetry analysis results showed that the graphene oxide for the AgNP-graphene oxide (AgGO) sample was partially reduced during the in situ synthesis of silver nanoparticles. Both silver nanoparticles and AgGO nanocomposites exhibited stronger antibacterial properties against Gram-negative bacteria ( Salmonella typhi and Escherichia coli) than against Gram-positive bacteria ( Staphyloccocus aureus and Staphyloccocus epidermidis). The AgGO nanocomposites consisting of approximately 40 wt.% silver can achieve antibacterial performance comparable to that of neat silver nanoparticles.

  7. Breakdown of magnetism in sub-nanometric Ni clusters embedded in Ag.

    PubMed

    García-Prieto, A; Arteche, A; Aguilera-Granja, F; Torres, M B; Orue, I; Alonso, J; Barquín, L Fernández; Fernández-Gubieda, M L

    2015-11-13

    Downsizing to the nanoscale has opened up a spectrum of new magnetic phenomena yet to be discovered. In this context, we investigate the magnetic properties of Ni clusters embedded in a metallic Ag matrix. Unlike in Ni free-standing clusters, where the magnetic moment increases towards the atomic value when decreasing the cluster size, we show, by tuning the Ni cluster size down to the sub-nanoscale, that there is a size limit below which the clusters become non-magnetic when embedded in Ag. To this end, we have fabricated by DC-sputtering a system composed of sub-nanometer sized and non interacting Ni clusters embedded into a Ag matrix. A thorough experimental characterization by means of structural techniques (x-ray diffraction, x-ray absorption spectroscopy) and DC-magnetization confirms that the cluster size is in the sub-nanometric range and shows that the magnetization of the system is dramatically reduced, reaching only 38% of the bulk value. The experimental system has been reproduced by density functional theory calculations on Ni m clusters (m = 1-6, 10 and 13) embedded in Ag. The combination of the experimental and theoretical analysis points out that there is a breakdown of magnetism occurring below a cluster size of six atoms. According to our results, the loss of magnetic moment is not due to Ag-Ni hybridization but to charge transfer between the Ni sp and d orbitals, and the reduced magnetization observed experimentally is explained on the basis of the presence of a narrow cluster size-distribution where magnetic and non-magnetic clusters coexist. PMID:26487422

  8. Ag Nanodots Emitters Embedded in a Nanocrystalline Thin Film Deposited on Crystalline Si Solar Cells.

    PubMed

    Park, Seungil; Ryu, Sel Gi; Ji, HyungYong; Kim, Myeong Jun; Peck, Jong Hyeon; Kim, Keunjoo

    2016-06-01

    We fabricated crystalline Si solar cells with the inclusion of various Ag nanodots into the additional emitters of nanocrystallite Si thin films. The fabricated process was carried out on the emitter surface of p-n junction for the textured p-type wafer. The Ag thin films were deposited on emitter surfaces and annealed at various temperatures. The amorphous Si layers were also deposited on the Ag annealed surfaces by hot-wire chemical vapor deposition and then the deposited layers were doped by the second n-type doping process to form an additional emitter. From the characterization, both the Ag nanodots and the deposited amorphous Si thin films strongly reduce photo-reflectances in a spectral region between 200-400 nm. After embedding Ag nanodots in nanocrystallite Si thin films, a conversion efficiency of the sample with added emitter was achieved to 15.1%, which is higher than the 14.1% of the reference sample and the 14.7% of the de-posited sample with a-Si:H thin film after the Ag annealing process. The additional nanocrystallite emitter on crystalline Si with Ag nanodots enhances cell properties. PMID:27427665

  9. Ag/FeCo/Ag core/shell/shell magnetic nanoparticles with plasmonic imaging capability.

    PubMed

    Takahashi, Mari; Mohan, Priyank; Nakade, Akiko; Higashimine, Koichi; Mott, Derrick; Hamada, Tsutomu; Matsumura, Kazuaki; Taguchi, Tomohiko; Maenosono, Shinya

    2015-02-24

    Magnetic nanoparticles (NPs) have been used to separate various species such as bacteria, cells, and proteins. In this study, we synthesized Ag/FeCo/Ag core/shell/shell NPs designed for magnetic separation of subcellular components like intracellular vesicles. A benefit of these NPs is that their silver metal content allows plasmon scattering to be used as a tool to observe detection by the NPs easily and semipermanently. Therefore, these NPs are considered a potential alternative to existing fluorescent probes like dye molecules and colloidal quantum dots. In addition, the Ag core inside the NPs suppresses the oxidation of FeCo because of electron transfer from the Ag core to the FeCo shell, even though FeCo is typically susceptible to oxidation. The surfaces of the Ag/FeCo/Ag NPs were functionalized with ε-poly-L-lysine-based hydrophilic polymers to make them water-soluble and biocompatible. The imaging capability of the polymer-functionalized NPs induced by plasmon scattering from the Ag core was investigated. The response of the NPs to a magnetic field using liposomes as platforms and applying a magnetic field during observation by confocal laser scanning microscopy was assessed. The results of the magnetophoresis experiments of liposomes allowed us to calculate the magnetic force to which each liposome was subjected. PMID:25614919

  10. Antimicrobial activity of bone cements embedded with organic nanoparticles

    PubMed Central

    Perni, Stefano; Thenault, Victorien; Abdo, Pauline; Margulis, Katrin; Magdassi, Shlomo; Prokopovich, Polina

    2015-01-01

    Infections after orthopedic surgery are a very unwelcome outcome; despite the widespread use of antibiotics, their incidence can be as high as 10%. This risk is likely to increase as antibiotics are gradually losing efficacy as a result of bacterial resistance; therefore, novel antimicrobial approaches are required. Parabens are a class of compounds whose antimicrobial activity is employed in many cosmetic and pharmaceutical products. We developed propylparaben nanoparticles that are hydrophilic, thus expanding the applicability of parabens to aqueous systems. In this paper we assess the possibility of employing paraben nanoparticles as antimicrobial compound in bone cements. The nanoparticles were embedded in various types of bone cement (poly(methyl methacrylate) [PMMA], hydroxyapatite, and brushite) and the antimicrobial activity was determined against common causes of postorthopedic surgery infections such as: Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, and Acinetobacter baumannii. Nanoparticles at concentrations as low as 1% w/w in brushite bone cement were capable of preventing pathogens growth, 5% w/w was needed for hydroxyapatite bone cement, while 7% w/w was required for PMMA bone cement. No detrimental effect was determined by the addition of paraben nanoparticles on bone cement compression strength and cytocompatibility. Our results demonstrate that paraben nanoparticles can be encapsulated in bone cement, providing concentration-dependent antimicrobial activity; furthermore, lower concentrations are needed in calcium phosphate (brushite and hydroxyapatite) than in acrylic (PMMA) bone cements. These nanoparticles are effective against a wide spectrum of bacteria, including those already resistant to the antibiotics routinely employed in orthopedic applications, such as gentamicin. PMID:26487803

  11. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film

    NASA Astrophysics Data System (ADS)

    Wang, Long-De; Zhang, Tong; Zhang, Xiao-Yang; Song, Yuan-Jun; Li, Ruo-Zhou; Zhu, Sheng-Qing

    2014-03-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence.

  12. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    NASA Astrophysics Data System (ADS)

    Ambaye, Almaz

    Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa are the etiological agents of several infectious diseases. Antibiotic resistance by these three microbes has emerged as a prevalent problem due in part to the misuse of existing antibiotics and the lack of novel antibiotics. Nanoparticles have emerged as an alternative antibacterial agents to conventional antibiotics owing to their high surface area to volume ratio and their unique chemical and physical properties. Among the nanoparticles, silver nanoparticles have gained increasing attention because silver nanoparticles exhibit antibacterial activity against a range of gram positive and gram negative bacteria. Nanoparticles of well-defined chemistry and morphology can be used in broad biomedical applications, especially in bone tissue engineering applications, where bone infection by bacteria can be acute and lethal. It is commonly noted in the literature that the activity of nanoparticles against microorganisms is dependent upon the size and concentration of the nanoparticles as well as the chemistry of stabilizing agent. To the best of our knowledge, a comprehensive study that evaluates the antibacterial activity of well characterized silver nanoparticles in particular Bovine Serum Albumin (BSA) stabilized against S. aureus and E. coli and cytotoxicity level of BSA stabilized silver nanoparticles towards osteoblast cells (MC3T3-E1) is currently lacking. Therefore, the primary objective of this study was to characterize protein conjugated silver nanoparticles prepared by chemical reduction of AgNO3 and BSA mixture. The formation of Ag/BSA nanoparticles was studied by UV-Vis spectroscopy. The molar ratio of silver to BSA in the Ag/BSA nanoparticles was established to be 27+/- 3: 1, based on Thermogravimetric Analysis and Atomic Absorption Spectroscopy. Based on atomic force microscopy, dynamic light scattering,and transmission electron microscopy(TEM) measurements, the particle size (diameter) of

  13. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    USGS Publications Warehouse

    Luoma, Samuel N.; Tasha Stoiber; Croteau, Marie-Noele; Isabelle Romer; Ruth Merrifeild; Jamie Lead

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  14. Accelerated CO2 transport on surface of AgO nanoparticles in ionic liquid BMIMBF4

    PubMed Central

    Ji, Dahye; Kang, Yong Soo; Kang, Sang Wook

    2015-01-01

    The AgO nanoparticles were utilized for a CO2 separation membrane. The AgO nanoparticles were successfully generated in ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF4) by favorable interaction between the surface of particles and the counteranion of BMIMBF4. The generated AgO nanoparticles were confirmed by TEM, and the average size was 20 nm. Coordinative interactions of dissociated AgO particles with BMIM+BF4− were investigated by FT-Raman spectroscopy. When the ionic liquid BMIMBF4 containing AgO nanoparticles was utilized as a CO2 separation membrane, the separation performance was largely enhanced. PMID:26549605

  15. Membrane deformation controlled by monolayer composition of embedded amphiphilic nanoparticles

    NASA Astrophysics Data System (ADS)

    van Lehn, Reid; Alexander-Katz, Alfredo

    2014-03-01

    In recent work, we have shown that charged, amphiphilic nanoparticles (NPs) can spontaneously insert into lipid bilayers, embedding the NP in a conformation resembling a transmembrane protein. Many embedded membrane proteins exert an influence on surrounding lipids that lead to deformation and membrane-mediated interactions that may be essential for function. Similarly, embedded NPs will also induce membrane deformations related to the same physicochemical forces. Unlike many transmembrane proteins, however, the highly charged NPs may exert preferential interactions on surrounding lipid head groups. In this work, we use atomistic molecular dynamics simulations to show that the membrane around embedded particles may experience local thinning, head group reorientation, and an increase in lipid density depending on the size and surface composition of the NP. We quantify the extent of these deformations and illustrate the complex interplay between lipid tail group and head group interactions that go beyond pure thickness deformations that may be expected from coarse-grained or continuum models. This work thus suggests guidelines for the design of particles that spontaneously partition into lipid bilayers and influence local membrane mechanical properties in a targeted manner.

  16. Nanoparticle Ag-enhanced textured-powder Bi-2212/Ag wire technology

    NASA Astrophysics Data System (ADS)

    Kellams, J. N.; McIntyre, P.; Pogue, N.; Vandergrifft, J.

    2015-12-01

    A new approach to the preparation of cores for Bi-2212/Ag wire is being developed. Nanoparticle Ag is homogeneously dispersed in Bi-2212 fine powder, and the mixture is uniaxially compressed to form highly textured, cold-sintered core rods. The rods can be assembled in a silver matrix, drawn to form multifilament wire, and restacked and drawn to form multifilament wire. Preliminary studies using tablet geometry demonstrate that a nonmelt heat treatment produces densification, grain growth, intergrowth among grains, and macroscopic current transport. The status of the development is reported.

  17. Organic memory device with polyaniline nanoparticles embedded as charging elements

    NASA Astrophysics Data System (ADS)

    Kim, Yo-Han; Kim, Minkeun; Oh, Sewook; Jung, Hunsang; Kim, Yejin; Yoon, Tae-Sik; Kim, Yong-Sang; Ho Lee, Hyun

    2012-04-01

    Polyaniline nanoparticles (PANI NPs) were synthesized and fabricated as charging elements for organic memory devices. The PANI NPs charging layer was self-assembled by epoxy-amine bonds between 3-glycidylpropyl trimethoxysilane functionalized dielectrics and PANI NPs. A memory window of 5.8 V (ΔVFB) represented by capacitance-voltage hysteresis was obtained for metal-pentacene-insulator-silicon capacitor. In addition, program/erase operations controlled by gate bias (-/+90 V) were demonstrated in the PANI NPs embedded pentacene thin film transistor device with polyvinylalcohol dielectric on flexible polyimide substrate. These results can be extended to development of fully organic-based electronic device.

  18. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    NASA Astrophysics Data System (ADS)

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  19. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    PubMed Central

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-01-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films. PMID:26156001

  20. Current enhancement of aluminum doped ZnO/n-Si isotype heterojunction solar cells by embedding silver nanoparticles.

    PubMed

    Yun, Juhyung; Kim, Joondong; Kojori, Hossein Shokri; Kim, Sung Jim; Tong, Chong; Anderson, Wayne A

    2013-08-01

    To improve Plasmonic energy harvesting, the Al doped ZnO (AZO) and Si heterojunction was studied for plasmonic photovoltaic applications. Silver nanoparticles (Ag NPs) were embedded in AZO, resulting in direct energy absoption from Ag NPs, positioned close to the junction. This structure has a benefit of avoiding highly doped lossy layers of conventional solar cell structures. Al doped ZnO (AZO) was deposited on n-Si substrate by dual beam sputtering method to fabricate AZO/Si heterojunction solar cells. AZO provides a transparent current spreading effect and rectifying junction with n type silicon (Si). Silver nanoparticles (Ag NPs) were embedded in AZO film (240-270 nm thick) with a sandwich-like structure. The position of Ag NPs in the AZO film was controlled to be located at 10, 20 and 40 nm distance from the Si absorber layer. Fabricated solar cells show improved performance in terms of the short circuit current (J(sc)) and the quantum efficiency (QE). Finite difference time domain (FDTD) simulations were carried out to investigate the QE enhancement and optimize photocurrent gain under an AM1.5G solar spectrum. In calculation, absorption enhancement is maximized when Ag NPs are located close to the Si layer in the range of 10-40 nm. Experimentally, 20 nm distance of Ag NPs from the Si showed the best performance with 0.36 V of open circuit voltage (V(oc)), 28.3 mA/cm2 of J(sc) and 5.91% of coversion efficiency. The QE showed 15% of enhancement around lambda = 435 nm and 5-10% of enhancement within lambda = 600-1000 nm. PMID:23882792

  1. Effect of gas atmosphere on Ag-embedded ZnO nanofilms: structural, optical and electrical properties.

    PubMed

    Kim, Jin-Hwan; Kim, Haslin; Vaseem, Mohammed; Hahn, Yoon-Bong

    2013-10-01

    The effects of gas atmosphere and sputter time for depositing silver (Ag) on the structural, optical and electrical properties of ZnO/Ag/ZnO transparent conducting oxide (TCO) films have been investigated with sputtering Ag target in Ar or N2. It was found that the properties of the Ag and ZnO/Ag/ZnO films are quite dependent on the gas environment and the sputter time. The optical transparency of ZnO/Ag/ZnO films was easily controllable when sputtering the Ag target in N2 rather than in Ar. With optimizing the sputter time and atmosphere for Ag adsorption, the ZnO-based TCO films where the Ag layer was embedded in N2 yielded low resistance of 6.1-9.1 omega/sq and high transmittance of 93-96% over the visible range of wavelengths. PMID:24245155

  2. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol.

    PubMed

    An, Changhua; Wang, Jizhuang; Jiang, Wen; Zhang, Meiyu; Ming, Xijuan; Wang, Shutao; Zhang, Qinhui

    2012-09-21

    Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO(2). For example, reduction of CO(2) under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO(2) into useful organic compounds. PMID:22869008

  3. Functionalization of Ag nanoparticles using local hydrophilic pool segment designed on their particle surface

    NASA Astrophysics Data System (ADS)

    Iijima, Motoyuki; Kurumiya, Aki; Esashi, Junki; Miyazaki, Hayato; Kamiya, Hidehiro

    2014-10-01

    The preparation of SiO2-coated Ag nanoparticles dispersible in various organic solvents has been achieved using a solgel reaction of tetraethylorthosilicate (TEOS), in the localized hydrophilic pool segments designed on Ag nanoparticle surfaces. First, oleylamine-capped core Ag nanoparticles were synthesized, followed by ligand exchange with polyethyleneimine (PEI) and further adsorption of an anionic surfactant comprising hydrophilic polyethylene glycol (PEG) chains and hydrophobic alkyl chains, which has previously been reported to improve the stability of nanoparticles in various solvents. Then, a reaction of TEOS with the localized hydrophilic PEI layer on the Ag nanoparticles' surface was conducted by stirring a toluene/TEOS solution of surface-modified Ag nanoparticles at various temperatures. It was found that a SiO2 layer was successfully formed on Ag nanoparticles when the reaction temperature was increased to 60 °C. It was also found, however, that at this elevated temperature, the primary particle size of Ag nanoparticles increased to several tens of nm, attributable to the dissolution and re-reduction of Ag+. Because the surface modifier, PEI and anionic surfactant all remained on the nanoparticle surface during the SiO2 coating process, the prepared SiO2-coated Ag nanoparticles were found to be dispersible in various organic solvents near to their primary particle size.

  4. Synthesis of Cu core Ag shell nanoparticles using chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chinh Trinh, Dung; Dung Dang, Thi My; Khanh Huynh, Kim; Fribourg-Blanc, Eric; Chien Dang, Mau

    2015-01-01

    A simple chemical reduction method is used to prepare colloidal bimetallic Cu-Ag core-shell (Cu@Ag) nanoparticles. Polyvinyl pyrrolidone (PVP) was used as capping agent, and ascorbic acid (C6H8O6) and sodium borohydride (NaBH4) were used as reducing agents. The obtained Cu@Ag nanoparticles were characterized by powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectrophotometry. The influence of [Ag]/[Cu] molar ratios on the formation of Ag coatings on the Cu particles was investigated. From the TEM results we found that the ratio [Ag+]/[Cu2+] = 0.2 is the best for the stability of Cu@Ag nanoparticles with an average size of 22 nm. It is also found out that adding ammonium hydroxide (NH4OH) makes the obtained Cu@Ag nanoparticles more stable over time when pure deionized water is used as solvent.

  5. Synthesis of polydopamine at the femtoliter scale and confined fabrication of Ag nanoparticles on surfaces.

    PubMed

    Guardingo, M; Esplandiu, M J; Ruiz-Molina, D

    2014-10-25

    Nanoscale polydopamine motifs are fabricated on surfaces by deposition of precursor femtolitre droplets using an AFM tip and employed as confined reactors to fabricate Ag nanoparticle patterns by in situ reduction of a Ag(+) salt. PMID:25195667

  6. M4Ag44(p-MBA)30 Molecular Nanoparticles

    NASA Astrophysics Data System (ADS)

    Conn, Brian E.

    In recent years, molecular nanoparticles have attracted much attention due to their unique physical, optical, and electronic properties. The properties of molecular nanoparticles are shown to deviate from their larger bulk counterparts, due to quantum confinement effects and large surface-to-volume ratios. As the size of the nanoparticle shrinks to a cluster of metal atoms (<3 nm in diameter), there is an emergence of a HOMO-LUMO band gap, which is not present in transitional d-block metals. The HOMO-LUMO band gap gives rise to discrete electronic states, leading to new chemical and physical properties. Molecular nanoparticles have had a substantial impact across a diverse range of fields, including catalysis, sensing, photochemistry, optoelectronic, energy conversion, and medicine. Currently many of the synthetic procedures for molecular nanoparticles require low temperatures, long incubation times, multistep purification and hazardous reagents that produce low yields and polydisperse molecular nanoparticles with poor stability. Although silver has very desirable physical properties, good relative abundance and low cost, gold molecular nanoparticles have been widely favored owing to their proved stability and ease of use. Unlike gold, silver is notorious for its susceptibility to oxidation, i.e., tarnishing, which has limited the development of silver-based nanotechnologies. Despite two decades of synthetic efforts, silver molecular nanoparticles that are inert or have long-term stability have remained unrealized. Herein we report a simple synthetic protocol for producing ultrastable M4Ag44(p-MBA)30 nanoparticles as a single-sized molecular product and in exceptionally large quantities. The stability, purity, and yield are substantially better than other metal nanoparticles, including gold, due to several stabilization mechanisms. Also, reported are the structural and mechanical properties of extended crystalline solids of Na4Ag44(p-MBA)30 from large-scale quantum

  7. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles.

    PubMed

    San-Miguel, Miguel A; da Silva, Edison Z; Zannetti, Sonia M; Cilense, Mario; Fabbro, Maria T; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements. PMID:27114472

  8. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles

    NASA Astrophysics Data System (ADS)

    San-Miguel, Miguel A.; da Silva, Edison Z.; Zannetti, Sonia M.; Cilense, Mario; Fabbro, Maria T.; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements.

  9. Highly quasi-monodisperse ag nanoparticles on titania nanotubes by impregnative aqueous ion exchange.

    PubMed

    Toledo-Antonio, J A; Cortes-Jácome, M A; Angeles-Chavez, C; López-Salinas, E; Quintana, P

    2009-09-01

    Silver nanoparticles were homogenously dispersed on titania nanotubes (NT), which were prepared by alkali hydrothermal methodology and dried at 373 K. Ag(+) incorporation was done by impregnative ion exchange of aqueous silver nitrate onto NT. First, Ag(+) ions incorporate into the layers of nanotube walls, and then, upon heat treatment under N(2) at 573 and 673 K, they migrate and change into Ag(2)O and Ag(0) nanoparticles, respectively. In both cases, Ag nanoparticles are highly dispersed, decorating the nanotubes in a polka-dot pattern. The Ag particle size distribution is very narrow, being ca. 4 +/- 2 nm without any observable agglomeration. The reduction of Ag(2)O into Ag(0) octahedral nanoparticles occurs spontaneously and topotactically when annealing, without the aid of any reducing agent. The population of Ag(0) nanoparticles can be controlled by adjusting the annealing temperature. An electron charge transfer from NT support to Ag(0) nanoparticles, because of a strong interaction, is responsible for considerable visible light absorption in Ag(0) nanoparticles supported on NT. PMID:19485374

  10. Formation effects and optical absorption of Ag nanocrystals embedded in single crystal SiO2 by implantation

    NASA Astrophysics Data System (ADS)

    Liu, Zhengxin; Li, Hao; Feng, Xiaodong; Ren, Shuguang; Wang, Honghong; Liu, Zhenghui; Lu, Baofu

    1998-08-01

    Ag+ ions of 200 keV were implanted into single crystal SiO2 at room temperature to five different doses: 5×1015, 2.3×1016, 4.5×1016, 5.6×1016, and 6.7×1016/cm2. With increasing dose, the implanted Ag distributions change from usual Gaussian-type profiles to abnormal bimodal profiles with narrow full width at half maximum, which are associated with Ag nanoparticles forming during high dose implantation. The implanted Ag depth profile evolution with dose can be clearly observed during Rutherford backscattering spectroscopy analysis. The nanoparticles form dual-layer structures at high doses: as far as the dose of 6.7×1016/cm2 is concerned, transmission electron microscopy proves that the shallower implanted layer contains noninteracting small Ag nanoparticles with the diameters of about 7 nm; the deeper layer contains a high density of interacting large nanoparticles with the diameters of about 25 nm. High resolution electron microscopy identifies that the nanoparticles are perfect single crystals. Although plasmon resonance frequency of the Ag nanoparticles formed at relatively low dose agrees well with the Mie's theoretical prediction, great redshift due to multipole interactions between high density nanoparticles occurs for high doses, moreover, the magnitude of redshift increases with implanted dose.

  11. Preparation of conducting silver paste with Ag nanoparticles prepared by e-beam irradiation

    NASA Astrophysics Data System (ADS)

    Sohn, Jong Hwa; Pham, Long Quoc; Kang, Hyun Suk; Park, Ji Hyun; Lee, Byung Cheol; Kang, Young Soo

    2010-11-01

    Conducting silver paste was prepared by using Ag nanoparticles which were synthesized by e-beam irradiation method (from KAERI); its conductivity was comparatively determined with Ag nanoparticles which were prepared by thermolysis method (commercial). The silver nanoparticles with the diameter of approximately 150 nm size prepared by e-beam irradiation were mixed with glass frit and sintered for 1 h at 500 °C. It is presumably concluded that the wt% of silver nanoparticle, size distribution and homogenous dispersibility of Ag nanoparticles in the pastes are the critical factors for the high conductivity of the paste. Among the various wt% of silver nanoparticle in the conducting silver pastes, silver paste with 90 wt% of silver nanoparticle has the highest conductivity as 1.6×10 4 S cm -1. This conductivity value is 1.6 times higher than the Ag pastes which were prepared with silver nanoparticles obtained by thermolysis method.

  12. Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages

    NASA Astrophysics Data System (ADS)

    Veronesi, G.; Aude-Garcia, C.; Kieffer, I.; Gallon, T.; Delangle, P.; Herlin-Boime, N.; Rabilloud, T.; Carrière, M.

    2015-04-01

    Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag+ ions in cellulo; the chemical environment of recombined Ag+ ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides the fraction of Ag+ ions released from the AgNPs under a given exposure condition and highlights their complexation with thiolate groups; the ab initio modelling of the extended spectra allows measuring the Ag-S bond length in cellulo. Dissolution rates depend on the exposure scenario, chronicity leading to higher Ag+ release than acute exposure; Ag-S bond lengths are 2.41 +/- 0.03 Å and 2.38 +/- 0.01 Å in acute and chronic exposure respectively, compatible with digonal AgS2 coordination. Glutathione is identified as the most likely putative ligand for Ag+. The proposed method offers a scope for the investigation of metallic nanoparticle dissolution and recombination in cellular models.Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag+ ions in cellulo; the chemical environment of recombined Ag+ ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides

  13. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications.

    PubMed

    Prakash, Jai; Pivin, J C; Swart, H C

    2015-12-01

    This review covers some key concepts related to embedding of the noble metal nanoparticles in polymer surfaces. The metal nanoparticles embedded into the polymer matrix can provide high-performance novel materials that find applications in modern nanotechnology. In particular, the origin of various processes that drive the embedding phenomenon, growth of the nanostructure at the surface, factors affecting the embedding including role of surface, interface energies and thermodynamic driving forces with emphasis on the fundamental and technological applications, under different conditions (annealing and ion beams) have been discussed. In addition to the conventional thermal process for embedding which includes the measure of fundamental polymer surface properties with relevant probing techniques, this review discusses the recent advances carried out in the understanding of embedding phenomenon starting from thin metal films to growth of the nanoparticles and embedded nanostructures using novel ion beam techniques. PMID:26584861

  14. Enhanced photochemistry of ethyl chloride on Ag nanoparticles.

    PubMed

    Toker, Gil; Bespaly, Alexander; Zilberberg, Liat; Asscher, Micha

    2015-02-11

    Enhanced photodecomposition of ethyl chloride (EC) adsorbed on SiO2/Si (100) supported silver nanoparticles (Ag NPs) under ultrahigh vacuum (UHV) conditions has been studied in order to assess the potential contribution of plasmonic effects. The cross section for photodecomposition of EC and overall photoyield were found to increase with increasing photon energy regardless of the plasmon resonant wavelength and with Ag coverage without any noticeable particle size effect. The influence of EC-Ag NPs separation distance on the rate of EC decomposition was studied in order to examine potential local electric field influence on the photodissociation process. Long (∼5 nm) photoactivity decay distance has been observed which excludes local surface plasmon dominance in the photodecomposition event. These findings suggest that the alignment of excited electron energy and adsorbate affinity levels is central for efficient photochemical reactions, whereas short-range electric field enhancement by plasmon excitation on top and at the immediate vicinity of silver nanoparticles does not have any measurable effect. PMID:25555201

  15. Raman gas sensing of modified Ag nanoparticle SERS

    NASA Astrophysics Data System (ADS)

    Myoung, NoSoung; Yoo, Hyung Keun; Hwang, In-Wook

    2014-03-01

    Recent progress in modified Surface Enhanced Raman Scattering (SERS) using Ag nanoparticles makes them promising optical technique for direct gas sensing of interest. However, SERS has been shown to provide sub ppb level detection of the compounds in the vapor phase. The major problem with the sensitivity scaling-up was in the development of fabrication technology for stability and reproducibility of SERS substrates. We report an optimization of 1-propanethiol coated multiple Ag nanoparticle layers on SiO2 substrate as well as new records of real-time, simultaneous vapor phase detection of toluene and 1-2 dichlorobenzene by the radiation of fiber optic coupled 785 nm diode laser and spectrograph. Multiple depositions of Ag NPs were loaded on SiO2 and soaked in 1-propanethiol solution for 24 hours to modify the surface into hydrophobic due to the characteristics of vapor phase of our interests. Raman bands at 1003 cm-1 and 1130 cm-1 for toluene and 12DCB, respectively were compared to 1089 cm-1 and each gas concentration in 1000 mL flask were calculated as a function of each vapor phase ratio. The saturation of toluene and 12DCB were limited only by 800 ppm and the detectable range was 0.6-800 ppm.

  16. Monolithic cryopolymers with embedded nanoparticles. I. Capillary liquid chromatography of proteins using neutral embedded nanoparticles.

    PubMed

    Dario Arrua, R; Nordborg, Anna; Haddad, Paul R; Hilder, Emily F

    2013-01-18

    Rigid monolithic cryostructures were prepared in capillary format at sub-zero temperatures and used successfully in the separation of proteins by hydrophobic interaction chromatography (HIC). The polymerization mixture consisted of poly(ethyleneglycol) diacrylate (PEGDA) M(n)∼258 as the single monomer, a mixture of dioxane and water as the porogen and N,N,N',N'-tetramethylethylenediamine (TEMED) and ammonium persulfate (APS) as the initiator system. At sub-zero temperatures, the solvent mixture used as the porogen is frozen, leading to the formation of a polymeric structure templated by the solvent crystals that are formed. The optimization of the polymerization reaction was carried out by studying the influence of different reaction parameters including the temperature of the reaction, monomer concentration and solvent, on the porous characteristics of the polymers obtained. Separations were performed in HIC mode using 3 M ammonium sulfate in 0.1 M phosphate buffer, pH 6.9 to 0.1 M phosphate buffer, pH 6.9 over a 15 min gradient. The addition of neutral nanoparticles synthesized by mini-emulsion polymerization greatly improved the separation of the protein mixture, doubling the peak capacity of the control column without nanoparticles (from 7 to 17). Although the peak capacities and resolution values achieved were lower than those reported for conventional methacrylate monolithic columns, the use of this polymerization approach allows the preparation of polymeric structures which presented a more open porous structure and consequently exhibited significantly higher permeability than conventional polymer monoliths. PMID:23273630

  17. Surface-enhanced Raman scattering from Ag nanoparticles formed by visible laser irradiation of thermally annealed AgO{sub x} thin films

    SciTech Connect

    Fujimaki, Makoto; Awazu, Koichi; Tominaga, Junji; Iwanabe, Yasuhiko

    2006-10-01

    Visible laser irradiation of AgO{sub x} thin films forms Ag nanoparticles, which then results in surface-enhanced Raman scattering (SERS). The efficiency of this Ag nanoparticle formation strongly depends on the properties of the AgO{sub x} thin films. Thermal annealing causes changes in physical properties such as deoxidization of the films and aggregation of Ag atoms in the films. In the present research, the effects of the changes induced by thermal annealing on SERS efficiency were examined. It was found that AgO{sub x} thin films annealed at 300 deg. C for 5 min in a N{sub 2} atmosphere were suitable for the formation of Ag nanoparticles effective for SERS, while films that were not annealed were not. From these results, it was deduced that the Ag aggregation resulting from thermal annealing in AgO{sub x} thin films promotes the Ag nanoparticle formation.

  18. Solar cell enhancement using metallic nanoparticles embedded in titanium dioxide

    NASA Astrophysics Data System (ADS)

    Burnett, Max A.; Allen, Kenneth W.; Fiddy, Michael A.

    2015-02-01

    In this work we model the effects of depositing gold nanospheres of varying radii and spatial separations onto a 500nm film of silicon in an effort to couple more light into silicon through the localized surface plasmon resonance (LSPR) of the nanoparticles. To further enhance the field at the interface, we study the effect of embedding the spheres within the dielectrics air, NBK7, and titanium dioxide (TiO2). The modeling is done through finite element analysis via COMSOL over the radiation spectrum (0.4μm 1.5μm) of the sun. A positive size dependency of the light coupled into silicon and the radii of the spheres is found and analyzed. Use of dielectrics greater than air, NBK7 and TiO2, results in greater field enhancement at the silicon interface.

  19. Laser-generated plasma by carbon nanoparticles embedded into polyethylene

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Ceccio, G.; Cutroneo, M.

    2016-05-01

    Carbon nanoparticles have been embedded into polyethylene at different concentrations by using chemical-physical processes. The synthesized material was characterized in terms of physical modifications concerning the mechanical, compositional and optical properties. Obtained flat targets have been irradiated by Nd:YAG laser at intensities of the order of 1010 W/cm2 in order to generate non-equilibrium plasma in vacuum. The laser-matter interaction produces charge separation effects with consequent acceleration of protons and carbon ions. Plasma was characterized using time-of-flight measurements of the accelerated ions. Applications of the produced targets in order to generate carbon ion beams from laser-generated plasma are presented and discussed.

  20. One pot green synthesis of Ag, Au and Au-Ag alloy nanoparticles using isonicotinic acid hydrazide and starch.

    PubMed

    Malathi, Sampath; Ezhilarasu, Tamilarasu; Abiraman, Tamilselvan; Balasubramanian, Sengottuvelan

    2014-10-13

    Gold-silver alloy nanoparticles were synthesized via chemical reduction of varying mole fractions of chloroauric acid (HAuCl4) and silver nitrate (AgNO3) by environmentally benign isonicotinic acid hydrazide (INH) in the presence of starch as a capping agent in aqueous medium. The absorption spectra of Au-Ag nanoparticles show blue shift with increasing silver content indicating the formation of alloy nanoparticles. When the Ag content in the alloy decreases the size of the nanoparticles increases and as a result of which the oxidation potential also increases. The emission maximum undergoes a red shift from 443 to 614 nm. The nanoparticles are monodisperse and spherical with an average particle size of 3-18 nm. The catalytic behavior of alloy nanoparticles indicate that the rate constant for the reduction of 4-nitro phenol to 4-amino phenol increases exponentially from metallic Ag to metallic Au as Au content increases in the Au-Ag alloy nanoparticles. PMID:25037410

  1. Synthesis of triangular Au core-Ag shell nanoparticles

    SciTech Connect

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali . E-mail: msastry@tatachemicals.com

    2007-07-03

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

  2. Photocurrent enhancements of organic solar cells by altering dewetting of plasmonic Ag nanoparticles

    PubMed Central

    Fleetham, Tyler; Choi, Jea-Young; Choi, Hyung Woo; Alford, Terry; Jeong, Doo Seok; Lee, Taek Sung; Lee, Wook Seong; Lee, Kyeong-Seok; Li, Jian; Kim, Inho

    2015-01-01

    Incorporation of metal nanoparticles into active layers of organic solar cells is one of the promising light trapping approaches. The size of metal nanoparticles is one of key factors to strong light trapping, and the size of thermally evaporated metal nanoparticles can be tuned by either post heat treatment or surface modification of substrates. We deposited Ag nanoparticles on ITO by varying nominal thicknesses, and post annealing was carried out to increase their size in radius. PEDOT:PSS was employed onto the ITO substrates as a buffer layer to alter the dewetting behavior of Ag nanoparticles. The size of Ag nanoparticles on PEDOT:PSS were dramatically increased by more than three times compared to those on the ITO substrates. Organic solar cells were fabricated on the ITO and PEDOT:PSS coated ITO substrates with incorporation of those Ag nanoparticles, and their performances were compared. The photocurrents of the cells with the active layers on PEDOT:PSS with an optimal choice of the Ag nanoparticles were greatly enhanced whereas the Ag nanoparticles on the ITO substrates did not lead to the photocurrent enhancements. The origin of the photocurrent enhancements with introducing the Ag nanoparticles on PEDOT:PSS are discussed. PMID:26388104

  3. Photocurrent enhancements of organic solar cells by altering dewetting of plasmonic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Fleetham, Tyler; Choi, Jea-Young; Choi, Hyung Woo; Alford, Terry; Jeong, Doo Seok; Lee, Taek Sung; Lee, Wook Seong; Lee, Kyeong-Seok; Li, Jian; Kim, Inho

    2015-09-01

    Incorporation of metal nanoparticles into active layers of organic solar cells is one of the promising light trapping approaches. The size of metal nanoparticles is one of key factors to strong light trapping, and the size of thermally evaporated metal nanoparticles can be tuned by either post heat treatment or surface modification of substrates. We deposited Ag nanoparticles on ITO by varying nominal thicknesses, and post annealing was carried out to increase their size in radius. PEDOT:PSS was employed onto the ITO substrates as a buffer layer to alter the dewetting behavior of Ag nanoparticles. The size of Ag nanoparticles on PEDOT:PSS were dramatically increased by more than three times compared to those on the ITO substrates. Organic solar cells were fabricated on the ITO and PEDOT:PSS coated ITO substrates with incorporation of those Ag nanoparticles, and their performances were compared. The photocurrents of the cells with the active layers on PEDOT:PSS with an optimal choice of the Ag nanoparticles were greatly enhanced whereas the Ag nanoparticles on the ITO substrates did not lead to the photocurrent enhancements. The origin of the photocurrent enhancements with introducing the Ag nanoparticles on PEDOT:PSS are discussed.

  4. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil

    NASA Astrophysics Data System (ADS)

    Kumar, Ashavani; Vemula, Praveen Kumar; Ajayan, Pulickel M.; John, George

    2008-03-01

    Developing bactericidal coatings using simple green chemical methods could be a promising route to potential environmentally friendly applications. Here, we describe an environmentally friendly chemistry approach to synthesize metal-nanoparticle (MNP)-embedded paint, in a single step, from common household paint. The naturally occurring oxidative drying process in oils, involving free-radical exchange, was used as the fundamental mechanism for reducing metal salts and dispersing MNPs in the oil media, without the use of any external reducing or stabilizing agents. These well-dispersed MNP-in-oil dispersions can be used directly, akin to commercially available paints, on nearly all kinds of surface such as wood, glass, steel and different polymers. The surfaces coated with silver-nanoparticle paint showed excellent antimicrobial properties by killing both Gram-positive human pathogens (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The process we have developed here is quite general and can be applied in the synthesis of a variety of MNP-in-oil systems.

  5. Spectral investigation of nonlinear local field effects in Ag nanoparticles

    SciTech Connect

    Sato, Rodrigo Takeda, Yoshihiko; Ohnuma, Masato; Oyoshi, Keiji

    2015-03-21

    The capability of Ag nanoparticles to modulate their optical resonance condition, by optical nonlinearity, without an external feedback system was experimentally demonstrated. These optical nonlinearities were studied in the vicinity of the localized surface plasmon resonance (LSPR), using femtosecond pump-and-probe spectroscopy with a white-light continuum probe. Transient transmission changes ΔT/T exhibited strong photon energy and particle size dependence and showed a complex and non-monotonic change with increasing pump light intensity. Peak position and change of sign redshift with increasing pump light intensity demonstrate the modulation of the LSPR. These features are discussed in terms of the intrinsic feedback via local field enhancement.

  6. Morphological and electrochemical characterization of electrodeposited Zn–Ag nanoparticle composite coatings

    SciTech Connect

    Punith Kumar, M.K.; Srivastava, Chandan

    2013-11-15

    Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn–Ag composite coatings. The Zn–Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, 1 and 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanoparticles, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn–Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn–Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits. - Highlights: • Synthesis of Ag nanoparticles with an average size of 23 nm • Fabrication of Zn/nano Ag composite coating on mild steel • Composite coatings showed better corrosion resistance. • Optimization of particle concentration is necessary.

  7. Application of a new coordination compound for the preparation of AgI nanoparticles

    SciTech Connect

    Mohandes, Fatemeh; Salavati-Niasari, Masoud

    2013-10-15

    Graphical abstract: Silver iodide nanoparticles have been sonochemically synthesized by using silver salicylate complex, [Ag(HSal)], as silver precursor. A series of control experiments were carried out to investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures. - Highlights: • Silver salicylate as a new precursor was applied to fabricate γ-AgI nanoparticles. • To further decrease the particle size of AgI, SDS was used as surfactant. • The effect of preparation parameters on the particle size of AgI was investigated. - Abstract: AgI nanoparticles have been sonochemically synthesized by using silver salicylate, [Ag(HSal)], as silver precursor. To investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures, several experiments were carried out. The products were characterized by SEM, TEM, XRD, TGA/DTA, UV–vis, and FT-IR. Based on the experimental findings in this research, it was found that the size of AgI nanoparticles was dramatically dependent on the silver precursor, sonochemical irradiation, and surfactant concentration. Sodium dodecyl sulfate (SDS) was applied as surfactant. When the concentration of SDS was 0.055 mM, very uniform sphere-like AgI nanoparticles with grain size of about 25–30 nm were obtained. These results indicated that the high concentration of SDS could prevent the aggregation between colloidal nanoparticles due to its steric hindrance effect.

  8. Optical absorption and TEM studies of silver nanoparticle embedded BaO-CaF2-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Narayanan, Manoj Kumar; Shashikala, H. D.

    2016-05-01

    Silver nanoparticle embedded 30BaO-20CaF2-50P2O5-4Ag2O-4SnO glasses were prepared by melt-quenching and subsequent heat treatment process. Silver-doped glasses were heat treated at temperatures 500 °C, 525°C and 550 °C for a fixed duration of 10 hours to incorporate metal nanoparticles into the glass matrix. Appearance and shift in peak positions of the surface plasmon resonance (SPR) bands in the optical absorption spectra of heat treated glass samples indicated that both formation and growth of nanoparticle depended on heat treatment temperature. Glass sample heat treated at 525 °C showed a SPR peak around 3 eV, which indicated that spherical nanoparticles smaller than 20 nm were formed inside the glass matrix. Whereas sample heat treated at 550 °C showed a size dependent red shift in SPR peak due to the presence of silver nanoparticles of size larger than 20 nm. Size of the nanoparticles calculated using full-width at half-maximum (FWHM) of absorption band showed a good agreement with the particle size obtained from transmission electron microscopy (TEM) analysis.

  9. New SERS-active alumina-based sorbents containing Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Yurova, Nadezhda S.; Markina, Natalia E.; Galushka, Victor V.; Burashnikova, Marina M.; Zakharevich, Andrey M.; Markin, Alexey V.; Rusanova, Tatiana Y.

    2016-04-01

    New SERS-active materials were obtained by preparation of alumina with embedded silver nanoparticles and their application both as sorbents for pre-concentration and SERS platforms was studied. The influence of ionic strength on Ag NPs size, absorption spectra and SERS signal was investigated. Synthesized materials were examined by Raman spectroscopy, scanning electron microscopy, and UV-visible spectroscopy. The optimal conditions for SERSmeasurements were chosen. Synthesized materials were applied for pre-concentration of model analytes (Rhodamine 6G, folic acid and pyrene) and their SERS detection directly within the sorbent. It was shown that the recovery of analytes could be improved by alumina modification. The combination of surface-enhanced Raman spectroscopy with preconcentration is a promising instrument for analytical applications.

  10. Reversibly phototunable TiO{sub 2} photonic crystal modulated by Ag nanoparticles' oxidation/reduction

    SciTech Connect

    Liu Jian; Zhou Jinming; Ye Changqing; Li Mingzhu; Wang Jingxia; Jiang Lei; Song Yanlin

    2011-01-10

    We report a reversibly phototunable photonic crystal system whose reflectance at the stop band position can be modulated by alternating UV/visible (UV/Vis) irradiation. The phototunable system consists of Ag nanoparticles and TiO{sub 2} photonic crystal. The stop bands intensity of Ag loaded TiO{sub 2} photonic crystals were found to be dependent on the redox states of Ag nanoparticles. The quasi 'on' and 'off' states of the stop band were reversibly modulated by the Ag nanoparticles' oxidation/reduction through alternating UV/Vis light irradiation.

  11. Dendritic macromolecules supported Ag nanoparticles as efficient catalyst for the reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Safari, Javad; Zarnegar, Zohre; Sadeghi, Masoud; Enayati-Najafabadi, Azadeh

    2016-12-01

    Polymer supported Ag nanoparticles, generated in situ by silver nitrate (AgNO3) reduction under reaction conditions, catalyzed the hydrogenation of 4-nitrophenol with high efficiency in water at room temperature in the presence of an excess amount of NaBH4. Amphiphilic linear-dendritic copolymers containing a poly(ethylene glycol) (PEG) core and poly(2-ethyl-2-oxazoline)-poly(ε-caprolactone) arms were able to load the Ag nanoparticles. The Ag nanoparticles with a diameter of 8-10 nm were found to show a comparable catalytic activity towards formation of the aromatic amine as single product with short reaction time.

  12. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics

    NASA Astrophysics Data System (ADS)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Jong Lee, Yung; Lee, Hyuck Mo

    2015-11-01

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  13. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper

    NASA Astrophysics Data System (ADS)

    Heli, B.; Morales-Narváez, E.; Golmohammadi, H.; Ajji, A.; Merkoçi, A.

    2016-04-01

    The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging.The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and

  14. Highly Stretchable and Conductive Silver Nanoparticle Embedded Graphene Flake Electrode Prepared by In situ Dual Reduction Reaction.

    PubMed

    Yoon, Yeoheung; Samanta, Khokan; Lee, Hanleem; Lee, Keunsik; Tiwari, Anand P; Lee, JiHun; Yang, Junghee; Lee, Hyoyoung

    2015-01-01

    The emergence of stretchable devices that combine with conductive properties offers new exciting opportunities for wearable applications. Here, a novel, convenient and inexpensive solution process was demonstrated to prepare in situ silver (Ag) or platinum (Pt) nanoparticles (NPs)-embedded rGO hybrid materials using formic acid duality in the presence of AgNO3 or H2PtCl6 at low temperature. The reduction duality of the formic acid can convert graphene oxide (GO) to rGO and simultaneously deposit the positively charged metal ion to metal NP on rGO while the formic acid itself is converted to a CO2 evolving gas that is eco-friendly. The AgNP-embedded rGO hybrid electrode on an elastomeric substrate exhibited superior stretchable properties including a maximum conductivity of 3012 S cm(-1) (at 0 % strain) and 322.8 S cm(-1) (at 35 % strain). Its fabrication process using a printing method is scalable. Surprisingly, the electrode can survive even in continuous stretching cycles. PMID:26383845

  15. Highly Stretchable and Conductive Silver Nanoparticle Embedded Graphene Flake Electrode Prepared by In situ Dual Reduction Reaction

    PubMed Central

    Yoon, Yeoheung; Samanta, Khokan; Lee, Hanleem; Lee, Keunsik; Tiwari, Anand P.; Lee, JiHun; Yang, Junghee; Lee, Hyoyoung

    2015-01-01

    The emergence of stretchable devices that combine with conductive properties offers new exciting opportunities for wearable applications. Here, a novel, convenient and inexpensive solution process was demonstrated to prepare in situ silver (Ag) or platinum (Pt) nanoparticles (NPs)-embedded rGO hybrid materials using formic acid duality in the presence of AgNO3 or H2PtCl6 at low temperature. The reduction duality of the formic acid can convert graphene oxide (GO) to rGO and simultaneously deposit the positively charged metal ion to metal NP on rGO while the formic acid itself is converted to a CO2 evolving gas that is eco-friendly. The AgNP-embedded rGO hybrid electrode on an elastomeric substrate exhibited superior stretchable properties including a maximum conductivity of 3012 S cm-1 (at 0 % strain) and 322.8 S cm-1 (at 35 % strain). Its fabrication process using a printing method is scalable. Surprisingly, the electrode can survive even in continuous stretching cycles. PMID:26383845

  16. Highly Stretchable and Conductive Silver Nanoparticle Embedded Graphene Flake Electrode Prepared by In situ Dual Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Yoon, Yeoheung; Samanta, Khokan; Lee, Hanleem; Lee, Keunsik; Tiwari, Anand P.; Lee, Jihun; Yang, Junghee; Lee, Hyoyoung

    2015-09-01

    The emergence of stretchable devices that combine with conductive properties offers new exciting opportunities for wearable applications. Here, a novel, convenient and inexpensive solution process was demonstrated to prepare in situ silver (Ag) or platinum (Pt) nanoparticles (NPs)-embedded rGO hybrid materials using formic acid duality in the presence of AgNO3 or H2PtCl6 at low temperature. The reduction duality of the formic acid can convert graphene oxide (GO) to rGO and simultaneously deposit the positively charged metal ion to metal NP on rGO while the formic acid itself is converted to a CO2 evolving gas that is eco-friendly. The AgNP-embedded rGO hybrid electrode on an elastomeric substrate exhibited superior stretchable properties including a maximum conductivity of 3012 S cm-1 (at 0 % strain) and 322.8 S cm-1 (at 35 % strain). Its fabrication process using a printing method is scalable. Surprisingly, the electrode can survive even in continuous stretching cycles.

  17. Transformation of AgCl nanoparticles in a sewer system--A field study.

    PubMed

    Kaegi, Ralf; Voegelin, Andreas; Sinnet, Brian; Zuleeg, Steffen; Siegrist, Hansruedi; Burkhardt, Michael

    2015-12-01

    Silver nanoparticles (Ag-NP) are increasingly used in consumer products and their release during the use phase may negatively affect aquatic ecosystems. Research efforts, so far, have mainly addressed the application and use of metallic Ag(0)-NP. However, as shown by recent studies on the release of Ag from textiles, other forms of Ag, especially silver chloride (AgCl), are released in much larger quantities than metallic Ag(0). In this field study, we report the release of AgCl-NP from a point source (industrial laundry that applied AgCl-NP during a piloting phase over a period of several months to protect textiles from bacterial regrowth) to the public sewer system and investigate the transformation of Ag during its transport in the sewer system and in the municipal wastewater treatment plant (WWTP). During the study period, the laundry discharged ~85 g of Ag per day, which dominated the Ag loads in the sewer system from the respective catchment (72-95%) and the Ag in the digested WWTP sludge (67%). Combined results from electron microscopy and X-ray absorption spectroscopy revealed that the Ag discharged from the laundry to the sewer consisted of about one third AgCl and two thirds Ag2S, both forms primarily occurring as nanoparticles with diameters<100 nm. During the 800 m transport in the sewer channel to the nearby WWTP, corresponding to a travel time of ~30 min, the remaining AgCl was transformed into nanoparticulate Ag2S. Ag2S-NP also dominated the Ag speciation in the digested sludge. In line with results from earlier studies, the very low Ag concentrations measured in the effluent of the WWTP (<0.5 μg L(-1)) confirmed the very high removal efficiency of Ag from the wastewater stream (>95%). PMID:25582606

  18. Electrical properties of silver iodide nanoparticles system embedded into opal porous matrix

    NASA Astrophysics Data System (ADS)

    Lukin, A. E.; Ivanova, E. N.; Pan'kova, S. V.; Solovyev, V. G.; Veisman, V. L.

