Science.gov

Sample records for ag nanorod substrates

  1. Multifunctional ZnO/Ag nanorod array as highly sensitive substrate for surface enhanced Raman detection.

    PubMed

    Shan, Guiye; Zheng, Shujing; Chen, Shaopeng; Chen, Yanwei; Liu, Yichun

    2012-06-01

    A multifunctional ZnO/Ag nanorod arrays has been prepared to construct SERS-active and photocatalytic substrate by a hydrothermal method. The morphology, microstructure and optical properties of ZnO/Ag nanorod arrays are characterized by X-ray diffraction spectra, field emission scanning electron microscopy, energy-dispersive, ultraviolet-visible (UV-vis) absorption and photoluminescence measurement to confirm the successful Ag deposition on the ZnO nanorod arrays. Such arrays exhibit strong and reproducible SERS signals of the Raman probe molecules. The mechanism of SERS enhancement was discussed due to the formation of interfacial electric field between ZnO nanorods and Ag. Furthermore, ZnO/Ag nanorod arrays also show catalytic properties by photocatalytic degradation of target molecules adsorbed to the substrate, which provides promising application for detecting and eliminating organic pollutant.

  2. Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates

    PubMed Central

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Xie, Zheng; Zhang, Zhengjun

    2015-01-01

    TiO2-coated Ag nanorods (Ag@TiO2 NRs) have been fabricated as multifunctional surface-enhanced Raman scattering (SERS) substrates. Uniform TiO2 shells could sufficiently protect the internal Ag NRs against oxidation and sulfuration, thus the temporal stability of SERS substrates was markedly improved. Meanwhile, due to the synergetic effect between crystalline TiO2 and Ag, the nanocomposites could clean themselves via photocatalytic degradation of the adsorbed molecules under ultraviolet irradiation and water dilution, making the SERS substrates renewable. Such Ag@TiO2 NRs were shown to serve as outstanding SERS sensors featuring high sensitivity, superior stability and recyclability. PMID:26486994

  3. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-03-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  4. Large-scale fabrication of polymer/Ag core-shell nanorod array as flexible SERS substrate by combining direct nanoimprint and electroless deposition

    NASA Astrophysics Data System (ADS)

    Liu, Sisi; Xu, Zhimou; Sun, Tangyou; Zhao, Wenning; Wu, Xinghui; Ma, Zhichao; Xu, Haifeng; He, Jian; Chen, Cunhua

    2014-06-01

    We demonstrate a highly sensitive surface-enhanced Raman scattering (SERS) substrate, which consists of Ag nanoparticles (NPs) assembled on the surface of a nanopatterned polymer film. The fabrication route of a polymer/Ag core-shell nanorod (PACSN) array employed a direct nanoimprint technique to create a high-resolution polymer nanorod array. The obtained nanopatterned polymer film was subjected to electroless deposition to form a sea-cucumber-like Ag shell over the surface of the polymer nanorod. The morphology and structures of PACSNs were analyzed by using scanning electron microscopy and X-ray diffraction. The as-synthesized PACSNs exhibited a remarkable SERS activity and Raman signal reproducibility to rhodamine 6G, and a concentration down to 10-12 M can be identified. The effect of electroless deposition time of Ag NPs onto the polymer nanorod surface was investigated. It was found that the electroless deposition time played an important role in SERS activity. Our results revealed that the combination of direct nanoimprint and electroless deposition provided a convenient and cost-effective way for large-scale fabrication of reliable SERS substrates without the requirement of expensive instruments.

  5. Optical properties of Au-Ag core-shell nanorods on glass and ITO substrates

    NASA Astrophysics Data System (ADS)

    Tsuru, Yukiko; Nakashima, Naotoshi; Niidome, Yasuro

    2012-07-01

    Gold-silver core-shell nanorods were deposited on glass and ITO plates. SEM observations indicated that some of these nanorods were standing on the ITO plate. The extinction spectra of the plates were measured by varying the angles of incidence of p-polarized monitor light. Deconvolution of these spectra gave six bands in the visible region. The dependence of the peak intensities on the incident angles indicated that the bands at 390 and 420 nm originated from surface plasmon bands in the transverse direction of the nanorods.

  6. A novel flexible C2H2 gas sensor based on Ag-ZnO nanorods on PI/PTFE substrate

    NASA Astrophysics Data System (ADS)

    Uddin, A. S. M. Iftekhar; Chung, Gwiy-Sang

    2016-02-01

    In this work a novel flexible acetylene (C2H2) gas sensor based on Ag nanoparticles decorated vertical ZnO nanorods (Ag-ZnO NRs) on PI/PTFE substrate has been investigated. The grown structure was synthesized through a simple, rapid, and low-temperature hydrothermal-RF magnetron sputtering method. The successful immobilization of Ag nanoparticles (NPs) onto the surface of ZnO nanorods contributed large effective surface area and facilitated the charge transfer process. The as-fabricated sensor exhibited enhanced C2H2 sensing performances at low temperature (200°C) including a broad detection range (3 - 1000 ppm), and short recovery time (39 sec). Mechanical robustness and device flexibility were investigated at different curvature angle (0 - 90°) and several times bending-relaxing process (0 - 5 × 105 times). The sensor exhibited stable response magnitude with a negligible drift of ~ 2.1% for a maximum bending angle of 90o and a response drop of 8% after 5 × 104 bending/relaxing processes. The superior sensing features along with outstanding flexibility to extreme bending stress indicate the sensor a promising candidate for the development of practical flexible C2H2 gas sensors.

  7. Synthesis, characterization and SERS activity of Au-Ag nanorods.

    PubMed

    Philip, Daizy; Gopchandran, K G; Unni, C; Nissamudeen, K M

    2008-09-01

    The formation mechanism and morphology of Au-Ag bimetallic colloidal nanoparticles depend on the composition. Ag coated Au colloidal nanoparticles have been prepared by deposition of Ag through chemical reduction on performed Au colloid. The composition of the Au100-x-Agx particles was varied from x=0 to 50. The obtained colloids were characterized by UV-vis spectroscopy and transmission electron microscopy (TEM). The Au80-Ag20 colloid consists of alloy nanorods with dimension of 25nm x 100nm. The activity of these nanorods in surface enhanced Raman spectroscopy (SERS) was checked by using sodium salicylate as an adsorbate probe. Intense SERS bands are observed indicating its usefulness as a SERS substrate in near infrared (NIR) laser excitation.

  8. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution.

    PubMed

    Sivashanmugan, Kundan; Liao, Jiunn-Der; Liu, Bernard Haochih; Yao, Chih-Kai

    2013-10-24

    A well-ordered Au-nanorod array with a controlled tip ring diameter (Au_NRsd) was fabricated using the focused ion beam method. Au_NRsd was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au_NRsd and Ag NPs/Au_NRsd was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au_NRsd was estimated by an enhancement factor of ≈10(7) in magnitude, which increased ≈10(12) in magnitude for that on Ag NPs/Au_NRsd. A highly SERS-active Ag NPs/Au_NRsd was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10(-3) to 10(-12)M) in water or milk solution upon Au_NRsd or Ag NPs/Au_NRsd were well distinguished. The peaks at 680 and 702 cm(-1) for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm(-1) was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au_NRsd) or Ag (i.e., Ag NPs/Au_NRsd) surface. At the interface of Ag NPs/Au_NRsd and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and competent to sense low-concentration MEL molecules interacting with Ag and Au surfaces. Accordingly, Ag NPs/Au_NRsd is very promising to be used as a fast and sensitive tool for screening MEL in complex matrices such as adulteration in e.g., food and pharmaceutical products.

  9. Enhanced thermal stability of Ag nanorods through capping

    SciTech Connect

    Bachenheimer, Lou; Elliott, Paul; Stagon, Stephen; Huang, Hanchen

    2014-11-24

    Ag nanorods may serve as sensors in the detection of trace amounts of chemical agents, even single molecules, through surface enhanced Raman spectroscopy (SERS). However, thermal coarsening of Ag nanorods near room temperature limits their applications. This letter proposes the use of a thin oxide capping layer to enhance the thermal stability of Ag nanorods beyond 100 °C. Using electron microscopy characterization and SERS tests, the authors show that the proposed method is effective in stabilizing both morphology and sensitivity of Ag nanorods. The results of this work extend the applicability of Ag nanorods as chemical sensors to higher temperatures.

  10. Aligned Silver Nanorod Array as SERS Substrates for Viral Sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Yiping; Shanmukh, Saratchandra; Chaney, Stephen B.; Jones, Les; Dluhy, Richard A.; Tripp, Ralph A.

    2006-03-01

    The aligned silver nanorod array substrates prepared by the oblique angle deposition method are capable of providing extremely high enhancement factors (˜10^9) at near-infrared wavelengths (785 nm) for a standard reporter molecule 1,2 trans-(bis)pyridyl-ethene (BPE). The enhancement factor depends strongly on the length of the Ag nanorods, the substrate coating, as well as the polarization of the excitation laser beam. With the current optimum structure, we demonstrate that the detection limit for BPE can be lower than 0.1 fM. The applicability of this substrate to the detection of bioagents has been investigated by looking several viruses, such as Adenovirus, HIV, Rhinovirus and Respiratory Syncytial Virus (RSV), at low quantities (˜0.5uL). Different viruses have different fingerprint Raman spectrum. The detection of virus presented in infected cells has also been demonstrated.

  11. Component conversion from pure Au nanorods to multiblock Ag-Au-Ag nanorods assisted by Pt nanoframe templates

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Kim, Seong Kyu; Park, Sungho

    2016-06-01

    We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications.We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03484e

  12. Ag-doped ZnO nanorods synthesized by two-step method

    NASA Astrophysics Data System (ADS)

    Chen, Xian-Mei; Ji, Yong; Gao, Xiao-Yong; Zhao, Xian-Wei

    2012-11-01

    A two-step method is adopted to synthesize Ag-doped ZnO nanorods. A ZnO seed layer is first prepared on a glass substrate by thermal decomposition of zinc acetate. Ag-doped ZnO nanorods are then assembled on the ZnO seed layer using the hydrothermal method. The influences of the molar percentage of Ag ions to Zn ions (RAg/Zn) on the structural and optical properties of the ZnO nanorods obtained are carefully studied using X-ray diffractometry, scanning electron microscopy and spectrophotometry. Results indicate that Ag ions enter into the crystal lattice through the substitution of Zn ions. The (002) c-axis-preferred orientation of the ZnO nanorods decreases as RAg/Zn increases. At RAg/Zn > 1.0%, ZnO nanorods lose their c-axis-preferred orientation and generate Ag precipitates from the ZnO crystal lattice. The average transmissivity in the visible region first increases and then decreases as RAg/Zn increases. The absorption edge is first blue shifted and then red shifted. The influence of Ag doping on the average head face, and axial dimensions of the ZnO nanorods may be optimized to improve the average transmissivity at RAg/Zn < 1.0%.

  13. Investigation of Various Types of Nanorods as Sensitive Surface-Enhanced Raman Scattering Substrates.

    PubMed

    Kuo, Hung-Fei; Huang, Yi-Jun; Chen, Yu-Ting

    2015-09-01

    Core-shell-isolated nanorods can be used to amplify the signals of target cancer antigen molecules. Recent research has suggested that these nanorods feature surface-enhanced Raman scattering (SERS) signals superior to those of nanoparticles. In this study, nanorod geometrical models based on core-shell-isolated nanocapsule morphology were employed to analyze the scattered power density in three-dimensional spaces. Superior to the conventional cross-section field analysis method, the average scattered power density based method in this presentation could verify the enhancement effects from all possible positions on the nanorod surface. The numerical results in this study were also compared with the experimental results described in the literature. The resonance scattering power reached the maximal value when the radius of the Au/SiO2 and Ag/SiO2 nanorods was 20 nm. At an incident wavelength of 751 nm, the Au/SiO2 and Au/Al2O3 nanorods achieved maximal scattered power density when spacing d=30 nm. Conversely, the Au/TiO2 nanorods achieved maximum scattered power density when spacing d=40 nm. When the core was Au, nanorods with shell thickness h of 1 nm produced a resonant scattering intensity same as it by the nanorods without shells. The numerical results also indicated a stronger resonance peak when the incident ray illuminated the major-axis plane of the Au/SiO2 nanorods. When the incident ray illuminated the curvature plane of the nanorods, the resonance wavelength clearly shifted toward the UV wavelength range. The four Au/SiO2 nanorods with symmetric arrangement achieved the highest resonance peak when the nanorod spacing was 30 nm. This presentation can serve as a key reference for the design of core-shell-isolated nanorods as highly sensitive SERS substrates.

  14. A dealloying process of core-shell Au@AuAg nanorods for porous nanorods with enhanced catalytic activity

    NASA Astrophysics Data System (ADS)

    Guo, Xia; Ye, Wei; Sun, Hongyan; Zhang, Qiao; Yang, Jian

    2013-11-01

    One-dimensional porous metallic nanomaterials have attracted much attention due to their unique shape and hollow structure. Herein, the gold nanorods in a porous shell of an AuAg alloy are synthesized via a dealloying process of the core-shell Au@AuAg nanorods at room temperature. The formation of tiny pores in the shell results in the huge red-shift, sharp decrease and drastic broadening of longitudinal surface plasmon resonance absorption. The continuous removal of silver from the porous nanorods leads to the breakage of tiny pores and leaves a rough surface on the nanorods behind. The rough surface gradually becomes smooth in the subsequent dealloying process. The surface structures of these intermediates are correlated with their absorption spectra and catalytic activities for the catalytic reduction of p-nitrophenol. The porous nanorods show a higher catalytic efficiency than the gold nanorods, the core-shell nanorods and the rough nanorods. The results indicate that the dealloying of anisotropic bimetal nanomaterials not only provides an effective pathway to carve the structures on the nanoscale but also offers numerous opportunities to observe novel optical properties and enhanced catalysis performances.One-dimensional porous metallic nanomaterials have attracted much attention due to their unique shape and hollow structure. Herein, the gold nanorods in a porous shell of an AuAg alloy are synthesized via a dealloying process of the core-shell Au@AuAg nanorods at room temperature. The formation of tiny pores in the shell results in the huge red-shift, sharp decrease and drastic broadening of longitudinal surface plasmon resonance absorption. The continuous removal of silver from the porous nanorods leads to the breakage of tiny pores and leaves a rough surface on the nanorods behind. The rough surface gradually becomes smooth in the subsequent dealloying process. The surface structures of these intermediates are correlated with their absorption spectra and

  15. ZnWO4 nanorods decorated with Ag/AgBr nanoparticles as highly efficient visible-light-responsive photocatalyst for dye AR18 photodegradation

    NASA Astrophysics Data System (ADS)

    Li, Kebin; Xue, Jie; Zhang, Yanhui; Wei, Hong; Liu, Yalan; Dong, Chengxing

    2014-11-01

    A novel Ag-AgBr/ZnWO4 nanorod heterostructure composite was prepared via a facile deposition-precipitation method with ZnWO4 nanorods as the substrate, and characterized by XRD, SEM-EDX, TEM, XPS, and DRS to confirm its structure, morphology, composition, and optical property. The composite was used as a photocatalyst to destroy azo dye Acid Red 18 (AR18) under visible light irradiation. The effects of catalyst composition, solution pH, catalyst loading, and initial dye concentration on photocatalytic degradation rate and efficiency were examined. It was revealed that the photocatalytic activity of Ag-AgBr/ZnWO4 nanojunction system was higher than that of the single ZnWO4 or Ag-AgBr for AR18 degradation under visible light irradiation. The optimal content of Ag-AgBr in Ag-AgBr/ZnWO4 composite was 0.58:1 of Ag/W molar ratio using in the catalyst preparation. Acid pH and decreasing dye initial concentration were favorable to AR18 photodegradation, but the catalyst loading had an optimal value. The catalyst was stable and recyclable, after five successive cycles the photoactivity was fully maintained and the XRD patterns of AgBr displayed no evident change. Photoluminescence spectra revealed the enhanced photocatalytic activity and stability were closely related to the efficient separation of photogenerated carriers in Ag-AgBr/ZnWO4 nanojunction system. Superoxide radicals and holes were found to be main active species for AR18 photodegradation. Finally, the possible mechanism for AR18 degradation over Ag-AgBr/ZnWO4 nanorods under visible light irradiation was proposed as well.

  16. Effects of adhesion layer on Ag nanorod growth mode and morphology using glancing angle physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Davies, Matthew P.; McKinney, Casey S.; Serrano, Joel M.; Mullen, Thomas J.; Stagon, Stephen P.

    2017-01-01

    This letter reports on the transition from a non-wetting to an effectively wetting growth mode of silver (Ag) nanorods when an adhesion layer is used during glancing angle physical vapor deposition growth. When deposited onto a silicon substrate without an adhesion layer, Ag nanorods grow from partially interconnected non-wetting islands with diameters of ˜100 nm, although many connect with their neighbors due to small rod-to-rod spacing. When a 1 nm thick Cr adhesion layer is used, which is shown not to completely coat the substrate, the growth mode becomes effectively wetting through the coalescence of closely spaced nuclei, and both Ag nanorod diameter and spacing increase. Alternatively, when a thicker 10 nm Cr adhesion layer is used, the growth mode becomes mixed, as both small effective wetting regions and film gaps exist. For the cases of no adhesion layer and 1 nm Cr adhesion layer, the nanorods are oriented at ˜23° from the substrate but lay down onto the substrate when a 10 nm thick Cr adhesion layer is used. Thin film adhesion tests demonstrate that both 1 nm and 10 nm Cr adhesion layers offer an enhanced performance over no adhesion layer or a glancing angle adhesion layer.

  17. Kinetics-controlled growth of bimetallic RhAg on Au nanorods and their catalytic properties.

    PubMed

    Ye, Wei; Guo, Xia; Xie, Fang; Zhu, Rui; Zhao, Qing; Yang, Jian

    2014-04-21

    Controlled growth of hybrid metallic nanocomposites for a desirable structure in a combination of selected components is highly important for their applications. Herein, the controllable growth of RhAg on the gold nanorods is achieved from the dumbbell-like RhAg-tipped nanorods to the brushy RhAg-coated nanorods, or the rod-like Au@Ag-Rh nanorattles. These different growth modes of RhAg on the gold nanorods are correlated with the reducing kinetics of RhCl₃ and AgNO₃. In view of the promising catalytic properties of Rh, the gold nanorods modified by RhAg in different structures are examined as catalysts for the oxidation of o-phenylenediamine. It is found that brushy RhAg-coated nanorods present a higher catalytic efficiency than dumbbell-like RhAg-tipped nanorods and rod-like Au@Ag-Rh nanorattles. These results would benefit the overgrowth control on the one-dimensional metallic nanorods and the rational design of new generation heterogeneous catalysts and optical devices.

  18. Low-temperature photoluminescence behaviour of Ag decorated ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Amutha, A.; Amirthapandian, S.; Sundaravel, B.; Panigrahi, B. K.; Saravanan, K.; Thangadurai, P.

    2016-11-01

    The Ag nanoparticles decorated ZnO nanorods (Ag:ZnO) were prepared by irradiating the precursor solution with ultra-violet radiation for two irradiation times (6 and 17 h). Structural and microstructural studies were done by X-ray diffraction and transmission electron microscopy, respectively. Optical properties were studied by UV-Vis spectroscopy at room temperature (300 K) and photoluminescence (PL) spectroscopy at low-temperature in the temperature range from 5 to 300 K. The Ag:ZnO nanorods possessed the wurtzite structure of ZnO along with the cubic fcc phase of Ag nanoparticles. Average size of Ag nanoparticles in Ag:ZnO nanorods prepared with 6 and 17 h of UV irradiation time was 4 and 16 nm, respectively. The 4 nm Ag nanoparticles had played a crucial role for enhanced PL emission (in the UV region) in the Ag:ZnO nanorods at 60 K. In the case of 16 nm sized Ag nanoparticles, violet emission has been enhanced about 3.5 times compared to that of pure ZnO nanorods and 4 nm-Ag:ZnO nanorods at 5 K. Thermal activation energy of 4 nm-Ag:ZnO and 16 nm-Ag:ZnO nanorods was found to be 0.6 and 0.7 meV, respectively, at low temperature region (5 to 60 K).

  19. Substrate-bound growth of Au-Pd diblock nanowire and hybrid nanorod-plate

    NASA Astrophysics Data System (ADS)

    He, Jiating; Wang, Yawen; Fan, Zhanxi; Lam, Zhenhui; Zhang, Hua; Liu, Bin; Chen, Hongyu

    2015-04-01

    We expand the scope of the previously developed Active Surface Growth mode for growing substrate-bound ultrathin Pd (d = 4 nm) and Ag nanowires (d = 30 nm) in aqueous solution under ambient conditions. Using Au nanorods as the seeds, selective growth at the contact line between the rod and the substrate eventually leads to an attached Pd nanoplate. The unique growth mode also allows sequential growth of different materials via a single seed, giving substrate-bound Au-Pd diblock nanowires. The new abilities to use seed shape to pre-define the active sites and to apply sequential growth open windows for new pathways to hybrid nanostructures.We expand the scope of the previously developed Active Surface Growth mode for growing substrate-bound ultrathin Pd (d = 4 nm) and Ag nanowires (d = 30 nm) in aqueous solution under ambient conditions. Using Au nanorods as the seeds, selective growth at the contact line between the rod and the substrate eventually leads to an attached Pd nanoplate. The unique growth mode also allows sequential growth of different materials via a single seed, giving substrate-bound Au-Pd diblock nanowires. The new abilities to use seed shape to pre-define the active sites and to apply sequential growth open windows for new pathways to hybrid nanostructures. Electronic supplementary information (ESI) available: Supporting TEM and SEM images of control experiments with different reaction conditions and another type of diblock nanowires. See DOI: 10.1039/c5nr00361j

  20. A facile method for the synthesis of quaternary Ag-In-Zn-S alloyed nanorods

    NASA Astrophysics Data System (ADS)

    Tang, Xiaosheng; Zang, Zhigang; Zu, Zhiqiang; Chen, Weiwei; Liu, Yan; Han, Genquan; Lei, Xiaohua; Liu, Xianmin; Du, Xiaoqin; Chen, Weimin; Wang, Yu; Xue, Junmin

    2014-09-01

    Ag-In-Zn-S nanorods with tunable photoluminescence were formed by a convenient synthetic approach, and the nanorods demonstrated a relatively long fluorescence lifetime of 1.248 μs. In addition, Ag-In-Zn-S nanorods of nail shape and rod-particle dimers were successfully produced by adjusting the reaction parameters.Ag-In-Zn-S nanorods with tunable photoluminescence were formed by a convenient synthetic approach, and the nanorods demonstrated a relatively long fluorescence lifetime of 1.248 μs. In addition, Ag-In-Zn-S nanorods of nail shape and rod-particle dimers were successfully produced by adjusting the reaction parameters. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03231d

  1. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.

    PubMed

    Fang, Hui; Zhang, Chang Xing; Liu, Luo; Zhao, Yong Mei; Xu, Hai Jun

    2015-02-15

    Multifunctional Ag nanoparticle-decorated TiO2 nanorod arrays were prepared by two simple processes. TiO2 nanorod arrays were first fabricated by the hydrothermal route and then Ag nanoparticles were decorated on the nanorods by the chemical reduction impregnation method. Three-dimensional Ag/TiO2 arrays were used as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G (R6G) was as low as 10(-7)M and the Raman enhancement factor was as large as 10(5). After calibrating the Raman peak intensities of R6G, it could be quantitatively detected. More importantly, the photocatalytic activity of TiO2 provides a self-cleaning capability to the SERS substrate, which can be recycled and used to degrade many Ag surface adsorbates such as R6G, methyl orange, Congo red, and methylene blue after exposure to visible light. The absorbed small molecules can all be rapidly and completely removed from the SERS substrate, which has been successfully reused four times without a decrease in accuracy or sensitivity. Our results reveal that the unique recyclable property not only paves a new way to solve the single-use problem of traditional SERS substrates but also provides more SERS platforms for multiple detections of other organic molecular species.

  2. Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods.

    PubMed

    Qu, Yongquan; Cheng, Rui; Su, Qiao; Duan, Xiangfeng

    2011-10-26

    We report the plasmonic enhancement of the photocatalytic properties of Pt/n-Si/Ag photodiode photocatalysts using Au/Ag core/shell nanorods. We show that Au/Ag core/shell nanorods can be synthesized with tunable plasmon resonance frequencies and then conjugated onto Pt/n-Si/Ag photodiodes using well-defined chemistry. Photocatalytic studies showed that the conjugation with Au/Ag core/shell nanorods can significantly enhance the photocatalytic activity by more than a factor of 3. Spectral dependence studies further revealed that the photocatalytic enhancement is strongly correlated with the plasmonic absorption spectra of the Au/Ag core/shell nanorods, unambiguously demonstrating the plasmonic enhancement effect.

  3. Label free detection of DNA on Au/ZnO/Ag hybrid structure based SERS substrate

    NASA Astrophysics Data System (ADS)

    Pal, Anil Kumar; Mohan, D. Bharathi

    2016-04-01

    Au/ZnO/Ag based SERS substrate was fabricated for the label free detection of DNA of Escherichia Coli bacteria. The SERS substrate was fabricated by growing ZnO nanorod arrays on thermally evaporated ultrathin Ag film of 5 nm thickness using hydrothermal process. Non-spherical like Au nanoparticles were decorated on ZnO nanorod arrays by sputtering technique with sputtering time of 45 sec. The surface of Au/ZnO/Ag was observed to be nearly superhydrophobic exhibiting the contact angle of 144 °. A low volume (5 µl) of aqueous solution of DNA of laboratory strain Escherichia Coli with very low concentration was adsorbed on fabricated SERS substrate by drop casting. The SERS detection of DNA molecules was achieved up to lower concentration of 10-8 M due to strong local electric field enhancement at the nanometer gap among Au nanoparticles and superhydrophobic nature of Au/ZnO/Ag surface.

  4. Metal enhanced fluorescence improved protein and DNA detection by zigzag Ag nanorod arrays.

    PubMed

    Ji, Xiaofan; Xiao, Chenyu; Lau, Wai-Fung; Li, Jianping; Fu, Junxue

    2016-08-15

    As metal nano-arrays show great potential on metal enhanced fluorescence (MEF) than random nanostructures, MEF of Ag zigzag nanorod (ZNR) arrays made by oblique angle deposition has been studied for biomolecule-protein interaction and DNA hybridization. By changing the folding number and the deposition substrate temperature, a 14-fold enhancement factor (EF) is obtained for biotin-neutravidin detection. The optimal folding number is decided as Z=7, owing to the high scattering intensity of Ag ZNRs. The substrate temperature T=25°C and 0°C slightly alters the morphology of Ag ZNRs but has no big difference in EF. Further, Ag ZNRs deposited on a layer of Ag film have been introduced to the DNA hybridization and a significant signal enhancement has been observed through the fluorescence microscope. Through a detailed quantitative EF analysis, which excludes the enhancing effect from the increased surface area of ZNRs and only considers the contribution of MEF, an EF of 28 is achieved for the hybridization of two single-stranded oligonucleotides with 33 bases. Furthermore, a limit of detection is determined as 0.01pM. We believe that the Ag ZNR arrays can serve as a universal and sensitive bio-detection platform.

  5. Photocatalytic synthesis and photovoltaic application of Ag-TiO2 nanorod composites.

    PubMed

    Lu, Qipeng; Lu, Zhenda; Lu, Yunzhang; Lv, Longfeng; Ning, Yu; Yu, Hongxia; Hou, Yanbing; Yin, Yadong

    2013-01-01

    A photocatalytic strategy has been developed to synthesize colloidal Ag-TiO2 nanorod composites in which each TiO2 nanorod contains a single Ag nanoparticle on its surface. In this rational synthesis, photoexcitation of TiO2 nanorods under UV illumination produces electrons that reduce Ag(I) precursor and deposit multiple small Ag nanoparticles on the surface of TiO2 nanorods. Prolonged UV irradiation induces an interesting ripening process, which dissolves the smaller nanoparticles by photogenerated oxidative species and then redeposits Ag onto one larger and more stable particle attached to each TiO2 nanorod through the reduction of photoexcited electrons. The size of the Ag nanoparticles can be precisely controlled by varying the irradiation time and the amount of alcohol additive. The Ag-TiO2 nanorod composites were used as electron transport layers in the fabrication of organic solar cells and showed notable enhancement in power conversion efficiency (6.92%) than pure TiO2 nanorods (5.81%), as well as higher external quantum efficiency due to improved charge separation and transfer by the presence of Ag nanoparticles.

  6. Si/ZnO nanorods/Ag/AZO structures as promising photovoltaic plasmonic cells

    NASA Astrophysics Data System (ADS)

    Placzek-Popko, E.; Gwozdz, K.; Gumienny, Z.; Zielony, E.; Pietruszka, R.; Witkowski, B. S.; Wachnicki, Ł.; Gieraltowska, S.; Godlewski, M.; Jacak, W.; Chang, Liann-Be

    2015-05-01

    The test structures for photovoltaic (PV) applications based on zinc oxide nanorods (NRs) that were grown using a low-temperature hydrothermal method on p-type silicon substrates (100) covered with Ag nanoparticles (NPs) were studied. The NPs of three different diameters, i.e., 5-10 nm, 20-30 nm, and 50-60 nm, were deposited using a sputtering method. The morphology and crystallinity of the structures were confirmed by scanning electron microscopy and Raman spectroscopy. It was found that the nanorods have a hexagonal wurtzite structure. An analysis of the Raman and photoluminescence spectra permitted the identification of the surface modes at 476 cm-1 and 561 cm-1. The presence of these modes is evidence of nanorods oriented along the wurtzite c-axis. The NRs with Ag NPs were covered with a ZnO:Al (AZO) layer that was grown using the low-temperature atomic layer deposition technique. The AZO layer served as a transparent ohmic contact to the ZnO nanorods. The applicability of the AZO layer for this purpose and the influence of the Ag nanoparticles on the effectiveness of light acquisition by such prepared PV cells were checked by reflectance and transmittance measurements of the AZO/glass and AZO/NPs/glass reference structures. Based on these studies, the high-energy transmittance edge was assigned to the ZnO energy gap, although it is blueshifted with respect to the bulk ZnO energy gap because of Al doping. It was also shown that the most optimal PV performance is obtained from a structure containing Ag nanoparticles with a diameter of 20-30 nm. This result is confirmed by the current-voltage measurements performed with 1-sun illumination. The structures show a plasmonic effect within the short wavelength range: the PV response for the structure with Ag nanoparticles is twice that of the structure without the nanoparticles. However, the influence of the Ag nanoparticle diameters on the plasmonic effect is ambiguous.

  7. Si/ZnO nanorods/Ag/AZO structures as promising photovoltaic plasmonic cells

    SciTech Connect

    Placzek-Popko, E. Gwozdz, K.; Gumienny, Z.; Zielony, E.; Jacak, W.; Pietruszka, R.; Witkowski, B. S.; Wachnicki, Ł.; Gieraltowska, S.; Chang, Liann-Be

    2015-05-21

    The test structures for photovoltaic (PV) applications based on zinc oxide nanorods (NRs) that were grown using a low-temperature hydrothermal method on p-type silicon substrates (100) covered with Ag nanoparticles (NPs) were studied. The NPs of three different diameters, i.e., 5–10 nm, 20-30 nm, and 50–60 nm, were deposited using a sputtering method. The morphology and crystallinity of the structures were confirmed by scanning electron microscopy and Raman spectroscopy. It was found that the nanorods have a hexagonal wurtzite structure. An analysis of the Raman and photoluminescence spectra permitted the identification of the surface modes at 476 cm{sup −1} and 561 cm{sup −1}. The presence of these modes is evidence of nanorods oriented along the wurtzite c-axis. The NRs with Ag NPs were covered with a ZnO:Al (AZO) layer that was grown using the low-temperature atomic layer deposition technique. The AZO layer served as a transparent ohmic contact to the ZnO nanorods. The applicability of the AZO layer for this purpose and the influence of the Ag nanoparticles on the effectiveness of light acquisition by such prepared PV cells were checked by reflectance and transmittance measurements of the AZO/glass and AZO/NPs/glass reference structures. Based on these studies, the high-energy transmittance edge was assigned to the ZnO energy gap, although it is blueshifted with respect to the bulk ZnO energy gap because of Al doping. It was also shown that the most optimal PV performance is obtained from a structure containing Ag nanoparticles with a diameter of 20–30 nm. This result is confirmed by the current-voltage measurements performed with 1-sun illumination. The structures show a plasmonic effect within the short wavelength range: the PV response for the structure with Ag nanoparticles is twice that of the structure without the nanoparticles. However, the influence of the Ag nanoparticle diameters on the plasmonic effect is ambiguous.

  8. Tuning the emission of ZnO nanorods based light emitting diodes using Ag doping

    NASA Astrophysics Data System (ADS)

    Echresh, Ahmad; Chey, Chan Oeurn; Shoushtari, Morteza Zargar; Nur, Omer; Willander, Magnus

    2014-11-01

    We have fabricated, characterized, and compared ZnO nanorods/p-GaN and n-Zn0.94Ag0.06O nanorods/p-GaN light emitting diodes (LEDs). Current-voltage measurement showed an obvious rectifying behaviour of both LEDs. A reduction of the optical band gap of the Zn0.94Ag0.06O nanorods compared to pure ZnO nanorods was observed. This reduction leads to decrease the valence band offset at n-Zn0.94Ag0.06O nanorods/p-GaN interface compared to n-ZnO nanorods/p-GaN heterojunction. Consequently, this reduction leads to increase the hole injection from the GaN to the ZnO. From electroluminescence measurement, white light was observed for the n-Zn0.94Ag0.06O nanorods/p-GaN heterojunction LEDs under forward bias, while for the reverse bias, blue light was observed. While for the n-ZnO nanorods/p-GaN blue light dominated the emission in both forward and reverse biases. Further, the LEDs exhibited a high sensitivity in responding to UV illumination. The results presented here indicate that doping ZnO nanorods might pave the way to tune the light emission from n-ZnO/p-GaN LEDs.

  9. Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Wei, Yuefan; Ke, Lin; Kong, Junhua; Liu, Hong; Jiao, Zhihui; Lu, Xuehong; Du, Hejun; Sun, Xiao Wei

    2012-06-01

    Zinc oxide (ZnO) nanorods coated with silver (Ag) film on a polyethylene terephthalate (PET) flexible substrate were used as the photoanode for water splitting. The hybrid nanostructures were prepared via low-temperature hydrothermal growth and electron beam evaporation. The effects of plasmonic enhanced absorption, surface recombination inhibition and improved charge transport are investigated by varying the Ag thickness. Light trapping and absorption enhancement are further studied by optimizing the curvature of the PET substrates. The maximum short circuit current density (JSC, 0.616 mA cm-2) and the photoelectron conversion efficiency (PCE, 0.81%) are achieved with an optimized Ag film thickness of 10 nm and substrate bending radius of 6.0 mm. The maximum JSC and PCE are seven times and ten times, respectively, higher than those of the bare ZnO nanorods on flexible substrates without bending. The overall PEC performance improvement is attributed to the plasmonic effects induced by Ag film and improved charge transport due to inhibition of ZnO surface charge recombination. Enhanced light trapping (harvesting) induced by bending the PET substrates further improved the overall efficiency.

  10. SPR sensitivity of silver nanorods in CsBr-Ag nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Lovkush; Ravikant, Chhaya; Arun, P.; Kumar, Kuldeep

    2016-07-01

    We have investigated the optical and morphological properties of CsBr-Ag complex thin films deposited by thermal evaporation on glass substrate. By varying the thickness of the film with fixed mass ratio of cesium bromide and silver, we observed a broad absorption peak in the visible region from 350 to 450 nm corresponding to the transverse and longitudinal surface plasmon resonance (SPR) mode. Red shift is observed, with varying film thickness, in SPR peak position corresponding to longitudinal mode with no significant change in transverse mode due to variation in the aspect ratio of the silver nano crystalline grains. Scanning electron microscope and EDX revealed the formation of silver nanorods in film samples. Such, stable and tunable CsBr-Ag films can be used in optical filters.

  11. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection.

    PubMed

    Tang, Lijuan; Li, Si; Han, Fei; Liu, Liqiang; Xu, Liguang; Ma, Wei; Kuang, Hua; Li, Aike; Wang, Libing; Xu, Chuanlai

    2015-09-15

    Dopamine (DA) is a neurotransmitter which plays a key role in the life science. Self-assembled Au@Ag nanorod dimers based on aptamers were developed for ultrasensitive dopamine detection. The electronic field was significantly enhanced by the addition of silver shell coating on the surface of Au NR dimer. The results displayed that Au@Ag NR dimers were ideal building blocks for constructing the SERS substrates with prominent Raman enhancement effects. It was found that with using this Surface-enhanced Raman scattering (SERS)-encoded this sensing system, a limit of detection of 0.006 pM and a wide linear range of 0.01-10 pM for dopamine detection were obtained. Our work open up a new avenue for the diagnosis and drug-discovery programs.

  12. Synthesis of defect-rich, (001) faceted-ZnO nanorod on a FTO substrate as efficient photocatalysts for dehydrogenation of isopropanol to acetone

    NASA Astrophysics Data System (ADS)

    Tan, Sin Tee; Umar, Akrajas Ali; Salleh, Muhamad Mat

    2016-06-01

    Highly oriented ZnO nanorod was successfully synthesised on Ag nanoseed coated FTO substrate via a microwave hydrolysis approach. It was found that the morphology and the optical properties of the ZnO nanorod are strongly influenced by the power of the microwave irradiation used during the growth process. The aspect ratio of the nanorods changed from high to low with the increasing of microwave power. It was also found that the optical band gap of the ZnO nanorod red shifted with the increasing of the microwave power, reflecting an excellent tune ability of the optical properties of ZnO nanorods. The photocatalytic activity of these unique nanorod was evaluated by a dehydrogenation process of isopropanol to acetone in the presence of ZnO nanorod. It was found that the ZnO nanorod exhibited an excellent catalytic performance by showing an ability to accelerate the production of 0.031 mol L-1 of acetone within only 35 min or 0.9 mmol L-1 min-1 from isopropyl alcohol dehydrogenation. It was almost no conversion from isopropyl alcohol when ZnO nanorods was absence during the reaction. In this report, a detailed mechanism of ZnO nanorod formation and the relationship between morphology and optical energy band gap are described.

  13. MICROWAVE-ASSISTED SHAPE CONTROLLED BULK SYNTHESIS OF AG AND FE NANORODS IN POLY (ETHYLENE GLYCOL) SOLUTIONS

    EPA Science Inventory

    Bulk syntheses of silver (Ag) and iron (Fe) nanorods using poly (ethylene glycol), PEG, under microwave irradiation (MW) conditions are reported. Favorable conditions to make Ag nanorods were established and can be extended to make Fe nanorods with uniform size and shape. The nan...

  14. Size- and shape-dependent growth of fluorescent ZnS nanorods and nanowires using Ag nanocrystals as seeds

    NASA Astrophysics Data System (ADS)

    Shen, Huaibin; Shang, Hangying; Niu, Jinzhong; Xu, Weiwei; Wang, Hongzhe; Li, Lin Song

    2012-09-01

    High-quality, monodisperse, and size-controlled Ag-ZnS nanorods or nanowires have been synthesized successfully using Ag nanocrystals as seeds. Such one-dimensional colloidal Ag-ZnS nanorods or nanowires having a purposefully controlled diameter in the range of 5-9 nm and a length of 18-600 nm were obtained by altering the reaction conditions, such as concentration, reaction time, reaction temperature, and diameter of Ag nanocrystals. The conjunction interface of Ag-ZnS nanorods or nanowires consists of the (200) plane of Ag nanocrystal and (101) plane of ZnS rod or wire, the <101> directions of ZnS nanorods grow preferentially. Based on the photoluminescence and lifetime of Ag-ZnS nanorods, it was found that Ag nanocrystals enhanced the radiative rate eventually, the fluorescence intensity of Ag-ZnS nanorods can be tuned by changing the size of the Ag seeds. The Ag-ZnS nanorods or nanowires showed greatly improved optical properties as compared to ZnS nanocrystals, the maximum emission was around 402 nm and the photoluminescence quantum yield was up to 30% when 5 nm Ag nanocrystals were used as seeds.High-quality, monodisperse, and size-controlled Ag-ZnS nanorods or nanowires have been synthesized successfully using Ag nanocrystals as seeds. Such one-dimensional colloidal Ag-ZnS nanorods or nanowires having a purposefully controlled diameter in the range of 5-9 nm and a length of 18-600 nm were obtained by altering the reaction conditions, such as concentration, reaction time, reaction temperature, and diameter of Ag nanocrystals. The conjunction interface of Ag-ZnS nanorods or nanowires consists of the (200) plane of Ag nanocrystal and (101) plane of ZnS rod or wire, the <101> directions of ZnS nanorods grow preferentially. Based on the photoluminescence and lifetime of Ag-ZnS nanorods, it was found that Ag nanocrystals enhanced the radiative rate eventually, the fluorescence intensity of Ag-ZnS nanorods can be tuned by changing the size of the Ag seeds. The Ag

  15. High Visible Photoelectrochemical Activity of Ag Nanoparticle-Sandwiched CdS/Ag/ZnO Nanorods.

    PubMed

    Yang, Xu; Li, Hui; Zhang, Wu; Sun, Mingxuan; Li, Lequn; Xu, Ning; Wu, Jiada; Sun, Jian

    2017-01-11

    We report on the sensitizing of CdS-coated ZnO (CdS/ZnO) nanorods (NRs) by Ag nanoparticles (NPs) embedded between the CdS coating and the ZnO nanorod and the improved optical and photoelectrochemical properties of the Ag NP-sandwiched nanostructure CdS/Ag/ZnO NRs. The CdS/Ag/ZnO NRs were fabricated by growing Ag NPs on hydrothermally grown ZnO NRs and subsequently depositing CdS coatings followed by subsequent N2 annealing. The structure of the fabricated CdS/Ag/ZnO NRs was characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman backscattering, revealing that the ZnO NRs and the CdS coatings are both structured with hexagonal wurtzite and the Ag NPs contact well with ZnO and CdS. Optical properties were evaluated by measuring optical absorption and photoluminescence, showing that the Ag NPs behave well as sensitizers for optical property improvement and the CdS/Ag/ZnO NRs exhibit better photoresponse in a wide spectral region than CdS/ZnO because of plasmon-enhanced absorption due to the embedment of Ag NPs. The Ag NPs also serve as electron relays from CdS to ZnO, facilitating electron transfer from the CdS coatings to the ZnO NRs. The excellent photoresponse and efficient electron transfer make the CdS/Ag/ZnO NRs highly photoelectrochemically active. The CdS/Ag/ZnO NRs fabricated on indium-tin oxide present much better photoelectrochemical performance as photoanodes working in the visible region than CdS/ZnO NRs without Ag NPs. Under visible illumination, a maximum optical-to-chemical conversion efficiency of 3.13% is obtained for CdS/Ag/ZnO NR photoanodes against 1.35% for CdS/ZnO NR photoanodes.

  16. Synthesis of Ag-In-Zn-S alloyed nanorods and their biological application.

    PubMed

    Tang, Xiaosheng; Wei, Wei; Khng, Claudia Choon Chea; Zang, Zhigang; Deng, Ming; Zhu, Tao; Xue, Junmin

    2014-12-05

    Monodisperse Ag-In-Zn-S (AIZS) nanorods with a length of 20 nm have been synthesized using a facile solution based route. These nanorods showed a wide range of fluorescence emissions from green to red, which was achieved by controlling the chemical composition. Moreover, the obtained AIZS nanorods showed high-quality photoluminescence, as well as attractive two-photon fluorescence properties, indicating their potential capability in biological tagging upon near-infrared excitation for deep tissue imaging. Furthermore, the AIZS nanorods presented in this report also show a promising perspective in applications such as solar cells and photocatalysts.

  17. Ultra-thin layer chromatography and surface enhanced Raman spectroscopy on silver nanorod array substrates prepared by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-06-01

    We demonstrate the potential use of silver nanorod (AgNR) array substrates for on-chip separation and detection of chemical mixtures by ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The capability of the AgNR substrates to separate different compounds in a mixture was explored using a mixture of the food colorant Brilliant Blue FCF and lactic acid, and the mixtures of Methylene Violet and BSA at various concentrations. After the UTLC process, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the capability of separating Brilliant Blue from lactic acid, as well as revealing the SERS signal of Methylene Violet from the massive BSA background after a simple UTLC step. This technique may have significant practical implications in actual detection of small molecules from complex food or clinical backgrounds.

  18. III-nitride core–shell nanorod array on quartz substrates

    PubMed Central

    Bae, Si-Young; Min, Jung-Wook; Hwang, Hyeong-Yong; Lekhal, Kaddour; Lee, Ho-Jun; Jho, Young-Dahl; Lee, Dong-Seon; Lee, Yong-Tak; Ikarashi, Nobuyuki; Honda, Yoshio; Amano, Hiroshi

    2017-01-01

    We report the fabrication of near-vertically elongated GaN nanorods on quartz substrates. To control the preferred orientation and length of individual GaN nanorods, we combined molecular beam epitaxy (MBE) with pulsed-mode metal–organic chemical vapor deposition (MOCVD). The MBE-grown buffer layer was composed of GaN nanograins exhibiting an ordered surface and preferred orientation along the surface normal direction. Position-controlled growth of the GaN nanorods was achieved by selective-area growth using MOCVD. Simultaneously, the GaN nanorods were elongated by the pulsed-mode growth. The microstructural and optical properties of both GaN nanorods and InGaN/GaN core–shell nanorods were then investigated. The nanorods were highly crystalline and the core–shell structures exhibited optical emission properties, indicating the feasibility of fabricating III-nitride nano-optoelectronic devices on amorphous substrates. PMID:28345641

  19. III-nitride core-shell nanorod array on quartz substrates.

    PubMed

    Bae, Si-Young; Min, Jung-Wook; Hwang, Hyeong-Yong; Lekhal, Kaddour; Lee, Ho-Jun; Jho, Young-Dahl; Lee, Dong-Seon; Lee, Yong-Tak; Ikarashi, Nobuyuki; Honda, Yoshio; Amano, Hiroshi

    2017-03-27

    We report the fabrication of near-vertically elongated GaN nanorods on quartz substrates. To control the preferred orientation and length of individual GaN nanorods, we combined molecular beam epitaxy (MBE) with pulsed-mode metal-organic chemical vapor deposition (MOCVD). The MBE-grown buffer layer was composed of GaN nanograins exhibiting an ordered surface and preferred orientation along the surface normal direction. Position-controlled growth of the GaN nanorods was achieved by selective-area growth using MOCVD. Simultaneously, the GaN nanorods were elongated by the pulsed-mode growth. The microstructural and optical properties of both GaN nanorods and InGaN/GaN core-shell nanorods were then investigated. The nanorods were highly crystalline and the core-shell structures exhibited optical emission properties, indicating the feasibility of fabricating III-nitride nano-optoelectronic devices on amorphous substrates.

  20. Controllable synthesis porous Ag2CO3 nanorods for efficient photocatalysis.

    PubMed

    Guo, Shenghui; Bao, Jianxing; Hu, Tu; Zhang, Libo; Yang, Li; Peng, Jinhui; Jiang, Caiyi

    2015-01-01

    The novel porous Ag2CO3 nanorods were facilely synthesized via a one-pot aqueous solution reaction at room temperature. The crystalline phase and size distribution of the nanorods were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. In addition, the porous feature of nanorods was confirmed by transmission electron microscopy (TEM) and nitrogen adsorption-desorption. The morphology and size of the Ag2CO3 crystal can be regulated via the choice of dispersing agents and adding approaches of reactants. Photocatalytic results show that the porous Ag2CO3 nanorods exhibit excellent photodegradation of rhodamine B (RhB) under visible-light irradiation, particularly the photoactivity performance and stability can be further improved in the presence of sodium bicarbonate (NaHCO3). It is indicated that NaHCO3 can prevent effectively the photocorrosion and promote the probability of electron-hole separation.