    2014-12-01

    Opal-based composite with silver iodide nanoparticles (AgI/opal) has been prepared by host-guest technology. Temperature and frequency dependences of electrical conductivity and those of dielectric permittivity of AgI/opal samples were measured. Size effects in this opal-based nanocomposite have been discussed.

  19. Photochemical synthesis of biocompatible and antibacterial silver nanoparticles embedded within polyurethane polymers.

    PubMed

    Saez, Sara; Fasciani, Chiara; Stamplecoskie, Kevin G; Gagnon, Luke Brian-Patrick; Mah, Thien-Fah; Marin, M Luisa; Alarcon, Emilio I; Scaiano, Juan C

    2015-04-01

    In situ light initiated synthesis of silver nanoparticles (AgNP) was employed for AgNP incorporation within the polymeric matrices of medical grade polyurethane. The resulting materials showed improved antibacterial and antibiofilm activity against Pseudomonas aeruginosa with negligible toxicity for human primary skin cells and erythrocytes. PMID:25662069

  20. The effect of Ag nanoparticles on PC3 cells ultraweak bioluminescence

    NASA Astrophysics Data System (ADS)

    Hossu, Marius; Zou, Xiaoju; Ma, Lun; Chen, Wei

    2011-03-01

    Ultraweak intrinsic bioluminescence of cancer cell is a noninvasive method of assessing bioenergetic status of the investigated cells. This weak emission generated by PC3 cell line was measured during various stages of growth with or without the presence of Ag nanoparticles. The comparison between nanoparticles concentration, bioluminescence and cell survival showed that even though Ag nanoparticles doesn't significantly affect cell survival at used concentration it affects cell metabolism, possibly making them more susceptible to other form of therapies.

  1. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode

    PubMed Central

    Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su

    2014-01-01

    Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode. PMID:24763248

  2. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode.

    PubMed

    Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su

    2014-01-01

    Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode. PMID:24763248

  3. Thermal Behavior of Ag Micro/Nano Wires Formed by Low-Temperature Sintering of Ag Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Zhong, Yinghui; Li, Dongxue; Wang, Pan; Cai, Yuwei; Duan, Zhiyong

    2015-12-01

    Ag nanoparticles of 30 nm size were deposited onto a Si substrate to form Ag microwires. The nanoparticles were transformed into continuous Ag wires with low-temperature heat treatment at temperatures not higher than 200°C. The morphology, electrical properties, and interface of the sintered Ag nanoparticle wires are described. It is shown that the neck between the nanoparticles begins to form at 150°C, and obvious metallization was found at 170°C. The changes of the crystal structure of the Ag wires at different sintering temperatures were analyzed by x-ray diffractometry. The grain boundary resistance decreased as the crystal grain size increased above 130 nm. The corresponding resistivity of the microstructure is close to that of the bulk. Through the comparison between the Mayadas-Shatzkes's model and experimental data, the range of the grain boundary reflection coefficient C at different temperatures is obtained. This research lays the foundation for the study of nanoimprint lithography with a pseudoplastic metal nanoparticle fluid.

  4. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves.

    PubMed

    Mondal, Samiran; Roy, Nayan; Laskar, Rajibul A; Sk, Ismail; Basu, Saswati; Mandal, Debabrata; Begum, Naznin Ara

    2011-02-01

    In this paper, we have demonstrated for the first time, the superb efficiency of aqueous extract of dried leaves of mahogany (Swietenia mahogani JACQ.) in the rapid synthesis of stable monometallic Au and Ag nanoparticles and also Au/Ag bimetallic alloy nanoparticles having spectacular morphologies. Our method was clean, nontoxic and environment friendly. When exposed to aqueous mahogany leaf extract, competitive reduction of Au(III) and Ag(I) ions present simultaneously in same solution leads to the production of bimetallic Au/Ag alloy nanoparticles. UV-visible spectroscopy was used to monitor the kinetics of nanoparticles formation. UV-visible spectroscopic data and TEM images revealed the formation of bimetallic Au/Ag alloy nanoparticles. Mahogany leaf extract contains various polyhydroxy limonoids which are responsible for the reduction of Au(III) and Ag(I) ions leading to the formation and stabilization of Au and Ag nanopaticles. PMID:21030220

  5. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions

    PubMed Central

    Hsueh, Yi-Huang; Lin, Kuen-Song; Ke, Wan-Ju; Hsieh, Chien-Te; Chiang, Chao-Lung; Tzou, Dong-Ying; Liu, Shih-Tung

    2015-01-01

    The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10–50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation. PMID:26669836

  6. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

    PubMed

    Haldar, Krishna Kanta; Kundu, Simanta; Patra, Amitava

    2014-12-24

    Bimetallic core-shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core-shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core-shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV-vis study confirm the formation of core-shell nanoparticles. We have examined the catalytic activity of these core-shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core-shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core-shell nanoparticles, and the Au100/Ag bimetallic core-shell nanoparticle is found to be 12-fold more active than that of the pure Au nanoparticles with 100 nm diameter. Thus, the catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles. PMID:25456348

  7. In Situ EXAFS and TEM Investigations of Ag Nanoparticles in Glass

    SciTech Connect

    Schneider, R.; Dubiel, M.; Haug, J.; Hofmeister, H.

    2007-02-02

    Ag particle-glass composites produced by ion exchange processes of soda-lime glasses were investigated by EXAFS spectroscopy at the Ag K-edge. The spectra measured at 10 K were used to characterize the structure of nanoparticles as a result of ion exchange. The evolution of Ag K-edge EXAFS oscillations measured by in situ heating at 823 K as a function of time clearly shows an increase of Ag-Ag distance and coordination number caused by annealing. Together with transmission electron microscopy characterization a preferred growth of Ag particles with respect to nucleation has been found that leads to increased particle sizes in deeper glass regions.

  8. Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale

    NASA Astrophysics Data System (ADS)

    Sheny, D. S.; Mathew, Joseph; Philip, Daizy

    2011-06-01

    Present study reports a green chemistry approach for the biosynthesis of Au, Ag, Au-Ag alloy and Au core-Ag shell nanoparticles using the aqueous extract and dried powder of Anacardium occidentale leaf. The effects of quantity of extract/powder, temperature and pH on the formation of nanoparticles are studied. The nanoparticles are characterized using UV-vis and FTIR spectroscopies, XRD, HRTEM and SAED analyses. XRD studies show that the particles are crystalline in the cubic phase. The formation of Au core-Ag shell nanoparticles is evidenced by the dark core and light shell images in TEM and is supported by the appearance of two SPR bands in the UV-vis spectrum. FTIR spectra of the leaf powder before and after the bioreduction of nanoparticles are used to identify possible functional groups responsible for the reduction and capping of nanoparticles. Water soluble biomolecules like polyols and proteins are expected to bring about the bio-reduction.

  9. Evaluation of Cytotoxicity and Hypoxic Effect of Nitroimidazole Embedded Nanoparticles.

    PubMed

    Sharma, Rakesh; Kwon, Soonjo

    2016-05-01

    Adenylate cyclase is a key intracellular enzyme involved in energy imbalance leading to tumor hypoxia and cytotoxicity. In this study, adenylate cyclase activities in isolated hepatocytes and Kupffer cells were compared in the presence of several metabolic stimulators. In cultured hepatocyte cells, adenylate cyclase was stimulated by guanylyl imidotriphosphate (GITP), guanosine triphosphate (GTP), progesterone and nitroimidazole embedded nanoparticle (NNP) effectors, while prostaglandin E2 and F2α were used as effectors in cultured Kupffer cells. The results showed that NNPs decreased adenylate cyclase specific activity in a dose-dependent manner after preincubation of hepatocytes with NNPs. The NNPs stimulated adenylate cyclase activities in hepatocytes were evaluated based on measurement of cyclic adenosine monophosphate (cAMP). The stimulatory effects of NNPs on adenylate cyclase were independent of the presence of GTP and may have been due to a direct effect on the catalytic subunit of adenylate cyclase. In addition, basal cAMP generation in hepatocyte cells was efficiently suppressed by the NNPs. In conclusion, NNPs exerted direct effects on the catalytic subunit of the adenylate cyclase system, and adenylate cyclase was hormone sensitive in liver cells. PMID:27483789

  10. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells

    PubMed Central

    Katsumiti, Alberto; Gilliland, Douglas; Arostegui, Inmaculada; Cajaraville, Miren P.

    2015-01-01

    Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag. PMID:26061169

  11. Toxicity of nanoparticles embedded in paints compared to pristine nanoparticles, in vitro study.

    PubMed

    Smulders, Stijn; Luyts, Katrien; Brabants, Gert; Golanski, Luana; Martens, Johan; Vanoirbeek, Jeroen; Hoet, Peter H M

    2015-01-22

    The unique physicochemical properties of nanomaterials has led to an increased use in the paint and coating industry. In this study, the in vitro toxicity of three pristine ENPs (TiO2, Ag and SiO₂), three aged paints containing ENPs (TiO₂, Ag and SiO₂) and control paints without ENPs were compared. In a first experiment, cytotoxicity was assessed using a biculture consisting of human bronchial epithelial (16HBE14o-) cells and human monocytic cells (THP-1) to determine subtoxic concentrations. In a second experiment, a new coculture model of the lung-blood barrier consisting of 16HBE14o- cells, THP-1 and human lung microvascular endothelial cells (HLMVEC) was used to study pulmonary and extrapulmonary toxicity. The results show that the pristine TiO₂ and Ag ENPs have some cytotoxic effects at relative high dose, while pristine SiO₂ ENPs and all aged paints with ENPs and control paints do not. In the complex triculture model of the lung-blood barrier, no considerable changes were observed after exposure to subtoxic concentration of the different pristine ENPs and paint particles. In conclusion, we demonstrated that although pristine ENPs show some toxic effects, no significant toxicological effects were observed when they were embedded in a complex paint matrix. PMID:25436935

  12. Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS

    PubMed Central

    Liu, Fanxin; Tang, Chaojun; Zhan, Peng; Chen, Zhuo; Ma, Hongtao; Wang, Zhenlin

    2014-01-01

    We have demonstrated the plasmonic characteristics of an ultrathin tetrahedral amorphous carbon (ta-C) film coated with Ag nanoparticles. The simulation result shows that, under resonant and non-resonant excitations, the strongest plasmonic electric field of 1 nm ta-C coated Ag nanoparticle is not trapped within the ta-C layer but is released to its outside surface, while leaving the weaker electric field inside ta-C layer. Moreover, this outside plasmonic field shows higher intensity than that of uncoated Ag nanoparticle, which is closely dependent on the excitation wavelength and size of Ag particles. These observations are supported by the SERS measurements. We expect that the ability for ultrathin ta-C coated Ag nanoparticles as the SERS substrates to detect low concentrations of target biomolecules opens the door to the applications where it can be used as a detection tool for integrated, on-chip devices. PMID:24675437

  13. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle.

    PubMed

    Sakai, Hideki; Kanda, Takashi; Shibata, Hirobumi; Ohkubo, Takahiro; Abe, Masahiko

    2006-04-19

    Core/shell-type titania nanocapsules containing a single Ag nanoparticle were prepared. Ag nanoparticles were prepared using the reduction of silver nitrate with hydrazine in the presence of cetyltrimethylammonium bromide (CTAB) as protective agent. The sol-gel reaction of titanium tetraisopropoxide (TTIP) was used to prepare core/shell-type titania nanocapsules with CTAB-coated Ag nanoparticles as the core. TEM observations revealed that the size of the core (Ag particle) and the thickness of the shell (titania) of the core/shell particles obtained are about 10 nm and 5-10 nm, respectively. In addition, the nanocapsules were found to be dispersed in the medium as individual particles without aggregation. Moreover, titania coating caused the surface plasmon absorption of Ag nanoparticles to shift toward the longer wavelength side. PMID:16608315

  14. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors.

    PubMed

    Pugliara, Alessandro; Makasheva, Kremena; Despax, Bernard; Bayle, Maxime; Carles, Robert; Benzo, Patrizio; BenAssayag, Gérard; Pécassou, Béatrice; Sancho, Maria Carmen; Navarro, Enrique; Echegoyen, Yolanda; Bonafos, Caroline

    2016-09-15

    Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size <20nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49μM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs. PMID:26953143

  15. Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation

    NASA Astrophysics Data System (ADS)

    Navaladian, S.; Viswanathan, B.; Varadarajan, T. K.; Viswanath, R. P.

    2008-01-01

    Anisotropic silver nanoparticles (NPs) have been synthesized rapidly using microwave irradiation by the decomposition of silver oxalate in a glycol medium using polyvinyl pyrolidone (PVP) as the capping agent. The obtained Ag nanoparticles have been characterized by UV-visible spectroscopy, powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) studies. Anisotropic Ag nanoparticles of average size around 30 nm have been observed in the case of microwave irradiation for 75 s whereas spherical particles of a size around 5-6 nm are formed for 60 s of irradiation. The texture coefficient and particle size calculated from XRD patterns of anisotropic nanoparticles reveal the preferential orientation of (111) facets in the Ag sample. Ethylene glycol is found to be a more suitable medium than diethylene glycol. A plausible mechanism has been proposed for the formation of anisotropic Ag nanoparticles from silver oxalate.

  16. Nickel nanoparticles embedded in carbon foam for improving electromagnetic shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Kumari, Saroj; Dhakate, Sanjay R.

    2014-08-01

    To improve electromagnetic shielding effectiveness of light weight carbon foam (CF), magnetic nanoparticles were embedded in it during processing. The CF was developed from the coal tar pitch and mixture of coal tar pitch-Nickel (Ni) nanoparticles by sacrificial template technique and heat treated to up 1,000 °C. To ascertain the effect of Ni nanoparticles embedded in CF, it was characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, vector network analyzer and vibration sample magnetometer. It is observed that Ni nanoparticles embedded in the carbon material play an important role for improving the structure and electrical conductivity of CF-Ni by catalytic carbonization. The structural investigation suggests that the Ni nanoparticles embedded in the carbon material in bulk as well on the surface of CF. The CF demonstrates excellent shielding response in the frequency range 8.2-12.4 GHz in which total shielding effectiveness (SE) dominated by absorption losses. The total SE is -25 and -61 dB of CF and CF-Ni, it is governed by absorption losses -48.5 dB in CF-Ni. This increase is due to the increase in dielectric and magnetic losses of ferromagnetic Ni nanoparticles with high surface area. Thus, light weight CF embedded with small amount of magnetic nanoparticles can be useful material for stealth technology.

  17. Nickel nanoparticles embedded in carbon foam for improving electromagnetic shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Kumari, Saroj; Dhakate, Sanjay R.

    2015-06-01

    To improve electromagnetic shielding effectiveness of light weight carbon foam (CF), magnetic nanoparticles were embedded in it during processing. The CF was developed from the coal tar pitch and mixture of coal tar pitch-Nickel (Ni) nanoparticles by sacrificial template technique and heat treated to up 1,000 °C. To ascertain the effect of Ni nanoparticles embedded in CF, it was characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, vector network analyzer and vibration sample magnetometer. It is observed that Ni nanoparticles embedded in the carbon material play an important role for improving the structure and electrical conductivity of CF-Ni by catalytic carbonization. The structural investigation suggests that the Ni nanoparticles embedded in the carbon material in bulk as well on the surface of CF. The CF demonstrates excellent shielding response in the frequency range 8.2-12.4 GHz in which total shielding effectiveness (SE) dominated by absorption losses. The total SE is -25 and -61 dB of CF and CF-Ni, it is governed by absorption losses -48.5 dB in CF-Ni. This increase is due to the increase in dielectric and magnetic losses of ferromagnetic Ni nanoparticles with high surface area. Thus, light weight CF embedded with small amount of magnetic nanoparticles can be useful material for stealth technology.

  18. Facile Decoration of Polyaniline Fiber with Ag Nanoparticles for Recyclable SERS Substrate.

    PubMed

    Mondal, Sanjoy; Rana, Utpal; Malik, Sudip

    2015-05-20

    Facile synthesis of polyaniline@Ag composite has been successfully demonstrated by a simple solution-dipping method using high-aspect-ratio benzene tetracarboxylic acid-doped polyaniline (BDP) fiber as a nontoxic reducing agent as well as template cum stabilizer. In BDP@Ag composite, BDP fibers are decorated with spherical Ag nanoparticles (Ag NPs), and the population of Ag NPs on BDP fibers is controlled by changing the molar concentration of AgNO3. Importantly, Ag-NP-decorated BDP fibers (BDP@Ag composites) have been evolved as a sensitive materials for the detection of trace amounts of 4-mercaptobenzoic acid and rhodamine 6G as an analyte of surface-enhanced Raman scattering (SERS), and the detection limit is down to nanomolar concentrations with excellent recyclability. Furthermore, synthesized BDP@Ag composites are applied simultaneously as an active SERS substrate and a superior catalyst for reduction of 4-nitrothiophenol. PMID:25912640

  19. SERS detection and antibacterial activity from uniform incorporation of Ag nanoparticles with aligned Si nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yun; Hsu, Li-Jen; Hsiao, Po-Hsuan; Yu, Chang-Tze Ricky

    2015-11-01

    We present a facile, reliable and controllable two-steps electroless deposition for uniformly decorating the silver (Ag) nanoparticles (NPs) on the highly aspect ratio of silicon (Si) nanowire arrays. Different from the direct Ag-loading process, which is normally challenged by the non-uniform coating of Ag, the formation of Ag NPs using such innovative electroless process is no longer to be limited at top nanowire surfaces solely; instead, each Ag+/Si interface can initiate the galvanic reduction of Ag+ ions, thus resulting in the uniform formation of Ag NPs on the entire Si nanowire arrays. In addition, systematic explorations of surface-enhanced Raman scattering (SERS) capability as well as antibacterial activity of the Ag/Si-incorporated nanostructures were performed, and the optimized Ag loadings on Si nanowire-based substrates along with the kinetic investigations were further revealed, which may benefit their practical applications in sensing, medical and biological needs.

  20. A colorimetric assay for measuring iodide using Au@Ag core-shell nanoparticles coupled with Cu(2+).

    PubMed

    Zeng, Jingbin; Cao, Yingying; Lu, Chun-Hua; Wang, Xu-Dong; Wang, Qianru; Wen, Cong-Ying; Qu, Jian-Bo; Yuan, Cunguang; Yan, Zi-Feng; Chen, Xi

    2015-09-01

    Au@Ag core-shell nanoparticles (NPs) were synthesized and coupled with copper ion (Cu(2+)) for the colorimetric sensing of iodide ion (I(-)). This assay relies on the fact that the absorption spectra and the color of metallic core-shell NPs are sensitive to their chemical ingredient and dimensional core-to-shell ratio. When I(-) was added to the Au@Ag core-shell NPs-Cu(2+) system/solution, Cu(2+) can oxidize I(-) into iodine (I2), which can further oxidize silver shells to form silver iodide (AgI). The generated Au@AgI core-shell NPs led to color changes from yellow to purple, which was utilized for the colorimetric sensing of I(-). The assay only took 10 min with a lowest detectable concentration of 0.5 μM, and it exhibited excellent selectivity for I(-) over other common anions tested. Furthermore, Au@Ag core-shell NPs-Cu(2+) was embedded into agarose gels as inexpensive and portable "test strips", which were successfully used for the semi-quantitation of I(-) in dried kelps. PMID:26388386

  1. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film

    PubMed Central

    2014-01-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence. PMID:24685186

  2. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film.

    PubMed

    Wang, Long-De; Zhang, Tong; Zhang, Xiao-Yang; Song, Yuan-Jun; Li, Ruo-Zhou; Zhu, Sheng-Qing

    2014-01-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence. PMID:24685186

  3. Magnetoacoustic imaging of magnetic iron oxide nanoparticles embedded in biological tissues with microsecond magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hu, Gang; He, Bin

    2012-01-01

    We present an experimental study on magnetoacoustic imaging of superparamagnetic iron oxide (SPIO) nanoparticles embedded in biological tissues. In experiments, a large-current-carrying coil is used to deliver microsecond pulsed magnetic stimulation to samples. The ultrasound signals induced by magnetic forces on SPIO nanoparticles are measured by a rotating transducer. The distribution of nanoparticles is reconstructed by a back-projection imaging algorithm. The results demonstrated the feasibility to obtain cross-sectional image of magnetic nanoparticle targets with faithful dimensional and positional information, which suggests a promising tool for tomographic reconstruction of magnetic nanoparticle-labeled diseased tissues (e.g., cancerous tumor) in molecular or clinic imaging.

  4. Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability

    NASA Astrophysics Data System (ADS)

    Im, Hyeon-Gyun; Jin, Jungho; Ko, Ji-Hoon; Lee, Jaemin; Lee, Jung-Yong; Bae, Byeong-Soo

    2013-12-01

    We report on the performance of an all-in-one flexible hybrid conducting film employing a monolithically embedded AgNW transparent electrode and a high-performance glass-fabric reinforced composite substrate (AgNW-GFRHybrimer film). Specifically, we perform in-depth investigations on the stability of the AgNW-GFRHybrimer film against heat, thermal oxidation, and wet chemicals to demonstrate the potential of the hybrid conducting film as a robust electrode platform for thin-film optoelectronic devices. With the ease of large-area processability, smooth surface topography, and robust performance stability, the AgNW-GFRHybrimer film can be a promising platform for high-performance optoelectronic devices.We report on the performance of an all-in-one flexible hybrid conducting film employing a monolithically embedded AgNW transparent electrode and a high-performance glass-fabric reinforced composite substrate (AgNW-GFRHybrimer film). Specifically, we perform in-depth investigations on the stability of the AgNW-GFRHybrimer film against heat, thermal oxidation, and wet chemicals to demonstrate the potential of the hybrid conducting film as a robust electrode platform for thin-film optoelectronic devices. With the ease of large-area processability, smooth surface topography, and robust performance stability, the AgNW-GFRHybrimer film can be a promising platform for high-performance optoelectronic devices. Electronic supplementary information (ESI) available: Further characteristics of AgNW-GFRHybrimer films and thermal oxidation of AgNW on glass. See DOI: 10.1039/c3nr05348b

  5. Mixed-valence metal oxide nanoparticles as electrochemical half-cells: substituting the Ag/AgCl of reference electrodes by CeO(2-x) nanoparticles.

    PubMed

    Nagarale, Rajaram K; Hoss, Udo; Heller, Adam

    2012-12-26

    Cations of mixed valence at surfaces of metal oxide nanoparticles constitute electrochemical half-cells, with potentials intermediate between those of the dissolved cations and those in the solid. When only cations at surfaces of the particles are electrochemically active, the ratio of electrochemically active/all cations is ~0.1 for 15 nm diameter CeO(2-x) particles. CeO(2-x) nanoparticle-loaded hydrogel films on printed carbon and on sputtered gold constitute reference electrodes having a redox potential similar to that of Ag/AgCl in physiological (0.14 M) saline solutions. In vitro the characteristics of potentially subcutaneously implantable glucose monitoring sensors made with CeO(2-x) nanoparticle reference electrodes are undistinguishable from those of sensors made with Ag/AgCl reference electrodes. Cerium is 900 times more abundant than silver, and commercially produced CeO(2-x) nanoparticle solutions are available at prices well below those of the Ag/AgCl pastes used in the annual manufacture of ~10(9) reference electrodes of glucose monitoring strips for diabetes management. PMID:23171288

  6. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    NASA Astrophysics Data System (ADS)

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-03-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system.

  7. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    PubMed Central

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system. PMID:24608736

  8. Microwave absorber based on silver nanoparticle-embedded polymer thin film.

    PubMed

    Ramesh, G V; Sudheendran, K; Raju, K C James; Sreedhar, B; Radhakrishnan, T P

    2009-01-01

    Silver nanoparticle-embedded poly(vinyl alcohol) films are fabricated through a simple in situ process. The nanocomposite films are a few hundred nanometers thick with silver concentrations below 10% and the nanoparticles 5-10 nm in diameter. These films are shown to exhibit appreciable microwave absorption in the 8-12 GHz range; the return and insertion losses are found to be sensitive to the nanoparticle content. PMID:19441305

  9. Coherently Embedded Ag Nanostructures in Si: 3D Imaging and their application to SERS

    PubMed Central

    Juluri, R. R.; Rath, A.; Ghosh, A.; Bhukta, A.; Sathyavathi, R.; Rao, D. Narayana; Müller, Knut; Schowalter, Marco; Frank, Kristian; Grieb, Tim; Krause, Florian; Rosenauer, A.; Satyam, P. V.

    2014-01-01

    Surface enhanced Raman spectroscopy (SERS) has been established as a powerful tool to detect very low-concentration bio-molecules. One of the challenging problems is to have reliable and robust SERS substrate. Here, we report on a simple method to grow coherently embedded (endotaxial) silver nanostructures in silicon substrates, analyze their three-dimensional shape by scanning transmission electron microscopy tomography and demonstrate their use as a highly reproducible and stable substrate for SERS measurements. Bi-layers consisting of Ag and GeOx thin films were grown on native oxide covered silicon substrate using a physical vapor deposition method. Followed by annealing at 800°C under ambient conditions, this resulted in the formation of endotaxial Ag nanostructures of specific shape depending upon the substrate orientation. These structures are utilized for detection of Crystal Violet molecules of 5 × 10−10 M concentrations. These are expected to be one of the highly robust, reusable and novel substrates for single molecule detection. PMID:24717601

  10. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza.

    PubMed

    Jiang, Hong-Sheng; Li, Ming; Chang, Feng-Yi; Li, Wei; Yin, Li-Yan

    2012-08-01

    Silver nanoparticles (AgNPs) are commonly used in consumer products for their antibacterial activity. Silver nanoparticles may adversely influence organisms when released into the environment. The present study investigated the effect of AgNPs on the growth, morphology, and physiology of the aquatic plant duckweed (Spirodela polyrhiza). The toxicity of AgNPs and AgNO(3) was also compared. The results showed that silver content in plant tissue increased significantly with higher concentrations of AgNPs and AgNO(3) . Silver nanoparticles and AgNO(3) significantly decreased plant biomass, caused colonies of S. polyrhiza to disintegrate, and also resulted in root abscission. Physiological analysis showed that AgNPs and AgNO(3) significantly decreased plant tissue nitrate-nitrogen content, chlorophyll a (Chl a) content, chlorophyll a/b (Chl a/b), and chlorophyll fluorescence (Fv/Fm). Changes in soluble carbohydrate and proline content were also detected after both AgNO(3) and AgNPs treatment. However, after 192 h of recovery, total chlorophyll content increased, and Fv/Fm returned to control level. Median effective concentration (EC50) values for Chl a and phosphate content showed that AgNO(3) was more toxic than AgNPs (EC50 values: 16.10 ± 0.75 vs 7.96 ± 0.81 and 17.33 ± 4.47 vs 9.14 ± 2.89 mg Ag L(-1) , respectively), whereas dry-weight EC50 values showed that AgNPs were more toxic than AgNO(3) (13.39 ± 1.06 vs 17.67 ± 1.16 mg Ag L(-1) ). PMID:22639346

  11. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper.

    PubMed

    Heli, B; Morales-Narváez, E; Golmohammadi, H; Ajji, A; Merkoçi, A

    2016-04-21

    The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging. PMID:27009781

  12. Oxidative Stress Mechanisms Caused by Ag Nanoparticles (NM300K) are Different from Those of AgNO3: Effects in the Soil Invertebrate Enchytraeus crypticus

    PubMed Central

    Ribeiro, Maria J.; Maria, Vera L.; Scott-Fordsmand, Janeck J.; Amorim, Mónica J. B.

    2015-01-01

    The mechanisms of toxicity of Ag nanoparticles (NPs) are unclear, in particular in the terrestrial environment. In this study the effects of AgNP (AgNM300K) were assessed in terms of oxidative stress in the soil worm Enchytraeus crypticus, using a range of biochemical markers [catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR), total glutathione (TG), metallothionein (MT), lipid peroxidation (LPO)]. E. crypticus were exposed during 3 and 7 days (d) to the reproduction EC20, EC50 and EC80 levels of both AgNP and AgNO3. AgNO3 induced oxidative stress earlier (3 d) than AgNP (7 d), both leading to LPO despite the activation of the anti-redox system. MT increased only for AgNP. The Correspondence Analysis showed a clear separation between AgNO3 and AgNP, with e.g., CAT being the main descriptor for AgNP for 7 d. LPO, GST and GPx were for both 3 and 7 d associated with AgNO3, whereas MT and TG were associated with AgNP. These results may reflect a delay in the effects of AgNP compared to AgNO3 due to the slower release of Ag+ ions from the AgNP, although this does not fully explain the observed differences, i.e., we can conclude that there is a nanoparticle effect. PMID:26287225

  13. Phonon dispersion on Ag (100) surface: A modified analytic embedded atom method study

    NASA Astrophysics Data System (ADS)

    Xiao-Jun, Zhang; Chang-Le, Chen

    2016-01-01

    Within the harmonic approximation, the analytic expression of the dynamical matrix is derived based on the modified analytic embedded atom method (MAEAM) and the dynamics theory of surface lattice. The surface phonon dispersions along three major symmetry directions , and X¯M¯ are calculated for the clean Ag (100) surface by using our derived formulas. We then discuss the polarization and localization of surface modes at points X¯ and M¯ by plotting the squared polarization vectors as a function of the layer index. The phonon frequencies of the surface modes calculated by MAEAM are compared with the available experimental and other theoretical data. It is found that the present results are generally in agreement with the referenced experimental or theoretical results, with a maximum deviation of 10.4%. The agreement shows that the modified analytic embedded atom method is a reasonable many-body potential model to quickly describe the surface lattice vibration. It also lays a significant foundation for studying the surface lattice vibration in other metals. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301 and 61078057), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 14JK1301), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045).

  14. Reducing Strength Prevailing at Root Surface of Plants Promotes Reduction of Ag+ and Generation of Ag0/Ag2O Nanoparticles Exogenously in Aqueous Phase

    PubMed Central

    Pardha-Saradhi, Peddisetty; Yamal, Gupta; Peddisetty, Tanuj; Sharmila, Peddisetty; Nagar, Shilpi; Singh, Jyoti; Nagarajan, Rajamani; Rao, Kottapalli S.

    2014-01-01

    Potential of root system of plants from wide range of families to effectively reduce membrane impermeable ferricyanide to ferrocyanide and blue coloured 2,6-dichlorophenol indophenol (DCPIP) to colourless DCPIPH2 both under non-sterile and sterile conditions, revealed prevalence of immense reducing strength at root surface. As generation of silver nanoparticles (NPs) from Ag+ involves reduction, present investigations were carried to evaluate if reducing strength prevailing at surface of root system can be exploited for reduction of Ag+ and exogenous generation of silver-NPs. Root system of intact plants of 16 species from 11 diverse families of angiosperms turned clear colorless AgNO3 solutions, turbid brown. Absorption spectra of these turbid brown solutions showed silver-NPs specific surface plasmon resonance peak. Transmission electron microscope coupled with energy dispersive X-ray confirmed the presence of distinct NPs in the range of 5–50 nm containing Ag. Selected area electron diffraction and powder X-ray diffraction patterns of the silver NPs showed Bragg reflections, characteristic of crystalline face-centered cubic structure of Ag0 and cubic structure of Ag2O. Root system of intact plants raised under sterile conditions also generated Ag0/Ag2O-NPs under strict sterile conditions in a manner similar to that recorded under non-sterile conditions. This revealed the inbuilt potential of root system to generate Ag0/Ag2O-NPs independent of any microorganism. Roots of intact plants reduced triphenyltetrazolium to triphenylformazon and impermeable ferricyanide to ferrocyanide, suggesting involvement of plasma membrane bound dehydrogenases in reduction of Ag+ and formation of Ag0/Ag2O-NPs. Root enzyme extract reduced triphenyltetrazolium to triphenylformazon and Ag+ to Ag0 in presence of NADH, clearly establishing potential of dehydrogenases to reduce Ag+ to Ag0, which generate Ag0/Ag2O-NPs. Findings presented in this manuscript put forth a novel, simple

  15. Wet chemical synthesis and characterization of AgGaSe{sub 2} nanoparticles

    SciTech Connect

    Sugan, S.; Dhanasekaran, R.

    2013-06-03

    AgGaSe{sub 2} compound semiconductor nanoparticles were synthesized by wet chemical method using mercaptoacetic acid as a capping agent at room temperature. The synthesized powders belong to chalcopyrite structure confirmed by powder XRD. The surface morphology and crystalline size were observed by high resolution scanning electron microscope (HR-SEM). The stoichiometric composition of AgGaSe{sub 2} nanoparticles was confirmed by Energy dispersive X-ray (EDX) analysis. Different functional group vibrations of mercaptoacetic acid capped nanoparticles were studied using FT-IR spectrum. The absorbance and optical bandgap of the nanoparticles were determined using diffuse reflectance spectroscopy (DRS).

  16. Enhanced performances in inverted small molecule solar cells by Ag nanoparticles.

    PubMed

    Jin, Fangming; Chu, Bei; Li, Wenlian; Su, Zisheng; Zhao, Haifeng; Lee, C S

    2014-12-15

    We demonstrate a highly efficient inverted small molecular solar cell with integration of Ag nanoparticles (NPs) into the devices. The optimized device based on thermal evaporated Ag NPs provides a power conversion efficiency (PCE) of 4.87%, which offers 33% improvement than that of the reference device without Ag NPs. Such a high efficiency is mainly attributed to the improved electrical properties by virtue of the modification of the surface of ITO with Ag NPs and the enhanced light harvesting due to localized surface plasmon resonance (LSPR). The more detail enhanced mechanism of the PCE by introduction of Ag NPs is also discussed. PMID:25607480

  17. Solution structure of peptide AG4 used to form silver nanoparticles

    SciTech Connect

    Lee, Eunjung; Kim, Dae-Hee; Woo, Yoonkyung; Hur, Ho-Gil; Lim, Yoongho

    2008-11-21

    The preparation of silver nanoparticles (AgNPs) is of great interest due to their various biological activities, such as observed in their antimicrobial and wound healing actions. Moreover, the formation of AgNPs using silver-binding peptide has certain advantages because they can be made in aqueous solution at ambient temperature. The solution structure of the silver-binding peptide AG4 was determined using nuclear magnetic resonance spectroscopy, and the site of the AG4 interaction with AgNPs was elucidated.

  18. Real-Time Imaging of the Formation of Au-Ag Core-Shell Nanoparticles.

    PubMed

    Tan, Shu Fen; Chee, See Wee; Lin, Guanhua; Bosman, Michel; Lin, Ming; Mirsaidov, Utkur; Nijhuis, Christian A

    2016-04-27

    We study the overgrowth process of silver-on-gold nanocubes in dilute, aqueous silver nitrate solution in the presence of a reducing agent, ascorbic acid, using in situ liquid-cell electron microscopy. Au-Ag core-shell nanostructures were formed via two mechanistic pathways: (1) nuclei coalescence, where the Ag nanoparticles absorbed onto the Au nanocubes, and (2) monomer attachment, where the Ag atoms epitaxially deposited onto the Au nanocubes. Both pathways lead to the same Au-Ag core-shell nanostructures. Analysis of the Ag deposition rate reveals the growth modes of this process and shows that this reaction is chemically mediated by the reducing agent. PMID:27043921

  19. Loading Ag nanoparticles on Cd(II) boron imidazolate framework for photocatalysis

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zhang, De-Xiang; Chen, Shumei; Wen, Tian

    2016-05-01

    An amine-functionalized Cd(II) boron imidazolate framework (BIF-77) with three-dimensional open structure has been successfully synthesized, which can load Ag nanoparticles (NPs) for photocatalytic degradation of methylene blue (MB).

  20. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae.

    PubMed

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-01-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag(+), C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag(+), and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs. PMID:27615743

  1. Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wang, Qingyao; Qiao, Jianlei; Jin, Rencheng; Xu, Xiaohui; Gao, Shanmin

    2015-03-01

    Plasmonic photosensitizer AgBr/Ag nanospheres supported on TiO2 nanotube arrays (TiO2 NTs) are prepared by successive ionic layer adsorption and reaction (SILAR) technique followed by photoreduction methods. The structural and surface morphological properties of AgBr/Ag nanoparticles sensitized TiO2 NTs and their photoelectrochemical performance are investigated and discussed. A detailed formation mechanism of the TiO2 NTs/AgBr/Ag is proposed. The TiO2 NTs/AgBr/Ag exhibit excellent photocurrent and photoelectrocatalytic activities under visible light irradiation. Efficient utilization of solar energy to create electron-hole pairs is attributed to the significant visible light response and surface plasmon resonance of Ag nanoparticles. This finding indicates that the high photosensitivity of the TiO2 NTs-based surface plasmon resonance materials could be applied toward the development of new plasmonic visible-light-sensitive photovoltaic fuel cells and photocatalysts.

  2. Noble metals (Ag, Au) nanoparticles addition effects on superconducting properties of CuTl-1223 phase

    NASA Astrophysics Data System (ADS)

    Jabbar, Abdul; Mumtaz, Muhammad; Nadeem, Kashif

    2015-03-01

    Low anisotropic (Cu0.5Tl0.5) Ba2Ca2Cu3O10 - δ (CuTl-1223) high temperature superconducting phase was synthesized by solid-state reaction, silver (Ag) nanoparticles were prepared by sol-gel method and gold (Au) nanoparticles were extracted from colloidal solution. We added Ag and Au nanoparticles in CuTl-1223 matrix separately with same concentration during the final sintering process to get (M)x/CuTl-1223; M = Ag nanoparticles or Au nanoparticles (x = 0 and 1.0 wt.%) nano-superconductor composites. We investigated and compared the effects of these noble metals nanoparticles addition on structural, morphological and superconducting transport properties of CuTl-1223 phase. The crystal structure of the host CuTl-1223 superconducting phase was not affected significantly after the addition of these nanoparticles. The enhancement of superconducting properties was observed after the addition of both Ag and Au nanoparticles, which is most probably due to improved inter-grains weak-links and reduction of defects such as oxygen deficiencies, etc. The reduction of normal state room temperature resistivity is the finger prints of the reduction of barriers and facilitation to the carriers transport across the inter-crystallite sites due to improved inter-grains weak-links. The greater improvement of superconducting properties in Ag nanoparticles added samples is attributed to the higher conductivity of silver as compared to gold, which also suits for practical applications due to lower cost and easy synthesis of Ag nanoparticles as compared to Au nanoparticles.

  3. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    DOE PAGESBeta

    Paik, Haemin; Choi, Yoon -Young; Hong, Seungbum; No, Kwangsoo

    2015-09-04

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increasemore » of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. The enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles.« less

  4. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    SciTech Connect

    Paik, Haemin; Choi, Yoon -Young; Hong, Seungbum; No, Kwangsoo

    2015-09-04

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increase of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. The enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles.

  5. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    PubMed Central

    Paik, Haemin; Choi, Yoon-Young; Hong, Seungbum; No, Kwangsoo

    2015-01-01

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increase of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. These enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles. PMID:26336795

  6. Growth of Ag nanoparticles using plasma-modified multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tseng, Chun-Hao; Chen, Chuh-Yung

    2008-01-01

    This study presents a novel method for preparing multi-walled carbon nanotubes (MWNTs) grafted with a poly(2-hydroxyethyl methacrylate) (HEMA)-silver complex (CNTs-HEMA-Ag complex) through plasma-induced grafting polymerization. The characteristics of the MWNTs after being grafted with HEMA polymer are monitored by Fourier transform infrared (FT-IR) spectroscopy. The chelating groups in the HEMA polymer grafted on the surface of the CNTs-HEMA are the coordination sites for chelating silver ions, and are further used as nanotemplates for the growing of Ag nanoparticles (quantum dots). Transmission electron microscopy (TEM) reveals that the particle size of Ag nanoparticles on the CNT surfaces increases with the Ag+ chelating concentration, reaction time, and reaction temperature. Moreover, the crystalline phase of Ag nanoparticles is identified by using x-ray diffraction (XRD). In addition, high-resolution x-ray photoelectron spectroscopy (XPS) is used to characterize the functional groups on the surface of the MWNTs after chemical modification through plasma treatment; it demonstrates that the growing amount of the Ag nanoparticles on the nanotubes increases with the Ag+ chelating concentration due to the blocking effect of the Ag particles forming on the MWNTs.

  7. Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability.

    PubMed

    Im, Hyeon-Gyun; Jin, Jungho; Ko, Ji-Hoon; Lee, Jaemin; Lee, Jung-Yong; Bae, Byeong-Soo

    2014-01-21

    We report on the performance of an all-in-one flexible hybrid conducting film employing a monolithically embedded AgNW transparent electrode and a high-performance glass-fabric reinforced composite substrate (AgNW-GFRHybrimer film). Specifically, we perform in-depth investigations on the stability of the AgNW-GFRHybrimer film against heat, thermal oxidation, and wet chemicals to demonstrate the potential of the hybrid conducting film as a robust electrode platform for thin-film optoelectronic devices. With the ease of large-area processability, smooth surface topography, and robust performance stability, the AgNW-GFRHybrimer film can be a promising platform for high-performance optoelectronic devices. PMID:24284890

  8. The calculations of electromagnetic fields around nanoparticles embedded in biological media

    NASA Astrophysics Data System (ADS)

    Prytkova, Vera D.; Tuchin, Valery V.

    2010-08-01

    The goal of our project is to use computational methods, such as discrete dipole approximation (DDA) to study nanoparticles in biomedical photonics problems. Nanoparticle absorption and scattering are strongly affected by their shape, size, composition and dielectric environment. We focus on light scattering from nanoparticles embedded in biological or biocompatible media, such as water, glycerin and hemoglobin at erythrocyte hemoglobin concentration at concentration characteristic to intrinsic erythrocyte concentration. This method lets us consider complex refractive index of the nanoparticle and the surrounding medium as a function on the wavelength of light. We are interested in strong absorption and scattering around 800 nm that makes such nanoparticles potentially useful in biomedical applications, such as detection and curing cancer. Considering nanoparticles in living cells containing nanoparticles lets us understand light scattering from normal and pathological structures within biological tissue.

  9. Preparation and Structural Analysis of CdS Nanoparticle Embedded Polyurethane Nanocomposites

    SciTech Connect

    Indolia, Ajay Pal; Kumar, Purushottam; Gaur, M. S.

    2011-07-15

    Polymer nanocomposite samples of different weight ratio of CdS were developed by solution embedding of nanoparticles in polyurethane. XRD and Scanning Electron Microscopy (SEM) were used to understand the structural properties of polymer nanocomposite samples. SEM micrograph demonstrates the dispersion of CdS nanoparticles in polymer matrix. It has been observed that crystallinity of PU decreases with increase in concentration of CdS nanoparticles. The XRD data show the characteristic peaks of nanoparticles (i.e.CdS) in nanocomposite samples, which confirm the nanostructure formation in polymer matrix.

  10. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles.

    PubMed

    Chaffin, Elise; O'Connor, Ryan T; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ∼410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods. PMID:27497571

  11. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaffin, Elise; O'Connor, Ryan T.; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ˜410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.

  12. Morphology and electrochemical behavior of Ag-Cu nanoparticle-doped amalgams.

    PubMed

    Chung, Kwok-Hung; Hsiao, Li-Yin; Lin, Yu-Sheng; Duh, Jenq-Gong

    2008-05-01

    The aim of this study was to introduce Ag-Cu phase nanopowder as an additive to improve the corrosion behavior of dental amalgams. A novel Ag-Cu nanopowder was synthesized by the precipitation method. An amalgam alloy powder (World-Cap) was added and mixed with 5 wt.% and 10 wt.% of Ag-Cu nanopowders, respectively, to form experimental amalgam alloy powders. The original alloy powder was used as a control. Alloy powders were examined using X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy and electron probe microanalysis. Amalgam disk specimens of metallurgically prepared were tested in 0.9% NaCl solution using electrochemical methods. The changes in the corrosion potential and anodic polarization characteristics were determined. Corrosion potential data were analyzed statistically (n=3, analysis of variance, Tukey's test, p<0.05). The diameters of lamellar structure Ag-Cu nanoparticles were measured to be approximately 30 nm. The composition of the Ag-Cu nanoparticles determined by TEM-energy-dispersive spectroscopy was 56.28 at.% Ag-43.72 at.% Cu. A light-shaded phase was found mixing with dark Cu-Sn reaction particles in the reaction zones of Ag-Cu nanoparticle-doped amalgams. The Ag-Cu nanoparticle-doped amalgams exhibited zero current potentials more positive than the control (p<0.05) and no current peak was observed at -325mV that related to Ag-Hg phase and Cu6Sn5 phase in anodic polarization curves. The results indicated that the corrosion resistance of high-copper single-composition amalgam could be improved by Ag-Cu nanoparticle-doping. PMID:18321799

  13. Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola)

    PubMed Central

    Mendes, Luís André; Maria, Vera L.; Scott-Fordsmand, Janeck J.; Amorim, Mónica J. B.

    2015-01-01

    The effects of nanomaterials have been primarily assessed based on standard ecotoxicity guidelines. However, by adapting alternative measures the information gained could be enhanced considerably, e.g., studies should focus on more mechanistic approaches. Here, the environmental risk posed by the presence of silver nanoparticles (Ag NM300K) in soil was investigated, anchoring population and cellular level effects, i.e., survival, reproduction (28 days) and oxidative stress markers (0, 2, 4, 6, 10 days). The standard species Folsomia candida was used. Measured markers included catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (TG), metallothionein (MT) and lipid peroxidation (LPO). Results showed that AgNO3 was more toxic than AgNPs at the population level: reproduction EC20 and EC50 was ca. 2 and 4 times lower, respectively. At the cellular level Correspondence Analysis showed a clear separation between AgNO3 and AgNP throughout time. Results showed differences in the mechanisms, indicating a combined effect of released Ag+ (MT and GST) and of AgNPs (CAT, GR, TG, LPO). Hence, clear advantages from mechanistic approaches are shown, but also that time is of importance when measuring such responses. PMID:26473892

  14. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic.

    PubMed

    Wang, Peng; Menzies, Neal W; Lombi, Enzo; Sekine, Ryo; Blamey, F Pax C; Hernandez-Soriano, Maria C; Cheng, Miaomiao; Kappen, Peter; Peijnenburg, Willie J G M; Tang, Caixian; Kopittke, Peter M

    2015-01-01

    Silver nanoparticles (NPs) are used in more consumer products than any other nanomaterial and their release into the environment is unavoidable. Of primary concern is the wastewater stream in which most silver NPs are transformed to silver sulfide NPs (Ag2S-NPs) before being applied to agricultural soils within biosolids. While Ag2S-NPs are assumed to be biologically inert, nothing is known of their effects on terrestrial plants. The phytotoxicity of Ag and its accumulation was examined in short-term (24 h) and longer-term (2-week) solution culture experiments with cowpea (Vigna unguiculata L. Walp.) and wheat (Triticum aestivum L.) exposed to Ag2S-NPs (0-20 mg Ag L(-1)), metallic Ag-NPs (0-1.6 mg Ag L(-1)), or ionic Ag (AgNO3; 0-0.086 mg Ag L(-1)). Although not inducing any effects during 24-h exposure, Ag2S-NPs reduced growth by up to 52% over a 2-week period. This toxicity did not result from their dissolution and release of toxic Ag(+) in the rooting medium, with soluble Ag concentrations remaining below 0.001 mg Ag L(-1). Rather, Ag accumulated as Ag2S in the root and shoot tissues when plants were exposed to Ag2S-NPs, consistent with their direct uptake. Importantly, this differed from the form of Ag present in tissues of plants exposed to AgNO3. For the first time, our findings have shown that Ag2S-NPs exert toxic effects through their direct accumulation in terrestrial plant tissues. These findings need to be considered to ensure high yield of food crops, and to avoid increasing Ag in the food chain. PMID:25686712

  15. Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles.

    PubMed

    Nistor, Manuela Tatiana; Vasile, Cornelia; Chiriac, Aurica P

    2015-08-01

    Montmorillonite nanoparticles have been physically incorporated within a crosslinked collagen/poly(N-isopropyl acrylamide) network in order to adjust the properties of the stimuli-responsive hybrid systems. The research underlines both the influence of hydrogel composition and nanoparticle type on hybrid hydrogel properties. The dispersion of the montmorillonite nanoparticles in polymeric matrix have been visualized by SEM, TEM and AFM techniques and quantitatively and qualitatively estimated using near infrared chemical imaging. The electrical charge of the nanoparticles influenced the polymeric chain arrangement and the pore size. The morphologies of the nanoparticulated layers are partially exfoliated or intercalated and uniformly dispersed through the polymeric semi-interpenetrated network based on collagen and poly(N-isopropyl acrylamide). The hybrid hydrogels exhibit pseudoplastic behavior and the addition of nanoparticles has resulted in the increase of the complex viscosity. The adhesion capacity was affected mainly by the presence of organically modified montmorillonites. PMID:26042709

  16. Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure

    NASA Astrophysics Data System (ADS)

    Gutierrez Fuentes, R.; Pescador Rojas, J. A.; Jiménez-Pérez, J. L.; Sanchez Ramirez, J. F.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.

    2008-11-01

    The thermal diffusivity of Au/Ag nanoparticles with core/shell structure, at different compositions (Au/Ag = 3/1, 1/1, 1/3, 1/6), was measured by using the mismatched mode of the dual-beam thermal lens (TL) technique. This study determines the effect of the bimetallic composition on the thermal diffusivity of the nanofluids. In these results we find a lineal increment of the nanofluid it thermal diffusivity when the Ag shell thickness is increased. Our results show that the nanoparticle structure is an important parameter to improve the heat transport in composites and nanofluids. These results could have importance for applications in therapies and photothermal deliberation of drugs. Complementary measurements with UV-vis spectroscopy and TEM, were used to characterize the Au(core)/Ag(shell) nanoparticles.