  1. Controllable synthesis porous Ag2CO3 nanorods for efficient photocatalysis

    NASA Astrophysics Data System (ADS)

    Guo, Shenghui; Bao, Jianxing; Hu, Tu; Zhang, Libo; Yang, Li; Peng, Jinhui; Jiang, Caiyi

    2015-04-01

    The novel porous Ag2CO3 nanorods were facilely synthesized via a one-pot aqueous solution reaction at room temperature. The crystalline phase and size distribution of the nanorods were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. In addition, the porous feature of nanorods was confirmed by transmission electron microscopy (TEM) and nitrogen adsorption-desorption. The morphology and size of the Ag2CO3 crystal can be regulated via the choice of dispersing agents and adding approaches of reactants. Photocatalytic results show that the porous Ag2CO3 nanorods exhibit excellent photodegradation of rhodamine B (RhB) under visible-light irradiation, particularly the photoactivity performance and stability can be further improved in the presence of sodium bicarbonate (NaHCO3). It is indicated that NaHCO3 can prevent effectively the photocorrosion and promote the probability of electron-hole separation.

  2. Facile synthesis of S-Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S-Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70-160 nm and lengths of 200-360 nm. X-ray diffraction of the S-Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S-Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S-Ag nanocomposites with diameters of 10-40 nm were obtained. The formation mechanism of the S-Ag nanocomposites was studied by designing a series of experiments using ultraviolet-visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S-Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S-Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  3. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.

    PubMed

    Ma, Yanan; Zhou, Jun; Zou, Weibo; Jia, Zhenhong; Petti, Lucia; Mormile, Pasquale

    2014-06-01

    The properties of the localized surface plasmon resonance (LSPR) and the surface enhanced Raman scattering (SERS) of the core-shell bimetallic nanostructures, that is the monodisperse Au@Ag core-shell nanorods with different thickness of Ag shell, are theoretically and experimental researched. The UV-vis-NIR absorption spectra of the Au@Ag core-shell nanorods are measured and displayed their blue-shifts of the longitudinal plasmon resonance peaks with increasing of Ag concentrations in the colloidal solution. And the absorption spectra of the Au@Ag core-shell nanorods are simulated by the Finite Element Method (FEM), which are in agreement with the experimental measurements and reveal their LSPR mechanism as the varying structures. In addition, Rhodamine 6G, as a Raman reporter molecule, is used to investigate SERS of gold nanorods and Au@Ag core-shell nanorods. It is found that Au@Ag core-shell nanorods have better SERS responses, comparing with those of Au nanorods, and their SERS intensities are increased with the increases of the Ag shell thickness, which demonstrate that the chemisorptive bond effect and the morphology of the nanoparticle play key roles to the SERS signals. It is significant to design the biosensor based on the properties of Au@Ag core-shell nanorods.

  4. Facile formation of Ag{sub 2}WO{sub 4}/AgX (X = Cl, Br, I) hybrid nanorods with enhanced visible-light-driven photoelectrochemical properties

    SciTech Connect

    Li, Jingjing; Yu, Caiyun; Zheng, Changcheng; Etogo, Atangana; Xie, Yunlong; Zhong, Yijun; Hu, Yong

    2015-01-15

    Highlights: • Ag{sub 2}WO{sub 4}/AgX hybrid nanorods were prepared by a facile in-situ anion exchange reaction. • Ag{sub 2}WO{sub 4} nanorods and different X{sup −} ions were reacted in water at room temperature. • The hybrids possess significantly enhanced photoelectrochemical properties. • Ag{sub 2}WO{sub 4}/AgBr hybrids exhibit the highest photocatalytic activity among three samples. • The active species tests were also investigated to confirm photocatalytic mechanism. - Abstract: In this work, we demonstrated a general strategy for the preparation of a series of uniform Ag{sub 2}WO{sub 4}/AgX (X = Cl, Br, I) hybrid nanorods by a facile in-situ anion exchange reaction occurring at room temperature between pregrown Ag{sub 2}WO{sub 4} nanorods and different X{sup −} ions in water. Compared with Ag{sub 2}WO{sub 4} nanorods, further investigation has revealed that the as-prepared hybrid nanorods possess significantly enhanced photocurrent response and photocatalytic activity in degrading methyl orange (MO) under visible-light irradiation. In particular, the Ag{sub 2}WO{sub 4}/AgBr hybrid nanorods exhibit the highest photocatalytic activity among the three kinds of samples. The active species tests indicate that superoxide anion radicals and photogenerated holes are responsible for the enhanced photocatalytic performance.

  5. Synthesis of Ag-Mn3O4 core-shell nanorods and Mn3O4 nanotubes from sacrificial Ag nanorod templates.

    PubMed

    Dong, Hyunbae; Koh, Eoi Kwan; Lee, Sang-Yup

    2009-11-01

    Our research focuses on the preparation of Ag-Mn3O4 core-shell nanorods and Mn3O4 nanotubes which have various engineering applications. Hausmannite manganese oxide (Mn3O4) nanotubes were synthesized via a galvanic replacement reaction at mild reaction conditions. The Mn3O4 nanotubes were prepared by solidification of manganese ions on a sacrificial silver nanorod due to the standard reduction potential difference between solid silver and manganese ions. The Mn ions were reduced to solid while the solid Ag rod was oxidized to ions. Ag-Mn3O4 core-shell nanorods and Mn3O4 nanotubes were simply prepared by changing the amount of manganese ions. The Mn3O4 layer in the nanorods and nanotubes had a Hausmannite crystalline structure and showed weak hysteresis of magnetism. This weak magnetism is likely due to the diamagnetic property of silver and multiple magnetic domain of Mn3O4. This simple replacement reaction could be applied to various oxide nanotube fabrications with exact shape control.

  6. Uniform and controllable preparation of Au-Ag core-shell nanorods using anisotropic silver shell formation on gold nanorods.

    PubMed

    Okuno, Yoshifumi; Nishioka, Koji; Kiya, Ayaka; Nakashima, Naotoshi; Ishibashi, Ayumu; Niidome, Yasuro

    2010-08-01

    Anisotropic and controllable silver shell formation on gold nanorods was realized in a micellar solution of hexadecytrimethylammonium chloride. Uniformity of the anisotropic Au-Ag core-shell particles contributes separation of four extinction bands. The ability to manipulate the shapes and sizes of these nanoparticles offers a wide-range control of the surface extinction from the visible to the near infrared regions (450-800 nm).

  7. AgVO3 nanorods: Synthesis, characterization and visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sivakumar, V.; Suresh, R.; Giribabu, K.; Narayanan, V.

    2015-01-01

    Large scale and high purity silver vanadate (AgVO3) nanorods were synthesized by thermal decomposition method. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, Ultraviolet-Visible (DRS-UV-Visible) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the structure, light absorption capacity and morphology of the as-synthesized sample. The photocatalytic activity of AgVO3 nanorods was examined by degradation of methylene blue (MB) as a model organic pollutant. The degradation efficiency is 85.02% in the 120 min visible light illumination. Further, the AgVO3 nanorods were used as a photocatalyst for industrial effluent. 95.4% degradation efficiency was obtained within the visible light irradiation of 120 min. The possible photocatalytic mechanism has also been proposed.

  8. Size-controllable growth of ZnO nanorods on Si substrate

    NASA Astrophysics Data System (ADS)

    Yu, Zhentao; Li, Hui; Qiu, Yining; Yang, Xu; Zhang, Wu; Xu, Ning; Sun, Jian; Wu, Jiada

    2017-01-01

    Here we report a simple two-step chemical-solution-based method to grow highly oriented and size-controllable ZnO nanorods on ZnO-seeded Si substrate. The morphology of the grown ZnO nanorods was examined by field emission scanning electron microscopy. The structure was characterized by X-ray diffraction and Raman scattering spectrum. Photoluminescence spectra were measured at room temperature and low temperatures to evaluate the photoluminescence properties of the ZnO nanorods. The grown ZnO nanorods are structured with hexagonal wurtzite. The diameter and length of ZnO nanorods can be controlled by varying the crystal quality of the underlying ZnO seed layers. The crystal quality of the seed layers gets improved as the deposition time and annealing temperature for ZnO seed layers are increased. The effects of annealing on the ZnO nanorods were also studied.

  9. Highly sensitive detection of glucose: A quantitative approach employing nanorods assembled plasmonic substrate.

    PubMed

    Chen, Qiulan; Fu, Yu; Zhang, Weihong; Ye, Suibo; Zhang, Hao; Xie, Fangyan; Gong, Li; Wei, Zhanxiao; Jin, Haoyu; Chen, Jian

    2017-04-01

    Sensitive glucose detection enables indirect blood glucose sensing through easily accessible biofluids such as saliva and sweat. In this work, silver coated gold nanorods (Au@Ag NRs) were synthesized and used to prepare plasmonic substrate for surface-enhanced Raman spectroscopy (SERS) to leverage highly sensitive detection of glucose for quantitative analysis. By synthetically manipulating of gold NRs and the outer silver shell, the size and aspect ratio of Au@Ag NRs were optimized, and the plasmon resonance wavelength was tuned to approximately the excitation wavelength. 4-Mercaptophenyl-boronic acid (4-MPBA) and 4-Cyanophenylboronic acid (4-CPBA) were used as primary and secondary receptors respectively to specifically capture glucose molecules. The distinct Raman peak at 2226cm(-1) of the cyano group in 4-CPBA was used as a signal reporter for glucose sensing. It is located in a biological silent region (1800-2800cm(-1)), thus offering specific sensing of glucose, without the interference of other endogenous molecules. Our results showed that the SERS substrate was long-term stable. Glucose in urine solution with additive glucose was quantitatively and specifically determined, with the detection limit down to 10(-8)M. Further experiments using urine from mild diabetes shows positive results, demonstrating the feasibility of clinical use.

  10. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity

    NASA Astrophysics Data System (ADS)

    Agnihotri, Shekhar; Bajaj, Geetika; Mukherji, Suparna; Mukherji, Soumyo

    2015-04-01

    Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a nanoreactor for in situ synthesis and as an immobilizing template in the presence of arginine. The presence of arginine enhanced the stability of ZnO deposition on the glass substrate by hindering the dissolution of zinc under alkaline conditions. Various Ag/ZnO hybrid nanorod (HNR) samples were screened to obtain a high amount of silver immobilization on the ZnO substrate. Ag/ZnO HNRs displayed potent antibacterial ability and could achieve 100% kill for both Escherichia coli and Bacillus subtilis strains under various test conditions. The hybrid material mediated its dual mode of antibacterial action through direct contact-killing and release of silver ions/nanoparticles and showed superior bactericidal performance compared to pure ZnO nanorods and colloidal AgNPs. No significant decline in antibacterial efficacy was observed even after the same substrate was repeatedly reused multiple times. Interestingly, the amount of Ag and Zn release was much below their maximal limit in drinking water, thus preventing potential health hazards. Immobilized AgNPs showed no cytotoxic effects on the human hepatocarcinoma cell line (HepG2). Moreover, treating cells with the antibacterial substrate for 24 hours did not lead to significant generation of reactive oxygen species (ROS). The good biocompatibility and bactericidal efficacy would thus make it feasible to utilize this immobilization strategy for preparing new-generation antibacterial coatings.Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a

  11. Hydrothermally grown ZnO nanorods on self-source substrate and their field emission

    NASA Astrophysics Data System (ADS)

    Liu, J. P.; Xu, C. X.; Zhu, G. P.; Li, X.; Cui, Y. P.; Yang, Y.; Sun, X. W.

    2007-04-01

    Vertically aligned zinc oxide nanorod arrays were grown directly using a zinc foil as both source and substrate in pure water at low temperature by a simple hydrothermal reaction. The morphology and crystal structure of the ZnO nanorod arrays were examined by scanning electron microscopy, transmission electron microscopy and x-ray diffraction, respectively. The nanorods grew along the [0 0 0 1] direction and were 80 nm in diameter and almost 2 µm in length. Directly employing the zinc foil substrate as cathode, the field emission (FE) of the ZnO nanorods presented a two-stage slope behaviour in a ln(J/E2)-1/E plot according to the Fowler-Nordheim equation. The FE behaviour was investigated by considering the action of the defects in ZnO nanorods based on the measurement of the photoluminescence.

  12. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    SciTech Connect

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mahmood, Arshad

    2014-04-21

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects in ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn{sup 2+} interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.

  13. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    NASA Astrophysics Data System (ADS)

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mahmood, Arshad

    2014-04-01

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects in ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn2+ interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.

  14. Synthesis and electrochemical capacitance of long tungsten oxide nanorod arrays grown vertically on substrate

    SciTech Connect

    Park, Sun Hwa; Kim, Young Heon; Lee, Tae Geol; Shon, Hyun Kyong; Park, Hyun Min; Song, Jae Yong

    2012-11-15

    Highlights: ► Growth of long amorphous tungsten oxide nanorods on a substrate. ► Formation of single-crystalline tungsten oxide nanorods by a heat-treatment. ► High electrochemical pseudocapacitance of 2.8 mF cm{sup −2}. ► Excellent cyclability of psuedocapacitance up to 1000 cycles. -- Abstract: Long tungsten oxide nanorods are vertically grown on Al/W/Ti coated silicon substrates using a two-step anodization process. The first anodization of the Al film forms a mesh-like mask of anodic aluminum oxide, and the second anodization of the W film results in the formation of a buffer layer, a bottom nanorod, and a top nanorod of amorphous tungsten oxide. A pore-widening process prior to the second anodization leads to the enhancement of nanorod length above approximately 500 nm. After a heat-treatment, the tungsten oxide nanorods are crystallized to form a single crystalline structure while the buffer layer forms a polycrystalline structure. The crystalline tungsten oxide nanorods show a cyclic voltammogram retaining the quasi-rectangular shape of an electrochemically reversible faradaic redox reaction, i.e., a typical pseudocapacitive behavior. The maximum electrochemical capacitance per apparent surface area reaches approximately 2.8 mF cm{sup −2} at the voltage scan rate of 20 mV s{sup −1}, and the excellent cyclability of charge–discharge process is maintained up to 1000 cycles.

  15. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids

    NASA Astrophysics Data System (ADS)

    He, Xuan; Wang, Hui; Li, Zhongbo; Chen, Dong; Liu, Jiahui; Zhang, Qi

    2015-04-01

    A simple and efficient self-approach strategy was used to apply ultrasensitivity and self-revive ZnO-Ag hybrid surface-enhanced Raman scattering (SERS) sensors for the highly sensitive and selective detection of explosive TNT in both solution and vapour conditions. The good ultrasensitive sensing performance is a result of the abundant Raman hot spots, which were spontaneously formed in a reversible way by the self-approaching of flexible ZnO-Ag hybrid nanorods driven by the capillary force of solvent evaporation. Moreover, the enhancement effect was repeatedly renewed by the reconstruction of molecular bridges, which could selectively detect TNT with a lower limit of 4 × 10-14 M. In addition, TNT vapor was also tested under this sensor, whereby once the ZnO-Ag NRs hybrid substrate was dipped in TNT, this substrate could detect the existence of TNT even in 5 detection cycles via a capillarity-constructed reversible hot spots approach. Compared with other pure Ag-based SERS sensors, this ZnO-Ag hybrid SERS sensor could rapidly self-revive SERS-activity by simple UV light irradiation and could retain stable SERS sensitivity for one month when used for TNT detection. This stable and ultrasensitive SERS substrate demonstrates a new route to eliminate the oxidized inactive problem of traditional Ag-based SERS substrates and suggests promising use in the applications of such hybrids as real-time online sensors for explosives detection.A simple and efficient self-approach strategy was used to apply ultrasensitivity and self-revive ZnO-Ag hybrid surface-enhanced Raman scattering (SERS) sensors for the highly sensitive and selective detection of explosive TNT in both solution and vapour conditions. The good ultrasensitive sensing performance is a result of the abundant Raman hot spots, which were spontaneously formed in a reversible way by the self-approaching of flexible ZnO-Ag hybrid nanorods driven by the capillary force of solvent evaporation. Moreover, the enhancement

  16. ZnO/Ag composite nanorod arrays for surface-plasmon-enhanced emission study

    SciTech Connect

    Pal, Anil Kumar E-mail: d.bharathimohan@gmail.com; Mohan, D. Bharathi E-mail: d.bharathimohan@gmail.com

    2014-04-24

    The surface plasmon resonance enhanced emission through coupling of surface plasmons and exciton band energies is studied in hybrid ZnO/Ag nanostructure. The catalytic growth of ZnO nanorods is controlled in seed mediated growth by altering size distribution of Ag nanoislands. X-ray diffraction shows a predominant (002) crystal plane confirming the preferential growth of ZnO nanorods on as-deposited Ag. Increase of surface roughness in Ag film by post deposition annealing process enhances the light emission due to momentum matching between surface plasmons and excitons as well as a red shift of 32 meV occurs due to multi phonon and phonon-exciton interaction.

  17. ZnO/Ag composite nanorod arrays for surface-plasmon-enhanced emission study

    NASA Astrophysics Data System (ADS)

    Pal, Anil Kumar; Mohan, D. Bharathi

    2014-04-01

    The surface plasmon resonance enhanced emission through coupling of surface plasmons and exciton band energies is studied in hybrid ZnO/Ag nanostructure. The catalytic growth of ZnO nanorods is controlled in seed mediated growth by altering size distribution of Ag nanoislands. X-ray diffraction shows a predominant (002) crystal plane confirming the preferential growth of ZnO nanorods on as-deposited Ag. Increase of surface roughness in Ag film by post deposition annealing process enhances the light emission due to momentum matching between surface plasmons and excitons as well as a red shift of 32 meV occurs due to multi phonon and phonon-exciton interaction.

  18. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance.

    PubMed

    Ren, Chunlei; Yang, Beifang; Wu, Min; Xu, Jiao; Fu, Zhengping; Lv, Yan; Guo, Ting; Zhao, Yongxun; Zhu, Changqiong

    2010-10-15

    Silver-modified ZnO nanorods array has been prepared and the effect of silver modification has been studied. ZnO nanorods array were fabricated through a wet chemical route and a photo deposition method was taken to fabricate silver nano particulate on the ZnO nanorods. The structural and optical properties were characterized by field emission scanning electron microscope, high resolution transmission electron microscope, X-ray photoelectron spectroscopy, Raman, UV-vis and photoluminescence (PL) spectra. The UV photocatalytic activity of these materials was studied by analyzing the degradation of methylene blue (MB) in aqueous solution. The photocatalytic performance indicated that Ag deposit acted as not only electron sinks to enhance the separation of photoexcited electrons from holes, but also charge carrier recombination centers, so the optimized amount of Ag deposit was investigated.

  19. A DNA-Assembled Fe3O4@Ag Nanorod in Silica Matrix for Cholesterol Biosensing

    NASA Astrophysics Data System (ADS)

    Satvekar, R. K.; Tiwari, A. P.; Rohiwal, S. S.; Tiwale, B. M.; Pawar, S. H.

    2015-12-01

    A novel nanocomposite having DNA-assembled Fe3O4@Ag nanorods in silica matrix has been proposed for fabrication of bienzymatic cholesterol nanobiosensor. Cholesterol oxidase and horseradish peroxidase have been co-encapsulated in Silica/Fe3O4@Ag-DNA nanocomposite deposited on the indium tin oxide electrode. Cyclic voltammetry was employed for the electrochemical behavior of proposed biosensor and used to estimate cholesterol with a linear range of 5-195 mg/dL.

  20. Longitudinal plasmon modes of Ag nanorod coupled with a pair of quantum dots.

    PubMed

    Liaw, Jiunn-Woei; Huang, Chun-Hui; Kuo, Mao-Kuen

    2013-10-01

    The longitudinal plasmon modes of an elongated Ag nanorod induced by an obliquely incident plane wave were analyzed theoretically. Our results show that the proximities at the two apexes of the nanorod are the hotspots at the dipole (m = 1), quadrupole (m = 2), sextupole (m = 3), octupole (m = 4), decapole (m = 5) and duodecapole (m = 6) modes. This phenomenon implies that a pair of quantum dots (QDs) located at these hotspots might be excited simultaneously through these plasmon modes. Consequently, the coherent spontaneous emission of the paired QDs could be induced through these modes. Furthermore, the coherent emission of the pair of excited QDs was studied, where these QDs were modeled as two electric dipoles (bi-dipole) oscillating with anti-symmetric or symmetric configurations. The radiative and nonradiative powers show that the maximum Purcell factors occur at these modes; the odd modes enhance the emission of the anti-symmetric configuration, and the even modes the symmetric one. However, only those bi-dipoles emitting at the lower-order (e.g., dipole, quadrupole and sextupole) modes of Ag nanorod are with high apparent quantum yields. In addition, the correlation of these plasmon modes of Ag nanorod with the dispersion relation of Ag nanowire was discussed.

  1. Optimizing Au/Ag core-shell nanorods: purification, stability, and surface modification

    NASA Astrophysics Data System (ADS)

    Ma, Yanan; Zhou, Jun; Shu, Lei; Li, Tianhua; Petti, Lucia; Mormile, Pasquale

    2014-06-01

    The purification, stability, and surface modification of Au/Ag core-shell nanorods (Au/Ag NRs) in a biological buffer solution were systematically studied for the first time. In this study, Au/Ag NRs were synthesized by chemically reducing silver on the surface of gold nanorods using cetyltrimethylammonium bromide as surfactant and then purified by centrifugation washing. Based on the analysis of UV-Vis absorption spectra, TEM images, Raman spectra, and the ξ-potential, it was observed that after the second washing step, the Au/Ag NRs displayed good stability and high surface-enhanced Raman scattering (SERS) enhancement. When the as-prepared Au/Ag NRs were centrifuged more than twice, a structural transition in the surfactant layer was manifested with a sudden increase in the Raman signal intensities at 760 and 1,455 cm-1. Moreover, 4-mercaptobenzoic acid (4MBA) was used as a Raman reporter molecule to investigate the SERS characteristics of the purified Au/Ag NRs. The Raman signal intensity was enhanced with increasing the concentration of 4MBA and reached its highest intensity at the saturation concentration of 1.0 µM 4MBA in a 5 ml solution of the purified Au/Ag NRs. To prevent significant aggregation of the 4MBA-tagged Au/Ag NRs, a poly(styrenesulfonate) (PSS) layer was assembled on the nanorod surfaces by electrostatic adsorption for further surface modification, which made the 4MBA-tagged Au/Ag NRs suitable for the labeled biosensing. Subsequently, the characteristics of the PSS-coated Au/Ag NRs were demonstrated for the potential applications of label-free biosensing.

  2. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity.

    PubMed

    Agnihotri, Shekhar; Bajaj, Geetika; Mukherji, Suparna; Mukherji, Soumyo

    2015-04-28

    Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a nanoreactor for in situ synthesis and as an immobilizing template in the presence of arginine. The presence of arginine enhanced the stability of ZnO deposition on the glass substrate by hindering the dissolution of zinc under alkaline conditions. Various Ag/ZnO hybrid nanorod (HNR) samples were screened to obtain a high amount of silver immobilization on the ZnO substrate. Ag/ZnO HNRs displayed potent antibacterial ability and could achieve 100% kill for both Escherichia coli and Bacillus subtilis strains under various test conditions. The hybrid material mediated its dual mode of antibacterial action through direct contact-killing and release of silver ions/nanoparticles and showed superior bactericidal performance compared to pure ZnO nanorods and colloidal AgNPs. No significant decline in antibacterial efficacy was observed even after the same substrate was repeatedly reused multiple times. Interestingly, the amount of Ag and Zn release was much below their maximal limit in drinking water, thus preventing potential health hazards. Immobilized AgNPs showed no cytotoxic effects on the human hepatocarcinoma cell line (HepG2). Moreover, treating cells with the antibacterial substrate for 24 hours did not lead to significant generation of reactive oxygen species (ROS). The good biocompatibility and bactericidal efficacy would thus make it feasible to utilize this immobilization strategy for preparing new-generation antibacterial coatings.

  3. ZnO Nanorod Array Grown on Ag Layer: A Highly Efficient Fluorescence Enhancement Platform

    PubMed Central

    Yin, Yongqi; Sun, Ye; Yu, Miao; Liu, Xiao; Jiang, Tingting; Yang, Bin; Liu, Danqing; Liu, Shaoqin; Cao, Wenwu

    2015-01-01

    ZnO nanorods (NRs) are known for ultra-sensitive biomolecule detection through fluorescence enhancement. In this work, we demonstrate that ZnO NR arrays grown on Ag layers can significantly improve the enhancement up to 86 times compared to that grown on bare Si, and the enhancement can be modified in a controlled manner by varying Ag thickness. The much improved waveguide properties are attributed to the high reflectance of the Ag layers and their tuning effect on the diameters of ZnO NRs. Our results provide a deep insight into the mechanism of NRs-based fluorescence enhancement platform. PMID:25633246

  4. Ag2Mo3O10 Nanorods Decorated with Ag2S Nanoparticles: Visible-Light Photocatalytic Activity, Photostability, and Charge Transfer.

    PubMed

    Chen, Xianjie; Liu, Fenglin; Yan, Xiaodong; Yang, Yang; Chen, Qian; Wan, Juan; Tian, Lihong; Xia, Qinghua; Chen, Xiaobo

    2015-12-14

    Ag2Mo3O10 nanorods decorated with Ag2 S nanoparticles have been synthesized by an anion-exchange route. With thiourea as the sulfur source, sulfur ions replace [Mo3O10](2-) units of active sites on the surface of Ag2Mo3O10 nanorods, forming Ag2Mo3O10 nanorods decorated with Ag2S nanoparticles. This induces enhanced absorption in the visible-light region. Ag2 S nanoparticles decorate the surface of Ag2Mo3O10 nanorods uniformly with a suitable amount of thiourea. The Ag2S/Ag2Mo3O10 nanoheterostructure enhances the photocatalytic activity on the degradations of Rhodamine B and glyphosate under visible light. This enhancement is attributed to the improved absorption of visible light and effective separation of charge carriers in the nanoheterostructure. Meanwhile, the Ag2S/Ag2Mo3O10 nanoheterostructure displays good photocatalytic stability based on cyclic photocatalytic experiments.

  5. Maximizing the photo catalytic and photo response properties of multimodal plasmonic Ag/WO(3-x) heterostructure nanorods by variation of the Ag size.

    PubMed

    Ghosh, Sirshendu; Saha, Manas; Paul, Sumana; De, S K

    2015-11-21

    High quality nearly monodisperse colloidal WO3-x nanorods with an aspect ratio ∼18 were synthesized using the thermal decomposition technique. The effects of a capping agent and an activating agent on the nanorod aspect ratio have been studied. Excess carrier concentration due to large oxygen vacancy and smaller width of the nanorods compared to the Bohr exciton radius gives rise to an increase of the band gap. Shape anisotropy in nanorods results in two plasmonic absorbance bands at about 890 nm and 5900 nm corresponding to short axis and long axis plasmon modes. The short axis mode reveals an excellent plasmonic sensitivity of ∼345 nm per refractive index. A plasmonic photocatalysis process based on WO3-x nanorods has been developed to synthesize Ag/WO3-x heterostructures consisting of multiple Ag dots with ∼2 nm size, randomly decorated on the surface of the WO3-x nanorods. Long time irradiation leads to an increase in the size (5 nm) of Ag nanocrystals concomitant with decrease in the number of Ag nanocrystals attached per WO3-x nanorod. Plasmonic photocatalysis followed by thermal annealing produces only one Ag nanocrystal of size ∼10 nm on each WO3-x nanorod. Red shifting and broadening of plasmon bands of Ag nanocrystals and WO3-x nanorods confirm the formation of heterostructures between the metal and semiconductor. Detailed transmission electron micrograph analysis indicates the epitaxial growth of Ag nanocrystals onto WO3-x nanorods. A high photocurrent gain of about 4000 is observed for Ag (10 nm)/WO3-x heterostructures. The photodegradation rate for Rhodamine-B and methylene blue is maximum for Ag (10 nm)/WO3-x heterostructures due to efficient electron transfer from WO3-x nanorods to Ag nanocrystals. Metal plasmon-semiconductor exciton coupling, prominent plasmon absorbance of metal nanoparticles, and formation of an epitaxial interface are found to be the important factors to achieve the maximum photocatalytic activity and fabrication of a

  6. Enhanced photocurrent and dynamic response in vertically aligned In₂S₃/Ag core/shell nanorod array photoconductive devices.

    PubMed

    Cansizoglu, Hilal; Cansizoglu, Mehmet F; Watanabe, Fumiya; Karabacak, Tansel

    2014-06-11

    Enhanced photocurrent values were achieved through a semiconductor-core/metal-shell nanorod array photoconductive device geometry. Vertically aligned indium sulfide (In2S3) nanorods were formed as the core by using glancing angle deposition technique (GLAD). A thin silver (Ag) layer is conformally coated around nanorods as the metallic shell through a high pressure sputter deposition method. This was followed by capping the nanorods with a metallic blanket layer of Ag film by utilizing a new small angle deposition technique combined with GLAD. Radial interface that was formed by the core/shell geometry provided an efficient charge carrier collection by shortening carrier transit times, which led to a superior photocurrent and gain. Thin metal shells around nanorods acted as a passivation layer to decrease surface states that cause prolonged carrier lifetimes and slow recovery of the photocurrent in nanorods. A combination of efficient carrier collection with surface passivation resulted in enhanced photocurrent and dynamic response at the same time in one device structure. In2S3 nanorod devices without the metal shell and with relatively thicker metal shell were also fabricated and characterized for comparison. In2S3 nanorods with thin metal shell showed the highest photosensitivity (photocurrent/dark current) response compared to two other designs. Microstructural, morphological, and electronic properties of the core/shell nanorods were used to explain the results observed.

  7. A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core-shell nanorods.

    PubMed

    Zong, Shenfei; Wang, Zhuyuan; Yang, Jing; Wang, Chunlei; Xu, Shuhong; Cui, Yiping

    2012-08-15

    We report a dual mode cancer cell targeting probe based on CdTe quantum dots (QDs) conjugated, silica coated Au@Ag core-shell nanorods (Au@Ag NRs), which can generate both surface enhanced Raman scattering (SERS) and fluorescence signals. In such a probe, folic acid (FA) is used as a targeting ligand for folate receptors (FRs) overexpressed cancer cells. To synthesize the probe, Au@Ag NRs were first prepared to serve as the SERS substrates by coating an Ag shell on the gold nanorods. Then the Au@Ag NRs were labeled with 4-mercaptobenzoic acid (4MBA) to generate SERS signals, followed by being coated with a silica shell through a modified Stöber method. Finally, CdTe QDs and FA were conjugated to the silica coated Au@Ag NRs by the carbodiimide chemistry to yield fluorescence and the targeting ability, respectively. To validate the targeting capability of the probe, in vitro experiments were conducted, using HeLa cells with overexpressed FRs as the model target cells and MRC-5 cells with a low folate receptor expression level as the negative control. Both the fluorescence imaging and the SERS mapping results confirmed that the proposed probe can be used as an efficient cancer cell targeting agent. This kind of multifunctional probe has great potential in the diagnosis and therapeutics of cancerous diseases due to its specific targeting and multiplex imaging abilities, especially in the simultaneous tracking of multiple components in a hybrid bio-system.

  8. Microfluidic-based metal enhanced fluorescence for capillary electrophoresis by Ag nanorod arrays

    NASA Astrophysics Data System (ADS)

    Xiao, Chenyu; Cao, Zhen; Deng, Junhong; Huang, Zhifeng; Xu, Zheng; Fu, Junxue; Yobas, Levent

    2014-06-01

    As metal nanorods show much higher metal enhanced fluorescence (MEF) than metal nanospheres, microfluidic-based MEF is first explored with Ag nanorod (ND) arrays made by oblique angle deposition. By measuring the fluorescein isothiocyanate (FITC) solution sandwiched between the Ag NDs and a piece of cover slip, the enhancement factors (EFs) are found as 3.7 ± 0.64 and 6.74 ± 2.04, for a solution thickness at 20.8 μm and 10 μm, respectively. Because of the strong plasmonic coupling between the adjacent Ag NDs, only the emission of the fluorophores present in the three-dimensional NDs array gets enhanced. Thus, the corresponding effective enhancement factors (EEFs) are revealed to be relatively close, 259 ± 92 and 340 ± 102, respectively. To demonstrate the application of MEF in microfluidic systems, a multilayer of SiO2 NDs/Ag NDs is integrated with a capillary electrophoresis device. At a microchannel depth of 10 μm, an enhancement of 6.5 fold is obtained for amino acids separation detection. These results are very encouraging and open the possibility of MEF applications for the Ag ND arrays decorated microchannels. With the miniaturization of microfluidic devices, microfluidic-based MEF by Ag ND arrays will likely find more applications with further enhancement.

  9. Microfluidic-based metal enhanced fluorescence for capillary electrophoresis by Ag nanorod arrays.

    PubMed

    Xiao, Chenyu; Cao, Zhen; Deng, Junhong; Huang, Zhifeng; Xu, Zheng; Fu, Junxue; Yobas, Levent

    2014-06-06

    As metal nanorods show much higher metal enhanced fluorescence (MEF) than metal nanospheres, microfluidic-based MEF is first explored with Ag nanorod (ND) arrays made by oblique angle deposition. By measuring the fluorescein isothiocyanate (FITC) solution sandwiched between the Ag NDs and a piece of cover slip, the enhancement factors (EFs) are found as 3.7 ± 0.64 and 6.74 ± 2.04, for a solution thickness at 20.8 μm and 10 μm, respectively. Because of the strong plasmonic coupling between the adjacent Ag NDs, only the emission of the fluorophores present in the three-dimensional NDs array gets enhanced. Thus, the corresponding effective enhancement factors (EEFs) are revealed to be relatively close, 259 ± 92 and 340 ± 102, respectively. To demonstrate the application of MEF in microfluidic systems, a multilayer of SiO2 NDs/Ag NDs is integrated with a capillary electrophoresis device. At a microchannel depth of 10 μm, an enhancement of 6.5 fold is obtained for amino acids separation detection. These results are very encouraging and open the possibility of MEF applications for the Ag ND arrays decorated microchannels. With the miniaturization of microfluidic devices, microfluidic-based MEF by Ag ND arrays will likely find more applications with further enhancement.

  10. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates.

    PubMed

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-12-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions.

  11. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates

    NASA Astrophysics Data System (ADS)

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-03-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions.

  12. Maximizing the photo catalytic and photo response properties of multimodal plasmonic Ag/WO3-x heterostructure nanorods by variation of the Ag size

    NASA Astrophysics Data System (ADS)

    Ghosh, Sirshendu; Saha, Manas; Paul, Sumana; de, S. K.

    2015-10-01

    High quality nearly monodisperse colloidal WO3-x nanorods with an aspect ratio ~18 were synthesized using the thermal decomposition technique. The effects of a capping agent and an activating agent on the nanorod aspect ratio have been studied. Excess carrier concentration due to large oxygen vacancy and smaller width of the nanorods compared to the Bohr exciton radius gives rise to an increase of the band gap. Shape anisotropy in nanorods results in two plasmonic absorbance bands at about 890 nm and 5900 nm corresponding to short axis and long axis plasmon modes. The short axis mode reveals an excellent plasmonic sensitivity of ~345 nm per refractive index. A plasmonic photocatalysis process based on WO3-x nanorods has been developed to synthesize Ag/WO3-x heterostructures consisting of multiple Ag dots with ~2 nm size, randomly decorated on the surface of the WO3-x nanorods. Long time irradiation leads to an increase in the size (5 nm) of Ag nanocrystals concomitant with decrease in the number of Ag nanocrystals attached per WO3-x nanorod. Plasmonic photocatalysis followed by thermal annealing produces only one Ag nanocrystal of size ~10 nm on each WO3-x nanorod. Red shifting and broadening of plasmon bands of Ag nanocrystals and WO3-x nanorods confirm the formation of heterostructures between the metal and semiconductor. Detailed transmission electron micrograph analysis indicates the epitaxial growth of Ag nanocrystals onto WO3-x nanorods. A high photocurrent gain of about 4000 is observed for Ag (10 nm)/WO3-x heterostructures. The photodegradation rate for Rhodamine-B and methylene blue is maximum for Ag (10 nm)/WO3-x heterostructures due to efficient electron transfer from WO3-x nanorods to Ag nanocrystals. Metal plasmon-semiconductor exciton coupling, prominent plasmon absorbance of metal nanoparticles, and formation of an epitaxial interface are found to be the important factors to achieve the maximum photocatalytic activity and fabrication of a high speed

  13. Synthesis of reduced graphene oxide/ZnO nanorods composites on graphene coated PET flexible substrates

    SciTech Connect

    Huang, Lei Guo, Guilue; Liu, Yang; Chang, Quanhong; Shi, Wangzhou

    2013-10-15

    Graphical abstract: - Highlights: • ZnO nanorods synthesized on CVD-graphene and rGO surfaces, respectively. • ZnO/CVD-graphene and ZnO/rGO form a distinctive porous 3D structure. • rGO/ZnO nanostructures possibility in energy storage devices. - Abstract: In this work, reduced graphene oxide (rGO)/ZnO nanorods composites were synthesized on graphene coated PET flexible substrates. Both chemical vapor deposition (CVD) graphene and reduced graphene oxide (rGO) films were prepared following by hydrothermal growth of vertical aligned ZnO nanorods. Reduced graphene sheets were then spun coated on the ZnO materials to form a three dimensional (3D) porous nanostructure. The morphologies of the ZnO/CVD graphene and ZnO/rGO were investigated by SEM, which shows that the ZnO nanorods grown on rGO are larger in diameters and have lower density compared with those grown on CVD graphene substrate. As a result of fact, the rough surface of nano-scale ZnO on rGO film allows rGO droplets to seep into the large voids of ZnO nanorods, then to form the rGO/ZnO hierarchical structure. By comparison of the different results, we conclude that rGO/ZnO 3D nanostructure is more desirable for the application of energy storage devices.

  14. Synthesis of Ball-Like Ag Nanorod Aggregates for Surface-Enhanced Raman Scattering and Catalytic Reduction

    PubMed Central

    Zhang, Wenjing; Cai, Yin; Qian, Rui; Zhao, Bo; Zhu, Peizhi

    2016-01-01

    In this work, ball-like Ag nanorod aggregates have been synthesized via a simple seed-mediated method. These Ag mesostructures were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), and X-ray diffraction (XRD). Adding a certain amount of polyvinyl pyrrolidone (PVP) can prolong its coagulation time. These Ag nanorod aggregates exhibit effective SERS effect, evaluated by Rhodamine 6G (R6G) and doxorubicin (DOX) as probe molecules. The limit of detection (LOD) for R6G and DOX are as low as 5 × 10−9 M and 5 × 10−6 M, respectively. Moreover, these Ag nanorod aggregates were found to be potential catalysts for the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4.

  15. Selective photochemical synthesis of Ag nanoparticles on position-controlled ZnO nanorods for the enhancement of yellow-green light emission.

    PubMed

    Park, Hyeong-Ho; Zhang, Xin; Lee, Keun Woo; Sohn, Ahrum; Kim, Dong-Wook; Kim, Joondong; Song, Jin-Won; Choi, Young Su; Lee, Hee Kwan; Jung, Sang Hyun; Lee, In-Geun; Cho, Young-Dae; Shin, Hyun-Beom; Sung, Ho Kun; Park, Kyung Ho; Kang, Ho Kwan; Park, Won-Kyu; Park, Hyung-Ho

    2015-12-28

    A novel technique for the selective photochemical synthesis of silver (Ag) nanoparticles (NPs) on ZnO nanorod arrays is established by combining ultraviolet-assisted nanoimprint lithography (UV-NIL) for the definition of growth sites, hydrothermal reaction for the position-controlled growth of ZnO nanorods, and photochemical reduction for the decoration of Ag NPs on the ZnO nanorods. During photochemical reduction, the size distribution and loading of Ag NPs on ZnO nanorods can be tuned by varying the UV-irradiation time. The photochemical reduction is hypothesized to facilitate the adsorbed citrate ions on the surface of ZnO, allowing Ag ions to preferentially form Ag NPs on ZnO nanorods. The ratio of visible emission to ultraviolet (UV) emission for the Ag NP-decorated ZnO nanorod arrays, synthesized for 30 min, is 20.5 times that for the ZnO nanorod arrays without Ag NPs. The enhancement of the visible emission is believed to associate with the surface plasmon (SP) effect of Ag NPs. The Ag NP-decorated ZnO nanorod arrays show significant SP-induced enhancement of yellow-green light emission, which could be useful in optoelectronic applications. The technique developed here requires low processing temperatures (120 °C and lower) and no high-vacuum deposition tools, suitable for applications such as flexible electronics.

  16. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    NASA Astrophysics Data System (ADS)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-12-01

    We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  17. Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: nanorods versus nanotubes.

    PubMed

    Mao, Aiming; Shin, Kahee; Kim, Jung Kyu; Wang, Dong Hwan; Han, Gui Young; Park, Jong Hyeok

    2011-06-01

    This paper describes two different processes to synthesize vertically aligned hematite nanorod and nanotube arrays, respectively, on a conductive substrate by the electrochemical deposition method with the help of an anodized aluminum oxide nanotemplate. The two types of nanostructured hematite were used as the photoanode for photoelectrochemical cells. The hematite nanotubes exhibited much higher photoelectrochemical activity than the hematite nanorods, including an improved photocurrent density, more negative onset potential, better photon harvesting, and better charge carrier transfer ability. The observed behavior may offer new information to enhance the photocatalytic ability of hematite, which is considered to be one of the best photoanode materials in the research field of photoelectrochemical cells.

  18. Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes.

    PubMed

    Chen, Kuangcai; Lin, Chia-Cheng; Vela, Javier; Fang, Ning

    2015-04-21

    Three-layer core-shell plasmonic nanorods (Au/Ag/SiO2-NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of the hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.

  19. Solvothermal Preparation of ZnO Nanorods as Anode Material for Improved Cycle Life Zn/AgO Batteries

    PubMed Central

    Ullah, Shafiq; Ahmed, Fiaz; Badshah, Amin; Ali Altaf, Ataf; Raza, Ramsha; Lal, Bhajan; Hussain, Rizwan

    2013-01-01

    Nano materials with high surface area increase the kinetics and extent of the redox reactions, thus resulting in high power and energy densities. In this study high surface area zinc oxide nanorods have been synthesized by surfactant free ethylene glycol assisted solvothermal method. The nanorods thus prepared have diameters in the submicron range (300∼500 nm) with high aspect ratio. They have uniform geometry and well aligned direction. These nanorods are characterized by XRD, SEM, Specific Surface Area Analysis, solubility in alkaline medium, EDX analysis and galvanostatic charge/discharge studies in Zn/AgO batteries. The prepared zinc oxide nanorods have low solubility in alkaline medium with higher structural stability, which imparts the improved cycle life stability to Zn/AgO cells. PMID:24146807

  20. Solvothermal preparation of ZnO nanorods as anode material for improved cycle life Zn/AgO batteries.

    PubMed

    Ullah, Shafiq; Ahmed, Fiaz; Badshah, Amin; Ali Altaf, Ataf; Raza, Ramsha; Lal, Bhajan; Hussain, Rizwan

    2013-01-01

    Nano materials with high surface area increase the kinetics and extent of the redox reactions, thus resulting in high power and energy densities. In this study high surface area zinc oxide nanorods have been synthesized by surfactant free ethylene glycol assisted solvothermal method. The nanorods thus prepared have diameters in the submicron range (300 ~ 500 nm) with high aspect ratio. They have uniform geometry and well aligned direction. These nanorods are characterized by XRD, SEM, Specific Surface Area Analysis, solubility in alkaline medium, EDX analysis and galvanostatic charge/discharge studies in Zn/AgO batteries. The prepared zinc oxide nanorods have low solubility in alkaline medium with higher structural stability, which imparts the improved cycle life stability to Zn/AgO cells.

  1. Selective growth of ZnO nanorods by the hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Nozaki, Shinji; Sarangi, Sachin N.; Sahu, Surendra N.; Uchida, Kazuo

    2013-03-01

    Zinc oxide nanorods were selectively grown on engineered substrates, Ag-patterned and photoresist-patterned substrates, by the hydrothermal technique using zinc nitrate (Zn(NO3)2) and hexamethylenetetramine ((CH2)6N4). The nanorod growth was affected by the substrate to be used. The nanorods were vertically grown on a GaN substrate but not on a Si substrate because of lattice mismatch. However, since the nanorods were grown on a thick Ag film no matter what substrate was used, a thick Ag film was deposited on a Si substrate to prepare the Ag-patterned substrate. Accordingly, the nanorods were grown only on the Ag pads. When the sizes of Ag pads were small such as 100 nm × 100 nm, one single nanorod was grown on an Ag pad. As another engineered substrate, the photoresist was patterned to prepare an array of holes on a GaN-on-sapphire substrate by e-beam lithography. When the hole size was 10 nm × 10 nm and higher, concentrations of Zn(NO3)2 and ((CH2)6N4) were employed, all holes were successfully filled with a single nanorod. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2012, 30 October 2 November 2012, Ha Long, Vietnam.

  2. Surface-enhanced Raman scattering from 4-aminothiophenol molecules embedded inside Ag coated gold nanorods

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Boris N.

    2016-04-01

    Here we report on the preparation of uniform Au@Ag core/shell nanorods with a controllable Ag shell thickness. 4- aminothiophenol molecules, used as the Raman reporters, were placed between the Au core and the Ag shell. The dependence of Raman intensity on the inside/surface location of the reporter molecules was studied. The interior molecules showed a strong and uniform Raman intensity, at least an order of magnitude higher than that of the molecules on the nanoparticle surface. In contrast to usual surface-functionalized Raman tags, aggregation and clustering of nanoparticles with embedded molecules decreased the SERS signal. The findings from this study provide the basis for a novel technique of low analyte concentration detection based on high SERS response inside the core/shell metal nanostructures.

  3. Self-organized TiO2 nanorod arrays on glass substrate for self-cleaning antireflection coatings.

    PubMed

    Mu, Qinghui; Li, Yaogang; Wang, Hongzhi; Zhang, Qinghong

    2012-01-01

    Herein we report the direct fabrication of TiO(2) subwavelength structures with 1-dimensional TiO(2) nanorods on glass substrate through solvothermal process to form self-cleaning antireflection coatings. TiO(2) precursor solutions with different solvent constituents create TiO(2) nanorods with much different morphologies grown on glass substrates. Apiculate TiO(2) nanorods with vertical orientation are grown on the glass substrate which is solvothermally treated in the precursor solution containing ethylene glycol. This glass substrate exhibit the highest transmittance of 70-85% in the range of 520-800 nm and negligible absorption in visible light region (400-800 nm). Furthermore, the TiO(2) nanorod arrays show high hydrophobicity and photocatalytic degradation ability which offer the glass substrate self-cleaning properties for both hydrophilic and oily contaminants.