  17. 1,10-Phenanthroline as an accelerator for Ag nanoparticle-catalysed electroless copper deposition

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Ru; Chou, Nan-Kuang; Li, Cheng-Hsing; Chen, Ho-Rei; Lee, Chien-Liang

    2014-10-01

    1,10-Phenanthroline (phen) can be successfully used as an accelerator for Ag-catalysed electroless copper deposition (ECD) processes. Electrochemical quartz crystal microbalance analyses indicate that the mass activity in terms of thickness of deposited Cu layer and average ECD rate within a deposition time of 110 s for Ag nanoparticles activated by phen are 7.86 × 10-3 μm μg-1 and 1.43 × 10-4 μm μg-1 s-1, respectively, whereas Ag nanoparticles without phen cannot catalyse the reaction. Furthermore, Tafel and cyclic voltammetric results show that the addition of phen to the ECD bath significantly enhances the ability of the Ag nanoparticles to catalyse the oxidation of HCHO and suppresses the formation of CuO.

  18. Controlled formation of ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution.

    PubMed

    Huber, Klaus; Witte, Thomas; Hollmann, Jutta; Keuker-Baumann, Susanne

    2007-02-01

    A new tool is presented to control formation of Ag nanoparticles. Small amounts of silver ions were added to dilute solutions of long-chain sodium polyacrylates (NaPA). Four NaPA samples covering a molar mass regime of 97 kD < or = Mw < or = 650 kD have been used. With amounts of added Ag(+) as low as 1-2% of the COO(-) groups of the polyanionic chains, significant changes could already be induced in the NaPA coils with 650 kD. If the NaPA concentration was kept below 0.1 g/L, the coils with 650 kD exhibited a significant coil shrinking in stable solutions. At larger NaPA concentrations, addition of Ag+ initiates an aggregation of the polyacrylate coils toward compact structures. Coil shrinking and aggregation was revealed by means of time-resolved static light scattering. If exposed to UV-radiation, small Ag particles formed within the shrunken anionic polyacrylate coils. The Ag nanoparticles were identified by means of an enhanced light scattering and a characteristic plasmon absorption band around 410 nm. No such Ag particle formation could be observed even at 5 times larger concentrations of Ag(+) and NaPA if the two smallest polyacrylate samples have been used under otherwise equal conditions. This molar mass sensitive response of NaPA to Ag(+)-addition suggests an interesting phenomenon: if the coil size of the NaPa chains, which act as Ag(+) collectors, is large enough, local Ag(+) concentration in these coil-shaped Ag(+) containers exceeds a critical value, and irradiation with UV generates Ag nanoparticles. PMID:17263389

  19. In situ preparation of monodispersed Ag/polyaniline/Fe3O4 nanoparticles via heterogeneous nucleation

    PubMed Central

    2013-01-01

    Acrylic acid and styrene were polymerized onto monodispersed Fe3O4 nanoparticles using a grafting copolymerization method. Aniline molecules were then bonded onto the Fe3O4 nanoparticles by electrostatic self-assembly and further polymerized to obtain uniform polyaniline/Fe3O4 (PANI/Fe3O4) nanoparticles (approximately 35 nm). Finally, monodispersed Ag/PANI/Fe3O4 nanoparticles were prepared by an in situ reduction reaction between emeraldine PANI and silver nitrate. Fourier transform infrared and UV-visible spectrometers and a transmission electron microscope were used to characterize both the chemical structure and the morphology of the resulting nanoparticles. PMID:23819820

  20. Synthesis and characterization of AgCl nanoparticles produced by laser ablation of Ag in NaCl solution

    NASA Astrophysics Data System (ADS)

    Mahmoodi, Afsaneh; Shoorshinie, Seyedeh Zahra; Dorranian, Davoud

    2016-04-01

    In this work, the structural and optical properties of silver chloride nanoparticles produced by laser ablation of Ag plate in NaCl solution were investigated. Five different concentrations of NaCl solution were used as the ablation environment. The beam of a Q-switched Nd:YAG laser of 1064 nm wavelength and 7 ns pulse width was employed to irradiate the Ag target in NaCl solutions. Fluence of laser pulse was 1.5 J/cm2, and repetition rate was 5 Hz. Samples were prepared using 1500 pulses. Produced nanoparticles were characterized using UV-visible-NIR absorption, and transmission spectrum, transmission electron microscopy, scanning electron microscopy, X-ray diffraction pattern, photoluminescence spectrum, and dynamic light scattering method. Results show that laser ablation is a promising method to produce AgCl nanoparticles. Size of nanoparticles, their lattice structure, and bandgap energy as well as the production rate may be controlled by the concentration of NaCl in the ablation environment.

  1. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi

    PubMed Central

    Kim, Sang Woo; Jung, Jin Hee; Lamsal, Kabir; Kim, Yun Seok; Min, Ji Seon

    2012-01-01

    This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs. PMID:22783135

  2. Gold nanoparticles embedded in organic/inorganic hybrid matrix: electrical and electrochemical behavior (withdrawal notice)

    NASA Astrophysics Data System (ADS)

    Moreira, Sandra D. F. C.; Silva, J. P. B.; Silva, Carlos J. R.; Capan, I.; Gomes, M. J. M.; Costa, Manuel F. M.

    2013-05-01

    Gold nanoparticles (AuNPs) with different diameters, from 3 to 32 nm, were immobilized in amine-alcohol-silicate matrix by mixing a preformed nanoparticle colloid with the precursors of amine-alcohol-silicate (AAs) prior to the solgel transition. These nanocomposites show high optical quality and optical features dictated by the size of the nanoparticle dopants but also present a high degree of flexibility which can largely enhance the range of practical applications. The current-voltage, impedance and capacitance-voltage characteristics of these materials have been measured. The electrochemical and impedimetric results reveal that AuNPs with different sizes give different signals, thus providing useful information that allows the employment of AuNPs in electrochemical biosensors. Capacitance- voltage measurements showed that these composites embedded AuNPs exhibited a large hysteresis window of 2.4V which indicates the possibility of charge storage in the Au nanoparticles embedded AAs hybrids.

  3. Photo-catalytic activity of Plasmonic Ag@AgCl nanoparticles (synthesized via a green route) for the effective degradation of Victoria Blue B from aqueous phase.

    PubMed

    Devi, Th Babita; Begum, Shamima; Ahmaruzzaman, M

    2016-07-01

    This study reports a green process for the fabrication of Ag@AgCl (silver@silver chloride) nanoparticles by using Aquilaria agallocha (AA) leaves juice without using any external reagents. The effect of various reaction parameters, such as reaction temperature, reaction time and concentration of Aquilaria agallocha leaves juice in the formation of nanoparticles have also been investigated. From the FTIR spectra of leaves juice and phytochemicals test, it was found that flavonoids present in the leaves are responsible for the reduction of Ag(+) ions to Ag(0) species and leads to the formation of Ag@AgCl NPs. The synthesized Ag@AgCl NPs were utilized for the removal of toxic and hazardous dyes, such as Victoria Blue B from aqueous phase. Approximately, 99.46% degradation of Victoria Blue B dye were observed with Ag@AgCl NPs. Furthermore, the photocatalytic activity of the Ag@AgCl nanoparticles was unchanged after 5cycles of operation. PMID:27152674

  4. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope

    PubMed Central

    Salaheldin, Taher A.; Husseiny, Sherif M.; Al-Enizi, Abdullah M.; Elzatahry, Ahmed; Cowley, Alan H.

    2016-01-01

    Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD) pattern, high-resolution transmission electron Microscopy (HRTEM) and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM) to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity. PMID:26950118

  5. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  6. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope.

    PubMed

    Salaheldin, Taher A; Husseiny, Sherif M; Al-Enizi, Abdullah M; Elzatahry, Ahmed; Cowley, Alan H

    2016-01-01

    Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD) pattern, high-resolution transmission electron Microscopy (HRTEM) and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM) to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity. PMID:26950118

  7. Characterizing structural and vibrational properties of nanoparticles embedded in silica with XAS, SAXS and auxiliary techniques

    NASA Astrophysics Data System (ADS)

    Araujo, Leandro L.; Kluth, Patrick; Giulian, Raquel; Sprouster, David J.; Johannessen, Bernt; Foran, Garry J.; Cookson, David J.; Ridgway, Mark C.

    2009-01-01

    Synchrotron-based techniques were combined with conventional analysis methods to probe in detail the structural and vibrational properties of nanoparticles grown in a silica matrix by ion implantation and thermal annealing, as well as the evolution of such properties as a function of nanoparticle size. This original approach was successfully applied for several elemental nanoparticles (Au, Co, Cu, Ge, Pt) and the outcomes for Ge are reported here, illustrating the power of this combined methodology. The thorough analysis of XANES, EXAFS, SAXS, TEM and Raman data for Ge nanoparticles with mean diameters between 4 and 9 nm revealed that the peculiar properties of embedded Ge nanoparticles, like the existence of amorphous Ge layers between the silica matrix and the crystalline nanoparticle core, are strongly dependent on particle size and mainly governed by the variation in the surface area-to-volume ratio. Such detailed information provides valuable input for the efficient planning of technological applications.

  8. Characterizing structural and vibrational properties of nanoparticles embedded in silica with XAS, SAXS and auxiliary techniques

    SciTech Connect

    Araujo, Leandro L.; Kluth, Patrick; Giulian, Raquel; Sprouster, David J.; Ridgway, Mark C.; Johannessen, Bernt; Foran, Garry J.; Cookson, David J.

    2009-01-29

    Synchrotron-based techniques were combined with conventional analysis methods to probe in detail the structural and vibrational properties of nanoparticles grown in a silica matrix by ion implantation and thermal annealing, as well as the evolution of such properties as a function of nanoparticle size. This original approach was successfully applied for several elemental nanoparticles (Au, Co, Cu, Ge, Pt) and the outcomes for Ge are reported here, illustrating the power of this combined methodology. The thorough analysis of XANES, EXAFS, SAXS, TEM and Raman data for Ge nanoparticles with mean diameters between 4 and 9 nm revealed that the peculiar properties of embedded Ge nanoparticles, like the existence of amorphous Ge layers between the silica matrix and the crystalline nanoparticle core, are strongly dependent on particle size and mainly governed by the variation in the surface area-to-volume ratio. Such detailed information provides valuable input for the efficient planning of technological applications.

  9. Surface plasmon effect of Ag nanodots embedded in amorphous Si window layers deposited on Si solar cells.

    PubMed

    Park, Seungil; Ji, HyungYong; Kim, Myeong Jun; Peck, Jong Hyeon; Kim, Keunjoo

    2014-12-01

    We investigated solar cells containing temperature-dependent Ag nanodots embedded in an amorphous Si thin film layer by using hot-wire chemical vapor deposition in order to improve the properties of crystalline Si solar cells. An Ag thin film with a thickness of 10 nm was deposited by DC sputtering followed by annealing at various temperatures ranging from 250 to 850 degrees C for 15 min under N2 gas. As increasing the annealing temperature, the Ag nanodots were enlarged and the photoreflectances of the samples with Ag nanodots were lower than the reference samples in the spectral range of 200-600 nm, demonstrating the plasmon effect of Ag nanodots. The cell properties on photoluminescence spectra, quantum efficiency, and conversion efficiency were measured with the maximum values for the sample annealed at 450 degrees C, indicating that there exists an optimal size of the Ag nanodots about 15-35 nm to be effective on the enhancement of surface plasmon effect. PMID:25971039

  10. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria

    NASA Astrophysics Data System (ADS)

    Cui, Li; Chen, Shaode; Zhang, Kaisong

    2015-02-01

    Ag nanoparticles (NPs) have been extensively utilized in surface-enhanced Raman scattering (SERS) spectroscopy for bacterial identification. However, Ag NPs are toxic to bacteria. Whether such toxicity can affect SERS features of bacteria and interfere with bacterial identification is still unknown and needed to explore. Here, by carrying out a comparative study on non-toxic Au NPs with that on toxic Ag NPs, we investigated the influence of nanoparticle concentration and incubation time on bacterial SERS spectral variance, both of which were demonstrated to be closely related to the toxicity of Ag NPs. Sensitive spectral alterations were observed on Ag NPs with increase of NPs concentration or incubation time, accompanied with an obvious decrease in number of viable bacteria. In contrast, SERS spectra and viable bacterial number on Au NPs were rather constant under the same conditions. A further analysis on spectral changes demonstrated that it was cell response (i.e. metabolic activity or death) to the toxicity of Ag NPs causing spectral variance. However, biochemical responses to the toxicity of Ag were very different in different bacteria, indicating the complex toxic mechanism of Ag NPs. Ag NPs are toxic to a great variety of organisms, including bacteria, fungi, algae, protozoa etc., therefore, this work will be helpful in guiding the future application of SERS technique in various complex biological systems.

  11. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria.

    PubMed

    Cui, Li; Chen, Shaode; Zhang, Kaisong

    2015-02-25

    Ag nanoparticles (NPs) have been extensively utilized in surface-enhanced Raman scattering (SERS) spectroscopy for bacterial identification. However, Ag NPs are toxic to bacteria. Whether such toxicity can affect SERS features of bacteria and interfere with bacterial identification is still unknown and needed to explore. Here, by carrying out a comparative study on non-toxic Au NPs with that on toxic Ag NPs, we investigated the influence of nanoparticle concentration and incubation time on bacterial SERS spectral variance, both of which were demonstrated to be closely related to the toxicity of Ag NPs. Sensitive spectral alterations were observed on Ag NPs with increase of NPs concentration or incubation time, accompanied with an obvious decrease in number of viable bacteria. In contrast, SERS spectra and viable bacterial number on Au NPs were rather constant under the same conditions. A further analysis on spectral changes demonstrated that it was cell response (i.e. metabolic activity or death) to the toxicity of Ag NPs causing spectral variance. However, biochemical responses to the toxicity of Ag were very different in different bacteria, indicating the complex toxic mechanism of Ag NPs. Ag NPs are toxic to a great variety of organisms, including bacteria, fungi, algae, protozoa etc., therefore, this work will be helpful in guiding the future application of SERS technique in various complex biological systems. PMID:25291503

  12. Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola).

    PubMed

    Mendes, Luís André; Maria, Vera L; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2015-10-01

    The effects of nanomaterials have been primarily assessed based on standard ecotoxicity guidelines. However, by adapting alternative measures the information gained could be enhanced considerably, e.g., studies should focus on more mechanistic approaches. Here, the environmental risk posed by the presence of silver nanoparticles (Ag NM300K) in soil was investigated, anchoring population and cellular level effects, i.e., survival, reproduction (28 days) and oxidative stress markers (0, 2, 4, 6, 10 days). The standard species Folsomia candida was used. Measured markers included catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (TG), metallothionein (MT) and lipid peroxidation (LPO). Results showed that AgNO₃ was more toxic than AgNPs at the population level: reproduction EC₂₀ and EC₅₀ was ca. 2 and 4 times lower, respectively. At the cellular level Correspondence Analysis showed a clear separation between AgNO₃ and AgNP throughout time. Results showed differences in the mechanisms, indicating a combined effect of released Ag⁺ (MT and GST) and of AgNPs (CAT, GR, TG, LPO). Hence, clear advantages from mechanistic approaches are shown, but also that time is of importance when measuring such responses. PMID:26473892

  13. Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres.

    PubMed

    Li, Cuiping; Li, Xueyuan; Duan, Xuelan; Li, Guangjie; Wang, Jiaqiang

    2014-12-15

    Halloysite nanotube supported Ag nanoparticles heteroarchitectures have been prepared through a very simple electroless plating method. Robust Ag nanocrystals can be reproducibly fabricated by soaking halloysite nanotubes in ethanolic solutions of AgNO3 and butylamine. By simply adjusting the molar ratio of AgNO3 and butylamine, Ag nanoparticles with tunable size and quantity on halloysite nanotube are achieved. It reveals that the Ag nanoparticles are well-dispersed on the surface of halloysite nanotubes. The halloysite nanotube supported Ag nanoparticles heteroarchitectures can serve as active catalysts for the polymerization of an alkylsilane C18H37SiH3 with water to form silanol/siloxane composite microspheres and exhibit interesting superhydrophobicity ascribed to the micro/nanobinary structure. PMID:25268813

  14. Green and Tunable Decoration of Graphene with Spherical Nanoparticles Based on Laser Ablation in Water: A Case of Ag Nanoparticle/Graphene Oxide Sheet Composites.

    PubMed

    He, Hui; Wang, Haibo; Li, Kai; Zhu, Jun; Liu, Jianshuang; Meng, Xiangdong; Shen, Xiaoshuang; Zeng, Xianghua; Cai, Weiping

    2016-02-23

    A simple and green strategy is presented to decorate graphene with nanoparticles, based on laser ablation of targets in graphene auqeous solution. Ag and graphene oxide (GO) are chosen as model materials. The surface of GO sheets is strongly anchored with spherical Ag nanoparticles. The density and size of the Ag nanoparticles can be easily tuned by laser ablation conditions. Further, the GO sheets can be decorated with other nanoparticles from simple metals or semiconductors to multicomponent hybrids. Additionally, the Ag nanoparticle/GO sheet colloids can be utilized as blocks to build three-dimensional structures, such as sandwich membranes by evaporation-induced self-assembly. These graphene-based composite materials could be very useful in catalysis, sensors, and nanodevices. Particularly, the Ag nanoparticle/GO sheet sandwich composite membranes exhibit excellent surface-enhanced Raman scattering performance and possess the huge potential in trace-detecting persistent organic pollutants in the environment. PMID:26840791

  15. Luminescence of fixed site Ag nanoclusters in a simple oxyfluoride glass host and plasmon absorption of amorphous Ag nanoparticles in a complex oxyfluoride glass host

    NASA Astrophysics Data System (ADS)

    Shestakov, Mikhail V.; Meledina, Maria; Turner, Stuart; Baekelant, Wouter; Verellen, Niels; Chen, Xianmei; Hofkens, Johan; Van Tendeloo, Gustaaf; Moshchalkov, Victor V.

    2015-01-01

    Ag nanocluster-doped glasses have been prepared by a conventional melt-quenching method. The effect of melt temperature and dwell time on the formation of Ag nanoclusters and Ag nanoparticles in simple host oxyfluoride glasses has been studied. The increase of melt temperature and dwell time results in the dissolution of Ag nanoparticles and substantial red-shift of absorption and photoluminescence spectra of the prepared glasses. The quantum yield of the glasses is ~ 5% and does not depend on melt temperature and dwell time. The prepared glasses may be used as red phosphors or down-conversion layers for solar-cells.

  16. Formation of Ag Nanoparticles on β-Ag2WO4 through Electron Beam Irradiation: A Synergetic Computational and Experimental Study.

    PubMed

    Roca, Roman A; Gouveia, Amanda F; Lemos, Pablo S; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-09-01

    In the present work, a combined theoretical and experimental study was performed on the structure, optical properties, and growth of Ag nanoparticles in metastable β-Ag2WO4 microcrystals. This material was synthesized using the precipitation method without the presence of surfactants. The structural behavior was analyzed using X-ray diffraction and Raman and infrared spectroscopy. Field-emission scanning electron microscopy revealed the presence of irregular spherical-like Ag nanoparticles on the β-Ag2WO4 microcrystals, which were induced by electron beam irradiation under high vacuum conditions. A detailed analysis of the optimized β-Ag2WO4 geometry and theoretical results enabled interpretation of both the Raman and infrared spectra and provided deeper insight into rationalizing the observed morphology. In addition, first-principles calculations, within the quantum theory of atoms in molecules framework, provided an in-depth understanding of the nucleation and early evolution of Ag nanoparticles. The Ag nucleation and formation is the result of structural and electronic changes of the [AgO6] and [AgO5] clusters as a constituent building block of β-Ag2WO4, which is consistent with Ag metallic formation. PMID:27533109

  17. Gamma ray irradiated AgFeO{sub 2} nanoparticles with enhanced gas sensor properties

    SciTech Connect

    Wang, Xiuhua; Shi, Zhijie; Yao, Shangwu; Liao, Fan; Ding, Juanjuan; Shao, Mingwang

    2014-11-15

    AgFeO{sub 2} nanoparticles were synthesized via a facile hydrothermal method and irradiated by various doses of gamma ray. The products were characterized with X-ray powder diffraction, UV–vis absorption spectrum and transmission electron microscope. The results revealed that the crystal structure, morphology and size of the samples remained unchanged after irradiation, while the intensity of UV–Vis spectra increased with irradiation dose increasing. In addition, gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including the optimum operating temperature and sensitivity, which might be ascribed to the generation of defects. - Graphical abstract: Gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including sensitivity and optimum operating temperature, which might be ascribed to the generation of defects. - Highlights: • AgFeO{sub 2} nanoparticles were synthesized and irradiated with gamma ray. • AgFeO{sub 2} nanoparticles were employed to fabricate gas sensors to detect ethanol. • Gamma ray irradiation improved the sensitivity and optimum operating temperature.

  18. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    EPA Science Inventory

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  19. Morphology and aspect ratio of bismuth nanoparticles embedded in a zinc matrix

    SciTech Connect

    Song, Tae Eun; Wilde, Gerhard; Peterlechner, Martin

    2014-12-15

    Nanoscale Bi particles embedded in a Zn matrix were obtained by casting and melt-spinning, resulting in quenching rate-dependent sizes and shapes. With decreasing Bi particle size, an increasing aspect ratio was observed. Due to high resolution transmission electron microscopy performed for different orientations of the nanoparticles and the matrix, the three-dimensional shape and the respective crystallographic orientations of the Bi nanoparticles as well as the orientation relationship with the matrix have been evaluated. It is suggested that the size-dependence of the nanoparticle morphologies has a strong impact on their thermal stabilities thus affecting the size dependence of the melting temperature.

  20. Photo-response of a nanopore device with a single embedded ZnO nanoparticle

    NASA Astrophysics Data System (ADS)

    Nguyen, Linh-Nam; Lin, Ming-Chou; Chen, Horng-Shyang; Lan, Yann-Wen; Wu, Cen-Shawn; Chang-Liao, Kuei-Shu; Chen, Chii-Dong

    2012-04-01

    The photo-response of a ZnO nanoparticle embedded in a nanopore made on a silicon nitride membrane is investigated. The ZnO nanoparticle is manipulated onto the nanopore and sandwiched between aluminum contact electrodes from both the top and bottom. The asymmetric device structure facilitates current-voltage rectification that enables photovoltaic capacity. Under illumination, the device shows open-circuit voltage as well as short-circuit current. The fill factor is found to increase at low temperatures and reaches 48.6% at 100 K. The nanopore structure and the manipulation technique provide a solid platform for exploring the electrical properties of single nanoparticles.

  1. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach

    SciTech Connect

    Valodkar, Mayur; Modi, Shefaly; Pal, Angshuman; Thakore, Sonal

    2011-03-15

    Research highlights: {yields} Synthesis of novel nanosized copper-silver alloys of different compositions. {yields} Completely green approach for synthesis of water soluble bimetallic nanoparticle. {yields} Interesting anti-bacterial activity of as synthesized metal and alloy nanoparticle. -- Abstract: Metallic and bimetallic nanoparticles of copper and silver in various proportions were prepared by microwave assisted chemical reduction in aqueous medium using the biopolymer, starch as a stabilizing agent. Ascorbic acid was used as the reducing agent. The silver and copper nanoparticles exhibited surface plasmon absorption resonance maxima (SPR) at 416 and 584 nm, respectively; while SPR for the Cu-Ag alloys appeared in between depending on the alloy composition. The SPR maxima for bimetallic nanoparticles changes linearly with increasing copper content in the alloy. Transmission electron micrograph (TEM) showed monodispersed particles in the range of 20 {+-} 5 nm size. Both silver and copper nanoparticles exhibited emission band at 485 and 645 nm, respectively. The starch-stabilized nanoparticles exhibited interesting antibacterial activity with both gram positive and gram negative bacteria at micromolar concentrations.

  2. Direct laser writing of μ-chips based on hybrid C-Au-Ag nanoparticles for express analysis of hazardous and biological substances.

    PubMed

    Bashouti, M Y; Manshina, A; Povolotckaia, A; Povolotskiy, A; Kireev, A; Petrov, Y; Mačković, M; Spiecker, E; Koshevoy, I; Tunik, S; Christiansen, S

    2015-04-01

    Micro-chips based on organic-inorganic hybrid nanoparticles (NPs) composed of nanoalloys of gold (Au) and silver (Ag) embedded in an amorphous carbonaceous matrix (C-Au-Ag NPs) were prepared directly on a substrate by the laser-induced deposition (for short: LID) method. The C-Au-Ag NPs show a unique plasmon resonance which enhances Raman scattering of analytes, making the μ-chips suitable to detect ultra-low-volumes (10(-12) liter) and concentrations (10(-9) M) of bio-agents and a hazardous compound. These micro-chips constitute a novel, flexible solid-state device that can be used for applications in point-of-care diagnostics, consumer electronics, homeland security and environmental monitoring. PMID:25673275

  3. Driving degradation within biodegradable polymers with embedded nanoparticles

    NASA Astrophysics Data System (ADS)

    Gorga, Russell; Firestone, Gabriel; Fontecha, Daniela; Bochinski, Jason; Clarke, Laura

    The ability to controllably trigger breaking of chemical bonds enables a substance that has robust material properties during use but can be re-worked or deteriorated upon command. Photothermal heating creates intense local heat at isolated nanoparticle locations within a sample and can result in very different material responses than those achievable with conventional (uniform) heating. In this process, irradiation with visible light resonant with the nanoparticle's surface plasmon resonance results in dramatic local heating of the particles and the surrounding material. This work studies intentional thermal degradation of poly ethyl cyanoacrylate-starch composites doped with metal nanoparticles, and explores differences in degradation speed, efficiency, and resultant mechanical properties when heated via the photothermal effect. This work was supported by the National Science Foundation, Grant #: CMMI-1462966.

  4. [Effect of Eu ions on the Ag nanoparticles precipitation and their optical properties in borate glasses].

    PubMed

    Liu, Zhi-liang; Jiao, Qing; Qiu, Jian-bei

    2014-08-01

    Eu-Ag co-doped borate glasses were prepared by the high temperature solid method in the present work. Absorption and emission spectra were employed to investigate the precipitation of Ag nanoparticles, which is influenced by the network form B2O3 and the co-doped Eu ions. It was found in the absorption spectra of Eu-Ag co-doped sample that a broad band centered at about 410 nm emerged and their intensity decreased with the increase in the BZ 03 concentration. Meanwhile, under the excitation of 340 nm, a broad emission band was observed in the wavelength range of 350-600 nm, which belongs to the blue-green light of Ag aggregates. The intensity of the Ag aggregates presented an increasing tendency with the increase in the B2O3 contents. The weak characteristic emission of Ag aggregates and Eu3+ was observed respectively in their singly doped samples. It is concluded that both their emissions get significant enhancement when Eu ions and Ag ions are used for co-doping the sample. In addition, the increased absorption of Ag nanoparticles was detected with the increase in the Eu ions concentration. Herein, the mechanism behind Eu3+ contribution to the precipitation of Ag nanoparticles is discussed in detail. The luminescence properties of borate glasses can be controlled by the microstructure of the borate glasses. Therefore, the white emission can be realized by the adjustment of glass structure and Eu ions concentration, owing to the red light from Eu3+ : (5)D0-->(7)Fj electronic transition and the blue-green light form the broad emission of Ag aggregates. The borate glasses are expected to be the candidates for the light-emission diode (LED) luminescent materials. PMID:25508714

  5. [Effect of Eu ions on the Ag nanoparticles precipitation and their optical properties in borate glasses].

    PubMed

    Liu, Zhi-liang; Jiao, Qing; Qiu, Jian-bei

    2014-08-01

    Eu-Ag co-doped borate glasses were prepared by the high temperature solid method in the present work. Absorption and emission spectra were employed to investigate the precipitation of Ag nanoparticles, which is influenced by the network form B2O3 and the co-doped Eu ions. It was found in the absorption spectra of Eu-Ag co-doped sample that a broad band centered at about 410 nm emerged and their intensity decreased with the increase in the BZ 03 concentration. Meanwhile, under the excitation of 340 nm, a broad emission band was observed in the wavelength range of 350-600 nm, which belongs to the blue-green light of Ag aggregates. The intensity of the Ag aggregates presented an increasing tendency with the increase in the B2O3 contents. The weak characteristic emission of Ag aggregates and Eu3+ was observed respectively in their singly doped samples. It is concluded that both their emissions get significant enhancement when Eu ions and Ag ions are used for co-doping the sample. In addition, the increased absorption of Ag nanoparticles was detected with the increase in the Eu ions concentration. Herein, the mechanism behind Eu3+ contribution to the precipitation of Ag nanoparticles is discussed in detail. The luminescence properties of borate glasses can be controlled by the microstructure of the borate glasses. Therefore, the white emission can be realized by the adjustment of glass structure and Eu ions concentration, owing to the red light from Eu3+ : (5)D0-->(7)Fj electronic transition and the blue-green light form the broad emission of Ag aggregates. The borate glasses are expected to be the candidates for the light-emission diode (LED) luminescent materials. PMID:25474935

  6. Optical bistability in plasmonic nanoparticles: Effect of size, shape and embedding medium

    NASA Astrophysics Data System (ADS)

    Daneshfar, Nader; Foroughi, Hamidreza

    2016-09-01

    We theoretically investigate the optical bistability, which one input signal allows two possible outputs, from single spherical/cylindrical nanoparticles and also nanoshells in the frame work of quasi-static formalism. It is shown that the bistability behavior greatly depends on several parameters such as the nanoparticle size, material and the surrounding dielectric environment. We demonstrated the width of the bistability region and also the bistable threshold depends on the geometrical parameters, and can be tuned by adjusting the size of nanoparticle, the shell thickness and the dielectric constant of the embedding medium. It is also shown that the optical bistable behavior depends strongly on the shape of plasmonic nanoparticles and nanoshells. However, these dependences of optical bistability of spherical/cylindrical nanoparticles and nanoshells on changing of their geometrical parameters can be used for realize optical switching and sensing purposes.

  7. Size and alloying induced shift in core and valence bands of Pd-Ag and Pd-Cu nanoparticles

    SciTech Connect

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2014-03-28

    In this report, X-ray photoelectron spectroscopy studies have been carried out on Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles having identical sizes corresponding to mobility equivalent diameters of 60, 40, and 20 nm. The nanoparticles were prepared by the gas phase synthesis method. The effect of size on valence and core levels in metal and alloy nanoparticles has been studied by comparing the values to those with the 60 nm nanoparticles. The effect of alloying has been investigated by comparing the valence and core level binding energies of Pd-Cu and Pd-Ag alloy nanoparticles with the corresponding values for Pd, Ag, and Cu nanoparticles of identical sizes. These effects have been explained in terms of size induced lattice contractions, alloying induced charge transfer, and hybridization effects. The observation of alloying and size induced binding energy shifts in bimetallic nanoparticles is important from the point of view of hydrogen reactivity.

  8. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A.

    2013-07-01

    Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur-Ag-SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV-visible diffuse reflectance spectra (UV-vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag-SnO2 and Cur-Ag-SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur-Ag-SnO2 shows better photocatalytic activity than that of Ag-SnO2 and SnO2. The superior photocatalytic activity of Cur-Ag-SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur-Ag-SnO2 were tested.

  9. The disinfection performance and mechanisms of Ag/lysozyme nanoparticles supported with montmorillonite clay.

    PubMed

    Jiang, Jing; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Chang, Ying-Na; Song, Biao; Deng, Can-Hui; Liu, Hong-Yu

    2016-11-01

    The fabrication of montmorillonite (Mt) decorated with lysozyme-modified silver nanoparticles (Ag/lyz-Mt) was reported. The lysozyme (lyz) was served as both reducing and capping reagent. Coupling the bactericidal activity of the lyz with AgNPs, along with the high porous structure and large specific surface area of the Mt, prevented aggregation of AgNPs and promoted nanomaterial-bacteria interactions, resulting in a greatly enhanced bactericidal capability against both Gram positive and Gram negative bacteria. This paper systematically elucidated the bactericidal mechanisms of Ag/lyz-Mt. Direct contact between the Ag/lyz-Mt surface and the bacterial cell was essential to the disinfection. Physical disruption of bacterial membrane was considered to be one of the bactericidal mechanisms of Ag/lyz-Mt. Results revealed that Ag(+) was involved in the bactericidal activity of Ag/lyz-Mt via tests conducted using Ag(+) scavengers. A positive ROS (reactive oxygen species) scavenging test indirectly confirmed the involvement of ROS (O2(-), H2O2, and OH) in the bactericidal mechanism. Furthermore, the concentrations of individual ROS were quantified. Results showed that Ag/lyz-Mt nanomaterial could be a promising bactericide for water disinfection. PMID:27318738

  10. Sequential laser and ultrasonic wave generation of TiO2@Ag core-shell nanoparticles and their anti-bacterial properties.

    PubMed

    Hamad, Abubaker Hassan; Li, Lin; Liu, Zhu; Zhong, Xiang Li; Wang, Tao

    2016-02-01

    Core-shell nanoparticles have unusual physical, chemical and biological properties. Until now, for the Ag and TiO2 combination, only Ag core and TiO2 shell nanoparticles have been practically demonstrated. In this investigation, novel TiO2@Ag core-shell (TiO2 core and Ag shell) nanoparticles were produced via ultrasonic vibration of Ag-TiO2 compound nanoparticles. A bulk Ti/Ag alloy plate was used to generate colloidal Ag-TiO2 compound nanoparticles via picosecond laser ablation in deionised water. The colloidal nanoparticles were then sonicated in an ultrasonic bath to generate TiO2@Ag core-shell nanoparticles. They were characterised using a UV-VIS spectrometer, transmission electron microscopy (TEM), high-angle annular dark-field-Scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The Ag-TiO2 compound and the TiO2@Ag core-shell nanoparticles were examined for their antibacterial activity against Escherichia coli (E. coli) JM109 strain bacteria and compared with those of Ag and TiO2 nanoparticles. The antibacterial activity of the core-shell nanoparticles was slightly better than that of the compound nanoparticles at the same concentration under standard laboratory light conditions and both were better than the TiO2 nanoparticles but not as good as the Ag nanoparticles. PMID:26714980

  11. Preparation and catalytic ability to reduce hydrogen peroxide of Ag nanoparticles highly dispersed via hyperbranched copolymer

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Yang, Weiying; Yang, Jie; He, Linghao; Sun, Jing; Song, Rui; Ma, Zhi; Huang, Wei

    2011-03-01

    Highly dispersed Ag nanoparticles, stabilized by hyperbranched copolymers (HPCs), were prepared by chemical reduction in toluene. These Ag NPs were used further for the fabrication of a hydrogen peroxide (H2O2) sensor, by which a good catalytic ability for the reduction of H2O2 was found.Highly dispersed Ag nanoparticles, stabilized by hyperbranched copolymers (HPCs), were prepared by chemical reduction in toluene. These Ag NPs were used further for the fabrication of a hydrogen peroxide (H2O2) sensor, by which a good catalytic ability for the reduction of H2O2 was found. Electronic supplementary information (ESI) available: Structure and structure parameters of the HPCs, and UV-vis and XPS spectra of the NPs . See DOI: 10.1039/c0nr00567c

  12. Prediction of size distribution of Ag nanoparticles synthesized via gamma-ray radiolysis

    NASA Astrophysics Data System (ADS)

    Liang, Jia-liang; Shen, Sheng-wen; Ye, Sheng-ying; Ye, Lü-meng

    2015-09-01

    The spherical shape Ag nanoparticles synthesized via gamma-ray radiolysis were observed with the transmission electron microscope (TEM). Diameters of Ag nanoparticles were measured from the TEM photographs. Statistical analysis showed that the particle diameter complied with a linear-converted Poisson distribution. The distribution parameter, which was the average of diameters, was related to the ultraviolet-visible spectrum peak position of the nanosilver collosol. An empirical equation was established to predicting size distribution of Ag nanoparticles with the peak position. Nanosilver of different sizes could be synthesized by adjusting the intensity of γ-irradiation, the kind and the addition amount of the stabilizing agent. Because particle size affects the physiochemical properties of nanosilver material, results of this paper would be of practical significance for the application of nanosilver.

  13. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity

    PubMed Central

    Prasad, TNVKV; Elumalai, EK

    2011-01-01

    Objective To formulate a simple rapid procedure for bioreduction of silver nanoparticles using aqueous leaves extract of Moringa oleifera (M. oleifera). Methods 10 mL of leaf extract was mixed to 90 mL of 1 mM aqueous of AgNO3 and was heated at 60 - 80 °C for 20 min. A change from brown to reddish color was observed. Characterization using UV-Vis spectrophotometry, Transmission Electron Microscopy (TEM) was performed. Results TEM showed the formation of silver nanoparticles with an average size of 57 nm. Conclusions M. oleifera demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). Biological methods are good competents for the chemical procedures, which are eco-friendly and convenient. PMID:23569809

  14. Beet juice utilization: Expeditious green synthesis of nobel metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves

    EPA Science Inventory

    Metal nanoparticles of Ag, Au, Pt, and Pd were prepared in aqueous solutions via a rapid microwave-assisted green method using beet juice, an abundant sugar-rich agricultural produce, served as both a reducing and a capping reagent. The Ag nanoparticles with capping prepared by b...

  15. The characteristics of novel bimodal Ag-TiO2 nanoparticles generated by hybrid laser-ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Hamad, Abubaker; Li, Lin; Liu, Zhu; Zhong, Xiang Li; Burke, Grace; Wang, Tao

    2016-04-01

    Silver-titania (Ag-TiO2) nanoparticles with smaller Ag nanoparticles attached to larger TiO2 nanoparticles were generated by hybrid ultrasonic vibration and picosecond laser ablation of Ag and Ti bulk targets in deionised water, for the first time. The laser has a wavelength of 1064 nm and a pulse duration of 10 ps. It was observed that without the ultrasonic vibration, Ag and TiO2 nanoparticles did not combine, thus the role of ultrasonic vibration is essential. In addition, colloidal TiO2 and Ag nanoparticles were generated separately for comparison under the same laser beam characteristics and process conditions. The absorption spectra of colloidal Ag-TiO2 cluster nanoparticles were examined by UV-Vis spectroscopy, and size distribution was characterised using transmission electron microscopy. The morphology and composition of Ag-TiO2 nanoparticles were examined using scanning transmission electron microscopy in high-angle annular dark field, and energy-dispersive X-ray spectroscopy. The crystalline structures were investigated by X-ray diffraction. The size of larger TiO2 particles was in the range 30-150 nm, and the smaller-sized Ag nanoparticles attached to the TiO2 was mainly in the range of 10-15 nm. The yield is more than 50 % with the remaining nanoparticles in the form of uncombined Ag and TiO2. The nanoparticles generated had strong antibacterial effects as tested against E. coli. A discussion is given on the role of ultrasonic vibration in the formation of Ag-TiO2 hybrid nanoparticles by picosecond laser ablation.

  16. Studies on interaction of colloidal Ag nanoparticles with Bovine Serum Albumin (BSA).

    PubMed

    Ravindran, Aswathy; Singh, Anupam; Raichur, Ashok M; Chandrasekaran, N; Mukherjee, Amitava

    2010-03-01

    Biofunctionalization of noble metal nanoparticles like Ag, Au is essential to obtain biocompatibility for specific biomedical applications. Silver nanoparticles are being increasingly used in bio-sensing applications owing to excellent optoelectronic properties. Among the serum albumins, the most abundant proteins in plasma, a wide range of physiological functions of Bovine Serum Albumin (BSA) has made it a model system for biofunctionalization. In absence of adequate prior reports, this study aims to investigate the interaction between silver nanoparticles and BSA. The interaction of BSA [0.05-0.85% concentrations] with Ag nanoparticles [50ppm concentration] in aqueous dispersion was studied through UV-vis spectral changes, morphological and surface structural changes. At pH 7, which is more than the isoelectric point of BSA, a decrease in absorbance at plasmon peak of uninteracted nanoparticles (425nm) was noted till 0.45% BSA, beyond that a blue shift towards 410nm was observed. The blue shift may be attributed to enhanced electron density on the particle surfaces. Increasing pH to 12 enhanced the blue shift further to 400nm. The conformational changes in BSA at alkaline pH ranges and consequent hydrophobic interactions also played an important role. The equilibrium adsorption data fitted better to Freundlich isotherm compared to Langmuir curve. The X-ray diffraction study revealed complete coverage of Ag nanoparticles by BSA. The scanning electron microscopic study of the interacted nanoparticles was also carried out to decipher morphological changes. This study established that tailoring the concentration of BSA and pH of the interaction it was possible to reduce aggregation of nanoparticles. Biofunctionalized Ag nanoparticles with reduced aggregation will be more amenable towards bio-sensing applications. PMID:19896812

  17. Surface modification of oleylamine-capped Ag-Cu nanoparticles to fabricate low-temperature-sinterable Ag-Cu nanoink.

    PubMed

    Kim, Na Rae; Lee, Yung Jong; Lee, Changsoo; Koo, Jahyun; Lee, Hyuck Mo

    2016-08-26

    By treating oleylamine (OA)-capped Ag-Cu nanoparticles with tetramethylammonium hydroxide (TMAH), we obtained metal nanoparticles that are suspended in polar solvents and sinterable at low temperatures. The simple process with ultra sonication enables synthesis of monodispersed and high purity nanoparticles in an organic base, where the resulting nanoparticles are dispersible in polar solvents such as ethanol and isopropyl alcohol. To investigate the surface characteristics, we conducted Fourier-transform infrared and zeta-potential analyses. After thermal sintering at 200 °C, which is approximately 150 °C lower than the thermal decomposition temperature of OA, an electrically conductive thin film was obtained. Electrical resistivity measurements of the TMAH-treated ink demonstrate that surface modified nanoparticles have a low resistivity of 13.7 × 10(-6) Ω cm. These results confirm the prospects of using low-temperature sinterable nanoparticles as the electrode layer for flexible printed electronics without damaging other stacked polymer layers. PMID:27454465

  18. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: green chemistry approach.

    PubMed

    Tamuly, Chandan; Hazarika, Moushumi; Borah, Sarat Ch; Das, Manash R; Boruah, Manas P

    2013-02-01

    The synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Piper pedicellatum C.DC leaf extract is demonstrated here. The rapid formation of stable Ag and Au nanoparticles has been found using P. pedicellatum C.DC leaf extract in aqueous medium at normal atmospheric condition. Competitive reduction of Ag(+) and Au(3+) ions present simultaneously in solution during exposure to P. pedicellatum C.DC leaf extract leads to the synthesis of bimetallic Ag-Au nanoparticles in solution. Transmission electron microscopy (TEM) analysis revealed that the Ag nanoparticles predominantly form spherical in shape with the size range of 2.0±0.5-30.0±1.2 nm. In case of Au nanoparticles, the particles are spherical in shape along with few triangular, hexagonal and pentagonal shaped nanoparticles also observed. X-ray diffraction (XRD) studies revealed that the nanoparticles were face centered cubic (fcc) in shape. Fourier transform infrared spectroscopy (FTIR) showed nanoparticles were capped with plant compounds. The chemical constituents, viz. catechin, gallic acid, courmaric acid and protocatechuic acid of the leaf extract were identified which may act as a reducing, stabilizing and capping agent. The expected reaction mechanism in the formation of Ag and Au nanoparticles is also reported. PMID:23107941

  19. Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena).

    PubMed

    Cruz, Diana; Falé, Pedro L; Mourato, Ana; Vaz, Pedro D; Serralheiro, M Luisa; Lino, Ana Rosa L

    2010-11-01

    The purpose of this study was to develop a simple biological method for the synthesis of Ag nanoparticles (AgNPs) using Lippia citriodora leaves aqueous extract as reducing agent. Transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), and visible absorption spectroscopy (UV-vis) confirmed the reduction of silver ions to AgNPs. Stable, spherical crystalline AgNPs with well defined dimensions (average size of 15-30 nm) were obtained, on treating aqueous silver nitrate with the plant leaf aqueous extract. The kinetic of particles formation was proportional to the effect of reducing agent concentration and was enhanced by the increase of temperature from 25 degrees C to 95 degrees C. Time, temperature and extract concentration did not influence significantly the shape and size of nanoparticles. In order to identify the compounds responsible for the bioreduction of silver ions and stabilization of the AgNPs formed, we investigated the constituents of L. citriodora aqueous extract by high performance liquid chromatography (HPLC) and mass spectrometry (MS). The main compounds found were verbascoside, isoverbascoside, chrysoeriol-7-O-diglucoronide and luteonin-7-O-diglucoronide. The data obtained suggests that the isoverbascoside compound is responsible for Ag(+) ions reduction and act as capping agents of the nanoparticles afterwards. PMID:20655710

  20. Chemical and phase distributions in a multilayered organic matter-Ag nanoparticle thin film system

    NASA Astrophysics Data System (ADS)

    Michel, F. M.; Levard, C.; Wang, Y.; Choi, Y.; Eng, P.; Brown, G. E.

    2010-12-01

    Rapid development of nanotechnologies raises concern regarding the environmental impact of nanoparticles on ecosystems. Among the types of nanoparticles currently in production, metallic silver is the most widely used in nanotechnology (1). Synthetic Ag nanoparticles (Ag-NPs) are most often used for their antimicrobial and antifungal properties that are, in part, explained by the release of highly toxic Ag+ species (2). While such properties are desirable in certain applied cases, the release of Ag-NPs and soluble Ag+ species to the environment is expected to impact biota as well as soil and water quality (3). With the production of Ag-NPs projected to increase (1), the amount of Ag-NPs that will be released to the environment through waste streams is also likely to increase. As such, a deeper understanding of the fundamental processes associated with Ag-NPs toxicity and reactivity is needed to evaluate their impact on the environment. We have studied the interaction during aging of poly-acrylic acid (PAA) and Ag-NPs with average particle sizes of 20 ±5 nm. The sample studied was composed of thin films of PAA and Ag-NPs deposited on a Si-wafer support. PAA served as a model compound and a simplified surrogate for exopolysaccharide, an organic substance produced through metabolic activity by most microorganisms. We applied a novel combination of long-period x-ray standing wave fluorescence yield (XSW-FY) spectroscopy, grazing-incidence x-ray diffraction (GI-XRD), and XRD-based standing wave profiles (XSW-XRD) to obtain chemical- and phase-specific information on this sample. After 24 hours, we observed the formation of AgCl(s) in the PAA film of the sample, which suggests oxidation and dissolution of a portion of the Ag-NPs during aging, resulting in the release of Ag+. In addition, we see partitioning of Cl and Br, both present initially in the PAA, to the intact Ag-NPs thin film. To our knowledge, this is the first application of this suite of techniques to this

  1. Thermal degradation mechanism of triangular Ag@SiO2 nanoparticles.

    PubMed

    Gangishetty, Mahesh K; Scott, Robert W J; Kelly, Timothy L

    2016-06-14

    Triangular silver nanoparticles are promising materials for light harvesting applications because of their strong plasmon bands; these absorption bands are highly tunable, and can be varied over the entire visible range based on the particle size. A general concern with these materials is that they are unstable at elevated temperatures. When thermally annealed, they suffer from changes to the particle morphology, which in turn affects their optical properties. Because of this stability issue, these materials cannot be used in applications requiring elevated temperatures. In order to address this problem, it is important to first understand the degradation mechanism. Here, we measure the changes in particle morphology, oxidation state, and coordination environment of Ag@SiO2 nanotriangles caused by thermal annealing. UV-vis spectroscopy and TEM reveal that upon annealing the Ag@SiO2 nanotriangles in air, the triangular cores are truncated and smaller nanoparticles are formed. Ag K-edge X-ray absorption spectroscopy (XANES and EXAFS) shows that the small particles consist of Ag(0), and that there is a decrease in the Ag-Ag coordination number with an increase in the annealing temperature. We hypothesize that upon annealing Ag in air, it is first oxidized to AgxO, after which it subsequently decomposes back to well-dispersed Ag(0) nanoparticles. In contrast, when the Ag@SiO2 nanotriangles are annealed in N2, since there is no possibility of oxidation, no small particles are formed. Instead, the triangular core rearranges to form a disc-like shape. PMID:26875498

  2. Tunneling Anisotropic Magnetoresistance in Fe Nanoparticles Embedded in MgO Matrix

    NASA Astrophysics Data System (ADS)

    Pham, T. V.; Miwa, S.; Suzuki, Y.

    2016-05-01

    The tunnel magnetoresistance (TMR) effect is related to the relative orientation of the magnetizations of the two ferromagnetic electrodes in magnetic tunnel junctions (MTJs). The tunnel anisotropic magnetoresistance (TAMR) effect is related to the orientation of the magnetization with respect to the current direction or the crystallographic axes. Beyond the TMR, the TAMR is not only present in MTJs in which both electrodes are ferromagnetic but may also appear in tunnel structures with a single magnetic electrode. We investigated the magnetotransport properties in an Au/MgO/Fe nanoparticles/MgO/Cu tunnel junction. We found that both the TMR and TAMR can appear in tunnel junctions with Fe nanoparticles embedded in an MgO matrix. The TMR is attributed to spin-dependent tunneling between Fe nanoparticles, so the device resistance depends on the magnetization directions of adjacent Fe nanoparticles. The TAMR is attributed to the interfacial spin-orbit interaction, so the device resistance depends on each magnetization direction of an Fe nanoparticle. This is the first observation of the TAMR in Fe nanoparticles embedded in an MgO matrix.

  3. Novel method for the preparation of core-shell nanoparticles with movable Ag core and polystyrene loop shell

    SciTech Connect

    Liu Weijun; Zhang Zhicheng . E-mail: lwj3600@ustc.edu; He Weidong; Zheng Cheng; Ge Xuewu; Li, Jian; Liu Huarong; Jiang Hao

    2006-04-15

    Core/shell nanoparticles with movable silver (Ag) core and polystyrene (PSt) shell (Ag at PSt nanoparticle) were successfully synthesized at room temperature and under ambient pressure via two steps: {gamma}-irradiation and interfacial-initiated polymerization. Firstly, mono-dispersed Ag nanoparticles with diameters 20 nm were synthesized in inversed microemulsion by reducing silver nitrate under {gamma}-irradiation. Then, Ag nanoparticles were coated with PSt via interfacial-initiated polymerization with cumene hydroperoxide/ferrous sulfate/disodium ethylenediaminetetraacetate/sodium formaldehyde sulfoxylate (CHPO-Fe {sup 2+}-EDTA-SFS) as the redox initiation pair. The resulted Ag at PSt nanoparticles were identified by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS)

  4. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    DOEpatents

    Wang, Qingwu; Li, Wenguang; Jiang, Hua

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  5. Synthesis and characterization of magnetic nanoparticles embedded in polyacrylonitrile nanofibers

    NASA Astrophysics Data System (ADS)

    Munteanu, Daniel; Ion, Rodica-Mariana; Cocina, George-Costel

    2010-11-01

    Nanomedicine is defined as the monitoring, repair, construction, and control of human biological systems at the molecular level using engineered nanodevices and nanostructures. Polyacrylonitrile (PAN) solution containing the iron oxide precursor iron (III) was electrospun and thermally treated to produce electrically conducting, magnetic carbon nanofiber mats with hierarchical pore structures. This paper discusses the synthesis of magnetite (Fe3O4) nanoparticles with mean crystallite size of 10 nm with polyacrylonitrile (PAN) as the protecting agent, creating nanofiber. The morphology and material properties of the resulting multifunctional nanofiber including the surface area were examined using various characterization techniques. Optical microscopy images show that uniform fibers were produced with a fiber diameter of ~600 nm, and this uniform fiber morphology is maintained after graphitization with a fiber diameter of ~330 nm. X-ray diffraction (XRD) studies reveal the size of Fe3O4 crystals. A combination of XRD and electron microscopy experiments reveals the formation of pores with graphitic nanoparticles in the walls as well as the formation of magnetite nanoparticles distributed throughout the fibers.

  6. Monodispersed bimetallic PdAg nanoparticles with twinned structures: formation and enhancement for the methanol oxidation.

    PubMed

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd₈₀Ag₂₀, Pd₆₅Ag₃₅ and Pd₄₆Ag₅₄ can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd₈₀Ag₂₀ nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system. PMID:24608736

  7. Low-temperature ferromagnetic properties in Co-doped Ag{sub 2}Se nanoparticles

    SciTech Connect

    Yang, Fengxia E-mail: xia9020@hust.edu.cn; Yu, Gen; Han, Chong; Liu, Tingting; Zhang, Duanming; Xia, Zhengcai E-mail: xia9020@hust.edu.cn

    2014-01-06

    β-Ag{sub 2}Se is a topologically nontrivial insulator. The magnetic properties of Co-doped Ag{sub 2}Se nanoparticles with Co concentrations up to 40% were investigated. The cusp of zero-field-cooling magnetization curves and the low-temperature hysteresis loops were observed. With increasing concentration of Co{sup 2+} ions mainly substituting Ag{sub I} sites in the Ag{sub 2}Se structure, the resistivity, Curie temperature T{sub c}, and magnetization increased. At 10 T, a sharp drop of resistance near T{sub c} was detected due to Co dopants. The ferromagnetic behavior in Co-doped Ag{sub 2}Se might result from the intra-layer ferromagnetic coupling and surface spin. This magnetic semiconductor is a promising candidate in electronics and spintronics.

  8. The enhanced SERS effect of Ag/ZnO nanoparticles through surface hydrophobic modification

    NASA Astrophysics Data System (ADS)

    Li, Zhenjiang; Zhu, Kaixing; Zhao, Qian; Meng, Alan

    2016-07-01

    Ag/ZnO nanocomposites modified by a mixture of stearic acid (SA) and polyvinylpyrrolidone (PVP) were obtained using a heating reflux method. Fourier transform infrared spectroscopy (FT-IR) suggests that organic SA/PVP was bonded onto the surface of Ag/ZnO nanocrystals, converting the wettability property of the nanostructures from hydrophilic to hydrophobic. The modified Ag/ZnO nanostructures were confirmed as effective Raman substrates, with a 3-fold signal enhancement compared to the ordinary hydrophilic Ag/ZnO substrate for detecting Rh B molecules due to the hydrophobic condensation effect. It is expected that the modified Ag/ZnO nanoparticles have potential for SERS-based rapid detection of molecules.

  9. The role of Ag nanoparticles in inverted polymer solar cells: Surface plasmon resonance and backscattering centers

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Shen, Liang; Meng, Fanxu; Zhang, Jiaqi; Xie, Wenfa; Yu, Wenjuan; Guo, Wenbin; Jia, Xu; Ruan, Shengping

    2013-03-01

    Here, we demonstrate silver (Ag) nanoparticles (NPs) existing in molybdenum trioxide (MoO3) buffer layers can improve the photocurrent by surface plasmon resonance (SPR) and backscattering enhancement. The device structure is glass/indium tin oxides/titanium dioxide (TiO2)/regioregular poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester/MoO3/Ag NPs/MoO3/Ag. Compared to the device without Ag NPs, the short current density (Jsc) is improved from 7.76 ± 0.14 mA/cm2 to 8.89 ± 0.12 mA/cm2, and the power conversion efficiency is also enhanced from 2.70% ± 0.11% to 3.35% ± 0.08%. The transmittance spectra show that the device with Ag NPs has weaker transmittance than the device without, which could be attributed to the photons absorption of Ag NPs and light scattering by Ag NPs. The absorption profile of the devices with or without Ag NPs is simulated using finite-difference time-domain methods. It is approved that the Ag NPs result in the absorption improvement by SPR and backscattering enhancement.

  10. Mildly reduced graphene oxide-Ag nanoparticle hybrid films for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Li, Xiaocheng; Tay, Beng Kang; Li, Junshuai; Tan, Dunlin; Tan, Chong Wei; Liang, Kun

    2012-04-01

    Large-area mildly reduced graphene oxide (MR-GO) monolayer films were self-assembled on SiO2/Si surfaces via an amidation reaction strategy. With the MR-GO as templates, MR-GO-Ag nanoparticle (MR-GO-Ag NP) hybrid films were synthesized by immersing the MR-GO monolayer into a silver salt solution with sodium citrate as a reducing agent under UV illumination. SEM image indicated that Ag NPs with small interparticle gap are uniformly distributed on the MR-GO monolayer. Raman spectra demonstrated that the MR-GO monolayer beneath the Ag NPs can effectively quench the fluorescence signal emitted from the Ag films and dye molecules under laser excitation, resulting in a chemical enhancement (CM). The Ag NPs with narrow gap provided numerous hot spots, which are closely related with electromagnetic mechanism (EM), and were believed to remarkably enhance the Raman signal of the molecules. Due to the co-contribution of the CM and EM effects as well as the coordination mechanism between the MR-GO and Ag NPs, the MR-GO-Ag NP hybrid films showed more excellent Raman signal enhancement performance than that of either Ag films or MR-GO monolayer alone. This will further enrich the application of surface-enhanced Raman scattering in molecule detection.

  11. Synthesis and biosensor application of Ag@Au bimetallic nanoparticles based on localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Arsalani, S.; Neishaboorynejad, T.

    2014-05-01

    This work demonstrates a simple method for synthesizing gold-silver bimetallic nanoparticles (Ag@Au BNPs). Ag@Au BNPs on the carbon thin film are prepared by co-deposition of RF-sputtering and RF-PECVD using acetylene gas and gold-silver target. X-ray diffraction analysis indicates that Au and Ag NPs with FCC crystal structure are formed in our samples. From AFM image and data, average particles size of gold and silver are estimated to be about 5 and 8 nm, respectively. XRD profile and localized surface plasmon resonance (LSPR) spectroscopy indicate that Ag NPs in Ag@Au BNPs composite have a more chemical activity with respect to bare Ag NPs. Biosensor application of Ag@Au BNPs without probe immobilization is introduced too. The change in LSPR absorption peak of Ag@Au BNPs in presence of DNA primer decamer (ten-deoxycytosine) at fM concentrations is investigated. The LSPR absorption peak of Au NPs has a blue shift and the LSPR absorption peak of Ag NPs has a red shift by addition of DNA primer and under DNA exposure up to 1 h. Our sample shows a good response to low concentration of DNA and has a short response time. Both of these are prerequisite for applying this sample as LSPR biosensor chip.

  12. Green synthesis of halloysite nanotubes supported Ag nanoparticles for photocatalytic decomposition of methylene blue

    NASA Astrophysics Data System (ADS)

    Zou, MeiLing; Du, MingLiang; Zhu, Han; Xu, CongSheng; Fu, YaQin

    2012-08-01

    Using tea polyphenols (TPs) as a reductant, Ag nanoparticles (AgNPs) supported on halloysite nanotubes (HNTs) were simply and greenly synthesized for the photocatalytic decomposition of methylene blue (MB). HNTs were initially functionalized by N-β-aminoethyl-γ-aminopropyl trimethoxysilane (AEAPTMS) to introduce amino groups to form N-HNTs to fasten the AgNPs; then AgNPs were synthesized and ‘anchored’ on the surface of the HNTs. Fourier transform infrared spectroscopy was employed to testify the amino groups on the surface of the HNTs. Transmission electron microscopy, field-emission scanning electron microscopy and x-ray diffraction were utilized to characterize the structure and morphology of the synthesized HNTs supported by the AgNPs (AgNPs@N-HNTs). The results showed that the AgNPs had been synthesized and ‘anchored’ onto the surface of the HNTs with a diameter of about 20-30 nm. X-ray photoelectron spectroscopy analysis revealed the chelating interaction between the AgNPs and N atoms together with the TP molecular. The photocatalytic activity of the as-prepared AgNPs@N-HNTs catalyst was evaluated by decomposition of MB; the results showed that the prepared catalyst exhibited excellent catalytic activity and high adsorption capability to MB.

  13. Frequency-dependent magnetic susceptibility of magnetite and cobalt ferrite nanoparticles embedded in PAA hydrogel.

    PubMed

    van Berkum, Susanne; Dee, Joris T; Philipse, Albert P; Erné, Ben H

    2013-01-01

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network. PMID:23673482

  14. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    PubMed Central

    van Berkum, Susanne; Dee, Joris T.; Philipse, Albert P.; Erné, Ben H.

    2013-01-01

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network. PMID:23673482

  15. Enhanced thermoelectric performance of CdO : Ag nanocomposites.

    PubMed

    Gao, Linjie; Wang, Shufang; Liu, Ran; Zha, Xinyu; Sun, Niefeng; Wang, Shujie; Wang, Jianglong; Fu, Guangsheng

    2016-07-26

    CdO : Ag nanocomposites with metallic Ag nanoparticles embedded in the polycrystalline CdO matrix were synthesized by the solid-state reaction method. The addition of Ag led to increased grain boundaries of CdO and created numerous CdO/Ag interfaces. By incorporating Ag into the CdO matrix, the power factor was increased which was probably due to the carrier energy filtering effect induced by the enhanced energy-dependent scattering of electrons. In addition, reduced thermal conductivity was also achieved by stronger phonon scattering from grain boundaries, CdO/Ag interfaces and Ag nanoparticles. These concomitant effects resulted in enhanced ZT values for all CdO : Ag nanocomposites, demonstrating that the strategy of introducing metallic Ag nanoparticles into the CdO host was very effective in optimizing the thermoelectric performance. PMID:27411573

  16. Matrix and interaction effects on the magnetic properties of Co nanoparticles embedded in gold and vanadium.

    PubMed

    Ruano, M; Díaz, M; Martínez, L; Navarro, E; Román, E; García-Hernandez, M; Espinosa, A; Ballesteros, C; Fermento, R; Huttel, Y

    2013-01-01

    The study of the magnetic properties of Co nanoparticles (with an average diameter of 10.3 nm) grown using a gas-phase aggregation source and embedded in Au and V matrices is presented. We investigate how the matrix, the number of embedded nanoparticles (counted by coverage percentage), the interparticle interactions and the complex nanoparticles/matrix interface structure define the magnetic properties of the studied systems. A threshold coverage of 3.5% of a monolayer was found in both studied systems: below this coverage, nanoparticles behave as an assembly of independent single-domain magnetic entities with uniaxial anisotropy. Above the threshold it is found that the magnetic behavior of the systems is more matrix dependent. While magnetic relaxation and Henkel plots measurements stress the importance of the dipolar interactions and the formation of coherent clusters in the case of the Au matrix, the magnetic behavior of cobalt clusters embedded in the vanadium matrix is explained through the formation of a spin glass-like state at the V-Co interface that screens the magnetic interactions between NPs. PMID:23165521

  17. Cotunneling enhancement of magnetoresistance in double magnetic tunnel junctions with embedded superparamagnetic NiFe nanoparticles

    NASA Astrophysics Data System (ADS)

    Dempsey, K. J.; Hindmarch, A. T.; Wei, H.-X.; Qin, Q.-H.; Wen, Z.-C.; Wang, W.-X.; Vallejo-Fernandez, G.; Arena, D. A.; Han, X.-F.; Marrows, C. H.

    2010-12-01

    Temperature and bias voltage-dependent transport characteristics are presented for double magnetic tunnel junctions (DMTJs) with self-assembled NiFe nanoparticles embedded between insulating alumina barriers. The junctions with embedded nanoparticles are compared to junctions with a single barrier of comparable size and growth conditions. The embedded particles are characterized using x-ray absorption spectroscopy, transmission electron microscopy, and magnetometry techniques, showing that they are unoxidized and remain superparamagnetic to liquid helium temperatures. The tunneling magnetoresistance (TMR) for the DMTJs is lower than the control samples, however, for the DMTJs an enhancement in TMR is seen in the Coulomb blockade region. Fitting the transport data in this region supports the theory that cotunneling is the dominant electron transport process within the Coulomb blockade region, sequential tunneling being suppressed. We therefore see an enhanced TMR attributed to the change in the tunneling process due to the interplay of the Coulomb blockade and spin-dependent tunneling through superparamagnetic nanoparticles, and develop a simple model to quantify the effect, based on the fact that our nanoparticles will appear blocked when measured on femtosecond tunneling time scales.

  18. Ag/Pd core-shell nanoparticles by a successive method: Pulsed laser ablation of Ag in water and reduction reaction of PdCl2

    NASA Astrophysics Data System (ADS)

    Mottaghi, N.; Ranjbar, M.; Farrokhpour, H.; Khoshouei, M.; Khoshouei, A.; Kameli, P.; Salamati, H.; Tabrizchi, M.; Jalilian-Nosrati, M.

    2014-02-01

    In this study Ag/Pd nanoparticles (NPs) have been fabricated by a successive method; first, colloids of Ag nanoparticles (NPs) have been prepared in water by pulsed laser ablation in liquid (PLAL) method. Then PdCl2 solution (up to 0.2 g/l) were added to the as-prepared or aged colloidal Ag NPs. Characterizations were done using UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmissions electron microscopy (TEM) techniques. Spectroscopy data showed that surface plasmon resonance (SPR) peaks of as-prepared Ag NPs at about λ = 400 nm were completely extinguished after addition of PdCl2 solution while this effect was not observed when aged Ag NPs are used. XRD and XPS results revealed that by addition of the PdCl2 solution into the as-prepared Ag NPs, metallic palladium, and silver chloride composition products are generated. TEM images revealed that as a result of this reaction, single and core-shell nanoparticles are obtained and their average sizes are 2.4 nm (Ag) and 3.2 nm (Ag/Pd). The calculated d-spacing values form XRD data with observations on high magnification TEM images were able to explain the chemical nature of different parts of Ag/Pd NPs.

  19. Electric bistability in pentacene film-based transistor embedding gold nanoparticles.

    PubMed

    Tseng, Chiao-Wei; Tao, Yu-Tai

    2009-09-01

    Pentacene films were deposited on a silica surface decorated with gold nanoparticles (Au-NPs). The crystallinity and packing orientation of the film are critically dependent on the surface properties of the nanoparticles, which can be tuned by a self-assembled monolayer (SAM) of organic thiolate on the nanoparticles. High-performance field-effect transistors based on the Au-NPs-embedded pentacene films can be prepared if the nanoparticles are made "hydrophobic" as well as "oleophobic" by appropriate SAMs. Electrical bistability was observed in these devices, with a memory window that depends on the size and surface modification of the Au-NPs. The structural characterization and electronic characteristics of the devices will be detailed. PMID:19655797

  20. Nanofibrillated Cellulose and Copper Nanoparticles Embedded in Polyvinyl Alcohol Films for Antimicrobial Applications

    PubMed Central

    Zhong, Tuhua; Oporto, Gloria S.; Jaczynski, Jacek; Jiang, Changle

    2015-01-01

    Our long-term goal is to develop a hybrid cellulose-copper nanoparticle material as a functional nanofiller to be incorporated in thermoplastic resins for efficiently improving their antimicrobial properties. In this study, copper nanoparticles were first synthesized through chemical reduction of cupric ions on TEMPO nanofibrillated cellulose (TNFC) template using borohydride as a copper reducing agent. The resulting hybrid material was embedded into a polyvinyl alcohol (PVA) matrix using a solvent casting method. The morphology of TNFC-copper nanoparticles was analyzed by transmission electron microscopy (TEM); spherical copper nanoparticles with average size of 9.2 ± 2.0 nm were determined. Thermogravimetric analysis and antimicrobial performance of the films were evaluated. Slight variations in thermal properties between the nanocomposite films and PVA resin were observed. Antimicrobial analysis demonstrated that one-week exposure of nonpathogenic Escherichia coli DH5α to the nanocomposite films results in up to 5-log microbial reduction. PMID:26137482

  1. Gold nanoparticles embedded silicon channel biosensor for improved sensitivity

    NASA Astrophysics Data System (ADS)

    Chang, H. Y.; Arshad, M. K. Md.; M. Nuzaihan M., N.; Fathil, M. F. M.; Hashim, U.

    2016-07-01

    This project discusses the fabrication steps of a biosensor device on silicon-on-insulator (SOI) wafer. Conventional photolithography technique is used to fabricate the device. The gold nanoparticles (GNPs) are then used to enhance the sensitivity of the device. By incorporating the GNPs, it is expected to get higher current compared with the device without GNPs due to better conductivity of gold and higher volume-to-ratio. Hence, with the addition of GNPs, it may boost up the signal and enhance the sensitivity of the device.

  2. Size-Selected Ag Nanoparticles with Five-Fold Symmetry

    PubMed Central

    2009-01-01

    Silver nanoparticles were synthesized using the inert gas aggregation technique. We found the optimal experimental conditions to synthesize nanoparticles at different sizes: 1.3 ± 0.2, 1.7 ± 0.3, 2.5 ± 0.4, 3.7 ± 0.4, 4.5 ± 0.9, and 5.5 ± 0.3 nm. We were able to investigate the dependence of the size of the nanoparticles on the synthesis parameters. Our data suggest that the aggregation of clusters (dimers, trimer, etc.) into the active zone of the nanocluster source is the predominant physical mechanism for the formation of the nanoparticles. Our experiments were carried out in conditions that kept the density of nanoparticles low, and the formation of larges nanoparticles by coalescence processes was avoided. In order to preserve the structural and morphological properties, the impact energy of the clusters landing into the substrate was controlled, such that the acceleration energy of the nanoparticles was around 0.1 eV/atom, assuring a soft landing deposition. High-resolution transmission electron microscopy images showed that the nanoparticles were icosahedral in shape, preferentially oriented with a five-fold axis perpendicular to the substrate surface. Our results show that the synthesis by inert gas aggregation technique is a very promising alternative to produce metal nanoparticles when the control of both size and shape are critical for the development of practical applications. PMID:20596397

  3. Exposure Medium: Key in Identifying Free Ag+ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia magna

    PubMed Central

    Shen, Mo-Hai; Zhou, Xiao-Xia; Yang, Xiao-Ya; Chao, Jing-Bo; Liu, Rui; Liu, Jing-Fu

    2015-01-01

    It is still not very clear what roles the various Ag species play in the toxicity of silver nanoparticles (AgNPs). In this study, we found that traditional exposure media result in uncontrollable but consistent physicochemical transformation of AgNPs, causing artifacts in determination of median lethal concentration (LC50) and hindering the identification of Ag species responsible for the acute toxicity of AgNPs to Daphnia magna. This obstacle was overcome by using 8 h exposure in 0.1 mmol L−1 NaNO3 medium, in which we measured the 8-h LC50 of seven AgNPs with different sizes and coatings, and determined the concentrations of various Ag species. The LC50 as free Ag+ of the seven AgNPs (0.37–0.44 μg L−1) agreed very well with that of AgNO3 (0.40 μg L−1), and showed the lowest value compared to that as total Ag, total Ag+, and dissolved Ag, demonstrating free Ag+ is exclusively responsible for the acute toxicity of AgNPs to D. magna, while other Ag species in AgNPs have no contribution to the acute toxicity. Our results demonstrated the great importance of developing appropriate exposure media for evaluating risk of nanomaterials. PMID:25858866

  4. Exposure Medium: Key in Identifying Free Ag+ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia magna

    NASA Astrophysics Data System (ADS)

    Shen, Mo-Hai; Zhou, Xiao-Xia; Yang, Xiao-Ya; Chao, Jing-Bo; Liu, Rui; Liu, Jing-Fu

    2015-04-01

    It is still not very clear what roles the various Ag species play in the toxicity of silver nanoparticles (AgNPs). In this study, we found that traditional exposure media result in uncontrollable but consistent physicochemical transformation of AgNPs, causing artifacts in determination of median lethal concentration (LC50) and hindering the identification of Ag species responsible for the acute toxicity of AgNPs to Daphnia magna. This obstacle was overcome by using 8 h exposure in 0.1 mmol L-1 NaNO3 medium, in which we measured the 8-h LC50 of seven AgNPs with different sizes and coatings, and determined the concentrations of various Ag species. The LC50 as free Ag+ of the seven AgNPs (0.37-0.44 μg L-1) agreed very well with that of AgNO3 (0.40 μg L-1), and showed the lowest value compared to that as total Ag, total Ag+, and dissolved Ag, demonstrating free Ag+ is exclusively responsible for the acute toxicity of AgNPs to D. magna, while other Ag species in AgNPs have no contribution to the acute toxicity. Our results demonstrated the great importance of developing appropriate exposure media for evaluating risk of nanomaterials.

  5. Deposition of Au and Ag nanoparticles on PEDOT.

    PubMed

    Danieli, Tamar; Colleran, John; Mandler, Daniel

    2011-12-01

    The deposition of Au and Ag, locally and from bulk solution, on poly(3,4-ethylenedioxythiophene) (PEDOT) was studied. Specifically, PEDOT was electrochemically polymerized onto a glassy carbon (GC) electrode and used for bulk deposition of Au and Ag from their respective ions dissolved in the solution as well as for the local deposition of these metals using scanning electrochemical microscopy (SECM). These two sets of experiments were utilized to investigate the difference between Au and Ag electrochemical deposition on PEDOT. In particular, SECM experiments, which were conducted by the controlled anodic dissolution of Au and Ag microelectrodes close to GC/PEDOT, probed the effect of different PEDOT oxidation states on local deposition. The current-time transients recorded during the deposition, combined with scanning electron microscopy and EDX analysis provided insight into the reduction processes. AuCl(4)(-) and Ag(+) ions were electrochemically reduced at a potential equal to and more negative than the ions redox potentials (0.4 and 0.2 V, respectively) and more positive than -0.7 V, where the PEDOT starts transforming into the reduced, i.e. insulating, state. We found that the electroreduction of Ag(+) ions was diffusion-controlled and the PEDOT film served as a simple conductor. On the other hand, the reduction of AuCl(4)(-) ions was enhanced on GC/PEDOT as compared with bare GC, indicating that PEDOT catalyzes the reduction of AuCl(4)(-) to Au. PMID:21993698

  6. Bioaccumulation of Zn and Ag Nanoparticles in the Earthworms (Eisenia fetida)

    NASA Astrophysics Data System (ADS)

    Ha, Lee Seung; Sung-Dae, Kim; Yi, Yang Song; Byeong-Gweon, Lee

    2014-05-01

    Many studies are carried out to evaluate environmental effects of engineered nanoparticles (ENPs). Most of the previous studies primarily focused on the effects of nanoparticles into the aquatic environment and human. Model studies predict that ENPs released into environment would transferred primarily to the soil of the terrestrial environment. Despite this prediction, biogeochemical behavior of ENPs in soil environment as well as bioavailability of ENPs to soil-dwelling organisms such as earthworm, springtail, isopod and nematodes are poorly understood. The main goal of this study was to compare the bioaccumulation factor (BAFs) and subcellular partitioning of nanoparticles in the soil-dwelling earthworm (Eisenia fetida) from ENP (ZnO and Ag nanoparticles) or ionic metal (Zn2+, Ag+) contaminated soil. And the sequential extraction was also used to determine the mobility of metals in soil which could be used as to predict bioavailability and compare that with bioaccumulation factor. The radiotracer method was employed to trace the transfer of ENPs and ionic metal among different environmental media and animals. Radiolabeled 65ZnO, 110mAgNPs coated with PVP or citrate were synthesized in the laboratory and their chemical and biological behavior was compared to ionic 65Zn and 110mAg. The BAFs of Zn and Ag in the earthworms were determined after animals exposed to the contaminated soils. After the 7 days of elimination phase, subcellular partitioning of metals were also obtained. BAF for ZnO(0.06) was 31 times lower than that for Zn ion (1.86), suggesting that ZnO was less bioavailable than its ionic form from contaminated soil. On the other hands, BAFs for AgNPs coated with PVP (0.12) or with citrate (0.11) were comparable to those for Ag ion (0.17), indicating that Ag from contaminated soil was bioavailable in a similar rate regardless of chemical forms. The subcellular partitioning results showed that bioaccumulated Zn from Zn ion and ZnO contaminated soil were

  7. Radially and azimuthally polarized laser induced shape transformation of embedded metallic nanoparticles in glass.

    PubMed

    Tyrk, Mateusz A; Zolotovskaya, Svetlana A; Gillespie, W Allan; Abdolvand, Amin

    2015-09-01

    Radially and azimuthally polarized picosecond (~10 ps) pulsed laser irradiation at 532 nm wavelength led to the permanent reshaping of spherical silver nanoparticles (~30 - 40 nm in diameter) embedded in a thin layer of soda-lime glass. The observed peculiar shape modifications consist of a number of different orientations of nano-ellipsoids in the cross-section of each written line by laser. A Second Harmonic Generation cross-sectional scan method from silver nanoparticles in transmission geometry was adopted for characterization of the samples after laser modification. The presented approach may lead to sophisticated marking of information in metal-glass nanocomposites. PMID:26368440

  8. Ag(I)-triggered one-pot synthesis of Ag nanoparticles onto natural nanorods as a multifunctional nanocomposite for efficient catalysis and adsorption.

    PubMed

    Tian, Guangyan; Wang, Wenbo; Mu, Bin; Kang, Yuru; Wang, Aiqin

    2016-07-01

    A multifunctional palygorskite/polyaniline/Ag nanoparticles (PAL/PANI/AgNPs) nanocomposite was prepared at room temperature using a simple one-pot in-situ polymerization reaction of aniline monomers triggered by Ag(I) on the surface of natural PAL nanorods. Ag(I) served as both the oxidant and the precursor of the AgNPs, which initiated the polymerization of aniline monomers on PAL nanorods while simultaneously being reduced to form Ag(0) nanoparticles (AgNPs). The in-situ formed AgNPs were evenly distributed on the surface of the PAL nanorods because the interfacial effect of PAL prevents their aggregation. The density and size of the AgNPs and the catalytic activity of the nanocomposites could be controlled by altering the molar ratio of aniline to Ag(I). The performance evaluation revealed that the nanocomposites could be used as highly active catalysts, which rapidly catalyzed the reduction of 4-nitrophenol (4-NP) within 2min and Congo red (CR) within 10min. The nanocomposites are also an effective adsorbent for H2PO4(-) able to remove 99.40% of H2PO4(-) (only 61.77% for raw PAL) from a solution with an initial concentration of 50mg/L. This multifunctional nanocomposite synthesized by a simple one-pot approach is a promising material for environmental applications. PMID:27054770

  9. Modification of embedded Cu nanoparticles: Ion irradiation at room temperature

    NASA Astrophysics Data System (ADS)

    Johannessen, B.; Kluth, P.; Giulian, R.; Araujo, L. L.; Llewellyn, D. J.; Foran, G. J.; Cookson, D. J.; Ridgway, M. C.

    2007-04-01

    Cu nanoparticles (NPs) with an average diameter of ∼25 Å were synthesized in SiO2 by ion implantation and thermal annealing. Subsequently, the NPs were exposed to ion irradiation at room temperature simultaneously with a bulk Cu reference film. The ion species/energy was varied to achieve different values for the nuclear energy loss. The short-range atomic structure and average NP diameter were measured by means of extended X-ray absorption fine structure spectroscopy and small angle X-ray scattering, respectively. Transmission electron microscopy yielded complementary results. The short-range order of the Cu films remained unchanged consistent with the high regeneration rate of bulk elemental metals. For the NP samples it was found that increasing nuclear energy loss yielded gradual dissolution of NPs. Furthermore, an increased structural disorder was observed for the residual NPs.

  10. Contribution of Eu ions on the precipitation of silver nanoparticles in Ag-Eu co-doped borate glasses

    SciTech Connect

    Jiao, Qing; Qiu, Jianbei; Zhou, Dacheng; Xu, Xuhui

    2014-03-01

    Graphical abstract: - Highlights: • Silver nanoparticles are precipitated from the borate glasses during the melting process without any further heat treatment. • The reduction of Eu{sup 3+} ions to Eu{sup 2+} ions is presented in this material. • The intensity of Ag{sup +} luminescence. • The introduction of Eu ions accelerated the reaction between Eu{sup 2+} ions and silver ions inducing the silver clusters formation. - Abstract: Ag{sup +} doped sodium borate glasses with different Eu ions concentration were prepared by the melt-quenching method. The absorption at about 410 nm which was caused by the surface plasmon resonance (SPR) of Ag nanoparticles (NPs) is promoted with increasing of Eu ions concentration. Meanwhile, the luminescent spectra showed that the emission intensity of Ag{sup +} decreased while that of the Ag aggregates increased simultaneously. The results indicated that the Ag ions intend to form the high-polymeric state such as Ag aggregates and nanoparticles with increasing of europium ions. Owing to the self-reduction of Eu{sup 3+} to Eu{sup 2+} in our glass system, it revealed that Ag{sup +} has been reduced by the neighboring Eu{sup 2+} which leads to the formation of Ag aggregates and the precipitation of Ag NPs in the matrix. In addition, energy transfer (ET) process from Ag{sup +}/Ag aggregates to the Eu{sup 3+} was investigated for the enhancement of Eu{sup 3+} luminescence.

  11. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    NASA Astrophysics Data System (ADS)

    Rubina, M. S.; Kamitov, E. E.; Zubavichus, Ya. V.; Peters, G. S.; Naumkin, A. V.; Suzer, S.; Vasil'kov, A. Yu.

    2016-03-01

    Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  12. Ag Nanoparticle/Polydopamine-Coated Inverse Opals as Highly Efficient Catalytic Membranes.

    PubMed

    Choi, Gwan H; Rhee, Do Kyung; Park, A Reum; Oh, Min Jun; Hong, Sunghwan; Richardson, Joseph J; Guo, Junling; Caruso, Frank; Yoo, Pil J

    2016-02-10

    Polymeric three-dimensional inverse-opal (IO) structures provide unique structural properties useful for various applications ranging from optics to separation technologies. Despite vast needs for IO functionalization to impart additional chemical properties, this task has been seriously challenged by the intrinsic limitation of polymeric porous materials that do not allow for the easy penetration of waterborne moieties or precursors. To overcome this restriction, we present a robust and straightforward method of employing a dipping-based surface modification with polydopamine (PDA) inside the IO structures, and demonstrate their application to catalytic membranes via synthetic incorporation of Ag nanoparticles. The PDA coating offers simultaneous advantages of achieving the improved hydrophilicity required for the facilitated infiltration of aqueous precursors and successful creation of nucleation sites for a reduction of growth of the Ag nanoparticles. The resulting Ag nanoparticle-incorporated IO structures are utilized as catalytic membranes for the reduction of 4-nitrophenol to its amino derivatives in the presence of NaBH4. Synergistically combined characteristics of high reactivity of Ag nanoparticles along with a greatly enhanced internal surface area of IO structures enable the implementation of remarkably improved catalytic performance, exhibiting a good conversion efficiency greater than 99% while minimizing loss in the membrane permeability. PMID:26780371

  13. Trimetallic nanostructures: the case of AgPd/Pt multiply twinned nanoparticles

    PubMed Central

    Khanal, Subarna; Bhattarai, Nabraj; Velázquez-Salazar, J. Jesús; Bahena, Daniel; Soldano, German; Ponce, Arturo; Mariscal, Marcelo M.; Mejía-Rosales, Sergio; José-Yacamán, Miguel

    2013-01-01

    We report the synthesis, structural characterization, and atomistic simulations of AgPd/Pt trimetallic (TM) nanoparticles. Two types of structure were synthesized using a relatively facile chemical method: multiply twinned core-shell, and hollow particles. The nanoparticles were small in size, with an average diameter of 11 nm and a narrow distribution, and their characterization by aberration corrected scanning transmission electron microscopy allowed us to probe the structure of the particles at atomistic level. In some nanoparticles, the formation of a hollow structure was also observed, that facilitates the alloying of Ag and Pt in the shell region and the segregation of Ag atoms in the surface, affecting the catalytic activity and stability. We also investigated the growth mechanism of the nanoparticles using grand canonical Monte Carlo simulations, and we have found that Pt regions grow at overpotentials on the AgPd nanoalloys, forming 3D islands at the early stages of the deposition process. We found very good agreement between the simulated structures and those observed experimentally. PMID:24165796

  14. Photocatalytic action of AgCl nanoparticles and its antibacterial activity.

    PubMed

    Ashok Kumar, Deenadayalan; Palanichamy, V; Roopan, Selvaraj Mohana

    2014-09-01

    The scientific community is searching for biosynthetic methods for the production of metallic nanoparticles. Biogenic pathway has now become a vast developing area of research. A novel route biological synthesis of silver chloride nanoparticles (AgCI-NPs) using aqueous leaf extract of Morindacitrifolia under ambient conditions were evaluated. Synthesized nanoparticles were confirmed by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of pH on biosynthesis of AgCI-NPs were investigated using UV-vis spectroscopy. TEM images showed that the diameter of stable AgCI-NPs were approximately 12 nm. FTIR spectra provide the evidence for the presence of protein as possible biomolecules responsible for reduction and capping of nanoparticles. The synthesized AgCI-NPs were observed to have a good catalytic activity on the reduction of methylene blue (MB) dye by M.citrifolia extract which has been confirmed by decrease in absorbance maximum values of methylene blue with respect to time using UV-vis spectroscopy and was attributed to the electron relay effect. PMID:25022464

  15. Ag nanoparticles generated using bio-reduction and -coating cause microbial killing without cell lysis.

    PubMed

    Gade, Aniket; Adams, Joshua; Britt, David W; Shen, Fen-Ann; McLean, Joan E; Jacobson, Astrid; Kim, Young-Cheol; Anderson, Anne J

    2016-04-01

    Cost-effective "green" methods of producing Ag nanoparticles (NPs) are being examined because of the potential of these NPs as antimicrobials. Ag NPs were generated from Ag ions using extracellular metabolites from a soil-borne Pythium species. The NPs were variable in size, but had one dimension less than 50 nm and were biocoated; aggregation and coating changed with acetone precipitation. They had dose-dependent lethal effects on a soil pseudomonad, Pseudomonas chlororaphis O6, and were about 30-fold more effective than Ag(+) ions. A role of reactive oxygen species in cell death was demonstrated by use of fluorescent dyes responsive to superoxide anion and peroxide accumulation. Also mutants of the pseudomonad, defective in enzymes that protect against oxidative stress, were more sensitive than the wild type strain; mutant sensitivity differed between exposure to Ag NPs and Ag(+) ions demonstrating a nano-effect. Imaging of bacterial cells treated with the biocoated Ag NPs revealed no cell lysis, but there were changes in surface properties and cell height. These findings support that biocoating the NPs results in limited Ag release and yet they retained potent antimicrobial activity. PMID:26805711

  16. Polyvinyl alcohol electrospun nanofibers containing Ag nanoparticles used as sensors for the detection of biogenic amines

    NASA Astrophysics Data System (ADS)

    Marega, Carla; Maculan, Jenny; Rizzi, Gian Andrea; Saini, Roberta; Cavaliere, Emanuele; Gavioli, Luca; Cattelan, Mattia; Giallongo, Giuseppe; Marigo, Antonio; Granozzi, Gaetano

    2015-02-01

    Polyvinyl alcohol (PVA) electrospun nanofibers containing Ag nanoparticles (NPs) have been deposited on glass substrates. The aim of the work was to test the feasibility of this approach for the detection of biogenic amines by using either the Ag localized surface plasmon resonance quenching caused by the adsorption of amines on Ag NPs or by detecting the amines by surface enhanced Raman spectroscopy (SERS) after adsorption, from the gas phase, on the metal NPs. Two different approaches have been adopted. In the first one an ethanol/water solution containing AgNO3 was used directly in the electrospinning apparatus. In this way, a simple heat treatment of the nanofibers mat was sufficient to obtain the formation of Ag NPs inside the nanofibers and a partial cross-link of PVA. In the second procedure, the Ag NPs were deposited on PVA nanofibers by using the supersonic cluster beam deposition method, so that a beam of pure Ag NPs of controlled size was obtained. Exposure of the PVA mat to the beam produced a uniform distribution of the NPs on the nanofibers surface. Ethylendiamine vapors and volatile amines released from fresh shrimp meat were chemisorbed on the nanofibers mats. A SERS spectrum characterized by a diagnostic Ag-N stretching vibration at 230 cm-1 was obtained. The results allow to compare the two different approaches in the detection of ammines.

  17. Effect of incorporated PVP/Ag nanoparticles on ZnPc/C60 organic solar cells.

    PubMed

    Heo, Ilsu; Kim, Jinhyun; Yim, Sanggyu

    2013-06-01

    Various sizes of PVP-capped Ag nanoparticles were incorporated in the PEDOT:PSS layer of ZnPc/C60-based small-molecule organic solar cells. The incorporated nanoparticles partially block the incident light, but this was offset by the scattering effect and consequent increase in path lengths through the active organic layers. As a result, the overall power conversion efficiency of the cell increased by approximately 15% when nanoparticles with an average diameter of 24 nm were used. PMID:23862493

  18. Magnetic hyperthermia in brick-like Ag@Fe3O4 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Brollo, M. E. F.; Orozco-Henao, J. M.; López-Ruiz, R.; Muraca, D.; Dias, C. S. B.; Pirota, K. R.; Knobel, M.

    2016-01-01

    Heating efficiency of multifunctional Ag@Fe3O4 brick-like nanoparticles under alternating magnetic field was investigated by means of specific absorption rate (SAR) measurements, and compared with equivalent measurements for plain magnetite and dimer heteroparticles. The samples were synthesized by thermal decomposition reactions and present narrow size polydispersity and high degree of crystallinity. The SAR values are analyzed using the superparamagnetic theory, in which the basic morphology, size and dispersion of sizes play key roles. The results suggest that these novel brick-like nanoparticles are good candidates for hyperthermia applications, displaying heating efficiencies comparable with the most efficient plain nanoparticles.

  19. Bimetallic ruthenium-copper nanoparticles embedded in mesoporous carbon as an effective hydrogenation catalyst.

    PubMed

    Liu, Jiajia; Zhang, Li Li; Zhang, Jiatao; Liu, Tao; Zhao, X S

    2013-11-21

    Bimetallic ruthenium-copper nanoparticles embedded in the pore walls of mesoporous carbon were prepared via a template route and evaluated in terms of catalytic properties in D-glucose hydrogenation. The existence of bimetallic entities was supported by Ru L3-edge and Cu K-edge X-ray absorption results. The hydrogen spillover effect of the bimetallic catalyst on the hydrogenation reaction was evidenced by the results of both hydrogen and carbon monoxide chemisorptions. The bimetallic catalyst displayed a higher catalytic activity than the single-metal catalysts prepared using the same approach, namely ruthenium or copper nanoparticles embedded in the pore walls of mesoporous carbon. This improvement was due to the changes in the geometric and electronic structures of the bimetallic catalyst because of the presence of the second metal. PMID:24072134

  20. Controlled Embedding of Metal Oxide Nanoparticles in ZSM-5 Zeolites through Preencapsulation and Timed Release.

    PubMed

    Lai, Yungchieh; Rutigliano, Michael N; Veser, Götz

    2015-09-29

    We report a straightforward and transferrable synthesis strategy to encapsulate metal oxide nanoparticles (NPs) in mesoporous ZSM-5 via the encapsulation of NPs into silica followed by conversion of the NP@silica precursor to NP@ZSM-5. The systematic bottom-up approach allows for straightforward, precise control of both the metal weight loading and size of the embedded NP and yields uniform NP@ZSM-5 microspheres composed of stacked ZSM-5 nanorods with substantial mesoporosity. Key to the synthesis is the timed release of the embedded NPs during dissolution of the silica matrix in the hydrothermal conversion step, which finely balances the rate of NP release with the rate of SiO2 dissolution and the subsequent nucleation of aluminosilicate. The synthesis approach is demonstrated for Zn, Fe, and Ni oxide encapsulation in ZSM-5 but can be expected to be broadly transferrable for the encapsulation of metal and metal oxide nanoparticles into other zeolite structures. PMID:26352788

  1. The IP6 micelle-stabilized small Ag cluster for synthesizing Ag-Au alloy nanoparticles and the tunable surface plasmon resonance effect

    NASA Astrophysics Data System (ADS)

    Wang, Na; Wen, Ying; Wang, Yao; Zhang, Rui; Chen, Xiyao; Ling, Bo; Huan, Shuangyan; Yang, Haifeng

    2012-04-01

    The stable small Ag seeds (size in diameter < 10 nm) were obtained in the presence of inositol hexakisphosphoric (IP6) micelles. Then Ag-Au bimetallic nanoparticles were synthesized through a replacement reaction with the rapid interdiffusion process between such small Ag seeds in nanoclusters and HAuCl4. Adjusting the dosage of HAuCl4 resulted in different products, which possessed unique surface plasmon resonances (SPR). The morphologies of the as-made nanoparticles were observed using transmission electron microscopy and field emission scanning electron microscopy and their compositions were determined by energy-dispersive x-ray spectroscopy. Among them, the Ag-Au alloy nanoparticles with the cauliflower-like structure had a suitable SPR for highly sensitive Raman detection application as a surface-enhanced Raman scattering (SERS) substrate with a long-term stability of six months.

  2. Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island.

    PubMed

    Xu, Jinxia; Xiao, Xiangheng; Ren, Feng; Wu, Wei; Dai, Zhigao; Cai, Guangxu; Zhang, Shaofeng; Zhou, Juan; Mei, Fei; Jiang, Changzhong

    2012-01-01

    In order to overcome the low utilization ratio of solar light and high electron-hole pair recombination rate of TiO2, the triangular Ag nanoparticle island is covered on the surface of the TiO2 thin film. Enhancement of the photocatalytic activity of the Ag/TiO2 nanocomposite system is observed. The increase of electron-hole pair generation is caused by the enhanced near-field amplitudes of localized surface plasmon of the Ag nanoparticles. The efficiently suppressed recombination of electron-hole pair caused by the metal-semiconductor contact can also enhance the photocatalytic activity of the TiO2 film. PMID:22548875

  3. Thermally switchable dispersions of thermochromic Ag2HgI4 nanoparticles.

    PubMed

    Schwiertz, Janine; Geist, André; Epple, Matthias

    2009-04-28

    Thermochromic Ag(2)HgI(4) nanoparticles were prepared by rapid precipitation from aqueous solution. Stable colloids were formed by coating the particles with four different polymers, respectively. The four resulting systems of functionalised Ag(2)HgI(4) nanoparticles were characterised with respect to their polymer content (elemental analysis), particle size (dynamic light scattering, scanning electron microscopy), optical properties in dispersion (UV spectroscopy), crystallinity (X-ray powder diffraction), and thermochromic transition temperature (differential scanning calorimetry) and also compared to the unfunctionalised bulk phase Ag(2)HgI(4). Stable dispersions with a reversible temperature-induced colour change from yellow to orange (T(trs) = 25-40 degrees C) were obtained. PMID:19352519

  4. Energetics of the formation of Cu-Ag core–shell nanoparticles

    SciTech Connect

    Chandross, Michael

    2014-10-06

    Our work presents molecular dynamics and Monte Carlo simulations aimed at developing an understanding of the formation of core–shell Cu-Ag nanoparticles. The effects of surface and interfacial energies were considered and used to form a phenomenological model that calculates the energy gained upon the formation of a core–shell structure from two previously distinct, non-interacting nanoparticles. In most cases, the core–shell structure was found to be energetically favored. Specifically, the difference in energy as a function of the radii of the individual Cu and Ag particles was examined, with the assumption that a core–shell structure forms. In general, it was found that the energetic gain from forming such a structure increased with increasing size of the initial Ag particle. This result was interpreted as a result of the reduction in surface energy. Moreover, for two separate particles, both Cu and Ag contribute to the surface energy; however, for a core–shell structure, the only contribution to the surface energy is from the Ag shell and the Cu contribution is changed to a Cu–Ag interfacial energy, which is always smaller.

  5. Energetics of the formation of Cu-Ag core–shell nanoparticles

    DOE PAGESBeta

    Chandross, Michael

    2014-10-06

    Our work presents molecular dynamics and Monte Carlo simulations aimed at developing an understanding of the formation of core–shell Cu-Ag nanoparticles. The effects of surface and interfacial energies were considered and used to form a phenomenological model that calculates the energy gained upon the formation of a core–shell structure from two previously distinct, non-interacting nanoparticles. In most cases, the core–shell structure was found to be energetically favored. Specifically, the difference in energy as a function of the radii of the individual Cu and Ag particles was examined, with the assumption that a core–shell structure forms. In general, it was foundmore » that the energetic gain from forming such a structure increased with increasing size of the initial Ag particle. This result was interpreted as a result of the reduction in surface energy. Moreover, for two separate particles, both Cu and Ag contribute to the surface energy; however, for a core–shell structure, the only contribution to the surface energy is from the Ag shell and the Cu contribution is changed to a Cu–Ag interfacial energy, which is always smaller.« less

  6. Self-standing, metal nanoparticle embedded transparent films from multi-armed cardanol conjugates through in situ synthesis.

    PubMed

    Jyothish, Kuthanapillil; Vemula, Praveen Kumar; Jadhav, Swapnil R; Francesconi, Lynn C; John, George

    2009-09-28

    We report multi-armed/dendritic molecules having unsaturated side chains for generating scratch-free, self-standing cross-linked transparent films with embedded metal nanoparticles via autoxidation induced in situ synthesis. PMID:19724787

  7. Co3O4 nanoparticle embedded carbonaceous fibres: a nanoconfinement effect on enhanced lithium-ion storage.

    PubMed

    Sun, Jin; Li, Daohao; Xia, Yanzhi; Zhu, Xiaoyi; Zong, Lu; Ji, Quan; Jia, Yi Alec; Yang, Dongjiang

    2015-11-21

    Co3O4 nanoparticle embedded carbonaceous fibres were prepared from Co(2+) coordinated regenerated cellulose fibres, which showed high reversible capacity and excellent cycling stability as anode materials for Li-ion batteries. PMID:26399496

  8. Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: from shape to surface

    PubMed Central

    Oyarzún, Simón; Tamion, Alexandre; Tournus, Florent; Dupuis, Véronique; Hillenkamp, Matthias

    2015-01-01

    Strong size-dependent variations of the magnetic anisotropy of embedded cobalt clusters are evidenced quantitatively by combining magnetic experiments and advanced data treatment. The obtained values are discussed in the frame of two theoretical models that demonstrate the decisive role of the shape in larger nanoparticles and the predominant role of the surface anisotropy in clusters below 3 nm diameter. PMID:26439626

  9. Bimetallic ruthenium-copper nanoparticles embedded in mesoporous carbon as an effective hydrogenation catalyst

    NASA Astrophysics Data System (ADS)

    Liu, Jiajia; Zhang, Li Li; Zhang, Jiatao; Liu, Tao; Zhao, X. S.

    2013-10-01

    Bimetallic ruthenium-copper nanoparticles embedded in the pore walls of mesoporous carbon were prepared via a template route and evaluated in terms of catalytic properties in d-glucose hydrogenation. The existence of bimetallic entities was supported by Ru L3-edge and Cu K-edge X-ray absorption results. The hydrogen spillover effect of the bimetallic catalyst on the hydrogenation reaction was evidenced by the results of both hydrogen and carbon monoxide chemisorptions. The bimetallic catalyst displayed a higher catalytic activity than the single-metal catalysts prepared using the same approach, namely ruthenium or copper nanoparticles embedded in the pore walls of mesoporous carbon. This improvement was due to the changes in the geometric and electronic structures of the bimetallic catalyst because of the presence of the second metal.Bimetallic ruthenium-copper nanoparticles embedded in the pore walls of mesoporous carbon were prepared via a template route and evaluated in terms of catalytic properties in d-glucose hydrogenation. The existence of bimetallic entities was supported by Ru L3-edge and Cu K-edge X-ray absorption results. The hydrogen spillover effect of the bimetallic catalyst on the hydrogenation reaction was evidenced by the results of both hydrogen and carbon monoxide chemisorptions. The bimetallic catalyst displayed a higher catalytic activity than the single-metal catalysts prepared using the same approach, namely ruthenium or copper nanoparticles embedded in the pore walls of mesoporous carbon. This improvement was due to the changes in the geometric and electronic structures of the bimetallic catalyst because of the presence of the second metal. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03813k

  10. Fluorescent cadmium telluride quantum dots embedded chitosan nanoparticles: a stable, biocompatible preparation for bio-imaging.

    PubMed

    Ghormade, Vandana; Gholap, Haribhau; Kale, Sonia; Kulkarni, Vaishnavi; Bhat, Suresh; Paknikar, Kishore

    2015-01-01

    Fluorescent cadmium telluride quantum dots (CdTe QDs) are an optically attractive option for bioimaging, but are known to display high cytotoxicity. Nanoparticles synthesized from chitosan, a natural biopolymer of β 1-4 linked glucosamine, display good biocompatibility and cellular uptake. A facile, green synthetic strategy has been developed to embed green fluorescent cadmium telluride quantum dots (CdTe QDs) in biocompatible CNPs to obtain a safer preparation than 'as is' QDs. High-resolution transmission electron microscopy showed the crystal lattice corresponding to CdTe QDs embedded in CNPs while thermogravimetry confirmed their polymeric composition. Electrostatic interactions between thiol-capped QDs (4 nm, -57 mV) and CNPs (~300 nm, +38 mV) generated CdTe QDs-embedded CNPs that were stable up to three months. Further, viability of NIH3T3 mouse fibroblast cells in vitro increased in presence of QDs-embedded CNPs as compared to bare QDs. At the highest concentration (10 μg/ml), the former shows 34 and 39% increase in viability at 24 and 48 h, respectively, as compared to the latter. This shows that chitosan nanoparticles do not release the QDs up to 48 h and do not cause extended toxicity. Furthermore, hydrolytic enzymes such as lysozyme and chitinase did not degrade chitosan nanoparticles. Moreover, QDs-embedded CNPs show enhanced internalization in NIH3T3 cells as compared to bare QDs. This method offers ease of synthesis and handling of stable, luminescent, biocompatible CdTe QDs-embedded CNPs with a favorable toxicity profile and better cellular uptake with potential for bioimaging and targeted detection of cellular components. PMID:25410797

  11. Size dependent thermalization time of Ag nanoparticles and the surface density profile

    NASA Astrophysics Data System (ADS)

    Lopez-Bastidas, Catalina

    2009-03-01

    It is well known that the lack of d-electron screening in the s-electron spill-out region at the surface of Ag nanoparticles increases the electron-electron interaction in this region compared to the bulk. Therefore when comparing the electron-electron interaction contribution to the thermalization time of Ag nanoparticles of varying radius, smaller particles thermalize faster due to the increased surface to bulk ratio. One aspect which has not been addressed is the effect of the spatial distribution of charge at the surface of the nanoparticle. In this work it is shown that the size dependence of the thermalization time is very sensitive to the surface density profile. The electron thermalization time of conduction electrons in Ag nanoparticles as a function of the radius is calculated. The sensitivity of the scattering rate to the spatial distribution of charge at the surface of the nanostructure is analyzed using several model surface profiles. The change in surface charge distribution via charging or coating of the nanospheres is shown to be a tool for control and probing of the ultra-fast electron-electron dynamics in metallic nanoparticles.