  4. Hierarchical Ag mesostructures for single particle SERS substrate

    NASA Astrophysics Data System (ADS)

    Xu, Minwei; Zhang, Yin

    2017-01-01

    Hierarchical Ag mesostructures with highly rough surface morphology have been synthesized at room temperature through a simple seed-mediated approach. Electron microscopy characterizations indicate that the obtained Ag mesostructures exhibit a textured surface morphology with the flower-like architecture. Moreover, the particle size can be tailored easily in the range of 250-500 nm. For the growth process of the hierarchical Ag mesostructures, it is believed that the self-assembly mechanism is more reasonable rather than the epitaxial overgrowth of Ag seed. The oriented attachment of nanoparticles is revealed during the formation of Ag mesostructures. Single particle surface enhanced Raman spectra (sp-SERS) of crystal violet adsorbed on the hierarchical Ag mesostructures were measured. Results reveal that the hierarchical Ag mesostructures can be highly sensitive sp-SERS substrates with good reproducibility. The average enhancement factors for individual Ag mesostructures are estimated to be about 106.

  5. Catalytic synthesis of matchstick-like Ag2Se-ZnSe hetero-nanorods using Ag2S nanocrystals as seeds

    NASA Astrophysics Data System (ADS)

    Fan, Weiling; Yu, Huan; Lu, Chunhua; Wang, Lin; Long, Lingliang; Wu, Yanjun; Wang, Junli

    2015-04-01

    In nanowire catalytic growth, the catalyst particles usually remain at the tip of as-grown nanowires, which can be utilized to prepare matchstick-like heterostructures at the nanoscale. Based on this feature and a solution-phase catalytic growth route, we herein report the synthesis of Ag2Se-ZnSe matchstick-like hetero-nanorods, consisting of Ag2Se head and ZnSe rod-like stem. Three different kinds of silver sources, including Ag(0), Ag2S, and Ag2Se, are selected as initial seeds for growing ZnSe crystalline nanowire/rods. By comparison with the case of Ag(0) or Ag2Se, the use of Ag2S nanoparticles, which alter the chemical composition of catalytic particles and convert to Ag2Se catalyst after adding Se precursor (SeO2), is highly effective for the formation of uniform Ag2Se-ZnSe hetero-nanorods. The reason for this result may be attributed to a synergistic effect between the size of catalyst particles and the chemical conversion of Ag2S to Ag2Se.

  6. Green material: ecological importance of imperative and sensitive chemi-sensor based on Ag/Ag2O3/ZnO composite nanorods

    PubMed Central

    2013-01-01

    In this report, we illustrate a simple, easy, and low-temperature growth of Ag/Ag2O3/ZnO composite nanorods with high purity and crystallinity. The composite nanorods were structurally characterized by field emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy which confirmed that synthesized product have rod-like morphology having an average cross section of approximately 300 nm. Nanorods are made of silver, silver oxide, and zinc oxide and are optically active having absorption band at 375 nm. The composite nanorods exhibited high sensitivity (1.5823 μA.cm−2.mM−1) and lower limit of detection (0.5 μM) when applied for the recognition of phenyl hydrazine utilizing I-V technique. Thus, Ag/Ag2O3/ZnO composite nanorods can be utilized as a redox mediator for the development of highly proficient phenyl hydrazine sensor. PMID:24011288

  7. Green material: ecological importance of imperative and sensitive chemi-sensor based on Ag/Ag2O3/ZnO composite nanorods

    NASA Astrophysics Data System (ADS)

    Asiri, Abdullah M.; Khan, Sher Bahadar; Rahman, Mohammed M.; Al-Sehemi, Abdullah G.; Al-Sayari, Saleh A.; Al-Assiri, Mohammad Sultan

    2013-09-01

    In this report, we illustrate a simple, easy, and low-temperature growth of Ag/Ag2O3/ZnO composite nanorods with high purity and crystallinity. The composite nanorods were structurally characterized by field emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy which confirmed that synthesized product have rod-like morphology having an average cross section of approximately 300 nm. Nanorods are made of silver, silver oxide, and zinc oxide and are optically active having absorption band at 375 nm. The composite nanorods exhibited high sensitivity (1.5823 μA.cm-2.mM-1) and lower limit of detection (0.5 μM) when applied for the recognition of phenyl hydrazine utilizing I-V technique. Thus, Ag/Ag2O3/ZnO composite nanorods can be utilized as a redox mediator for the development of highly proficient phenyl hydrazine sensor.

  8. Comparative study of photocatalytic activities of hydrothermally grown ZnO nanorod on Si(001) wafer and FTO glass substrates

    NASA Astrophysics Data System (ADS)

    Jeon, Eun Hee; Yang, Sena; Kim, Yeonwoo; Kim, Namdong; Shin, Hyun-Joon; Baik, Jaeyoon; Kim, Hyun Sung; Lee, Hangil

    2015-09-01

    ZnO nanorods have been grown on Si(001) wafer and fluorine-doped tin oxide (FTO) glass substrates for 1 and 4 h with the hydrothermal methods. The morphologies and photocatalytic activities of the ZnO nanorods were found to depend on the substrates. We investigated their properties by using spectroscopic analysis and demonstrated that the shape of nanorod and the ratios of external defects can be controlled by varying the substrates. Our experiments revealed that the nanorods grown on Si(001) have a single-crystalline wurtzite structure with (002) facets and that the number of surface oxygen defects increases with their length as the growth time increases. The nanorods grown on Si(001) have different facets, in particular wider (002) facets, and a higher ratio of the oxygen defect than the nanorods on FTO glass substrate. Moreover, the photocatalytic activities with respect to 2-aminothiophenol (2-ATP) of these nanorods were investigated with high-resolution photoemission spectroscopy (HRPES). We demonstrated that their photocatalytic activity is influenced by the ratios of surface oxygen defects, which varies with the substrate surface.

  9. Growth of TiO2 nanorods on a Ta substrate by metal-organic chemical vapor deposition.

    PubMed

    Lee, Kang Suk; Hyun, Jae-Sung; Seo, Hyun Ook; Kim, Young Dok; Boo, Jin-Hyo

    2010-05-01

    TiO2 nanorods were successfully grown on Tantalum (Ta) substrates using titanium tetra isopropoxide (TTIP) as a single precursor without any carriers or bubbling gases. For characterization of the TiO2 structures, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were employed. For substrate temperatures below 800 degrees C, a rough film structure without nanorods could be found. However, at a sample temperature of 800 degrees C, nanorod structures with a respective diameter and length of 0.1 approximately 0.2 microm and 0.7 approximately 1.5 microm, respectively, could be synthesized. The nanorods exhibited a rutile phase with a 2:1 stoichiometry of O:Ti, identified using XRD and XPS. When the growth temperature exceeded 800 degrees C, agglomeration of the nanorods was identified.

  10. Low-Cost Substrates for High-Performance Nanorod Array LEDs

    SciTech Connect

    Sands, Timothy; Stach, Eric; Garcia, Edwin

    2009-04-30

    The completed project, entitled Low-Cost Substrates for High-Performance Nanorod LEDs, targeted the goal of a phosphor-free nanorod-based white LED with IQE > 50% across the spectrum from 450 nm to 600 nm on metallized silicon substrates. The principal achievements of this project included: Demonstration of (In,Ga)N nanopyramid heterostructures by a conventional OMVPE process. Verification of complete filtering of threading dislocations to yield dislocation-free pyramidal heterostructures. Demonstration of electroluminescence with a peak wavelength of ~600 nm from an (In,Ga)N nanopyramid array LED. Development of a reflective ZrN/AlN buffer layer for epitaxial growth of GaN films and GaN nanopyramid arrays on (111)Si.

  11. Tunable Ultra-high Aspect Ratio Nanorod Architectures grown on Porous Substrate via Electromigration.

    PubMed

    Mansourian, Ali; Paknejad, Seyed Amir; Wen, Qiannan; Vizcay-Barrena, Gema; Fleck, Roland A; Zayats, Anatoly V; Mannan, Samjid H

    2016-02-29

    The interplay between porosity and electromigration can be used to manipulate atoms resulting in mass fabrication of nanoscale structures. Electromigration usually results in the accumulation of atoms accompanied by protrusions at the anode and atomic depletion causing voids at the cathode. Here we show that in porous media the pattern of atomic deposition and depletion is altered such that atomic accumulation occurs over the whole surface and not just at the anode. The effect is explained by the interaction between atomic drift due to electric current and local temperature gradients resulting from intense Joule heating at constrictions between grains. Utilizing this effect, a porous silver substrate is used to mass produce free-standing silver nanorods with very high aspect ratios of more than 200 using current densities of the order of 10(8) A/m(2). This simple method results in reproducible formation of shaped nanorods, with independent control over their density and length. Consequently, complex patterns of high quality single crystal nanorods can be formed in-situ with significant advantages over competing methods of nanorod formation for plasmonics, energy storage and sensing applications.

  12. Tunable Ultra-high Aspect Ratio Nanorod Architectures grown on Porous Substrate via Electromigration

    PubMed Central

    Mansourian, Ali; Paknejad, Seyed Amir; Wen, Qiannan; Vizcay-Barrena, Gema; Fleck, Roland A.; Zayats, Anatoly V.; Mannan, Samjid H.

    2016-01-01

    The interplay between porosity and electromigration can be used to manipulate atoms resulting in mass fabrication of nanoscale structures. Electromigration usually results in the accumulation of atoms accompanied by protrusions at the anode and atomic depletion causing voids at the cathode. Here we show that in porous media the pattern of atomic deposition and depletion is altered such that atomic accumulation occurs over the whole surface and not just at the anode. The effect is explained by the interaction between atomic drift due to electric current and local temperature gradients resulting from intense Joule heating at constrictions between grains. Utilizing this effect, a porous silver substrate is used to mass produce free-standing silver nanorods with very high aspect ratios of more than 200 using current densities of the order of 108 A/m2. This simple method results in reproducible formation of shaped nanorods, with independent control over their density and length. Consequently, complex patterns of high quality single crystal nanorods can be formed in-situ with significant advantages over competing methods of nanorod formation for plasmonics, energy storage and sensing applications. PMID:26923553

  13. Tunable Ultra-high Aspect Ratio Nanorod Architectures grown on Porous Substrate via Electromigration

    NASA Astrophysics Data System (ADS)

    Mansourian, Ali; Paknejad, Seyed Amir; Wen, Qiannan; Vizcay-Barrena, Gema; Fleck, Roland A.; Zayats, Anatoly V.; Mannan, Samjid H.

    2016-02-01

    The interplay between porosity and electromigration can be used to manipulate atoms resulting in mass fabrication of nanoscale structures. Electromigration usually results in the accumulation of atoms accompanied by protrusions at the anode and atomic depletion causing voids at the cathode. Here we show that in porous media the pattern of atomic deposition and depletion is altered such that atomic accumulation occurs over the whole surface and not just at the anode. The effect is explained by the interaction between atomic drift due to electric current and local temperature gradients resulting from intense Joule heating at constrictions between grains. Utilizing this effect, a porous silver substrate is used to mass produce free-standing silver nanorods with very high aspect ratios of more than 200 using current densities of the order of 108 A/m2. This simple method results in reproducible formation of shaped nanorods, with independent control over their density and length. Consequently, complex patterns of high quality single crystal nanorods can be formed in-situ with significant advantages over competing methods of nanorod formation for plasmonics, energy storage and sensing applications.

  14. Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy.

    PubMed

    Nguyen, Trang H D; Zhang, Zhong; Mustapha, Azlin; Li, Hao; Lin, Mengshi

    2014-10-29

    This study aimed to use gold nanorods and graphene as key materials to fabricate high-performance substrates for the detection of pesticides by surface enhanced Raman spectroscopy (SERS). Three types of pesticides (azinphos-methyl, carbaryl, and phosmet) were selected. Gold nanorods have great potential to be used as a SERS substrate because it is easy to tune the surface plasmon resonance of the nanorods to the laser excitation wavelength of Raman spectroscopy. Graphene is a promising nanoscale material that can be used for supporting metal nanostructures. Three types of novel SERS substrates were fabricated, including graphene-gold film-gold nanorod (G-Au-AuNR) substrate, gold film-gold nanorod (Au-AuNR) substrate, and graphene coupled with gold nanorods (G-AuNR). The results demonstrate that G-Au-AuNR substrates exhibited the strongest Raman signals of the selected pesticides, followed by the Au-AuNR substrates. G-AuNR exhibited the weakest Raman signals, and no characteristic spectral features of the analytes were obtained. A partial least-squares method was used to develop quantitative models for the analysis of spectral data (R = 0.94, 0.87, and 0.86 for azinphos-methyl, carbaryl, and phosmet, respectively). The G-Au-AuNRs substrate was able to detect all three types of pesticides at the parts per million level with limits of detection at around 5, 5, and 9 ppm for azinphos-methyl, carbaryl, and phosmet, respectively. These results indicate that combining gold nanorods and graphene has great potential in the fabrication of sensitive, lightweight, and flexible substrates for SERS applications to improve food safety.

  15. Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates.

    PubMed

    Farhat, Omar F; Halim, Mohd M; Abdullah, Mat J; Ali, Mohammed K M; Allam, Nageh K

    2015-01-01

    We report a facile synthesis of zinc oxide (ZnO) nanorod arrays using an optimized, chemical bath deposition method on glass, PET and Si substrates. The morphological and structural properties of the ZnO nanorod arrays were investigated using various techniques such as field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) measurements, which revealed the formation of dense ZnO nanorods with a single crystal, hexagonal wurtzite structure. The aspect ratio of the single-crystal ZnO nanorods and the growth rate along the (002) direction was found to be sensitive to the substrate type. The lattice constants and the crystallite size of the fabricated ZnO nanorods were calculated based on the XRD data. The obtained results revealed that the increase in the crystallite size is strongly associated with the growth conditions with a minor dependence on the type of substrate. The Raman spectroscopy measurements confirmed the existence of a compressive stress in the fabricated ZnO nanorods. The obtained results illustrated that the growth of high quality, single-crystal ZnO nanorods can be realized by adjusting the synthesis conditions.

  16. Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4

    NASA Astrophysics Data System (ADS)

    Kong, Dan; Tan, Jeannie Ziang Yie; Yang, Fei; Zeng, Jieliang; Zhang, Xiwen

    2013-07-01

    We employed the double-potentiostatic methodology to electrodeposit Ag nanoparticles on oriented single-crystalline rutile TiO2 nanorods synthesized by hydrothermal method. The synthesized composites were used as the photocatalyst to reduce CO2 to CH4 under UV irradiation, and tested by SEM, XRD, TEM, XPS, UV-vis and photoluminescence. Deposition with Ag nanoparticles was observed to enhance the photocatalytic activity (≈1.5-2.64 μmol (gcatal h)-1) up to 5 times with respect to undecorated TiO2 nanorods (≈0.5 μmol (gcatal h)-1). The increase in the CH4 yield was correlated with the surface morphology and structure of TiO2 nanorods.

  17. Selective photochemical synthesis of Ag nanoparticles on position-controlled ZnO nanorods for the enhancement of yellow-green light emission

    NASA Astrophysics Data System (ADS)

    Park, Hyeong-Ho; Zhang, Xin; Lee, Keun Woo; Sohn, Ahrum; Kim, Dong-Wook; Kim, Joondong; Song, Jin-Won; Choi, Young Su; Lee, Hee Kwan; Jung, Sang Hyun; Lee, In-Geun; Cho, Young-Dae; Shin, Hyun-Beom; Sung, Ho Kun; Park, Kyung Ho; Kang, Ho Kwan; Park, Won-Kyu; Park, Hyung-Ho

    2015-12-01

    A novel technique for the selective photochemical synthesis of silver (Ag) nanoparticles (NPs) on ZnO nanorod arrays is established by combining ultraviolet-assisted nanoimprint lithography (UV-NIL) for the definition of growth sites, hydrothermal reaction for the position-controlled growth of ZnO nanorods, and photochemical reduction for the decoration of Ag NPs on the ZnO nanorods. During photochemical reduction, the size distribution and loading of Ag NPs on ZnO nanorods can be tuned by varying the UV-irradiation time. The photochemical reduction is hypothesized to facilitate the adsorbed citrate ions on the surface of ZnO, allowing Ag ions to preferentially form Ag NPs on ZnO nanorods. The ratio of visible emission to ultraviolet (UV) emission for the Ag NP-decorated ZnO nanorod arrays, synthesized for 30 min, is 20.5 times that for the ZnO nanorod arrays without Ag NPs. The enhancement of the visible emission is believed to associate with the surface plasmon (SP) effect of Ag NPs. The Ag NP-decorated ZnO nanorod arrays show significant SP-induced enhancement of yellow-green light emission, which could be useful in optoelectronic applications. The technique developed here requires low processing temperatures (120 °C and lower) and no high-vacuum deposition tools, suitable for applications such as flexible electronics.A novel technique for the selective photochemical synthesis of silver (Ag) nanoparticles (NPs) on ZnO nanorod arrays is established by combining ultraviolet-assisted nanoimprint lithography (UV-NIL) for the definition of growth sites, hydrothermal reaction for the position-controlled growth of ZnO nanorods, and photochemical reduction for the decoration of Ag NPs on the ZnO nanorods. During photochemical reduction, the size distribution and loading of Ag NPs on ZnO nanorods can be tuned by varying the UV-irradiation time. The photochemical reduction is hypothesized to facilitate the adsorbed citrate ions on the surface of ZnO, allowing Ag ions to

  18. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin B2: Catalytic Polymerisation of Aniline and Pyrrole

    EPA Science Inventory

    For the first time, we report green chemistry approach using vitamin B2 in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride (NaBH4) or hydroxylamine hydro...

  19. Structural Defects of Silver Hollandite, Ag(x)Mn8O(y), Nanorods: Dramatic Impact on Electrochemistry.

    PubMed

    Wu, Lijun; Xu, Feng; Zhu, Yimei; Brady, Alexander B; Huang, Jianping; Durham, Jessica L; Dooryhee, Eric; Marschilok, Amy C; Takeuchi, Esther S; Takeuchi, Kenneth J

    2015-08-25

    Hollandites (OMS-2) are an intriguing class of sorbents, catalysts, and energy storage materials with a tunnel structure permitting one-dimensional insertion and deinsertion of ions and small molecules along the c direction. A 7-fold increase in delivered capacity for Li/AgxMn8O16 electrochemical cells (160 versus 23 mAh/g) observed upon a seemingly small change in silver content (x ∼1.1 (L-Ag-OMS-2) and 1.6 (H-Ag-OMS-2)) led us to characterize the structure and defects of the silver hollandite material. Herein, Ag hollandite nanorods are studied through the combined use of local (atomic imaging, electron diffraction, electron energy-loss spectroscopy) and bulk (synchrotron based X-ray diffraction, thermogravimetric analysis) techniques. Selected area diffraction and high resolution transmission electron microscopy show a structure consistent with that refined by XRD; however, the Ag occupancy varies significantly even within neighboring channels. Both local and bulk measurements indicate a greater quantity of oxygen vacancies in L-Ag-OMS-2, resulting in lower average Mn valence relative to H-Ag-OMS-2. Electron energy loss spectroscopy shows a lower Mn oxidation state on the surface relative to the interior of the nanorods, where the average Mn valence is approximately Mn(3.7+) for H-Ag-OMS-2 and Mn(3.5+) for L-Ag-OMS-2 nanorods, respectively. The higher delivered capacity of L-Ag-OMS-2 may be related to more oxygen vacancies compared to H-Ag-OMS-2. Thus, the oxygen vacancies and MnO6 octahedra distortion are assumed to open the MnO6 octahedra walls, facilitating Li diffusion in the ab plane. These results indicate crystallite size and surface defects are significant factors affecting battery performance.

  20. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions.

    PubMed

    Alvarez-Puebla, Ramón A; Agarwal, Ashish; Manna, Pramit; Khanal, Bishnu P; Aldeanueva-Potel, Paula; Carbó-Argibay, Enrique; Pazos-Pérez, Nicolas; Vigderman, Leonid; Zubarev, Eugene R; Kotov, Nicholas A; Liz-Marzán, Luis M

    2011-05-17

    Highly organized supercrystals of Au nanorods with plasmonic antennae enhancement of electrical field have made possible fast direct detection of prions in complex biological media such as serum and blood. The nearly perfect three-dimensional organization of nanorods render these systems excellent surface enhanced Raman scattering spectroscopy substrates with uniform electric field enhancement, leading to reproducibly high enhancement factor in the desirable spectral range.

  1. Au@Ag nanorods based electrochemical immunoassay for immunoglobulin G with signal enhancement using carbon nanofibers-polyamidoamine dendrimer nanocomposite.

    PubMed

    Ma, Lina; Ning, Danlei; Zhang, Hongfang; Zheng, Jianbin

    2015-06-15

    Au@Ag nanorods (Au@AgNRs) was utilized to construct a novel sandwich-type electrochemical immunosensor for the detection of immunoglobulin G (IgG). The sensor was prepared by immoblizing capture antibodies on the amine-terminated nanocomposite of carbon nanofibers-polyamidoamine dendrimer (CNFs-PAMAM), whilst the trace tag was prepared by loading anti-human IgG on Au@AgNRs. The "built-in" Ag layer on Au nanorods was characterized by UV-vis extinction spectra, transmission electron microscopy and energy dispersive spectroscopy. The results of cyclic voltammetry indicated that modifying CNFs-PAMAM nanocomposite on glassy carbon electrode enabled 177 times of peak current increase of Ag in the bimetallic nanorods. The peak current was quantitatively related with the concentration of the target protein IgG via the formation of immunocomplex. After the parameter optimization, the oxidative peak current of silver was proportional to the concentration of IgG in a wide linear range of six orders of magnitude with a low detection limit of 0.5 fg mL(-1). Besides, this sensor showed acceptable reproducibility and stability, and thus the strategy reported here has great promise for extension to the other disease biomarkers.

  2. DNA biosensor-based on fluorescence detection of E. coli O157:H7 by Au@Ag nanorods.

    PubMed

    Sun, Jiadi; Ji, Jian; Sun, Yanqing; Abdalhai, Mandour H; Zhang, Yinzhi; Sun, Xiulan

    2015-08-15

    A novel DNA sensor for the detection of the Escherichia coli O157:H7 (E. coli O157:H7) eaeA gene was constructed using surface enhanced fluorescence (SEF). The spacing distance dependence nature of Au@Ag nanorods surface enhanced fluorescence was investigated when the cy3-labled single strand DNA(ssDNA) and the stem-loop DNA probe modified on the nanorods was co-hybridized. The result revealed that the fluorescence intensity reached the maximum value with the spacing distance of about 10nm between cy3 and the Au@Ag nanorods surface. Based on this result, a fluorescence "ON/OFF" switch for detecting the eaeA gene of E. coli O157:H7 was constructed. Under optimal conditions, the DNA sensor produced a linear range from 10(-17) to 10(-11) M with a correlation coefficient of 0.9947 and a detection limit of 3.33×10(-18) M, and was also found to be specific in targeting eaeA. The DNA sensor demonstrated a new strategy of combining eaeA recognition and Au@Ag nanorods for fluorescence signal enhancement, and increased sensitivity in the detection of bacterial specific genes.

  3. Numerical calculation of plasmonic field absorption enhancement in CdSe-quantum dot sensitized ZnO nanorods by Ag nanoparticle periodic arrays

    NASA Astrophysics Data System (ADS)

    Kohnehpoushi, Saman; Eskandari, Mehdi; Nejand, Bahram Abdollahi; Ahmadi, Vahid

    2016-12-01

    Plasmonic field absorption enhancement (PFAE) of Ag nanoparticles (Ag NPs) periodic arrays in CdSe-quantum dot (QD) sensitized ZnO nanorods was numerically investigated by the three-dimensional finite difference time domain (FDTD). The Ag NPs with spherical morphology were found to have an optimum PFAE compared to other Ag NP morphologies such as cubic and pyramidal. The results also showed that PFAE intensity in CdSe-QD-sensitized ZnO nanorods is increased with the reduction of Ag NP diameter until 10 nm and decreases thereafter. Moreover, the optimum density of spherical Ag NPs for optimum PFAE was observed as 20%. PFAE in CdSe-QD-sensitized ZnO nanorods is improved with increasing space between ZnO nanorods until 180 nm and reduces thereafter. Finally, the results showed that PFAE of Ag NPs for the high distance between ZnO nanorods is dependent on radiation angle; while for the low distance between ZnO nanorods it is free of radiation angle.

  4. Facile Synthesis of Ag Nanorods with No Plasmon Resonance Peak in the Visible Region by Using Pd Decahedra of 16 nm in Size as Seeds.

    PubMed

    Luo, Ming; Huang, Hongwen; Choi, Sang-Il; Zhang, Chao; da Silva, Robson Rosa; Peng, Hsin-Chieh; Li, Zhi-Yuan; Liu, Jingyue; He, Zhike; Xia, Younan

    2015-10-27

    This article describes a seed-mediated approach to the synthesis of Ag nanorods with thin diameters and tunable aspect ratios. The success of this method is built upon our recent progress in the synthesis of Pd decahedra as uniform samples, together with controllable sizes. When used as a seed, the Pd decahedron could direct the deposition of Ag atoms along the 5-fold axis to generate a nanorod, with its diameter being determined by the lateral dimension of the seed. We were able to generate Ag nanorods with uniform diameters down to 20 nm. Under the conditions we used for growth, symmetry breaking occurred as the Ag atoms were only deposited along one side of the Pd decahedral seed to generate a Ag nanorod with the Pd seed being positioned at one of its two ends. We also systematically investigated the localized surface plasmon resonance (LSPR) properties of the Ag nanorods. With the transverse mode kept below 400 nm, the longitudinal mode could be readily tuned from the visible to the near-infrared region by varying the aspect ratio. As an important demonstration, we obtained Ag nanorods with no LSPR peak in the visible spectrum (400-800 nm), which are attractive for applications related to the fabrication of touchscreen displays, solar films, and energy-saving smart windows.

  5. A new class of PANI-Ag core-shell nanorods with sensing dimensions

    NASA Astrophysics Data System (ADS)

    Shukla, Vineet K.; Yadav, Poonam; Yadav, Raghvendra S.; Mishra, Priya; Pandey, Avinash C.

    2012-06-01

    A single-step, cost-effective and eco-safe synthesis of a new class of homogeneous silver-polyaniline (PANI-Ag) core-shell nanorods is carried out via mild photolysis by ultraviolet radiation from sunlight (SUN UV-radiation). X-ray diffraction (XRD) of these core-shell nanorods gives two additional peaks from PANI centered at 2θ = 20.5° and 24. 9°. A validation of the core-shell structural information is given by transmission electron spectroscopy (TEM) whereas the tubular shape morphology is determined by scanning electron microscopy (SEM). UV-Vis. absorption shows a strong blue-shift along with photoluminescence emission. Fourier transform-infrared spectroscopy (FT-IR) and energy dispersive X-ray spectroscopy (EDX) also support the core-shell formation. Thermogravimetric analysis (TGA) shows good thermal stability and allows excellent detection of hydrogen peroxide and hydrazine. The cyclic voltammetry (CV) results show excellent electro-activation, indicating its promising potential in sensing of clinical and environmental analytes.

  6. A new class of PANI-Ag core-shell nanorods with sensing dimensions.

    PubMed

    Shukla, Vineet K; Yadav, Poonam; Yadav, Raghvendra S; Mishra, Priya; Pandey, Avinash C

    2012-07-07

    A single-step, cost-effective and eco-safe synthesis of a new class of homogeneous silver-polyaniline (PANI-Ag) core-shell nanorods is carried out via mild photolysis by ultraviolet radiation from sunlight (SUN UV-radiation). X-ray diffraction (XRD) of these core-shell nanorods gives two additional peaks from PANI centered at 2θ = 20.5° and 24. 9°. A validation of the core-shell structural information is given by transmission electron spectroscopy (TEM) whereas the tubular shape morphology is determined by scanning electron microscopy (SEM). UV-Vis. absorption shows a strong blue-shift along with photoluminescence emission. Fourier transform-infrared spectroscopy (FT-IR) and energy dispersive X-ray spectroscopy (EDX) also support the core-shell formation. Thermogravimetric analysis (TGA) shows good thermal stability and allows excellent detection of hydrogen peroxide and hydrazine. The cyclic voltammetry (CV) results show excellent electro-activation, indicating its promising potential in sensing of clinical and environmental analytes.

  7. Growth of different morphologies (quantum dots to nanorod) of Ag-nanoparticles: role of cysteine concentrations.

    PubMed

    Khan, Zaheer; Talib, Abou

    2010-03-01

    This work describes an easy chemical method for the preparation of orange-red color silver sol by the cysteine reduction of silver (I) in the presence of cetyltrimethylammonium bromide (CTAB). The obtained sol was found to have very small particles in the order of quantum dots for the first time. Transmission electron microscope (TEM) images show that the silver sol consists of aggregated as well as cross-linking arrangement of spherical silver quantum dots (size in the range ca. Ag-nanoparticles from quantum dots to nanorod of diameter 60nm and pearl-necklace shaped which occurred due to the cross-linking aggregation of silver quantum dots. For a certain reaction time, i.e., 100min, the absorbance of reaction mixture first increased until it reached a maximum, then decreased with [cysteine]. The rate of Ag-nanoparticles formation decreases with the increase in [cysteine] whereas [CTAB] and [Ag(+)] have no effect on the reaction rate. Interestingly, at higher [cysteine] (>or=20.0x10(-4)mol dm(-3)), white precipitate was formed instead of transparent silver sol. Cysteine acts as a reducing, cross-linking, stabilizing and buffering agent during the growth of different shape and size of silver nanoparticles.

  8. Enhanced cell-wall damage mediated, antibacterial activity of core-shell ZnO@Ag heterojunction nanorods against Staphylococcus aureus and Pseudomonas aeruginosa.

    PubMed

    Ponnuvelu, Dinesh Veeran; Suriyaraj, Shanmugam Prema; Vijayaraghavan, Thiruvenkatam; Selvakumar, Rajendran; Pullithadathail, Biji

    2015-07-01

    Hybrid ZnO@Ag core-shell nanorods have been synthesized by a synthetic strategy based on seed mediated growth. Formation of core-shell nanostructures was confirmed by UV- diffused reflectance spectroscopy (UV-DRS), X-ray diffraction studies, field emission scanning electron microscopy and high resolution transmission electron microscopy. UV-DRS analysis of hybrid core-shell nanorods suggests the possibility of interfacial electron transfer between surface anchored Ag nanoclusters and ZnO nanorods. Successful decoration of Ag nanoclusters with an average diameter of ~7 ± 0.5 nm was observed forming the heterojunctions on the surface of the ZnO nanorods. An enhanced antibacterial property was observed for the ZnO@Ag core-shell nanorods against both Staphylococcus aureus and Pseudomonas aeruginosa lbacteria. The synergetic antibacterial activity of ZnO@Ag nanorods was found to be more prominent against Gram-positive bacteria than Gram-negative bacteria. The plausible reason for this enhanced antibacterial activity of the core-shell nanorods can be attributed to the physical damage caused by the interaction of the material with outer cell wall layer due to the production of reactive oxygen species by interfacial electron transfer between ZnO nanorods and plasmonic Ag nanoclusters. Overall, the ZnO@Ag core-shell nanorods were found to be promising materials that could be developed further as an effective antibacterial agent against wide range of microorganisms to control spreading and persistence of bacterial infections.

  9. SERS substrates formed by gold nanorods deposited on colloidal silica films

    PubMed Central

    2013-01-01

    We describe a new approach to the fabrication of surface-enhanced Raman scattering (SERS) substrates using gold nanorod (GNR) nanopowders to prepare concentrated GNR sols, followed by their deposition on an opal-like photonic crystal (OPC) film formed on a silicon wafer. For comparative experiments, we also prepared GNR assemblies on plain silicon wafers. GNR-OPC substrates combine the increased specific surface, owing to the multilayer silicon nanosphere structure, and various spatial GNR configurations, including those with possible plasmonic hot spots. We demonstrate here the existence of the optimal OPC thickness and GNR deposition density for the maximal SERS effect. All other things being equal, the analytical integral SERS enhancement of the GNR-OPC substrates is higher than that of the thick, randomly oriented GNR assemblies on plain silicon wafers. Several ways to further optimize the strategy suggested are discussed. PMID:23697339

  10. In situ generated AgBr-enhanced ZnO nanorod-based photoelectrochemical aptasensing via layer-by-layer assembly.

    PubMed

    Li, Jing; Tu, Wenwen; Li, Hongbo; Bao, Jianchun; Dai, Zhihui

    2014-02-28

    A robust aptasensor for Ag(+) was proposed for the first time using an enhanced ZnO nanorod-based photoelectrochemistry by in situ generated AgBr via layer-by-layer assembly. This work opens up new avenues for application of one-dimensional ZnO nanorod arrays in photoelectrochemical sensing. Additionally, the strategy of employing in situ generated narrow-bandgap semiconductors paves a new way for photoelectrochemical sensing.

  11. Complete assembly of Cu2ZnSnS4 (CZTS) nanorods at substrate interfaces using a combination of self and directed organisation.

    PubMed

    Liu, Pai; Singh, Shalini; Bree, Gerard; Ryan, Kevin M

    2016-10-04

    Here we report the two-stage assembly of semiconductor nanorods at substrates. The nanorods preassemble into 2D discs by self-organisation and these discs are deposited into conformal layers at substrates using electric field assembly. The intermediate self-assembly step can be eliminated by carrying out a judicious ligand exchange allowing selectivity for dimensional control of layer formation from nanorod building blocks in one two and three dimensions.

  12. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells.

    PubMed

    Hu, Hongwei; Ding, Jianning; Zhang, Shuai; Li, Yan; Bai, Li; Yuan, Ningyi

    2013-01-03

    Ag2S quantum dots were deposited on the surface of TiO2 nanorod arrays by a two-step photodeposition. The prepared TiO2 nanorod arrays as well as the Ag2S deposited electrodes were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope, suggesting a large coverage of Ag2S quantum dots on the ordered TiO2 nanorod arrays. UV-vis absorption spectra of Ag2S deposited electrodes show a broad absorption range of the visible light. The quantum dot-sensitized solar cells (QDSSCs) based on these electrodes were fabricated, and the photoelectrochemical properties were examined. A high photocurrent density of 10.25 mA/cm2 with a conversion efficiency of 0.98% at AM 1.5 solar light of 100 mW/cm2 was obtained with an optimal photodeposition time. The performance of the QDSSC at different incident light intensities was also investigated. The results display a better performance at a lower incident light level with a conversion efficiency of 1.25% at 47 mW/cm2.

  13. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells

    PubMed Central

    2013-01-01

    Ag2S quantum dots were deposited on the surface of TiO2 nanorod arrays by a two-step photodeposition. The prepared TiO2 nanorod arrays as well as the Ag2S deposited electrodes were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope, suggesting a large coverage of Ag2S quantum dots on the ordered TiO2 nanorod arrays. UV–vis absorption spectra of Ag2S deposited electrodes show a broad absorption range of the visible light. The quantum dot-sensitized solar cells (QDSSCs) based on these electrodes were fabricated, and the photoelectrochemical properties were examined. A high photocurrent density of 10.25 mA/cm2 with a conversion efficiency of 0.98% at AM 1.5 solar light of 100 mW/cm2 was obtained with an optimal photodeposition time. The performance of the QDSSC at different incident light intensities was also investigated. The results display a better performance at a lower incident light level with a conversion efficiency of 1.25% at 47 mW/cm2. PMID:23286551

  14. Seedless Pattern Growth of Quasi-Aligned ZnO Nanorod Arrays on Cover Glass Substrates in Solution

    PubMed Central

    2010-01-01

    A hybrid technique for the selective growth of ZnO nanorod arrays on wanted areas of thin cover glass substrates was developed without the use of seed layer of ZnO. This method utilizes electron-beam lithography for pattern transfer on seedless substrate, followed by solution method for the bottom-up growth of ZnO nanorod arrays on the patterned substrates. The arrays of highly crystalline ZnO nanorods having diameter of 60 ± 10 nm and length of 750 ± 50 nm were selectively grown on different shape patterns and exhibited a remarkable uniformity in terms of diameter, length, and density. The room temperature cathodluminescence measurements showed a strong ultraviolet emission at 381 nm and broad visible emission at 585–610 nm were observed in the spectrum. PMID:20672029

  15. Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes

    DOE PAGES

    Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier; ...

    2015-04-07

    In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of the hybridmore » nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less

  16. Synthesis, fractionation, and optical characterization of Au-Ag composite nanorods

    NASA Astrophysics Data System (ADS)

    Alekseeva, Anna V.; Bogatyrev, Vladimir A.; Trachuk, Lyubov A.; Khlebtsov, Nikolai G.

    2005-06-01

    We report on a synthesis procedure and optical properties of composite Au-Ag spherical and rod-like nanoparticles. The synthesis protocol is based on a seed-mediated growth in the presence of soft templates in micellar aqueous solution of ionic surfactant (CTAB). Variation of Au/Ag molar ratio allows one to produce nanorods (NRs) with different aspect ratio. The disadvantage of the method is formation of appreciable amount of spherical nanoparticles. To separate rod-like particles from spheres and surfactant, we used a fractionation procedure that involves centrifugatiori of samples in the density gradient of glycerol. The separated NRs were suspended in water or 25% glycerol solutions and their extinction and differential light scattering (at 900) spectra were recorded for 450-850 ni-n wavelengths. Theoretical spectra were calculated by T-matrix method as applied to randomly oriented gold cylinders with semispherical ends. The simulated spectra for water and glycerol suspensions can be brought in close agreement with experimental observations if the aspect ratio is used as a fitting parameter. We discuss also the absorption and light scattering contribution to the total extinction spectra and deviation of the exact solution from the classical electrostatic approximation by Gans.

  17. Modeling wrinkled-assisted assembly of ordered nanoparticles and nanorods on a wavy substrate

    NASA Astrophysics Data System (ADS)

    Luppi Sato, Camila; Yeh, Peter; Alexeev, Alexander; Mayer, Martin; Probst, Patrick; Fery, Andreas

    2015-11-01

    Wrinkle-assisted assembly is a technique that allows for fabrication of ordered structures of nanoparticles and nanorods on hydrophilic substrates. As an intermediate step in this process, nanoparticles are deposited within microscopically wrinkled surfaces, where they organize into patterned structures upon solvent evaporation. However, the dependence of the resulting pattern on nanoparticle concentration, particle size and shape, and substrate geometry is not well understood. We develop a model of the ordering process using dissipative particle dynamics (DPD) to predict the resulting nanostructures. We approximate the wavy sheet as a sinusoidal surface. One layer of DPD liquid containing nanoparticles fills the surface, while another layer of DPD fluid acts as the gaseous phase. We model the evaporative process by gradually replacing DPD liquid particles with DPD gaseous particles. The results of our work are useful in designing surface patterns that exhibit strong plasmonic coupling. Financial support from NSF CAREER Award DMR-1255288 is gratefully acknowledged.

  18. Optically anisotropic substrates via wrinkle-assisted convective assembly of gold nanorods on macroscopic areas

    PubMed Central

    Tebbe, Moritz; Mayer, Martin; Glatz, Bernhard A.; Hanske, Christoph; Probst, Patrick T.; Müller, Mareen B.; Karg, Matthias; Chanana, Munish; König, Tobias A. F.; Kuttner, Christian

    2015-01-01

    We demonstrate the large-scale organisation of anisotropic nanoparticles into linear assemblies displaying optical anisotropy on macroscopic areas. Monodisperse gold nanorods with a hydrophilic protein shell are arranged by dip-coating on wrinkled surfaces and subsequently transferred to indium tin oxide (ITO) substrates by capillary transfer printing. We elucidate how tuning the wrinkle amplitude enables us to precisely adjust the assembly morphology and fabricate single, double and triple nanorod lines. For the single lines, we quantify the order parameter of the assemblies as well as interparticle distances from scanning electron microscopy (SEM) images. We find an order parameter of 0.97 and a mean interparticle gap size of 7 nm. This combination of close to perfect uni-axial alignment and close-packing gives rise to pronounced macroscopic anisotropic optical properties due to strong plasmonic coupling. We characterise the optical response of the assemblies on ITO-coated glass via UV/vis/NIR spectroscopy and determine an optical order parameter of 0.91. The assemblies are thus plasmonic metamaterials, as their periodicity and building block sizes are well below the optical wavelength. The presented approach does not rely on lithographic patterning and provides access to functional materials, which could have applications in subwavelength waveguiding, photovoltaics, and for large-area metamaterial fabrication. PMID:25951174

  19. Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu₂O nanorod films: the distinct role of Ag NPs in the visible light and UV region.

    PubMed

    Ren, Shoutian; Zhao, Guoliang; Wang, Yingying; Wang, Benyang; Wang, Qiang

    2015-03-27

    Sandwiched ZnO@Ag@Cu2O nanorod films were synthesized by successive electrodeposition, magnetron sputtering and the second electrodeposition. The as-synthesized composites were characterized by x-ray diffraction patterns, field emission scanning electron microscopy, low- and high-resolution transmission electron microscopy and a UV-vis spectrophotometer. Their photocatalytic performance was estimated by the degradation of a methyl orange solution under UV or visible-light irradiation, respectively. In the visible region, due to localized surface plasmon resonance absorption of Ag NPs, ZnO@Ag@Cu2O showed a significantly enhanced photocatalytic performance. The enhancement factor of Ag NPs on the catalytic performance of ZnO@Ag@Cu2O was estimated as a function of the Cu2O deposition time, and the corresponding enhancement mechanism was also evaluated by the monochromatic photocatalytic experiment and discrete dipole approximation simulation. In the UV region, due to the formation of a Schottky junction (e.g. Ag/ZnO, Ag/Cu2O), a limited enhanced photocatalytic performance was also realized for ZnO@Ag@Cu2O photocatalysts.

  20. W 18O 49 nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst

    NASA Astrophysics Data System (ADS)

    Sun, Shibin; Chang, Xueting; Dong, Lihua; Zhang, Yidong; Li, Zhenjiang; Qiu, Yanyan

    2011-08-01

    A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W 18O 49 nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W 18O 49 NRs sensors exhibit superior reducing gas-sensing properties to those of bare W 18O 49 NRs, and they are highly selective and sensitive to NH 3, acetone, and H 2S with short response and recovery times. The Ag/AgCl/W 18O 49 NRs photocatlysts also possess higher photocatalytic performance than bare W 18O 49 NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W 18O 49 NRs composite were proposed.

  1. Plasmonic Ag nanostructures on thin substrates for enhanced energy harvesting

    NASA Astrophysics Data System (ADS)

    Osgood, R. M.; Giardini, S. A.; Carlson, J. B.; Gear, C.; Diest, K.; Rothschild, M.; Fernandes, G. E.; Xu, J.; Kooi, S.; Periasamy, P.; O'Hayre, R.; Parilla, P.; Berry, J.; Ginley, D.

    2013-09-01

    Nanoparticles and nanostructures with plasmonic resonances are currently being employed to enhance the efficiency of solar cells. Ag stripe arrays have been shown theoretically to enhance the short-circuit current of thin silicon layers. Such Ag stripes are combined with 200 nm long and 60 nm wide "teeth", which act as nanoantennas, and form vertical rectifying metal-insulator-metal (MIM) nanostructures on metallic substrates coated with thin oxides, such as Nb/NbOx films. We characterize experimentally and theoretically the visible and near-infrared spectra of these "stripeteeth" arrays, which act as microantenna arrays for energy harvesting and detection, on silicon substrates. Modeling the stripe-teeth arrays predicts a substantial net a.c. voltage across the MIM diode, even when the stripe-teeth microrectenna arrays are illuminated at normal incidence.

  2. Study of NBE emission enhancement with an absence of DL emission from ZnO nanorods through controlled growth on ultra-thin Ag films

    NASA Astrophysics Data System (ADS)

    Pal, Anil Kumar; Bharathi Mohan, D.

    2015-04-01

    ZnO nanorods (NRs) exhibiting enhanced ultra-violet near band edge (UV-NBE) emission without a broad visible deep level (DL) emission has been investigated on catalytically grown ZnO/Ag hybrid nanostructure. The hybrid structure is fabricated in two steps, (1) Thermal evaporation of ultra-thin catalytic layer of Ag with mass thickness ∼1 nm on glass substrate followed by annealing process from 50 to 250 °C and (2) vertical growth of ZnO NRs by hydrothermal reaction process on all Ag films. The surface properties of Ag layer such as particle size, inter-particle distance, particles number density, surface roughness and surface coverage area were altered through annealing process. Annealing at 100 °C modifies Ag from quasi-amorphous to nanocrystalline leading to high density growth and high aspect ratio of ZnO NRs where as a random and less density growth was realized at 250 °C due to increase of both particle size and inter-particles distance in Ag layer. X-ray diffraction reveals a predominant growth of (0 0 2) plane at 100 °C confirming the formation of wurtzite phase of ZnO NRs with highest texture coefficient of 2.35. Raman spectra verify the chemical structure of ZnO with very good crystallinity. Absorption spectra demonstrates the overlapping of surface plasmon resonance (SPR) and exciton bands up to 200 °C while the excitonic absorption band is resolved at above 200 °C because of the red shift in SPR due to change in surface properties of Ag layer. At 250 °C, a broad optical absorption spectra from 300 to 800 nm attributed to the dominant properties of SPR and exciton. Besides acting as a catalyst, Ag interlayer enhances the NBE emission at above 200 °C through electrons transfer from Ag to ZnO which is quite possible because of the direct contact between them, explained by giving energy band diagram. The morphology is such that there is an increase in passage for light interaction due to less density and random growth of ZnO NRs leading to increase

  3. Enhancing the electric fields around the nanorods by using metal grooves

    NASA Astrophysics Data System (ADS)

    Zhao, YaNan; Qin, Yan; Cao, Wei; Zhang, ZhongYue

    2012-10-01

    To enhance electric fields around nanorods, a Ag nanorod-groove system is presented and its electric field distribution is studied using the finite difference time domain method. Since the superposition of the electric fields of the split multi-beam of light works as excitation for electron oscillations in the nanorods, enhanced electric fields occur around the nanorods. In addition, the effects of topological parameters of the nanorod-groove system, such as the oblique angle of the groove, displacement of the nanorod to the bottom of the groove, and separation between the nanorods on electric field distributions are also studied. These results may be helpful for designing substrates to obtain larger electric fields around nanorods.

  4. Photocatalytic degradation of lignin on synthesized Ag-AgCl/ZnO nanorods under solar light and preliminary trials for methane fermentation.

    PubMed

    Li, Huifang; Lei, Zhongfang; Liu, Chunguang; Zhang, Zhenya; Lu, Baowang

    2015-01-01

    New photocatalysts, Ag-AgCl/ZnO nanorods, were successfully synthesized in this study by using microwave assisted chemical precipitation and deposition-precipitation-photoreduction methods. The optimal preparation condition was determined as pH 9 in distilled water and 40min for UV light photoreduction of Ag (i.e. Ag40-AgCl/ZnO) by degradation of methyl orange. This work investigated the feasibility of using Ag40-AgCl/ZnO to degrade lignin under natural solar light and then subsequent methane production with influencing factors like solution pH, dosage of catalyst and initial lignin concentration being considered. OH radicals were found to play the most important role in the photocatalytic process, and the new prepared catalyst possessed stable photocatalytic activity after 7 cycles' utilization. During the subsequent biogasification, the degraded lignin obtained from 120min photocatalysis yielded 184ml methane and 325ml biogas for per gram of removed total organic carbon, increased by 10.9% and 23.1%, respectively compared to the control.

  5. Epitaxial Overgrowth of Gallium Nitride Nano-Rods on Silicon (111) Substrates by RF-Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Ku, Jui-Tai; Yang, Tsung-Hsi; Chang, Jet-Rung; Wong, Yuen-Yee; Chou, Wu-Ching; Chang, Chun-Yen; Chen, Chiang-Yao

    2010-04-01

    Strain-free gallium nitride (GaN) overgrowth on GaN nano-rods is realized by RF-plasma assisted molecular beam epitaxy (RF-MBE) on silicon (Si) substrate. The strain-free condition was identified by the strong free A exciton (FXA) photoluminescence (PL) peak at 3.478 eV and the E2 high phonon Raman shift of 567 cm-1. It is clearly demonstrated that the critical diameter of GaN nano-rods is around 80 nm for the overgrowth of strain-free GaN. The blue-shift of PL peak energy and phonon Raman energy with decreasing the diameter of nano-rod result from the strain relaxation of overgrowth GaN.

  6. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    PubMed

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation.

  7. Hexagonal core-shell and alloy Au/Ag nanodisks on ZnO nanorods and their optical enhancement effect

    NASA Astrophysics Data System (ADS)

    Zhang, Junming; Lai, Boya; Chen, Zuxin; Chu, Sheng; Chu, Guang; Peng, Rufang

    2014-05-01

    Au and Ag hybrid hexagonal nanodisks were synthesized on ZnO nanorods' (0002) surface via a new two-step deposition-annealing method. The structural, compositional, as well as optical investigations were carried out systematically to find out the nanodisks' formation mechanism and optical enhancement effect. It was shown that the core-shell Au/Ag nanodisk can be formed under rapid annealing temperature of 500°C, while Au/Ag alloy nanodisks are formed if higher temperatures (>550°C) are applied. The optical effect from these nanodisks was studied through photoluminescence and absorption spectroscopy. It was found that the carrier-plasmon coupling together and carrier transfer between metal and ZnO contribute to the emission enhancement. Furthermore, the results suggest that the composition of nanodisk on the vicinity of metal/ZnO interface plays an important role in terms of the enhancement factors.

  8. Formation of one-dimensional Ag-Au solid solution colloids with Au nanorods as seeds, their alloying mechanisms, and surface plasmon resonances

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Tan, Yiwei

    2012-12-01

    In this work, one dimensional (1D) Ag-Au solid solution nanoalloys were synthesized by rapidly diffusing Ag into the preformed Au nanorod (AuNR) seeds at ambient temperature in aqueous solution. By varying the molar ratio of AgCl/AuNR (in gold atoms), two kinds of 1D Ag-Au alloy nanostructures with a narrow size distribution--AgAu nanowires and Ag33Au67 nanorods--could be obtained in high yields when NaCl and polyvinylpyrrolidone (PVP) were used as an additive and capping reagent, respectively. Based on HRTEM imaging combined with a series of control experiments, it is conceivable that vacancy/defect-motivated interdiffusion of Ag and Au atoms coupled with oxidative etching is a crucial stage in the mechanism responsible for this room-temperature alloying process, and the subsequent conjugation of the fused Ag-Au alloyed nanostructures is associated with the formation of the AgAu nanowires. The resulting 1D Ag-Au nanoalloys form stable colloidal dispersions and show unique localized surface plasmon resonance (LSPR) peaks in the ensemble extinction spectra.In this work, one dimensional (1D) Ag-Au solid solution nanoalloys were synthesized by rapidly diffusing Ag into the preformed Au nanorod (AuNR) seeds at ambient temperature in aqueous solution. By varying the molar ratio of AgCl/AuNR (in gold atoms), two kinds of 1D Ag-Au alloy nanostructures with a narrow size distribution--AgAu nanowires and Ag33Au67 nanorods--could be obtained in high yields when NaCl and polyvinylpyrrolidone (PVP) were used as an additive and capping reagent, respectively. Based on HRTEM imaging combined with a series of control experiments, it is conceivable that vacancy/defect-motivated interdiffusion of Ag and Au atoms coupled with oxidative etching is a crucial stage in the mechanism responsible for this room-temperature alloying process, and the subsequent conjugation of the fused Ag-Au alloyed nanostructures is associated with the formation of the AgAu nanowires. The resulting 1D Ag

  9. Synthesis of Ag or Pt nanoparticle-deposited TiO2 nanorods for the highly efficient photoreduction of CO2 to CH4

    NASA Astrophysics Data System (ADS)

    Wang, Qingli; Dong, Peimei; Huang, Zhengfeng; Zhang, Xiwen

    2015-10-01

    Ag or Pt-deposited TiO2 nanocomposites were prepared by a simple method, in which oriented TiO2 nanorods were synthesized by a hydrothermal method and a noble metal (Ag or Pt) was deposited on TiO2 by photocatalytic reduction under UV irradiation. The oriented TiO2 nanorods with Ag or Pt nanoparticles (<20 nm) exhibited high CO2 photoreduction efficiency, with CH4 yield rates up to 16.0 ppm/g h and 10.8 ppm/g h, respectively, considerably higher than that of the pure TiO2 nanorods (4.2 ppm/g h). The improvement in the CH4 yield was attributed to the formation of a Schottky barrier and surface plasmon resonance.

  10. Structural and optical investigations on seed layer assisted hydrothermally grown ZnO nanorods on flat and textured substrates

    NASA Astrophysics Data System (ADS)

    Rayerfrancis, Arokiyadoss; Balaji Bhargav, P.; Ahmed, Nafis; Balaji, C.; Dhara, Sandip

    2016-12-01

    In this article we report the synthesis of vertically aligned ZnO nanorods on plain as well as textured fluorine doped tin oxide (FTO) coated glass substrate using hydrothermal method. Prior to hydrothermal method, AZO seed layer of thickness 5, 10 and 15 nm were deposited on the chosen substrates by DC magnetron sputtering. The as-grown nanorods were annealed at 450 °C for 3 h to improve the crystallinity. Morphology and structure of the nanorods was observed by field emission scanning electron microscopy. The formation of wurtzite structure was confirmed through x-ray diffraction studies. The optical mode of ZnO, E2 (high) at 434 cm-1 present in the samples was confirmed by Raman spectroscopy. The seed layer assisted growth of ZnO nanorods were defect free, which is confirmed from the photoluminescence spectra, and the intensity of band to band emission is much greater than the emission from the defects at the deep level.

  11. Ag modified LaMnO3 nanorods-reduced graphene oxide composite applied in the photocatalytic discoloration of direct green

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Liu, Yuanyuan; Men, Jie; Zhang, Liang; Huang, Hao

    2016-11-01

    A new nanostructure photocatalyst, incorporating Ag and reduced graphene oxide (rGO) with LaMnO3-nanorods have been fabricated via two-step synthetic approaches by using Cetyltrimethyl Ammonium Bromide (CTAB) as a template via a simple hydrothermal reaction and the decoration of Ag nanoparticles is through a traditional silver mirror reaction. The characteristic of the materials are examined by XRD, TEM, FE-SEM and XPS. The results confirm that the LaMnO3 nanorods are perovskite phase and uniform dispersed on the surface of rGO. The Ag nanoparticles is deposited the surface of LaMnO3-nanorods with its metal form. The Ag/LaMnO3-nanorods/rGO exhibit an excellent performance in the photo-degradation of Direct Green BE under the UV-vis irradiation. As an electron capture agent, metal Ag can capture the e- that transported along the LMO-NR, thereby leading to effective separation of the e--h+ pairs and accelerate the transfer of surface charge, which is further demonstrated by the Photoluminescence (PL) spectra, cyclic voltammetry (CV) and AC impedance spectra.

  12. Formation of one-dimensional Ag-Au solid solution colloids with Au nanorods as seeds, their alloying mechanisms, and surface plasmon resonances.

    PubMed

    Guo, Tao; Tan, Yiwei

    2013-01-21

    In this work, one dimensional (1D) Ag-Au solid solution nanoalloys were synthesized by rapidly diffusing Ag into the preformed Au nanorod (AuNR) seeds at ambient temperature in aqueous solution. By varying the molar ratio of AgCl/AuNR (in gold atoms), two kinds of 1D Ag-Au alloy nanostructures with a narrow size distribution--AgAu nanowires and Ag(33)Au(67) nanorods--could be obtained in high yields when NaCl and polyvinylpyrrolidone (PVP) were used as an additive and capping reagent, respectively. Based on HRTEM imaging combined with a series of control experiments, it is conceivable that vacancy/defect-motivated interdiffusion of Ag and Au atoms coupled with oxidative etching is a crucial stage in the mechanism responsible for this room-temperature alloying process, and the subsequent conjugation of the fused Ag-Au alloyed nanostructures is associated with the formation of the AgAu nanowires. The resulting 1D Ag-Au nanoalloys form stable colloidal dispersions and show unique localized surface plasmon resonance (LSPR) peaks in the ensemble extinction spectra.

  13. W{sub 18}O{sub 49} nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst

    SciTech Connect

    Sun Shibin; Chang Xueting; Dong Lihua; Zhang Yidong; Li Zhenjiang; Qiu Yanyan

    2011-08-15

    A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W{sub 18}O{sub 49} nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W{sub 18}O{sub 49} NRs sensors exhibit superior reducing gas-sensing properties to those of bare W{sub 18}O{sub 49} NRs, and they are highly selective and sensitive to NH{sub 3}, acetone, and H{sub 2}S with short response and recovery times. The Ag/AgCl/W{sub 18}O{sub 49} NRs photocatlysts also possess higher photocatalytic performance than bare W{sub 18}O{sub 49} NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W{sub 18}O{sub 49} NRs composite were proposed. - Graphical Abstract: The Ag/AgCl nanoparticles adhered well to the W{sub 18}O{sub 49} nanorod. The Ag could act as transfer center of the photoexcited carriers, prohibiting their recombinations in both W{sub 18}O{sub 49} and AgCl. Highlights: > Ag/AgCl/W{sub 18}O{sub 49} NRs were successfully obtained via a clean photochemical route. > The Ag/AgCl nanoparticles decorated on the W{sub 18}O{sub 49} NRs possessed cladding structure. > The Ag/AgCl/W{sub 18}O{sub 49} NRs exhibited excellent gas-sensing and photocatalytic properties.

  14. Ag-doped ZnO nanorods coated metal wire meshes as hierarchical photocatalysts with high visible-light driven photoactivity and photostability.

    PubMed

    Hsu, Mu-Hsiang; Chang, Chi-Jung

    2014-08-15

    Ag-doped ZnO nanorods were grown on stainless-steel wire meshes to fabricate the hierarchical photocatalysts with excellent visible light driven activity and anti-photocorrosion property. Effects of Ag doping and the surface structure on the surface chemistry, surface wetting properties, absorption band shift, photoelectrochemical response, and photocatalytic decolorization properties of the hierarchical photocatalysts, together with the stability of photocatalytic activity for recycled photocatalysts were investigated. Ag doping leads to red-shift in the absorption band and increased visible light absorption. Nanorods coated wire meshes hierarchical structure not only increases the surface area of photocatalysts but also makes the surface hydrophilic. The photocatalytic activity enhancement and reduced photocorrosion can be achieved because of increased surface area, enhanced hydrophilicity, and the interaction between the metal wire/ZnO and Ag/ZnO heterostructure interface which can improve the charge separation of photogenerated charge carriers.

  15. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin B 2 : Catalytic Polymerisation of Aniline and Pyrrole

    DOE PAGES

    Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2008-01-01

    Formore » the first time, we report green chemistry approach using vitamin B 2 in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires, and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride ( NaBH 4 ) or hydroxylamine hydrochloride and any special capping or dispersing agent. Vitamin B 2 was used as reducing agent as well as capping agent due to its high-water solubility, biodegradability, and low-toxicity compared with other reducing agents. The average particle size of nanoprticle was found to be Ag (average size 6.1 ± 0.1 nm) and Pd (average size 4.1 ± 0.1 nm) nanoparticles in ethylene glycol and Ag (average size 5.9 ± 0.1 nm, and average size 6.1 ± 0.1) nanoparticles in acetic acid and NMP, respectively. The formation of noble multiple shape nanostructures and their self assembly were dependent on the solvent employed for the preparation. When water was used as solvent media, Ag and Pd nanoparticles started to self-assemble into rod-like structures and in isopropanol Ag and Pd nanoparticles yielded wire-like structures with a thickness in the range of 10 to 20 nm and several hundred microns in length. In acetone and acetonitrile medium, the Ag and Pd nanoparticles are self-assembled into a regular pattern making nanorod structures with thicknesses ranging from 100 to 200 nm and lengths of a few microns. The so-synthesized nanostructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and UV spectroscopy. The ensuing Ag and Pd nanoparticles catalyzed the reactions of aniline and pyrrole to generate polyaniline and polypyrrole nanofibers and may find various technological and biological applications. This single-step greener approach is general and can be extended to other noble metals and transition metal oxides.« less

  16. Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes-gold nanorods hybrids.

    PubMed

    Caires, A J; Vaz, R P; Fantini, C; Ladeira, L O

    2015-10-01

    We report a simple and easy formation of hybrids between multi-wall carbon nanotubes and gold nanorods by one-pot in situ photochemical synthesis. Measurements of surface-enhanced Raman scattering (SERS) through the effect "coffee ring" in visible and near infrared (NIR) show high sensitivity with detection of nanomolar concentrations of aromatic dyes. The formation of nanocomposites between carbon nanotubes and gold nanorods without chemical binders simplifies the preparation. Photochemical synthesis is an advance over the techniques previously published.

  17. Enhanced photoresponse of conformal TiO{sub 2}/Ag nanorod array-based Schottky photodiodes fabricated via successive glancing angle and atomic layer deposition

    SciTech Connect

    Haider, Ali; Biyikli, Necmi; Cansizoglu, Hilal; Cansizoglu, Mehmet Fatih; Karabacak, Tansel; Okyay, Ali Kemal

    2015-01-01

    In this study, the authors demonstrate a proof of concept nanostructured photodiode fabrication method via successive glancing angle deposition (GLAD) and atomic layer deposition (ALD). The fabricated metal-semiconductor nanorod (NR) arrays offer enhanced photoresponse compared to conventional planar thin-film counterparts. Silver (Ag) metallic NR arrays were deposited on Ag-film/Si templates by utilizing GLAD. Subsequently, titanium dioxide (TiO{sub 2}) was deposited conformally on Ag NRs via ALD. Scanning electron microscopy studies confirmed the successful formation of vertically aligned Ag NRs deposited via GLAD and conformal deposition of TiO{sub 2} on Ag NRs via ALD. Following the growth of TiO{sub 2} on Ag NRs, aluminum metallic top contacts were formed to complete the fabrication of NR-based Schottky photodiodes. Nanostructured devices exhibited a photo response enhancement factor of 1.49 × 10{sup 2} under a reverse bias of 3 V.

  18. Preparation of SiO2@ Au nanorod array as novel surface enhanced Raman substrate for trace pollutants detection

    NASA Astrophysics Data System (ADS)

    Hou, Meng-Jing; Zhang, Xian; Cui, Xiao-Yang; Liu, Can; Li, Zheng-Cao; Zhang, Zheng-Jun

    2015-03-01

    An effective surface enhanced Raman scattering (SERS) substrate is designed and fabricated by synthesis of SiO2 nanorods array via glancing angle deposition, followed by coating Au nanoparticles onto SiO2 surface in order to create numerous “hot spots”. The detecting sensitivity of such substrate could be optimized by simply adjusting the deposition time of Au. Thus, it can be used for detection of Rhodamine 6G at concentration as low as 10-9 M. Furthermore, our SERS substrate is applied to detect 5 μg/g polychlorinated biphenyls in soil sample, which proves its potential for trace environmental pollutants detection. Project supported by the National Basic Research Program of China (Grant No. 2013CB934301), the National Natural Science Foundation of China (Grant No. 50931002), the Research Project of Chinese Ministry of Education (Grant No. 113007A), and the Initiative Scientific Research Program of Tsinghua University, China

  19. Substrate-oriented nanorod scaffolds in polymer-fullerene bulk heterojunction solar cells.

    PubMed

    Ogawa, Yuta; White, Matthew S; Sun, Lina; Scharber, Markus C; Sariciftci, Niyazi Serdar; Yoshida, Tsukasa

    2014-04-14

    The use of a p-type inorganic semiconductor to form a nanorod scaffold within a polymer-fullerene bulk heterojunction solar cell is reported. The performance of this cell is compared to those made of the commonly used n-type scaffold of ZnO, which has been reported many times in the literature. The scaffold is designed to improve charge-carrier collection by increased mobility in thicker samples. Observations show that generally the device performance shows a negative correlation to nanorod length. By using CuSCN as a p-type inorganic scaffold, a very similar trend is observed.

  20. In situ fabrication of AgI films on various substrates

    SciTech Connect

    Zheng, Z. Liu, A.R.; Wang, S.M.; Huang, B.J.; Ma, X.M.; Zhao, H.X.; Li, D.P.; Zhang, L.Z.

    2008-08-04

    A facile solution-phase chemical route is developed to directly construct silver iodide (AgI) films/crystals on various substrates including silver foil, silicon wafer and glass, etc. The resulting AgI films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The AgI films with different morphologies can be obtained by controlling the reaction parameters. This method is a simple and fast way for in situ deposition of AgI crystals/films on different substrates. These films may be applied in chemical sensing systems and solid-state batteries as solid electrolytes.

  1. Transparent Conductive AGZO/Ag/AGZO Multilayers on PET Substrate by Roll-to-Roll Sputtering.

    PubMed

    Kim, Taehoon; Park, Kwangwon; Kim, Jongsu

    2016-02-01

    Indium-free Al and Ga-codoped ZnO (AGZO) multilayer films with nanoscale Ag interlayer were deposited by dual target roll-to-roll RF for AGZO and DC sputtering systems for Ag at room temperature for a large scale. The thicknesses of AGZO/Ag/AGZO multilayer were optimized by changing the roll speed: 0.15/1.1/0.15 m/min for AGZO/Ag/AGZO multilayers, respectively. The optimum thicknesses of AGZO/Ag/AGZO multilayer are 9.21, 8.32 and 8.04 nm, respectively. Optimized AGZO/Ag/AGZO multilayer films showed an excellent transparency (84% at 550 nm) and a low sheet resistance (9.2 omega/sq.) on PET substrates for opto-electronic applications. The effects of nanoscale Ag interlayer on optical and electrical properties of AGZO/Ag/AGZO multilayer films were discussed.

  2. Fabrication of pure and Ag-doped TiO2 nanorods and study of the lattice strain and the activation energy of the crystalline phases

    NASA Astrophysics Data System (ADS)

    Riazian, Mehran; Rad, Shima Daliri; Azinabadi, Reza Ramezani

    2013-02-01

    TiO2 nanorods can be used as dye-sensitized solar cells and as various sensors and photocatalysts. These nanorods are synthesized by using a thermal corrosion process in a NaOH solution at 200 °C with TiO2 powder as a source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti8O15 phases and the synthesis of TiO2 nanorods by using the sol-gel method and alkaline corrosion to incorporate silver and silver-oxide dopants are reported. The morphologies and the crystalline structures of the TiO2 nanorods are characterized using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), tunneling electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The obtained results show an aggregation structure at high calcining temperatures with spherical particles and with Ti-O-Ti, Ti-O and Ag-O bonds. The effects of the chemical composition and the calcining temperature on the surface topography, lattice strain and phase crystallization are studied. The activation energy (E) of nanoparticle formation in a pure state during thermal treatment is calculated.

  3. Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes

    SciTech Connect

    Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier; Fang, Ning

    2015-04-07

    In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of the hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.

  4. Dynamically tuning emission band of CdSe/ZnS quantum dots assembled on Ag nanorod array: plasmon-enhanced Stark shift.

    PubMed

    Peng, Xiao-Niu; Zhou, Zhang-Kai; Zhang, Wei; Hao, Zhong-Hua

    2011-11-21

    We demonstrate tuning emission band of CdSe/ZnS semiconductor quantum dots (SQDs) closely-packed in the proximity of Ag nanorod array by dynamically adjusting exciton-plasmon interaction. Large red-shift is observed in two-photon luminescence (TPL) spectra of the SQDs when the longitudinal surface plasmon resonance (LSPR) of Ag nanorod array is adjusted to close to excitation laser wavelength, and the spectral red-shift of TPL reaches as large as 101 meV by increasing excitation power, which is slightly larger than full width at half-maximum of emission spectrum of the SQDs. The observed LSPR-dependent spectral shifting behaviors are explained by a theoretical model of plasmon-enhanced quantum-confined Stark effect. These observations could find the applications in dynamical information processing in active plasmonic and photonic nanodevices.

  5. Highly reproducible and uniform SERS substrates based on Ag nanoparticles with optimized size and gap

    NASA Astrophysics Data System (ADS)

    Bai, Yiming; Yan, Lingling; Wang, Jun; Su, Lin; Chen, Nuofu; Tan, Zhanao

    2017-02-01

    It's quite necessary to fabricate reproducible and uniform surface-enhanced Raman scattering (SERS) composite substrate with high enhancement factor simply. Therefore, in this work, in order to obtain the SERS substrates with optimized size and gap, Ag films with different thickness deposited by magnetron sputtering and following annealing are performed. The results both elucidate the function relationship between the size, gap of nanoparticles and the thickness of Ag films, and ascertain the optimized parameters for silver nanoparticles on the basis of finite-difference time-domain simulation, the SERS signal using graphene and Rhodamine 6G (R6G) as probe molecules for Ag-NPs/Si substrates. Moreover, our findings highlight the Ag NPs with optimized size and gap as SERS substrates present high reproducibility and uniformity.

  6. Plasmon enhanced CdS-quantum dot sensitized solar cell using ZnO nanorods array deposited with Ag nanoparticles as photoanode

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Ahmadi, V.; Yousefi rad, M.; Kohnehpoushi, S.

    2015-04-01

    CdS-quantum dot sensitized solar cell using ZnO nanorods (ZnO NRs) array deposited with Ag nanoparticles (Ag NPs) as photoanode was fabricated. Light absorption effect of Ag NPs on improvement of the cell performance was investigated. Performance improvement of metal nanoparticles (MNPs) was controlled by the structure design and architecture. Different decorations and densities of Ag NPs were utilized on the photoanode. Results showed that using 5% Ag NPs in the photoanode results in the increased efficiency, fill factor, and circuit current density from 0.28% to 0.60%, 0.22 to 0.29, and 2.18 mA/cm2 to 3.25 mA/cm2, respectively. Also, incident photon-to-current efficiencies (IPCE) results showed that cell performance improvement is related to enhanced absorption in the photoanode, which is because of the surface plasmonic resonance and light scattering of Ag NPs in the photoanode. Measurements of electrochemical impedance spectroscopy revealed that hole transfer kinetics increases with introduction of Ag NPs into photoanode. Also, it is shown that chemical capacitance increases with introduction of Ag NPs. Such increase can be attributed to the surface palsmonic resonance of Ag NPs which leads to absorption of more light in the photoanode and generation of more photoelectron in the photoanode.

  7. Growth and characterization of rutile TiO2 nanorods on various substrates with fabricated fast-response metal-semiconductor-metal UV detector based on Si substrate

    NASA Astrophysics Data System (ADS)

    Selman, Abbas M.; Hassan, Z.

    2015-07-01

    Rutile-phase titanium dioxide nanorods (NRs) were synthesized successfully on p-type silicon (Si) (1 1 1), c-plane sapphire (Al2O3), glass coated with fluorine-doped tin oxide (FTO), glass, and quartz substrates via chemical bath deposition method. All substrates were seeded with a TiO2 seed layer synthesized with a radio frequency reactive magnetron sputtering system prior to NRs growth. The effect of substrate type on structural, morphological, and optical properties of rutile TiO2 NRs was studied. X-ray diffraction, Raman spectroscopy, and field-emission scanning electron microscopy analyses showed the tetragonal rutile structure of the synthesized TiO2 NRs. Optical properties were examined with photoluminescence (PL) spectroscopy of the grown rutile NRs on all substrates, with the spectra exhibiting one strong ultraviolet emission peak intensity compared with broad visible peak. The optimal sample of rutile NRs was grown on Si substrate. Thus, a fast-response metal-semiconductor-metal ultraviolet (UV) detector was fabricated. Upon exposure to 365 nm light (2.3 mW/cm2) at 5 V bias, the device displays 2.62 × 10-5 A photocurrent, and the response and recovery times are calculated as 18.5 and 19.1 ms, respectively. These results demonstrate that the fabricated high-quality photodiode is a promising candidate as a low-cost UV photodetector for commercially integrated photoelectronic applications.

  8. Silver nanorod structures for metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Badshah, Mohsin Ali; Lu, Xun; Ju, Jonghyun; Kim, Seok-min

    2016-09-01

    Fluorescence based detection is a commonly used methodology in biotechnology and medical diagnostics. Metalenhanced fluorescence (MEF) becomes a promising strategy to improve the sensitivity of fluorescence detection, where fluorophores coupling with surface plasmon on metallic structures results fluorescence enhancement. To apply the MEF methodology in real medical diagnostics, especially for protein or DNA microarray detection, a large area (e.g., slide glass, 75 × 25 mm2) with uniform metallic nanostructures is required. In this study, we fabricated a large area MEF substrates using oblique angle deposition (OAD), which is a single step, inexpensive large area fabrication method of nanostructures. To optimize the morphological effect, Ag-nanorods with various lengths were fabricated on the conventional slide glass substrates. Streptavidin-Cy5 dissolved in buffer solution with different concentration (100ng/ml 100μg/ml) were applied to MEF substrates using a pipette, and the fluorescence signals were measured. The enhancement factor increased with the increase in length of Ag-nanorods and maximum enhancement factor 91x was obtained from Ag-nanorods 750nm length compare to bare glass due to higher surface Plasmon effect.

  9. Ultra-Low Level Detection of L-Histidine Using Solution-Processed ZnO Nanorod on Flexible Substrate.

    PubMed

    Sasmal, Milan; Maiti, Tapas Kumar; Bhattacharyya, Tarun Kanti

    2015-09-01

    This work demonstrates a novel label free and sensitive approach for the detection of L-histidine. This is a simple and reliable method for ultra-low level detection of L-histidine. All solution processed synthesizing technique was utilized to develop such type of detection scheme. Silicon substrate was replaced by normal transparent sheet to make it more facile and cost-effective detection technique. Fabricated device for L-histidine detection works upon the variation of current through the ZnO nanorod with L-histidine concentration. Operation principle strongly depends upon the electron charge transfer between metal cation and L-histidine inside the chelating complex. Morphological, structural and optical characterization of solution processed synthesized ZnO nanorod (ZnO NR) was carried out prior to sensor device fabrication. Our sensor device exhibits the sensitivity around 0.86 nA/fM and lower limit of detection (LOD) ∼ 0.1 fM(S/N=3).

  10. Thin Ag films. Influence of substrate and postdeposition treatment on morphology and optical properties

    SciTech Connect

    Roark, S.E.; Rowlen, K.L. )

    1994-01-15

    In an effort to understand the experimental parameters that influence thin metal film morphology and optical characteristics, thin Ag films are examined with a combination of atomic force microscopy (AFM), optical absorption, and surface-enhanced Raman spectroscopy (SERS). The morphology of 5 nm of Ag vapor deposited onto glass, derivatized glass, Formvar-coated glass, and mica is explored. The substrate is found to have a large effect on both Ag film surface morphology and optical properties. In addition, micrographs of a Ag film before and after exposure to solvent suggest solvent-induced morphological changes. 32 refs., 8 figs., 5 tabs.

  11. The role of seeding in the morphology and wettability of ZnO nanorods films on different substrates

    NASA Astrophysics Data System (ADS)

    Rodríguez, Juan; Onna, Diego; Sánchez, Luis; Marchi, M. Claudia; Candal, Roberto; Ponce, Silvia; Bilmes, Sara A.

    2013-08-01

    Spray pyrolysis (SP) and spray-gel (SG) techniques were used to deposit ZnO seeds on Fluor doped tin oxide glasses (FTO), heated at 350 °C or 130 °C, and PET heated at 90 °C. The effect of seeding on the morphology and wettability of ZnO nanorods (NRs) films grown by wet chemical methods was analyzed. The morphology and wettability of ZnO NRs films depend on the seeding process. SP seeds formed from zinc acetate dissolved in water ethanol mixtures yield vertically aligned ZnO NRs, whose diameters and dispersion size are determined by the ethanol/water ratio in the precursor solution. SG seeds formed from a methanol ZnO sol produce a ring patterned distribution on the FTO substrate. The drying of ZnO sol drops impinging on the substrate produces high density of seeds along a ring yielding textured films with NRs vertically oriented on the rings and multi-oriented outside them. This effect was not observed when ZnO NRs grown onto the ZnO/PET substrate, however rod diameter is related with the density of seeds. This way to control the density and diameter of NRs deposited onto a substrate modify the wettability and opens new possibilities for the design of tailored nanomaterials for photochemical applications. Both type of NRs films showed a strong luminescence emission in the UV and in the blue, associated with surface and intrinsic defects.

  12. Reproducible and recyclable SERS substrates: Flower-like Ag structures with concave surfaces formed by electrodeposition

    NASA Astrophysics Data System (ADS)

    Bian, Juncao; Shu, Shiwei; Li, Jianfu; Huang, Chao; Li, Yang Yang; Zhang, Rui-Qin

    2015-04-01

    Direct synthesis of three-dimensional Ag structures on solid substrates for the purposes of producing reproducible and recyclable surface-enhanced Raman scattering (SERS) applications remains challenging. In this work, flower-like Ag structures with concave surfaces (FACS) were successfully electrodeposited onto ITO glass using the double-potentiostatic method. The FACS, with an enhancement factor of the order of 108, exhibited a SERS signal intensity 3.3 times stronger than that measured from Ag nanostructures without concave surfaces. A cleaning procedure involving lengthy immersion of the sample in ethanol and KNO3 was proposed to recycle the substrate and confirmed by using rhodamine 6G, adenine, and 4-aminothiophenol as target molecules. The findings can help to advance the practical applications of Ag nanostructure-based SERS substrates.

  13. Photoelectrochemical characteristics of TiO2 nanorod arrays grown on fluorine doped tin oxide substrates by the facile seeding layer assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Sui, Mei-rong; Han, Cui-ping; Gu, Xiu-quan; Wang, Yong; Tang, Lu; Tang, Hui

    2016-05-01

    TiO2 nanorod arrays (NRAs) were prepared on fluorine doped tin oxide (FTO) substrates by a facile two-step hydrothermal method. The nanorods were selectively grown on the FTO regions which were covered with TiO2 seeding layer. It took 5 h to obtain the compact arrays with the nanorod length of ~2 μm and diameter of ~50 nm. The photoelectrochemical (PEC) properties of TiO2 NRAs are also investigated. It is demonstrated that the TiO2 NRAs indicate the good photoelectric conversion ability with an efficiency of 0.22% at a full-wavelength irradiation. A photocurrent density of 0.21 mA/cm2 is observed at 0.7 V versus the saturated calomel electrode (SCE). More evidences suggest that the charge transferring resistance is lowered at an irradiation, while the flat-band potential ( V fb) is shifted towards the positive side.

  14. Preparation and Photovoltaic Properties of Dye Sensitized Solar Cells Using ZnO Nanorods Stacking Films on AZO Substrate as Photoanode.

    PubMed

    Xu, Yang; Wang, Xina; Liu, Rong; Wang, Hao

    2016-04-01

    Three-dimensional stacking of ZnO nanorods on conducting aluminum-doped ZnO (AZO) glass were studied as efficient photoanodes of dye sensitized solar cells (DSSCs). By changing hydrothermal growth time and cycle times, the thickness of ZnO nanorods stacking films varied from 30 µm to 64 µm, and its influence on the energetic conversion efficiency of the DSSCs based on the stacking films photoanodes was investigated. The loading density of N719 on the surface of ZnO nanorods was studied to increase the efficiency of the cells. Annealing experiments showed that the AZO substrates remained good conductors until heated above 350 °C. A photoelectric conversion efficiency as high as ~2.0% together with ISC of ~9.5 mA/cm2, VOC of ~0.5 V and FF of ~41.4% was achieved for the DSSC using 50 µm-thick film stacking by ZnO nanorods as photoanode and N719 as sensitizer under illumination of AM1.5G solar light (power density of 100 mW/cm2). A charge separation and transfer mechanism was proposed for the ZnO nanorods stacking electrode-based DSSCs.

  15. In situ controlled sputtering deposition of gold nanoparticles on MnO2 nanorods as surface-enhanced Raman scattering substrates for molecular detection.

    PubMed

    Jiang, Tao; Zhang, Li; Jin, Han; Wang, Xiaolong; Zhou, Jun

    2015-04-28

    Single-crystal tetragonal α-MnO2 nanorods with different amounts of gold nanoparticles (NPs) attached were successfully prepared by a facile sputtering deposition technique. Initially, the morphology and crystal structure of the bare α-MnO2 nanorods synthesized via a hydrothermal approach were investigated. Then, the amount of gold NPs at different sputtering times was analyzed. It was confirmed that the amount of the decorated gold NPs increased with the lengthening of the sputtering time until they completely covered the α-MnO2 nanorods. Theoretical calculation results indicated the advantages of the composite structure by showing the enhanced electromagnetic fields around both the bare α-MnO2 nanorods and the gold NP decorated ones. The surface-enhanced Raman scattering (SERS) efficiency of these nanocomposites was evaluated using methylene blue and 4-mercaptobenzoic acid as Raman probe molecules. It was found that the SERS intensity of the substrates strongly depended on the degree of aggregation of the gold NPs. Uniform SERS signals across the entire surface of these samples were obtained. Moreover, a typical chemical toxin, methyl parathion, was effectively detected over a broad concentration range from 1 × 10(-3) to 100 ppm using the gold NP decorated α-MnO2 nanorods, suggesting this hybrid structure is highly valuable for further applications on the rapid detection of organic environmental pollutants.

  16. Enhanced photoelectrochemical performance of ZnO nanorod arrays decorated with CdS shell and Ag2S quantum dots

    NASA Astrophysics Data System (ADS)

    Holi, Araa Mebdir; Zainal, Zulkarnain; Talib, Zainal Abidin; Lim, Hong-Ngee; Yap, Chi-Chin; Chang, Sook-Keng; Ayal, Asmaa Kadim

    2017-03-01

    Ternary nanostructured Ag2S/CdS/ZnO thin film was prepared by using a simple low-cost hydrothermal method. The hexagonal phase of ZnO nanorods and CdS shells combined with monoclinic Ag2S quantum dots resulted in improved optical and photoelectrochemical properties. CdS shell with high absorption property efficiently compliment the energy levels of ZnO and improved the ability of light absorption. Furthermore, narrow band gap Ag2S also played a vital part in the light harvesting. The photoelectrochemical performance of the ternary nanostructured Ag2S/CdS/ZnO NRs was investigated in a mixture of Na2S and Na2SO3 aqueous solutions under visible light illumination. The Ag2S/CdS/ZnO NRs were found to be more efficient than ZnO NRs, CdS/ZnO NRs, and Ag2S/ZnO NRs as this particular sample gave a maximum photocurrent of 5.69 mA cm-2, which is around 2 and 1.5 times greater than CdS/ZnO NRs and Ag2S/ZnO NRs, respectively. Besides that, it was found that this ternary film possessed 15 times higher photocurrent density than plain ZnO NRs. This is attributed to the larger amount of visible light absorbed by the ternary nanostructured composite.

  17. Surfactant role of Ag atoms in the growth of Si layers on Si(111)√3×√3-Ag substrates

    SciTech Connect

    Yamagami, Tsuyoshi; Sone, Junki; Nakatsuji, Kan; Hirayama, Hiroyuki

    2014-10-13

    The growth of Si layers on Si(111)√3×√3-Ag substrates was studied for coverages of up to a few mono-layers. Atomically flat islands were observed to nucleate in the growth at 570 K. The top surfaces of the islands were covered in Ag atoms and exhibited a √3×√3 reconstruction with the same surface state dispersions as Si(111)√3×√3-Ag substrates. These results indicate that the Ag atoms on the substrate always hop up to the top of the Si layers.

  18. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays

    PubMed Central

    Li, Zhengcao; Xiong, Shan; Wang, Guojing; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    In order to obtain a better photocatalytic performance under visible light, Ag2S-coupled TiO2 nanorod arrays (NRAs) were prepared through the electron beam deposition with glancing angle deposition (GLAD) technique, annealing in air, followed by the successive ionic layer absorption and reaction (SILAR) method. The properties of the photoelectrochemical and photocatalytic degradation of methyl orange (MO) were thus conducted. The presence of Ag2S on TiO2 NRAs was observed to have a significant improvement on the response to visible light. It’s resulted from that Ag2S coupling can improve the short circuit photocurrent density and enhance the photocatalytic activity remarkably. PMID:26790759

  19. Photoelectrical properties of Ag2S quantum dot-modified TiO2 nanorod arrays and their application for photovoltaic devices.

    PubMed

    Liu, Bingkun; Wang, Dejun; Zhang, Yu; Fan, Haimei; Lin, Yanhong; Jiang, Tengfei; Xie, Tengfeng

    2013-02-14

    Vertically aligned TiO(2) nanorod arrays (NRAs) modified with Ag(2)S quantum dots (QDs) have been successfully prepared via a successive ionic layer adsorption and reaction (SILAR) process. Ultraviolet-visible (UV-vis) absorption spectra and surface photovoltage (SPV) measurements reveal that the Ag(2)S sensitization extends the range of the photoresponse of the TiO(2) NRAs to the visible region and exhibits higher photovoltage responses. With a polysulfide electrolyte, a maximum conversion efficiency of 0.148% with a superior J(sc) of 1.177 mA cm(-2) are obtained after 6 SILAR cycles under illumination at 100 mW cm(-2). These results indicate that the Ag(2)S QDs/TiO(2) NRAs photoelectrode has a promising application in solar cells.

  20. Cysteamine coated Ag and Au nanorods for improved surface enhanced Raman scattering from dinitrotoluene and trinitrotoluene

    NASA Astrophysics Data System (ADS)

    Glembocki, O. J.; Gowda, M.; Geng, S.; Prokes, S. M.; Garces, N. Y.; Cushen, J.; Caldwell, J. D.

    2010-08-01

    Surface-enhanced Raman scattering (SERS) from trinitrotoluene and other nitro-based explosives is important for the development of a reliable detection scheme exhibiting low false-positive rates. However, the interaction of these compounds with Ag and Au causes the molecules to orient in ways such that the primary vibrations of the nitro groups, the main identifying Raman marker of these compounds, are inhibited in addition to causing a reduction in the SERS response. It has recently been shown that cysteamine, which contains amine functional end groups, will electrostatically attract the nitro groups of TNT. Therefore, as the thiol functional group of cysteamine chemically bonds this molecule to the plasmonically-active Au and Ag nanoparticles studied, SERS of TNT can be obtained following the nitro-amine functional group complex formation. It is observed that the cysteamine adsorbs in one of two configurations on the metal surface, with the trans configuration consisting of bonding at the S end of the molecule and the cysteamine is perpendicular to the metal surface, while in the Gauche configuration S bonding occurs, but the molecule bends over towards the metal film surface, approaching the parallel configuration allowing the amine groups interact with the surface. We find that the trans configuration is best for the detection of SERS from TNT. Experiments compare well with DFT calculations of the cysteamine and TNT complex and their adsorption on Ag.

  1. Photodegradation of nalidixic acid assisted by TiO(2) nanorods/Ag nanoparticles based catalyst.

    PubMed

    Petronella, F; Diomede, S; Fanizza, E; Mascolo, G; Sibillano, T; Agostiano, A; Curri, M L; Comparelli, R

    2013-05-01

    Two different nanosized TiO2-based catalysts supported onto glass with tailored photocatalytic properties upon irradiation by UV light were successfully employed for the degradation of nalidixid acid, a widely diffused antibacterial agent of environmental relevance known to be non-biodegradable. Anatase rod-like TiO2 nanocrystals (TiO2NRs) and a semiconductor oxide-noble metal nanocomposite TiO2 NRs/Ag nanoparticles (NPs), synthesized by colloidal chemistry routes, were cast onto glass slide and employed as photocatalysts. A commercially available catalyst (TiO2 P25), also immobilized onto a glass slide, was used as a reference material. It was found that both TiO2 NRs/Ag NPs composite and TiO2 NRs demonstrated a photocatalytic efficiency significantly higher than the reference TiO2 P25. Specifically, TiO2 NRs/Ag NPs showed a photoactivity in nalidixic acid degradation 14 times higher than TiO2 P25 and 4 times higher than bare TiO2 NRs in the first 60min of reaction. Several by-products were identified by HPLC-MS along the nalidixic acid degradation, thus getting useful insight on the degradation pathway. All the identified by-products resulted completely removed after 6h of reaction.

  2. Preparation and catalytic application of Ag/polydopamine composite on surface of glass substrates

    NASA Astrophysics Data System (ADS)

    Yu, Jianying; Sun, Chengyi; Lu, Shixiang; Xu, Wenguo; Liu, Zhehan; He, Dongsheng

    2017-01-01

    In this work, Ag/polydopamine composite on glass substrates (Ag/PDA@slides) were formed by using polydopamine (PDA) as both reducing and stabilizing agent to reduce silver salts to silver nanoparticles (NPs) and adhesive them to slides. The morphology and chemical composition of the composite material was characterized by scanning electron microscopy (SEM) and X-ray diffraction pattern (XRD). The prepared Ag/PDA@slide was a highly active catalyst for the reduction of 4-nitrophenol (4-NP) in the presence of sodium borohydride (NaBH4) aqueous solution at room temperature. The reduction rate of the optimal catalyst was as fast as 10 s and it was stable up to 6 cycles without a significant loss of its catalytic activity. By measuring the UV-Vis absorption bonds of Ag/PDA@slides, it proved that condition of the strongest surface plasmon resonance of Ag/PDA@slides is the optimal condition of catalytic reduction of 4-NP.

  3. Visual and colorimetric detection of p-aminophenol in environmental water and human urine samples based on anisotropic growth of Ag nanoshells on Au nanorods.

    PubMed

    Lin, Tianran; Li, Zhihong; Song, Zhiping; Chen, Huan; Guo, Liangqia; Fu, Fengfu; Wu, Zujian

    2016-01-01

    A simple, sensitive, selective and high-resolution colorimetric method has been developed for the detection of p-aminophenol in environmental water and human urine samples. In the presence of p-aminophenol, silver ions are reduced to silver atoms and subsequently Ag nanoshells anisotropically grow on the surface of Au nanorods to generate orange slice-like Au@Ag core-shell nanocrystals, thereby resulting in the blue-shift of longitudinal surface plasmon resonance band of Au nanorods accompanying a sharp-contrast multicolor change. Using Au@Ag core-shell nanocrystals as the transducer, sub-micromolar p-aminophenol can be detected by the colorimetric method and 10 μmol L(-1) p-aminophenol can be visual readout by the naked eyes. Furthermore, a simple, cheap, portable test kit is constructed for the visual assay of urinary p-aminophenol without complicated sample pretreatment and sophisticated instruments. The proposed colorimetric method has the potential for the rapid and on-site analyses of p-aminophenol in environmental water and human urine samples.

  4. Controllable electrodeposition of ZnO nanorod arrays on flexible stainless steel mesh substrate for photocatalytic degradation of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Lu, Hui; Zhang, Mei; Guo, Min

    2014-10-01

    Well-aligned single-crystalline ZnO nanorod arrays (ZNRAs) were prepared on flexible stainless steel mesh (SSM) substrate in large-scale by using a direct electrodeposition method. The effects of electrochemical parameters, such as applied potential, applied nucleation potential time, substrate pretreatment, electrodeposition duration and times, on the orientation, morphology and density of ZNRAs were systematically studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and the selected area electron diffraction (SAED). The results showed that ZNRAs on SSM substrate with [0 0 1] preferred orientation and well crystallization were obtained by controlling the applied potential in the range of -0.9 to -1.1 V. The density of ZNRAs could be increased obviously by applying a nucleation potential (-1.3 V for more than 10 s before deposition) or by means of substrate pretreatment (the SSM immersed in zinc acetate colloid for more than 10 min before deposition), meanwhile, the deposited ZNRAs also had small average diameter (<46 ± 4 nm), narrow size distribution and good orientation. In addition, it was also found that the average diameter of ZNRAs could be increased from 89 to 201 ± 5 nm by extending the electrodeposition duration from 1800 to 7200 s, and the length of rods was from 0.8 to 2.2 ± 0.1 μm when the times of the electrodeposition from one to six times. Furthermore, the band gap energy (Eg) of as-prepared ZNTAs was not closely related to the electrodeposition times (only changed from 3.30 to 3.32 eV). The ZNRAs prepared with more electrodeposition times showed enhanced photocatalytic performance under the UV-lamp for degradation of Rhodamine B. The degradation efficiency of ZNRAs improved from 89.4% to 98.3% with the deposition times from one to six times.

  5. Exploring Ag(111) Substrate for Epitaxially Growing Monolayer Stanene: A First-Principles Study

    PubMed Central

    Gao, Junfeng; Zhang, Gang; Zhang, Yong-Wei

    2016-01-01

    Stanene, a two-dimensional topological insulator composed of Sn atoms in a hexagonal lattice, is a promising contender to Si in nanoelectronics. Currently it is still a significant challenge to achieve large-area, high-quality monolayer stanene. We explore the potential of Ag(111) surface as an ideal substrate for the epitaxial growth of monolayer stanene. Using first-principles calculations, we study the stability of the structure of stanene in different epitaxial relations with respect to Ag(111) surface, and also the diffusion behavior of Sn adatom on Ag(111) surface. Our study reveals that: (1) the hexagonal structure of stanene monolayer is well reserved on Ag(111) surface; (2) the height of epitaxial stanene monolayer is comparable to the step height of the substrate, enabling the growth to cross the surface step and achieve a large-area stanene; (3) the perfect lattice structure of free-standing stanene can be achieved once the epitaxial stanene monolayer is detached from Ag(111) surface; and finally (4) the diffusion barrier of Sn adatom on Ag(111) surface is found to be only 0.041 eV, allowing the epitaxial growth of stanene monolayer even at low temperatures. Our above revelations strongly suggest that Ag(111) surface is an ideal candidate for growing large-area, high-quality monolayer stanene. PMID:27373464

  6. Photoluminescence and photocatalytic activities of Ag/ZnO metal-semiconductor heterostructure

    NASA Astrophysics Data System (ADS)

    Sarma, Bikash; Deb, Sujit Kumar; Sarma, Bimal K.

    2016-10-01

    Present article focuses on the photocatalytic activities of ZnO nanorods and Ag/ZnO heterostructure deposited on polyethylene terephthalate (PET) substrate. ZnO nanorods are synthesized by thermal decomposition technique and Ag nanoparticles deposition is done by photo-deposition technique using UV light. X-ray diffraction studies reveal that the ZnO nanorods are of hexagonal wurtzite structure. Further, as-prepared samples are characterized by Scanning Electron Microscopy (SEM), Photoluminescence (PL) spectroscopy and UV-Vis spectroscopy. The surface plasmon resonance response of Ag/ZnO is found at 420 nm. The photocatalytic activities of the samples are evaluated by photocatalytic decolorization of methyl orange (MO) dye with UV irradiation. The degradation rate of MO increases with increase in irradiation time. The degradation of MO follows the first order kinetics. The photocatalytic activity of Ag/ZnO heterostructure is found to be more than that of ZnO nanorods. The PL intensity of ZnO nanorods is stronger than that of the Ag/ZnO heterostructure. The strong PL intensity indicates high recombination rate of photoinduced charge carriers which lowers the photocatalytic activity of ZnO nanorods. The charge carrier recombination is effectively suppressed by introducing Ag nanoparticles on the surface of the ZnO nanorods. This study demonstrates a strong relationship between PL intensity and photocatalytic activity.