  12. Spectroscopic monitoring on irradiation-induced formation of AuAg alloy nanoparticles by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Herbani, Yuliati; Nakamura, Takahiro; Sato, Shunichi

    2016-02-01

    The interaction of an intense femtosecond laser pulses with a neat liquid solvent has been known to produce a number of highly reactive species that are useful to induce chemical reactions in the solution through the nonlinear absorption processes. When metal ions are present in the solution, they are assumed to readily reduce by ions, radicals, molecules or excited states generated photolytically from the solvent resulting in the formation of zerovalent metal nanoalloys. If two kinds of metal precursors are involved in a reduction process, the alloying process is expected. In this work, irradiation-induced synthesis of AuAg bimetallic nanoparticle at different laser-pulse energies was examined to investigate the formation mechanism in the presence of NH4OH in the initial solution. At a given laser pulse energy (5.8 mJ/pulse), the time evolution of the UV-visible absorption spectra showed that the formation of AuAg nanoalloys most likely begin with the formation of Ag-riched alloy nanoparticles. As the reduction is started, the absorption spectrum of solution was closer to that of pure Ag nanoparticles. This indicates that the reduction rate of Ag is relatively greater than that of Au nanoparticle in the presence of ammonia. The single peak position then shifts to the red region as the irradiation time increases. After 10 min, the peak positions are between pure silver and gold peaks indicating the alloying process occurs at this stage. At low pulse energy (1.0 mJ/pulse), there was an induction time for several minutes before the absorption is detectable, and hence the alloying process is also delayed (after 20 minutes irradiation). While the formation rate of nanoparticles is more pronounced at high laser pulse energy, the formation yield is relatively the same for both laser pulse energies.

  13. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    SciTech Connect

    Dalavi, Shankar B.; Panda, Rabi N.; Raja, M. Manivel

    2015-06-24

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The result has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.

  14. Formation of DNA-network embedding ferromagnetic Cobalt nano-particles

    NASA Astrophysics Data System (ADS)

    Kanki, Teruo; Tanaka, Hidekazu; Shirakawa, Hideaki; Sacho, Yu; Taniguchi, Masateru; Lee, Hea-Yeon; Kawai, Tomoji; Kang, Nam-Jung; Chen, Jinwoo

    2002-03-01

    Formation of DNA-network embedding ferromagnetic Cobalt nano-particles T. Kanki, Hidekazu. Tanaka, H. Shirakawa, Y. Sacho, M. Taniguchi, H. Lee, T. Kawai The Institute of Scientific and Industrial Research, Osaka University, Japan and Nam-Jung Kang, Jinwoo Chen Korea Advanced Institute of Science and Technology (KAIST), Korea DNA can be regarded as a naturally occurring and highly specific functional biopolymer and as a fine nano-wire. Moreover, it was found that large-scale DNA networks can be fabricated on mica surfaces. By using this network structure, we can expect to construct nano-scale assembly of functional nano particle, for example ferromagnetic Co nano particles, toward nano scale spin-electronics based on DNA circuits. When we formed DNA network by 250mg/ml DNA solution of poly(dG)-poly(dC) including ferromagnetic Co nano particles (diameter of 12nm), we have conformed the DNA network structure embedding Co nano-particles (height of about 12nm) by atomic force microscopy. On the other hand, we used 100mg/ml DNA solution, DNA can not connect each other, and many Co nano-particles exist without being embedded.

  15. Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study

    NASA Astrophysics Data System (ADS)

    Medhe, Sharad; Bansal, Prachi; Srivastava, Man Mohan

    2012-12-01

    The antioxidative effect of selected dietary compounds (3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine) was determined in single and combination using DPPH (2,2-diphenyl-l-picrylhydrazyl), OH (hydroxyl), H2O2 (hydrogen peroxide) and NO (nitric oxide) radical scavenging assays. Radical scavenging effect of the dietary phytochemicals individually are found to be in the order: ascorbic acid (standard) > lutein > 3,6-dihydroxyflavone > selenium methyl selenocysteine, at concentration 100 μg/ml, confirmed by all the four bioassays (p < 0.05). Among the various combinations studied, the triplet combination of 3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine (1:1:1), exhibited enhancement in the target activity at same concentration level. Synthesized gold nanoparticle embedded 3,6-dihydroxyflavone further enhanced the target antioxidant activity. The combinational study including gold nanoparticle embedded 3,6-dihydroxyflavone with other native dietary nutrients showed remarkable increase in antioxidant activity at the same concentration level. The present in vitro study on combinational and nanotech enforcement of dietary phytochemicals shows the utility in the architecture of nanoparticle embedded phytoproducts having a wide range of applications in medical science.

  16. Iron nanoparticles embedded in carbon films: structural and optical properties

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, Seyed Ali

    2016-06-01

    In the present work amorphous hydrogenated carbon films with sputtered iron nanoparticles (Fe NPs @ a-C:H) were deposited by co-deposition of RF-sputtering and RF-plasma enhanced chemical vapor deposition methods using acetylene gas and iron target on quartz and silicon substrates. Samples were prepared in different initial pressures and during constant deposition time. The crystalline structure of Fe NPs @ a-C:H was studied using X-ray diffraction and selected area electron diffraction patterns. The X-ray photoelectron spectroscopy analysis presents that increasing the initial pressure decreases the atomic ratio of Fe/C and the sp3-hybridized carbon content in prepared samples. The transmission electron microscope image shows the encapsulated Fe NPs in carbon films. The optical properties and localized surface plasmon resonance (LSPR) of samples were studied using UV-visible spectrophotometry, which is shown that increasing of Fe content decreases the intensity of LSPR peak and increases the optical band gap.

  17. Fractal structure formation from Ag nanoparticle films on insulating substrates.

    PubMed

    Tang, Jing; Li, Zhiyong; Xia, Qiangfei; Williams, R Stanley

    2009-07-01

    Two dimensional (2D) fractal structures were observed to form from fairly uniform Ag island films (equivalent mass thicknesses of 1.5 and 5 nm) on insulating silicon dioxide surfaces (thermally grown silicon oxide on Si or quartz) upon immersion in deionized water. This result is distinctly different from the previously observed three-dimensional (3D) growth of faceted Ag nanocrystals on conductive surfaces (ITO and graphite) as the result of an electrochemical Ostwald ripening process, which also occurs on native oxide covered silicon surfaces as reported here. The fractal structures formed by diffusion-limited aggregation (DLA) of Ag species on the insulating surfaces. We present the experimental observation of this phenomenon and discuss some possible mechanisms for the DLA formation. PMID:19496573

  18. Synthesis of silver nanoparticles deposited on silica by γ-irradiation and preparation of PE/Ag nano compound masterbatches

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Kim Lan; Trinh Nguyen, Thuy Ai; Phu Dang, Van; Duy Nguyen, Ngoc; Le, Anh Quoc; Hien Nguyen, Quoc

    2013-12-01

    Silver nanoparticles (AgNPs) deposited on silica were synthesized by gamma Co-60 irradiation of Ag+ dispersion in silica/ethanol/water mixture (9/80/20:w/v/v). The reduction of Ag+ is occurred by hydrated electron (e-aq) and hydrogen atom (H•) generated during radiolysis of ethanol/water. The conversion doses (Ag+ → Ag0) were determined by UV-Vis spectroscopy. The synthesized AgNPs/silica were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD), which showed the size of AgNPs to be in the range of 5-40 nm for Ag+ concentrations from 5 to 20 mM. Masterbatches of PE/AgNPs/silica compound with silver content from 250 to 1000 mg kg-1 were also prepared. These masterbatches can be suitably used for various applications such as antimicrobial food containers and packing films, etc.

  19. Synthesis and the enhanced visible-light-driven photocatalytic activity of BiVO4 nanocrystals coupled with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, W. Z.; Meng, Shan; Tan, Miao; Jia, L. J.; Zhou, Y. X.; Wu, Shuang; Huang, X. W.; Liang, Y. J.; Shi, H. L.

    2015-03-01

    BiVO4 nanocrystals coupled with Ag nanoparticles (Ag-BiVO4 heterogeneous nanostructures) have been prepared by a new strategy via combining a hydrothermal route with a polyol process, in which BiVO4 nanocrystals were first synthesized by a hydrothermal route, and then, Ag nanoparticles were grown on the surfaces of the presynthesized BiVO4 nanocrystals through a polyol process. The photocatalytic evaluations demonstrate that BiVO4 nanocrystals coupled with Ag nanoparticles exhibit the enhanced visible-light-driven photocatalytic activity for the degradation of methylene blue (MB) and rhodamine B (RhB). The energy alignment and diffuse reflectance property of Ag-BiVO4 heterogeneous nanostructures demonstrate that Ag nanoparticles attached on the surfaces of BiVO4 nanocrystals play double roles for the enhanced visible-light-driven photocatalytic activity. First, the Ag nanoparticles grown on the surfaces of BiVO4 nanocrystals may act as electron sinks to retard the recombination of the photogenerated electrons and holes in BiVO4 so as to improve the charge separation on its surfaces. Second, the Ag nanoparticles increase the visible light absorption of the Ag-BiVO4 photocatalyst due to surface plasmon resonance (SPR) of Ag nanoparticles. These double roles of Ag nanoparticles make Ag-BiVO4 heterogeneous nanostructures to exhibit the enhanced photocatalytic activity to decompose MB and RhB under visible light irradiation, compared to the pure BiVO4 nanocrystals. The enhanced photocatalytic activity is attributed to the charge transfer from BiVO4 to the attached Ag nanoparticles as well as SPR absorption of Ag nanoparticles. The present work not only provides an efficient route to enhance visible-light-driven photocatalytic activity of BiVO4, but also offers a new strategy for fabricating metal-semiconductor heterogeneous nanostructure photocatalysts, which are expected to show considerable potential applications in solar-driven wastewater treatment and water

  20. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles.

    PubMed

    Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han; Cho, Changsoon; Choi, Dae-Geun; Lee, Jung-Yong

    2016-06-01

    In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq(-1) and an optical transmittance of 85.4%. PMID:27187802

  1. Photostability of gold nanoparticles with different shapes: the role of Ag clusters.

    PubMed

    Attia, Yasser A; Buceta, David; Requejo, Félix G; Giovanetti, Lisandro J; López-Quintela, M Arturo

    2015-07-14

    Anisotropic gold nanostructures prepared by the seed method in the presence of Ag ions have been used to study their photostability to low-power UV irradiation (254 nm) at room temperature. It has been observed that, whereas spheres are very stable to photoirradiation, rods and prisms suffer from photocorrosion and finally dissolve completely with the production of Au(III) ions. Interpretation of these differences is based on the presence of semiconductor-like Ag clusters, adsorbed onto rods and prisms, able to photocorrode the Au nanoparticles, which are absent in the case of Au spheres. We further show direct evidence of the presence of Ag clusters in Au nanorods by XANES. These results confirm a previous hypothesis (J. Am. Chem. Soc., 2014, 136, 1182-1185) about the major influence of very stable small Ag clusters, not only on the anisotropic formation of nanostructures but also on their photostability. PMID:26068070

  2. Resonant surface enhancement of Raman scattering of Ag nanoparticles on silicon substrates fabricated by dc sputtering

    SciTech Connect

    Fang Yingcui; Li Xiaxi; Blinn, Kevin; Mahmoud, Mahmoud A.; Liu Meilin

    2012-09-15

    Ag nanoparticles (AgNPs) were deposited onto silicon substrates by direct current (dc) magnetron sputtering. The influences of sputtering power and sputtering time on the AgNP film morphology were studied using atomic force microscopy. The particle size was successfully tuned from 19 nm to 53 nm by varying the sputtering time at a dc power of 10 W. When Rhodamine 6 G (R6G) was used as the probe molecule, the AgNP films showed significant surface enhanced Raman scattering effect. In particular, it is found that larger particles show stronger enhancement for lower concentrations of R6G while smaller particles display stronger enhancement for higher concentrations of R6G.

  3. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Ye, Feng; Yao, Qiaofeng; Cao, Hongbin; Xie, Jianping; Lee, Jim Yang; Yang, Jun

    2014-02-01

    The usefulness of Pt-based nanomaterials for catalysis can be greatly enhanced by coupling morphology engineering to the strategic presence of a second or even third metal. Here we demonstrate the design and preparation of stellated Ag-Pt bimetallic nanoparticles where significant activity difference between the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) may be realized by relegating Ag to the core or by hollowing out the core. In particular the stellated Pt surface, with an abundance of steps, edges, corner atoms, and {111} facets, is highly effective for the ORR but is ineffective for MOR. MOR activity is only observed in the presence of a Ag core through electronic coupling to the stellated Pt shell. The bimetallic Ag-Pt stellates therefore demonstrate the feasibility of tuning a Pt surface for two very different structure sensitive catalytic reactions. Stellated bimetallics may therefore be an effective platform for highly tunable catalyst designs.

  4. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning

    PubMed Central

    Liu, Hui; Ye, Feng; Yao, Qiaofeng; Cao, Hongbin; Xie, Jianping; Lee, Jim Yang; Yang, Jun

    2014-01-01

    The usefulness of Pt-based nanomaterials for catalysis can be greatly enhanced by coupling morphology engineering to the strategic presence of a second or even third metal. Here we demonstrate the design and preparation of stellated Ag-Pt bimetallic nanoparticles where significant activity difference between the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) may be realized by relegating Ag to the core or by hollowing out the core. In particular the stellated Pt surface, with an abundance of steps, edges, corner atoms, and {111} facets, is highly effective for the ORR but is ineffective for MOR. MOR activity is only observed in the presence of a Ag core through electronic coupling to the stellated Pt shell. The bimetallic Ag-Pt stellates therefore demonstrate the feasibility of tuning a Pt surface for two very different structure sensitive catalytic reactions. Stellated bimetallics may therefore be an effective platform for highly tunable catalyst designs. PMID:24495979

  5. Transport properties of β-Ga2O3 nanoparticles embedded in Nb thin films

    NASA Astrophysics Data System (ADS)

    Vaidhyanathan, L. S.; Srinivasan, M. P.; Chandra Mohan, P.; Baisnab, D. K.; Mythili, R.; Janawadkar, M. P.

    2015-01-01

    The origin of ferromagnetism in nanoparticles of nonmagnetic oxides is an interesting area of research. In the present work, transport properties of niobium thin films, with β-Ga2O3 nanoparticles embedded within them, are presented. Nanoparticles of β-Ga2O3 embedded in a Nb matrix were prepared at room temperature by radio frequency co-sputtering technique on Si (100) and glass substrates held at room temperature. The thin films deposited on Si substrates were subjected to Ar annealing at a temperature range of 600-650 C for 1 hour. Films were characterized by X-ray diffraction (XRD), Micro-Raman and elemental identification was performed with an Energy Dispersive X-ray Spectroscopy (EDS). Transport measurements were performed down to liquid helium temperatures by four-probe contact technique, showed characteristics analogous to those observed in the context of a Kondo system. A comparison of the experimental data with the theoretical formalism of Kondo and Hamann is presented. It is suggested that this behavior arises from the existence of magnetic moments associated with the oxygen vacancy defects in the nanoparticles of the nonmagnetic oxide Ga2O3.

  6. MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Mao, Chengyu; Kong, Aiguo; Wang, Yuan; Bu, Xianhui; Feng, Pingyun

    2015-06-01

    The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst.The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst. Electronic supplementary information (ESI) available: Material synthesis and elemental analysis, electrochemistry measurements, and additional figures. See DOI: 10.1039/c5nr02346g

  7. Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers as Optical Sensors for Radicals.

    PubMed

    Shehata, Nader; Samir, Effat; Gaballah, Soha; Hamed, Aya; Elrasheedy, Asmaa

    2016-01-01

    This work presents a new nanocomposite of cerium oxide (ceria) nanoparticles embedded in electrospun PVA nanofibers for optical sensing of radicals in solutions. Our ceria nanoparticles are synthesized to have O-vacancies which are the receptors for the radicals extracted from peroxide in water solution. Ceria nanoparticles are embedded insitu in PVA solution and then formed as nanofibers using an electrospinning technique. The formed nanocomposite emits visible fluorescent emissions under 430 nm excitation, due to the active ceria nanoparticles with fluorescent Ce(3+) ionization states. When the formed nanocomposite is in contact with peroxide solution, the fluorescence emission intensity peak has been found to be reduced with increasing concentration of peroxide or the corresponding radicals through a fluorescence quenching mechanism. The fluorescence intensity peak is found to be reduced to more than 30% of its original value at a peroxide weight concentration up to 27%. This work could be helpful in further applications of radicals sensing using a solid mat through biomedical and environmental monitoring applications. PMID:27571083

  8. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han; Cho, Changsoon; Choi, Dae-Geun; Lee, Jung-Yong

    2016-05-01

    In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%.In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01896c

  9. Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2

    NASA Astrophysics Data System (ADS)

    Johannessen, B.; Kluth, P.; Llewellyn, D. J.; Foran, G. J.; Cookson, D. J.; Ridgway, M. C.

    2007-11-01

    Elemental Cu nanoparticles embedded in SiO2 were irradiated with 5MeVSn3+ . The nanoparticle structure was studied as a function of Sn3+ fluence by extended x-ray absorption fine structure spectroscopy, small-angle x-ray scattering, and transmission electron microscopy. Prior to irradiation, Cu nanoparticles exhibited the face-centered-cubic structure. Upon irradiation at intermediate fluences ( 1×1013 to 1×1014ions/cm2 ), the first nearest neighbor Cu-Cu coordination number decreased, while the Debye-Waller factor, bondlength, and third cumulant of the bondlength distribution increased. In particular, at a fluence of 1×1014ions/cm2 we argue for the presence of an amorphous Cu phase, for which we deduce the structural parameters. Low temperature annealing (insufficient for nanoparticle growth) of the amorphous Cu returned the nanoparticles to the initial preirradiation structure. At significantly higher irradiation fluences ( 1×1015 to 1×1016ions/cm2 ), the nanoparticles were dissolved in the matrix with a Cu coordination similar to that of Cu2O .

  10. Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix

    SciTech Connect

    Pattabi, Manjunatha . E-mail: manjupattabi@yahoo.com; Saraswathi Amma, B.; Manzoor, K.

    2007-05-03

    Photoluminescence properties of polyvinyl pyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles embedded in polyvinyl alcohol matrix (PVA) are reported. The PVP-CdS nanoparticles are prepared by non-aqueous method wherein cadmium nitrate is used as the cadmium source and hydrogen sulphide as the sulphur source. The synthesized nanoparticles are dispersed in polyvinyl alcohol (PVA) matrix and cast as self-standing flexible (PVP-CdS)-PVA films. The nanocomposites are characterized by optical absorption spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. XRD and TEM studies show the formation of cubic CdS particles with average size {approx}3-5 nm. Thermal studies, carried out to observe the changes in PVA matrix due to the incorporation of PVP-CdS nanoparticles show strong interaction between the polymer matrix and nanoparticles. The photoluminescence emission spectra of the nanocomposites show two peaks, at 502 and 636 nm, which are attributed to the band edge and surface defects respectively, of CdS nanoparticles. Effective surface capping with optimum concentration of polyvinyl pyrrolidone leads to the quenching of surface defect-related emission.

  11. Preparation and Evaluation of Contact Lenses Embedded with Polycaprolactone-Based Nanoparticles for Ocular Drug Delivery.

    PubMed

    Nasr, Farzaneh Hashemi; Khoee, Sepideh; Dehghan, Mohammad Mehdi; Chaleshtori, Sirous Sadeghian; Shafiee, Abbas

    2016-02-01

    To improve the efficiency of topical ocular drug administration, we focused on development of a nanoparticles loaded contact lens to deliver the hydrophobic drug over a prolonged period of time. The cross-linked nanoparticles based on PCL (poly ε-caprolactone), 2-hydroxy ethyl methacrylate (HEMA), and poly ethylene glycol diacrylate (PEG-DA) were prepared by surfactant-free miniemulsion polymerization. The lens material was prepared through photopolymerization of HEMA and N-vinylpyrrolidone (NVP) using PEG-DA as the cross-linker. Effects of nanoparticles loading on critical contact lens properties such as transparency, water content, modulus and ion and oxygen permeabilities were studied. Nanoparticles and hydrogel showed high viability, indicating the absence of cytotoxicity and stimulatory effect. Drug release studies revealed that the hydrogel embedded with nanoparticles released the drug for a period of 12 days. The results of this study provide evidence that nanoparticles loaded hydrogels could be used for extended delivery of loteprednol etabonate and perhaps other drugs. PMID:26652301

  12. Effect of large mechanical stress on the magnetic properties of embedded Fe nanoparticles.

    PubMed

    Saranu, Srinivasa; Selve, Sören; Kaiser, Ute; Han, Luyang; Wiedwald, Ulf; Ziemann, Paul; Herr, Ulrich

    2011-01-01

    Magnetic nanoparticles are promising candidates for next generation high density magnetic data storage devices. Data storage requires precise control of the magnetic properties of materials, in which the magnetic anisotropy plays a dominant role. Since the total magneto-crystalline anisotropy energy scales with the particle volume, the storage density in media composed of individual nanoparticles is limited by the onset of superparamagnetism. One solution to overcome this limitation is the use of materials with extremely large magneto-crystalline anisotropy. In this article, we follow an alternative approach by using magneto-elastic interactions to tailor the total effective magnetic anisotropy of the nanoparticles. By applying large biaxial stress to nanoparticles embedded in a non-magnetic film, it is demonstrated that a significant modification of the magnetic properties can be achieved. The stress is applied to the nanoparticles through expansion of the substrate during hydrogen loading. Experimental evidence for stress induced magnetic effects is presented based on temperature-dependent magnetization curves of superparamagnetic Fe particles. The results show the potential of the approach for adjusting the magnetic properties of nanoparticles, which is essential for application in future data storage media. PMID:21977439

  13. LOGIC-EMBEDDED VECTORS FOR INTRACELLULAR PARTITIONING, ENDOSOMAL ESCAPE, AND EXOCYTOSIS OF NANOPARTICLES

    PubMed Central

    Serda, Rita E.; Mack, Aaron; van de Ven, Anne; Ferrati, Silvia; Dunner, Kenneth; Godin, Biana; Chiappini, Ciro; Landry, Matthew; Brousseau, Lou; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro

    2010-01-01

    A new generation of nanocarriers, logic-embedded vectors (LEVs), is endowed with the ability to localize components at multiple intracellular sites, creating an opportunity for synergistic control of redundant or dual-hit pathways. LEV encoding elements include size, shape, charge, and surface chemistry. In this study, LEVs consist of porous silicon nanocarriers, programmed for cellular uptake and trafficking along the endosomal pathway, and surface-tailored iron oxide nanoparticles, programmed for endosomal sorting and partitioning of particles into unique cellular locations. In the presence of persistent endosomal localization of silicon nanocarriers, amine-functionalized nanoparticles are sorted into multiple vesicular bodies that form novel membrane-bound compartments compatible with cellular secretion, while chitosan-coated nanoparticles escape from endosomes and enter the cytosol. Encapsulation within the porous silicon matrix protects these nanoparticle surface tailored-properties, enhancing endosomal escape of chitosan coated nanoparticles. Thus LEVs provide a mechanism for shielded transport of nanoparticles to the lesion, cellular manipulation at multiple levels, and a means for targeting both within and between cells. PMID:20957619

  14. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Saravanan, Gengan; Mohan, Subramanian

    2016-11-01

    Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. 13C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp2 carbon and does not contain any oxygenated carbon and the carbonyl carbons.

  15. Photo-response of a nanopore device with a single embedded ZnO nanoparticle.

    PubMed

    Nguyen, Linh-Nam; Lin, Ming-Chou; Chen, Horng-Shyang; Lan, Yann-Wen; Wu, Cen-Shawn; Chang-Liao, Kuei-Shu; Chen, Chii-Dong

    2012-04-01

    The photo-response of a ZnO nanoparticle embedded in a nanopore made on a silicon nitride membrane is investigated. The ZnO nanoparticle is manipulated onto the nanopore and sandwiched between aluminum contact electrodes from both the top and bottom. The asymmetric device structure facilitates current-voltage rectification that enables photovoltaic capacity. Under illumination, the device shows open-circuit voltage as well as short-circuit current. The fill factor is found to increase at low temperatures and reaches 48.6% at 100 K. The nanopore structure and the manipulation technique provide a solid platform for exploring the electrical properties of single nanoparticles. PMID:22470086

  16. Femtosecond laser deposition of TiO2 nanoparticle-assembled films with embedded CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Ni, Xiao-chang; Sang, Li-xia; Zhang, Hong-jie; Kiliyanamkandy, Anoop; Amoruso, Salvatore; Wang, Xuan; Fittipaldi, Rosalba; Li, Tong; Hu, Ming-lie; Xu, Li-juan

    2014-01-01

    Based on the normal pulsed laser ablation method, femtosecond pulsed laser deposition (fs-PLD) is adopted in vacuum for the production of TiO2 nanoparticle-assembled films. We study the morphology and electronic characteristics of TiO2 nanoparticle-assembled films deposited at different oxygen background gas pressures from high vacuum (˜10-4 Pa) to 100 Pa and different deposition time. Our results show that TiO2 nanoparticle-assembled films obtained in high vacuum present both a mixture with rutile phase and anatase phase and a pure rutile phase. At the same time, there are more mesoporous structures in the film after annealing, which is beneficial for the enhancement of photocatalytic activity. In water splitting experiment, part of the TiO2 nanoparticle-assembled films embedded with a small mass fraction of CdS nanoparticles (˜5%) present an interesting photocurrent enhancement with a maximum value of ˜0.2 mA/cm2 under a solar simulator.

  17. Ag Nanoparticle-Sensitized WO3 Hollow Nanosphere for Localized Surface Plasmon Enhanced Gas Sensors.

    PubMed

    Yao, Yao; Ji, Fangxu; Yin, Mingli; Ren, Xianpei; Ma, Qiang; Yan, Junqing; Liu, Shengzhong Frank

    2016-07-20

    Ag nanoparticle (NP)-sensitized WO3 hollow nanospheres (Ag-WO3-HNSs) are fabricated via a simple sonochemical synthesis route. It is found that the Ag-WO3-HNS shows remarkable performance in gas sensors. Field-emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) images reveal that the Agx-WO3 adopts the HNS structure in which WO3 forms the outer shell framework and the Ag NPs are grown on the inner wall of the WO3 hollow sphere. The size of the Ag NPs can be controlled by adjusting the addition amount of WCl6 during the reaction. The sensor Agx-WO3 exhibits extremely high sensitivity and selectivity toward alcohol vapor. In particular, the Ag(15nm)-WO3 sensor shows significantly lower operating temperature (230 °C), superior detection limits as low as 0.09 ppb, and faster response (7 s). Light illumination was found to boost the sensor performance effectively, especially at 405 and 900 nm, where the light wavelength resonates with the absorption of Ag NPs and the surface oxygen vacancies of WO3, respectively. The improved sensor performance is attributed to the localized surface plasmon resonance (LSPR) effect. PMID:27348055

  18. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity.

    PubMed

    Kang, Fuxing; Alvarez, Pedro J; Zhu, Dongqiang

    2014-01-01

    Whereas the antimicrobial mechanisms of silver have been extensively studied and exploited for numerous applications, little is known about the associated bacterial adaptation and defense mechanisms that could hinder disinfection efficacy or mitigate unintended impacts to microbial ecosystem services associated with silver release to the environment. Here, we demonstrate that extracellular polymeric substances (EPS) produced by bacteria constitute a permeability barrier with reducing constituents that mitigate the antibacterial activity of silver ions (Ag(+)). Specifically, manipulation of EPS in Escherichia coli suspensions (e.g., removal of EPS attached to cells by sonication/centrifugation or addition of EPS at 200 mg L(-1)) demonstrated its critical role in hindering intracellular silver penetration and enhancing cell growth in the presence of Ag(+) (up to 0.19 mg L(-1)). High-resolution transmission electron microscopy (HRTEM) combined with X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectrometry (EDS) analyses showed that Ag(+) was reduced to silver nanoparticles (AgNPs; 10-30 nm in diameter) that were immobilized within the EPS matrix. Fourier transform infrared (FTIR) and (13)C nuclear magnetic resonance (NMR) spectra suggest that Ag(+) reduction to AgNPs by the hemiacetal groups of sugars in EPS contributed to immobilization. Accordingly, the amount and composition of EPS produced have important implications on the bactericidal efficacy and potential environmental impacts of Ag(+). PMID:24328348

  19. Large range localized surface plasmon resonance of Ag nanoparticles films dependent of surface morphology

    NASA Astrophysics Data System (ADS)

    Yan, Lijuan; Yan, Yaning; Xu, Leilei; Ma, Rongrong; Jiang, Fengxian; Xu, Xiaohong

    2016-03-01

    Noble metal nanoparticles (NPs) have received enormous attention since it displays uniquely optical and electronic properties. In this work, we study localized surface plasmon resonances (LSPR) at different thicknesses and substrate temperatures of Ag NPs films grown by Laser Molecule Beam Epitaxy (LMBE). The LSPR wavelength can be largely tuned in the visible light range of 470 nm to 770 nm. The surface morphology is characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The average size of Ag NPs increased with the thickness increased which leading to the LSPR band broaden and wavelength red-shift. As the substrate temperature is increased from RT to 200 °C, the Ag NPs size distribution becomes homogeneous and particle shape changes from oblate spheroid to sphere, the LSPR band displays sharp, blue-shift and significantly symmetric. Obviously, the morphology of Ag NPs films is important for tuning absorption position. We obtain the cubic crystal structure of Ag NPs with a (1 1 1) main diffraction peak from the X-ray diffraction (XRD) spectra. The high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) prove that Ag NPs is polycrystal structure. The Ag NPs films with large range absorption in visible light region can composite with semiconductor to apply in various optical or photoelectric devices.

  20. Enhancing carrier generation in TiO2 by a synergistic effect between plasmon resonance in Ag nanoparticles and optical interference.

    PubMed

    Cacciato, Giuseppe; Bayle, Maxime; Pugliara, Alessandro; Bonafos, Caroline; Zimbone, Massimo; Privitera, Vittorio; Grimaldi, Maria Grazia; Carles, Robert

    2015-08-28

    Silver nanoparticles have been embedded at a few nanometer distance from the free surface of titania/silica multilayers using low energy ion beam synthesis. Transmission electron microscopy shows the presence of 3 nm-sized crystalline particles. Reflectance spectroscopy on these composite substrates shows an increase of the light capture efficiency in the visible range. This behaviour is interpreted as a synergistic effect between plasmon polariton resonance and Fabry-Perot interferences. Plasmon-resonant Raman spectroscopy is deeply used to analyze, on one hand confinement of vibrations and electronic excitations in Ag NPs, and on the other hand coupling of polar TiO2 phonons with injected photo-generated carriers. It is shown how these new Ag/TiO2 nanocomposite films appear as very promising to enhance the efficiency and enlarge the spectral sensitivity of plasmo-electronics devices. PMID:26198669

  1. [Three-dimensional vertically aligned CNTs coated by Ag nanoparticles for surface-enhanced Raman scattering].

    PubMed

    Zhang, Xiao-Lei; Zhang, Jie; Fan, Tuo; Ren, Wen-Jie; Lai, Chun-Hong

    2014-09-01

    In order to make surface-enhanced Raman scattering (SERS) substrates contained more "hot spots" in a three-dimensional (3D) focal volume, and can be adsorbed more probe molecules and metal nanoparticles, to obtain stronger Raman spectral signal, a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman enhancement is presented. The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD). A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering. The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs. The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs, as the annealing temperature is different , pitch size, morphology and space between the silver nanoparticles is vary. Rhodamine 6G is served as the probe analyte. Raman spectrum measurement indicates that: the higher the concentration of R6G, the stronger the Raman intensity, but R6G concentration increase with the enhanced Raman intensity varies nonlinearly; when annealing temperature is 450 °C, the average size of silver nanoparticles is about 100 to 120 nm, while annealing temperature is 400 °C, the average size is about 70 nm, and the Raman intensity of 450 °C is superior to the annealing temperature that of 400 °C and 350 °C. PMID:25532342

  2. Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution.

    PubMed

    Yu, Guiyang; Wang, Xiang; Cao, Jungang; Wu, Shujie; Yan, Wenfu; Liu, Gang

    2016-02-01

    The activity and stability of CdS for visible-light-driven hydrogen evolution could be significantly enhanced by embedding plasmonic Au nanoparticles. The plasmon resonance energy field of Au nanoparticles could increase the formation rate and lifetime of e(-)/h(+) pairs in CdS semiconductors. PMID:26732587

  3. Lateral quantization of two-dimensional electron states by embedded Ag nanocrystals

    NASA Astrophysics Data System (ADS)

    Van Haesendonck, Chris; Schouteden, Koen

    2013-03-01

    We show that quantization of image-potential state (IS)electrons above the surface of nanostructures can be experimentally achieved by Ag nanocrystals that appear as stacking fault tetrahedrons (SFTs) at Ag(111) surfaces. By means of cryogenic scanning tunneling spectroscopy the n = 1 IS of the Ag(111) surface is revealed to split up in discrete energy levels, which is accompanied by the formation of pronounced standing wave patterns that directly reflect the eigenstates of the SFT surface. The IS confinement behavior is compared to that of the surface state electrons in the SFT surface and can be directly linked to the particle-in-a-box model. ISs provide a novel playground for investigating quantum size effects and defect induced scattering above nanostructured surfaces. This work has been supported by the Research Foundation - Flanders (FWO, Belgium). K.S. is a postdoctoral researcher of the FWO.

  4. Lateral Quantization of Two-Dimensional Electron States by Embedded Ag Nanocrystals

    NASA Astrophysics Data System (ADS)

    Schouteden, K.; Van Haesendonck, C.

    2012-02-01

    We show that quantization of image-potential state (IS) electrons above the surface of nanostructures can be experimentally achieved by Ag nanocrystals that appear as stacking-fault tetrahedrons (SFTs) at Ag(111) surfaces. By means of cryogenic scanning tunneling spectroscopy, the n=1 IS of the Ag(111) surface is revealed to split up in discrete energy levels, which is accompanied by the formation of pronounced standing wave patterns that directly reflect the eigenstates of the SFT surface. The IS confinement behavior is compared to that of the surface state electrons in the SFT surface and can be directly linked to the particle-in-a-box model. ISs provide a novel playground for investigating quantum size effects and defect-induced scattering above nanostructured surfaces.

  5. Synthesis, Characterizations of Superparamagnetic Fe3O4-Ag Hybrid Nanoparticles and Their Application for Highly Effective Bacteria Inactivation.

    PubMed

    Tung, Le Minh; Cong, Nguyen Xuan; Huy, Le Thanh; Lan, Nguyen Thi; Phan, Vu Ngoc; Hoa, Nguyen Quang; Vinh, Le Khanh; Thinh, Nguyen Viet; Tai, Le Thanh; Ngo, Duc-The; Mølhave, Kristian; Huy, Tran Quang; Le, Anh-Tuan

    2016-06-01

    In recent years, outbreaks of infectious diseases caused by pathogenic micro-organisms pose a serious threat to public health. In this work, Fe3O4-Ag hybrid nanoparticles were synthesized by simple chemistry method and these prepared nanoparticles were used to investigate their antibacterial properties and mechanism against methicilline-resistant Staphylococcus aureus (MRSA) pathogen. The formation of dimer-like nanostructure of Fe3O4-Ag hybrid NPs was confirmed by X-ray diffraction and High-resolution Transmission Electron Microscopy. Our biological analysis revealed that the Fe3O4-Ag hybrid NPs showed more noticeable bactericidal activity than that of plain Fe3O4 NPs and Ag-NPs. We suggest that the enhancement in bactericidal activity of Fe3O4-Ag hybrid NPs might be likely from main factors such as: (i) enhanced surface area property of hybrid nanoparticles; (ii) the high catalytic activity of Ag-NPs with good dispersion and aggregation stability due to the iron oxide magnetic carrier, and (iii) large direct physical contacts between the bacterial cell membrane and the hybrid nanoparticles. The superparamagnetic hybrid nanoparticles of iron oxide magnetic nanoparticles decorated with silver nanoparticles can be a potential candidate to effectively treat infectious MRSA pathogen with recyclable capability, targeted bactericidal delivery and minimum release into environment. PMID:27427651

  6. A facile and controllable strategy to synthesize Au-Ag alloy nanoparticles within polyelectrolyte multilayer nanoreactors upon thermal reduction.

    PubMed

    Shang, Li; Jin, Lihua; Guo, Shaojun; Zhai, Junfeng; Dong, Shaojun

    2010-05-01

    A new synthesis strategy has been developed for the preparation of bimetallic gold-silver (Au-Ag) alloy nanoparticles by the virtue of polyelectrolyte multilayer (PEM) nanoreactors. By controlling the assembly conditions, gold and silver ions can be effectively loaded onto the PEM composed of polyethylenimine (PEI) and poly(acrylic acid) (PAA) simultaneously. Upon further thermal treatment, Au-Ag alloy nanoparticles with sizes of ca. 3.8 nm formed in the PEM, which were characterized in detail by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) analysis. Appearance of a single plasmon band in the visible region and lack of apparent core-shell structures in the TEM images confirm the formation of homogeneous Au-Ag alloy nanoparticles. In addition, the surface plasmon absorption band of the Au-Ag alloy nanoparticles shows linear blue-shift with increasing Ag content, which also supported the formation of alloy nanoparticles. Several key parameters of the present strategy have been investigated, which showed that pH of both the assembly solution and gold salt solution and the choice of polymers for constructing PEM, as well as the reduction approach, all played an important role in successfully synthesizing bimetallic Au-Ag nanoparticles. The formation mechanism of alloy nanoparticles has also been discussed based on the spectral evolution during the thermal reduction. PMID:20017511

  7. Nanospherical-lens lithographical Ag nanodisk arrays embedded in p-GaN for localized surface plasmon-enhanced blue light emitting diodes

    SciTech Connect

    Wei, Tongbo Wu, Kui; Sun, Bo; Zhang, Yonghui; Chen, Yu; Huo, Ziqiang; Hu, Qiang; Wang, Junxi; Zeng, Yiping; Li, Jinmin; Lan, Ding

    2014-06-15

    Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in p-GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth p-GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 and 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.

  8. Enhancing carrier generation in TiO2 by a synergistic effect between plasmon resonance in Ag nanoparticles and optical interference

    NASA Astrophysics Data System (ADS)

    Cacciato, Giuseppe; Bayle, Maxime; Pugliara, Alessandro; Bonafos, Caroline; Zimbone, Massimo; Privitera, Vittorio; Grimaldi, Maria Grazia; Carles, Robert

    2015-08-01

    Silver nanoparticles have been embedded at a few nanometer distance from the free surface of titania/silica multilayers using low energy ion beam synthesis. Transmission electron microscopy shows the presence of 3 nm-sized crystalline particles. Reflectance spectroscopy on these composite substrates shows an increase of the light capture efficiency in the visible range. This behaviour is interpreted as a synergistic effect between plasmon polariton resonance and Fabry-Perot interferences. Plasmon-resonant Raman spectroscopy is deeply used to analyze, on one hand confinement of vibrations and electronic excitations in Ag NPs, and on the other hand coupling of polar TiO2 phonons with injected photo-generated carriers. It is shown how these new Ag/TiO2 nanocomposite films appear as very promising to enhance the efficiency and enlarge the spectral sensitivity of plasmo-electronics devices.Silver nanoparticles have been embedded at a few nanometer distance from the free surface of titania/silica multilayers using low energy ion beam synthesis. Transmission electron microscopy shows the presence of 3 nm-sized crystalline particles. Reflectance spectroscopy on these composite substrates shows an increase of the light capture efficiency in the visible range. This behaviour is interpreted as a synergistic effect between plasmon polariton resonance and Fabry-Perot interferences. Plasmon-resonant Raman spectroscopy is deeply used to analyze, on one hand confinement of vibrations and electronic excitations in Ag NPs, and on the other hand coupling of polar TiO2 phonons with injected photo-generated carriers. It is shown how these new Ag/TiO2 nanocomposite films appear as very promising to enhance the efficiency and enlarge the spectral sensitivity of plasmo-electronics devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02406d

  9. Exchange bias of Ni nanoparticles embedded in an antiferromagnetic IrMn matrix

    NASA Astrophysics Data System (ADS)

    Kuerbanjiang, Balati; Wiedwald, Ulf; Haering, Felix; Biskupek, Johannes; Kaiser, Ute; Ziemann, Paul; Herr, Ulrich

    2013-11-01

    The magnetic properties of Ni nanoparticles (Ni-NPs) embedded in an antiferromagnetic IrMn matrix were investigated. The Ni-NPs of 8.4 nm mean diameter were synthesized by inert gas aggregation. In a second processing step, the Ni-NPs were in situ embedded in IrMn films or SiOx films under ultrahigh vacuum (UHV) conditions. Findings showed that Ni-NPs embedded in IrMn have an exchange bias field HEB = 821 Oe at 10 K, and 50 Oe at 300 K. The extracted value of the exchange energy density is 0.06 mJ m-2 at 10 K, which is in good accordance with the results from multilayered thin film systems. The Ni-NPs embedded in SiOx did not show exchange bias. As expected for this particle size, they are superparamagnetic at T = 300 K. A direct comparison of the Ni-NPs embedded in IrMn or SiOx reveals an increase of the blocking temperature from 210 K to around 400 K. The coercivity of the Ni-NPs exchange coupled to the IrMn matrix at 10 K is 8 times larger than the value for Ni-NPs embedded in SiOx. We studied time-dependent remanent magnetization at different temperatures. The relaxation behavior is described by a magnetic viscosity model which reflects a rather flat distribution of energy barriers. Furthermore, we investigated the effects of different field cooling processes on the magnetic properties of the embedded Ni-NPs. Exchange bias values fit to model calculations which correlate the contribution of the antiferromagnetic IrMn matrix to its grain size.

  10. Exchange bias of Ni nanoparticles embedded in an antiferromagnetic IrMn matrix.

    PubMed

    Kuerbanjiang, Balati; Wiedwald, Ulf; Haering, Felix; Biskupek, Johannes; Kaiser, Ute; Ziemann, Paul; Herr, Ulrich

    2013-11-15

    The magnetic properties of Ni nanoparticles (Ni-NPs) embedded in an antiferromagnetic IrMn matrix were investigated. The Ni-NPs of 8.4 nm mean diameter were synthesized by inert gas aggregation. In a second processing step, the Ni-NPs were in situ embedded in IrMn films or SiOx films under ultrahigh vacuum (UHV) conditions. Findings showed that Ni-NPs embedded in IrMn have an exchange bias field HEB = 821 Oe at 10 K, and 50 Oe at 300 K. The extracted value of the exchange energy density is 0.06 mJ m(-2) at 10 K, which is in good accordance with the results from multilayered thin film systems. The Ni-NPs embedded in SiOx did not show exchange bias. As expected for this particle size, they are superparamagnetic at T = 300 K. A direct comparison of the Ni-NPs embedded in IrMn or SiOx reveals an increase of the blocking temperature from 210 K to around 400 K. The coercivity of the Ni-NPs exchange coupled to the IrMn matrix at 10 K is 8 times larger than the value for Ni-NPs embedded in SiOx. We studied time-dependent remanent magnetization at different temperatures. The relaxation behavior is described by a magnetic viscosity model which reflects a rather flat distribution of energy barriers. Furthermore, we investigated the effects of different field cooling processes on the magnetic properties of the embedded Ni-NPs. Exchange bias values fit to model calculations which correlate the contribution of the antiferromagnetic IrMn matrix to its grain size. PMID:24141385

  11. Decoration of crumpled rGO sheets with Ag nanoparticles by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Papailias, I.; Giannouri, M.; Trapalis, A.; Todorova, N.; Giannakopoulou, T.; Boukos, N.; Lekakou, C.

    2015-12-01

    In this work, crumpled reduced graphene oxide (rGO) nanostructures were produced using spray pyrolysis technique. Graphite oxide (GtO) prepared through a modified Hummers method was used as starting material. Water dispersions of graphene oxide (GO) were prepared and sprayed in a tube furnace at 300 °C, 500 °C and 700 °C using Argon (Ar) as carrier gas. Also, precursor dispersions with different AgNO3 concentrations were processed at the same conditions. During the treatment, the sprayed droplets underwent rapid heating and then gradual cooling until the exit of the oven, where crumpled rGO and Ag/rGO powders were collected. The prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and FT-IR spectroscopy. It was established that the crumpling of the nanosheets was slightly affected by the increase of the process temperature. Crumpled morphologies were obtained even at low temperature of 300 °C. In contrast, the degree of GO reduction was temperature dependent and increased with the increase of the temperature. The incorporation of Ag nanoparticles was evidenced by the XRD and TEM analysis with the size of the Ag nanoparticles to grow as the concentration of AgNO3 and/or the process temperature increased. SERS effect in the Raman spectra of the Ag/rGO materials was observed that reached a maximum at 500 °C. Spray pyrolysis was suggested as a simple, controllable and scalable route for the instantaneous crumpling, reduction and decoration of GO nanosheets with metal/metal oxide nanoparticles.

  12. Breathing Raman modes in Ag2S nanoparticles obtained from F9 zeolite matrix

    NASA Astrophysics Data System (ADS)

    Delgado-Beleño, Y.; Cortez-Valadez, M.; Martinez-Nuñez, C. E.; Britto Hurtado, R.; Alvarez, Ramón A. B.; Rocha-Rocha, O.; Arizpe-Chávez, H.; Perez-Rodríguez, A.; Flores-Acosta, M.

    2015-12-01

    Ag2S nanoparticles were synthesized with a combination of synthetic F9, silver nitrate (AgNO3) and monohydrated sodium sulfide (Na2S9H2O). An ionic exchange was achieved via hydrothermal reaction. Nanoparticles with a predominant size ranging from 2 to 3 nm were obtained through Transmission Electron Microscopy (TEM). The nanoparticles feature a phase P21/n (14) monoclinic structure. A Raman band can be observed at around 250 cm-1 in the nanoparticles. Furthermore, the vibrational properties and stability parameters of the clusters (AgS)n, (with n = 2-9) were studied by the Density Functional Theory (DFT). The approximation levels used with DFT were: Local Spin Density Approximation (LSDA) and Becke's three-parameter and the gradient corrected functional of Lee, Yang and Puar (B3LYP) in combination with the basis set LANL2DZ (the effective core potentials and associated double-zeta valence). The Radial Breathing Mode (RBM) for B3LYP was found between 227 and 295 cm-1 as well as in longer wavelengths for LSDA.

  13. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.

    PubMed

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Vinogradova, Ekaterina; Ayon, Arturo A

    2014-09-10

    In recent years, there has been considerable interest in the use of plasmons, that is, free electron oscillations in conductors, to boost the performance of both organic and inorganic thin film solar cells. This has been driven by the possibility of employing thin active layers in solar cells in order to reduce materials costs, and is enabled by significant advances in fabrication technology. The ability of surface plasmons in metallic nanostructures to guide and confine light in the nanometer scale has opened up new design possibilities for solar cell devices. Here, we report the synthesis and characterization of highly monodisperse, reasonably stable, multipode Au/Ag bimetallic nanostructures using an inorganic additive as a ligand for photovoltaic applications. A promising surface enhanced Raman scattering (SERS) effect has been observed for the synthesized bimetallic Au/Ag multispiked nanoparticles, which compare favorably well with their Au and Ag spherical nanoparticle counterparts. The synthesized plasmonic nanostructures were incorporated on the rear surface of an ultrathin planar c-silicon/organic polymer hybrid solar cell, and the overall effect on photovoltaic performance was investigated. A promising enhancement in solar cell performance parameters, including both the open circuit voltage (VOC) and short circuit current density (JSC), has been observed by employing the aforementioned bimetallic multispiked nanoparticles on the rear surface of solar cell devices. A power conversion efficiency (PCE) value as high as 7.70% has been measured in a hybrid device with Au/Ag multispiked nanoparticles on the rear surface of an ultrathin, crystalline silicon (c-Si) membrane (∼ 12 μm). This value compares well to the measured PCE value of 6.72% for a similar device without nanoparticles. The experimental observations support the hope for a sizable PCE increase, due to plasmon effects, in thin-film, c-Si solar cells in the near future. PMID:25137194

  14. Magnetic properties of Co/Ag core/shell nanoparticles prepared by successive reactions in microemulsions

    NASA Astrophysics Data System (ADS)

    Rivas, J.; Garcia-Bastida, A. J.; Lopez-Quintela, M. A.; Ramos, C.

    2006-05-01

    Co nanoparticles with an Ag covering layer have been prepared by successive reactions in microemulsions. Their magnetic behavior was studied as a function of heat treatment. It was confirmed that, under the experimental conditions of this study, the size of the Co nuclei is limited by the reactant concentration, whereas the Ag covering is fixed by microemulsion droplet size. The as-prepared particles contain mainly Co 3O 4 nuclei, and present high effective moments that agree with the spin state of Co 3+. The observed magnetic behaviors were explained taking into account the intra- and inter-particle structural evolution of the particle assemblies annealed under different experimental conditions.