  7. Ag films grown by remote plasma enhanced atomic layer deposition on different substrates

    SciTech Connect

    Amusan, Akinwumi A. Kalkofen, Bodo; Burte, Edmund P.; Gargouri, Hassan; Wandel, Klaus; Pinnow, Cay; Lisker, Marco

    2016-01-15

    Silver (Ag) layers were deposited by remote plasma enhanced atomic layer deposition (PALD) using Ag(fod)(PEt{sub 3}) (fod = 2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato) as precursor and hydrogen plasma on silicon substrate covered with thin films of SiO{sub 2}, TiN, Ti/TiN, Co, Ni, and W at different deposition temperatures from 70  to 200 °C. The deposited silver films were analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with energy dispersive x-ray spectroscopy, four point probe measurement, ellipsometric measurement, x-ray fluorescence (XRF), and x-ray diffraction (XRD). XPS revealed pure Ag with carbon and oxygen contamination close to the detection limit after 30 s argon sputtering for depositions made at 120 and 200 °C substrate temperatures. However, an oxygen contamination was detected in the Ag film deposited at 70 °C after 12 s argon sputtering. A resistivity of 5.7 × 10{sup −6} Ω cm was obtained for approximately 97 nm Ag film on SiO{sub 2}/Si substrate. The thickness was determined from the SEM cross section on the SiO{sub 2}/Si substrate and also compared with XRF measurements. Polycrystalline cubic Ag reflections were identified from XRD for PALD Ag films deposited at 120 and 200 °C. Compared to W surface, where poor adhesion of the films was found, Co, Ni, TiN, Ti/TiN and SiO{sub 2} surfaces had better adhesion for silver films as revealed by SEM, TEM, and AFM images.

  8. The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates.

    PubMed

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-02-11

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 10(9)) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 10(7) and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones.

  9. Efficiency Enhancement of Quantum Dot Sensitized TiO2/ZnO Nanorod Arrays Solar Cells by Plasmonic Ag Nanoparticles.

    PubMed

    Zhao, Haifeng; Huang, Fei; Hou, Juan; Liu, Zhiyong; Wu, Qiang; Cao, Haibin; Jing, Qun; Peng, Shanglong; Cao, Guozhong

    2016-10-12

    A high efficiency quantum dot sensitized solar cell (QDSC) based on Ag nanoparticles (NPs) decorated TiO2/ZnO nanorod arrays (NAs) photoelectrode has been constructed. The incorporation of Ag NPs to TiO2/ZnO NAs photoelectrode not only increases light harvesting efficiency and facilitates exciton dissociation but also decreases surface charge recombination and prolongs electron lifetime, which collectively contribute to improving the Jsc of the CdS/CdSe QDs cosensitized solar cells. The direct contact of Ag NPs with TiO2 NPs is undergoing Fermi level alignment; thus, the apparent Fermi level is supposed to trigger an upward shift of more negative potential, which results in an increase the Voc of the QDSCs. As a result, the power conversion efficiency of the QDSCs with Ag NPs decorated TiO2/ZnO NAs photoelectrode reached 5.92%, which is about 22% enhancement of the efficiency for the solar cells without Ag NPs (4.80%).

  10. Au@Ag Heterogeneous Nanorods as Nanozyme Interfaces with Peroxidase-Like Activity and Their Application for One-Pot Analysis of Glucose at Nearly Neutral pH.

    PubMed

    Han, Lei; Li, Cuncheng; Zhang, Tao; Lang, Qiaolin; Liu, Aihua

    2015-07-08

    As substitutes for natural peroxidases, most nanomaterial-based enzyme mimetics (nanozymes) have unique properties such as high stability, low-cost, large surface area, and high catalytic activity. However, they usually work in acidic conditions and thus impede their real applications. In this work, by modulating the nanostructure, composition, and surface property of the bimetallic materials, the positively charged poly(diallyldimethylammonium)-stabilized Au@Ag heterogeneous nanorods (NRs) were developed as synergistic peroxidase-like interfaces, which exhibited high activity over a wide pH range (pH 4.0-6.5) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as the chromogenic substrate. At pH 6.5, the peroxidase-like activity for the Au@Ag heterogeneous NRs was stable and optimal within 20-40 °C. Moreover, the Au@Ag heterogeneous NRs showed excellent temperature stability and long-term storage stability. Given these characters, the detection of H2O2 at pH 6.5 was proposed on the basis of the Au@Ag heterogeneous NRs catalyzing the colorimetric reaction of H2O2 and ABTS, where the oxidized ABTS showed a typical absorption peak at 414 nm. The absorbance at 414 nm was linear with H2O2 concentration from 0.01 to 10 mM. Further, considering that Au@Ag heterogeneous NRs and glucose oxidase (GOx) have similar optimal pH for catalytic activities, a novel one-pot method for the detection of glucose was developed by the coupled catalytic reaction using GOx, Au@Ag heterogeneous NRs, and ABTS at nearly neutral pH (pH 6.5) and 37 °C. This proposed method had simple and rapid processes, wide linear range (0.05-20 mM), and reliability for the successful analysis of real samples. On the basis of these attractive and unique characteristics, Au@Ag heterogeneous NRs can become promising substitutes for peroxidase in analytical chemistry and environmental science.

  11. Plasmon enhanced photoelectrochemical sensing of mercury (II) ions in human serum based on Au@Ag nanorods modified TiO₂ nanosheets film.

    PubMed

    Zhang, Yong; Shoaib, Anwer; Li, Jiaojiao; Ji, Muwei; Liu, Jiajia; Xu, Meng; Tong, Bin; Zhang, Jiatao; Wei, Qin

    2016-05-15

    Taking advantages of the monodisperse TiO2 nanosheets (NSs) with high active crystal face exposure and the tunable localized surface plasmon resonance (LSPR) properties of Au@Ag nanorods (NRs), this study demonstrated that TiO2 NSs film with trace amount of Au@Ag NRs modification possess a strong enhancement of photocurrent response, which was remarkably inhibited with the addition of mercury (II) ions (Hg(2+)). Based on the selective decrease of photocurrent with the addition of Hg(2+), a simple photoelectrochemical (PEC) sensor has been assembled. The PEC sensor exhibits wide linear range (0.01-10nM), low detection limit (2.5 pM), satisfying selectivity, reproducibility and acceptable stability for Hg(2+) detection. The feasibility of this method for practical application in human serum has been evaluated and the result was satisfactory. This PEC sensing method would provide a potential application for Hg(2+) detection in clinical diagnosis.

  12. Flexible IZO/Ag/IZO/Ag multilayer electrode grown on a polyethylene terephthalate substrate using roll-to-roll sputtering

    PubMed Central

    2012-01-01

    We investigated the optical, electrical, structural, and surface properties of roll-to-roll [R2R] sputter-grown flexible IZO/Ag/IZO/Ag [IAIA] multilayer films on polyethylene terephthalate substrates as a function of the top indium zinc oxide [IZO] thickness. It was found that the optical transmittance of the IAIA multilayer was significantly influenced by the top IZO layer thickness, which was grown on identical AIA multilayers. However, the sheet resistance of the IAIA multilayer was maintained between the range 5.01 to 5.1 Ω/square regardless of the top IZO thickness because the sheet resistance of the IAIA multilayer was mainly dependent on the thickness of the Ag layers. Notably, the optimized IAIA multilayer had a constant resistance change (ΔR/R0) under repeated outer bending tests with a radius of 10 mm. The mechanical integrity of the R2R-sputtered IAIA multilayer indicated that hybridization of an IZO and Ag metal layer is a promising flexible electrode scheme for the next-generation flexible optoelectronics. PMID:22222144

  13. Effect of Si Growth Temperature on Fabrication of Si-ZnO Coaxial Nanorod Heterostructure on (100) Si Substrate

    NASA Astrophysics Data System (ADS)

    Yoon, Im Taek; Cho, Hak Dong; Cho, Hoon Young; Kwak, Dong Wook; Lee, Sejoon

    2017-02-01

    The realization and application of optoelectronics, photonics, and sensing, such as in solar diode sensors and photodiodes, which are potentially useful from ultraviolet to infrared light sensing, is dramatically advanced when ZnO is integrated into semiconductor nanostructures, especially when compatible with mature silicon technology. Here, we compare and analyze the fundamental features of the Si-ZnO coaxial nanorod heterostructures (Si@ZnO NRs) grown on semi-insulating (100)-oriented Si substrates at growing temperatures of 500°C, 600°C, 650°C, and 700°C of the Si layer for device applications. ZnO NRs were grown by a vapor phase transport, and Si layers were made by rapid thermal chemical vapor deposition. X-ray diffraction, field emission scanning electron microscopy (FESEM), energy-dispersive x-ray spectroscopy, and Raman experiments showed that ZnO NRs were single crystals with a würtzite structure, while the Si layer was polysilicon with a zincblende structure. Furthermore, FESEM revealed that Si shell thickness of the Si@ZnO NRs increases with increasing growing temperatures of Si from 500°C to 700°C.

  14. Facile and low-cost fabrication of Ag-Cu substrates via replacement reaction for highly sensitive SERS applications

    NASA Astrophysics Data System (ADS)

    Hu, Litao; Liu, Yan Jun; Xu, Shicai; Li, Zhe; Guo, Jia; Gao, Saisai; Lu, Zhengyi; Si, Haipeng; Jiang, Shouzhen; Wang, Shuyun

    2017-01-01

    In this work, we demonstrated facile and low-cost fabrication of highly sensitive SERS substrates via replacement reaction by immersing Cu foils into a AgNO3 solution. Different morphologies of Ag nanostructures were observed on the substrate surface by controlling the reaction time. The growth mechanism of Ag nanostructures on the Cu substrates was also analyzed based on the nanostructure evolution. The Ag-Cu substrates showed optimum SERS enhancement at certain reaction time, and the minimum detected concentration of Rhodamine 6G is as low as 10-13 M. The easy and low-cost fabrication makes the Ag-Cu SERS substrates promising for rapid, sensitive detection of targeted analytes, such as biomolecules, pollutants, and explosives in the environment.

  15. Synthesize and characterize of Ag3VO4/TiO2 nanorods photocatalysts and its photocatalytic activity under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Zou, Xuejun; Dong, Yuying; Zhang, Xiaodong; Cui, Yubo

    2016-03-01

    In this paper, in order to expand the light response range of TiO2, Ag3VO4/TiO2 nanorods photocatalysts were fabricated by a simple sol-gel method with microwave and hydrothermal method. The as-prepared samples were characterized by XRD, SEM, DRS, XPS and N2 adsorption-desorption. Meanwhile, their photocatalytic properties were investigated by the degradation of toluene under visible light irradiation. The degradation conversation of toluene had gotten to about 70% in 1% Ag3VO4/TiO2 nanorods after reaction 4 h. The predominant photocatalytic activity can be attributed to its strong absorption in visible light region and excellent charge separation characteristics. By using in situ FTIR, benzyl alcohol and benzaldehyde species could be observed during the reaction and the formed intermediates would be partially oxidized into CO2 and H2O. Electron spin resonance confirmed that OHrad and O2rad - were involved in the photocatalytic degradation of toluene.

  16. Bio-mimetic nanostructure self-assembled from Au@Ag heterogeneous nanorods and phage fusion proteins for targeted tumor optical detection and photothermal therapy.

    PubMed

    Wang, Fei; Liu, Pei; Sun, Lin; Li, Cuncheng; Petrenko, Valery A; Liu, Aihua

    2014-10-28

    Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm(2). The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.

  17. Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Pei; Sun, Lin; Li, Cuncheng; Petrenko, Valery A.; Liu, Aihua

    2014-10-01

    Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm2. The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.

  18. In situ plasma sputtering synthesis of ZnO nanorods-Ag nanoparticles hybrids and their application in non-enzymatic hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Zhang, Yuxia; Yang, Chi; Ge, Cunwang; Wang, Yuanhong; Wang, Hao; Liu, Hongying

    2015-08-01

    In this paper, ZnO nanorods-Ag nanoparticles hybrids were first synthesized via a facile, rapid, and in situ plasma sputtering method without using any silver precursor. The obtained materials were then characterized by scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and cyclic voltammetry. Based on the electrochemical catalytic properties of the obtained nanohybrids, a non-enzymatic hydrogen peroxide biosensor was constructed by immobilizing the obtained ZnO nanorods-Ag nanoparticles hybrids on the surface of a glassy carbon electrode. Under optimal conditions, the resulting biosensor displayed a good response for H2O2 with a linear range of 0.2 to 12.8 mM, and a detection limit of 7.8 μM at a signal-to-noise ratio of 3. In addition, it exhibited excellent anti-interference ability and fast response. The current work provides a feasible platform to fabricate a variety of non-enzymatic biosensors.

  19. Ag-ZnO nanoreactor grown on FTO substrate exhibiting high heterogeneous photocatalytic efficiency.

    PubMed

    Tan, Sin Tee; Ali Umar, Akrajas; Balouch, Aamna; Nafisah, Suratun; Yahaya, Muhammad; Yap, Chi Chin; Mat Salleh, Muhamad; Kityk, I V; Oyama, Munetaka

    2014-07-14

    This Research Article reports an unusually high efficiency heterogeneous photodegradation of methyl orange (MO) in the presence of Ag nanoparticle-loaded ZnO quasi-nanotube or nanoreactor (A-ZNRs) nanocatalyst grown on FTO substrate. In typical process, photodegradation efficiency of as high as 21.6% per μg per Watts of used catalyst and UV power can be normally obtained within only a 60-min reaction time from this system, which is 10(3) order higher than the reported results. This is equivalent to the turnover frequency of 360 mol mol(-1) h(-1). High-density hexagonal A-ZNRs catalysts were grown directly on FTO substrate via a seed-mediated microwave-assisted hydrolysis growth process utilizing Ag nanoparticle of approximately 3 nm in size as nanoseed and mixture aqueous solution of Zn(NO3)·6H2O, hexamethylenetetramine (HMT), and AgNO3 as the growth solution. A-ZNRs adopts hexagonal cross-section morphology with the inner surface of the reactor characterized by a rough and rugged structure. Transmission electron microscopy imaging shows the Ag nanoparticle grows interstitially in the ZnO nanoreactor structure. The high photocatalytic property of the A-ZNRs is associated with the highly active of inner side's surface of A-ZNRs and the oxidizing effect of Ag nanoparticle. The growth mechanism as well as the mechanism of the enhanced-photocatalytic performance of the A-ZNRs will be discussed.

  20. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF.

  1. An easy and sensitive sandwich assay for detection of Mycobacterium tuberculosis Ag85B antigen using quantum dots and gold nanorods.

    PubMed

    Kim, Eun Ju; Kim, Eun Bee; Lee, Seung Woo; Cheon, Seon Ah; Kim, Hwa-Jung; Lee, Jaebeom; Lee, Mi-Kyung; Ko, Sungho; Park, Tae Jung

    2017-01-15

    Mycobacterium tuberculosis is a serious global infectious pathogen causing tuberculosis (TB). The development of an easy and sensitive method for the detection of M. tuberculosis is in urgent need due to complex and low specificity of the current assays. Herein, we present a novel method for M. tuberculosis detection based on a sandwich assay via antigen-antibody interaction using silica-coated quantum dots (SiQDs) and gold nanorods (AuNRs). A genetically engineered recombinant antibody (GBP-50B14 and SiBP-8B3) was bound to surfaces of AuNRs and SiQDs respectively, without any surface modification. The antigen-antibody interaction was revealed using M. tuberculosis-specific secretory antigen, Ag85B. Two biocomplexes showed a quenching effect in the presence of the target antigen through a sandwich assay. The assay response was in the range of 1×10(-3)-1×10(-10)μgmL(-1) (R=0.969) and the limit of detection for Ag85B was 13.0pgmL(-1). The Ag85B was selectively detected using three different proteins (CFP10, and BSA), and further specifically confirmed by the use of spiked samples. Compared with existing methods, a highly sensitive and selective method for Ag85B-expressing M. tuberculosis detection has been developed for better diagnosis of TB.

  2. Ag nanoparticles as multifunctional SERS substrate for the adsorption, degradation and detection of dye molecules

    NASA Astrophysics Data System (ADS)

    Ma, Yongmei; Ding, Qianqian; Yang, Liangbao; Zhang, Li; Shen, Yuhua

    2013-01-01

    Ag NPs were obtained by isopropyl alcohol restore silver nitrate with silicotungstic acid as a stabilizer under the condition of UV irradiation. From changing the amount of isopropyl alcohol and silver nitrate, we obtained Ag NPs of which plasmon peak was similar to the excitation wavelength, and the enhancement effect will be greatly improved. Enriching, degrading, and detecting dye molecular can be achieved by the simple SERS substrate, and the photo-degradation process was monitored by SERS successfully for the first time, and the sensitivity was improved compare to traditional detection by UV-vis spectroscopy.

  3. Quantification of proteins using enhanced etching of Ag coated Au nanorods by the Cu2+/bicinchoninic acid pair with improved sensitivity

    NASA Astrophysics Data System (ADS)

    Liu, Wenqi; Hou, Shuai; Yan, Jiao; Zhang, Hui; Ji, Yinglu; Wu, Xiaochun

    2015-12-01

    Plasmonic nanosensors show great potential in ultrasensitive detection, especially with the plasmon peak position as the detection modality. Herein, a new sensitive but simple total protein quantification method termed the SPR-BCA assay is demonstrated by combining plasmonic nanosensors with protein oxidation by Cu2+. The easy tuning of localized surface plasmon resonance (LSPR) features of plasmonic nanostructures makes them ideal sensing platforms. We found that the Cu2+/bicinchoninic acid (BCA) pair exhibits accelerated etching of Au@Ag nanorods and results in the LSPR peak shift. A linear relationship between Cu2+ and the LSPR shift is found in a double logarithmic coordinate. Such double logarithm relationship is transferred to the concentration of proteins. Theoretical simulation shows that Au nanorods with large aspect ratios and small core sizes show high detection sensitivity. Via optimized sensor design, we achieved an increased sensitivity (the limit of detection was 3.4 ng ml-1) and a wide working range (0.5 to 1000 μg ml-1) compared with the traditional BCA assay. The universal applicability of our method to various proteins further proves its potential in practical applications.Plasmonic nanosensors show great potential in ultrasensitive detection, especially with the plasmon peak position as the detection modality. Herein, a new sensitive but simple total protein quantification method termed the SPR-BCA assay is demonstrated by combining plasmonic nanosensors with protein oxidation by Cu2+. The easy tuning of localized surface plasmon resonance (LSPR) features of plasmonic nanostructures makes them ideal sensing platforms. We found that the Cu2+/bicinchoninic acid (BCA) pair exhibits accelerated etching of Au@Ag nanorods and results in the LSPR peak shift. A linear relationship between Cu2+ and the LSPR shift is found in a double logarithmic coordinate. Such double logarithm relationship is transferred to the concentration of proteins. Theoretical

  4. Vertically aligned ZnO nanorod grown by hydrothermal based chemical method on glass substrate

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Majumdar, S.; Bhunia, S.

    2012-06-01

    A low-temperature and effective precursor-based method has been demonstrated to synthesize nanostructured ZnO. It is found that the morphology of ZnO precursors has a strong dependence on the reaction conditions that include the molar ratio of reagents, solvent, and reaction temperature. In this work, ZnO nanostructures were synthesized via hydrothermal based chemical method. Zinc acetate dehydrate [Zn(Ac)2 2H2O] and 1-propanol(C3H8O) were adopted for a seed layer growth on glass substrate via spin coating technique. Zinc nitrate hexahydrate [Zn(NO3)2 6H2O], hexamethylenetetramine(C6H12N4) and diethylamine(C4H11N) were adopted as synthesis precursors. The ZnO nanostructures obtained were characterized by scanning electronic microscopy (SEM) and the PL method. The SEM image of the sample showed that the thin film of ZnO on glass substrate has, predominantly, a nanometric rod-like morphology with hexagonal wurtzite structure.

  5. Z-shape nanostructured array deposited by substrate cooling method

    NASA Astrophysics Data System (ADS)

    Jen, Yi-Jun; Liu, Wei-Chih; Jheng, Ci-Yao; Huang, Jyong-Wei; Chang, Yuan-Tai

    2016-07-01

    The substrate cooling method was used in glancing angle deposition to grow a slanted silver nanorod array (NRA). Liquid nitrogen was allowed to flow under the substrate during deposition, and we compared the morphologies of Ag NRAs deposited with and without cooling. The cooling reduced the average width of the nanorods. A Z-shaped nanostructure array composed of three sections of silver NRAs was then deposited under the same cooling conditions. The average tilt angle of the nanorods from the surface normal was varied from the bottom section to the top section with the nanorods of the top section made to lie almost parallel to the substrate. Under normal illumination, the rods in the top section exhibit distinct longitudinal and transverse plasmon modes that cause strong polarization-dependent transmittance and reflectance.

  6. Using Standing Gold Nanorod Arrays as Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Detection of Carbaryl Residues in Fruit Juice and Milk.

    PubMed

    Alsammarraie, Fouad K; Lin, Mengshi

    2017-01-25

    In recent years, there have been increasing concerns about pesticide residues in various foods. On the other hand, there is growing attention in utilizing novel nanomaterials as highly sensitive, low-cost, and reproducible substrates for surface-enhanced Raman spectroscopy (SERS) applications. The objective of this study was to develop a SERS method for the rapid detection of pesticides that were extracted from different types of food samples (fruit juice and milk). A new SERS substrate was prepared by assembling gold nanorods into standing arrays on a gold-coated silicon slide. The standing nanorod arrays were neatly arranged and were able to generate a strong electromagnetic field in SERS measurement. The as-prepared SERS substrate was utilized to detect carbaryl in acetonitrile/water solution, fruit juices (orange and grapefruit), and milk. The results show that the concentrations of carbaryl spiked in fruit juice and milk were linearly correlated with the concentrations predicted by the partial least-squares (PLS) models with r values of 0.91, 0.88, and 0.95 for orange juice, grapefruit juice, and milk, respectively. The SERS method was able to detect carbaryl that was extracted from fruit juice and milk samples at a 50 ppb level. The detection limits of carbaryl were 509, 617, and 391 ppb in orange juice, grapefruit juice, and milk, respectively. All detection limits are below the maximum residue limits that were set by the U.S. EPA. Moreover, satisfactory recoveries (82-97.5%) were accomplished for food samples using this method. These results demonstrate that SERS coupled with the standing gold nanorod array substrates is a rapid, reliable, sensitive, and reproducible method for the detection of pesticide residues in foods.

  7. Ordering Ag nanowire arrays by a glass capillary: a portable, reusable and durable SERS substrate.

    PubMed

    Liu, Jian-Wei; Wang, Jin-Long; Huang, Wei-Ran; Yu, Le; Ren, Xi-Feng; Wen, Wu-Cheng; Yu, Shu-Hong

    2012-01-01

    Assembly of nanowires into ordered macroscopic structures with new functionalities has been a recent focus. In this Letter, we report a new route for ordering hydrophilic Ag nanowires with high aspect ratio by flowing through a glass capillary. The present glass capillary with well-defined silver nanowire films inside can serve as a portable and reusable substrate for surface-enhanced Raman spectroscopy (SERS), which may provide a versatile and promising platform for detecting mixture pollutions. By controlling the flow parameters of nanowire suspensions, initially random Ag nanowires can be aligned to form nanowire arrays with tunable density, forming cambered nanowire films adhered onto the inner wall of the capillary. Compared with the planar ordered Ag nanowire films by the Langmuir-Blodgett (LB) technique, the cambered nanowire films show better SERS performance.

  8. Quantitative determination of melamine in milk using Ag nanoparticle monolayer film as SERS substrate

    NASA Astrophysics Data System (ADS)

    Li, Ruoping; Yang, Jingliang; Han, Junhe; Liu, Junhui; Huang, Mingju

    2017-04-01

    A Raman method employing silver nanoparticle (Ag NP) monolayer film as Surface-enhanced Raman Scattering (SERS) substrate was presented to rapidly detect melamine in milk. The Ag NPs with 80 nm diameter were modified by polyvinylpyrrolidone to improve their uniformity and chemical stability. The treatment procedure of liquid milk required only addition of acetic acid and centrifugation, and required time is less than 15 min. The Ag NP monolayer film significantly enhanced Raman signal from melamine and allowed experimentally reproducible determination of the melamine concentration. A good linear relationship (R2=0.994) between the concentration and Raman peak intensity of melamine at 681 cm-1 was obtained for melamine concentrations between 0.10 mg L-1 and 5.00 mg L-1. This implies that this method can detect melamine concentrations below 1.0 mg L-1, the concentration currently considered unsafe.

  9. Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate

    PubMed Central

    Jun Yin, Hong; Yang Chen, Zhao; Mei Zhao, Yong; Yang Lv, Ming; An Shi, Chun; Long Wu, Zheng; Zhang, Xin; Liu, Luo; Li Wang, Ming; Jun Xu, Hai

    2015-01-01

    Surface enhanced Raman scattering (SERS) substrate based on fabricated Ag@Au core-shell dendrite was achieved. Ag dendrites were grown on Si wafer by the hydrothermal corrosion method and Au nanofilm on the surface of Ag dendritic nanostructure was then fabricated by chemical reduction. With the help of sodium borohydride in water, Au surface absorbates such as thiophene, adenine, rhodamine, small anions (Br– and I–), and a polymer (PVP, poly(N-vinylpyrrolidone)) can be completely and rapidly removed. After four repeatable experiments, the substrate SERS function did not decrease at all, indicating that the Ag@Au dendrite should be of great significance to SERS application because it can save much resource. Six-month-duration stability tests showed that the Ag@Au core-shell dendrite substrate is much more stable than the Ag dendrite substrates. We have also experimented on fast detection of Cd2+ at 10−8  M concentration by decorating single-stranded DNA containing adenine and guanine bases on the surface of this Ag@Au dendrite. Finite-difference time-domain simulations were carried out to investigate the influence of Au nanolayer on Ag dendrites, which showed that the local electric fields and enhancement factor are hardly affected when a 4 nm Au nanolayer is coated on Ag dendrite surface. PMID:26412773

  10. Reliability Investigations on SnAg Bumps on Substrate Pads with Different Pad Finish

    SciTech Connect

    Bauer, R.; Ebersberger, B.; Kupfer, C.; Alexa, L.

    2006-02-07

    SnAg solder bump is one bump type which is used to replace eutectic SnPb bumps. In this work tests have been done to characterize the reliability properties of this bump type. Electromigration (EM) tests, which were accelerated by high current and high temperature and high temperature storage (HTS) tests were performed. It was found that the reliability properties are sensitive to the material combinations in the interconnect stack. The interconnect stack includes substrate pad, pad finish, bump, underbump metallization (UBM) and the chip pad. Therefore separate test groups for SnAg bumps on Cu substrate pads with organic solderability preservative (OSP) finish and the identical bumps on pads with Ni/Au finish were used. In this paper the reliability test results and the corresponding failure analysis are presented. Some explanations about the differences in formation of intermetallic compounds (IMCs) are given.

  11. Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shao, Ming-Wang; Zhang, Ming-Liang; Wong, Ning-Bew; Ma, Dorothy Duo-duo; Wang, Hui; Chen, Weiwei; Lee, Shuit-Tong

    2008-12-01

    We report a unique substrate for surface-enhanced raman spectroscopy (SERS) based on silver nanoparticles-embedded silicon nanowires (SiNWs). The SiNWs were prepared by thermal evaporation of SiO powder via oxide-assisted growth, oxide removed with HF, and then used to reduce silver ions to form a highly decorated Ag-embedded surface. Such modified SiNWs substrates yielded ultrahigh SERS sensitivity, which could detect 25μl of 1×10-16M Rhodamine 6G, 1×10-16M crystal violet, and 1×10-14M nicotine in methanol solutions. An Ag-modified SiNW strand could also enable SERS detection of 25μl of 1×10-8mg/ml calf thymus DNA. The possible mechanisms for the ultrahigh SERS sensitivity were discussed.

  12. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods.

    PubMed

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P K

    2016-08-05

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390-800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min(-1), which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis.

  13. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods

    NASA Astrophysics Data System (ADS)

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P. K.

    2016-08-01

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390-800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min-1, which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis.

  14. Quantification of proteins using enhanced etching of Ag coated Au nanorods by the Cu(2+)/bicinchoninic acid pair with improved sensitivity.

    PubMed

    Liu, Wenqi; Hou, Shuai; Yan, Jiao; Zhang, Hui; Ji, Yinglu; Wu, Xiaochun

    2016-01-14

    Plasmonic nanosensors show great potential in ultrasensitive detection, especially with the plasmon peak position as the detection modality. Herein, a new sensitive but simple total protein quantification method termed the SPR-BCA assay is demonstrated by combining plasmonic nanosensors with protein oxidation by Cu(2+). The easy tuning of localized surface plasmon resonance (LSPR) features of plasmonic nanostructures makes them ideal sensing platforms. We found that the Cu(2+)/bicinchoninic acid (BCA) pair exhibits accelerated etching of Au@Ag nanorods and results in the LSPR peak shift. A linear relationship between Cu(2+) and the LSPR shift is found in a double logarithmic coordinate. Such double logarithm relationship is transferred to the concentration of proteins. Theoretical simulation shows that Au nanorods with large aspect ratios and small core sizes show high detection sensitivity. Via optimized sensor design, we achieved an increased sensitivity (the limit of detection was 3.4 ng ml(-1)) and a wide working range (0.5 to 1000 μg ml(-1)) compared with the traditional BCA assay. The universal applicability of our method to various proteins further proves its potential in practical applications.

  15. High-intensity laser for Ta and Ag implantation into different substrates for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Mackova, A.; Malinsky, P.; Matousek, J.; Torrisi, L.; Ullschmied, J.

    2015-07-01

    High-intensity lasers generating non-equilibrium plasma, can be employed to accelerate ions in the keV-MeV region, useful for many applications. In the present work, we performed study of ion implantation into different substrates by using a high-intensity laser at the PALS laboratory in Prague. Multi-energy ions generated by plasma from Ta and Ag targets were implanted into polyethylene and metallic substrates (Al, Ti) at energies of tens of keV per charge state. The ion emission was monitored online using time-of-flight detectors and electromagnetic deflection systems. Rutherford Backscattering Spectrometry (RBS) was used to characterise the elemental composition in the implanted substrates by ion plasma emission and to provide the implanted ion depth profiling. These last measurements enable offline plasma characterisation and provide information on the useful potentiality of multi-ion species and multi-energy ion implantation into different substrates. XPS analysis gives information on the chemical bonds and their modifications in the first superficial implanted layers. The depth distributions of implanted Ta and Ag ions were compared with the theoretical ones achieved by using the SRIM-2012 simulation code.

  16. Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field

    NASA Astrophysics Data System (ADS)

    Fan, Chun-Zhen; Zhu, Shuang-Mei; Xin, Hao-Yi

    2017-02-01

    We experimentally fabricate a non-spherical Ag and Co surface-enhanced Raman scattering (SERS) substrate, which not only retains the metallic plasmon resonant effect, but also possesses the magnetic field controllable characteristics. Raman detections are carried out with the test crystal violet (CV) and rhodamine 6G (R6G) molecules with the initiation of different magnitudes of external magnetic field. Experimental results indicate that our prepared substrate shows a higher SERS activity and magnetic controllability, where non-spherical Ag nanoparticles are driven to aggregate effectively by the magnetized Co and plenty of hot-spots are built around the metallic Ag nanoparticles, thereby leading to the enhancement of local electromagnetic field. Moreover, when the external magnetic field is increased, our prepared substrate demonstrates excellent SERS enhancement. With the 2500 Gs and 3500 Gs (1 Gs = 10‑4 T) magnetic fields, SERS signal can also be obtained with the detection limit lowering down to 10‑9 M. These results indicate that our proposed magnetic field controlled substrate enables us to freely achieve the enhanced and controllable SERS effect, which can be widely used in the optical sensing, single molecule detection and bio-medical applications. Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant No. 162102210164), the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002), the National Natural Science Foundations of China (Grant Nos. 11574276, 11404291, and 11604079), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 17HASTIT0).

  17. Embedded Ag mesh electrodes for polymer dispersed liquid crystal devices on flexible substrate.

    PubMed

    Liu, Yanhua; Shen, Su; Hu, Jin; Chen, Linsen

    2016-10-31

    An embedded Ag mesh transparent conductive electrode (TCE) on flexible substrate, which is suitable for polymer dispersed liquid crystal (PDLC) device, is demonstrated. With the combination of soft ultra-violet nanoimprinting lithography and scrape technique, it offers parallel processing with high resolution (10000dpi), as well as remarkable simplicity and fully controllable flexibility to tailor the transmittance and sheet resistance. While being able to achieve maximum transmittance 60% in the on state and the minimum 0.1% in the off state, the PDLC smart window displays low sheet resistance (5.58 Ω/sq.) under low driven voltage (30V) safe for human. The main advantage of adoption of PDLC as an optically scattering element lies in the fact that there needs no mechanical part for in situ tunability. An enhancement factor of 50 of the diffraction intensity is observed experimentally. The embedded Ag mesh TCE for PDLC device has an environmentally-friendly additive manufacturing process inherently. Compared to existing solutions, the fabricated sample shows superior performance in both optoelectronic and mechanic characteristics. We envision that the embedded Ag mesh TCE will enable economically widen application of PDLC devices on flexible substrate.

  18. An ultrasensitive, uniform and large-area surface-enhanced Raman scattering substrate based on Ag or Ag/Au nanoparticles decorated Si nanocone arrays

    NASA Astrophysics Data System (ADS)

    Zhang, P. P.; Gao, J.; Sun, X. H.

    2015-01-01

    Large-area and highly ordered Si nanocone arrays decorated with Ag or Au/Ag nanoparticles have been fabricated via a mask-free lithography with reaction ion etching, followed by metal deposition process. Ultrasensitive surface enhanced Raman scattering signals with an enhancement factor of 1012 were achieved even at the concentration of the Rhodamine 6G as low as 10-15 M. The surface-enhanced Raman spectroscopy (SERS) substrate was also applied on the detection of Sudan I dye and the Raman signals were substantially enhanced as well. The stability of the SERS substrate can be significantly improved by covering Ag nanoparticles with Au thin layer, which maintain a high SERS performance even after one month storage. This nanofabrication process appears to be a feasible approach to prepare uniform and reproducible SERS-active substrates with high sensitivity and stability for practical SERS applications.

  19. Using Ag-embedded TiO2 nanotubes array as recyclable SERS substrate

    NASA Astrophysics Data System (ADS)

    Ling, Yunhan; Zhuo, Yuqing; Huang, Liang; Mao, Duolu

    2016-12-01

    A simple strategy for synthesizing Ag-loaded TiO2 nanotube film for use as multifunctional photocatalyst and recyclable surface-enhanced Raman scattering (SERS) substrate is introduced. Highly aligned TiO2 nanotube arrays (TNTA) prepared via electrochemical anodization were used as a 3D rough host for silver nanoparticles. Ag deposits were sputtered in a vacuum, and it was found that their morphologies were mainly influenced by the diameters of nanotubes and the UV irradiation induced aging process, especially the self-migration of silver along the tubular wall. SERS and the self-cleaning effect were observed using Rhodamine 6G (R6G) as the probe molecule. The results showed that narrow nanotube and silver nanoparticles embedment contributed significantly to both the phenomenal SERS and recyclability.

  20. Flexible Pressure Sensor with Ag Wrinkled Electrodes Based on PDMS Substrate

    PubMed Central

    Cui, Jianli; Zhang, Binzhen; Duan, Junping; Guo, Hao; Tang, Jun

    2016-01-01

    Flexible pressure sensors are essential components of electronic skins for future attractive applications ranging from human healthcare monitoring to biomedical diagnostics, robotic skins, and prosthetic limbs. Here we report a new kind of flexible pressure sensor. The sensors are capacitive, and composed of two Ag wrinkled electrodes separated by a carbon nanotubes (CNTs)/polydimethylsiloxane (PDMS) composite deformable dielectric layer. Ag wrinkled electrodes were formed by vacuum deposition on top of pre-strained and relaxed PDMS substrates which were treated using an O2 plasma, a surface functionalization process, and a magnetron sputtering process. Ultimately, the developed sensor exhibits a maximum sensitivity of 19.80% kPa−1 to capacitance, great durability over 500 cycles, and rapid mechanical responses (<200 ms). We also demonstrate that our sensor can be used to effectively detect the location and distribution of finger pressure. PMID:27983656

  1. Cathodoluminescence spectra of gallium nitride nanorods

    PubMed Central

    2011-01-01

    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio. PMID:22168896

  2. Cathodoluminescence spectra of gallium nitride nanorods.

    PubMed

    Tsai, Chia-Chang; Li, Guan-Hua; Lin, Yuan-Ting; Chang, Ching-Wen; Wadekar, Paritosh; Chen, Quark Yung-Sung; Rigutti, Lorenzo; Tchernycheva, Maria; Julien, François Henri; Tu, Li-Wei

    2011-12-14

    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio.

  3. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.

    PubMed

    Shu, Lei; Zhou, Jun; Yuan, Xiaocong; Petti, Lucia; Chen, Jinping; Jia, Zhenhong; Mormile, Pasquale

    2014-06-01

    A super-high-sensitivity immunoassay based on surface-enhanced Raman scattering (SERS) was implemented using the nano-Au immune probes and nano-Ag immune substrate. Ultraviolet-visible extinction spectra, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images, and SERS spectra were used to characterise the nano-Au immune probes and the nano-Ag immune substrate. The nano-Ag immune substrate was prepared by the in situ growth of Ag nanoparticles and the subsequent linkage of these nanoparticles with anti-apolipoprotein B on a silicon wafer. The nano-Ag immune substrate exhibited strong SERS activity, excellent reproducibility, and high biospecificity. The nano-Au immune probes were prepared by immobilising 4-mercaptobenzoic acid (4MBA) molecules as a Raman reporter and anti-apolipoprotein B onto the surfaces of Au nanoparticles. It was found that 4MBA induced the aggregation of Au nanoparticles, resulting in the generation of vast hot spots. Moreover, the nano-Au immune probes exhibited strong SERS activity and high biospecificity. A sandwich-type immunoassay structure consisting of the nano-Au immune probes and nano-Ag immune substrate was used to detect the concentration of apolipoprotein B, where the detection limit was as low as 2 fg/mL (3.878×10(-18) mol/L). Taken together, the experimental results indicate that the proposed immunoassay protocol has a great potential application in biological sensing and clinical diagnostics.

  4. TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Polavarapu, Lakshminarayana; Gao, Nengyue; Pan, Yanlin; Yuan, Peiyan; Wang, Qing; Xu, Qing-Hua

    2013-05-01

    A facile method was used to prepare uniform Au NR/TiO2 and Au/Ag NR/TiO2 core-shell composite nanoparticles. Au/Ag NR/TiO2 nanoparticles were found to display significantly enhanced visible light photo-catalytic activity compared to Au NR/TiO2 and the commercially available TiO2 nanoparticles. The enhancement mechanism was ascribed to injection of hot electrons of photo-excited Au/Ag NRs to TiO2, which was confirmed by 633 nm laser induced reduction of silver ions on the surface of Au/Ag NR/TiO2 composite nanoparticles.A facile method was used to prepare uniform Au NR/TiO2 and Au/Ag NR/TiO2 core-shell composite nanoparticles. Au/Ag NR/TiO2 nanoparticles were found to display significantly enhanced visible light photo-catalytic activity compared to Au NR/TiO2 and the commercially available TiO2 nanoparticles. The enhancement mechanism was ascribed to injection of hot electrons of photo-excited Au/Ag NRs to TiO2, which was confirmed by 633 nm laser induced reduction of silver ions on the surface of Au/Ag NR/TiO2 composite nanoparticles. Electronic supplementary information (ESI) available: The details of experimental procedures, SEM and TEM images of various nanoparticles prepared, photographs of the samples, control experiments, reusability test, wavelength dependent photocatalytic activities of Au/Ag/TiO2 nanoparticles, and UV-Vis spectra of a Ag nanoparticle formed on the surface of Au/Ag/TiO2 under visible light irradiation. See DOI: 10.1039/c3nr00517h

  5. Silver nanoparticle gated, mesoporous silica coated gold nanorods (AuNR@MS@AgNPs): low premature release and multifunctional cancer theranostic platform.

    PubMed

    Zhang, Zhehua; Liu, Changhui; Bai, Junhui; Wu, Cuichen; Xiao, Yue; Li, Yinhui; Zheng, Jing; Yang, Ronghua; Tan, Weihong

    2015-03-25

    Multifunctional nanoparticles integrated with an imaging module and therapeutic drugs are promising candidates for future cancer diagnosis and therapy. Mesoporous silica coated gold nanorods (AuNR@MS) have emerged as a novel multifunctional cancer theranostic platform combining the large specific surface area of mesoporous silica, which guarantees a high drug payload, and the photothermal modality of AuNRs. However, premature release and side effects of exogenous stimulus still hinder the further application of AuNR@MS. To address these issues, herein, we proposed a glutathione (GSH)-responsive multifunctional AuNR@MS nanocarrier with in situ formed silver nanoparticles (AgNPs) as the capping agent. The inner AuNR core functions as a hyperthermia agent, while the outer mesoporous silica shell exhibits the potential to allow a high drug payload, thus posing itself as an effective drug carrier. With the incorporation of targeting aptamers, the constructed nanocarriers show drug release in accordance with an intracellular GSH level with maximum drug release into tumors and minimum systemic release in the blood. Meanwhile, the photothermal effect of the AuNRs upon application to near-infrared (NIR) light led to a rapid rise in the local temperature, resulting in an enhanced cell cytotoxicity. Such a versatile theranostic system as AuNR@MS@AgNPs is expected to have a wide biomedical application and may be particularly useful for cancer therapy.

  6. Effects on Undercooling and Interfacial Reactions with Cu Substrates of Adding Bi and In to Sn-3Ag Solder

    NASA Astrophysics Data System (ADS)

    Chiang, Yu-Yan; Cheng, Robbin; Wu, Albert T.

    2010-11-01

    This study investigated the effects of adding Bi and In to Sn-3Ag Pb-free solder on undercooling, interfacial reactions with Cu substrates, and the growth kinetics of intermetallic compounds (IMCs). The amount of Sn dominates the undercooling, regardless of the amount or species of further additives. The interfacial IMC that formed in Sn-Ag-Bi-In and Sn-In-Bi solders is Cu6Sn5, while that in Sn-Ag-In solders is Cu6(Sn,In)5, since Bi enhances the solubility of In in Sn matrices. The activation energy for the growth of IMCs in Sn-Ag-Bi-In is nearly double that in Sn-Ag-In solders, because Bi in the solder promotes Cu dissolution. The bright particles that form inside the Sn-Ag-In bulk solders are the ζ-phase.

  7. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.

    PubMed

    Kim, Kwan; Choi, Jeong-Yong; Lee, Hyang Bong; Shin, Kuan Soo

    2011-09-28

    A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). Accordingly, although no Raman signal is observable when 4-aminobenzenethiol (4-ABT), for instance, is self-assembled on a flat Au substrate, a distinct spectrum is obtained when Ag or Au nanoparticles are adsorbed on the pendent amine groups of 4-ABT. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Ag or Au nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap even by visible light. To appreciate the Raman scattering enhancement and also to seek the optimal condition for SERS at the nanogap, we have thoroughly examined the size effect of Ag nanoparticles, along with the excitation wavelength dependence, by assembling 4-ABT between planar Au and a variable-size Ag nanoparticle (from 20- to 80-nm in diameter). Regarding the size dependence, a higher Raman signal was observed when larger Ag nanoparticles were attached onto 4-ABT, irrespective of the excitation wavelength. Regarding the excitation wavelength, the highest Raman signal was measured at 568 nm excitation, slightly larger than that at 632.8 nm excitation. The Raman signal measured at 514.5 and 488 nm excitation was an order of magnitude weaker than that at 568 nm excitation, in agreement with the finite-difference time domain simulation. It is noteworthy that placing an Au nanoparticle on 4-ABT, instead of an Ag nanoparticle, the enhancement at the 568 nm excitation was several tens of times weaker than that at the 632.8 nm excitation, suggesting the importance of the localized surface plasmon resonance of the Ag nanoparticles for an effective coupling with the surface plasmon polariton of the planar Au substrate to induce a very intense electric field at the nanogap.

  8. Surface enhanced Raman spectroscopy of self-assembled layers of lipid molecules on nanostructured Au and Ag substrates.

    PubMed

    Slekiene, Nora; Ramanauskaite, Lina; Snitka, Valentinas

    2017-03-01

    In this work surface enhanced Raman spectroscopy (SERS) has been used for the investigation of the self-assembled layers of lipid molecules (SALLMs) deposited on the nanostructured Au and Ag surfaces. The SALLMs were prepared from one part of 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) and four parts of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids. The synthesis of Au and Ag SERS substrates was based on the direct gold and silver ions reduction onto HF etched silicon wafers. Au SERS substrates were not suitable for the formation of SALLMs because of the inappropriate contact angle of surface. It was found that the formation of the SALLM does not take place on Au SERS substrate. However, it has been shown that the modification of Au SERS substrate with 1-dodecanothiol layer allows building the SALLM on its surface. In the case of Ag SERS substrate, the SALLM was deposited directly on its surface. The SERS spectra of the SALLMs were recorded in the CH stretching (2800-3000cm(-1)) and the fingerprint (<1.800cm(-1)) regions. It has been demonstrated that the SERS spectra of the SALLM recorded on Au substrate differs from that one recorded on Ag SERS substrate. These spectral differences were found to be determined by the different interaction mechanisms of the lipid molecules with nanostructured surfaces.

  9. Effect of rare earth metal Ce addition to Sn-Ag solder on interfacial reactions with Cu substrate

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2014-05-01

    The effect of adding a small amount of rare earth cerium (Ce) element to low Ag containing Sn-1wt%Ag Pb-free solder on its interfacial reactions with Cu substrate was investigated. The growth of intermetallic compounds (IMCs) between three Sn-1Ag-xCe solders with different Ce contents and a Cu substrate was studied and the results were compared to those obtained for the Ce-free Sn-1Ag/Cu systems. In the solid-state reactions of the Sn-1Ag(-xCe)/Cu solder joints, the two IMC layers, Cu6Sn5 and Cu3Sn, grew as aging time increased. Compared to the Sn-1Ag/Cu joint, the growth of the Cu6Sn5 and Cu3Sn layers was depressed for the Ce-containing Sn-1Ag-xCe/Cu joint. The addition of Ce to the Sn-Ag solder reduced the growth of the interfacial Cu-Sn IMCs and prevented the IMCs from spalling from the interface. The evenly-distributed Ce elements in the solder region blocked the diffusion of Sn atoms to the interface and retarded the growth of the interfacial IMC layer.

  10. ZnO/Ag composite nanoflowers as substrates for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Guling; Deng, Chaoyue; Shi, Honglong; Zou, Bin; Li, Yongchao; Liu, Tengteng; Wang, Wenzhong

    2017-04-01

    We used a simple two-step hydrothermal method to synthesize ZnO nanoflowers (NFs) evenly decorated with silver nanoparticles (NPs) and evaluated their efficiency as organic-molecule detectors during surface-enhanced Raman scattering (SERS). These three-dimensional (3D) hierarchically structured substrates exhibited high SERS sensitivity with respect to Rhodamine 6G (R6G), with the enhancement factor being as high as 107. And the characteristic peaks of R6G could be identified even at the concentration as low as 10-12 M. SERS maps collected through a point-by-point evaluation suggested that only some parts of the substrates could yield "hot spots," which exhibited extremely high spectral intensities even at relatively low concentrations of the analyte organic molecule. Owing to the synergistic effects of the hierarchically structured semiconductor nanocrystals and the metal NPs, the degree of increase in SERS was much higher than that in the case of Ag NPs alone. This could be ascribed to the high-intensity electromagnetic fields induced at the junction spots formed between the Ag NPs, the chemical enhancement properties of the ZnO NFs, and the ability of the 3D hierarchical nanostructures to create a large number of the adsorption sites and hot spots necessary for SERS.

  11. TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation.

    PubMed

    Zhou, Na; Polavarapu, Lakshminarayana; Gao, Nengyue; Pan, Yanlin; Yuan, Peiyan; Wang, Qing; Xu, Qing-Hua

    2013-05-21

    A facile method was used to prepare uniform Au NR/TiO2 and Au/Ag NR/TiO2 core-shell composite nanoparticles. Au/Ag NR/TiO2 nanoparticles were found to display significantly enhanced visible light photo-catalytic activity compared to Au NR/TiO2 and the commercially available TiO2 nanoparticles. The enhancement mechanism was ascribed to injection of hot electrons of photo-excited Au/Ag NRs to TiO2, which was confirmed by 633 nm laser induced reduction of silver ions on the surface of Au/Ag NR/TiO2 composite nanoparticles.

  12. Highly thermostable, flexible, transparent, and conductive films on polyimide substrate with an AZO/AgNW/AZO structure.

    PubMed

    Huang, Qijin; Shen, Wenfeng; Fang, Xingzhong; Chen, Guofei; Yang, Ye; Huang, Jinhua; Tan, Ruiqin; Song, Weijie

    2015-02-25

    Flexible transparent conductive films (TCFs) are used in a variety of optoelectronic devices. However, their use is limited due to poor thermostability. We report hybrid TCFs incorporation in both aluminum-doped zinc oxide (AZO) and silver nanowires (AgNWs). The layered AZO/AgNWs/AZO structure was deposited onto a transparent polyimide (PI) substrate and displayed excellent thermostability. When heated to 250 °C for 1 h, the change in resistivity (Rc) was less than 10% (Rc of pure AgNW film > 500) while retaining good photoelectric properties (Rsh = 8.6 Ohm/sq and T = 74.4%). Layering the AgNW network between AZO films decreased the surface roughness (Rrms < 8 nm) and enhances the mechanical flexibility of the hybrid films. The combination of these characteristics makes the hybrid film an excellent candidate for substrates of novel flexible optoelectronic devices which require high-temperature processing.

  13. Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Li, Tao; Chen, Qianqian; Gao, Jiabing; Fan, Bingbing; Li, Jian; Li, Xinjian; Zhang, Rui; Sun, Jing; Gao, Lian

    2012-08-01

    The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in situ. WO3 nanocrystals with various shapes (i.e., nanoplates, nanorods, and nanoparticles) were used as the substrates to synthesize Ag/AgCl@WO3 photocatalysts, and the effects of the WO3 contents and photoreduction times on their visible-light-driven photocatalytic performance were investigated. The techniques of TEM, SEM, XPS, EDS, XRD, N2 adsorption-desorption and UV-vis DR spectra were used to characterize the compositions, phases and microstructures of the samples. The RhB aqueous solutions were used as the model system to estimate the photocatalytic performance of the as-obtained Ag/AgCl@WO3 nanostructures under visible light (λ >= 420 nm) and sunlight. The results indicated that the hierarchical Ag/AgCl@plate-WO3 photocatalyst has a higher photodegradation rate than Ag/AgCl, AgCl, AgCl@WO3 and TiO2 (P25). The contents and morphologies of the WO3 substrates in the Ag/AgCl@plate-WO3 photocatalysts have important effects on their photocatalytic performance. The related mechanisms for the enhancement in visible-light-driven photodegradation of RhB molecules were analyzed.The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in

  14. Arrays of ZnO nanorods decorated with Au nanoparticles as surface-enhanced Raman scattering substrates for rapid detection of trace melamine

    NASA Astrophysics Data System (ADS)

    Yi, Zao; Yi, Yong; Luo, Jiangshan; Li, Xibo; Xu, Xibin; Jiang, Xiaodong; Yi, Yougen; Tang, Yongjian

    2014-10-01

    In this paper, as a new, highly sensitive and uniform hybrid surface-enhanced Raman scattering (SERS) substrate, arrays of ZnO nanorods (ZnO-NRs) decorated with Au nanoparticles (Au-NPs) have been prepared. This hybrid substrate manifests high SERS sensitivity to melamine and a detection limit as low as 1.0×10-10 M (1.26 μg L-1). A maximum enhancement factor of 1.0×109 can be obtained with the ZnO NF-Au (sample 2) film. Au-NPs gaps in the array can create lots of SERS “hot spots” that mainly contribute to the high SERS sensitivity. Moreover, the supporting chemical enhancement effect of ZnO-NRs and the better enrichment effect ascribed to the large surface area of the substrate also help to achieve a lower detection limit. The promising advantages of easy sample pretreatment, short detection time and low cost makes the arrays of ZnO-NRs decorated with Au-NPs substrate a potential detection tool in the field of food safety.

  15. Measurement and prediction of contact angles of Pb-free Sn-Ag solder alloys on Cu substrate

    NASA Astrophysics Data System (ADS)

    Erer, A. M.; Candan, E.; Güven, M. H.; Turen, Y.

    2011-04-01

    The contact angle (Θ) of molten Sn and Sn-Ag alloys (0.5, 1.5, 3.5, 6 wt.% Ag) on Cu substrates have been studied by using sessile drop method at various temperatures (230, 250, 275 and 300 °C). Experimental results showed that additions of Ag to Sn resulted in a continuous decrease in the Θ up to 3.5 wt.% above which the Θ value was increased. Increasing alloy temperature also decreased the Θ proportionally. Experimental results revealed that a correlation between the Θ, alloy composition and the alloy temperature exists which yielded an empirical model to predict the Θ at a given Ag content and temperature for a given Sn-Ag alloy. The empirical model predicts the Θ reasonably well with the present work and the other published works.

  16. Wetting reaction of Sn-Ag based solder systems on Cu substrates plated with Au and/or Pd layer

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Li, Jian; Vandentop, G. J.; Choi, W. J.; Tu, K. N.

    2001-05-01

    The wetting behavior of SnAg based Pb-free solders on Cu and Cu substrates plated with Au, Pd, and Au/Pd thin films have been studied. The wetting angle and kinetics of interfacial reaction were measured. The Au-plated substrates exhibit better wetting than the Pd-plated substrates. In the case of SnAg on Pd-plated Cu, SEM observation revealed that the solder cap was surrounded by an innerring of Cu-Sn compound and an outer ring of Pd-Sn compound. This implies that the molten SnAg solder had removed the Pd and wetted the Cu directly in the equilibrium state. The effects of pre-doping Cu in the SnAg solder on wetting behavior were also investigated. We found that wettability decreases with increasing Cu content in the solder. We also observed that the SnAgCu solders have a lower Cu consumption rate than the SnAg solder.

  17. Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Meng, Guowen; Li, Zhongbo; Huang, Zhulin; Li, Xiangdong

    2015-10-01

    Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) ``hot spots'' created from the large quantities of the neighboring Ag-NPs and large-scale uniform morphology, the hierarchical Ag-NP@Ge-nanotaper/Si-micropillar arrays exhibit strong and reproducible SERS activity. Using our hierarchical 3D SERS-substrates, both methyl parathion (a commonly used pesticide) and PCB-2 (one congener of highly toxic polychlorinated biphenyls) with concentrations down to 10-7 M and 10-5 M have been detected respectively, showing great potential in SERS-based rapid trace-level detection of toxic organic pollutants in the environment.Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) ``hot spots'' created from the large quantities of the neighboring Ag-NPs and large-scale uniform

  18. Ligand-induced substrate steering and reshaping of [Ag2(H)](+) scaffold for selective CO2 extrusion from formic acid.

    PubMed

    Zavras, Athanasios; Khairallah, George N; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A J

    2016-06-06

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)](+) by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)](+) and [Ph3PAg2(H)](+) react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)](+) is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)(+) scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)](+) and H2. Decarboxylation of [dppmAg2(O2CH)](+) via CID regenerates [dppmAg2(H)](+). These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH.

  19. Ligand-induced substrate steering and reshaping of [Ag2(H)]+ scaffold for selective CO2 extrusion from formic acid

    PubMed Central

    Zavras, Athanasios; Khairallah, George N.; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J.; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A. J.

    2016-01-01

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)]+ by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)]+ and [Ph3PAg2(H)]+ react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)]+ is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)+ scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)]+ and H2. Decarboxylation of [dppmAg2(O2CH)]+ via CID regenerates [dppmAg2(H)]+. These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH. PMID:27265868

  20. M atom (M = Cu, Ag and Au) interaction with Ag and Au substrates: a first-principles study using cluster and slab models.

    PubMed

    Nigam, Sandeep; Majumder, Chiranjib

    2010-11-03

    Using state-of-the-art first-principles calculations we report the interaction of M atoms (M = Cu, Ag and Au) with small Ag(n), Au(n) clusters (n = 3 and 6) and periodic Ag(111) and Au(111) surfaces. All calculations were performed using the plane wave pseudo-potential approach under the spin polarized version of the generalized gradient approximation scheme. The result shows that the equilibrium geometry of all MAg(3) and MAu(3) clusters favor a planar rhombus structure. From the charge distribution analysis of MAg(n)/MAu(n) clusters it is found that, while Cu and Ag donates electronic charge towards the host clusters, the Au atom acts as an acceptor, thus creating charge polarization in the system. The difference in orbital decomposed charges before and after the M interaction reveals that enhanced s-d hybridization is responsible for keeping the MAu(6) cluster planar, and increased p-orbital participation induces three-dimensional configurations in MAg(6) clusters. The optimization of M atom deposition on the Ag(111) and Au(111) surfaces shows that M atoms prefer to adsorb on the threefold fcc site over other well-defined sites. From the orbital decomposed charge analysis it is inferred that, although there is significant difference in the absolute magnitude of the interaction energy between M atoms and the Ag or Au substrates, the nature of chemical bonding is similar for the finite size clusters as well as in slab models.

  1. Microstructural Characterization of YBa2Cu3O7-x Films with BaZrO3 Nanorods Grown on Vicinal SrTiO3 Substrates (Postprint)

    DTIC Science & Technology

    2010-03-01

    cleaned and mounted in the deposition chamber using colloidal Ag paint. YBCO + BZO films of 160–240 nm thickness were deposited by pulsed laser deposition...bars indicate 100 nm . TABLE I BZO SURFACE PARTICLE AREA DENSITY AND SIZE are also observable at lower magnification of the surface of the non-vicinal 6...modulated surface provided by the vicinal substrate influences the crystalline quality of the YBCO matrix and BZO columnar formation through the

  2. Optical and structural properties of Cr and Ag thin films deposited on glass substrate

    NASA Astrophysics Data System (ADS)

    Rauf, A.; Ahmed, K.; Nasim, F.; Khan, A. N.; Gul, A.

    2016-08-01

    Most of the rotating or noting patterns are being developed by using silver plating through chemical coating. Silver layers deteriorate with the passage of time and become less reflective while undergo through cleaning process due to its softness and the results become unpredictable. In this paper an alternate method for development of above mentioned pattern has been demonstrated. Chromium (Cr) and Silver (Ag) thin films of 200nm and 160nm thick respectively have been realized using electron beam evaporation (PVD technique) on quartz substrate. Structural analysis has been carried out by XRD and SEM while optical transmission/reflection has been studied using spectrophotometer. XRD analysis shows that Ag coated thin films exhibit FCC structure while Cr coated thin films reveals a BCC structure. SEM analysis shows almost smooth and uniform surfaces in both cases. After passing through high and low temperature cycles it was found that the results of pattern structures developed by chromium coating were more reliable than obtained through silver platting process.

  3. DNA-embedded Au-Ag core-shell nanoparticles assembled on silicon slides as a reliable SERS substrate.

    PubMed

    Zhang, Zhong; Zhang, Sha; Lin, Mengshi

    2014-05-07

    This study aimed at developing a sensitive and reliable SERS substrate by assembling DNA-embedded Au-Ag core-shell nanoparticles (NPs) on silicon slides. First, a monolayer of well separated DNA-functionalized Au NPs (40 nm) was decorated on (3-aminopropyl)triethoxysilane modified silicon slides. The DNA-embedded Au-Ag core-shell NPs were assembled on the 40 nm Au-DNA NPs to form a core-satellite structure through DNA hybridization. Using 4-MBA as a Raman dye, the SERS performance of the substrates was evaluated after being cleaned by low oxygen and argon plasma. The Raman intensity of the assembly using DNA-embedded Au-Ag core-shell NPs was 8-10 times higher than the intensity of the assembly using Au NPs as satellites. In addition, the signal-to-noise ratio of the assembly was 2.6 times higher than that of a commercial substrate (Klarite™) when a 785 nm laser was used. The SERS enhancements of the assembled substrates were 2.2 to 2.8 times higher than the Klarite when an acquisition time of 5 s was used at an excitation wavelength of 633 nm. The assembled substrates also show a good spot-to-spot and substrate-to-substrate reproducibility at the excitation wavelengths of 633 and 785 nm. These results demonstrate that the fabrication process is simple and cost-effective for assembling DNA-embedded Au-Ag core-shell NPs on silicon slides that can be used as a reliable SERS substrate.

  4. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-01

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10‑15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  5. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si

    PubMed Central

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-01-01

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10−15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology. PMID:27924863

  6. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si.

    PubMed

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-07

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10(-15) M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  7. FO-SPR based dextrose sensor using Ag/ZnO nanorods/GOx for insulinoma detection.

    PubMed

    Usha, Sruthi P; Shrivastav, Anand M; Gupta, Banshi D

    2016-11-15

    In this piece of work, a fiber optic sensor has been fabricated and characterized using surface plasmon resonance for dextrose sensing. The concentration range used in this study is for diagnosing the cases of hypoglycaemia especially in suppression tests of insulinoma. Insulinoma is a medical case in which the person is recognized being hypoglycaemic with the blood dextrose level falling down to 2.2mM or less. Thus, the sensor has been characterized for the dextrose concentration range of 0 mM-10mM including the cases of normal blood dextrose range. Coatings of silver layer and zinc oxide nanorods have been carried out on the bare core fiber with a dual role of zinc oxide followed by immobilization of glucose oxidase. A three stage optimization procedure has been adopted for the best performance of the sensor. Absorbance spectra have been plotted and peak absorbance wavelengths have been extracted for each concentration chosen along with the sensitivities. The results have been made conclusive with control experiments. The probe has also been tested on sample having blood serum to check the reliability of the sensor. The sensor shows better selectivity and response time along with its real time applications, online monitoring, remote sensing and reusability.

  8. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  9. Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates.

    PubMed

    Wang, Zhiwei; Meng, Guowen; Huang, Zhulin; Li, Zhongbo; Zhou, Qitao

    2014-12-21

    We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS "hot spots" are generated from the electromagnetic coupling of the densely distributed Ag-NPs, and the semiconducting ZnO-mesoporous-NSs also have chemical supporting enhancement and distinct molecule adsorbing abilities, the composite SERS-substrates demonstrate high SERS-sensitivity with good signal reproducibility. As a trial for potential applications, the composite SERS-substrates were used to identify pesticides and highly toxic polychlorinated biphenyls (PCBs), and low concentrations down to 10(-7) M for methyl parathion and 5 × 10(-6) M for PCB-77 were reached, respectively, showing promising potential for the SERS-based rapid detection of toxic organic pollutants in the environment.

  10. White-light-controlled resistive switching chearacteristics of TiO2/Cu2O composite nanorods array

    NASA Astrophysics Data System (ADS)

    Sun, Bai; Liu, Yonghong; Lou, Fangming; Chen, Peng

    2015-08-01

    TiO2/Cu2O composite nanorods array were grown on fluorine-doped tin oxide (FTO) substrate by hydrothermal process, and white-light-controlled resistive switching characteristics of Ag/[TiO2/Cu2O]/FTO structure were further investigated. The current-voltage characteristics of the composite nanorods array represent a good rectifying property and bipolar resistive switching behavior. Specially, the resistive switching behavior can be regulated by white-light illuminating at room temperature. This study is helpful for exploring the memory materials and their applications in nonvolatile light-controlled memory devices.

  11. AuAg bimetallic nonalloyed nanoparticles on a periodically nanostructured GaAs substrate for enhancing light trapping.

    PubMed

    Lee, Soo Kyung; Tan, Chee Leong; Ju, Gun Wu; Song, Jae Hong; Yeo, Chan Il; Lee, Yong Tak

    2015-12-15

    We present a light trapping structure consisting of AuAg bimetallic nonalloyed nanoparticles (BNNPs) on cone-shaped GaAs subwavelength structures (SWSs), combining the advantages of plasmonic structures and SWSs for GaAs-based solar cell applications. To obtain efficient light trapping in solar cells, the optical properties' dependence on the size and composition of the Ag and Au metal nanoparticles was systematically investigated. Cone-shaped GaAs SWSs with AuAg BNNPs formed from an Au film of 12 nm and an Ag film of 10 nm exhibited the extremely low average reflectance (R(avg)) of 2.43% and the solar-weighted reflectance (SWR) of 2.38%, compared to that of a bare GaAs substrate (R(avg), 37.50%; SWR, 36.72%) in the wavelength range of 300 to 870 nm.

  12. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    NASA Astrophysics Data System (ADS)

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt40/C or Pt20/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  13. Quantifying the structural integrity of nanorod arrays.

    PubMed

    Thöle, Florian; Xue, Longjian; HEß, Claudia; Hillebrand, Reinald; Gorb, Stanislav N; Steinhart, Martin

    2017-02-01

    Arrays of aligned nanorods oriented perpendicular to a support, which are accessible by top-down lithography or by means of shape-defining hard templates, have received increasing interest as sensor components, components for nanophotonics and nanoelectronics, substrates for tissue engineering, surfaces having specific adhesive or antiadhesive properties and as surfaces with customized wettability. Agglomeration of the nanorods deteriorates the performance of components based on nanorod arrays. A comprehensive body of literature deals with mechanical failure mechanisms of nanorods and design criteria for mechanically stable nanorod arrays. However, the structural integrity of nanorod arrays is commonly evaluated only visually and qualitatively. We use real-space analysis of microscopic images to quantify the fraction of condensed nanorods in nanorod arrays. We suggest the number of array elements apparent in the micrographs divided by the number of array elements a defect-free array would contain in the same area, referred to as integrity fraction, as a measure of structural array integrity. Reproducible procedures to determine the imaged number of array elements are introduced. Thus, quantitative comparisons of different nanorod arrays, or of one nanorod array at different stages of its use, are possible. Structural integrities of identical nanorod arrays differing only in the length of the nanorods are exemplarily analysed.

  14. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate

    PubMed Central

    Huang, M. L.; Yang, F.

    2014-01-01

    The downsizing of solder balls results in larger interfacial intermetallic compound (IMC) grains and less Cu substrate consumption in lead-free soldering on Cu substrates. This size effect on the interfacial reaction is experimentally demonstrated and theoretically analyzed using Sn-3.0Ag-0.5Cu and Sn-3.5Ag solder balls. The interfacial reaction between the Sn-xAg-yCu solders and Cu substrates is a dynamic response to a combination of effects of interfacial IMC growth, Cu substrate consumption and composition variation in the interface zone. A concentration gradient controlled (CGC) kinetics model is proposed to explain the combined effects. The concentration gradient of Cu at the interface, which is a function of solder volume, initial Cu concentration and reaction time, is the root cause of the size effect. We found that a larger Cu concentration gradient results in smaller Cu6Sn5 grains and more consumption of Cu substrate. According to our model, the growth kinetics of interfacial Cu6Sn5 obeys a t1/3 law when the molten solder has approached the solution saturation, and will be slower otherwise due to the interfering dissolution mechanism. The size effect introduced in this model is supported by a good agreement between theoretical and experimental results. Finally, the scope of application of this model is discussed. PMID:25408359

  15. Silver nanorod arrays for photocathode applications

    NASA Astrophysics Data System (ADS)

    Vilayurganapathy, Subramanian; Nandasiri, Manjula I.; Joly, Alan G.; El-Khoury, Patrick Z.; Varga, Tamas; Coffey, Greg; Schwenzer, Birgit; Pandey, Archana; Kayani, Asghar; Hess, Wayne P.; Thevuthasan, Suntharampillai

    2013-10-01

    We explore the use of plasmonic Ag nanorod arrays featuring enhanced photoemission as high-brightness photocathode material. Silver nanorod arrays are synthesized by the direct current electrodeposition method and their dimensionality, uniformity, crystallinity, and oxide/impurity content are characterized. The yielded arrays exhibit greatly enhanced two-photon photoemission under 400 nm femtosecond pulsed laser excitation. Plasmonic field enhancement in the array produces photoemission hot spots that are mapped using photoemission electron microscopy. The relative photoemission enhancement of nanorod hot spots relative to that of a flat Ag thin film is found to range between 102 and 3 × 103.

  16. Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects.

    PubMed

    Mohandes, Fatemeh; Salavati-Niasari, Masoud

    2013-01-01

    In this investigation, a facile sonochemical route has been developed for the preparation of silver vanadium oxide (SVO) micro/nanorods by using silver salicylate and ammonium metavanadate as silver and vanadate precursor, respectively. Here, silver salicylate, [Ag(HSal)], is introduced as a new silver precursor to fabricate AgVO(3) nanorods. The effect of numerous solvents and surfactants on the morphology and sonochemical formation mechanism of AgVO(3) nanorods was studied. AgVO(3) nanorods were characterized by SEM and TEM images, XRD patterns, FT-IR, XPS, and EDS spectroscopy. SEM, TEM, and XRD results showed that AgO nanoparticles were formed onto AgVO(3) nanorods in the presence of ethanol, cyclohexanol, dimethylsulfoxide (DMSO), and acetone. By using polyethylene glycol (PEG-6000) and N,N-dimethylformamide (DMF) as organic additives, the thickness of AgVO(3) nanorods decreased.

  17. Mirroring the dynamic magnetic behavior of magnetostrictive Co/(Ag,Cu,Ta) multilayers grown onto rigid and flexible substrates

    NASA Astrophysics Data System (ADS)

    Agra, K.; Gomes, R. R.; Della Pace, R. D.; Dorneles, L. S.; Bohn, F.; Corrêa, M. A.

    2015-11-01

    We investigate the magnetoimpedance effect in a wide frequency range in magnetostrictive Co/(Ag,Cu,Ta) multilayers grown onto rigid and flexible substrates. We observe a direct correlation between structural and quasi-static magnetic properties and the magnetoimpedance effect, since they are directly dependent on the nature of the spacer material. Moreover, we verify that all these properties are insensitive to the kind of employed substrate. We compare the magnetoimpedance results measured for multilayers in rigid and flexible substrates and discuss them in terms of different mechanisms that govern the impedances changes, magnetic anisotropy, structural character, and of numerical calculation results found in the literature. The fact that magnetostrictive multilayers can be reproduced in distinct kinds of substrates corresponds to an important advance for their applicability. The results place multilayers grown onto flexible substrates as attractive candidates for application as probe element in the development of MI-based sensor devices.

  18. Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO₂ Core-Shell Nanorods on Flat Alumina Substrates.

    PubMed

    Ju, Dian-Xing; Xu, Hong-Yan; Qiu, Zhi-Wen; Zhang, Zi-Chao; Xu, Qi; Zhang, Jun; Wang, Jie-Qiang; Cao, Bing-Qiang

    2015-09-02

    Chemiresistive gas sensors with low power consumption, fast response, and reliable fabrication process for a specific target gas have been now created for many applications. They require both sensitive nanomaterials and an efficient substrate chip for heating and electrical addressing. Herein, a near room working temperature and fast response triethylamine (TEA) gas sensor has been fabricated successfully by designing gold (Au)-loaded ZnO/SnO2 core-shell nanorods. ZnO nanorods grew directly on Al2O3 flat electrodes with a cost-effective hydrothermal process. By employing pulsed laser deposition (PLD) and DC-sputtering methods, the construction of Au nanoparticle-loaded ZnO/SnO2 core/shell nanorod heterostructure is highly controllable and reproducible. In comparison with pristine ZnO, SnO2, and Au-loaded ZnO, SnO2 sensors, Au-ZnO/SnO2 nanorod sensors exhibit a remarkably high and fast response to TEA gas at working temperatures as low as 40 °C. The enhanced sensing property of the Au-ZnO/SnO2 sensor is also discussed with the semiconductor depletion layer model introduced by Au-SnO2 Schottky contact and ZnO/SnO2 N-N heterojunction.

  19. Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates. II: Fracture Mechanism Map

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Huang, Z.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2012-02-01

    A methodology to construct fracture mechanism maps for Sn-3.8%Ag-0.7%Cu (SAC387) solder joints attached to Cu substrates has been developed. The map, which delineates the operative mechanisms of fracture along with corresponding joint fracture toughness values, is plotted in a space described by two microstructure-dependent parameters, with the abscissa describing the interfacial intermetallic compound (IMC) and the ordinate representing the strain-rate-dependent solder yield strength. The plot space encompasses the three major mechanisms by which joints fail, namely (i) cohesive fracture of solder, (ii) cleavage fracture of interfacial intermetallic compounds (IMC), and (iii) fracture of the solder-IMC interface. Line contours of constant fracture toughness values, as well as constant fraction of each of the above mechanisms, are indicated on the plots. The plots are generated by experimentally quantifying the dependence of the operative fracture mechanism(s) on the two microstructure-dependent parameters (IMC geometry and solder yield strength) as functions of strain rate, reflow parameters, and post-reflow aging. Separate maps are presented for nominally mode I and equi-mixed mode loading conditions (loading angle ϕ = 0° and 45°, respectively). The maps allow rapid assessment of the operative fracture mechanism(s) along with estimation of the expected joint fracture toughness value for a given loading condition (strain rate and loading angle) and joint microstructure without conducting actual tests, and may serve as a tool for both prediction and microstructure design.

  20. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    SciTech Connect

    Fujii, S.; Kawamura, S.; Maitani, M. M.; Suzuki, E.; Wada, Y.; Mochizuki, D.

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  1. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    NASA Astrophysics Data System (ADS)

    Fujii, S.; Kawamura, S.; Mochizuki, D.; Maitani, M. M.; Suzuki, E.; Wada, Y.

    2015-12-01

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  2. Synthesis and characterization of ZnO nanostructures on noble-metal coated substrates

    NASA Astrophysics Data System (ADS)

    Dikovska, A. Og.; Atanasova, G. B.; Avdeev, G. V.; Nedyalkov, N. N.

    2016-06-01

    In this work, ZnO nanostructures were fabricated on noble-metal (Au, Ag and Au-Ag alloys) coated silicon substrates by applying pulsed laser deposition. The samples were prepared at a substrate temperature of 550 °C, an oxygen pressure of 5 Pa, and a laser fluence of 2 J cm-2 - process parameters usually used for deposition of smooth and dense thin films. The metal layer's role is substantial for the preparation of nanostructures. Heating of the substrate changed the morphology of the metal layer and, subsequently, nanoparticles were formed. The use of different metal particles resulted in different morphologies and properties of the ZnO nanostructures synthesized. The morphology of the ZnO nanostructures was related to the Au-Ag alloy's content of the catalyst layer. It was found that the morphology of the ZnO nanostructures evolved from nanorods to nanobelts as the ratio of Au/Ag in the alloy catalyst was varied. The use of a small quantity of Ag in the Au-Ag catalyst (Au3Ag) layer resulted predominantly in the deposition of ZnO nanorods. A higher Ag content in the catalyst alloy (AuAg2) layer resulted in the growth of a dense structure of ZnO nanobelts.

  3. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    SciTech Connect

    Wu, Y.; Li, X.; Xu, P.; Wang, Y.; Shen, X.; Liu, X.; Yang, Q.; Hasan, T.

    2015-02-02

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5 nm. The dominant emission, detectable at ultralow (<1 μA) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25 μA current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter < 250 nm), this trend breaks down due to heat accumulation in the NWs. Our simple device architecture offers a potentially cost-effective scheme to fabricate high efficiency Schottky junction-based UV-LEDs.

  4. Lasing action in gallium nitride quasicrystal nanorod arrays.

    PubMed

    Chang, Shih-Pang; Sou, Kuok-Pan; Chen, Chieh-Han; Cheng, Yuh-Jen; Huang, Ji-Kai; Lin, Chung-Hsiang; Kuo, Hao-Chung; Chang, Chun-Yen; Hsieh, Wen-Feng

    2012-05-21

    We report the observation of lasing action from an optically pumped gallium nitride quasicrystal nanorod arrays. The nanorods were fabricated from a GaN substrate by patterned etching, followed by epitaxial regrowth. The nanorods were arranged in a 12-fold symmetric quasicrystal pattern. The regrowth grew hexagonal crystalline facets and core-shell multiple quantum wells (MQWs) on nanorods. Under optical pumping, multiple lasing peaks resembling random lasing were observed. The lasing was identified to be from the emission of MQWs on the nanorod sidewalls. The resonant spectrum and mode field of the 12-fold symmetric photonic quasicrystal nanorod arrays is discussed.

  5. Annealing effects on the optical and morphological properties of ZnO nanorods on AZO substrate by using aqueous solution method at low temperature.

    PubMed

    Hang, Da-Ren; Islam, Sk Emdadul; Sharma, Krishna Hari; Kuo, Shiao-Wei; Zhang, Cheng-Zu; Wang, Jun-Jie

    2014-01-01

    Vertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates were fabricated by a single-step aqueous solution method at low temperature. In order to optimize optical quality, the effects of annealing on optical and structural properties were investigated by scanning electron microscopy, X-ray diffraction, photoluminescence (PL), and Raman spectroscopy. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions. The best characteristics have been obtained by employing annealing at 400°C in air for 2 h, bringing about a sharp and intense NBE emission. The defect-related recombinations were also suppressed effectively. However, the enhancement decreases with higher annealing temperature and prolonged annealing. PL study indicates that the NBE emission is dominated by radiative recombination associated with hydrogen donors. Thus, the enhancement of NBE is due to the activation of radiative recombinations associated with hydrogen donors. On the other hand, the reduction of visible emission is mainly attributed to the annihilation of OH groups. Our results provide insight to comprehend annealing effects and an effective way to improve optical properties of low-temperature-grown ZnO NRs for future facile device applications.

  6. Immunoassay for tumor markers in human serum based on Si nanoparticles and SiC@Ag SERS-active substrate.

    PubMed

    Zhou, Lu; Zhou, Jun; Feng, Zhao; Wang, Fuyan; Xie, Shushen; Bu, Shizhong

    2016-04-21

    Based on a sandwich structure consisting of nano-Si immune probes and a SiC@Ag SERS-active immune substrate, a kind of ultra-sensitive immunoassay protocol is presented to detect tumor markers in human serum. The nano-Si immune probes were prepared by immobilizing the detecting antibodies onto the surfaces of SiO2-coated Si nanoparticles (NPs) which were modified with 3-(aminopropyl)trimethoxysilane, and the SiC@Ag SERS-active immune substrates were prepared by immobilizing the captured antibodies on Ag film sputtered on SiC sandpaper. To the best of our knowledge, it is the first time that Si NPs are directly used as Raman tags in an immunoassay strategy. And, the SiC@Ag SERS-active substrates exhibit excellent surface enhanced Raman scattering (SERS) performances with an enhancement factor of ∼10(5), owing to the plasmonic effect of the Ag film on the rough surface of the SiC sandpaper. In our experiments, the sandwich immunoassay structure has been successfully applied to detect prostate specific antigen (PSA), α-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA19-9) in a human serum sample and the limit of detections are as low as 1.79 fg mL(-1), 0.46 fg mL(-1) and 1.3 × 10(-3) U mL(-1), respectively. It reveals that the proposed immunoassay protocol has demonstrated a high sensitivity for tumor markers in human serum and a potential practicability in biosensing and clinical diagnostics.

  7. Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwei; Meng, Guowen; Huang, Zhulin; Li, Zhongbo; Zhou, Qitao

    2014-11-01

    We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS ``hot spots'' are generated from the electromagnetic coupling of the densely distributed Ag-NPs, and the semiconducting ZnO-mesoporous-NSs also have chemical supporting enhancement and distinct molecule adsorbing abilities, the composite SERS-substrates demonstrate high SERS-sensitivity with good signal reproducibility. As a trial for potential applications, the composite SERS-substrates were used to identify pesticides and highly toxic polychlorinated biphenyls (PCBs), and low concentrations down to 10-7 M for methyl parathion and 5 × 10-6 M for PCB-77 were reached, respectively, showing promising potential for the SERS-based rapid detection of toxic organic pollutants in the environment.We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS ``hot spots'' are generated from the electromagnetic coupling of the densely

  8. Contact angle measurements of Sn-Ag and Sn-Cu lead-free solders on copper substrates

    NASA Astrophysics Data System (ADS)

    Arenas, Mario F.; Acoff, Viola L.

    2004-12-01

    In this study, the contact angles of four lead-free solders, namely, Sn-3.5Ag, Sn-3.5Ag-4.8Bi, Sn-3.8Ag-0.7Cu, and Sn-0.7Cu (wt.%), were measured on copper substrates at different temperatures. Measurements were performed using the sessile-drop method. Contact angles ranging from 30° to 40° after wetting under vacuum with no fluxes and between 10° and 30° with rosin mildly activated (RMA) and rosin activated (RA) fluxes were obtained. The Sn-3.5Ag-4.8Bi exhibited the lowest contact angles, indicating improved wettability with the addition of bismuth. For all soldering alloys, lower contact angles were observed using RMA flux. Intermetallics formed at the solder/Cu interface were identified as Cu6Sn5 adjacent to the solder and Cu3Sn adjacent to the copper substrate. The Cu3Sn intermetallic phase was generally not observed when RMA flux was used. The effect of temperature on contact angle was dependent on the type of flux used.

  9. Memristive switching of ZnO nanorod mesh

    NASA Astrophysics Data System (ADS)

    Yevgeniy, Puzyrev; Shen, Xiao; Ni, Kai; Zhang, Xuan; Hachtel, Jordan; Choi, Bo; Chisholm, Matthew; Fleetwood, Daniel; Schrimpf, Ronald; Pantelides, Sokrates

    We present a combined experimental and theoretical study of memristive switching in a self-assembled mesh of ZnO nanorods. A ZnO nanorod mesh spans the area between Ag contacts in a device that exhibits hysteresis with large ON/OFF ratio, reaching ION/IOFF values of 104. We show that switching behavior depends critically on the geometry of the nanorod mesh. We employ density functional theory (DFT) calculations to deduce the mechanism for resistive switching for the nanorod mesh. Redistribution of Ag atoms, driven by an electrical field, leads to the formation and evolution of a conducting path through nanorods. Field-induced migration of Ag atoms changes the doping level of nanorods and modulates their conductivity. Using static DFT and nudged-elastic-band calculations, we investigate the energy of interaction between Ag clusters and a ZnO surface, including migration barriers of Ag atoms. Current-voltage (I-V) characteristics are modeled using percolation theory in a nanorod mesh. To describe the dynamics of SET/RESET phenomena, model parameters include the experimentally observed nanorod geometry and the energetics of Ag on ZnO surfaces, obtained from DFT calculations. This work was supported by NSF Grant DMR-1207241, DOE Grant DE-FG02-09ER46554, and the McMinn Endowment at Vanderbilt University. Computational support was provided by the NSF XSEDE under Grant #DMR TG-DMR130121.

  10. Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yao, Yung-Chi; Yang, Zu-Po; Hwang, Jung-Min; Chuang, Yi-Lun; Lin, Chia-Ching; Haung, Jing-Yu; Chou, Chun-Yang; Sheu, Jinn-Kong; Tsai, Meng-Tsan; Lee, Ya-Ju

    2016-02-01

    ZnO nanorods (NRs) and Ag nanoparticles (NPs) are known to enhance the luminescence of light-emitting diodes (LEDs) through the high directionality of waveguide mode transmission and efficient energy transfer of localized surface plasmon (LSP) resonances, respectively. In this work, we have demonstrated Ag NP-incorporated n-ZnO NRs/p-GaN heterojunctions by facilely hydrothermally growing ZnO NRs on Ag NP-covered GaN, in which the Ag NPs were introduced and randomly distributed on the p-GaN surface to excite the LSP resonances. Compared with the reference LED, the light-output power of the near-band-edge (NBE) emission (ZnO, λ = 380 nm) of our hybridized structure is increased almost 1.5-2 times and can be further modified in a controlled manner by varying the surface morphology of the surrounding medium of the Ag NPs. The improved light-output power is mainly attributed to the LSP resonance between the NBE emission of ZnO NRs and LSPs in Ag NPs. We also observed different behaviors in the electroluminescence (EL) spectra as the injection current increases for the treatment and reference LEDs. This observation might be attributed to the modification of the energy band diagram for introducing Ag NPs at the interface between n-ZnO NRs and p-GaN. Our results pave the way for developing advanced nanostructured LED devices with high luminescence efficiency in the UV emission regime.ZnO nanorods (NRs) and Ag nanoparticles (NPs) are known to enhance the luminescence of light-emitting diodes (LEDs) through the high directionality of waveguide mode transmission and efficient energy transfer of localized surface plasmon (LSP) resonances, respectively. In this work, we have demonstrated Ag NP-incorporated n-ZnO NRs/p-GaN heterojunctions by facilely hydrothermally growing ZnO NRs on Ag NP-covered GaN, in which the Ag NPs were introduced and randomly distributed on the p-GaN surface to excite the LSP resonances. Compared with the reference LED, the light-output power of the

  11. Intermetallic compounds formed at the interface between Cu substrate and an Sn-9Zn-0.5Ag lead-free solder

    SciTech Connect

    Chang, T.-C.; Hon, M.-H.; Wang, M.-C

    2003-04-30

    The intermetallic compounds (IMCs) formed at the interface between Cu substrate and an Sn-9Zn-0.5Ag lead-free solder alloy have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron diffraction (ED). The XRD patterns show that the main IMCs formed at the interface of Sn-9Zn-0.5Ag/Cu are {gamma}-Cu{sub 5}Zn{sub 8} and {eta}'-Cu{sub 6}Sn{sub 5}. The Ag{sub 3}Sn IMC with orthorhombic structure was also observed at the Sn-9Zn-0.5Ag/Cu interface by TEM and ED analyses. The interfacial adhesion strength between the Cu substrate and Sn-9Zn-0.5Ag lead-free solder alloy is higher than that of the Sn-9Zn alloy due to the formation of Ag{sub 3}Sn IMC at the interface.

  12. A simple method for preparation of Ag nanofilm used as active, stable, and biocompatible SERS substrate by using electrostatic self-assembly.

    PubMed

    Liu, Renming; Si, Minzhen; Kang, Yipu; Zi, Xingfa; Liu, Zhenquan; Zhang, Deqing

    2010-03-01

    A new SERS-active Ag nanofilm on the surface of a glass slide has been prepared by a low-cost electrochemical strategy using polyvinyl alcohol (PVA) at a proper voltage. The two-dimensional morphology of the Ag nanofilm has been examined by scanning electron microscopy (SEM). The average size of the aggregated particles on the surface of the Ag nanofilm is up to ca. 200+/-50 nm, which is much larger than that of PVA-protected Ag colloidal nanoparticles (PVA-Ag CNPs, 45+/-8 nm). Meanwhile, many nano-scale regions with average sizes of ca. 300+/-50 nm are formed between the adjacent Ag nanoparticles. By the SERS measurements of human serum (HS) and hemoglobin (Hb), this Ag nanofilm is shown to be an excellent SERS substrate with good stability and biocompatibility. As the fabrication process of this SERS substrate is simple and inexpensive, this method may be used in large-scale preparation of substrates that have been widely applied in Raman analysis. In addition, this SERS-active Ag nanofilm can serve as a novel SERS substrate in biochemical analysis due to the biocompatibility.

  13. Preparation of Fe3O4@Ag SERS substrate and its application in environmental Cr(VI) analysis.

    PubMed

    Du, Jingjing; Jing, Chuanyong

    2011-06-01

    A novel sensitive and recyclable SERS substrate which can actively concentrate chromate (Cr(VI)) in water and substantially enhance Raman signal was synthesized as uniform Fe(3)O(4)@Ag nanoparticles. The surface morphology, structure, and magnetic properties were characterized using transmission electron microscopy, atomic force microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and vibrating sample magnetometry analysis. The closely spaced Fe(3)O(4)@Ag substrate with a core-shell structure exhibited a 25 nm surface roughness. The high saturation magnetization at 48.35 emu g(-1) enabled the complete and rapid separation of the substrate from the solution. The sensitivity and reproducibility of the substrate were confirmed using a common SERS probe molecule, rhodamine 6G. SERS spectra of Cr(VI) in simulated and real contaminated water showed that the symmetric stretching vibrations of Cr-O occurred at 796 cm(-1). This SERS peak area exhibited a linear dependence (R(2)=0.9992) on the Cr(VI) concentration between 5 and 100 μg L(-1). Coexisting anions such as sulfate, nitrate, chloride, carbonate, and humic acid could decrease the sensitivity of the SERS analysis. However, the adverse effect of the competing ions may be eliminated by proper dilution of the raw sample. This study provides a reliable method for qualitative and quantitative analysis of Cr(VI).

  14. Ag Nanoparticle-Grafted PAN-Nanohump Array Films with 3D High-Density Hot Spots as Flexible and Reliable SERS Substrates.

    PubMed

    Li, Zhongbo; Meng, Guowen; Huang, Qing; Hu, Xiaoye; He, Xuan; Tang, Haibin; Wang, Zhiwei; Li, Fadi

    2015-10-28

    A facile fabrication approach of large-scale flexible films is reported, with one surface side consisting of Ag-nanoparticle (Ag-NP) decorated polyacrylonitrile (PAN) nanohump (denoted as Ag-NPs@PAN-nanohump) arrays. This is achieved via molding PAN films with ordered nanohump arrays on one side and then sputtering much smaller Ag-NPs onto each of the PAN-nanohumps. Surface-enhanced Raman scattering (SERS) activity of the Ag-NPs@PAN-nanohump array films can be improved by curving the flexible PAN film with ordered nanohump arrays during the Ag-sputtering process to increase the density of the Ag-NPs on the sidewalls of the PAN-nanohumps. More 3D hot spots are thus achieved on a large-scale. The Ag-NPs@PAN-nanohump array films show high SERS activity with good Raman signal reproducibility for Rhodamine 6G probe molecules. To trial their practical application, the Ag-NPs@PAN-nanohump array films are employed as SERS substrates for trace detection of trinitrotoluene and a congener of polychlorinated biphenyls. A lower detection limit of 10(-12) m and 10(-5) m can be achieved, respectively. Furthermore, the flexible Ag-NPs@PAN-nanohump array films can also be utilized as swabs to probe traces of methyl parathion on the surface of fruits such as apples. The as-fabricated SERS substrates therefore have promising potential for applications in rapid safety inspection and environmental protection.

  15. Interfacial microstructure between Sn-3Ag-xBi alloy and Cu substrate with or without electrolytic Ni plating

    NASA Astrophysics Data System (ADS)

    Hwang, Chi-Won; Lee, Jung-Goo; Suganuma, Katsuaki; Mori, Hirotaro

    2003-02-01

    The microstructure of the interfacial phase of Sn-3Ag-xBi alloy on a Cu substrate with or without electrolytic Ni plating was evaluated. Bismuth additions into Sn-Ag alloys do not affect interfacial phase formations. Without plating, η-Cu6Sn5/ɛ-Cu3Sn interfacial phases developed as reaction products in the as-soldered condition. The η-phase Cu6Sn5 with a hexagonal close-packed structure grows about 1-µm scallops. The ɛ-phase Cu3Sn with an orthorhombic structure forms with small 100-nm grains between η-Cu6Sn5 and Cu. For Ni plating, a Ni3Sn4 layer of monoclinic structure formed as the primary reaction product, and a thin η-Ni3Sn2 layer of hexagonal close-packed structure forms between the Ni3Sn4 and Ni layer. In the Ni layer, Ni-Sn compound particles of nanosize distribute by Sn diffusion into Ni. On the total thickness of interfacial reaction layers, Sn-3Ag-6Bi joints are thicker by about 0.9 µm for the joint without Ni plating and 0.18 µm for the joint with Ni plating than Sn-3Ag joints, respectively. The thickening of interfacial reaction layers can affect the mechanical properties of strength and fatigue resistance.

  16. Growth of metal-semiconductor core-multishell nanorods with optimized field confinement and nonlinear enhancement.

    PubMed

    Nan, Fan; Xie, Fang-Ming; Liang, Shan; Ma, Liang; Yang, Da-Jie; Liu, Xiao-Li; Wang, Jia-Hong; Cheng, Zi-Qiang; Yu, Xue-Feng; Zhou, Li; Wang, Qu-Quan; Zeng, Jie

    2016-06-09

    This paper describes a facile method for the synthesis of Au/AuAg/Ag2S/PbS core-multishell nanorods with double trapping layers. The synthesis, in sequence, involved deposition of Ag shells onto the surfaces of Au nanorod seeds, formation of AuAg shells by a galvanic replacement reaction, and overgrowth of the Ag2S shells and PbS shells. The resulting core-multishell nanorod possesses an air gap between the Au core and the AuAg shell. Together with the Ag2S shell, the air gap can efficiently trap light, causing strong field confinement and nonlinear enhancement. The as-prepared Au/AuAg/Ag2S/PbS core-multishell nanorods display distinct localized surface plasmon resonance and nonlinear optical properties, demonstrating an effective pathway for maneuvering the optical properties of nanocavities.

  17. A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants.

    PubMed

    Zhou, Ningning; Meng, Guowen; Huang, Zhulin; Ke, Yan; Zhou, Qitao; Hu, Xiaoye

    2016-10-21

    This report presents a simple and inexpensive fabrication approach to a flexible transparent composite film as a "cut-and-paste" surface-enhanced Raman scattering (SERS) substrate for in situ detection of organic pollutants. First, a self-assembled monolayer of Ag-nanocubes (Ag-NCs) is obtained at the air/water interface. Then, the Ag-NC monolayer is retrieved onto a flexible transparent polyethylene (PE) film to achieve an Ag-NC@PE composite film as a flexible SERS substrate. As the Ag-NCs in the monolayer are closely and uniformly packed on the PE film, the Ag-NC@PE composite film shows high SERS-activity with good signal homogeneity and reproducibility. Furthermore, the flexible transparent Ag-NC@PE composite film is "cut into" small pieces and directly "pasted" onto contaminated fruits for in situ SERS detection, as a result 10 nM thiram, 1 μM 4-polychlorinated biphenyl and 10 nM methyl parathion contaminants on oranges are detected, respectively. Therefore the Ag-NC@PE composite film is an inexpensive and effective SERS substrate for rapid in situ detection of organic pollutants in aqueous solutions, on fruits and other solid objects.

  18. Real time investigation of the effect of thermal expansion coefficient mismatch on film-substrate strain partitioning in Ag/Si systems

    NASA Astrophysics Data System (ADS)

    Das, Debolina; Banu, Nasrin; Bisi, Bhaskar; Mahato, J. C.; Srihari, V.; Halder, Rumu; Dev, B. N.