  15. A low-cost, environment-friendly and solvent-free route for synthesis of AgBr nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahsavani, Ensieh; Khalaji, Aliakbar Dehno; Feizi, Nourollah; Das, Debasis; Matalobos, Jesus Sanmartin; Kučeráková, Monika; Dušek, Michal

    2015-06-01

    We report on the synthesis of AgBr nanoparticles average size below 20 nm by from AgNO3 and a thiosemicarbazone ligand, Brcatsc [Brcatsc = 2-bromo-3-phenylpropenalthiosemicarbazone]. Brcatsc was prepared by reacting α-bromocinnam-aldehyde and thiosemicarbazide (1:1, molar ratio) in hot ethanol characterized by elemental analyses (CHN), FT-IR, 1H NMR spectroscopy and single crystal X-ray diffraction. AgBr nanoparticles were prepared by heating the mixture of AgNO3 and Brcatsc at 600 °C for 3 h under aerobic condition, and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD pattern clearly indicates the formation of AgBr nanoparticles while SEM and TEM results reveal their uniformity and purity.

  16. Immobilization of Highly Dispersed Ag Nanoparticles on Carbon Nanotubes Using Electron-Assisted Reduction for Antibacterial Performance.

    PubMed

    Yan, Xiaoliang; Li, Sha; Bao, Jiehua; Zhang, Nan; Fan, Binbin; Li, Ruifeng; Liu, Xuguang; Pan, Yun-Xiang

    2016-07-13

    Silver nanoparticles (Ag NPs) supported on certain materials have been widely used as disinfectants. Yet, to date, the antibacterial activity of the supported Ag NPs is still far below optimum. This is mainly associated with the easy aggregation of Ag NPs on the supporting materials. Herein, an electron-assisted reduction (EAR) method, which is operated at temperatures as low as room temperature and without using any reduction reagent, was employed for immobilizing highly dispersed Ag NPs on aminated-CNTs (Ag/A-CNTs). The average Ag NPs size on the EAR-prepared Ag/A-CNTs is only 3.8 nm, which is much smaller than that on the Ag/A-CNTs fabricated from the traditional thermal calcination (25.5 nm). Compared with Ag/A-CNTs fabricated from traditional thermal calcination, EAR-prepared Ag/A-CNTs shows a much better antibacterial activity to E. coli/S. aureus and antifouling performance to P. subcordiformis/T. lepidoptera. This is mainly originated from the significantly enhanced Ag(+) ion releasing rate and highly dispersed Ag NPs with small size on the EAR-prepared Ag/A-CNTs. The findings from the present work are helpful for fabricating supported Ag NPs with small size and high dispersion for efficient antibacterial process. PMID:27327238

  17. Nanocomposites of silver nanoparticles embedded in glass nanofibres obtained by laser spinning

    NASA Astrophysics Data System (ADS)

    Cabal, Belén; Quintero, Félix; Díaz, Luís Antonio; Rojo, Fernando; Dieste, Oliver; Pou, Juan; Torrecillas, Ramón; Moya, José Serafín

    2013-04-01

    Nanocomposites made of non-woven glass fibres with diameters ranging from tens of nanometers up to several micrometers, containing silver nanoparticles, were successfully fabricated by the laser spinning technique. Pellets of a soda-lime silicate glass containing silver nanoparticles with varying concentrations (5 and 10 wt%) were used as a precursor. The process followed to obtain the silver nanofibres did not agglomerate significantly the metallic nanoparticles, and the average particle size is still lower than 50 nm. This is the first time that glass nanofibres containing silver nanoparticles have been obtained following a process different from electrospinning of a sol-gel, thus avoiding the limitations of this method and opening a new route to composite nanomaterials. Antibacterial efficiency of the nanosilver glass fibres, tested against one of the most common Gram negative bacteria, was greater than 99.99% compared to the glass fibres free of silver. The silver nanoparticles are well-dispersed not only on the surface but are also embedded into the uniform nanofibres, which leads to a long lasting durable antimicrobial effect. All these novel characteristics will potentially open up a whole new range of applications.

  18. Nanocomposites of silver nanoparticles embedded in glass nanofibres obtained by laser spinning.

    PubMed

    Cabal, Belén; Quintero, Félix; Díaz, Luís Antonio; Rojo, Fernando; Dieste, Oliver; Pou, Juan; Torrecillas, Ramón; Moya, José Serafín

    2013-05-01

    Nanocomposites made of non-woven glass fibres with diameters ranging from tens of nanometers up to several micrometers, containing silver nanoparticles, were successfully fabricated by the laser spinning technique. Pellets of a soda-lime silicate glass containing silver nanoparticles with varying concentrations (5 and 10 wt%) were used as a precursor. The process followed to obtain the silver nanofibres did not agglomerate significantly the metallic nanoparticles, and the average particle size is still lower than 50 nm. This is the first time that glass nanofibres containing silver nanoparticles have been obtained following a process different from electrospinning of a sol-gel, thus avoiding the limitations of this method and opening a new route to composite nanomaterials. Antibacterial efficiency of the nanosilver glass fibres, tested against one of the most common gram negative bacteria, was greater than 99.99% compared to the glass fibres free of silver. The silver nanoparticles are well-dispersed not only on the surface but are also embedded into the uniform nanofibres, which leads to a long lasting durable antimicrobial effect. All these novel characteristics will potentially open up a whole new range of applications. PMID:23535995

  19. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs

    NASA Astrophysics Data System (ADS)

    Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui

    2015-08-01

    Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The

  20. Enhanced localized plasmonic detections using partially-embedded gold nanoparticles and ellipsometric measurements

    PubMed Central

    Moirangthem, Rakesh Singh; Yaseen, Mohammad Tariq; Wei, Pei-Kuen; Cheng, Ji-Yen; Chang, Yia-Chung

    2012-01-01

    A cost-effective, stable and ultrasensitive localized surface plasmon resonance (LSPR) sensor based on gold nanoparticles (AuNPs) partially embedded in transparent substrate is presented. Partially embedded AuNPs were prepared by thermal annealing of gold thin films deposited on glass at a temperature close to the glass transition temperature of the substrate. Annealed samples were optically characterized by using spectroscopic ellipsometry and compare with theoretical modeling to understand the optical responses from the samples. By combining the partially-embedded AuNPs substrate with a microfluidic flow cell and dove prism in an ellipsometry setup, an ultrasensitive change in the LSPR signal can be detected. The refractive index sensitivity obtained from the phase measurement is up to 1938 degrees/RIU which is several times higher than that of synthesized colloidal gold nanoparticles. The sample is further used to investigate the interactions between primary and secondary antibodies. The bio-molecular detection limit of the LSPR signal is down to 20 pM. Our proposed sensor is label free, non-destructive, with high sensitivity, low cost, and easy to fabricate. These features make it feasible for commercialization in biomedical applications. PMID:22567583

  1. Green synthesis and applications of Au-Ag bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena Kumari, M.; Jacob, John; Philip, Daizy

    2015-02-01

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenol < k2-nitrophenol < k3-nitrophenol. Thermal conductivity is measured as a function of volume fraction and it is observed that the incorporation of the alloy nanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field.

  2. Green synthesis and applications of Au-Ag bimetallic nanoparticles.

    PubMed

    Meena Kumari, M; Jacob, John; Philip, Daizy

    2015-02-25

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenolnanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field. PMID:25218228

  3. Melting and Solidification Behaviour of Bi-Pb Multiphase Alloy Nanoparticles Embedded in Aluminum Matrix.

    PubMed

    Khan, Patan Yousaf; Biswas, Krishanu

    2015-01-01

    The present investigation reports the result of the investigation on the phase transformation of biphasic Bi-Pb alloy nanoparticles embedded in the aluminum matrix. The samples are prepared by rapid solidification route involving melt spinning of Al-6 wt% (Bi55.9Pb44.1) alloy on a rotating copper wheel in an argon-filled evacuated chamber. The detailed transmission electron microscope (TEM) investigation shows presence of near cuboctahedral shaped biphasic nano-inclusions consisting of the (Bi) solid solution and β, the intermediate phase. β constitutes bulk of the nanoparticle with (Bi) forming the cap. Both the phases bear distinct orientation relationship with the matrix. The compositional analysis indicates substantial increase in solid solubilities of Pb in the (Bi) and Bi in the β-phases as compared to the as-cast sample. Differential scanning calorimetric (DSC) studies indicate substantial superheating (16.4 K) of the embedded nanoparticles with appearance of sharp melting peak. The solidification is observed to be diffused, taking place over a large temperature range (344.5 K to 332 K). The in situ heating stage experiments carried out in TEM indicate formation of core shell morphology during heating with β forming the shell around (Bi). The melting starts from Al/β/(Bi) triple point and then the liquid spreads along matrix-particle interface. The solidification occurs in eutectic manner. PMID:26328350

  4. A composition and size controllable approach for Au-Ag alloy nanoparticles

    PubMed Central

    2012-01-01

    A capillary micro-reaction was established for the synthesis of Au-Ag alloy nanoparticles (NPs) with a flexible and controllable composition and grain size by tuning the synthesis temperature, the residence time, or the mole ratio of Au3+:Ag+. By extending the residence time from 5 to 900 s, enhancing the temperature from 120°C to 160°C, or decreasing the mole ratio of Au3+:Ag+ from 1:1 to 1:20, the composition of samples was changed continuously from Au-rich to Ag-rich. The particles became large with the increase of the residence time; however, synthesis temperatures showed less effect on the particle size change. The particle size of the Au-Ag alloy NPs with various composition could be kept by adjusting the mole ratio of Au3+:Ag+. TEM observation displayed that the as-obtained NPs were sphere-like with the smallest average size of 4.0 nm, which is half of those obtained by the traditional flask method. PMID:22513005

  5. Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF4: Yb(3+), Er(3+) Nanoparticles.

    PubMed

    Shao, Bo; Yang, Zhengwen; Wang, Yida; Li, Jun; Yang, Jianzhi; Qiu, Jianbei; Song, Zhiguo

    2015-11-18

    Rare-earth-ion-doped upconversion (UC) nanoparticles have generated considerable interest because of their potential application in solar cells, biological labeling, therapeutics, and imaging. However, the applications of UC nanoparticles were still limited because of their low emission efficiency. Photonic crystals and noble metal nanoparticles are applied extensively to enhance the UC emission of rare earth ions. In the present work, a novel substrate consisting of inverse opal photonic crystals and Ag nanoparticles was prepared by the template-assisted method, which was used to enhance the UC emission of NaYF4: Yb(3+), Er(3+) nanoparticles. The red or green UC emissions of NaYF4: Yb(3+), Er(3+) nanoparticles were selectively enhanced on the inverse opal substrates because of the Bragg reflection of the photonic band gap. Additionally, the UC emission enhancement of NaYF4: Yb(3+), Er(3+) nanoparticles induced by the coupling of metal nanoparticle plasmons and photonic crystal effects was realized on the Ag nanoparticles included in the inverse opal substrate. The present results demonstrated that coupling of Ag nanoparticle with inverse opal photonic crystals provides a useful strategy to enhance UC emission of rare-earth-ion-doped nanoparticles. PMID:26496243

  6. Fluorescence turn-on detection of glucose via the Ag nanoparticle mediated release of a perylene probe.

    PubMed

    Li, Juanmin; Li, Yongxin; Shahzad, Sohail Anjum; Chen, Jian; Chen, Yang; Wang, Yan; Yang, Meiding; Yu, Cong

    2015-04-14

    A novel fluorescence turn-on strategy for glucose sensing is demonstrated. The fluorescence of a perylene probe could be quenched by the silver nanoparticles (Ag NPs). The Ag NPs could be etched by H2O2 generated from the enzymatic oxidation of glucose. And efficient probe fluorescence recovery was detected. PMID:25763414

  7. Enhanced hydrogenation and reduced lattice distortion in size selected Pd-Ag and Pd-Cu alloy nanoparticles

    SciTech Connect

    Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.; Khan, S. A.

    2013-10-21

    Important correlation between valence band spectra and hydrogenation properties in Pd alloy nanoparticles is established by studying the properties of size selected and monocrystalline Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles. The X-ray photoelectron spectroscopy and elastic recoil detection analysis show that size induced Pd4d centroid shift is related to enhanced hydrogenation with H/Pd ratio of 0.57 and 0.49 in Pd-Ag and Pd-Cu nanoparticles in comparison to reported bulk values of 0.2 and 0.1, respectively. Pd-alloy nanoparticles show lower hydrogen induced lattice distortion. The reduced distortion and higher hydrogen reactivity of Pd-alloy nanoparticles is important for numerous hydrogen related applications.

  8. Exchange bias in Ag/FeCo/Ag core/shell/shell nanoparticles due to partial oxidation of FeCo intermediate shell

    NASA Astrophysics Data System (ADS)

    Takahashi, Mari; Mohan, Priyank; Mott, Derrick M.; Maenosono, Shinya

    2016-03-01

    Recently we developed magnetic-plasmonic Ag/FeCo/Ag core/shell/shell nanoparticles for the purpose of biological applications. In these heterostructured nanoparticles, exchange bias is observed as a result of the formation of an interface between ferromagnetic FeCo and antiferromagnetic CoxFe1-xO due to the partial oxidation of the FeCo intermediate shell. In this study we thoroughly characterized the surface oxide layer of the FeCo shell by XPS, XRD and SQUID magnetometer.

  9. Anomalous Tunnel Magnetoresistance and Spin Transfer Torque in Magnetic Tunnel Junctions with Embedded Nanoparticles

    PubMed Central

    Useinov, Arthur; Ye, Lin-Xiu; Useinov, Niazbeck; Wu, Te-Ho; Lai, Chih-Huang

    2015-01-01

    The tunnel magnetoresistance (TMR) in the magnetic tunnel junction (MTJ) with embedded nanoparticles (NPs) was calculated in range of the quantum-ballistic model. The simulation was performed for electron tunneling through the insulating layer with embedded magnetic and non-magnetic NPs within the approach of the double barrier subsystem connected in parallel to the single barrier one. This model can be applied for both MTJs with in-plane magnetization and perpendicular one. We also calculated the in-plane component of the spin transfer torque (STT) versus the applied voltage in MTJs with magnetic NPs and determined that its value can be much larger than in single barrier system (SBS) for the same tunneling thickness. The reported simulation reproduces experimental data of the TMR suppression and peak-like TMR anomalies at low voltages available in leterature. PMID:26681336

  10. Tuning the properties of ZnO, hematite, and Ag nanoparticles by adjusting the surface charge.

    PubMed

    Zhang, Jianhui; Dong, Guanjun; Thurber, Aaron; Hou, Yayi; Gu, Min; Tenne, Dmitri A; Hanna, C B; Punnoose, Alex

    2012-03-01

    A poly (acryl acid) (PAA) post-treatment method is performed to modify the surface charge of ZnO nanospheres, hematite nanocubes, and Ag nanoprisms from highly positive to very negative by adjusting the PAA concentration, to and greatly modify their photoluminescence, cytotoxicity, magnetism, and surface plasmon resonance. This method provides a general way to tune the nanoparticle properties for broad physicochemical and biological applications. PMID:22298490

  11. Production of antibacterial colored viscose fibers using in situ prepared spherical Ag nanoparticles.

    PubMed

    Emam, Hossam E; Mowafi, Salwa; Mashaly, Hamada M; Rehan, Mohamed

    2014-09-22

    In situ incorporation technique was used for coloration and acquiring excellent antibacterial properties for viscose fibers by silver nanoparticles (AgNPs). AgNPs were prepared in situ and incorporated in viscose matrix directly without using any other reducing and stabilizing agents. The main objective of this research was to successfully employ the reducing and stabilizing features of cellulose to produce nanosilver-viscose composites. Coloration of fibers after in situ AgNPs incorporation is related to surface plasmon resonance of silver. Colorimetric data were recorded as a function of washings to characterize the final colored fibers. Fastness properties and silver release were all measured to study the washable and wear off properties. Depending on the silver concentration, yellowish colored fibers with different shades were produced. Good fastness properties were obtained after 20 washings without using any crosslinker or binder. The colored fibers had excellent antibacterial activities against Escherichia coli, even after 20 washings. PMID:24906741

  12. Rapid synthesis of ordered hexagonal mesoporous silica and their incorporation with Ag nanoparticles by solution plasma

    SciTech Connect

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang Yul

    2012-10-15

    Graphical abstract: Overall reactions of mesoporous silica and AgNPs-incorporated mesoporous silica syntheses by solution plasma process (SPP). Highlights: ► SPP for rapid synthesis of mesoporous silica. ► SPP for rapid synthesis of mesoporous silica and AgNPs incorporation. ► Higher surface area and larger pore diameter of mesoporous silica synthesized by SPP. -- Abstract: Rapid synthesis of silica with ordered hexagonal mesopore arrangement was obtained using solution plasma process (SPP) by discharging the mixture of P123 triblock copolymer/TEOS in acid solution. SPP, moreover, was utilized for Ag nanoparticles (AgNPs) incorporation in silica framework as one-batch process using silver nitrate (AgNO{sub 3}) solution as precursor. The turbid silicate gel was clearly observed after discharge for 1 min and the white precipitate formed at 3 min. The mesopore with hexagonal arrangement and AgNPs were observed in mesoporous silica. Two regions of X-ray diffraction patterns (2θ < 2° and 2θ = 35–90°) corresponded to the mesoporous silica and Ag nanocrystal characteristics. Comparing with mesoporous silica prepared by a conventional sol–gel route, surface area and pore diameter of mesoporous silica prepared by solution plasma were observed to be larger. In addition, the increase in Ag loading resulted in the decrease in surface area with insignificant variation in the pore diameter of mesoporous silica. SPP could be successfully utilized not only to enhance gelation time but also to increase surface area and pore diameter of mesoporous silica.

  13. One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers.

    PubMed

    Celebioglu, Asli; Aytac, Zeynep; Umu, Ozgun C O; Dana, Aykutlu; Tekinay, Turgay; Uyar, Tamer

    2014-01-01

    One-step synthesis of size-tunable silver nanoparticles (Ag-NP) incorporated into electrospun nanofibers was achieved. Initially, in situ reduction of silver salt (AgNO3) to Ag-NP was carried out in aqueous solution of polyvinyl alcohol (PVA). Here, PVA was used as reducing agent and stabilizing polymer as well as electrospinning polymeric matrix for the fabrication of PVA/Ag-NP nanofibers. Afterwards, hydroxypropyl-beta-cyclodextrin (HPβCD) was used as an additional reducing and stabilizing agent in order to control size and uniform dispersion of Ag-NP. The size of Ag-NP was ∼8 nm and some Ag-NP aggregates were observed for PVA/Ag-NP nanofibers, conversely, the size of Ag-NP decreased from ∼8 nm down to ∼2 nm within the fiber matrix without aggregation were attained for PVA/HPβCD nanofibers. The PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibers exhibited surface enhanced Raman scattering (SERS) effect. Moreover, antibacterial properties of PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibrous mats were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. PMID:24274573

  14. Enhanced formation of silver nanoparticles in Ag+-NOM-iron(II, III) systems and antibacterial activity studies.

    PubMed

    Adegboyega, Nathaniel F; Sharma, Virender K; Siskova, Karolina M; Vecerova, Renata; Kolar, Milan; Zbořil, Radek; Gardea-Torresdey, Jorge L

    2014-03-18

    This work reports the role of iron redox pair (Fe(3+)/Fe(2+)) in the formation of naturally occurring silver nanoparticles (AgNPs) in the aquatic environment. The results showed that Fe(3+) or Fe(2+) ions in the mixtures of Ag(+) and natural organic matter enhanced the formation of AgNPs. The formation of AgNPs depended on pH and types of organic matter. Increase in pH enhanced the formation of AgNPs, and humic acids as ligands showed higher formation of AgNPs compared to fulvic acids. The observed results were described by considering the potentials of redox pairs of silver and iron species and the possible species involved in reducing silver ions to AgNPs. Dynamic light scattering and transmission electron microscopy measurements of AgNPs revealed mostly bimodal size distribution with decrease in size of AgNPs due to iron species in the reaction mixture. Minimum inhibitory concentration of AgNPs needed to inhibit the growth of various bacterial species suggested the role of surfaces of tested Gram-positive and Gram-negative bacteria. Stability study of AgNPs, formed in Ag(+)-humic acid/fulvic acids-Fe(3+) mixtures over a period of several months showed high stability of the particles with significant increase in surface plasmon resonance peak. The environmental implications of the results in terms of fate, transport, and ecotoxicity of organic-coated AgNPs are briefly presented. PMID:24524189

  15. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles.

    PubMed

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-19

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO₂.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles. PMID:25757694

  16. Controlled preparation of Ag nanoparticle films by a modified photocatalytic method on TiO2 films with Ag seeds for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Fu, Xin; Pan, Lujun; Li, Shuai; Wang, Qiao; Qin, Jun; Huang, Yingying

    2016-02-01

    Uniform Ag nanoparticle (NP) films were synthesized by a modified photocatalytic method on TiO2 films with Ag seeds for surface-enhanced Raman scattering, which combine the advantages of the spurting method (high nucleation density) and the traditional photocatalytic method (suitable particle size). The Ag seeds were prepared by magnetron sputtering with different time, which would adjust the distribution and transfer of electrons on the surface of TiO2 film in the process of photocatalytic reduction. The distribution and morphology of Ag NP films can be adjusted by the sputtering time and the UV irradiation time. The Raman enhancement of as-prepared Ag NP films was calculated by finite-difference time-domain to validate the experiment data. It is found that the Ag NP films synthesized on TiO2 films with suitable pre-deposited Ag seeds exhibit a much higher Raman enhancement activity than the optimum Ag NP film synthesized directly on the TiO2 film without Ag seeds.

  17. Characterization and Evaluation of Reverse Osmosis Membranes Modified with Ag2O Nanoparticles to Improve Performance.

    PubMed

    Al-Hobaib, Abdullah S; Al-Sheetan, Khalid M; Shaik, Mohammed Rafi; Al-Andis, Naser M; Al-Suhybani, M S

    2015-12-01

    The objective of this work was to prepare and characterize a new and highly efficient modified membrane by in situ interfacial polymerization on porous polysulfone supports. The process used m-phenylenediamine and trimesoyl chloride in hexane, incorporating silver oxide Ag2O nanoparticles of varied concentrations from 0.001 to 0.1 wt%. Ag2O nanoparticles were prepared at different sizes varying between 20 and 50 nm. The modified membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), transmission electron microscopy (TEM), and contact angle measurement. The results showed a smooth membrane surface and average surface roughness from 31 to 74 nm. Moreover, hydrophilicity improved and the contact angle decreased to 41° at 0.009 wt% silver oxide. The performances of the developed membranes were investigated by measuring permeate fluxes and salt rejection capability by passing NaCl solutions (2000 ppm) through the membranes at 225 psi. The results showed that the flux increased from 26 to 40.5 L/m(2) h, while the salt rejection was high, at 99 %, with 0.003 wt% Ag2O nanoparticles. PMID:26428014

  18. Characterization and Evaluation of Reverse Osmosis Membranes Modified with Ag2O Nanoparticles to Improve Performance

    NASA Astrophysics Data System (ADS)

    Al-Hobaib, Abdullah S.; AL-Sheetan, Khalid M.; Shaik, Mohammed Rafi; Al-Andis, Naser M.; Al-Suhybani, M. S.

    2015-09-01

    The objective of this work was to prepare and characterize a new and highly efficient modified membrane by in situ interfacial polymerization on porous polysulfone supports. The process used m-phenylenediamine and trimesoyl chloride in hexane, incorporating silver oxide Ag2O nanoparticles of varied concentrations from 0.001 to 0.1 wt%. Ag2O nanoparticles were prepared at different sizes varying between 20 and 50 nm. The modified membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), transmission electron microscopy (TEM), and contact angle measurement. The results showed a smooth membrane surface and average surface roughness from 31 to 74 nm. Moreover, hydrophilicity improved and the contact angle decreased to 41° at 0.009 wt% silver oxide. The performances of the developed membranes were investigated by measuring permeate fluxes and salt rejection capability by passing NaCl solutions (2000 ppm) through the membranes at 225 psi. The results showed that the flux increased from 26 to 40.5 L/m2 h, while the salt rejection was high, at 99 %, with 0.003 wt% Ag2O nanoparticles.

  19. Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties.

    PubMed

    Zlotea, Claudia; Campesi, Renato; Cuevas, Fermin; Leroy, Eric; Dibandjo, Philippe; Volkringer, Christophe; Loiseau, Thierry; Férey, Gérard; Latroche, Michel

    2010-03-10

    The metal-organic framework MIL-100(Al) has been used as a host to synthesize Pd nanoparticles (around 2.0 nm) embedded within the pores of the MIL, showing one of the highest metal contents (10 wt %) without degradation of the porous host. Textural properties of MIL-100(Al) are strongly modified by Pd insertion, leading to significant changes in gas sorption properties. The loss of excess hydrogen storage at low temperature can be correlated with the decrease of the specific surface area and pore volume after Pd impregnation. At room temperature, the hydrogen uptake in the composite MIL-100(Al)/Pd is almost twice that of the pristine material. This can be only partially accounted by Pd hydride formation, and a "spillover" mechanism is expected to take place promoting the dissociation of molecular hydrogen at the surface of the metal nanoparticles and the diffusion of monatomic hydrogen into the porosity of the host metal-organic framework. PMID:20155921

  20. Towards optimization and characterization of dye-embedded gold nanoparticle clusters for multiplexed optical imaging

    NASA Astrophysics Data System (ADS)

    McDonald, M. A.; Hight Walker, A. R.

    2009-02-01

    Metallic nanoparticle clusters coupling strong surface plasmons with a Raman reporter molecule have been developed for application in multiplexed optical imaging. Of interest to our work is the ability of the agents to serve as surface-enhanced Raman spectroscopy (SERS) probes. We present the seed-mediated synthesis and characterization of rhodamine B isothiocyante Au nanoparticle clusters (RhB-AuNPCs). RhB-AuNPCs are anisotropic structures which contain the Raman reporter, RhB, embedded between a gold aggregate core and gold surface layer. In contrast to typical SERS studies, the Raman signal originates from the probe (RhB-AuNPCs) and not from RhB incubated with a noble metal colloid. Characterization of the probes' optical properties is presented. The overall goal of our study is to prepare probes that may be used for the identification and spectroscopic labeling of multiple molecular biomarkers utilizing SERS imaging.

  1. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films.

    PubMed

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A

    2015-12-30

    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer. PMID

  2. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering.

    PubMed

    Ganesh, Nitya; Jayakumar, Rangasamy; Koyakutty, Manzoor; Mony, Ullas; Nair, Shantikumar V

    2012-09-01

    Poly(caprolactone) (PCL) has been frequently considered for bone tissue engineering because of its excellent biocompatibility. A drawback, however, of PCL is its inadequate mechanical strength for bone tissue engineering and its inadequate bioactivity to promote bone tissue regeneration from mesenchymal stem cells. To correct this deficiency, this work investigates the addition of nanoparticles of silica (nSiO(2)) to the scaffold to take advantage of the known bioactivity of silica as an osteogenic material and also to improve the mechanical properties through nanoscale reinforcement of the PCL fibers. The nanocomposite scaffolds and the pristine PCL scaffolds were evaluated physicochemically, mechanically, and biologically in the presence of human mesenchymal stem cells (hMSCs). The results indicated that, when the nanoparticles of size approximately 10 nm (concentrations of 0.5% and 1% w/v) were embedded within, or attached to, the PCL nanofibers, there was a substantial increase in scaffold strength, protein adsorption, and osteogenic differentiation of hMSCs. These nSiO(2) nanoparticles, when directly added to the cells evidently pointed to ingestion of these particles by the cells followed by cell death. The polymer nanofibers appeared to protect the cells by preventing ingestion of the silica nanoparticles, while at the same time adequately exposing them on fiber surfaces for their desired bioactivity. PMID:22725098

  3. Aggregation-Induced Emission Luminogen-Embedded Silica Nanoparticles Containing DNA Aptamers for Targeted Cell Imaging.

    PubMed

    Wang, Xiaoyan; Song, Panshu; Peng, Lu; Tong, Aijun; Xiang, Yu

    2016-01-13

    Conventional fluorophores usually undergo aggregation-caused quenching (ACQ), which limits the loading amount of these fluorophores in nanoparticles for bright fluorescence imaging. On the contrary, fluorophores with aggregation-induced emission (AIE) characteristics are strongly fluorescent in their aggregate states and have been an ideal platform for developing highly fluorescent nanomaterials, such as fluorescent silica nanoparticles (FSNPs). In this work, AIE luminogens based on salicylaldehyde hydrazones were embedded in silica nanoparticles through a facile noncovalent approach, which afforded AIE-FSNPs emitting much brighter fluorescence than that of some commercial fluorescein-doped silica and polystyrene nanoparticles. These AIE-FSNPs displaying multiple fluorescence colors were fabricated by a general method, and they underwent much less fluorescence variation due to environmental pH changes compared with fluorescein-hybridized FSNPs. In addition, a DNA aptamer specific to nucleolin was functionalized on the surface of AIE-FSNPs for targeted cell imaging. Fluorescent microscopy and flow cytometry studies both revealed highly selective fluorescence staining of MCF-7 (a cancer cell line with nucleolin overexpression) over MCF-10A (normal) cells by the aptamer-functionalized AIE-FSNPs. The fluorescence imaging in different color channels was achieved using AIE-FSNPs containing each of the AIE luminogens, as well as photoactivatable fluorescent imaging of target cells by the caged AIE fluorophore. PMID:26653325

  4. Phase decomposition of AuFe alloy nanoparticles embedded in silica matrix under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Pannu, Compesh; Bala, Manju; Singh, U. B.; Srivastava, S. K.; Kabiraj, D.; Avasthi, D. K.

    2016-07-01

    AuFe alloy nanoparticles embedded in silica matrix are synthesized using atom beam sputtering technique and subsequently irradiated with 100 MeV Au ions at various fluences ranging from 1 × 1013 to 6 × 1013 ions/cm2. The X-ray diffraction, absorption spectroscopy, X-ray photo electron spectroscopy and transmission electron microscopy results show that swift heavy ion irradiation leads to decomposition of AuFe alloy nanoparticles from surface region and subsequent reprecipitation of Au and Fe nanoparticles occur. The process of phase decomposition and reprecipitation of individual element nanoparticles is explained on the basis of inelastic thermal spike model.

  5. Toxicological Effects of Caco-2 Cells Following Short-Term and Long-Term Exposure to Ag Nanoparticles

    PubMed Central

    Chen, Ni; Song, Zheng-Mei; Tang, Huan; Xi, Wen-Song; Cao, Aoneng; Liu, Yuanfang; Wang, Haifang

    2016-01-01

    Extensive utilization increases the exposure of humans to Ag nanoparticles (NPs) via the oral pathway. To comprehensively address the action of Ag NPs to the gastrointestinal systems in real situations, i.e., the long-term low-dose exposure, we evaluated and compared the toxicity of three Ag NPs (20–30 nm with different surface coatings) to the human intestine cell Caco-2 after 1-day and 21-day exposures, using various biological assays. In both the short- and long-term exposures, the variety of surface coating predominated the toxicity of Ag NPs in a descending order of citrate-coated Ag NP (Ag-CIT), bare Ag NP (Ag-B), and poly (N-vinyl-2-pyrrolidone)-coated Ag NP (Ag-PVP). The short-term exposure induced cell growth inhibition and death. The cell viability loss appeared after cells were exposed to 0.7 μg/mL Ag-CIT, 0.9 μg/mL Ag-B or >1.0 μg/mL Ag-PVP for 24 h. The short-term and higher-dose exposure also induced reactive oxygen species (ROS) generation, mitochondrial damage, cell membrane leakage, apoptosis, and inflammation (IL-8 level). The long-term exposure only inhibited the cell proliferation. After 21-day exposure to 0.4 μg/mL Ag-CIT, the cell viability dropped to less than 50%, while cells exposed to 0.5 μg/mL Ag-PVP remained normal as the control. Generally, 0.3 μg/mL is the non-toxic dose for the long-term exposure of Caco-2 cells to Ag NPs in this study. However, cells presented inflammation after exposure to Ag NPs with the non-toxic dose in the long-term exposure. PMID:27338357

  6. Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Hu, Peiguang; Song, Yang; Chen, Limei; Chen, Shaowei

    2015-05-01

    1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu alloy nanoparticles with the gold concentration ranging from approximately 25 at% to 55 at%. Consistent results were obtained in UV-vis spectroscopic measurements where the nanoparticle surface plasmon resonance red-shifted almost linearly with increasing gold concentrations. The self-assembly of 1-dodecyne ligands on the nanoparticle surface was manifested in infrared spectroscopic measurements. Importantly, the resulting nanoparticles exhibited apparent electrocatalytic activity for oxygen reduction in alkaline media, and the performance was found to show a volcano variation in the Au content in the alloy nanoparticles, with the best performance observed for the samples with ca. 35.5 at% Au. The enhanced catalytic activity, as compared to pure Ag nanoparticles or even commercial Pt/C catalysts, was accounted for by the unique metal-ligand interfacial bonding interactions as well as alloying effects that increased metal-oxygen affinity.1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu alloy nanoparticles with the gold concentration ranging from approximately 25 at% to 55 at%. Consistent results were obtained in UV-vis spectroscopic measurements where the nanoparticle surface plasmon resonance red-shifted almost linearly with increasing gold

  7. Drastic nickel ion removal from aqueous solution by curcumin-capped Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Bettini, S.; Pagano, R.; Valli, L.; Giancane, G.

    2014-08-01

    A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%.A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02583k

  8. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles

    NASA Astrophysics Data System (ADS)

    Grammatikopoulos, Panagiotis; Kioseoglou, Joseph; Galea, Antony; Vernieres, Jerome; Benelmekki, Maria; Diaz, Rosa E.; Sowwan, Mukhles

    2016-05-01

    In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two separate sputter targets allows for good control over composition. Simultaneously, it involves fast kinetics and non-equilibrium processes, which can trap the nascent NPs into metastable configurations. In this study, we observed such configurations in immiscible, bi-metallic Ag-Cu NPs by scanning transmission electron microscopy (S/TEM) and electron energy-loss spectroscopy (EELS), and noticed a marked difference in the shape of NPs belonging to Ag- and Cu-rich samples. We explained the formation of Janus or Ag@Cu core/shell metastable structures on the grounds of in-flight mixed NP coalescence. We utilised molecular dynamics (MD) and Monte Carlo (MC) computer simulations to demonstrate that such configurations cannot occur as a result of nanoalloy segregation. Instead, sintering at relatively low temperatures can give rise to metastable structures, which eventually can be stabilised by subsequent quenching. Furthermore, we compared the heteroepitaxial diffusivities along various surfaces of both Ag and Cu NPs, and emphasised the differences between the sintering mechanisms of Ag- and Cu-rich NP compositions: small Cu NPs deform as coherent objects on large Ag NPs, whereas small Ag NPs dissolve into large Cu NPs, with their atoms diffusing along specific directions. Taking advantage of this observation, we propose controlled NP coalescence as a method to engineer mixed NPs of a unique, patterned core@partial-shell structure, which we refer to as a ``glass-float'' (ukidama) structure.In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two

  9. Effect of Synthesis Techniques on Crystallization and Optical Properties of Ag-Cu Bimetallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiong, Ziye; Qin, Fen; Huang, Po-Shun; Nettleship, Ian; Lee, Jung-Kun

    2016-04-01

    Silver (Ag)-copper (Cu) bimetallic nanoparticles (NPs) were synthesized by the reduction of silver nitrate and copper (II) acetate monohydrate using ethylene glycol in a microwave (MW) heating system with controlled reaction times ranging from 5 min to 30 min. The molar ratio Ag/Cu was varied from 1:1 to 1:3. The effect of reaction conditions on the bimetallic NPs structures and compositions were characterized by x-ray photoelectron spectroscopy, x-ray diffraction and transmission electron microscopy. The average particle size was approximately 150 nm. The surface plasmon resonance (SPR) of Ag-Cu bimetallic NPs was investigated by monitoring the SPR band peak behavior via UV/Vis spectrophotometry. The resonance peak positions and peak widths varied due to the different structures of the bimetallic NPs created under the synthesis conditions. In the MW heating method, the reduction of Cu was increased and Cu was inhomogeneously deposited over the Ag cores. As the composition of Cu becoming higher in the Ag-Cu bimetallic NPs, the absorption between 400 nm to 600 nm was greatly enhanced.

  10. Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits.

    PubMed

    Gudadhe, Janhavi A; Yadav, Alka; Gade, Aniket; Marcato, Priscyla D; Durán, Nelson; Rai, Mahendra

    2014-12-01

    Preparation of protective coating possessing antimicrobial properties is present day need as they increase the shelf life of fruits and vegetables. In the present study, preparation of agar-silver nanoparticle film for increasing the shelf life of fruits is reported. Silver nanoparticles (Ag-NPs) biosynthesised using an extract of Ocimum sanctum leaves, were mixed with agar-agar to prepare an agar-silver nanoparticles (A-AgNp) film. This film was surface-coated over the fruits, Citrus aurantifolium (Thornless lime) and Pyrus malus (Apple), and evaluated for the determination of antimicrobial activity of A-AgNp films using disc diffusion method, weight loss and shelf life of fruits. This study demonstrates that these A-AgNp films possess antimicrobial activity and also increase the shelf life of fruits. PMID:25429496

  11. Low temperature crystalline Ag-Ni alloy formation from silver and nickel nanoparticles entrapped in a fatty acid composite film

    NASA Astrophysics Data System (ADS)

    Kumar, Ashavani; Damle, Chinmay; Sastry, Murali

    2001-11-01

    Nanoparticles of silver and nickel were grown in thermally evaporated fatty acid (stearic acid) films by immersion of the film sequentially in solutions containing Ag+ ions and Ni2+ ions. Attractive electrostatic interaction between the metal cations and the carboxylate ions in the fatty acid film leads to entrapment of the cations in the film. Thereafter, the metal ions were reduced in situ to yield nanoparticles of Ag and Ni of ˜30 nm diameter within the fatty acid matrix. Thermal treatment of the stearic acid-(silver+nickel) nanocomposite films led to the formation of a Ni-Ag alloy at ˜100 °C. Prolonged heat treatment at this temperature resulted in the phase separation of the alloy and the reformation of individual Ag and Ni nanoparticles.

  12. Effects of soil and dietary exposures to Ag nanoparticles and AgNO₃ in the terrestrial isopod Porcellionides pruinosus.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Jurkschat, Kerstin; Soares, Amadeu M V M; Loureiro, Susana

    2015-10-01

    The effects of Ag-NPs and AgNO3 on the isopod Porcellionides pruinosus were determined upon soil and dietary exposures. Isopods avoided Ag in soil, with EC50 values of ∼16.0 and 14.0 mg Ag/kg for Ag-NPs and AgNO3, respectively. Feeding inhibition tests in soil showed EC50s for effects on consumption ratio of 127 and 56.7 mg Ag/kg, respectively. Although similar EC50s for effects on biomass were observed for nanoparticulate and ionic Ag (114 and 120 mg Ag/kg dry soil, respectively), at higher concentrations greater biomass loss was found for AgNO3. Upon dietary exposure, AgNO3 was more toxic, with EC50 for effects on biomass change being >1500 and 233 mg Ag/kg for Ag-NPs and AgNO3, respectively. The difference in toxicity between Ag-NPs and AgNO3 could not be explained from Ag body concentrations. This suggests that the relation between toxicity and bioavailability of Ag-NPs differs from that of ionic Ag in soils. PMID:26071943

  13. Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles

    PubMed Central

    2013-01-01

    Background Knowledge about silver nanoparticles in soils is limited even if soils are a critical pathway for their environmental fate. In this paper, speciation results have been acquired using a silver ion selective electrode in three different soils. Results Soil organic matter and pH were the most important soil properties controlling the occurrence of silver ions in soils. In acidic soils, more free silver ions are available while in the presence of organic matter, ions were tightly bound in complexes. The evolution of the chemical speciation of the silver nanoparticles in soils was followed over six months. Conclusion During the first few hours, there appeared to be a strong sorption of the silver with soil ligands, whereas over time, silver ions were released, the final concentration being approximately 10 times higher than at the beginning. Ag release was associated with either the oxidation of the nanoparticles or a dissociation of adsorbed silver from the soil surfaces. PMID:23617903

  14. Development of Novel Cadmium-Free AgInS2 Semiconductor Nanoparticles.

    PubMed

    Yang, Wentao; Gong, Xiaoqun; Chang, Jin

    2016-03-01

    AgInS2 (AIS) semiconductor nanoparticles as the novel alternatives to cadmium- or lead-containing semiconductors have attracted much attention both on the theory and application research, based on their tunable fluorescence emission wavelengths, high photostability and low toxicity of chemical composition. The bandgap of AIS nanoparticles can be adjusted from 1.54 to 2.03 eV, which makes AIS nanocrystalline suitable for applications in solar energy conversion. Moreover, the fluorescence emission wavelengths can be tuned in the near-infrared regions, and thus make it the next-generation low-toxicity materials for the applications in bioimaging. In this review, the research progress of the AIS nanoparticles is summarized, including synthetic methods, properties and the possibilities to influence their shape and crystallographic structure. Furthermore, we discuss the potential applications of this novel material in photocatalysis, solar energy conversion and biological area. PMID:27455616

  15. Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant

    NASA Astrophysics Data System (ADS)

    Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.

    2014-05-01

    Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).

  16. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles.

    PubMed

    Grammatikopoulos, Panagiotis; Kioseoglou, Joseph; Galea, Antony; Vernieres, Jerome; Benelmekki, Maria; Diaz, Rosa E; Sowwan, Mukhles

    2016-05-14

    In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two separate sputter targets allows for good control over composition. Simultaneously, it involves fast kinetics and non-equilibrium processes, which can trap the nascent NPs into metastable configurations. In this study, we observed such configurations in immiscible, bi-metallic Ag-Cu NPs by scanning transmission electron microscopy (S/TEM) and electron energy-loss spectroscopy (EELS), and noticed a marked difference in the shape of NPs belonging to Ag- and Cu-rich samples. We explained the formation of Janus or Ag@Cu core/shell metastable structures on the grounds of in-flight mixed NP coalescence. We utilised molecular dynamics (MD) and Monte Carlo (MC) computer simulations to demonstrate that such configurations cannot occur as a result of nanoalloy segregation. Instead, sintering at relatively low temperatures can give rise to metastable structures, which eventually can be stabilised by subsequent quenching. Furthermore, we compared the heteroepitaxial diffusivities along various surfaces of both Ag and Cu NPs, and emphasised the differences between the sintering mechanisms of Ag- and Cu-rich NP compositions: small Cu NPs deform as coherent objects on large Ag NPs, whereas small Ag NPs dissolve into large Cu NPs, with their atoms diffusing along specific directions. Taking advantage of this observation, we propose controlled NP coalescence as a method to engineer mixed NPs of a unique, patterned core@partial-shell structure, which we refer to as a "glass-float" (ukidama) structure. PMID:27119383

  17. Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering.

    PubMed

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Ghaedi, Kamran; Salehi, Hossein; Arpanaei, Ayyoob

    2015-08-01

    Aligned poly lactic-co-glycolic acid (PLGA) and PLGA/gelatin nanofibrous scaffolds embedded with mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. The mean diameters of nanofibers were 641±24 nm for the pure PLGA scaffolds vs 418±85 nm and 267±58 nm for the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively. The contact angle measurement results (102°±6.7 for the pure PLGA scaffold vs 81°±6.8 and 18°±8.7 for the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively) revealed enhanced hydrophilicity of scaffolds upon incorporation of gelatin and MSNPs. Besides, embedding the scaffolds with MSNPs resulted in improved tensile mechanical properties. Cultivation of PC12 cells on the scaffolds demonstrated that introduction of MSNPs into PLGA and PLGA/gelatin matrices leads to the improved cell attachment and proliferation as well as long cellular processes. DAPI staining results indicated that cell proliferations on the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds were strikingly (nearly 2.5 and 3 folds, respectively) higher than that on the aligned pure PLGA scaffolds. These results suggest superior properties of silica nanoparticles-incorporated PLGA/gelatin eletrospun nanofibrous scaffolds for the stem cell culture and tissue engineering applications. PMID:26045092

  18. Evaluation of AgClNPs@SBA-15/IL nanoparticle-induced oxidative stress and DNA mutation in Escherichia coli.

    PubMed

    Karimi, Farrokh; Dabbagh, Somayyeh; Alizadeh, Sina; Rostamnia, Sadegh

    2016-08-01

    The bactericidal effects of silver nanoparticles have been demonstrated in the past years. Recently, the new antimicrobial compounds of silver nanoparticles with different formulations have been developed. In this work, AgClNPs@SBA-15/IL as a new compound of Ag nanoparticles, was synthesized and characterized by XRD, TEM, SEM, FTIR, and EDX. The antibacterial activity and the molecular mechanism effects of AgClNPs@SBA-15/IL nanoparticles (SNPs) on Escherichia coli DH5α cells were investigated by analyzing the growth inhibitory, H2O2 level, catalase activity, DNA mutation, and plasmid copy number following treatment with AgClNPs@SBA-15/IL nanoparticles. In experimental results, the minimum inhibitory concentration (MIC) was observed in 75 μg/ml and the antibacterial efficacy (ABE) in CFU analysis was estimated 95.3 %. In bacterial cells treated with 75 and 100 μg/ml, H2O2 level significantly increased and catalase activity decreased compared with control. The random amplified polymorphic DNA (RAPD) was used to evaluate the effect of AgClNPs@SBA-15/IL nanoparticles in DNA damages and mutation in E. coli genome. RADP-PCR results indicated different banding patterns including appearance or disappearance of bands and differences in their intensity. Cluster analysis of the RAPD-PCR results based on genetic similarity showed genetic difference between E. coli cells treated with AgClNPs@SBA-15/IL nanoparticles, and control and phylogenetic tree were divided to two clusters. Plasmid copy number analysis indicated that after 8 h incubation of E. coli cells with 50, 75, and 100 μg/ml AgClNPs@SBA-15/IL nanoparticles, copy number of pET21a (+) significantly decreased compared with control which indicating DNA replication inhibition by Ag nanoparticles. In conclusion, the results of this study indicated that AgClNPs@SBA-15/IL nanoparticles can be used as an effective bactericidal agent against bacterial cells. PMID:27209037

  19. An ultrasensitive, uniform and large-area surface-enhanced Raman scattering substrate based on Ag or Ag/Au nanoparticles decorated Si nanocone arrays

    NASA Astrophysics Data System (ADS)

    Zhang, P. P.; Gao, J.; Sun, X. H.

    2015-01-01

    Large-area and highly ordered Si nanocone arrays decorated with Ag or Au/Ag nanoparticles have been fabricated via a mask-free lithography with reaction ion etching, followed by metal deposition process. Ultrasensitive surface enhanced Raman scattering signals with an enhancement factor of 1012 were achieved even at the concentration of the Rhodamine 6G as low as 10-15 M. The surface-enhanced Raman spectroscopy (SERS) substrate was also applied on the detection of Sudan I dye and the Raman signals were substantially enhanced as well. The stability of the SERS substrate can be significantly improved by covering Ag nanoparticles with Au thin layer, which maintain a high SERS performance even after one month storage. This nanofabrication process appears to be a feasible approach to prepare uniform and reproducible SERS-active substrates with high sensitivity and stability for practical SERS applications.

  20. Metal oxide nanoparticles embedded in rare-earth matrix for low temperature thermal imaging applications

    NASA Astrophysics Data System (ADS)

    Rauwel, E.; Galeckas, A.; Rauwel, P.; Hansen, P.-A.; Wragg, D.; Nilsen, O.; Fjellvåg, H.

    2016-05-01

    We report on the synthesis and characterization of nanocomposites comprising of oxide nanoparticles (NPs) (ZnO, CaHfO3 and SrHfO3) embedded in rare-earth oxide (Eu2O3, Nd2O3) matrices by using atomic layer deposition. The different oxide surroundings allowed highlighting the role of interface defects in the recombination processes of charge carriers in the NPs. We provide a comparative analysis of optical absorption and emission properties of the constituents: thin films, free-standing and embedded NPs, and discuss the intrinsic and extrinsic nature of the luminescent sites in different nanocomposites. The photoluminescence properties of ZnO nanocomposites are clearly distinguishable from those of free-standing NPs in terms of overall quantum efficiency as well as intensity ratios of the characteristic blue and green emission bands associated with radiative transitions involving excitons and intrinsic defects, respectively. In contrast to PL enhancement due to surface-passivating effect of the surrounding media in the case of ZnO nanocomposites, the embedment of hafnia perovskites into oxide matrices generally leads to suppressed luminescence in the visible range, thus confirming its extrinsic, surface-defect related nature.

  1. Electron emission of Au nanoparticles embedded in ZnO for highly conductive oxide

    SciTech Connect

    Huang, Po-Shun; Lee, Jung-Kun; Hoe Kim, Dong

    2014-04-07

    We investigated the effect of embedded Au nanoparticles (Au NPs) on electrical properties of zinc oxide (ZnO) for highly conductive oxide semiconductor. Au NPs in ZnO films influenced both the structural and electrical properties of the mixture films. The electrical resistivity decreases by as much as five orders of magnitude. This is explained by the electron emission from Au NPs to the ZnO matrix. Temperature-dependent Hall effect measurements show that an electron emission mechanism changes from tunneling to thermionic emission at T = 180 K. The electron mobility in the mixture film is mainly limited by the grain boundaries at lower temperature (80-180 K), and the Au/ZnO heterogeneous interface at higher temperature (180-340 K). In addition to the electron emission, embedded Au NPs alter the ZnO matrix microstructure and improve the electron mobility. Compared to the undoped ZnO film, the carrier concentration of the Au NP-embedded ZnO film can be increased by as much as six orders of magnitude with a small change in the carrier mobility. This result suggests a way to circumvent the inherent tradeoff between the carrier concentration and the carrier mobility in transparent conductive oxide (TCO) materials.

  2. Influence of temperature and precursor concentration on the synthesis of HDA-capped Ag{sub 2}Se nanoparticles

    SciTech Connect

    Mlambo, M.; Moloto, M.J.; Moloto, N.; Mdluli, P.S.

    2013-06-01

    Graphical abstract: The temperature effect on the growth and size of silver selenide nanoparticles with the size distribution and XRD patterns. Highlights: ► The HDA-capped Ag{sub 2}Se nanoparticles were synthesized via the colloidal route. ► Temperature and monomer concentration of the reaction were varied. ► The concentration as a factor influenced particles with a decrease observed as the amount of Ag{sup +} ion source is increased. ► Temperature has expected influence on the growth of particles resulting in increase as the temperature is increased. ► TEM images shows spherical particles and their orthorhombic phase from structural analysis by XRD. - Abstract: The size dependent of temperature and precursor concentration on the synthesis of hexadecylamine capped Ag{sub 2}Se nanoparticles via the colloidal route were studied using the combination of optical and structural analysis. The as-prepared Ag{sub 2}Se nanoparticles showed the quantum confinement with all the obtained absorption band edges blue-shifted from the bulk and their corresponding emission maxima displaying a red-shift from band edges characterised by UV–vis absorption and photoluminescence spectroscopy. The particle sizes were obtained from transmission electron microscopy analysis. The increase in precursor concentration resulted in a decrease in nanoparticle sizes. The increase in reaction temperature showed an increase in the nanoparticle sizes, when the critical temperature at 160 °C was reached, the nanoparticle sizes decreased.