    2016-10-01

    We have used X-ray diffraction (XRD) to investigate strain partitioning between an epitaxial layer and the substrate as a function of temperature, where the substrate (Si) and the epilayer material (Ag) have large thermal expansion coefficient (α) mismatch. The Ag/Si(111) system undergoes morphological changes upon heating, and the larger and taller islands are formed exposing more substrate surfaces. Sample heating was carried out under nitrogen flow. At >300 °C, the Si(111) diffraction peak splits into three. One of these components conforms to the thermal expansion of bulk Si. The other two components correspond to a highly nonlinear decrease and increase of Si-d(111) planar spacing. The decreasing component has been associated with strained Si under Ag and the increasing component with strained Si under SiO2, which has been formed partly prior to the XRD experiment and partly during sample heating. The opposite trends of these two Si-d(111) components are because of the larger value of α for Ag (7 times) and smaller for SiO2 (1/5th) compared to Si. The out-of-plane strain partitioning has been such that at room temperature, the Si substrate is unstrained and the strain in Ag is ˜0.3%. At 800 °C, Ag is practically relaxed, while Si under Ag is ˜-0.7% strained. A temperature dependent strain partitioning factor has been introduced to fit the data.

  19. Manipulation of cadmium selenide nanorods with an atomic force microscope.

    PubMed

    Tranvouez, E; Orieux, A; Boer-Duchemin, E; Devillers, C H; Huc, V; Comtet, G; Dujardin, G

    2009-04-22

    We have used an atomic force microscope (AFM) to manipulate and study ligand-capped cadmium selenide nanorods deposited on highly oriented pyrolitic graphite (HOPG). The AFM tip was used to manipulate (i.e., translate and rotate) the nanorods by applying a force perpendicular to the nanorod axis. The manipulation result was shown to depend on the point of impact of the AFM tip with the nanorod and whether the nanorod had been manipulated previously. Forces applied parallel to the nanorod axis, however, did not give rise to manipulation. These results are interpreted by considering the atomic-scale interactions of the HOPG substrate with the organic ligands surrounding the nanorods. The vertical deflection of the cantilever was recorded during manipulation and was combined with a model in order to estimate the value of the horizontal force between the tip and nanorod during manipulation. This horizontal force is estimated to be on the order of a few tens of nN.

  20. Growth of metal-semiconductor core-multishell nanorods with optimized field confinement and nonlinear enhancement

    NASA Astrophysics Data System (ADS)

    Nan, Fan; Xie, Fang-Ming; Liang, Shan; Ma, Liang; Yang, Da-Jie; Liu, Xiao-Li; Wang, Jia-Hong; Cheng, Zi-Qiang; Yu, Xue-Feng; Zhou, Li; Wang, Qu-Quan; Zeng, Jie

    2016-06-01

    This paper describes a facile method for the synthesis of Au/AuAg/Ag2S/PbS core-multishell nanorods with double trapping layers. The synthesis, in sequence, involved deposition of Ag shells onto the surfaces of Au nanorod seeds, formation of AuAg shells by a galvanic replacement reaction, and overgrowth of the Ag2S shells and PbS shells. The resulting core-multishell nanorod possesses an air gap between the Au core and the AuAg shell. Together with the Ag2S shell, the air gap can efficiently trap light, causing strong field confinement and nonlinear enhancement. The as-prepared Au/AuAg/Ag2S/PbS core-multishell nanorods display distinct localized surface plasmon resonance and nonlinear optical properties, demonstrating an effective pathway for maneuvering the optical properties of nanocavities.This paper describes a facile method for the synthesis of Au/AuAg/Ag2S/PbS core-multishell nanorods with double trapping layers. The synthesis, in sequence, involved deposition of Ag shells onto the surfaces of Au nanorod seeds, formation of AuAg shells by a galvanic replacement reaction, and overgrowth of the Ag2S shells and PbS shells. The resulting core-multishell nanorod possesses an air gap between the Au core and the AuAg shell. Together with the Ag2S shell, the air gap can efficiently trap light, causing strong field confinement and nonlinear enhancement. The as-prepared Au/AuAg/Ag2S/PbS core-multishell nanorods display distinct localized surface plasmon resonance and nonlinear optical properties, demonstrating an effective pathway for maneuvering the optical properties of nanocavities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09151a

  1. Structural and optical properties of AgAlTe{sub 2} layers grown on sapphire substrates by closed space sublimation method

    SciTech Connect

    Uruno, A. Usui, A.; Kobayashi, M.

    2014-11-14

    AgAlTe{sub 2} layers were grown on a- and c-plane sapphire substrates using a closed space sublimation method. Grown layers were confirmed to be single phase layers of AgAlTe{sub 2} by X-ray diffraction. AgAlTe{sub 2} layers were grown to have a strong preference for the (112) orientation on both kinds of substrates. The variation in the orientation of grown layers was analyzed in detail using the X-ray diffraction pole figure measurement, which revealed that the AgAlTe{sub 2} had a preferential epitaxial relationship with the c-plane sapphire substrate. The atomic arrangement between the (112) AgAlTe{sub 2} layer and sapphire substrates was compared. It was considered that the high order of the lattice arrangement symmetry probably effectively accommodated the lattice mismatch. The optical properties of the grown layer were also evaluated by transmittance measurements. The bandgap energy was found to be around 2.3 eV, which was in agreement with the theoretical bandgap energy of AgAlTe{sub 2}.

  2. Substrate-Linked Conformational Change in the Periplasmic Component of a Cu(I)/Ag(I) Efflux System

    SciTech Connect

    Bagai, I.; Liu, W.; Rensing, C.; Blackburn, N.J.; McEvoy, M.M.

    2009-06-02

    Gram-negative bacteria utilize dual membrane resistance nodulation division-type efflux systems to export a variety of substrates. These systems contain an essential periplasmic component that is important for assembly of the protein complex. We show here that the periplasmic protein CusB from the Cus copper/silver efflux system has a critical role in Cu(I) and Ag(I) binding. Isothermal titration calorimetry experiments demonstrate that one Ag(I) ion is bound per CusB molecule with high affinity. X-ray absorption spectroscopy data indicate that the metal environment is an all-sulfur 3-coordinate environment. Candidates for the metal-coordinating residues were identified from sequence analysis, which showed four conserved methionine residues. Mutations of three of these methionine residues to isoleucine resulted in significant effects on CusB metal binding in vitro. Cells containing these CusB variants also show a decrease in their ability to grow on copper-containing plates, indicating an important functional role for metal binding by CusB. Gel filtration chromatography demonstrates that upon binding metal, CusB undergoes a conformational change to a more compact structure. Based on these structural and functional effects of metal binding, we propose that the periplasmic component of resistance nodulation division-type efflux systems plays an active role in export through substrate-linked conformational changes.

  3. Novel One-pot Fabrication of Lab-on-a-Bubble@Ag Substrate without Coupling-agent for Surface Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Jiang, Jizhou; Ou-Yang, Lei; Zhu, Lihua; Zou, Jing; Tang, Heqing

    2014-02-01

    Through in-situ reduction of silver nitrate without using any coupling-agent, a substrate for surface-enhanced Raman scattering (SERS) was prepared by coating silver on hollow buoyant silica microspheres as a lab on a bubble (LoB). The silver coated LoBs (LoBs@Ag) floated on surface of a solution could provide a very convenient platform for the detection of target molecules in the solution. The LoBs@Ag substrate not only immobilized well-distributed Ag nanoparticles on the surface LoBs, but excluded the interference of coupling agents. This yielded high-resolution SERS spectra with excellent reproducibility. The adsorption of crystal violet (CV) on the LoBs@Ag substrate was investigated by means of SERS combined with density functional theory (DFT) calculations. The LoBs@Ag substrate exhibited a remarkable Raman enhancement effect for CV with an enhancement factor of 6.9 × 108 and wide adaptability from dye, pesticide to bio-molecules. On the basis of this substrate, a simple and sensitive SERS method was proposed for the determination of trace organic pollutants or bio-molecules.

  4. Novel One-pot Fabrication of Lab-on-a-Bubble@Ag Substrate without Coupling-agent for Surface Enhanced Raman Scattering

    PubMed Central

    Jiang, Jizhou; Ou-Yang, Lei; Zhu, Lihua; Zou, Jing; Tang, Heqing

    2014-01-01

    Through in-situ reduction of silver nitrate without using any coupling-agent, a substrate for surface-enhanced Raman scattering (SERS) was prepared by coating silver on hollow buoyant silica microspheres as a lab on a bubble (LoB). The silver coated LoBs (LoBs@Ag) floated on surface of a solution could provide a very convenient platform for the detection of target molecules in the solution. The LoBs@Ag substrate not only immobilized well-distributed Ag nanoparticles on the surface LoBs, but excluded the interference of coupling agents. This yielded high-resolution SERS spectra with excellent reproducibility. The adsorption of crystal violet (CV) on the LoBs@Ag substrate was investigated by means of SERS combined with density functional theory (DFT) calculations. The LoBs@Ag substrate exhibited a remarkable Raman enhancement effect for CV with an enhancement factor of 6.9 × 108 and wide adaptability from dye, pesticide to bio-molecules. On the basis of this substrate, a simple and sensitive SERS method was proposed for the determination of trace organic pollutants or bio-molecules. PMID:24487575

  5. Improve the fluorescence quenching efficiency of gold nanorod by silver coating

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu

    2013-11-01

    The interactions of bovine serum albumins (BSA) with Au-Ag core-shell nanorods have been studied using fluorescence spectroscopic techniques. It was observed that Ag coated Au nanorods exhibit higher fluorescence quenching efficiency compared with bare Au nanorods. The fluorescence quenching efficiency could be further improved by increasing the aspect ratio or Ag shell thickness of the Au nanorods. Furthermore, the quenching efficiency to BSA is increased as the concentration of BSA is decreased. The physical origin has been illustrated by calculating the dielectric environment dependent fluorescence quenching based on quasi-static theory and fluorescence energy transfer of dipole-dipole coupling.

  6. Electronic structure and TDDFT optical absorption spectra of silver nanorods.

    PubMed

    Johnson, Hannah E; Aikens, Christine M

    2009-04-23

    Density functional theory calculations are employed to determine optimized geometries and excitation spectra for small pentagonal silver nanorods Ag(n), with n = 13, 19, 25, 31, 37, 43, 49, 55, 61, and 67 in various charge states. The asymptotically correct SAOP functional is utilized in the excitation calculations. Silver nanorods exhibit a sharp longitudinal excitation that results from a mixture of orbital transitions; the wavelength for this excitation depends linearly on the length of the nanorod. The broad transverse excitation arises from multiple excited states. A particle-in-a-box model is employed to explain the linear dependence of the longitudinal excitation wavelength on nanorod length.

  7. Surface enhanced Raman scattering of 4-aminothiophenol sandwiched between Ag nanocubes and smooth Pt substrate: The effect of the thickness of Pt film

    NASA Astrophysics Data System (ADS)

    Zhu, Shuangmei; Fan, Chunzhen; Wang, Junqiao; He, Jinna; Liang, Erjun; Chao, Mingju

    2014-07-01

    Ag nanocubes (NCs)/4-aminothiophenol (p-ATP)/smooth platinum (Pt) film (Ag-NCs @ p-ATP/Pt) sandwich structure is created for surface enhanced Raman scattering (SERS). The proposed sandwich structure is shown to exhibit better performance than the Ag-NCs only as SERS substrate. The dependence of the Raman signal intensity on the thickness of the Pt films is examined. It is shown that the Raman signal increases with the thickness of the Pt films from 42 to 90 nm, suggesting the electromagnetic coupling of the localized surface plasmons of the Ag-NCs with the surface plasmon polaritons of the underneath Pt film, which is confirmed by our numerical simulations. The SERS enhancement factor in Ag-NCs @ p-ATP/Pt is estimated to be (4.1 ± 0.2) × 106 for a Pt film of 90 nm.

  8. Ag-nanoparticle-decorated Ge nanocap arrays protruding from porous anodic aluminum oxide as sensitive and reproducible surface-enhanced Raman scattering substrates.

    PubMed

    Liu, Jing; Meng, Guowen; Li, Xiangdong; Huang, Zhulin

    2014-11-25

    We report on the fabrication of Ag nanoparticle (Ag NP) decorated germanium (Ge) nanocap (Ag-NPs@Ge-nanocap) arrays protruding from highly ordered porous anodic aluminum oxide (AAO) template as highly sensitive and uniform surface-enhanced Raman scattering (SERS) substrates. The hybrid SERS substrates are fabricated via a combinatorial process of AAO template-assisted growth of Ge nanotubes with each tube having a hemispherical nanocap on the AAO pore bottom, wet chemical etching of the remaining aluminum and the AAO barrier layer to expose the Ge nanocaps, and sputtering Ag NPs on the Ge nanocap arrays. Because sufficient SERS "hot spots" are created from the electromagnetic coupling among the Ag NPs on the Ge nanocap and the highly ordered Ge nanocap arrays also have semiconducting chemical supporting enhancement, the hybrid SERS substrates have high SERS sensitivity and good signal reproducibility. Using the hybrid SERS substrates, Rhodamine 6G with a concentration down to 10(-11) M is identified, and one congener of highly toxic polychlorinated biphenyls with a concentration as low as 10(-6) M is also recognized, showing great potential for SERS-based rapid detection of organic pollutants in the environment.

  9. Nanoscale arrangement of diblock copolymer micelles with Au nanorods

    NASA Astrophysics Data System (ADS)

    Kim, Hwan; Lim, Yirang; Kim, Sehee; Kim, Sung-Soo; Sohn, Byeong-Hyeok

    2014-11-01

    We fabricated a single-layered film consisting of spherical micelles of diblock copolymers and one-dimensional Au nanorods that were surface modified with the same polymer as the corona block of the copolymers. When the diameters of micelles were larger than the lengths of the nanorods, spherical micelles arranged in a hexagonal configuration surrounded by nanorods with their long axes perpendicular to the radial direction of the micelles. This arrangement provided selective organization of the Au nanorods and Ag nanoparticles which were selectively synthesized within the cores of the copolymer micelles. Thus, position-selective arrangement of Au nanorods and Ag nanoparticles was demonstrated at the nanometer scale such that a homogenous distribution of two different nanomaterials over a large area without aggregation was achieved.

  10. Characterization of silver ions adsorbed on gold nanorods: surface analysis by using surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Niidome, Yasuro; Nakamura, Yuki; Honda, Kanako; Akiyama, Yasuyuki; Nishioka, Koji; Kawasaki, Hideya; Nakashima, Naotoshi

    2009-04-07

    Surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-MS) indicated AgBr2-, which adsorbed on gold nanorod surfaces, was a key material to control the anisotropic growth of gold nanorods.

  11. Structural and optical properties of dense vertically aligned ZnO nanorods grown onto silver and gold thin films by galvanic effect with iron contamination

    SciTech Connect

    Scarpellini, D.; Paoloni, S.; Medaglia, P.G.; Pizzoferrato, R.; Orsini, A.; Falconi, C.

    2015-05-15

    Highlights: • ZnO nanorods were grown on Au and Ag films in aqueous solution by galvanic effect. • The method is prone to metal contamination which can influence the ZnO properties. • Iron doping improves the lattice matching between ZnO and the substrate. • Energy levels of point defects are lowered and the light emission is red-shifted. • Galvanic-induced nucleation starts and proceeds continuously during the growth. - Abstract: Dense arrays of vertically aligned ZnO nanorods have been grown onto either silver or gold seedless substrates trough a simple hydrothermal method by exploiting the galvanic effect between the substrate and metallic parts. The nanorods exhibit larger bases and more defined hexagonal shapes, in comparison with standard non-galvanic wet-chemistry synthesis. X-ray diffraction (XRD) shows that the iron contamination, associated with the galvanic contact, significantly improves the in-plane compatibility of ZnO with the Au and Ag cubic lattice. Photoluminescence (PL) measurements indicate that the contamination does not affect the number density of localized defects, but lowers their energy levels uniformly; differently, the band-edge emission is not altered appreciably. Finally, we have found that the ZnO hetero-nucleation by galvanic effect initiates at different times in different sites of the substrate area. Our results can be useful for the fabrication of high performance piezonanodevices comprising high-density metal-to-ZnO nanoscaled junctions without intermediate polycrystalline layers.

  12. Controlled novel route to synthesis and characterization of silver nanorods.

    PubMed

    Gautam, A; Mukherjee, Shaibal; Ram, S

    2010-07-01

    Silver nanorods were synthesized by burning out the as prepared Ag-PVA nanocomposite films at 300 degrees C in air. Aqueous PVA solution is acts as stabilizing agents for silver nanorods. The formation of silver nanorods was confirmed from the appearance of two surface plasmon absorption maxima at 425 and 465 nm due to transverse and longitudinal mode of vibration of electrons. SEM micrograph showed the resultant nanorods were 500-600 nm in length and 50-70 nm in diameter. It is supported by TEM with more 1000 nm in length and 40-60 nm diameters. The XRD demonstrated that the nanorods were present in fcc crystal of pure silver. Finally the X-ray photoelectron spectroscopy (XPS) also confirmed the formation of silver nanorods with 3d(5/2) and 3d(3/2) band at 368.6 and 374.6 eV respectively.

  13. Methods of making functionalized nanorods

    DOEpatents

    Gur, Ilan [San Francisco, CA; Milliron, Delia [Berkeley, CA; Alivisatos, A Paul [Oakland, CA; Liu, Haitao [Berkeley, CA

    2012-01-10

    A process for forming functionalized nanorods. The process includes providing a substrate, modifying the substrate by depositing a self-assembled monolayer of a bi-functional molecule on the substrate, wherein the monolayer is chosen such that one side of the bi-functional molecule binds to the substrate surface and the other side shows an independent affinity for binding to a nanocrystal surface, so as to form a modified substrate. The process further includes contacting the modified substrate with a solution containing nanocrystal colloids, forming a bound monolayer of nanocrystals on the substrate surface, depositing a polymer layer over the monolayer of nanocrystals to partially cover the monolayer of nanocrystals, so as to leave a layer of exposed nanocrystals, functionalizing the exposed nanocrystals, to form functionalized nanocrystals, and then releasing the functionalized nanocrystals from the substrate.

  14. Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants

    NASA Astrophysics Data System (ADS)

    Ye, Yingjie; Chen, Jin; Ding, Qianqian; Lin, Dongyue; Dong, Ronglu; Yang, Liangbao; Liu, Jinhuai

    2013-06-01

    Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization.Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization. Electronic supplementary information (ESI) available: Additional XRD patterns and SEM images of Fe3O4@C particles, SERS spectra of 4-ATP and 4-MPY using Fe3O4@C@Ag particles as the active substrates, magnetic behaviour of Fe3O4@C and Fe3O4@C@Ag particles. See DOI: 10.1039/c3nr01273e

  15. Multiple Surface Plasmon Modes for Gold/Silver Alloy Nanorods

    SciTech Connect

    Bok, Hye-Mi; Shuford, Kevin L; Kim, Sungwan; Kim, Seong Kyu; Park, Sungho

    2009-01-01

    Alloy nanorods consisting of bimetallic gold and silver are synthesized by employing the electrochemical codeposition of Au/Ag alloy materials into the pores of anodized aluminum oxide templates. This paper presents the variation of localized surface plasmon resonance (LSPR) modes of the Au{sub x}/Ag{sub 1-x} alloy nanorods as a function of relative compositions of Au and Ag. Transverse and multiple longitudinal modes were observed when the length was longer than ca. 300 nm. For a given length, the transverse LSPR mode systematically blue-shifted as the Ag portion increased, while there was little variation in peak positions of the longitudinal LSPR modes. The optical properties of the Au{sub x}/Ag{sub 1-x} alloy nanorods were calculated using the discrete dipole approximation and showed a good agreement with the experimental measurements.

  16. Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates

    NASA Astrophysics Data System (ADS)

    Bir, F.; Khireddine, H.; Touati, A.; Sidane, D.; Yala, S.; Oudadesse, H.

    2012-07-01

    Fluoridated hydroxyapatite (FHA, Ca10(PO4)6(OH)2-xFx where 0 < x < 2 is the degree of fluoridation) and inorganic ions (Zn2+, Cu2+, Ag+) substituted fluoridated hydroxyapatite coatings (M-FHA) were deposited on the surface of medical grade 316L stainless steel samples by electrochemical deposition technique. The FHA coatings were co-substituted with antibacterial ions (Zn2+, Cu2+ or Ag+) by co-precipitation and ion-exchange methods. Characterization studies of coatings from X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX) showed that the obtained layers are monophase crystals FHA and did not contain any discernible crystalline impurity. The particles of all samples are of nano size that gives thin layers. The surface morphology, microstructure and Ca/P atomic ratio of the FHA coatings can be regulated by varying electrolyte temperature. This later affects the porosity of the coating surface and the chemical compositions of the deposits. Quantitative elemental analysis indicates that the copper, zinc and silver ions are incorporated into the Fluorohydroxyapatite. The antimicrobial effects of doped fluorohydroxyapatite coatings against pathogen bacterial strains Staphylococcus aureus were tested in liquid media. The results are promising and demonstrated that all doped FHA samples exhibit excellent antimicrobial activity "in vitro" against the microorganism, so the antimicrobial properties of the coatings developed are improved.

  17. High quality interconnected core/shell ZnO nanorod architectures grown by pulsed laser deposition on ZnO-seeded Si substrates

    NASA Astrophysics Data System (ADS)

    Inguva, Saikumar; Vijayaraghavan, Rajani K.; McGlynn, Enda; Mosnier, Jean-Paul

    2017-01-01

    We report the production of vertically aligned and interconnected ZnO core/shell nanorods using pulsed laser deposition (PLD) in a continuous two-step growth process. X-ray diffraction studies showed wurtzite structure and c-axis orientation with a high degree of verticality. Scanning electron microscopy showed a characteristic interconnection morphology between the nanorod tips uniformly present over the entire sample surface area, while transmission electron microscopy revealed crystalline core/amorphous shell architecture. Strong bands at 98.7 cm-1 and 437.2 cm-1 (wurtzite ZnO low and high non-polar E2 modes) were the main features of the nanorod Raman spectra, again showing the high sample quality. Low-temperature PL data exhibited strong I6 emission and structured green band showing high optical quality. Electrical studies indicated n-type material with ohmic behaviour. The results are discussed in the context of the advantages offered by interconnected architectures of core/shell ZnO nanostructures for various applications.

  18. Synthesis of out-of-substrate Au-Ag nanoplates with enhanced stability for catalysis.

    SciTech Connect

    Sun, Y.; Lei, C.; Center for Nanoscale Materials; Univ. of Illinois

    2009-01-01

    Gold-silver alloy nanoplates with out-of-substrate orientation are synthesized on large-area supports by growth of silver nanoplates on gallium arsenide wafers followed by an overgrowth and alloying process. The surfaces of the nanoplates are highly exposed to the surrounding environment, thus increasing their catalytic efficiency.

  19. Hydrophobic metallic nanorods with Teflon nanopatches.

    PubMed

    Khudhayer, Wisam J; Sharma, Rajesh; Karabacak, Tansel

    2009-07-08

    Introducing a hydrophobic property to vertically aligned hydrophilic metallic nanorods was investigated experimentally and theoretically. The platinum nanorod arrays were deposited on flat silicon substrates using a sputter glancing angle deposition technique (GLAD). Then a thin layer of Teflon (nanopatch) was partially deposited on the tips of platinum nanorods at a glancing angle of theta(dep) = 85 degrees for different deposition times. Teflon deposition on Pt nanorods at normal incidence (theta(dep) = 0 degrees) was also performed for comparison. Morphology and elemental analysis of Pt/Teflon nanocomposite structures were carried out using scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDAX), respectively. It was found that the GLAD technique is capable of depositing ultrathin isolated Teflon nanostructures on selective regions of nanorod arrays due to the shadowing effect during obliquely incident deposition. Contact angle measurements on nanocomposite Pt nanorods with Teflon nanopatches exhibited contact angle values as high as 138 degrees, indicating a significant increase in the hydrophobicity of originally hydrophilic Pt nanostructures that had an angle of about 52 degrees. The enhanced hydrophobicity of the Pt nanorod/Teflon nanopatch composite is attributed to the presence of nanostructured Teflon coating, which imparted a low surface energy. Surface energy calculations were performed on Pt nanorods, Teflon thin film, and Pt/Teflon composite using the two-liquid method to confirm the contact angle measurements. Furthermore, a new contact angle model utilizing Cassie and Baxter theory for heterogeneous surfaces was developed in order to explain the enhanced hydrophobicity of Pt/Teflon nanorods. According to our model, it is predicted that the solid-liquid interface is mainly at the Teflon tips when the composite nanorods are in contact with water.

  20. Hydrophobic metallic nanorods with Teflon nanopatches

    NASA Astrophysics Data System (ADS)

    Khudhayer, Wisam J.; Sharma, Rajesh; Karabacak, Tansel

    2009-07-01

    Introducing a hydrophobic property to vertically aligned hydrophilic metallic nanorods was investigated experimentally and theoretically. The platinum nanorod arrays were deposited on flat silicon substrates using a sputter glancing angle deposition technique (GLAD). Then a thin layer of Teflon (nanopatch) was partially deposited on the tips of platinum nanorods at a glancing angle of θdep = 85° for different deposition times. Teflon deposition on Pt nanorods at normal incidence (θdep = 0°) was also performed for comparison. Morphology and elemental analysis of Pt/Teflon nanocomposite structures were carried out using scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDAX), respectively. It was found that the GLAD technique is capable of depositing ultrathin isolated Teflon nanostructures on selective regions of nanorod arrays due to the shadowing effect during obliquely incident deposition. Contact angle measurements on nanocomposite Pt nanorods with Teflon nanopatches exhibited contact angle values as high as 138°, indicating a significant increase in the hydrophobicity of originally hydrophilic Pt nanostructures that had an angle of about 52°. The enhanced hydrophobicity of the Pt nanorod/Teflon nanopatch composite is attributed to the presence of nanostructured Teflon coating, which imparted a low surface energy. Surface energy calculations were performed on Pt nanorods, Teflon thin film, and Pt/Teflon composite using the two-liquid method to confirm the contact angle measurements. Furthermore, a new contact angle model utilizing Cassie and Baxter theory for heterogeneous surfaces was developed in order to explain the enhanced hydrophobicity of Pt/Teflon nanorods. According to our model, it is predicted that the solid-liquid interface is mainly at the Teflon tips when the composite nanorods are in contact with water.

  1. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    SciTech Connect

    Das, Sayantan; Alford, T. L.

    2013-06-28

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  2. Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity

    NASA Astrophysics Data System (ADS)

    Hsu, Kai-Chih; Chen, Dong-Hwang

    2014-04-01

    A nanocomposite of silver nanoparticles/reduced graphene oxide (Ag/rGO) has been fabricated as a surface-enhanced Raman scattering (SERS) substrate owing to the large surface area and two-dimensional nanosheet structure of rGO. A facile and rapid microwave-assisted green route has been used for the formation of Ag nanoparticles and the reduction of graphene oxide simultaneously with L-arginine as the reducing agent. By increasing the cycle number of microwave irradiation from 1 and 4 to 8, the mean diameters of Ag nanoparticles deposited on the surface of rGO increased from 10.3 ± 4.6 and 21.4 ± 10.5 to 41.1 ± 12.6 nm. The SERS performance of Ag/rGO nanocomposite was examined using the common Raman reporter molecule 4-aminothiophenol (4-ATP). It was found that the Raman intensity of 4-ATP could be significantly enhanced by increasing the size and content of silver nanoparticles deposited on rGO. Although the Raman intensities of D-band and G-band of rGO were also enhanced simultaneously by the deposited Ag nanoparticles which limited the further improvement of SERS detection sensitivity, the detectable concentration of 4-ATP with Ag/rGO nanocomposite as the SERS substrate still could be lowered to be 10-10 M and the enhancement factor could be increased to 1.27 × 1010. Furthermore, it was also achievable to lower the relative standard deviation (RSD) values of the Raman intensities to below 5%. This revealed that the Ag/rGO nanocomposite obtained in this work could be used as a SERS substrate with high sensitivity and homogeneity.

  3. Direct Low-Temperature Growth of Single-Crystalline Anatase TiO2 Nanorod Arrays on Transparent Conducting Oxide Substrates for Use in PbS Quantum-Dot Solar Cells.

    PubMed

    Chung, Hyun Suk; Han, Gill Sang; Park, So Yeon; Shin, Hee-Won; Ahn, Tae Kyu; Jeong, Sohee; Cho, In Sun; Jung, Hyun Suk

    2015-05-20

    We report on the direct growth of anatase TiO2 nanorod arrays (A-NRs) on transparent conducting oxide (TCO) substrates that can be directly applied to various photovoltaic devices via a seed layer mediated epitaxial growth using a facile low-temperature hydrothermal method. We found that the crystallinity of the seed layer and the addition of an amine functional group play crucial roles in the A-NR growth process. The A-NRs exhibit a pure anatase phase with a high crystallinity and preferred growth orientation in the [001] direction. Importantly, for depleted heterojunction solar cells (TiO2/PbS), the A-NRs improve both electron transport and injection properties, thereby largely increasing the short-circuit current density and doubling their efficiency compared to TiO2 nanoparticle-based solar cells.

  4. Tensile and fatigue behaviors of printed Ag thin films on flexible substrates

    SciTech Connect

    Sim, Gi-Dong; Won, Sejeong; Lee, Soon-Bok

    2012-11-05

    Flexible electronics using nanoparticle (NP) printing has been highlighted as a key technology enabling eco-friendly, low-cost, and large-area fabrication. For NP-based printing to be used as a successive alternative to photolithography and vacuum deposition, stretchability and long term reliability must be considered. This paper reports the stretchability and fatigue behavior of 100 nm thick NP-based silver thin films printed on polyethylene-terephthalate substrate and compares it to films deposited by electron-beam evaporation. NP-based films show stretchability and fatigue life comparable to evaporated films with intergranular fracture as the dominant failure mechanism.

  5. Glass-(nAg, nCu) Biocide Coatings on Ceramic Oxide Substrates

    PubMed Central

    Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín

    2012-01-01

    The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram−, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1–2 µg/cm2 in the case of silver nanoparticles, and 10–15 µg/cm2 for the copper nanoparticles. PMID:22427967

  6. Correlating second harmonic optical responses of single Ag nanoparticles with morphology.

    PubMed

    Jin, Rongchao; Jureller, Justin E; Kim, Hee Y; Scherer, Norbert F

    2005-09-14

    Femtosecond laser excited second harmonic (SH) activity from single Ag nanoparticles is reported. A correlation of SH single-particle measurements with high-resolution imaging of particle morphology by TEM was achieved by creating position markers on an optical and electron transparent substrate (Si3N4 thin film, approximately 100 nm). We compared the SH activity of single Ag nanoparticles (nanospheres versus nanorods) and cluster structures (composed of two or multiple particles, e.g., dimers and trimers). The direct correlation of single-particle structures and SH activity, spectral and power dependence, strongly suggests one-photon resonant driven nonlinear oscillator response mechanism.

  7. Superconducting YBCO thin film on multicrystalline Ag film evaporated on MgO substrate

    NASA Astrophysics Data System (ADS)

    Azoulay, Jacob; Verdyan, Armen; Lapsker, Igor

    Superconducting YBa 2Cu 3O 7-δ films were grown by resistive evaporation on multicrystalline silver film which was evaporated on MgO substrate. A simple inexpensive vacuum system equipped with resistively heated boat was used for the whole process. Silver film was first evaporated on MgO substrate kept at 400°C during the evaporation after which with no further annealing a precursor mixture of yttrium small grains and Cu and BaF2 in powder form weighed in the atomic proportion to yield stoichiometric YBa 2Cu 3O 7 was evaporated. The films thus obtained were annealed at 740°C under low oxygen partial pressure of about 1Pa for 30 minutes to form the superconducting phase. X-ray diffraction and scanning electron microscopy techniques were used for texture and surface analysis. Electrical properties were determined using a standard dc four-probe for electrical measurements. The physical and electrical properties of the YBCO films are discussed in light of the fact that X-ray diffraction measurements done on the silver film have revealed a multicrystalline structure

  8. Plasmon-induced broadband fluorescence enhancement on Al-Ag bimetallic substrates

    NASA Astrophysics Data System (ADS)

    Hao, Qi; Du, Deyang; Wang, Chenxi; Li, Wan; Huang, Hao; Li, Jiaqi; Qiu, Teng; Chu, Paul K.

    2014-08-01

    Surface enhanced fluorescence (SEF) utilizes the local electromagnetic environment to enhance fluorescence from the analyte on the surface of a solid substrate with nanostructures. While the detection sensitivity of SEF is improved with the development of nano-techniques, detection of multiple analytes by SEF is still a challenge due to the compromise between the high enhancing efficiency and broad response bandwidth. In this article, a high-efficiency SEF substrate with broad response bandwidth is obtained by embedding silver in an aluminum film to produce additional bonding and anti-bonding hybridized states. The bimetallic film is fabricated by ion implantation and the ion energy and fluence are tailored to control subsurface location of the fabricated bimetallic nanostructures. The process circumvents the inherent limit of aluminum materials and extends the plasmon band of aluminum from deep UV to visible range. Fluorescence from different dyes excited by 310 nm to 555 nm is enhanced by up to 11 folds on the single bimetallic film and the result is theoretically confirmed by finite-difference time-domain simulations. This work demonstrates that bimetallic film can be used for optical detection of multiple analytes.

  9. Rich variety of substrates for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van; Nhung Tran, Hong

    2016-09-01

    The efficiency of the application of surface enhanced Raman spectroscopy (SERS) technique to each specified purpose significantly depends on the choice of the SERS substrate with an appropriate structure as well as on its performance. Until the present time a rich variety of SERS substrates was fabricated. They can be classified according to their structures. The present work is a review of main types of SERS substrates for using in the trace analysis application. They can be classified into 4 groups: (1) Substrates using gold nanoparticles (AuNPs) with spherical shape such as colloidal AuNPs, AuNPs fabricated by pulsed laser deposition, by sputtering or by capillary force assembly (CFA), substrates fabricated by electrospinning technique, substrates using metallic nanoparticle arrays fabricated by electron beam lithography combined with CFA method, substrates using silver nanoparticle (AgNP) arrays grain by chemical seeded method, substrates with tunable surface plasmon resonance, substrates based on precies subnanometer plasmonic junctions within AuNP assemblies, substrates fabricated by simultaneously immobilizing both AuNPs and AgNPs on the same glass sides etc. (2) Substrates using nanostructures with non-spherical shapes such as gold nanowire (NW), or highly anisotropic nickel NW together with large area, free-standing carpets, substrates with obviously angular, quasi-vertically aligned cuboid-shaped TiO2 NW arrays decorated with AgNPs, substrates using gold nanoprism monolayer films, substrates using silver nanocube dimmers or monodisperse close-packed gold nanotriangle monolayers. (3) Substrates using multiparticle complex nanostructure such as nanoparticle cluster arrays, gold nanoflowers and nanodendrites. (4) Flexible substrate such as paper-based swab with gold nanorods, adhesive polymer tapes fabricated by inkjet printing method and flexible and adhesive SERS tapes fabricated by decorating AuNPs via the conventional drop-dry method.

  10. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection

    NASA Astrophysics Data System (ADS)

    Zuo, Zewen; Zhu, Kai; Gu, Chuan; Wen, Yibing; Cui, Guanglei; Qu, Jun

    2016-08-01

    Transparent, flexible surface-enhanced Raman scattering (SERS) substrates were fabricated by metalization of structured polyethylene terephthalate (PET) sheets. The resultant Ag-coated structured PET SERS substrates were revealed to be highly sensitive with good reproducibility and stability, an enhancement factor of 3 × 106 was acquired, which can be attributed mainly to the presence of plentiful multiple-type hot spots within the quasi-three-dimensional surface of the structured PET obtained by oxygen plasma etching. In addition, detections of model molecules on fruit skin were also carried out, demonstrating the great potential of the Ag-coated structured PET in in-situ detection of analyte on irregular objects. Importantly, the technique used for the preparation of such substrate is completely compatible with well-established silicon device technologies, and large-area fabrication with low cost can be readily realized.

  11. Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

    SciTech Connect

    Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich; Wang, Lin-Wang; Alivisatos, A. Paul

    2008-12-18

    The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

  12. Electrochemical deposition of zinc oxide nanorods for hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Torres Damasco Ty, Jennifer; Yanagi, Hisao

    2015-04-01

    Zinc oxide (ZnO) nanorod arrays for inorganic/organic hybrid solar cells were electrochemically deposited on indium tin oxide (ITO) substrates with a rotating disk electrode setup. The addition of a ZnO seed layer on the ITO prior to electrochemical deposition improved the morphology of the nanorods, resulting in nanorods with smaller and homogenous diameters as well as a higher degree of vertical orientation on to the substrate. The ZnO films deposited on the seeded ITO substrates had higher optical transmittance and lower concentration of defects. Chronoamperometric transient curves show that nucleation and coalescence occurred later for bare ITO substrates, indicating lower densities of initial nuclei, resulting in the growth of nanorods with larger diameters. The solar cell characteristics of the devices fabricated from the seeded ITO substrates were better. The seed layer also acts as a hole-blocking layer, preventing the direct contact between the hole-transporting polymer material and the ITO.

  13. Transparent SiON/Ag/SiON multilayer passivation grown on a flexible polyethersulfone substrate using a continuous roll-to-roll sputtering system

    PubMed Central

    2012-01-01

    We have investigated the characteristics of a silicon oxynitride/silver/silicon oxynitride [SiON/Ag/SiON] multilayer passivation grown using a specially designed roll-to-roll [R2R] sputtering system on a flexible polyethersulfone substrate. Optical, structural, and surface properties of the R2R grown SiON/Ag/SiON multilayer were investigated as a function of the SiON thickness at a constant Ag thickness of 12 nm. The flexible SiON/Ag/SiON multilayer has a high optical transmittance of 87.7% at optimized conditions due to the antireflection and surface plasmon effects in the oxide-metal-oxide structure. The water vapor transmission rate of the SiON/Ag/SiON multilayer is 0.031 g/m2 day at an optimized SiON thickness of 110 nm. This indicates that R2R grown SiON/Ag/SiON is a promising thin-film passivation for flexible organic light-emitting diodes and flexible organic photovoltaics due to its simple and low-temperature process. PMID:22221400

  14. Role of spacer lengths of gemini surfactants in the synthesis of silver nanorods in micellar media.

    PubMed

    Bhattacharya, Santanu; Biswas, Joydeep

    2011-07-01

    In this work, we have prepared Ag-nanorods using biscationic gemini surfactant micelles as the media by a seed-mediated wet synthesis method. Towards this end, we first synthesized Ag-nanoseeds of diameter ~7 nm stabilized by trisodium citrate (as the capping agent). Then these Ag-nanoseeds were used to synthesize Ag-nanorods of different aspect ratios. With decreasing Ag-nanoseed concentration, the aspect ratios of the Ag-nanorods stabilized by these gemini surfactants increased gradually. Various Ag-nanoseeds and Ag-nanospecies were characterized using UV-Vis spectroscopy (to know the surface plasmon bands), transmission electron microscopy (to find out their particle sizes and distribution), energy-dispersive X-ray spectroscopy and X-ray diffraction. When we used micelles derived from gemini surfactants of shorter spacer -(CH(2))(n)- (n = 2 or 4) to stabilize the Ag-nanorods, the λ(max) of the longitudinal band shifted more towards the blue region compared to that of the gemini surfactant micelles with a longer spacer -(CH(2))(n)- (n = 5, 12) at a given amount of the Ag-nanoseed solution. So, the growth of Ag-nanorods in the gemini micellar solutions depends on the spacer-chain length of gemini surfactants employed.

  15. Synthesis and optical properties of gold nanorods with controllable morphology

    NASA Astrophysics Data System (ADS)

    Ye, Tianyu; Dai, Zhigao; Mei, Fei; Zhang, Xingang; Zhou, Yuanming; Xu, Jinxia; Wu, Wei; Xiao, Xiangheng; Jiang, Changzhong

    2016-11-01

    Searching for architectural building blocks with tunable morphology and peculiarity is a prominent challenge for novel diagnostic and therapeutic applications. Here, the aqueous-based seed-mediated methods for preparing highly mono-dispersed Au nanorods with a different aspect ratio are systematically studied by controlling the amounts of Ag ions and seeds. We also explore the effect of pH on the synthesis of gold nanorods. The realization of the overlap of longitudinal plasmon band and excitation source with different degrees is made by changing the aspect ratio of nanorod in order to determine its effect on the overall surface enhancement. In addition, the gold octahedra are prepared by overgrowth on Au nanorods. The SERS effects of Au nanorods are researched and the FDTD simulations are performed to reveal the morphology induced plasmon modes.

  16. LED Die-Bonded on the Ag/Cu Substrate by a Sn-BiZn-Sn Bonding System

    NASA Astrophysics Data System (ADS)

    Tang, Y. K.; Hsu, Y. C.; Lin, E. J.; Hu, Y. J.; Liu, C. Y.

    2016-12-01

    In this study, light emitting diode (LED) chips were die-bonded on a Ag/Cu substrate by a Sn-BixZn-Sn bonding system. A high die-bonding strength is successfully achieved by using a Sn-BixZn-Sn ternary system. At the bonding interface, there is observed a Bi-segregation phenomenon. This Bi-segregation phenomenon solves the problems of the brittle layer-type Bi at the joint interface. Our shear test results show that the bonding interface with Bi-segregation enhances the shear strength of the LED die-bonding joints. The Bi-0.3Zn and Bi-0.5Zn die-bonding cases have the best shear strength among all die-bonding systems. In addition, we investigate the atomic depth profile of the deposited Bi-xZn layer by evaporating Bi-xZn E-gun alloy sources. The initial Zn content of the deposited Bi-Zn alloy layers are much higher than the average Zn content in the deposited Bi-Zn layers.

  17. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate

    PubMed Central

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-01-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the “V”-shaped or “U”-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications. PMID:27586562

  18. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate

    NASA Astrophysics Data System (ADS)

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-09-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the “V”-shaped or “U”-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications.

  19. Process of in situ forming well-aligned zinc oxide nanorod arrays on wood substrate using a two-step bottom-up method.

    PubMed

    Liu, Yongzhuang; Fu, Yanchun; Yu, Haipeng; Liu, Yixing

    2013-10-01

    A good nanocrystal covering layer on wood can serve as a protective coating and present some new surface properties. In this study, well-aligned ZnO nanorods (NRs) arrays were successfully grown on wood surface through a two-step bottom-up growth process. The process involved pre-sow seeds and subsequently their growing into NRs under hydrothermal environment. The interface incorporation between wood and ZnO colloid particles in the precursor solution during the seeding process was analyzed and demonstrated through a schematic. The growth process of forming well-aligned ZnO NRs was analyzed by field-emission scanning electron microscopy and X-ray diffraction, which showed that the NRs elongated with increased reaction time. The effects of ZnO crystal form and capping agent on the growth process were studied through different viewpoints.

  20. Facile in situ growth of highly monodispersed Ag nanoparticles on electrospun PU nanofiber membranes: Flexible and high efficiency substrates for surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Amarjargal, Altangerel; Tijing, Leonard D.; Shon, Ho Kyong; Park, Chan-Hee; Kim, Cheol Sang

    2014-07-01

    In this study, by utilizing a two-step route of electrospinning and polyol immersion, in the absence of any surfactant or sensitizing and stabilizing reagent, a well-distributed assembly of Ag NPs on the electrospun polyurethane (PU) nanofibers was successfully fabricated through a simple and controllable manner. Based on the FE-SEM, XRD and FT-IR analyses, the polyol medium plays an important role in the growth of highly monodispersed Ag NPs, wherein the hydroxyl group of ethylene glycol (EG) can be bridged to the amide group on the surface of the PU nanofibers through intermolecular hydrogen bonds. Fabrication of a polymer fibrous membrane effectively attached/decorated with noble metal NPs, which is essential as flexible and high efficiency substrates for SERS application where the molecule analytes are directly adsorbed on their surfaces is important, could be realized by the present electrospun PU-Ag(EG) nanofibers, employing 4-mercaptobenzoic acid (4-MBA) as probe molecules.

  1. A self-assembled nanohybrid composed of fluorophore-phenylamine nanorods and Ag nanocrystals: energy transfer, wavelength shift of fluorescence and TPEF applications for live-cell imaging.

    PubMed

    Kong, Lin; Yang, Jia-xiang; Li, Sheng-li; Zhang, Qiong; Xue, Zhao-ming; Zhou, Hong-ping; Wu, Jie-ying; Jin, Bao-kang; Tian, Yu-peng

    2013-12-02

    A fluorophore-phenylamine derivative (L) has been coupled with silver nanocrystals (NCs) to construct an L-Ag nanohybrid. Owing to synergic effects of the L and Ag components, the exciton-plasmon interactions between L and Ag increase the strength of the donor-acceptor interaction within the nanohybrid, a fact that results in an energy-transfer process and further brings about a dramatic redshift of single-photon absorption and fluorescence, and a decreased fluorescence FL lifetime. The coupling effect also leads to enhancement of a series of nonlinear optical properties, including two-photon-excited fluorescence (TPEF), two-photon-absorption (TPA) cross section (δ), two-photon-absorption coefficient (β), nonlinear refractive index (γ), and third order nonlinear optical susceptibility (χ((3))). The enhanced two-photon fluorescence of the nanohybrid is proven to be potentially useful for two-photon microscopy of live cells, such as HepG2. Moreover, cytotoxicity tests show that the low-micromolar concentrations of the nanohybrid do not cause significant reduction in cell viability over a period of at least 24 h and should be safe for further biological studies.

  2. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Characterization of Ag adsorption on TiC(001) substrate: an ab initio study

    NASA Astrophysics Data System (ADS)

    Ma, Shang-Yi; Wang, Shao-Qing

    2008-10-01

    Ag adsorptions at 0.25-3 monolayer (ML) coverage on a perfect TiC(001) surface and at 0.25 ML coverage on C vacancy are separately investigated by using the pseudopotential-based density functional theory. The preferential adsorption sites and the adsorption-induced modifications of electronic structures of both the substrate and adsorbate are analysed. Through the analyses of adsorption energy, ideal work of separation, interface distance, projected local density of states, and the difference electron density, the characteristic evolution of the adatom-surface bonding as a function of the amount of deposited silver is studied. The nature of the Ag/TiC bonding changes as the coverage increases from 0.25 to 3 MLs. Unlike physisorption in an Ag/MgO system, polar covalent component contributes to the Ag/TiC interfacial adhesion in most cases, however, for the case of 1-3 ML coverage, an additional electrostatic interaction between the absorption layer and the substrate should be taken into account. The value of ideal work of separation, 1.55 J/m2 for a 3-ML-thick adlayer accords well with other calculations. The calculations predict that Ag does not wet TiC(001) surface and prefers a three-dimensional growth mode in the absence of kinetic factor. This work reports on a clear site and coverage dependence of the measurable physical parameters, which would benefit the understanding of Ag/TiC (001) interface and the analysis of experimental data.

  3. Piezoelectric and opto-electrical properties of silver-doped ZnO nanorods synthesized by low temperature aqueous chemical method

    SciTech Connect

    Nour, E. S. Echresh, A.; Willander, M.; Nur, O.; Liu, Xianjie; Broitman, E.

    2015-07-15

    In this paper, we have synthesized Zn{sub 1−x}Ag{sub x}O (x = 0, 0.03, 0.06, and 0.09) nanorods (NRs) via the hydrothermal method at low temperature on silicon substrate. The characterization and comparison between the different Zn{sub 1−x}Ag{sub x}O samples, indicated that an increasing Ag concentration from x = 0 to a maximum of x = 0.09; All samples show a preferred orientation of (002) direction with no observable change of morphology. As the quantity of the Ag dopant was changed, the transmittances, as well as the optical band gap were decreased. X-ray photoelectron spectroscopy data clearly indicate the presence of Ag in ZnO crystal lattice. A nanoindentation-based technique was used to measure the effective piezo-response of different concentrations of Ag for both direct and converse effects. The value of the piezoelectric coefficient (d{sub 33}) as well as the piezo potential generated from the ZnO NRs and Zn{sub 1−x}Ag{sub x}O NRs was found to decrease with the increase of Ag fraction. The finding in this investigation reveals that Ag doped ZnO is not suitable for piezoelectric energy harvesting devices.