  3. Size and alloying induced changes in lattice constant, core, and valance band binding energy in Pd-Ag, Pd, and Ag nanoparticles: Effect of in-flight sintering temperature

    NASA Astrophysics Data System (ADS)

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2012-07-01

    In the present study, we report the growth of size selected Pd, Ag, and Pd-Ag alloy nanoparticles by an integrated method comprising of the gas phase synthesis, electrical mobility size selection, and in-flight sintering steps. Effect of temperature during in-flight sintering on nanoparticle size, crystal structure, and electronic properties has been studied. XRD studies show lattice expansion in Pd and Ag nanoparticles and lattice contraction in Pd-Ag alloy nanoparticles on increasing the sintering temperatures. In case of Pd and Ag nanoparticles, size induced changes in lattice constants are consistent with the changes in the binding energy positions with respect to bulk values. In case of Pd-Ag alloy nanoparticles, change in nanoparticle size and composition on sintering affect the lattice constant and binding energy positions. Large changes in Pd4d valance band centroid in Pd-Ag nanoparticles are due to size and alloying effects. The results of this study are important for understanding the correlation between electronic properties and Pd-H interaction in Pd alloy nanoparticles.

  4. Enhanced magnetic resonance contrast of iron oxide nanoparticles embedded in a porous silicon nanoparticle host

    NASA Astrophysics Data System (ADS)

    Kinsella, Joseph; Ananda, Shalini; Andrew, Jennifer; Grondek, Joel; Chien, Miao-Ping; Scandeng, Miriam; Gianneschi, Nathan; Ruoslahti, Erkki; Sailor, Michael

    2013-02-01

    In this report, we prepared a porous Si nanoparticle with a pore morphology that facilitates the proximal loading and alignment of magnetite nanoparticles. We characterized the composite materials using superconducting quantum interference device magnetometry, dynamic light scattering, transmission electron microscopy, and MRI. The in vitro cytotoxicity of the composite materials was tested using cell viability assays on human liver cancer cells and rat hepatocytes. An in vivo analysis using a hepatocellular carcinoma (HCC) Sprague Dawley rat model was used to determine the biodistribution properties of the material, while naïve Sprague Dawley rats were used to determine the pharmocokinetic properties of the nanomaterials. The composite material reported here demonstrates an injectable nanomaterial that exploits the dipolar coupling of superparamagnetic nanoparticles trapped within a secondary inorganic matrix to yield significantly enhanced MRI contrast. This preparation successfully avoids agglomeration issues that plague larger ferromagnetic systems. A Fe3O4:pSi composite formulation consisting of 25% by mass Fe3O4 yields an maximal T2* value of 556 mM Fe-1 s-1. No cellular (HepG2 or rat hepatocyte cells) or in vivo (rat) toxicity was observed with the formulation, which degrades and is eliminated after 4-8 h in vivo. The ability to tailor the magnetic properties of such materials may be useful for in vivo imaging, magnetic hyperthermia, or drug-delivery applications.

  5. One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance

    SciTech Connect

    Tian Chungui; Li Wei; Pan Kai; Zhang Qi; Tian Guohui; Zhou Wei; Fu Honggang

    2010-11-15

    Ag nanoparticles (NPs) modified ZnO microspheres (Ag/ZnO microspheres) were prepared by a facile one pot strategy in ethylene glycol (EG) medium. The EG played two important roles in the synthesis: it could act as a reaction media for the formation of ZnO and reduce Ag{sup +} to Ag{sup 0}. A series of the characterizations indicated the successful combination of Ag NPs with ZnO microspheres. It was shown that Ag modification could greatly enhance the photocatalytic efficiency of ZnO microspheres by taking the photodegradation of Rhodamine B as a model reaction. With appropriate ratio of Ag and ZnO, Ag/ZnO microspheres showed the better photocatalytic performance than commercial Degussa P-25 TiO{sub 2}. Photoluminescence and surface photovoltage spectra demonstrated that Ag modification could effectively inhibit the recombination of the photoinduced electron and holes of ZnO. This is responsible for the higher photocatalytic activity of Ag/ZnO composites. -- Graphical abstract: A 'one-pot' strategy was developed for preparing the Ag/ZnO microspheres in ethylene glycol. The composites exhibited superior photocatalytic performance for photodegradation of Rhodamine B dye in water. Display Omitted

  6. Optical Properties of Rhodamine 6G Laser Dye and Ag-Nanoparticle Aggregates

    NASA Astrophysics Data System (ADS)

    Noginov, M. A.; Drachev, V. P.

    2005-03-01

    Optical absorption and luminescence spectra of Rhodamine 6G (Rh6G) laser dye of different concentration with a solution of aggregated silver nanoparticles are studied. New emission band located near 610 nm is found at very high concentration of Rh6G and/or in a solution of Rh6G and Ag nanoparticles. Electron energy structure and optical functions of single Rh6G molecules, molecular complexes, and Rh6G molecules adsorbed on Ag(111) surface are studied by generalized gradient approximation method within density functional theory using ab initio pseudopotentials. Equilibrium geometries of the systems studied are obtained from both molecular dynamics simulations and X-ray diffraction measurements. Electronic structure of J-type molecular complexes (when two molecules aligned along their dipole moment axes) substantially differs from that of H-type aggregates (with parallel and anti-parallel molecular dipole moments). It is demonstrated that new luminescence line is associated with J-type molecular complexes. Observed modifications of optical properties of Rh6G and Rh6G+Ag complexes are explained in terms of both the changes of electronic structure of the systems and due to the electromagnetic interactions of dipole-dipole and dipole-surface types.

  7. Small palladium islands embedded in palladium-tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Hu, Guangzhi; Nitze, Florian; Gracia-Espino, Eduardo; Ma, Jingyuan; Barzegar, Hamid Reza; Sharifi, Tiva; Jia, Xueen; Shchukarev, Andrey; Lu, Lu; Ma, Chuansheng; Yang, Guang; Wågberg, Thomas

    2014-10-01

    The sluggish kinetics of the oxygen reduction reaction at the cathode side of proton exchange membrane fuel cells is one major technical challenge for realizing sustainable solutions for the transportation sector. Finding efficient yet cheap electrocatalysts to speed up this reaction therefore motivates researchers all over the world. Here we demonstrate an efficient synthesis of palladium-tungsten bimetallic nanoparticles supported on ordered mesoporous carbon. Despite a very low percentage of noble metal (palladium:tungsten=1:8), the hybrid catalyst material exhibits a performance equal to commercial 60% platinum/Vulcan for the oxygen reduction process. The high catalytic efficiency is explained by the formation of small palladium islands embedded at the surface of the palladium-tungsten bimetallic nanoparticles, generating catalytic hotspots. The palladium islands are ~1 nm in diameter, and contain 10-20 palladium atoms that are segregated at the surface. Our results may provide insight into the formation, stabilization and performance of bimetallic nanoparticles for catalytic reactions.

  8. Effect of ultraviolet irradiation on luminescence properties of undoped ZnS and ZnS:Ag nanoparticles

    SciTech Connect

    Qu Hua; Cao Lixin; Su Ge; Liu Wei; Sun Yuanguang; Dong Bohua

    2009-11-01

    Undoped ZnS and ZnS:Ag nanoparticles have been prepared through hydrothemal synthesis. The changes of luminescence properties induced by ultraviolet irradiation have been investigated. For both samples, the initial slight increase in luminescence is ascribed to the fast electron filling, while the succedent decrease is supposed to be caused by nonradiative pathways originating from some unknown photochemical products. The more remarkable decrease in ZnS:Ag is put down to the segregation of Ag on the surfaces of ZnS:Ag nanoparticles. Multipeaks Gaussian fitting is applied to the emission spectra. The fitting peaks around 490 nm in both samples are related with the surface states emission and the fitting peaks around 456 nm in ZnS nanoparticles and 443 nm in ZnS:Ag nanoparticles are attributed to the type of donor-acceptor pair luminescence, which corresponds to the transition between different donor levels and acceptor levels in different samples. A model of stretched exponential function is used to fit the fluorescence decay spectra. Result shows that the introduction of Ag{sup +} ions causes a spectacular lifetime shortening of ZnS. Experiment result also verifies the model as that the lifetimes of both samples are notably shortened after irradiation for 2 h.

  9. Unaffected features of BSA stabilized Ag nanoparticles after storage and reconstitution in biological relevant media.

    PubMed

    Valenti, Laura E; Giacomelli, Carla E

    2015-08-01

    Silver-coated orthopedic implants and silver composite materials have been proposed to produce local biocidal activity at low dose to reduce post-surgery infection that remains one of the major contributions to the patient morbidity. This work presents the synthesis combined with the characterization, colloidal stability in biological relevant media, antimicrobial activity and handling properties of silver nanoparticles (Ag-NP) before and after freeze dry and storage. The nanomaterial was synthesized in aqueous solution with simple, reproducible and low-cost strategies using bovine serum albumin (BSA) as the stabilizing agent. Ag-NP were characterized by means of the size distribution and morphology (UV-vis spectra, dynamic light scattering measurements and TEM images), charge as a function of the pH (zeta potential measurements) and colloidal stability in biological relevant media (UV-vis spectra and dynamic light scattering measurements). Further, the interactions between the protein and Ag-NP were evaluated by surface enhanced Raman spectroscopy (SERS) and the antimicrobial activity was tested with two bacteria strains (namely Staphylococcus aureus and Staphylococcus epidermidis) mainly present in the infections caused by implants and prosthesis in orthopedic surgery. Finally, the Ag-NP dispersed in aqueous solution were dried and stored as long-lasting powders that were easily reconstituted without losing their stability and antimicrobial properties. The proposed methods to stabilize Ag-NP not only produce stable dispersions in media of biological relevance but also long-lasting powders with optimal antimicrobial activity in the nanomolar range. This level is much lower than the cytotoxicity determined in vitro on osteoblasts, osteoclasts and osteoarthritic chondrocytes. The synthesized Ag-NP can be incorporated as additive of biomaterials or pharmaceutical products to confer antimicrobial activity in a powdered form in different formulations, dispersed in

  10. Study of Ag-Pd bimetallic nanoparticles modified glassy carbon electrode for detection of L-cysteine

    NASA Astrophysics Data System (ADS)

    Murugavelu, M.; Karthikeyan, B.

    2014-11-01

    Ag-Pd bimetallic nanoparticles (Ag-Pd BNPs) as an enhanced sensing material with improved electronic transmission rates in the electrochemical sensing of L-cysteine (L-cys) has been reported. The morphology of Ag-Pd BNPs was characterized with X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and cyclic voltammetry (CV). Oxidation of L-cys on Ag-Pd BNPs is investigated in detail by discussing the effect of the structure and from the electrocatalytic oxidation of L-cys. We found that the Ag-Pd BNPs exhibited high electrocatalytic activity towards L-cys oxidation in neutral condition and could be used for the development of nonenzymatic L-cys sensor. Based on the efficient catalytic ability of Ag-Pd BNPs, the fabricated biosensor exhibited a wide linear range of responses to the L-cys with the concentration detection limit of nearly down to 2 mM with fast response time.

  11. Spectral anion sensing and γ-radiation induced magnetic modifications of polyphenol generated Ag-nanoparticles

    NASA Astrophysics Data System (ADS)

    Ansari, Zarina; Dhara, Susmita; Bandyopadhyay, Bilwadal; Saha, Abhijit; Sen, Kamalika

    2016-03-01

    A fast one step bio-synthesis for in situ preparation of silver nanoparticles is proposed. The method involves reduction of AgNO3 with an aqueous extract of peanut skin, which is a good source of polyphenols. The silver nanoparticles thus synthesized were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis absorption spectroscopy, Fourier Transform infrared (FTIR) spectroscopy and magnetic measurements. Effect of low dose γ irradiation during the synthesis was studied and their physico-chemical properties were compared with those produced without irradiation. On the contrary to the diamagnetic behavior of bulk silver, the silver nanoparticles thus prepared show a significant ferromagnetic moment component. Variable time exposure to γ-irradiation results in an exponential decay of ferromagnetic component. A freshly prepared solution of silver nanoparticles shows selective spectral changes towards iodide ions at trace concentration (below 50 μM) among a series of 16 other competing anions. The prepared nanoparticles are therefore suitable for anion sensing application.

  12. Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters.

    PubMed

    Hanks, Nicole A; Caruso, Joseph A; Zhang, Peng

    2015-12-01

    To study the phytoremediation capabilities of Pistia stratiotes in silver nanoparticle (AgNP) and silver ion contaminated wastewaters, individual plants were grown in media spiked with different concentrations of silver nanoparticle and silver ions (0.02, 0.2, and 2 mg L(-1)). Control experiments were carried out at the same time for comparison purposes. Visual changes in the plants were also recorded periodically during each experiment. Total silver concentrations were monitored in the media before, during, and at the termination of the experiments. In addition, analysis of total silver in plant root and leaf samples after termination were carried out to determine the effect of the different media concentrations. The results showed that P. stratiotes can survive in AgNP and ions under 0.02 mg L(-1) and contaminants are retained within the plant. The use of P. stratiotes as a phytoremediator shows potential in removing heavy metal nanoparticles and is competitive in its removal of the ion counterpart. Even higher concentrations of silver, regardless of form, can be reduced to lower levels than the World Health Organization's maximum contamination limit. PMID:26342265

  13. Polymer Assisted Core-shell Ag-C nanoparticles Synthesis via Green hydrothermal Technique

    NASA Astrophysics Data System (ADS)

    Williams, James; Mishra, Sanjay

    2009-03-01

    Core-Shell Ag-C nanoparticles were synthesized in the presence of glucose through a one-pot green hydrothermal wet chemical process. An aqueous solution of glucose and Ag nitrate was hydrothermally treated to produce porous carbonaceous shell over silver core nanoparticles. The growth of carbon shells was regulated by either of the polymers (poly) vinyl pyrrolidone (PVP) or poly vinyl alcohol (PVA). The two polymers were compared to take a measure of different tunable sizes of cores, and shells. The effects of hydrothermal temperature, time, and concentration of reagents on the final formation of nanostructures were studied using UV-vis extinction spectra, transmission electron microscope, and Raman spectroscopy. The polymer molecules were found to be incorporated into carbonaceous shell. The resulting opacity of the shell was found to be hydrothermal time and temperature dependent. The shell structure was found to be more uniform with PVP than PVA. Furthermore, the polymer concentration was found to influence size and shape of the core-silver particles as well. The core-shelled nanoparticles have surfaces with organic groups capable of assembling with different reagents that could be useful in drug-delivery, optical nanodevices or biochemistry.

  14. Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell

    PubMed Central

    Xin, Le; Zhang, Zhiyong; Wang, Zhichao; Qi, Ji; Li, Wenzhen

    2013-01-01

    A solution phase-based nanocapsule method was successfully developed to synthesize non-platinum metal catalyst—carbon supported Ag nanoparticles (Ag/C). XRD patterns and TEM image show Ag nanoparticles with a small average size (5.4 nm) and narrow size distribution (2–9 nm) are uniformly dispersed on the carbon black Vulcan XC-72 support. The intrinsic activity and pathway of oxygen reduction reaction (ORR) on the Ag/C and commercial Pt/C were investigated using rotating ring disk electrode (RRDE) tests at room temperature. The results confirmed that the 4-electron pathway of ORR proceeds on small Ag nanoparticles, and showed comparable ORR activities on the self-prepared Ag/C and a commercial Pt/C. A single H2-O2 anion exchange membrane fuel cell (AEMFC) with the Ag/C cathode catalyst exhibited an open circuit potential of 0.98 V and a peak power density of 190 mW/cm2 at 80°C. PMID:24790944

  15. Influence of size, shape and core–shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx

    PubMed Central

    Pinotti, Daniele; Spadaro, Maria Chiara; Paolicelli, Guido; Grillo, Vincenzo; Valeri, Sergio; Pasquali, Luca; Bergamini, Luca; Corni, Stefano

    2015-01-01

    Summary Ag and Ag@MgO core–shell nanoparticles (NPs) with a diameter of d = 3–10 nm were obtained by physical synthesis methods and deposited on Si with its native ultrathin oxide layer SiOx (Si/SiOx). Scanning electron microscopy and transmission electron microscopy (TEM) images of bare Ag NPs revealed the presence of small NP aggregates caused by diffusion on the surface and agglomeration. Atomic resolution TEM gave evidence of the presence of crystalline multidomains in the NPs, which were due to aggregation and multitwinning occurring during NP growth in the nanocluster source. Co-deposition of Ag NPs and Mg atoms in an oxygen atmosphere gave rise to formation of a MgO shell matrix surrounding the Ag NPs. The behaviour of the surface plasmon resonance (SPR) excitation in surface differential reflectivity (SDR) spectra with p-polarised light was investigated for bare Ag and Ag@MgO NPs. It was shown that the presence of MgO around the Ag NPs caused a red shift of the plasmon excitation, and served to preserve its existence after prolonged (five months) exposure to air, realizing the possibility of technological applications in plasmonic devices. The Ag NP and Ag@MgO NP film features in the SDR spectra could be reproduced by classical electrodynamics simulations by treating the NP-containing layer as an effective Maxwell Garnett medium. The simulations gave results in agreement with the experiments when accounting for the experimentally observed aggregation. PMID:25821680

  16. Blood surface-enhanced Raman spectroscopy based on Ag and Au nanoparticles for nasopharyngeal cancer detection

    NASA Astrophysics Data System (ADS)

    Lin, Duo; Ge, Xiaosong; Lin, Xueliang; Chen, Guannan; Chen, Rong

    2016-05-01

    This study aims to evaluate and compare the utility of blood surface-enhanced Raman spectroscopy (SERS) based on Au or Ag nanoparticles (NPs), respectively, for detection of nasopharyngeal cancer (NPC). A rapid home-made Raman system was employed for SERS measurement, and high quality SERS spectra can be recorded from blood plasma samples belonging to 60 healthy volunteers and 100 NPC patients, using both metallic NPs. The spectral differences under Ag-SERS measurement between the normal and cancer groups are more significant than Au-SERS. Principal component analysis combined with linear discriminant analysis (PCA-LDA) was used for differentiating the two blood groups with a diagnostic sensitivity and specificity of 90% and 95%, respectively, using Ag-SERS method, which has almost a 20% improvement in diagnostic specificity in comparison to Au-SERS. This exploratory study demonstrates that blood SERS based on Ag NPs is capable of achieving a better diagnostic performance for NPC detection, and has promising potential for improving NPC screening.

  17. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-01

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles.The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For

  18. Structure and magnetism in Fe/FexPd1-x core/shell nanoparticles formed by alloying in Pd-embedded Fe nanoparticles

    NASA Astrophysics Data System (ADS)

    Baker, S. H.; Lees, M.; Roy, M.; Binns, C.

    2013-09-01

    We have investigated atomic structure and magnetism in Fe nanoparticles with a diameter of 2 nm embedded in a Pd matrix. The samples for these studies were prepared directly from the gas phase by co-deposition, using a gas aggregation source and an MBE-type source for the Fe nanoparticles and Pd matrix respectively. Extended absorption fine structure (EXAFS) measurements indicate that there is an appreciable degree of alloying at the nanoparticle/matrix interface; at dilute nanoparticle concentrations, more than half of the Fe atoms are alloyed with Pd. This leads to a core/shell structure in the embedded nanoparticles, with an FexPd1-x shell surrounding a reduced pure Fe core. Magnetism in the nanocomposite samples was probed by means of magnetometry measurements, which were interpreted in the light of their atomic structure. These point to a magnetized cloud of Pd atoms surrounding the embedded nanoparticles which is significantly larger than around single Fe atoms in Pd. The coercivities in the Fe/Pd nanocomposite samples are larger than in FexPd1-x atomic alloys of corresponding composition, which is consistent with exchange coupling between the magnetically harder and softer regions in the nanocomposite samples.

  19. One-pot laser-assisted synthesis of porous carbon with embedded magnetic cobalt nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghimbeu, Camélia Matei; Sopronyi, Mihai; Sima, Felix; Delmotte, Luc; Vaulot, Cyril; Zlotea, Claudia; Paul-Boncour, Valérie; Le Meins, Jean-Marc

    2015-05-01

    A novel one-pot laser-assisted approach is reported herein for the synthesis of ordered carbons with embedded cobalt nanoparticles. The process is based on a UV pulsed laser exposure of an ethanolic solution consisting of green carbon precursors, a structure directing agent and a cobalt salt. Very short irradiation times (5 to 30 min) are only required to polymerize and cross-link carbon precursors (i.e. phloroglucinol and glyoxylic acid) independent of a catalyst presence. The influence of three metallic salts (acetate, nitrate and chloride) on the phenolic resin and carbon characteristics (structure, texture and particle size/distribution) was systematically studied. When exposed to UV laser, the metallic salt exhibited a strong influence on the particle size and distribution in the carbon matrix rather than on the textural carbon properties. Using cobalt acetate, very small (3.5 nm) and uniformly dispersed particles were obtained by this simple, fast and green one-pot synthesis approach. An original combined 13C CP-MAS and DP-DEC solid state NMR spectroscopy analysis allowed to determine the structure of phenolic resins as well as the location of the cobalt salt in the resin. Complementarily, the 1H solid-state and relaxation NMR provided unique insights into the rigidity (cross-linking) of the phenolic resin and dispersion of the cobalt salt. The magnetic properties of cobalt nanoparticles were found to be size-dependent: large Co nanoparticles (~50 nm) behave as bulk Co whereas small Co nanoparticles are superparamagnetic.A novel one-pot laser-assisted approach is reported herein for the synthesis of ordered carbons with embedded cobalt nanoparticles. The process is based on a UV pulsed laser exposure of an ethanolic solution consisting of green carbon precursors, a structure directing agent and a cobalt salt. Very short irradiation times (5 to 30 min) are only required to polymerize and cross-link carbon precursors (i.e. phloroglucinol and glyoxylic acid

  20. Three-Dimensional Ordered Mesoporous MnO2-Supported Ag Nanoparticles for Catalytic Removal of Formaldehyde.

    PubMed

    Bai, Bingyang; Qiao, Qi; Arandiyan, Hamidreza; Li, Junhua; Hao, Jiming

    2016-03-01

    Three-dimensional (3D) ordered mesoporous Ag/MnO2 catalyst was prepared by impregnation method based on 3D-MnO2 and used for catalytic oxidation of HCHO. Ag nanoparticles are uniformly distributed on the polycrystalline wall of 3D-MnO2. The addition of Ag does not change the 3D ordered mesoporous structure of the Ag/MnO2, but does reduce the pore size and surface area. Ag nanoparticles provide sufficient active site for the oxidation reaction of HCHO, and Ag (111) crystal facets in the Ag/MnO2 are active faces. The 8.9% Ag/MnO2 catalyst shows a higher normalized rate (10.1 nmol·s(-1)·m(-2) at 110 °C) and TOF (0.007 s(-1) at 110 °C) under 1300 ppm of HCHO and 150 000 h(-1) of GHSV, and its apparent activation energy of the reaction is the lowest (39.1 kJ/mol). More Ag active sites, higher low-temperature reducibility, more abundant surface lattice oxygen species, oxygen vacancies, and lattice defects generated from interaction Ag with MnO2 are responsible for the excellent catalytic performance of HCHO oxidation on the 8.9% Ag/MnO2 catalyst. The 8.9% Ag/MnO2 catalyst remained highly active and stable under space velocity increasing from 60 000 to 150 000 h(-1), under initial HCHO concentration increasing from 500 to 1300 ppm, and under the presence of humidity, respectively. PMID:26629972

  1. Single molecule detection using SERS study in PVP functionalized Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Garg, Parul; Dhara, S.

    2013-02-01

    Non-spherical functionalized Ag nanoparticles (NPs) with homogenous size ˜ 40 nm have been grown using soft chemical route. Solution of silver nitrate and polyvinylpyrrolidone is reduced in excess of ethylene glycol for the preparation of the NPs. Substrates has been prepared by dip coating of the NPs on c-Si for Raman studies. Rhodamine (R6G) is used as a test molecule to study the surface enhanced Raman spectroscopy (SERS) effect. A single molecule detection of R6G along with an enhancement factor of ˜ 4×103 orders of magnitude in the intensity, for the concentration as low as 10-12 M using polymer coated Ag NPs as SERS substrates, has been achieved.

  2. One-pot laser-assisted synthesis of porous carbon with embedded magnetic cobalt nanoparticles.

    PubMed

    Ghimbeu, Camélia Matei; Sopronyi, Mihai; Sima, Felix; Delmotte, Luc; Vaulot, Cyril; Zlotea, Claudia; Paul-Boncour, Valérie; Le Meins, Jean-Marc

    2015-06-14

    A novel one-pot laser-assisted approach is reported herein for the synthesis of ordered carbons with embedded cobalt nanoparticles. The process is based on a UV pulsed laser exposure of an ethanolic solution consisting of green carbon precursors, a structure directing agent and a cobalt salt. Very short irradiation times (5 to 30 min) are only required to polymerize and cross-link carbon precursors (i.e. phloroglucinol and glyoxylic acid) independent of a catalyst presence. The influence of three metallic salts (acetate, nitrate and chloride) on the phenolic resin and carbon characteristics (structure, texture and particle size/distribution) was systematically studied. When exposed to UV laser, the metallic salt exhibited a strong influence on the particle size and distribution in the carbon matrix rather than on the textural carbon properties. Using cobalt acetate, very small (3.5 nm) and uniformly dispersed particles were obtained by this simple, fast and green one-pot synthesis approach. An original combined (13)C CP-MAS and DP-DEC solid state NMR spectroscopy analysis allowed to determine the structure of phenolic resins as well as the location of the cobalt salt in the resin. Complementarily, the (1)H solid-state and relaxation NMR provided unique insights into the rigidity (cross-linking) of the phenolic resin and dispersion of the cobalt salt. The magnetic properties of cobalt nanoparticles were found to be size-dependent: large Co nanoparticles (∼50 nm) behave as bulk Co whereas small Co nanoparticles are superparamagnetic. PMID:25981107

  3. Biphasic Peptide Amphiphile Nanomatrix Embedded with Hydroxyapatite Nanoparticles for Stimulated Osteoinductive Response

    PubMed Central

    Anderson, Joel M.; Patterson, Jessica L.; Vines, Jeremy B.; Javed, Amjad; Gilbert, Shawn R.; Jun, Ho-Wook

    2013-01-01

    Formation of the native bone extracellular matrix (ECM) provides an attractive template for bone tissue engineering. The structural support and biological complexity of bone ECM are provided within a composite microenvironment that consists of an organic fibrous network reinforced by inorganic hydroxyapatite (HA) nanoparticles. Recreating this biphasic assembly, a bone ECM analogous scaffold comprised of self-assembling peptide amphiphile (PA) nanofibers and interspersed HA nanoparticles was investigated. PAs were endowed with biomolecular ligand signaling using a synthetically inscribed peptide sequence (i.e. RGDS) and integrated with HA nanoparticles to form a biphasic nanomatrix hydrogel. It was hypothesized the biphasic hydrogel would induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) and improve bone healing as mediated by RGDS ligand signaling within PA nanofibers and embedded HA mineralization source. Viscoelastic stability of the biphasic PA hydrogels was evaluated with different weight concentrations of HA for improved gelation. After demonstrating initial viability, long-term cellularity and osteoinduction of encapsulated hMSCs in different PA hydrogels were studied in vitro. Temporal progression of osteogenic maturation was assessed by gene expression of key markers. A preliminary animal study demonstrated bone healing capacity of the biphasic PA nanomatrix under physiological conditions using a critical size femoral defect rat model. The combination of RGDS ligand signaling and HA nanoparticles within the biphasic PA nanomatrix hydrogel demonstrated the most effective osteoinduction and comparative bone healing response. Therefore, the biphasic PA nanomatrix establishes a well-organized scaffold with increased similarity to natural bone ECM with the prospect for improved bone tissue regeneration. PMID:22077993

  4. Fabrication of SWCNT-Ag Nanoparticle Hybrid Included Self-Assemblies for Antibacterial Applications

    PubMed Central

    Brahmachari, Sayanti; Mandal, Subhra Kanti; Das, Prasanta Kumar

    2014-01-01

    The present article reports the development of soft nanohybrids comprising of single walled carbon nanotube (SWCNT) included silver nanoparticles (AgNPs) having superior antibacterial property. In this regard aqueous dispersing agent of carbon nanotube (CNT) containing a silver ion reducing unit was synthesised by the inclusion of tryptophan and tyrosine within the backbone of the amphiphile. The dispersions were characterized spectroscopically and microscopically using TEM, AFM and Raman spectroscopy. The nanotube-nanoparticle conjugates were prepared by the in situ photoreduction of AgNO3. The phenolate residue and the indole moieties of tyrosine and tryptophan, respectively reduces the sliver ion as well as acts as stabilizing agents for the synthesized AgNPs. The nanohybrids were characterized using TEM and AFM. The antibacterial activity of the nanohybrids was studied against Gram-positive (Bacillus subtilis and Micrococcus luteus) and Gram-negative bacteria (Escherichia coli and Klebsiella aerogenes). The SWCNT dispersions showed moderate killing ability (40–60%) against Gram-positive bacteria however no antibacterial activity was observed against the Gram negative ones. Interestingly, the developed SWCNT-amphiphile-AgNP nanohybrids exhibited significant killing ability (∼90%) against all bacteria. Importantly, the cell viability of these newly developed self-assemblies was checked towards chinese hamster ovarian cells and high cell viability was observed after 24 h of incubation. This specific killing of bacterial cells may have been achieved due to the presence of higher –SH containing proteins in the cell walls of the bacteria. The developed nanohybrids were subsequently infused into tissue engineering scaffold agar-gelatin films and the films similarly showed bactericidal activity towards both kinds of bacterial strains while allowing normal growth of eukaryotic cells on the surface of the films. PMID:25191756

  5. W{sub 18}O{sub 49} nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst

    SciTech Connect

    Sun Shibin; Chang Xueting; Dong Lihua; Zhang Yidong; Li Zhenjiang; Qiu Yanyan

    2011-08-15

    A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W{sub 18}O{sub 49} nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W{sub 18}O{sub 49} NRs sensors exhibit superior reducing gas-sensing properties to those of bare W{sub 18}O{sub 49} NRs, and they are highly selective and sensitive to NH{sub 3}, acetone, and H{sub 2}S with short response and recovery times. The Ag/AgCl/W{sub 18}O{sub 49} NRs photocatlysts also possess higher photocatalytic performance than bare W{sub 18}O{sub 49} NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W{sub 18}O{sub 49} NRs composite were proposed. - Graphical Abstract: The Ag/AgCl nanoparticles adhered well to the W{sub 18}O{sub 49} nanorod. The Ag could act as transfer center of the photoexcited carriers, prohibiting their recombinations in both W{sub 18}O{sub 49} and AgCl. Highlights: > Ag/AgCl/W{sub 18}O{sub 49} NRs were successfully obtained via a clean photochemical route. > The Ag/AgCl nanoparticles decorated on the W{sub 18}O{sub 49} NRs possessed cladding structure. > The Ag/AgCl/W{sub 18}O{sub 49} NRs exhibited excellent gas-sensing and photocatalytic properties.

  6. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells

    NASA Astrophysics Data System (ADS)

    Urbańska, Kaja; Pająk, Beata; Orzechowski, Arkadiusz; Sokołowska, Justyna; Grodzik, Marta; Sawosz, Ewa; Szmidt, Maciej; Sysa, Paweł

    2015-03-01

    Recently, it has been shown that silver nanoparticles (AgNPs) provide a unique approach to the treatment of tumors, especially those of neuroepithelial origin. Thus, the aim of this study was to evaluate the impact of AgNPs on proliferation and activation of the intrinsic apoptotic pathway of glioblastoma multiforme (GBM) cells cultured in an in ovo model. Human GBM cells, line U-87, were placed on chicken embryo chorioallantoic membrane. After 8 days, the tumors were divided into three groups: control (non-treated), treated with colloidal AgNPs (40 μg/ml), and placebo (tumors supplemented with vehicle only). At the end of the experiment, all tumors were isolated. Assessment of cell proliferation and cell apoptosis was estimated by histological, immunohistochemical, and Western blot analyses. The results show that AgNPs can influence GBM growth. AgNPs inhibit proliferation of GBM cells and seem to have proapoptotic properties. Although there were statistically significant differences between control and AgNP groups in the AI and the levels of active caspase 9 and active caspase 3, the level of these proteins in GBM cells treated with AgNPs seems to be on the border between the spontaneous apoptosis and the induced. Our results indicate that the antiproliferative properties of silver nanoparticles overwhelm proapoptotic ones. Further research focused on the cytotoxic effect of AgNPs on tumor and normal cells should be conducted.

  7. Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis.

    PubMed

    Shih, Shao-Ju; Tzeng, Wei-Lung; Jatnika, Rifqi; Shih, Chi-Jen; Borisenko, Konstantin B

    2015-05-01

    Mesoporous bioactive glasses (MBGs) have become important bone implant materials because of their high specific surface area resulting in high bioactivity. Doping MBGs with Ag removes one of the remaining challenges to their applications, namely their lack of intrinsic antibacterial properties. In present work we demonstrate that Ag-doped MBGs can be prepared in one-step spray pyrolysis (SP) process. The SP preparation method offers the advantages of short processing times and continuous production over the sol-gel method previously used to prepare MBGs. Using scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction we demonstrate that the synthesized MBG particles have amorphous structure with nanocrystalline Ag inclusions. The scanning transmission electron microscopy-X-ray energy dispersive spectrometry of cross-sectional samples shows that the distribution of the Ag dopant nanoparticles within MBGs can be controlled by using the appropriate formulation of the precursors. The distribution of the Ag dopant nanoparticles within the MBG particles was found to affect their surface areas, bioactivities and antibacterial properties. Based on the observations, we propose a mechanism describing MBG particle formation and controlling dopant distribution. PMID:25171327

  8. Designed synthesis of Au/Ag/Pd trimetallic nanoparticle-based catalysts for Sonogashira coupling reactions.

    PubMed

    Venkatesan, P; Santhanalakshmi, J

    2010-07-20

    Pdnp and Pd containing trimetallic nanoparticles (tnp) are synthesized by chemical method with cetyltrimethylammonium bromide as the capping agent. Compositionally, four different tnp are prepared and the particle sizes are characterized by UV-vis spectra, HR-TEM, and XRD measurements. The catalytic activities of Pdnp and tnp are tested using the Sonogashira C-C coupling reaction. The product yield and recyclability of the recovered catalysts are studied. tnp (1:1:1) exhibited better catalysis than Pdnp, which may be due to the concerted electronic effects of the Au-Ag core onto the Pd shell atoms. PMID:20462280

  9. In vitro interactions between splenocytes and dansylamide dye-embedded nanoparticles detected by flow cytometry

    PubMed Central

    Nyland, Jennifer F.; Bai, Jennifer J. K.; Katz, Howard E.; Silbergeld, Ellen K.

    2009-01-01

    Engineered nanoparticles (NPs) possess a range of biological activity. In vitro methods for assessing toxicity and efficacy would be enhanced by simultaneous quantitative information on the behavior of NPs in culture systems and signals of cell response. We have developed a method for visualizing NPs within cells using standard flow cytometric techniques and uniquely designed spherical siloxane NPs with an embedded (covalently bound) dansylamide dye. This method allowed NP visualization without obscuring detection of relevant biomarkers of cell subtype, activation state, and other events relevant to assessing bioactivity. We determined that NPs penetrated cells and induced a range of biological signals consistent with activation and costimulation. These results indicate that NPs may affect cell function at concentrations below those inducing cytotoxicity or apoptosis and demonstrate a novel method to image both localization of NPs and cell-level effects. PMID:19523425

  10. Mapping the plasmonic response of gold nanoparticles embedded in TiO₂ thin films.

    PubMed

    Diaz-Egea, Carlos; Ben, Teresa; Herrera, Miriam; Hernández, Jesús; Pedrueza, Esteban; Valdés, José L; Martínez-Pastor, Juan P; Attouchi, F; Mafhoud, Z; Stéphan, Odile; Molina, Sergio I

    2015-10-01

    We present the mapping of the plasmonic properties of gold nanoparticles that are embedded in a TiO2 thin film deposited over two different substrates, glass and silicon. An improved electron energy-loss spectroscopy (EELS) imaging technique was used to extract plasmon maps with nanometre resolution. Several representative cases of randomly dispersed NPs have been examined to carefully evaluate surrounding effects on the optical response of such nanostructured material. Data were compared to analytical calculations and showed good agreement. These results validate previous structural and far-field optical results and provide a clear description of the optical phenomena that take place at a nanometre scale in these materials. They are of primary importance for enlightening the way to the fabrication of thin film materials including metallic nanostructures for photovoltaic applications. PMID:26377736

  11. Energy dependent saturation width of swift heavy ion shaped embedded Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Kluth, P.; Giulian, R.; Sprouster, D. J.; Schnohr, C. S.; Byrne, A. P.; Cookson, D. J.; Ridgway, M. C.

    2009-03-01

    The transformation of Au nanoparticles (NPs) embedded in SiO2 from spherical to rod-like shapes induced by swift heavy ion irradiation has been studied. Irradiation was performed with A197u ions at energies between 54 and 185 MeV. Transmission electron microscopy and small angle x-ray scattering measurements reveal an energy dependent saturation width of the NP rods as well as a minimum size required for the NPs to elongate. The NP saturation width is correlated with the ion track diameter in the SiO2. NP melting and in-plane strain in the irradiated SiO2 are discussed as potential mechanisms for the observed deformation.

  12. Mapping the plasmonic response of gold nanoparticles embedded in TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Diaz-Egea, Carlos; Ben, Teresa; Herrera, Miriam; Hernández, Jesús; Pedrueza, Esteban; Valdés, José L.; Martínez-Pastor, Juan P.; Attouchi, F.; Mafhoud, Z.; Stéphan, Odile; Molina, Sergio I.

    2015-10-01

    We present the mapping of the plasmonic properties of gold nanoparticles that are embedded in a TiO2 thin film deposited over two different substrates, glass and silicon. An improved electron energy-loss spectroscopy (EELS) imaging technique was used to extract plasmon maps with nanometre resolution. Several representative cases of randomly dispersed NPs have been examined to carefully evaluate surrounding effects on the optical response of such nanostructured material. Data were compared to analytical calculations and showed good agreement. These results validate previous structural and far-field optical results and provide a clear description of the optical phenomena that take place at a nanometre scale in these materials. They are of primary importance for enlightening the way to the fabrication of thin film materials including metallic nanostructures for photovoltaic applications.

  13. Preparation and nonlinear characterization of zinc selenide nanoparticles embedded in polymer matrix

    NASA Astrophysics Data System (ADS)

    Sharma, Mamta; Tripathi, S. K.

    2012-09-01

    Nanocomposites of ZnSe nanoparticles embedded in polyvinyl alcohol (PVA) matrix have been prepared by in-situ synthesis. ZnSe/PVA nanocomposites are characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and UV/Vis spectra. The nanocomposite structure is confirmed by the blue-shift of the absorption edge. The nonlinear refractive index and two-photon absorption (TPA) coefficient are measured by the Z-scan technique using low power CW He-Ne laser light. The results show that the ZnSe nanocomposite films show large optical nonlinearity and the magnitude of the third-order nonlinear susceptibility χ(3) is calculated to be 2.62×13-11 m2/V2.

  14. Submicron polyacrolein particles in situ embedded with upconversion nanoparticles for bioassay.

    PubMed

    Generalova, A N; Kochneva, I K; Khaydukov, E V; Semchishen, V A; Guller, A E; Nechaev, A V; Shekhter, A B; Zubov, V P; Zvyagin, A V; Deyev, S M

    2015-02-01

    We report a new surface modification approach of upconversion nanoparticles (UCNPs) structured as inorganic hosts NaYF4 codoped with Yb(3+) and Er(3+) based on their encapsulation in a two-stage process of precipitation polymerization of acrolein under alkaline conditions in the presence of UCNPs. The use of tetramethylammonium hydroxide both as an initiator of acrolein polymerization and as an agent for UCNP hydrophilization made it possible to increase the polyacrolein yield up to 90%. This approach enabled the facile, lossless embedment of UCNPs into the polymer particles suitable for bioassay. These particles are readily dispersible in aqueous and physiological buffers, exhibiting excellent photoluminescence properties, chemical stability, and also allow the control of particle diameters. The feasibility of the as-produced photoluminescent polymer particles mean-sized 260 nm for in vivo optical whole-animal imaging was also demonstrated using a home-built epi-luminescence imaging system. PMID:25510961

  15. Rational synthesis of Ni nanoparticle-embedded porous graphitic carbon nanosheets with enhanced lithium storage properties.

    PubMed

    Zhang, Jingfei; Zhu, Huimin; Wu, Ping; Ge, Cunwang; Sun, Dongmei; Xu, Lin; Tang, Yawen; Zhou, Yiming

    2015-11-21

    Carbon-based materials have recently received increased attention as very promising anode materials for rechargeable lithium-ion batteries (LIBs) because of their non-toxicity, low cost, and excellent performances. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials. Here, we present a facile and scalable synthesis of two-dimensional (2D) porous graphitic carbon nanosheets embedded by numerous homogeneously dispersed Ni nanoparticles. With both structural and compositional advantages, the as-synthesized nanohybrid manifests a very stable high reversible capacity of 740 mA h g(-1) after 100 cycles at a current density of 100 mA g(-1), and also excellent rate capability and cycling stability. We believe that the synthetic strategy outlined here can be extended to other rationally designed anode materials with high performances in LIBs. PMID:26482952

  16. Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kawamura, Go; Ohmi, Hayato; Tan, Wai Kian; Lockman, Zainovia; Muto, Hiroyuki; Matsuda, Atsunori

    2015-05-01

    Dye-sensitized solar cells composed of a photoanode of Ag nanoparticle (NP)-deposited TiO2 nanotube (TNT) arrays were fabricated. The TNT arrays were prepared by anodizing Ti films on fluorine-doped tin oxide (FTO)-coated glass substrates. Efficient charge transportation through the ordered nanostructure of TNT arrays should be carried out compared to conventional particulate TiO2 electrodes. However, it has been a big challenge to grow TNT arrays on FTO glass substrates with the lengths needed for sufficient light-harvesting (tens of micrometers). In this work, we deposited Ag nanoparticles (NPs) on the wall of TNT arrays to enhance light-harvesting property. Dye-sensitized solar cells with these Ag NP-deposited TNT arrays yielded a higher power conversion efficiency (2.03 %) than those without Ag NPs (1.39 %).

  17. Ag Nanoparticles-enhanced Fluorescence of Terbium-Deferasirox Complexes for the Highly Sensitive Determination of Deferasirox.

    PubMed

    Abolhasani, Jafar; Naderali, Roza; Hassanzadeh, Javad

    2016-01-01

    We describe the effect of different sized gold and silver nanoparticles on the terbium sensitized fluorescence of deferasirox. It is indicated that silver nanostructures, especially 18 nm Ag nanoparticles (AgNPs), have a remarkable amplifying effect compared to Au nanoparticles. Based on this observation, a highly sensitive and selective method was developed for the determination of deferasirox. Effects of various parameters like AgNPs and Tb(3+) concentration and pH of media were investigated. Under the optimal conditions, a calibration curve was plotted as the fluorescence intensities versus the concentration of deferasirox in the range of 0.1 to 200 nmol L(-1), and detection limit of 0.03 nmol L(-1) was obtained. The method has good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of deferasirox in urine and pharmaceutical samples. PMID:27063708

  18. Self-organization and photo-induced formation of cyanine dye aggregates on the plasmonic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Starovoytov, Anton A.; Nabiullina, Rezida D.; Toropov, Nikita A.

    2016-04-01

    The optical properties of hybrid film based on plasmon Ag nanoparticles of different size and cyanine dyes with different length of conjugation chain depending on the relative position of the plasmon resonance and the absorption of organic molecules were studied. The absorption spectra of the films revealed several molecular forms, such as all-trans- and cisisomers, dimers and J-aggregate, which also exist in pure organic films without Ag nanoparticles. It's shown that the absorption of aggregate bands increased after exposure by nanosecond laser on the hybrid films due to photo-induced additional self-organization of aggregates. In the presence of Ag nanoparticles, laser radiation leads to the change of molecular forms at a comparatively low threshold.

  19. Coating geometry of Ag, Ti, Co, Ni, and Al nanoparticles on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Stranges, F.; Xu, F.

    2015-04-01

    We present a morphology study on laser ablation produced metal nanoparticles (NPs) deposited on carbon nanotube (CNT) substrates. We analyzed the coating geometry and topography by processing AFM and SEM images. Our results show that Ag NPs aggregate together to form large agglomerates, that Ti NPs are well dispersed on the substrate surface forming a quasi-continuous layer, and that Co, Ni, and Al NPs coat quite uniformly CNTs and locally grow in a layer like fashion. We interpret the coating and clustering geometries in terms of cohesion, surface, and interfacial energies and diffusion barriers. Fractal analysis of composites morphology suggests the formation of structures with a smoother topography relative to pure carbon nanotubes for reactive metal nanoparticles.

  20. A Metal Bump Bonding Method Using Ag Nanoparticles as Intermediate Layer

    NASA Astrophysics Data System (ADS)

    Fu, Weixin; Nimura, Masatsugu; Kasahara, Takashi; Mimatsu, Hayata; Okada, Akiko; Shoji, Shuichi; Ishizuka, Shugo; Mizuno, Jun

    2015-11-01

    The future development of low-temperature and low-pressure bonding technology is necessary for fine-pitch bump application. We propose a bump structure using Ag nanoparticles as an intermediate layer coated on a fine-pitch Cu pillar bump. The intermediate layer is prepared using an efficient and cost-saving squeegee-coating method followed by a 100°C baking process. This bump structure can be easily flattened before the bonding process, and the low-temperature sinterability of the nanoparticles is retained. The bonding experiment was successfully performed at 250°C and 39.8 MPa and the bonding strength was comparable to that achieved via other bonding technology utilizing metal particles or porous material as bump materials.

  1. Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine

    PubMed Central

    Biris, Alexandru R; Pruneanu, Stela; Pogacean, Florina; Lazar, Mihaela D; Borodi, Gheorghe; Ardelean, Stefania; Dervishi, Enkeleda; Watanabe, Fumiya; Biris, Alexandru S

    2013-01-01

    This work describes the synthesis of few-layer graphene sheets embedded with various amounts of gold nanoparticles (Gr-Au-x) over an Aux/MgO catalytic system (where × = 1, 2, or 3 wt%). The sheet-like morphology of the Gr-Au-x nanostructures was confirmed by transmission electron microscopy and high resolution transmission electron microscopy, which also demonstrated that the number of layers within the sheets varied from two to seven. The sample with the highest percentage of gold nanoparticles embedded within the graphitic layers (Gr-Au-3) showed the highest degree of crystallinity. This distinct feature, along with the large number of edge-planes seen in high resolution transmission electron microscopic images, has a crucial effect on the electrocatalytic properties of this material. The reaction yields (40%–50%) and the final purity (96%–98%) of the Gr-Au-x composites were obtained by thermogravimetric analysis. The Gr-Au-x composites were used to modify platinum substrates and subsequently to detect adenine, one of the DNA bases. For the bare electrode, no oxidation signal was recorded. In contrast, all of the modified electrodes showed a strong electrocatalytic effect, and a clear peak for adenine oxidation was recorded at approximately +1.05 V. The highest increase in the electrochemical signal was obtained using a platinum/Gr-Au-3-modified electrode. In addition, this modified electrode had an exchange current density (I0, obtained from the Tafel plot) one order of magnitude higher than that of the bare platinum electrode, which also confirmed that the transfer of electrons took place more readily at the Gr-Au-3-modified electrode. PMID:23610521

  2. Submicron polyacrolein particles in situ embedded with upconversion nanoparticles for bioassay

    NASA Astrophysics Data System (ADS)

    Generalova, A. N.; Kochneva, I. K.; Khaydukov, E. V.; Semchishen, V. A.; Guller, A. E.; Nechaev, A. V.; Shekhter, A. B.; Zubov, V. P.; Zvyagin, A. V.; Deyev, S. M.

    2015-01-01

    We report a new surface modification approach of upconversion nanoparticles (UCNPs) structured as inorganic hosts NaYF4 codoped with Yb3+ and Er3+ based on their encapsulation in a two-stage process of precipitation polymerization of acrolein under alkaline conditions in the presence of UCNPs. The use of tetramethylammonium hydroxide both as an initiator of acrolein polymerization and as an agent for UCNP hydrophilization made it possible to increase the polyacrolein yield up to 90%. This approach enabled the facile, lossless embedment of UCNPs into the polymer particles suitable for bioassay. These particles are readily dispersible in aqueous and physiological buffers, exhibiting excellent photoluminescence properties, chemical stability, and also allow the control of particle diameters. The feasibility of the as-produced photoluminescent polymer particles mean-sized 260 nm for in vivo optical whole-animal imaging was also demonstrated using a home-built epi-luminescence imaging system.We report a new surface modification approach of upconversion nanoparticles (UCNPs) structured as inorganic hosts NaYF4 codoped with Yb3+ and Er3+ based on their encapsulation in a two-stage process of precipitation polymerization of acrolein under alkaline conditions in the presence of UCNPs. The use of tetramethylammonium hydroxide both as an initiator of acrolein polymerization and as an agent for UCNP hydrophilization made it possible to increase the polyacrolein yield up to 90%. This approach enabled the facile, lossless embedment of UCNPs into the polymer particles suitable for bioassay. These particles are readily dispersible in aqueous and physiological buffers, exhibiting excellent photoluminescence properties, chemical stability, and also allow the control of particle diameters. The feasibility of the as-produced photoluminescent polymer particles mean-sized 260 nm for in vivo optical whole-animal imaging was also demonstrated using a home-built epi-luminescence imaging

  3. Rational synthesis of Ni nanoparticle-embedded porous graphitic carbon nanosheets with enhanced lithium storage properties

    NASA Astrophysics Data System (ADS)

    Zhang, Jingfei; Zhu, Huimin; Wu, Ping; Ge, Cunwang; Sun, Dongmei; Xu, Lin; Tang, Yawen; Zhou, Yiming

    2015-10-01

    Carbon-based materials have recently received increased attention as very promising anode materials for rechargeable lithium-ion batteries (LIBs) because of their non-toxicity, low cost, and excellent performances. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials. Here, we present a facile and scalable synthesis of two-dimensional (2D) porous graphitic carbon nanosheets embedded by numerous homogeneously dispersed Ni nanoparticles. With both structural and compositional advantages, the as-synthesized nanohybrid manifests a very stable high reversible capacity of 740 mA h g-1 after 100 cycles at a current density of 100 mA g-1, and also excellent rate capability and cycling stability. We believe that the synthetic strategy outlined here can be extended to other rationally designed anode materials with high performances in LIBs.Carbon-based materials have recently received increased attention as very promising anode materials for rechargeable lithium-ion batteries (LIBs) because of their non-toxicity, low cost, and excellent performances. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials. Here, we present a facile and scalable synthesis of two-dimensional (2D) porous graphitic carbon nanosheets embedded by numerous homogeneously dispersed Ni nanoparticles. With both structural and compositional advantages, the as-synthesized nanohybrid manifests a very stable high reversible capacity of 740 mA h g-1 after 100 cycles at a current density of 100 mA g-1, and also excellent rate capability and cycling stability. We believe that the synthetic strategy outlined here can be extended to other rationally designed anode materials with high performances in LIBs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05568g

  4. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won; Yang, Hae Woong; Ko, Young Gun; Shin, Dong Hyuk

    2015-08-01

    This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm2 for 300 s in potassium pyrophosphate (K4P2O7) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity.

  5. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens.

    PubMed

    Boxi, Siddhartha Sankar; Mukherjee, Khushi; Paria, Santanu

    2016-02-26

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated (•)OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling. PMID:26808118

  6. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens

    NASA Astrophysics Data System (ADS)

    Sankar Boxi, Siddhartha; Mukherjee, Khushi; Paria, Santanu

    2016-02-01

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated •OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  7. A new dielectric ta-C film coating of Ag-nanoparticle hybrids to enhance TiO2 photocatalysis.

    PubMed

    Liu, Fanxin; Tang, Chaojun; Wang, Zhenlin; Sui, Chenghua; Ma, Hongtao

    2014-03-28

    We have demonstrated a novel method to enhance TiO₂ photocatalysis by adopting a new ultrathin tetrahedral-amorphous-carbon (ta-C) film coating on Ag nanoparticles to create strong plasmonic near-field enhancement. The result shows that the decomposition rate of methylene blue on the Ag/10 Å ta-C/TiO₂ composite photocatalyst is ten times faster than that on a TiO₂ photocatalyst and three times faster than that on a Ag/TiO₂ photocatalyst. This can be ascribed to the simultaneous realization of two competitive processes: one that excites the surface plasmons (SPs) of the ta-C-film/Ag-nanoparticle hybrid and provides a higher electric field near the ta-C/TiO₂ interface compared to Ag nanoparticles alone, while the other takes advantage of the dense diamond-like ta-C layer to help reduce the transfer of photogenerated electrons from the conduction band of TiO₂ to the metallic surface, since any electron transfer will suppress the excitation of SP modes in the metal nanoparticles. PMID:24572147

  8. Internally dispersed synthesis of uniform silver nanoparticles via in situ reduction of [Ag(NH3)2]+ along natural microfibrillar substructures of cotton fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silver nanoparticles (Ag NPs) are known to have efficient antimicrobial properties, but the direct application of Ag NPs onto the surface of textiles has shown to be ineffective and raise environmental concerns because Ag NPs leach out during washing. In this study, non-leaching and stable Agcotton ...

  9. Fabrication of Ag-Decorated CaTiO₃ Nanoparticles and Their Enhanced Photocatalytic Activity for Dye Degradation.

    PubMed

    Xian, T; Yang, H; Huo, Y S; Ma, J Y; Zhang, H M; Su, J Y; Feng, W J

    2016-01-01

    CaTiO₃nanoparticles of 30-40 nm in size were synthesized via a polyacrylamide gel route. Ag nanoparticles with size of 8-16 nm were deposited onto CaTiO₃particles by a photochemical reduction method to yield CaTiO₃@Ag composites. The photocatalytic activity of prepared samples was evaluated by degrading methyl orange under ultraviolet irradiation. It is demonstrated that Ag-decorated CaTiO₃ particles exhibit an enhanced photocatalytic activity compared to bare CaTiO₃ particles. After 60 min of photocatalysis, the degradation percentage of MO increases from 54% for bare CaTiO₃particles to 72% for CaTiO₃@Ag composites. This can be explained by the fact that photogenerated electrons are captured by Ag nanoparticles and photogenerated holes are therefore increasingly available to react with OH⁻/H₂O to generate hydroxyl (·OH) radicals. ·OH radicals were detected by fluorimetry using terephthalic acid as a probe molecule, revealing an enhanced yield on the irradiated CaTiO₃@Ag composites. In addition, it is found that the addition of ethanol, which acts as an ·OH scavenger, leads to a quenching of ·OH radicals and simultaneous decrease in the photocatalytic efficiency. This suggests that ·OH radicals are the dominant active species responsible for the dye degradation. PMID:27398489

  10. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles.

    PubMed

    Guo, Shaojun; Zhang, Xu; Zhu, Wenlei; He, Kai; Su, Dong; Mendoza-Garcia, Adriana; Ho, Sally Fae; Lu, Gang; Sun, Shouheng

    2014-10-22

    Controlling the electronic structure and surface strain of a nanoparticle catalyst has become an important strategy to tune and to optimize its catalytic efficiency for a chemical reaction. Using density functional theory (DFT) calculations, we predicted that core/shell M/CuPd (M = Ag, Au) NPs with a 0.8 or 1.2 nm CuPd2 shell have similar but optimal surface strain and composition and may surpass Pt in catalyzing oxygen reduction reactions. We synthesized monodisperse M/CuPd NPs by the coreduction of palladium acetylacetonate and copper acetylacetonate in the presence of Ag (or Au) nanoparticles with controlled shell thicknesses of 0.4, 0.75, and 1.1 nm and CuPd compositions and evaluated their catalysis for the oxygen reduction reaction in 0.1 M KOH solution. As predicted, our Ag/Cu37Pd63 and Au/Cu40Pd60 catalysts with 0.75 and 1.1 nm shells were more efficient catalysts than the commercial Pt catalyst (Fuel Cells Store), with their mass activity reaching 0.20 A/mg of noble metal at -0.1 V vs Ag/AgCl (4 M KCl); this was over 3 times higher than that (0.06 A/mg Pt) from the commercial Pt. These Ag(Au)/CuPd nanoparticles are promising non-Pt catalysts for oxygen reduction reactions. PMID:25279704

  11. Investigating the pharmacokinetics and biological distribution of silver-loaded polyphosphoester-based nanoparticles using 111Ag as a radiotracer

    PubMed Central

    Aweda, Tolulope A.; Zhang, Shiyi; Mupanomunda, Chiedza; Burkemper, Jennifer; Heo, Gyu Seong; Bandara, Nilantha; Lin, Mai; Cutler, Cathy S.; Cannon, Carolyn L.; Youngs, Wiley; Wooley, Karen L.; Lapi, Suzanne E.

    2015-01-01

    Purified 111Ag was used as a radiotracer to investigate silver loading and release, pharmacokinetics and biodistribution of polyphosphoester-based degradable shell crosslinked knedel-like (SCK) nanoparticles as a comparison to the previously reported small molecule, N-heterocyclic silver carbene complex analogue (SCC1) for the delivery of therapeutic silver ions in mouse models. Biodistribution studies were conducted by aerosol administration of 111Ag acetate, [111Ag]SCC1 and [111Ag]SCK doses directly into the lungs of C57BL/6 mice. Nebulization of the 111Ag antimicrobials resulted in an average uptake of 1.07 ± 0.12% of the total aerosolized dose given per mouse. The average dose taken into the lungs of mice was estimated to be 2.6 ± 0.3% of the dose inhaled per mouse for [111Ag]SCC1 and twice as much dose was observed for the [111Ag]SCKs (5.0 ± 0.3% and 5.9 ± 0.8% for [111Ag]aSCK and [111Ag]zSCK, respectively) at 1 h post administration (p.a.). [111Ag]SCKs also exhibited higher dose retention in the lungs; 62 – 68% for [111Ag]SCKs and 43% for [111Ag]SCC1 of the initial 1 h dose was observed in the lungs at 24 h post administration (p.a.). This study demonstrates the utility of 111Ag as a useful tool for monitoring the pharmacokinetics of silver loaded antimicrobials in vivo. PMID:25952472

  12. Investigating the pharmacokinetics and biological distribution of silver-loaded polyphosphoester-based nanoparticles using (111) Ag as a radiotracer.

    PubMed

    Aweda, Tolulope A; Zhang, Shiyi; Mupanomunda, Chiedza; Burkemper, Jennifer; Heo, Gyu Seong; Bandara, Nilantha; Lin, Mai; Cutler, Cathy S; Cannon, Carolyn L; Youngs, Wiley J; Wooley, Karen L; Lapi, Suzanne E

    2015-05-30

    Purified (111) Ag was used as a radiotracer to investigate silver loading and release, pharmacokinetics, and biodistribution of polyphosphoester-based degradable shell crosslinked knedel-like (SCK) nanoparticles as a comparison to the previously reported small molecule, N-heterocyclic silver carbene complex analog (SCC1) for the delivery of therapeutic silver ions in mouse models. Biodistribution studies were conducted by aerosol administration of (111) Ag acetate, [(111) Ag]SCC1, and [(111) Ag]SCK doses directly into the lungs of C57BL/6 mice. Nebulization of the (111) Ag antimicrobials resulted in an average uptake of 1.07 ± 0.12% of the total aerosolized dose given per mouse. The average dose taken into the lungs of mice was estimated to be 2.6 ± 0.3% of the dose inhaled per mouse for [(111) Ag]SCC1 and twice as much dose was observed for the [(111) Ag]SCKs (5.0 ± 0.3% and 5.9 ± 0.8% for [(111) Ag]aSCK and [(111) Ag]zSCK, respectively) at 1 h post administration (p.a.). [(111) Ag]SCKs also exhibited higher dose retention in the lungs; 62-68% for [(111) Ag]SCKs and 43% for [(111) Ag]SCC1 of the initial 1 h dose were observed in the lungs at 24 h p.a.. This study demonstrates the utility of (111) Ag as a useful tool for monitoring the pharmacokinetics of silver-loaded antimicrobials in vivo. PMID:25952472

  13. Embedding MnO nanoparticles in robust carbon microsheets for excellent lithium storage properties

    NASA Astrophysics Data System (ADS)

    Liu, Junlei; Chen, Ning; Pan, Qinmin

    2015-12-01

    MnO is a promising anode material for lithium ion batteries (LIBs), but a big challenge remains in impeding its structural and kinetic deterioration in the lithiation/delithiation process. In this study, we report that the structural integrity and electrochemical kinetics of MnO electrodes can be significantly enhanced by homogenously embedding MnO nanoparticles in robust carbon microsheets. The MnO/C microsheets were synthesized by sintering polyurethane (PU) sponge grafted with manganese polyacrylate at 800 °C. At a current density of 100 mA g-1, the resulting microsheets delivered a high reversible capacity of 797.6 mAh g-1 after 50 cycles. They also exhibited good cycling stability and rate capability of 323.2 mAh g-1 at 2000 mA g-1, showing one of the best lithium storage properties among the reported MnO anodes. The excellent electrochemical performance is attributed to the buffering, confining and conducting effects of robust carbon microsheets on MnO nanoparticles. These synergistic effects allow the hybrid microsheets to keep good structural integrity, high electronic conduction, and fast electrochemical kinetics in the cycling process. Our findings offer an alternative strategy to address the structural and kinetic issues of a MnO anode in the lithiation/delithiation process, which might be extendable to other electrode materials of LIBs.

  14. Polymeric nanoparticles-embedded organogel for roxithromycin delivery to hair follicles.

    PubMed

    Główka, Eliza; Wosicka-Frąckowiak, Hanna; Hyla, Kinga; Stefanowska, Justyna; Jastrzębska, Katarzyna; Klapiszewski, Łukasz; Jesionowski, Teofil; Cal, Krzysztof

    2014-09-01

    Drug delivery into hair follicles with the use of nanoparticles (NPs) is gaining more importance as drug-loaded NPs may accumulate in hair follicle openings. The aim was to develop and evaluate a pluronic lecithin organogel (PLO) with roxithromycin (ROX)-loaded NPs for follicular targeting. Polymeric NPs were evaluated in terms of particle shape, size, zeta potential, suspension stability, encapsulation efficiency and in vitro drug release. Lyophilized NPs were incorporated into the PLO and rheological measurements of the nanoparticles-embedded organogels were done. The fate of the NPs in the skin was traced by incorporation of a fluorescent dye into the NPs. As a result, ROX was efficiently incorporated into polymeric NPs characterized by the appropriate size (approximately 300 nm) allowing drug delivery to hair follicles. In ex vivo human skin penetration studies, horizontal skin sections revealed fluorescence deep in the hair follicles. Although the organogel has higher affinity to the lipidic follicular area than an aqueous suspension of NPs, it did not seem to improve penetration of the NPs along the hair shaft. The results proved that it was possible to achieve preferential targeting to the pilosebaceous unit using polymeric NPs formulated either into the aqueous suspension or semisolid topical formulation. PMID:25014763

  15. Room-temperature embedment of anatase titania nanoparticles into porous cellulose aerogels

    NASA Astrophysics Data System (ADS)

    Jiao, Yue; Wan, Caichao; Li, Jian

    2015-07-01

    In this paper, a facile easy method for room-temperature embedment of anatase titania (TiO2) nanoparticles into porous cellulose aerogels was reported. The obtained anatase TiO2/cellulose (ATC) aerogels were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometer, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, nitrogen adsorption measurements, and thermogravimetric analysis. The results showed that high-purity anatase TiO2 nanoparticles with sizes of 3.69 ± 0.77 nm were evenly dispersed in the cellulose aerogels, which leaded to the significant improvement in specific surface area and pore volume of ATC aerogels. Meanwhile, the hybrid ATC aerogels also had a high loading content of TiO2 (ca. 17.7 %). Furthermore, through a simple photocatalytic degradation test of indigo carmine dye under UV light, ATC aerogels exhibited superior photocatalytic activity and shape stability, which might be useful in some fields like governance of water pollution, and chemical leaks.

  16. Synthesis of rGO-Ag nanoparticles for high-performance SERS and the adsorption geometry of 2-mercaptobenzimidazole on Ag surface

    NASA Astrophysics Data System (ADS)

    Zheng, H. L.; Yang, S. S.; Zhao, J.; Zhang, Z. C.

    2014-03-01

    The sliver nanoparticles (AgNPs) with diameters of 30˜50 nm were self-assembled onto the surfaces of reduced graphene oxide (rGO) sheets simply by mixing AgNO3 aqueous solution and GO dispersion via a synchronous reduction process. Structure and morphology of the rGO-AgNPs hybrids were well characterized. More significantly, the surface-enhanced Raman scattering (SERS) spectrum of 2-mercaptobenzimidazole (MBI) adsorbed on the solid rGO-AgNPs surface shown that the rGO-AgNPs system gives a very strong SERS intensity at in-plane vibrational modes in comparison to the out-of-plane vibrational modes. This large enhancement effect is most likely a result of charge-transfer (CT) mechanism. Based on the surface selection rules and the information provided by the highly enhanced in-plane vibrational modes, it can be found that MBI molecule was adsorbed on AgNPs surface as a thiol form via the sulphur and nitrogen atoms with a slightly tilted geometric conformation.

  17. Synthesis of ZnS:Ag,Co water-soluble blue afterglow nanoparticles and application in photodynamic activation.

    PubMed

    Ma, Lun; Zou, Xiaoju; Hossu, Marius; Chen, Wei

    2016-08-01

    Silver and cobalt co-doped ZnS (ZnS:Ag,Co) water-soluble afterglow nanoparticles were synthesized using a wet chemistry method followed by aging at room temperature. The nanoparticles had a cubic zinc blende structure with average sizes of approximately 4 nm and emitted a blue fluorescence emission centered at 441 nm due to radiative transitions from surface defects to Ag(+) luminescent centers. Intense afterglow emission peaking at 475 nm from the obtained nanoparticles was observed and was red-shifted compared to the fluorescence emission peak. X-ray photoelectron spectroscopy revealed a large increase of O/S ratio, indicating a surface oxidation process during aging. The S vacancies produced accordingly may contribute to form more electron traps and enhance afterglow. The ZnS:Ag,Co afterglow nanoparticles have a very low dark-toxicity and are applied as a light source for photodynamic therapy activation by conjugating with protoporphyrin together. Our preliminary study has shown that the ZnS:Ag,Co afterglow nanoparticles can significantly reduce the x-ray dosage used in activation and thus may be a very promising candidate for future x-ray excited photodynamic therapy in deep cancer treatment. PMID:27345100

  18. Synthesis of ZnS:Ag,Co water-soluble blue afterglow nanoparticles and application in photodynamic activation

    NASA Astrophysics Data System (ADS)

    Ma, Lun; Zou, Xiaoju; Hossu, Marius; Chen, Wei

    2016-08-01

    Silver and cobalt co-doped ZnS (ZnS:Ag,Co) water-soluble afterglow nanoparticles were synthesized using a wet chemistry method followed by aging at room temperature. The nanoparticles had a cubic zinc blende structure with average sizes of approximately 4 nm and emitted a blue fluorescence emission centered at 441 nm due to radiative transitions from surface defects to Ag+ luminescent centers. Intense afterglow emission peaking at 475 nm from the obtained nanoparticles was observed and was red-shifted compared to the fluorescence emission peak. X-ray photoelectron spectroscopy revealed a large increase of O/S ratio, indicating a surface oxidation process during aging. The S vacancies produced accordingly may contribute to form more electron traps and enhance afterglow. The ZnS:Ag,Co afterglow nanoparticles have a very low dark-toxicity and are applied as a light source for photodynamic therapy activation by conjugating with protoporphyrin together. Our preliminary study has shown that the ZnS:Ag,Co afterglow nanoparticles can significantly reduce the x-ray dosage used in activation and thus may be a very promising candidate for future x-ray excited photodynamic therapy in deep cancer treatment.

  19. Novel magnetite nanoparticle based on BODIPY as fluorescent hybrid material for Ag(I) detection in aqueous medium.

    PubMed

    Kursunlu, Ahmed Nuri; Ozmen, Mustafa; Guler, Ersin

    2016-06-01

    This manuscript describes a highly selective and ultra-sensitive detection of Ag(I) in aqueous solution using amine coated magnetite nanoparticles modified boron-dipyrromethene by spectrofluorometer. Fe3O4 nanoparticles were synthesized by co-precipitation of Fe(2+)and Fe(3+)in an ammonia solution. Amine modified Fe3O4 was prepared by using (3-aminopropyl)triethoxysilane as silanization agent. The covalent binding of boron-dipyrromethene to amine modified Fe3O4 was confirmed by means of Fourier Transform infrared spectroscopy, transmission electron microscopy, dynamic light scattering, UV-vis and fluorimeter measurements and obtained nanoparticle-boron dipyrromethene structure. The binding abilities of nanoparticle-boron dipyrromethene towards different metal ions have been investigated by some spectroscopic methods as UV-vis, fluorescence spectroscopy, Job plot, etc. and the novel surface displayed high selectivity and sensitivity for Ag(I) among all tested metals. PMID:27130108

  20. Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition.

    PubMed

    Yang, Chia-Cheng; Wan, Chi-Chao; Wang, Yung-Yun

    2004-11-15

    Ag/Pd nanoparticles have been synthesized with a reactive alcohol-type surfactant, sodium dodecyl sulfate (SDS), without the presence of an external reducing agent. Both UV-vis absorption spectra and X-ray diffraction patterns for the bimetallic and physical mixtures of individual nanoparticles revealed the formation of a bimetallic structure. Based on this method, an ordered 3D grapelike nanostructure was formed, possibly due to transformation of the liquid crystal phase of the micelles. Data from the energy-dispersive X-ray analysis show that the composition of bimetallic nanoparticle is approximately equal to the feeing solution. Furthermore, the Ag/Pd nanoparticles exhibit distinct catalyst for electroless copper deposition and may be a substitute for the conventional palladium system, which is expensive and unstable in operation. PMID:15464808

  1. Ferritin-mediated biomimetic synthesis of bimetallic Au-Ag nanoparticles on graphene nanosheets for electrochemical detection of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Jiku; Ni, Pengjuan; Li, Zhuang

    2015-03-01

    We demonstrated a biomimetic green synthesis of bimetallic Au-Ag nanoparticles (NPs) on graphene nanosheets (GNs). The spherical protein, ferritin (Fr), was bound onto GNs and served as the template for the synthesis of GN/Au-Ag nanohybrids. The created GN/Au-Ag nanohybrids were further utilized to fabricate a non-enzymatic amperometric biosensor for the sensitive detection of hydrogen peroxide (H2O2), and this biosensor displayed high performances to determine H2O2 with a detection limit of 20.0 × 10-6 M and a linear detection range from 2.0 μM to 7.0 mM.

  2. Non-covalent functionalization of graphene oxide by polyindole and subsequent incorporation of Ag nanoparticles for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Dubey, Prashant; Kumar, Ashish; Prakash, Rajiv

    2015-11-01

    Reduced graphene oxide (r-GO) sheets have been modified by polyindole (PIn) via in situ chemical oxidation method to obtain stable dispersion in water and furthermore incorporation of Ag nanoparticles (Ag NPs); the resulting Ag NPs/PIn-r-GO nanocomposite is demonstrated for electrochemical applications. Ag NPs/r-GO and PIn/GO nanocomposites have also been prepared for its comparative study with Ag NPs/PIn-r-GO. Non-covalent functionalization of GO by PIn polymer leads to PIn-GO dispersion, which is stable for several months without any precipitation. This dispersed solution is used for formation of Ag NPs/PIn-r-GO nanocomposite. Various experimental tools like UV-vis, FTIR and TEM have been used to characterize as-synthesized materials. Thereafter electrochemical performance of as-synthesized nanocomposites have been compared for their charge capacitive behaviour (without its poisoning compared to Ag NPs/r-GO) which leads to be an excellent candidate for the possible applications such as electrocatalysis, charge storage devices, etc. We observed that Ag NPs/PIn-r-GO nanocomposite exhibits better processability and electroactivity as electrode material in comparison to Ag NPs/r-GO and PIn/GO nanocomposites due to synergistic effect of individual components.

  3. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation.

    PubMed

    Larue, Camille; Castillo-Michel, Hiram; Sobanska, Sophie; Cécillon, Lauric; Bureau, Sarah; Barthès, Véronique; Ouerdane, Laurent; Carrière, Marie; Sarret, Géraldine

    2014-01-15

    The impact of engineered nanomaterials on plants, which act as a major point of entry of contaminants into trophic chains, is little documented. The foliar pathway is even less known than the soil-root pathway. However, significant inputs of nanoparticles (NPs) on plant foliage may be expected due to deposition of atmospheric particles or application of NP-containing pesticides. The uptake of Ag-NPs in the crop species Lactuca sativa after foliar exposure and their possible biotransformation and phytotoxic effects were studied. In addition to chemical analyses and ecotoxicological tests, micro X-ray fluorescence, micro X-ray absorption spectroscopy, time of flight secondary ion mass spectrometry and electron microscopy were used to localize and determine the speciation of Ag at sub-micrometer resolution. Although no sign of phytotoxicity was observed, Ag was effectively trapped on lettuce leaves and a thorough washing did not decrease Ag content significantly. We provide first evidence for the entrapment of Ag-NPs by the cuticle and penetration in the leaf tissue through stomata, for the diffusion of Ag in leaf tissues, and oxidation of Ag-NPs and complexation of Ag(+) by thiol-containing molecules. Such type of information is crucial for better assessing the risk associated to Ag-NP containing products. PMID:24275476

  4. Aggregation of Congo red with surfactants and Ag-nanoparticles in an aqueous solution

    NASA Astrophysics Data System (ADS)

    AL-Thabaiti, Shaeel Ahmed; Aazam, Elham Shafik; Khan, Zaheer; Bashir, Ommer

    2016-03-01

    Self aggregation, sorption, and interaction of Congo red, with cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS), Ag+ ions and silver nanoparticles have been determined spectrophotometrically. Congo red self-aggregation was identified from UV-visible spectra due to the shrinkage in an absorption band at 495 nm. The shape of the absorbance spectrum changed entirely with increasing [Congo red] but wavelength maxima remain unchanged. The molar absorptivity was found to be 9804 mol- 1 dm3 cm- 1 at 495 nm. Absorption spectra of Congo red with Ag+ ions show an isosbestic point. The complex formation constant and difference in absorption coefficients were found to be 8.5 × 104 mol- 1 dm3 and 11,764 mol- 1 dm3 cm- 1, respectively. Silver nano-particles could not be used for the catalytic degradation of Congo red because it results in the formation of a strong complex with them. Sodium dodecylsulfate did not show any significant interaction with this dye. Congo red was also used as a probe to determine the critical micellar concentration of CTAB.

  5. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity

    NASA Astrophysics Data System (ADS)

    Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.; Bald, I.

    2016-03-01

    DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. Electronic supplementary information (ESI) available: Additional information about materials and methods, designs of DNA origami templates, height profiles, additional SERS spectra, assignment of DNA

  6. LSP spectral changes correlating with SERS activation and quenching for R6G on immobilized Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Futamata, M.; Maruyama, Y.

    2008-10-01

    In terms of chemical enhancement in Surface Enhanced Raman Scattering (SERS), we investigated the effect of halide and other anions to rhodamine 6G (R6G) adsorbed Ag particles that were immobilized on the substrates. The residual species on chemically prepared Ag particles such as citrate or a-carbon were thoroughly substituted by various anions, e.g., Cl-, Br-, I-, SCN-, CN-, or S2O3 2- anions, whose adsorption features are elucidated by the formation constants for AgX2 ( m-1)-, here X denotes the above anions. In particular, Cl-, Br-, or SCN- ions activated SERS of R6G via intrinsic electronic interaction with Ag, whereas CN-, S2O3 2-, or I- anions quenched it due to their exclusive adsorption onto the Ag surfaces. We found that the activation process with the anions commonly yields a marked blue-shift of the coupled plasmon peak from ca. 650-700 to 500-550 nm in elastic scattering. It is rationalized by slight increase of the gap size between adjacent Ag nanoparticles by only ca. 1 nm based on theoretical simulations. This is probably caused by slight dissolution, oxidative etching, of the particles according to large formation constants of the complexes. Consequently, partly remaining negative charges on the Ag surface, and a slight increase in the gap size, providing huge electric field, facilitated R6G cations to adsorb on the nanoparticles, especially at the junction.

  7. Comparison between Ag (I) and Ni (II) removal from synthetic nuclear power plant coolant water by iron oxide nanoparticles

    PubMed Central

    2013-01-01

    The impact of effective parameters such as iron oxide nanoparticles dosage, contact time and solution pH was optimized for removal of Ag(I) and Ni(II) in the nuclear cooling system and the best conditions were compared. Nearly complete removal (97%) of Ni(II) and Ag(I) were obtained at adsorbent dosage of 40 and 20 g/L, respectively. Experiments showed that 4 hours was a good choice as optimum contact time for two ions removal. The effective parameter was pH, so that maximum removal efficiency was obtained for Ag(I) in acidic pH=3 and for Ni(II) in basic pH=10. It seems that removal of Ag(I) was controlled by adsorption-reduction mechanism, but Ni(II) could place only adsorption. Langmuir and Freundlich model was more suitable for nickel and silver removal by this adsorbent, respectively. Ag(I) and Ni(II) removal efficiency trend by this adsorbent is similar at periods but different in the concentrations, pHs and equilibrium model. The obtained results were very promising, as both Ag(I) and Ni(II) were effectively removed from synthetic wastewater and there was a possibility to remove Ag(I) very fast. Hence, the idea of using nanoparticles for application of metal ions removal from wastewaters seems to be very efficient and quite promising. PMID:24499654

  8. Synthesis of Ag-doped TiO2 nanoparticles by combining laser decomposition of titanium isopropoxide and ablation of Ag for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Al-Kamal, Ahmed Kamal

    Nanostructured powders of TiO2 and Ag-doped TiO2 are synthesized by a novel pulsed-laser process that combines laser ablation of a silver (Ag) disc with laser decomposition of a titanium tetra-isopropoxide (TTIP) solution. Nanoparticles are formed by rapid condensation of vaporized species in the plasma plume generated by the high power laser, resulting in the formation of rapidly quenched Ag-doped TiO2 nanoparticles that have far-from-equilibrium or metastable structures. The uniqueness of the new ablation process is that it is a one-step process, in contrast to the two-step process developed by previous researchers in the field. Moreover, its ability to synthesize an extended-solid solution phase of Ag in TiO 2 may also be unique. The present work implies that other oxide phases, such as Al2O3, MgO and MgAl2O4, can be doped with normally insoluble metals, such as Pt and Ir, thus opening new opportunities for catalytic applications. Again, there is the prospect of being able to synthesize nanopowders of diamond, c-BN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor. A wet-chemistry method is also investigated, which has much in common with that adopted by previous workers in the field. However, photo-voltaic properties do not measure up to expectations based on published data. A possible explanation is that the selected Ag concentrations are too high, so that recombination of holes and electrons occurs via a quantum-tunneling mechanism reduces photo-activity. Future work, therefore, will investigate lower concentrations of Ag dopant in TiO2, while also examining the effects of metastable states, including extended solid solution, amorphous, and semi-crystalline structures.

  9. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Sweatlock, L. A.; Maier, S. A.; Atwater, H. A.; Penninkhof, J. J.; Polman, A.

    2005-06-01

    Linear arrays of very small Ag nanoparticles (diameter ˜10nm , spacing 0-4nm ) were fabricated in sodalime glass using an ion irradiation technique. Optical extinction spectroscopy of the arrays reveals a large polarization-dependent splitting of the collective plasmon extinction band. Depending on the preparation condition, a redshift of the longitudinal resonance as large as 1.5eV is observed. Simulations of the three-dimensional electromagnetic field evolution are used to determine the resonance energy of idealized nanoparticle arrays with different interparticle spacings and array lengths. Using these data, the experimentally observed redshift is attributed to collective plasmon coupling in touching particles and/or in long arrays of strongly coupled particles. The simulations also indicate that for closely coupled nanoparticles ( 1-2nm spacing) the electromagnetic field is concentrated in nanoscale regions ( 10dB radius: 3nm ) between the particles, with a 5000-fold local field intensity enhancement. In arrays of 1-nm -spaced particles the dipolar particle interaction extends to over 10 particles, while for larger spacing the interaction length decreases. Spatial images of the local field distribution in 12-particle arrays of touching particles reveal a particlelike coupled mode with a resonance at 1.8eV and a wirelike mode at 0.4eV .

  10. Ultrafine Au and Ag Nanoparticles Synthesized from Self-Assembled Peptide Fibers and Their Excellent Catalytic Activity.

    PubMed

    Xu, Wenlong; Hong, Yue; Hu, Yuanyuan; Hao, Jingcheng; Song, Aixin

    2016-07-18

    The self-assembly of an amphiphilic peptide molecule to form nanofibers facilitated by Ag(+) ions was investigated. Ultrafine AgNPs (NPs=nanoparticles) with an average size of 1.67 nm were synthesized in situ along the fibers due to the weak reducibility of the -SH group on the peptide molecule. By adding NaBH4 to the peptide solution, ultrafine AgNPs and AuNPs were synthesized with an average size of 1.35 and 1.18 nm, respectively. The AuNPs, AgNPs, and AgNPs/nanofibers all exhibited excellent catalytic activity toward the reduction of 4-nitrophenol, with turnover frequency (TOF) values of 720, 188, and 96 h(-1) , respectively. Three dyes were selected for catalytic degradation by the prepared nanoparticles and the nanoparticles showed selective catalysis activity toward the different dyes. It was a surprising discovery that the ultrafine AuNPs in this work had an extremely high catalytic activity toward methylene blue, with a reaction rate constant of 0.21 s(-1) and a TOF value of 1899 h(-1) . PMID:27028550

  11. Synthesis of reduced graphene oxide and enhancement of its electrical and optical properties by attaching Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Khan, Sunny; Ali, Javid; Harsh; Husain, M.; Zulfequar, M.

    2016-07-01

    Graphene has attracted the attention of the scientists and researchers because of its peculiar properties. Because of various unique properties, graphene can be used in sensing device applications, solar cells and liquid crystal display devices etc. In this research paper, we present a chemical route towards bulk production of r-GO (reduced graphene oxide). We have employed a modified method to achieve better results which is often termed as modified Hummer's and Offeman method. It is modified in terms of filtration technique. We have also attached silver nanoparticles (Ag-NP) to as synthesised r-GO. After successful growth, silver nanoparticles have been attached to r-GO by suitable treatment with AgNO3 (aq.) N/50 solution. The as grown samples were characterised by FESEM, Raman Spectroscopy and EDS to make sure that r-GO and r-GO-Ag-NP have been successfully synthesised. The electrical and optical studies of the as grown samples were performed by dc conductivity measurements and UV visible spectroscopy. The conductivity was found to have increased with attachment of Ag-NP. The optical transmittance also improved to 90% as against 70% before Ag-NP attachment. The reduced graphene oxide attached with silver nanoparticles could find promising applications in synthesis of transparent electrode materials and optoelectronic devices.

  12. Improving the output power of GaN-based light-emitting diode using Ag particles embedded within a SiO2 current blocking layer

    NASA Astrophysics Data System (ADS)

    Park, Jae-Seong; Han, Jaecheon; Seong, Tae-Yeon

    2015-07-01

    GaN-based light-emitting diodes (LEDs) fabricated with Ag particles embedded within a SiO2 current blocking layer (CBL) are demonstrated. The Ag particles varied from 100 to 250 nm in size, and had a density of ∼3.8 × 108 cm-2. The transmittances obtained from GaN/sapphire and Ag particles/GaN/sapphire were 75 and 66% at 450 nm, respectively. The LEDs (chip size: 1000 × 1000 μm2) fabricated with ITO-only, ITO/SiO2 CBL, and ITO/Ag particles/SiO2 CBL showed forward-bias voltages of 3.05, 3.25 and 3.1 V at 20 mA, respectively. The LEDs with the ITO/Ag particles/SiO2 CBL yielded 11.9 and 7.0% higher light output powers (at 20 mA) than the LEDs with the ITO-only and ITO/SiO2 CBL, respectively. The improved output power is explained by the combined effects of the improved extraction and current spreading.

  13. Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions.

    PubMed

    Tan, Siliu; Erol, Melek; Attygalle, Athula; Du, Henry; Sukhishvili, Svetlana

    2007-09-11

    Branched polyethyleneimine (BPEI) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were used collaboratively to reduce silver nitrate under UV irradiation for the synthesis of positively charged silver nanoparticles. The effects of molar ratio of the ingredients and the molecular weight of BPEI on the particle size and distribution were investigated. The mechanism for the reduction of Ag+ ions in the BPEI/HEPES mixtures entails oxidative cleavage of BPEI chains that results in the formation of positively charged BPEI fragments enriched with amide groups as well as in the production of formaldehyde, which serves as a reducing agent for Ag+ ions. The resultant silver nanoparticles are positively charged due to protonation of surface amino groups. Importantly, these positively charged Ag nanoparticles demonstrate superior SERS activity over negatively charged citrate reduced Ag nanoparticles for the detection of thiocyanate and perchlorate ions; therefore, they are promising candidates for sensing and detection of a variety of negatively charged analytes in aqueous solutions using surface-enhanced Raman spectroscopy (SERS). PMID:17705409

  14. Simple and Sensitive Colorimetric Assay for Pb2+ Based on Glutathione Protected Ag Nanoparticles by Salt Amplification.

    PubMed

    Chen, Zhang; Li, Huidong; Chu, Lin; Liu, Chenbin; Luo, Shenglian

    2015-02-01

    A simple and sensitive colorimetric assay for Pb2+ detection has been reported using glutathione protected silver nanoparticles (AgNPs) by salt amplification. The naked AgNPs aggregate under the influence of salt. Glutathione (GSH) can bind to AgNPs via Ag-S bond, helping AgNPs to against salt-induced aggregation. However, GSH binding to AgNPs can be compromised by the interaction between Pb2+ and GSH. As a result, Pb2+-mediated aggregation of AgNPs under the influence of salt is reflected by the UV-Visible spectrum, and the qualitative and quantitative detection for Pb2+ is accomplished, with the detection range 0.5-4 µM and a detection limit of 0.5 µM. At the same time, Pb2+ in real water sample is detected. Furthermore, the high selectivity and low cost of the assay means it is promising for enviromental applications. PMID:26353676

  15. Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents.

    PubMed

    Li, Jing; Wang, Wenjing; Zhao, Liang; Rong, Li; Lan, Shijie; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2015-06-01

    Despite the success of galvanic replacement in preparing hollow nanostructures with diversified morphologies via the replacement reaction between sacrificial metal nanoparticles (NPs) seeds and less active metal ions, limited advances are made for producing branched alloy nanostructures. In this paper, we report an extended galvanic replacement for preparing branched Au-Ag NPs with Au-rich core and Ag branches using hydroquinone (HQ) as the reductant. In the presence of HQ, the preformed Ag seeds are replaceable by Au and, in turn, supply the growth of Ag branches. By altering the feed ratio of Ag seeds, HAuCl4, and HQ, the size and morphology of the NPs are tunable. Accordingly, the surface plasmon resonance absorption is tuned to near-infrared (NIR) region, making the branched NPs as potential materials in photothermal therapy. The branched NPs are further coated with polydopamine (PDA) shell via dopamine polymerization at room temperature. In comparison with bare NPs, PDA-coated branched Au-Ag (Au-Ag@PDA) NPs exhibit improved stability, biocompatibility, and photothermal performance. In vitro experiments indicate that the branched Au-Ag@PDA NPs are competitive agents for photothermal ablation of cancer cells. PMID:25969998

  16. Co-assembled thin films of Ag nanowires and functional nanoparticles at the liquid-liquid interface by shaking

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-Yi; Liu, Jian-Wei; Zhang, Chuan-Ling; Yu, Shu-Hong

    2013-05-01

    In this paper, we report the fabrication of co-assembled thin films composed of silver nanowires (NWs) and Au nanoparticles (NPs) at the liquid-liquid interface (water-chloroform) by vigorous shaking. The composition of co-assembled thin films can be controlled by adjusting the concentration of the nanosized building blocks. As a versatile interfacial assembly method, other nanoparticles such as Ag2S and Fe3O4 NPs can also be co-assembled with Ag NWs using the same procedure. Meanwhile, the co-assembly state of the obtained Au NPs and Ag NWs makes a significant contribution to the high sensitivity of surface-enhanced Raman scattering (SERS) to model the molecule 3,3'-diethylthiatricarbocyanine iodide (DTTCI). The SERS intensities show high dependence on the molar ratio of Au NPs and Ag NWs and the layer number of the co-assembled thin films. This shaking-assisted liquid-liquid assembly system has been proved to be a facile way for co-assembling nanowires and nanoparticles, and will pave a way for further applications of the macroscopic co-assemblies with novel functionalities.In this paper, we report the fabrication of co-assembled thin films composed of silver nanowires (NWs) and Au nanoparticles (NPs) at the liquid-liquid interface (water-chloroform) by vigorous shaking. The composition of co-assembled thin films can be controlled by adjusting the concentration of the nanosized building blocks. As a versatile interfacial assembly method, other nanoparticles such as Ag2S and Fe3O4 NPs can also be co-assembled with Ag NWs using the same procedure. Meanwhile, the co-assembly state of the obtained Au NPs and Ag NWs makes a significant contribution to the high sensitivity of surface-enhanced Raman scattering (SERS) to model the molecule 3,3'-diethylthiatricarbocyanine iodide (DTTCI). The SERS intensities show high dependence on the molar ratio of Au NPs and Ag NWs and the layer number of the co-assembled thin films. This shaking-assisted liquid-liquid assembly system

  17. One-pot synthesis of Ag nanoparticle-coated Pb-based glass frit used in crystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Gan, Weiping; Tang, Hongbo; Li, Yingfen; Yang, Chao

    2015-03-01

    Deposition of Ag nanoparticles onto the surface of commercial Pb-based glass frit was conducted via a novel and facile one-pot procedure—a modified polyol process. The procedure included two steps: a 5-min pretreatment of the glass frit at 25 °C in a sonication bath and a 1-h electroless plating at 75 °C in a water bath, which only involved AgNO3 and ethylene glycol but without stabilizing agent. The silver-coated glass frit particles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma emission spectrometer and energy dispersive spectroscopy. It was found that the glass frit particles were homogeneously coated with dense crystalline Ag nanoparticles with an average diameter of 15 nm on the surfaces. Electrical performance of the solar cells was improved after the deposition.

  18. Low cost, ultra-thin films of reduced graphene oxide-Ag nanoparticle hybrids as SERS based excellent dye sensors

    NASA Astrophysics Data System (ADS)

    Kavitha, C.; Bramhaiah, K.; John, Neena S.; Ramachandran, B. E.

    2015-06-01

    We have employed low cost-thin films of reduced graphene oxide (rGO) with Ag nanoparticle hybrids as surface enhanced Raman scattering (SERS) substrates. The hybrids are prepared by a simple one step liquid/liquid interface method. These hybrid films offer SERS hotspots to detect Rhodamine 6G (R6G) molecules till 1 nM concentration with 1 second accumulation time. The enhancement factor is of the order 108. This excellent SERS enhancement is due to coupled mechanism of surface plasmon, charge transfer and molecular resonances of Ag and R6G along with the synergic effect contributed by rGO and Ag nanoparticles in the hybrid thin film.

  19. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons

    PubMed Central

    2013-01-01

    Background Silver nanoparticles (AgNPs), owing to their effective antimicrobial properties, are being widely used in a broad range of applications. These include, but are not limited to, antibacterial materials, the textile industry, cosmetics, coatings of various household appliances and medical devices. Despite their extensive use, little is known about AgNP safety and toxicity vis-à-vis human and animal health. Recent studies have drawn attention towards potential neurotoxic effects of AgNPs, however, the primary cellular and molecular targets of AgNP action/s remain to be defined. Results Here we examine the effects of ultra fine scales (20 nm) of AgNPs at various concentrations (1, 5, 10 and 50 μg/ml) on primary rat cortical cell cultures. We found that AgNPs (at 1-50 μg/ml) not only inhibited neurite outgrowth and reduced cell viability of premature neurons and glial cells, but also induced degeneration of neuronal processes of mature neurons. Our immunocytochemistry and confocal microscopy studies further demonstrated that AgNPs induced the loss of cytoskeleton components such as the β-tubulin and filamentous actin (F-actin). AgNPs also dramatically reduced the number of synaptic clusters of the presynaptic vesicle protein synaptophysin, and the postsynaptic receptor density protein PSD-95. Finally, AgNP exposure also resulted in mitochondria dysfunction in rat cortical cells. Conclusions Taken together, our data show that AgNPs induce toxicity in neurons, which involves degradation of cytoskeleton components, perturbations of pre- and postsynaptic proteins, and mitochondrial dysfunction leading to cell death. Our study clearly demonstrates the potential detrimental effects of AgNPs on neuronal development and physiological functions and warns against its prolific usage. PMID:23782671

  20. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions

    PubMed Central

    Chen, Dong; Li, Chengyin; Liu, Hui; Ye, Feng; Yang, Jun

    2015-01-01

    Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd2+ precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal. PMID:26144550

  1. The fabrication and photocatalytic performances of flower-like Ag nanoparticles/ZnO nanosheets-assembled microspheres

    NASA Astrophysics Data System (ADS)

    Deng, Quan; Tang, Haibin; Liu, Gang; Song, Xiaoping; Xu, Guoping; Li, Qian; Ng, Dickon H. L.; Wang, Guozhong

    2015-03-01

    A new micro/nanostructure photocatalyst, Ag nanoparticles decorated ZnO nanosheets-assembled microspheres (Ag-NPs/ZnOs), was synthesised by a two-step method. The flower-like micron-sized ZnO spheres assembled with ∼25 nm thick ZnO nanosheets were initially fabricated via a facile solvothermal method. Then, highly dispersed Ag nanoparticles (Ag-NPs) with dimension ranging from 15 to 50 nm were anchored onto the surface of the each ZnO nanosheet by the Sn(II) ion activation method. The as-prepared Ag-NPs/ZnOs demonstrated enhanced photocatalytic performance in eliminating methylene blue and methyl orange aqueous solutions under UV irradiation, showing twice faster reaction rate than the bare ZnOs. The enhanced photocatalytic activity was due to the suppression of electron/hole pair recombination and the acceleration of surface charge transfer induced by the highly dispersive Ag-NPs, which was further demonstrated by the cyclic voltammetry and impedance spectra measurements.

  2. Electrical Bistabilities and Memory Mechanisms of Organic Bistable Devices Fabricated Utilizing CdSe/ZnS Nanoparticles Embedded in Polystyrene and Poly(4-vinylphenol) Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Son, Dong Ick; Yoo, Chan Ho; Jung, Jae Hun; Kim, Tae Whan

    2010-01-01

    The electrical bistabilities of core/shell CdSe/ZnS nanoparticles embedded in polystyrene (PS) and poly(4-vinylphenol) (PVP) hybrid polymer composites were investigated. Transmission electron microscopy images showed that CdSe/ZnS nanoparticles were formed inside the hybrid polymer matrix. Current-voltage (I-V) measurement at 300 K of Al/(PS + PVP)/(CdSe/ZnS nanoparticles)/(PS + PVP)/indium-tin oxide/glass devices showed electrical bistability behavior. The memory mechanisms of the organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in hybrid polymer composites are described on the basis of the I-V results.

  3. Probing the mechanism of plasma protein adsorption on Au and Ag nanoparticles with FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Mengmeng; Fu, Cuiping; Liu, Xingang; Lin, Zhipeng; Yang, Ning; Yu, Shaoning

    2015-09-01

    Protein-nanoparticle interactions are important in biomedical applications of nanoparticles and for growing biosafety concerns about nanomaterials. In this study, the interactions of four plasma proteins, human serum albumin (HSA), myoglobin (MB), hemoglobin (HB), and trypsin (TRP), with Au and Ag nanoparticles were investigated by FT-IR spectroscopy. The secondary structure of thio-proteins changed with time during incubation with Au and Ag nanoparticles, but the secondary structures of non-thio-proteins remained unchanged. The incubation time for structural changes depended on the sulfur-metal bond energy; the stronger the sulfur-metal energy, the less the time needed. H/D exchange experiments revealed that protein-NP complexes with thio-proteins were less dynamic than free proteins. No measurable dynamic differences were found between free non-thio-proteins and the protein-Au (or Ag) nanoparticle complex. Therefore, the impact of covalent bonds on the protein structure is greater than that of the electrostatic force.

  4. Molecular simulation of AG nanoparticle nucleation from solution: redox-reactions direct the evolution of shape and structure.

    PubMed

    Milek, Theodor; Zahn, Dirk

    2014-08-13

    The association of Ag(+) ions and the early stage of Ag nanoparticle nucleation are investigated from molecular dynamics simulations. Combining special techniques for tackling crystal nucleation from solution with efficient approaches to model redox-reactions, we unravel the structural evolution of forming silver nanoparticles as a function of the redox-potential in the solution. Within a range of only 1 eV, the redox-potential is demonstrated to have a drastic effect on both the inner structure and the overall shape of the forming particles. On the basis of our simulations we identify surface charge and its distribution as an atomic scale mechanism that accounts for creating/avoiding 5-fold coordination polyhedra and thus the degree of (multiple)-twinning in silver nanoparticles. PMID:25078975

  5. Oleate-Assisted Room Temperature Synthesis and High Photocatalytic Activity of Ag3PO4 Nanoparticles for no Decomposition

    NASA Astrophysics Data System (ADS)

    Huang, Lijun; Yin, Shu; Guo, Chongshen; Huang, Yunfang; Wang, Ming; Dong, Qiang; Li, Huihui; Kimura, Takeshi; Tanaka, Miyuki; Sato, Tsugio

    2012-06-01

    An oleate-assisted approach was used to synthesize nanosized spherical silver phosphate (Ag3PO4) in different solvents. The silver phosphate nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible-infrared diffuse reflectance spectroscopy (DRS), thermogravimetric analysis (TDA), and surface area measurement by nitrogen adsorption and decomposition evolution of NOx gas. The as-prepared nanoparticles showed narrow size distribution. The black colored nanoparticles could absorb most of visible light with a wavelength up to 530 nm. The DeNOx experiments revealed that the nanosized Ag3PO4 possessed a photocatalytic ability being superior to commercial P25 sample both in ultraviolet light and visible light regions.

  6. Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure.

    PubMed

    Molla, Rostam Ali; Ghosh, Kajari; Banerjee, Biplab; Iqubal, Md Asif; Kundu, Sudipta K; Islam, Sk Manirul; Bhaumik, Asim

    2016-09-01

    Ag nanoparticles (NPs) has been supported over a porous Co(II)-salicylate metal-organic framework to yield a new nanocatalyst AgNPs/Co-MOF and it has been thoroughly characterized by powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), energy dispersive X-ray spectrometry (EDX), high-resolution transmission electron microscopy (HR-TEM), UV-vis diffuse reflection spectroscopy (DRS) and N2 adsorption/desorption analysis. The AgNPs/Co-MOF material showed high catalytic activity in the carboxylation of terminal alkynes via CO2 fixation reaction to yield alkynyl carboxylic acids under very mild conditions. Due to the presence of highly reactive AgNPs bound at the porous MOF framework the reaction proceeded smoothly at 1atm CO2 pressure. Moreover, the catalyst is very convenient to handle and it can be reused for several reaction cycles without appreciable loss of catalytic activity in this CO2 fixation reaction, which suggested a promising future of AgNPs/Co-MOF nanocatalyst. PMID:27309859

  7. Fabrication of AgAu alloy-TiO2 core-shell nanoparticles and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-yu; Yuan, Shu-long; Yuan, Yu-zhen; Li, Xue

    2015-01-01

    In this paper, for improving the photocatalytic efficiency of titania (TiO2) nanoparticles (NPs), AgAu alloy-TiO2 core-shell NPs are fabricated via a sol-gel (SG) process in the presence of AgAu alloy NPs with block copolymer shells as templates. The photocatalytic activities of the AgAu-TiO2 NPs on the photodecomposition of methylene blue (MB) are investigated. The AgAu-TiO2 composite NPs coated with 5.0% titania related to block copolymers show higher photocatalytic activity than the other samples in which the titania contents are larger than 5.0%. The results indicate that the increase of the thickness of the TiO2 shell leads to the decrease of the photocatalytic activity.

  8. Preparation of Ag nanoparticle-decorated poly(m-phenylenediamine) microparticles and their application for hydrogen peroxide detection.

    PubMed