  4. Growth of CdS Nanorods and Deposition of Silver Nanoparticles.

    PubMed

    Zhao, Jie; Yang, Fanghong; Yang, Ping

    2015-05-01

    Systematic investigations have been done to deposit silver nanoparticles on seeded CdS nanorods. The CdS nanorods were synthesized by using CdS nanocrystals as seeds being indexed to the cubic structure (zinc-blende) and tetradecylphosphonic acid as surfactants to enable preferential growth on the reactive {001} facets. Ostwald ripening process occurred during the growth of CdS nanorods. Ag/CdS heterostructures were obtained through a facile method in which oleylamine was employed as reducing agents under an elevated temperature. Exposing CdS nanorods to Ag+ ions resulted in Ag domains depositing on the tips of the nanorods or defected sites embedding in the nanorod surfaces. Ag domains formed separate nuclei and grew quickly at a high concentration of AgNO3 solution. We further focused on discussing the morphology formation mechanism and optical properties of the heterostructures and the nanorods. The as-synthesized Ag/CdS heterostructures can facilitate charge separation at the metal-semiconductor interface. Herein, it opens up an application possibility of enhancing photocatalytic processes and other devices.

  5. Templated synthesis of metal nanorods in silica nanotubes.

    PubMed

    Gao, Chuanbo; Zhang, Qiao; Lu, Zhenda; Yin, Yadong

    2011-12-14

    We report a general method for the synthesis of noble metal nanorods, including Au, Ag, Pt, and Pd, based on their seeded growth in silica nanotube templates. The controlled growth of the metals occurs exclusively on the seeds inside the silica nanotubes, which act as hard templates to confine the one-dimensional growth of the metal nanorods and define their aspect ratios. This method affords large quantities of noble metal nanorods with well-controlled aspect ratios and high yield, which may find wide use in the fields of nanophotonics, catalysis, sensing, imaging, and biomedicine.

  6. Ag-TiO2 nanoparticle codoped SiO2 films on ZrO2 barrier-coated glass substrates with antibacterial activity in ambient condition.

    PubMed

    Mukhopadhyay, Anindita; Basak, Sujit; Das, Jugal Kishore; Medda, Samar Kumar; Chattopadhyay, Krishnananda; De, Goutam

    2010-09-01

    Anatase TiO2 and Ag nanoparticles (NPs) codoped SiO2 films were prepared by the sol-gel method. Proportionate amounts of 3-(glycidoxypropyl)trimethoxysilane (GLYMO), tetraethylorthosilicate (TEOS) and 3-(methacryloxypropyl)trimethoxysilane (MEMO) derived inorganic-organic silica sol, commercially available dispersed anatase TiO2 NPs, and AgNO3 were used to prepare the sols. The films were prepared on ZrO2 (cubic) precoated soda-lime glass substrates by a single-dipping technique and heat-treated at 450 °C in air and H2/Ar atmosphere to obtain hard, relatively porous, and transparent coatings of thickness>600 nm. The ZrO2 barrier layer was previously applied on soda-lime glass to restrict the diffusion of Ag into the substrate. The Ag-TiO2 NPs incorporated SiO2 films were intense yellow in color and found to be fairly stable at ambient condition for several days under fluorescent light. These films show a considerable growth inhibition on contact with the gram negative bacteria E. coli.

  7. Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates

    NASA Astrophysics Data System (ADS)

    Eraković, S.; Janković, A.; Ristoscu, C.; Duta, L.; Serban, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Socol, M.; Iordache, O.; Dumitrescu, I.; Luculescu, C. R.; Janaćković, Dj.; Miškovic-Stanković, V.

    2014-02-01

    Hydroxyapatite (HA) is a widely used biomaterial for implant thin films, largely recognized for its excellent capability to chemically bond to hard tissue inducing the osteogenesis without immune response from human tissues. Nowadays, intense research efforts are focused on development of antimicrobial HA doped thin films. In particular, HA doped with Ag (Ag:HA) is expected to inhibit the attachment of microbes and contamination of metallic implant surface. We herewith report on nano-sized HA and Ag:HA thin films synthesized by pulsed laser deposition on pure Ti and Ti modified with 100 nm diameter TiO2 nanotubes (fabricated by anodization of Ti plates) substrates. The HA-based thin films were characterized by SEM, AFM, EDS, FTIR, and XRD. The cytotoxic activity was tested with HEp2 cells against controls. The antifungal efficiency of the deposited layers was tested against the Candida albicans and Aspergillus niger strains. The Ti substrates modified with TiO2 nanotubes covered with Ag:HA thin films showed the highest antifungal activity.

  8. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al{sub 2}O{sub 3}(0001) substrates

    SciTech Connect

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-05-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al{sub 2}O{sub 3}(0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively.

  9. Reactions of Sn-3.5Ag-Based Solders Containing Zn and Al Additions on Cu and Ni(P) Substrates

    NASA Astrophysics Data System (ADS)

    Kotadia, H. R.; Mokhtari, O.; Bottrill, M.; Clode, M. P.; Green, M. A.; Mannan, S. H.

    2010-12-01

    In this study we consider the effect of separately adding 0.5 wt.% to 1.5 wt.% Zn or 0.5 wt.% to 2 wt.% Al to the eutectic Sn-3.5Ag lead-free solder alloy to limit intermetallic compound (IMC) growth between a limited volume of solder and the contact metallization. The resultant solder joint microstructure after reflow and high-temperature storage at 150°C for up to 1000 h was investigated. Experimental results confirmed that the addition of 1.0 wt.% to 1.5 wt.% Zn leads to the formation of Cu-Zn on the Cu substrate, followed by massive spalling of the Cu-Zn IMC from the Cu substrate. Growth of the Cu6Sn5 IMC layer is significantly suppressed. The addition of 0.5 wt.% Zn does not result in the formation of a Cu-Zn layer. On Ni substrates, the Zn segregates to the Ni3Sn4 IMC layer and suppresses its growth. The addition of Al to Sn-3.5Ag solder results in the formation of Al-Cu IMC particles in the solder matrix when reflowed on the Cu substrate, while on Ni substrates Al-Ni IMCs spall into the solder matrix. The formation of a continuous barrier layer in the presence of Al and Zn, as reported when using solder baths, is not observed because of the limited solder volumes used, which are more typical of reflow soldering.

  10. 3D Ag/ZnO hybrids for sensitive surface-enhanced Raman scattering detection

    NASA Astrophysics Data System (ADS)

    Huang, Chenyue; Xu, Chunxiang; Lu, Junfeng; Li, Zhaohui; Tian, Zhengshan

    2016-03-01

    To combine the surface plasma resonance of metal and local field enhancement in metal/semiconductor interface, Ag nanoparticles (NPs) were assembled on a ZnO nanorod array which was grown by hydrothermally on carbon fibers. The construction of dimensional (3D) Surface-Enhanced Raman Scattering (SERS) substrate is used for the sensitive detection of organic pollutants with the advantages such as facile synthesis, short detection time and low cost. The hybrid substrate was manifested a high sensitivity to phenol red at a lower concentration of 1 × 10-9 M and a higher enhancement factor of 3.18 × 109. Moreover, the ZnO nanostructures decorated with Ag NPs were demonstrated self-cleaning function under UV irradiation via photocatalytic degradation of the analytic molecules. The fabrication process of the materials and sensors, optimization of the SERS behaviors for different sized Ag NPs, the mechanism of SERS and recovery were presented with a detailed discussion.

  11. Sensing based on the motion of enzyme-modified nanorods.

    PubMed

    Bunea, Ada-Ioana; Pavel, Ileana-Alexandra; David, Sorin; Gáspár, Szilveszter

    2015-05-15

    Asymmetric modification with an enzyme confers nanorods an enhanced diffusive motion that is dependent on the concentration of the enzyme substrate. In turn, such a motion opens the possibility of determining the concentration of the enzyme substrate by measuring the diffusion coefficient of nanorods modified with the appropriate enzyme. Nanorods, with a Pt and a polypyrrole (PPy) segment, were fabricated. The PPy segment of such nanorods was then modified with glucose oxidase (GOx), glutamate oxidase (GluOx), or xanthine oxidase (XOD). Calibration curves, linking the diffusion coefficient of the oxidase-modified nanorods to the concentration of the oxidase substrate, were subsequently built. The oxidase-modified nanorods and their calibration curves were finally used to determine substrate concentrations both in simple aqueous solutions and in complex samples such as horse serum and cell culture media. Based on the obtained results we are confident that our motion-based approach to sensing can be developed to the point where different nanorods in a mixture simultaneously report on the concentration of different compounds with good temporal and spatial resolution.

  12. Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate.

    PubMed

    Zhou, Wen; Yin, Bin-Cheng; Ye, Bang-Ce

    2017-01-15

    As one of the most toxic heavy metals, hexavalent chromium (Cr(VI)) has long been a concern due to its threats to human health and the environment. In this work, we develop a sensitive surface-enhanced Raman scattering (SERS) sensor for highly specific detection of Cr(VI) using hollow sea urchin-like TiO2@Ag nanoparticles (NPs). The TiO2@Ag NPs are functionalized with glutathione (GSH) and used as substrates with 2-mercaptopyridine (2-MPy) as a Raman reporter for a recyclable SERS-active sensor, enabling ultrasensitive detection of Cr(VI). Excellent SERS signals of 2-MPy reporters are detected when GSH complexation with Cr(VI) causes aggregation of the TiO2@Ag NPs. The developed sensor exhibits good linearity in the range from 10nM to 2μM for Cr(VI) with a detection limit of ca. 1.45nM. It features excellent selectivity to Cr(VI) over other interfering metal ions, and good application for quantitative analysis of Cr(VI) in water samples. Moreover, the proposed SERS sensor can be fully regenerated when exposed to UV light as a result of the self-cleaning ability of the substrates. In contrast to the traditional SERS detection, the present work shed new light on the design and synthesis of hierarchically self-assembled 3D substrate for SERS, catalysis and biosensor development.

  13. Preparation of Ag@Ag₃PO₄@ZnO ternary heterostructures for photocatalytic studies.

    PubMed

    Jin, Chao; Liu, Guanglei; Zu, Lianhai; Qin, Yao; Yang, Jinhu

    2015-09-01

    In this article, we report a novel Ag@Ag3PO4@ZnO ternary heterostructures synthesized through a three-step approach. Firstly, single-crystalline Ag nanorods are fabricated and served as the templates for subsequent Ag3PO4 deposition. Secondly, Ag3PO4 crystals are grown around Ag core nanorods through a solution co-precipitation process, leading to the Ag@Ag3PO4 binary heterostructures. Finally, ZnO nanorod arrays on the surface of the Ag@Ag3PO4 heterostructures are realized via a seeded growth strategy, forming the typical Ag@Ag3PO4@ZnO ternary heterostructures. The photodegradation of rhodamine B under ultraviolet-visible light irradiation indicates that the Ag@Ag3PO4@ZnO ternary heterostructures exhibit much higher activities than pure Ag3PO4 and binary heterostructures of Ag@Ag3PO4. The higher photocatalytic activity of the Ag@Ag3PO4@ZnO composites may be attributed to the effective photogenerated charge separation at heterointerfaces of Ag/Ag3PO4 and Ag3PO4/ZnO, and the rapid electron transport along one-dimensional Ag and ZnO nanorods.

  14. Surface area-dependent second harmonic generation from silver nanorods.

    PubMed

    Ngo, Hoang Minh; Luong, Thanh Tuyen; Ledoux-Rak, Isabelle

    2016-08-17

    The nonlinear optical (NLO) properties of metallic nanoparticles strongly depend on their size and shape. Metallic gold nanorods have already been widely investigated, but other noble metals could also be used for nanorod fabrication towards applications in photonics. Here we report on the synthesis and NLO characterization of silver nanorods (AgNRs) with controllable localized surface plasmon resonance. We have implemented an original, one-step and seedless synthesis method, based on a spontaneous particle growth technique in the presence of polyvinylpyrrolidone (PVP) as a capping agent. Colloidal solutions of AgNRs with various aspect ratios (5.0; 6.3; 7.5; 8.2 and 9.7) have been obtained and characterized using Harmonic light scattering (HLS) at 1064 nm, in order to investigate their quadratic NLO properties. From HLS experiments, we demonstrate that hyperpolarizability (β) values of AgNRs display a strong dependence on their surface area.

  15. Hydroquinone Based Synthesis of Gold Nanorods.

    PubMed

    Picciolini, Silvia; Mehn, Dora; Ojea-Jiménez, Isaac; Gramatica, Furio; Morasso, Carlo

    2016-08-10

    Gold nanorods are an important kind of nanoparticles characterized by peculiar plasmonic properties. Despite their widespread use in nanotechnology, the synthetic methods for the preparation of gold nanorods are still not fully optimized. In this paper we describe a new, highly efficient, two-step protocol based on the use of hydroquinone as a mild reducing agent. Our approach allows the preparation of nanorods with a good control of size and aspect ratio (AR) simply by varying the amount of hexadecyl trimethylammonium bromide (CTAB) and silver ions (Ag(+)) present in the "growth solution". By using this method, it is possible to markedly reduce the amount of CTAB, an expensive and cytotoxic reagent, necessary to obtain the elongated shape. Gold nanorods with an aspect ratio of about 3 can be obtained in the presence of just 50 mM of CTAB (versus 100 mM used in the standard protocol based on the use of ascorbic acid), while shorter gold nanorods are obtained using a concentration as low as 10 mM.

  16. Growth process for gallium nitride porous nanorods

    DOEpatents

    Wildeson, Isaac Harshman; Sands, Timothy David

    2015-03-24

    A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.

  17. Green synthesis of asymmetrically textured silver meso-flowers (AgMFs) as highly sensitive SERS substrates.

    PubMed

    Nhung, Tran Thi; Lee, Sang-Wha

    2014-12-10

    Highly asymmetrical "flower-like" micron silver particles, so-called hierarchical silver meso-flowers (AgMFs), were facilely synthesized using ascorbic acid at room temperature in the presence of chitosan biopolymer. The time-evolution of TEM images and XRD analysis confirmed the anisotropic growth of AgMFs with single crystalline phase of which the formation mechanism was described in detail. The morphology and size of as-prepared AgMFs were tunable simply by changing the concentration of chitosan biopolymer and/or AgNO3 precursor under otherwise identical conditions. The asymmetrically textured AgMFs dramatically enhanced Raman signals of probe molecules (2-chlorothiophenol, 4-aminothiophenol) even at a single particle level because of their surface morphologies consisting of numerous nanoedges and crevices.

  18. SPR studies of the adsorption of silver/bovine serum albumin nanoparticles (Ag/BSA NPs) onto the model biological substrates.

    PubMed

    Bhan, Chandra; Brower, Tina Louise; Raghavan, Dharmaraj

    2013-07-15

    The primary objective of this study is to investigate the interactive forces that promote the adsorption of bio-conjugated nanoparticles onto proteins. To elucidate the interactive forces, we demonstrate an approach using synthetic and model biological surfaces to study adsorption of bio-conjugated nanoparticles. Real-time adsorption of BSA conjugated silver nanoparticles (Ag/BSA NPs) on the immobilized substrates was followed by surface plasmon resonance (SPR). The extent of adsorption of the nanoparticles on the synthetic surface was found to be larger for self-assembled monolayers (SAMs) with ionizable terminal groups and lower for SAMs with unionizable terminal groups. For model biological substrate, the extent of nanoparticles adsorption was found to relate to the pKa of immobilized proteins. For collagen immobilized substrate, the adsorption of Ag/BSA nanoparticles showed a significantly higher SPR response than that of free BSA. The extent of nanoparticles adsorption on the collagen immobilized substrate was also influenced by the type and concentration of electrolyte used in dispersing nanoparticles. Our findings indicate that the adsorption of nanoparticles to immobilized surface has contributions from electrostatic interactions, hydrophobic, and/or hydrogen bonding. This work provides the framework to study interactions that may arise when bio-conjugated nanoparticles are transported in biological systems.

  19. Asymmetric hollow nanorod formation through a partial galvanic replacement reaction.

    PubMed

    Seo, Daeha; Song, Hyunjoon

    2009-12-30

    An asymmetric single hollow structure was generated from Ag-Au-Ag heterometal nanorods by a partial galvanic replacement reaction for the first time. The C(2)-symmetry breaking took place because of the random generation of a single pit on only one end of the silver domain at an early stage of the reaction. Careful control of the reaction kinetics could also yield a double-hollow structure on both ends of the silver domain. The resulting single- and double-hollow nanorods exhibited characteristic extinctions in the near-IR range.

  20. Electroless reduction of silver chloride precipitates for the preparation of highly sensitive substrates for surface-enhanced infrared absorption (SEIRA) measurements.

    PubMed

    Rao, Gadupudi Purna Chandra; Yang, Jyisy

    2015-01-01

    To prepare silver nanoparticles (AgNPs) on infrared-transmitting crystal for surface-enhanced infrared absorption (SEIRA) measurements, a new strategy is proposed and demonstrated using electroless reduction of preformed silver chloride (AgCl) particles. Silver chloride precipitates were formed using an additive of polyvinyl pyrrolidone (PVP) to vary the size and shape of the precipitates. After settling on germanium substrates, the preformed particles of AgCl were reduced electrolessly and spontaneously coagulated to AgNPs. The resulting AgNPs showed a multilayer structure, but the AgNPs were isolated, as shown by the lack of absorption-band distortion in the SEIRA measurements. Hence, the sensitivity and analyte-loading capacity for SEIRA measurements are improved significantly. To optimize the chemical deposition and electroless reduction method, we examined several parameters, including the concentrations of reagents during AgCl precipitation and the reaction time required in the deposition-reduction steps. We used para-nitrobenzoic acid (pNBA) to probe the intensity of the SEIRA effect for the prepared substrates. To better correlate the SEIRA performances with each variable, we examined the prepared substrates using a scanning electron microscope and SEIRA. The results indicate that two major morphologies of AgNPs are observed: nanoparticles and nanorods. The distributions of nanorods we observed were related to the procedures used to prepare the substrates. Based on SEIRA signals, we observed enhancement factors approaching three orders of magnitude compared to conventional transmission measurement. Also, based on the morphologies, the large signals were mainly caused by the formation of multilayers of non-percolated AgNPs.

  1. Directed placement of gold nanorods using a removable template for guided assembly.

    PubMed

    Holzner, Felix; Kuemin, Cyrill; Paul, Philip; Hedrick, James L; Wolf, Heiko; Spencer, Nicholas D; Duerig, Urs; Knoll, Armin W

    2011-09-14

    We have used a temperature sensitive polymer film as a removable template to position, and align, gold nanorods onto an underlying target substrate. Shape-matching guiding structures for the assembly of nanorods of size 80 nm × 25 nm have been written by thermal scanning probe lithography. The nanorods were assembled into the guiding structures, which determine both the position and the orientation of single nanorods, by means of capillary interactions. Following particle assembly, the polymer was removed cleanly by thermal decomposition and the nanorods are transferred to the underlying substrate. We have thus demonstrated both the placement and orientation of nanorods with an overall positioning accuracy of ≈10 nm onto an unstructured target substrate.

  2. Tailoring the optical and hydrophobic property of zinc oxide nanorod by coating with amorphous graphene

    NASA Astrophysics Data System (ADS)

    Pahari, D.; Das, N. S.; Das, B.; Chattopadhyay, K. K.; Banerjee, D.

    2016-09-01

    Zinc oxide (ZnO) nanorods were synthesized at room temperature on potassium permanganate activated silicon and glass substrate by simple chemical method using zinc acetate as precursor. To modify the surface energy of the as prepared ZnO thin films the samples were coated with amorphous graphene (a-G) synthesized by un-zipping of chemically synthesized amorphous carbon nanotubes (a-CNTs). All the pure and coated samples were characterized by x-ray diffraction, field emission scanning electron microscope, Raman spectroscopy, and Fourier transformed infrared spectroscopy. The roughness analysis of the as prepared samples was done by atomic force microscopic analysis. The detail optical properties of all the samples were studied with the help of a UV-Visible spectrophotometer. The surface energy of the as prepared pure and coated samples was calculated by measuring the contact angle of two different liquids. It is seen that the water repellence of ZnO nanorods got increased after they are being coated with a-Gs. Also even after UV irradiation the contact angle remain same unlike the case for the uncoated sample where the contact angle gets decreased significantly after UV irradiation. Existing Cassie-Wenzel model has been employed along with the Owen's approach to determine the different components of surface energy.

  3. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.

    PubMed

    Wang, Chaoguang; Wu, Xuezhong; Dong, Peitao; Chen, Jian; Xiao, Rui

    2016-12-15

    Paraquat (PQ) pollutions are ultra-toxic to human beings and hard to be decomposed in the environment, thus requiring an on-site detection strategy. Herein, we developed a robust and rapid PQ sensing strategy based on the surface-enhanced Raman scattering (SERS) technique. A hybrid SERS substrate was prepared by grafting the Au@Ag core-shell nanoparticles (NPs) on the Au film over slightly etched nanoparticles (Au FOSEN). Hotspots were engineered at the junctions as indicated by the finite difference time domain calculation. SERS performance of the hybrid substrate was explored using p-ATP as the Raman probe. The hybrid substrate gives higher enhancement factor comparing to either the Au FOSEN substrate or the Au@Ag core-shell NPs, and exhibits excellent reproducibility, homogeneity and stability. The proposed SERS substrates were prepared in batches for the practical PQ sensing. The total analysis time for a single sample, including the pre-treatment and measurement, was less than 5min with a PQ detection limit of 10nM. Peak intensities of the SERS signal were plotted as a function of the PQ concentrations to calibrate the sensitivity by fitting the Hill's equation. The plotted calibration curve showed a good log-log linearity with the coefficient of determination of 0.98. The selectivity of the sensing proposal was based on the "finger print" Raman spectra of the analyte. The proposed substrate exhibited good recovery when it applied to real water samples, including lab tap water, bottled water, and commercially obtained apple juice and grape juice. This SERS-based PQ detection method is simple, rapid, sensitive and selective, which shows great potential in pesticide residue and additives abuse monitoring.

  4. Dealloying Ag-Al alloy to prepare nanoporous silver as a substrate for surface-enhanced Raman scattering: effects of structural evolution and surface modification.

    PubMed

    Qiu, Huajun; Zhang, Zhonghua; Huang, Xirong; Qu, Yinbo

    2011-08-01

    Sensitive detection of molecules by using the surface-enhanced Raman scattering (SERS) technique depends on the nanostructured metallic substrate and many efforts have been devoted to the preparation of SERS substrates with high sensitivity, stability, and reproducibility. Herein, we report on the fabrication of stable monolithic nanoporous silver (NPS) by chemical dealloying of Ag-Al precursor alloys with an emphasis on the effect of structural evolution on SERS signals. It was found that the dealloying conditions had great influence on the morphology (the ligament/pore size) and the crystallization status, which determined the SERS signal of rhodamine 6G on the NPS. NPS with small pores, low residual Al, and perfect crystallization gave high SERS signals. A high enhancement factor of 7.5 × 10(5) was observed on bare NPS obtained by dealloying Ag(30)Al(70) in 2.5 wt % HCl at room temperature followed by 15 min aging at around 85 °C. After coating Ag nanoparticles on the NPS surface, the enhancement factor increased to 1.6 × 10(8) owing to strong near-field coupling between the ligaments and nanoparticles.

  5. Electrospun TiO₂ nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering.

    PubMed

    Zhao, Yong; Sun, Lei; Xi, Min; Feng, Quan; Jiang, Chaoyang; Fong, Hao

    2014-04-23

    In this study, the free-standing electrospun nanofibrous mat (i.e., nanofelt) consisting of anatase-phase TiO2 nanofibers with diameters of ∼200 nm was prepared, and the nanofelt was subsequently surface-decorated with Ag nanoparticles via an electroless plating method. The sensitivity toward surface enhanced Raman scattering (SERS) and UV-cleanable property of electrospun TiO2/Ag nanofelt were then investigated. In the SERS tests, the target analyte (i.e., 4-mercaptobenzoic acid, Rhodamine 6G, and 4-aminothiophenol) was first adsorbed onto the TiO2/Ag nanofelt as the probe analyte; this was followed by the measurements of Raman intensity and SERS maps. Thereafter, the nanofelt adsorbed with target analyte was cleaned and regenerated/recovered upon UV irradiation in O2-saturated water, and the removal of target analyte was attributed to photodegradation property of anatase-phase TiO2. This study suggested that the electrospun TiO2/Ag nanofelt would be promising as SERS-active substrate with UV-cleanable property for cost-effective and reproducible SERS applications.

  6. Simple synthesis and size-dependent surface-enhanced Raman scattering of Ag nanostructures on TiO2 by thermal decomposition of silver nitrate at low temperature.

    PubMed

    Wang, Ruey-Chi; Gao, Yong-Siang; Chen, Shu-Jen

    2009-09-16

    A low-temperature dry-process was proposed to synthesize silver nanoparticles, nanorods, and nanoplates on TiO(2) films via thermal decomposition of silver nitrate. X-ray diffraction (XRD) shows only silver crystals were synthesized on the substrate without other byproducts remaining. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveal the Ag nanoparticles are single-crystalline face-centered cubic (FCC) structures and their average diameters decrease from 100 to 15 nm with the increase in distance from the source, which corresponds to a decrease of substrate temperature from 350 to 110 degrees C. The Ag nanorods are also single-crystalline FCC structures growing along the [110] direction with diameter and length around 40 and 500 nm, respectively. The morphology of silver nanostructures could be adjusted by varying the working pressure as well as the roughness of the substrates. An obvious size-dependent SERS effect on the TiO(2) substrate with silver nanoparticles was observed for the first time. The enhancement factor increases as the size of the Ag nanoparticles decreases, which is attributed to the increase of hot spots. In addition, fractional brookite in the anatase films could be detected only after being loaded with Ag nanoparticles, which demonstrates the application of SERS in detecting fractional and important features of semiconductors.

  7. Improving photoelectrochemical performance by building Fe{sub 2}O{sub 3} heterostructure on TiO{sub 2} nanorod arrays

    SciTech Connect

    Cao, Chunlan; Hu, Chenguo; Shen, Weidong; Wang, Shuxia; Song, Sihong; Wang, Mingjun

    2015-10-15

    Highlights: • Fe{sub 2}O{sub 3}@TiO{sub 2} heterostructure was fabricated by two-step method. • The photoelectrochemical properties were studied upon visible light irradiation. • Fe{sub 2}O{sub 3}@TiO{sub 2} heterostructure shows superior photoelectrochemical property. • A possible mechanism for enhanced photoelectrochemical property was put forward. - Abstract: Fe{sub 2}O{sub 3}@TiO{sub 2} heterostructure nanorod arrays were synthesized on a fluorine-doped tin oxide conductive (FTO) glass substrate via two-step method for improving photoelectrochemical activity of TiO{sub 2}. The TiO{sub 2} nanorod arrays on FTO substrate were first prepared by hydrothermal method and then Fe{sub 2}O{sub 3} nanoparticles were coated onto the surface of TiO{sub 2} nanorod arrays through chemical bath deposition. The heterojunction yielded a photocurrent density of 39.75 μA cm{sup −2} at a bias potential of 0 V (vs. Ag/AgCl) under visible light irradiation, which is 2.2 times as much as that produced by the pure TiO{sub 2} nanorod arrays. The enhanced photoelectrochemical activity is attributed to the extension of the light response range and efficient separation of photogenerated carriers. Our results have demonstrated the advantage of the novel Fe{sub 2}O{sub 3}@TiO{sub 2} heterojunction and will provide a new path to the fabrication of heterostructural materials.

  8. Fabrication of Worm-Like Nanorods and Ultrafine Nanospheres of Silver Via Solid-State Photochemical Decomposition

    NASA Astrophysics Data System (ADS)

    Navaladian, S.; Viswanathan, B.; Varadarajan, T. K.; Viswanath, R. P.

    2009-05-01

    Worm-like nanorods and nanospheres of silver have been synthesized by photochemical decomposition of silver oxalate in water by UV irradiation in the presence of CTAB and PVP, respectively. No external seeds have been employed for the synthesis of Ag nanorods. The synthesized Ag colloids have been characterized by UV-visible spectra, powder XRD, HRTEM, and selected area electron diffraction (SAED). Ag nanospheres of average size around 2 nm have been obtained in the presence of PVP. XRD and TEM analyses revealed that top and basal planes of nanorods are bound with {111} facets. Williamson-Hall plot has revealed the presence of defects in the Ag nanospheres and nanorods. Formation of defective Ag nanocrystals is attributed to the heating effect of UV-visible irradiation.

  9. Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications.

    PubMed

    Van Hoang, Nguyen; Kumar, Sanjeev; Kim, Gil-Ho

    2009-03-25

    The growth of multisegment nanorods comprising gold (Au) and sacrificial silver (Ag) segments (Au-Ag-Au or Au-Ag-Au-Ag-Au) using the electrochemical wet etching method is reported. The nanorods were fabricated using an alumina template of thickness 100 microm and pore size of 200 nm. A variety of nanorods from single to seven segments comprising alternate Au and Ag segments were fabricated with better control of growth rate. The multisegment nanorods were selectively etched by removing the Ag segments to create gaps in the fabricated nanorods. A careful investigation led to the creation of a wide variety of nanogaps in the fabricated multisegment nanorods. The size of the nanogap was controlled by the passage of current through the electrochemical process, and size below 10 nm was achievable at exchanged charges of approximately 1 mC. A further lowering in the size of nanogaps was achieved by diluting the silver plating solution and a segmented nanorod with nanogap (Au-nanogap-Au) of 3.8 nm at exchanged charges of 0.2 mC was successfully created. In addition, segmented nanorods with two or more nanogaps (Au-nanogap-Au-nanogap-Ag) placed symmetrically and asymmetrically on either side of the central Au segments were also created. A prototype of a single-electron transistor device based on segmented nanorods with two nanogaps is proposed. The results obtained could form the basis for the realization of quantum tunneling devices where the barrier thickness is very critical and demands values less than 5 nm. The encouraging results show the promise of multisegment nanorods for fabricating devices working at the de Broglie wavelength such as single-electron transistors.

  10. Multifunctional nanotube-like Fe3O4/PANI/CDs/Ag hybrids: An efficient SERS substrate and nanocatalyst.

    PubMed

    Yan, Manqing; Shen, Yang; Zhang, Guiyang; Bi, Hong

    2016-01-01

    In this paper, the stable and environment-friendly Fe3O4 nanotubes with polyaniline (Fe3O4 NTs/PANI hybrids) have been prepared via mesoporous anodic alumina oxide (AAO) template, sol-gel method and in-situ polymerization. Then multifunctional Fe3O4 NTs/PANI/Ag hybrids have been obtained by decorating Ag nanoparticles by glucose reduction on surface of Fe3O4 NTs/PANI hybrids. The morphologies and structures of these hybrids were subsequently investigated by SEM, XRD, TEM and XPS measurements. The Fe3O4 NTs/PANI/Ag hybrids presented high catalytic activity due to the template-assisted presence, preventing Ag particulate agglomeration. Importantly, the Fe3O4 NTs/PANI/Ag hybrids achieve sensitive surface-enhanced Raman scattering (SERS) signals. Furthermore, the introduction of carbon dots (CDs) endows these hybrids good dispersion and stable photoluminescence (PL). Therefore, the obtained hybrids may have potential applications in waste water treatment, biomedicine, photocatalyst, and environmental analysis.

  11. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  12. Graded core/shell semiconductor nanorods and nanorod barcodes

    SciTech Connect

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  13. Plasmonic enhancement of blue emission from ZnO nanorods grown on the anodic aluminum oxide (AAO) template

    NASA Astrophysics Data System (ADS)

    Norek, Małgorzata; Łuka, Grzegorz; Godlewski, Marek; Płociński, Tomasz; Michalska-Domańska, Marta; Stępniowski, Wojciech J.

    2013-04-01

    Luminescent properties of ZnO nanorods covered with Ag nanoparticles are examined. Nanorods were synthesized on AAO templates using Atomic Layer Deposition (ALD) technique. Two types of the samples were prepared with different arrangement of ZnO nanorods and doping conditions. Nanorods of the second type were codoped with Al, to stimulate defect-related emissions. The ZnO material fills heterogeneously the interior of the AAO nanopores and has hexagonal, wurtzite structure. Both types of structures exhibit a broad defect-related emission at about 440 nm, most probably related to recombination at zinc interstitial (Zni) defects. This emission in samples with a random distribution of ZnO:Al nanorods and finer Ag nanoparticles is enhanced by factor of ˜2.5 upon Ag deposition. The so-obtained material is interesting from the point of view of its application in blue range emitting diodes.

  14. Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.

    2017-02-01

    Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).

  15. Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds.

    PubMed

    Zhang, Jian; Langille, Mark R; Mirkin, Chad A

    2011-06-08

    Plasmon excitation of Ag seed particles with 600-750 nm light in the presence of Ag(+) and trisodium citrate was used to synthesize penta-twinned nanorods. Importantly, the excitation wavelength can be used to control the reaction rate and, consequently, the aspect ratio of the nanorods. When the excitation wavelength is red-shifted from the surface plasmon resonance of the spherical seed particles, the rate of Ag(+) reduction becomes slower and more kinetically controlled. Such conditions favor the deposition of silver onto the tips of the growing nanorods as compared to their sides, resulting in the generation of higher aspect ratio rods. However, control experiments reveal that there is only a range of low energy excitation wavelengths (between 600 and 750 nm) that yields monodisperse nanorods. This study further highlights the utility of using wavelength to control the size and shape of growing nanoparticles using plasmon-mediated methods.

  16. Surface enhanced Raman scattering (SERS) study of L-arginine adsorbed on Ag nanoclusters on glass substrate by nanocluster deposition method

    NASA Astrophysics Data System (ADS)

    Botta, Raju; Bansal, C.

    2015-06-01

    Spheroidal shape Ag nanoclusters were prepared using inert gas phase condensation technique of cluster deposition system. Annealed the Ag nanocluster film at 300 °C to get proper size and also tune the surface plasmon resonance (SPR) with excitation wavelength. L- Arginine (L-Arg) amino acid was taken to study the quantitative nature of the Raman peaks with molar concentration. Wide range of aqueous solution of L-Arg amino acid was prepared by sequential dilution method (1 mM to 1 µM) and 40 µL of L-Arg was dropped on the Ag nanocluster film and allowed to dry in the ambient conditions. Further Raman measurements were carried out using 514 nm laser excitation sources. Guanidium fragment vibrational mode and COO- symmetric stretching mode peaks were taken for the quantitative measurement. All the SERS spectrums are in good agreement with earlier reports and are reproducible over the substrate. A good correlation between peak intensity and molar concentration was found. These results show promising applications in the protein analysis.

  17. Spectral and Color Changes of Ag/TiO2 Photochromic Films Deposited on Diffusing Paper and Transparent Flexible Plastic Substrates.

    PubMed

    Diop, Daouda K; Simonot, Lionel; Martínez-García, Juan; Hébert, Mathieu; Lefkir, Yaya; Abadias, Grégory; Guérin, Philippe; Babonneau, David; Destouches, Nathalie

    2016-12-12

    Giving paper and polymer photochromic properties under laser irradiation is challenging due to the low resistance of these materials to heat, their flexibility, and their possibly irregular structure. However, we could successfully deposit TiO2/Ag/TiO2 layers stacking on flexible white glossy paper and transparent polyethylene terephalate (PET) substrates using a reactive magnetron sputtering technique, and tailor coloration changes after laser irradiation, alternating visible and ultraviolet (UV) wavelengths. The sample colors are characterized by a panel of chromas depending on the irradiation conditions. We demonstrate that these chroma changes are due to morphological changes of Ag nanoparticles (NPs) after visible laser irradiation of the colored as-deposited sample. The process exhibits a good reversibility after subsequent UV irradiation due to the growth of new metallic Ag NPs. The colors displayed in diffuse reflection by the paper samples are more saturated than the ones displayed in regular transmission by PET samples. We demonstrate the efficiency of the photochromic process on such support by printing high resolution patterns exhibiting different colors depending on the observation conditions.

  18. Electrostatic Assemblies of Well-Dispersed AgNPs on the Surface of Electrospun Nanofibers as Highly Active SERS Substrates for Wide-Range pH Sensing.

    PubMed

    Yang, Tong; Ma, Jun; Zhen, Shu Jun; Huang, Cheng Zhi

    2016-06-15

    Surface-enhanced Raman scattering (SERS) has shown high promise in analysis and bioanalysis, wherein noble metal nanoparticles (NMNPs) such as silver nanoparticles were employed as substrates because of their strong localized surface plasmon resonance (LSPR) properties. However, SERS-based pH sensing was restricted because of the aggregation of NMNPs in acidic medium or biosamples with high ionic strength. Herein, by using the electrostatic interaction as a driving force, AgNPs are assembled on the surface of ethylene imine polymer (PEI)/poly(vinyl alcohol) (PVA) electrospun nanofibers, which are then applied as highly sensitive and reproducible SERS substrate with an enhancement factor (EF) of 10(7)-10(8). When p-aminothiophenol (p-ATP) is used as an indicator with its b2 mode, a good and wide linear response to pH ranging from 2.56 to 11.20 could be available, and the as-prepared nanocomposite fibers then could be fabricated as excellent pH sensors in complicated biological samples such as urine, considering that the pH of urine could reflect the acid-base status of a person. This work not only emerges a cost-effective, direct, and convenient approach to homogeneously decorate AgNPs on the surface of polymer nanofibers but also supplies a route for preparing other noble metal nanofibrous sensing membranes.

  19. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence.

    PubMed

    Aslan, Kadir; Leonenko, Zoya; Lakowicz, Joseph R; Geddes, Chris D

    2005-03-03

    Two methods have been considered for the deposition of silver nanorods onto conventional glass substrates. In the first method, silver nanorods were deposited onto 3-(aminopropyl)triethoxysilane-coated glass substrates simply by immersing the substrates into the silver nanorod solution. In the second method, spherical silver seeds that were chemically attached to the surface were subsequently converted and grown into silver nanorods in the presence of a cationic surfactant and silver ions. The size of the silver nanorods was controlled by sequential immersion of silver seed-coated glass substrates into a growth solution and by the duration of immersion, ranging from tens of nanometers to a few micrometers. Atomic force microscopy and optical density measurements were used to characterize the silver nanorods deposited onto the surface of the glass substrates. The application of these new surfaces is for metal-enhanced fluorescence (MEF), whereby the close proximity of silver nanostructures can alter the radiative decay rate of fluorophores, producing enhanced signal intensities and an increased fluorophore photostability. In this paper, it is indeed shown that irregularly shaped silver nanorod-coated surfaces are much better MEF surfaces as compared to traditional silver island or colloid films. Subsequently, these new silver nanorod preparation procedures are likely to find a common place in MEF, as they are a quicker and much cheaper alternative as compared to surfaces fabricated by traditional nanolithographic techniques.

  20. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides.

    PubMed

    Costa, Jean Claudio Santos; Ando, Rômulo Augusto; Sant'Ana, Antonio Carlos; Rossi, Liane Marcia; Santos, Paulo Sérgio; Temperini, Márcia Laudelina Arruda; Corio, Paola

    2009-09-14

    The behavior of Au nanorods and Ag nanocubes as analytical sensors was evaluated for three different classes of herbicides. The use of such anisotropic nanoparticles in surface-enhanced Raman scattering (SERS) experiments allows the one to obtain the spectrum of crystal violet dye in the single molecule regime, as well as the pesticides dichlorophenoxyacetic acid (2,4-D), trichlorfon and ametryn. Such metallic substrates show high SERS performance at low analyte concentrations making them adequate for use as analytical sensors. Density functional theory (DFT) calculations of the geometries and vibrational wavenumbers of the adsorbates in the presence of silver or gold atoms were used to elucidate the nature of adsorbate-nanostructure bonding in each case and support the enhancement patterns observed in each SERS spectrum.

  1. Interfacial Reaction and Wettability of 72Ag-28Cu Braze on CP-Ti Substrate Using Infrared Heating

    NASA Astrophysics Data System (ADS)

    Shiue, R. K.; Wu, S. K.; Chen, F. Y.; Yang, T. E.

    2012-06-01

    Reactive wetting by infrared heating of a BAg-8 braze on a CP-Ti substrate is achieved at 1073 K (800 °C) for 300 seconds. Increasing the test temperature from 1073 K to 1123 K (800 °C to 850 °C) results in great improvement of the wettability on the CP-Ti substrate due to the lower melt viscosity at higher test temperature and the alloying effect of Cu into the CP-Ti substrate to form the interfacial eutectoid layer.

  2. Fabrication of ITO/Ag3SbS3/CdX (X = S, Se) thin film heterojunctions for photo-sensing applications

    NASA Astrophysics Data System (ADS)

    Daniel, T.; Henry, J.; Mohanraj, K.; Sivakumar, G.

    2016-11-01

    Thin film heterojunctions of Ag3SbS3/CdX (X = S, Se) are deposited on a glass substrate coated with SnO2:In (ITO). The films were characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), UV-visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and I-V analysis. XRD reveals the monoclinic structure of Ag3SbS3 and a fcc structure for both CdS and CdSe thin films. The AFM images clearly show the distinct morphological features (nanopyramids, wedge-shaped and rectangular nanorod-like grains). From the I-V studies, under illumination, an ITO/Ag3SbS3/CdS heterojunction produces a higher photocurrent (12.4 mA) than that an ITO/Ag3SbS3/CdSe heterojunction (1.34 mA).

  3. Preparation of gold/silver/titania trilayered nanorods and their photocatalytic activities.

    PubMed

    Horiguchi, Yoshimasa; Kanda, Takashi; Torigoe, Kanjiro; Sakai, Hideki; Abe, Masahiko

    2014-01-28

    Gold/silver/titania trilayered nanorods have been prepared by the successive deposition of silver and titania layers on gold nanorod cores, and their photocatalytic activities were investigated under visible-light illumination (λ > 420 nm). The photocatalytic activity of the trilayered nanorods in the oxidation of 2-propanol depends on both the Au/Ag composition and the thickness of the TiO2 shell. It increases with increasing Ag content up to [Au]/[Ag] = 1:5 (molar ratio) and then decreases with further increasing Ag content. The photocatalytic activity also increases with increasing TiO2 shell thickness up to 10 nm and then decreases with further increases in the shell thickness. These effects were explained by electron-transfer and energy-transfer mechanisms.

  4. Piezoelectric and opto-electrical properties of silver-doped ZnO nanorods synthesized by low temperature aqueous chemical method

    NASA Astrophysics Data System (ADS)

    Nour, E. S.; Echresh, A.; Liu, Xianjie; Broitman, E.; Willander, M.; Nur, O.

    2015-07-01

    In this paper, we have synthesized Zn1-xAgxO (x = 0, 0.03, 0.06, and 0.09) nanorods (NRs) via the hydrothermal method at low temperature on silicon substrate. The characterization and comparison between the different Zn1-xAgxO samples, indicated that an increasing Ag concentration from x = 0 to a maximum of x = 0.09; All samples show a preferred orientation of (002) direction with no observable change of morphology. As the quantity of the Ag dopant was changed, the transmittances, as well as the optical band gap were decreased. X-ray photoelectron spectroscopy data clearly indicate the presence of Ag in ZnO crystal lattice. A nanoindentation-based technique was used to measure the effective piezo-response of different concentrations of Ag for both direct and converse effects. The value of the piezoelectric coefficient (d33) as well as the piezo potential generated from the ZnO NRs and Zn1-xAgxO NRs was found to decrease with the increase of Ag fraction. The finding in this investigation reveals that Ag doped ZnO is not suitable for piezoelectric energy harvesting devices.

  5. Synthesis of silver nanorods using Coscinium fenestratum extracts and its cytotoxic activity against Hep-2 cell line.

    PubMed

    Jacob, S Justin Packia; Mohammed, Harish; Murali, K; Kamarudeen, M

    2012-10-01

    Silver nanorod has attracted considerable interest due to its potential applications in display technologies, thermoelectric and electronic devices, optoelectronic devices and biomedicine. In this study, crystalline silver nanorods were successfully prepared from AgNO(3) using Coscinium fenestratum extract as a reducing agent. The products were characterized by UV-visible spectroscopy, FTIR (Fourier-transform IR) spectroscopy and SEM (scanning electron microscopy) analysis. Bundle-like nanostructures were observed by SEM analysis and the diameters of the nanorods were found to be in the range of 28.5-68.0 nm. The MTT assay results revealed that silver nanorod exhibit significant cytotoxic effect on HEp-2 cells.

  6. One-step synthesis of TiO₂ nanorod arrays on Ti foil for supercapacitor application.

    PubMed

    Zheng, Zhi; Chen, Jiajun; Yoshida, Ryuji; Gao, Xiang; Tarr, Kayla; Ikuhara, Yumi H; Zhou, Weilie

    2014-10-31

    Titanium dioxide (TiO2) nanorod arrays grown directly on Ti metal foil were prepared by a facile one-step hydrothermal method, in which the Ti foil serves as both substrate and precursor. The nanorods are tetragonal rutile single crystal with growth orientation along the [001] direction. The electrochemical properties of the TiO2 nanorod arrays were systematically investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy using a three-electrode system. As a result, the TiO2 nanorod arrays exhibit good areal specific capacitance and excellent cyclic stability by retaining more than 98% of the initial specific capacitance after 1000 cycles. In addition, a good flexibility of the Ti foil with TiO2 nanorod arrays was demonstrated by the stable electrochemical performance under different bending angles, which indicates that TiO2 nanorod arrays grown on Ti foil could be a promising electrode material for flexible supercapacitor application.

  7. Orientation-and polarization-dependent optical properties of the single Ag nanowire/glass substrate system excited by the evanescent wave

    PubMed Central

    Yang, Mu; Cai, Wei; Wang, Yingjie; Sun, Mengtao; Shang, Guangyi

    2016-01-01

    As an important plasmon one-dimensional material, orientation- and polarization-dependent properties of single Ag nanowires/glass substrate system are investigated by a powerful platform consisting of evanescent wave excitation, near-/far-field detection and a micromanipulator. In the case of the nanowire perpendicular or parallel to the incident plane and p- ors-polarized evanescent excitation respectively, optical properties of the nanowire is measured both in far-field and near-field. For the perpendicular situation, scattering light from the nanowire shows strong dependence on the polarization of incident light, and period patterns along the nanowire are observed both in the near- and far-field. The chain of dipole model is used to explain the origin of this pattern. The discrepancy of the period patterns observed in the near- and far-field is due to the different resolution of the near- and far-field detection. For the parallel case, light intensity from the output end also depends on the incident polarization. Both experimental and calculation results show that the polarization dependence effect results from the surface plasmon excitation. These results on the orientation- and polarization-dependent properties of the Ag nanowires detected by the combination of near- and far-field methods would be helpful to understand interactions of one-dimensional plasmonic nanostructures with light. PMID:27157123

  8. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods.

    PubMed

    Pietrobon, Brendan; McEachran, Matthew; Kitaev, Vladimir

    2009-01-27

    Monodisperse size-controlled faceted pentagonal silver nanorods were synthesized by thermal regrowth of decahedral silver nanoparticle (AgNPs) in aqueous solution at 95 degrees C, using citrate as a reducing agent. The width of the silver nanorods was determined by the size of the starting decahedral particle, while the length was varied from 50 nm to 2 mum by the amount of new silver added to the growth solution. Controlled regrowth allowed us to produce monodisperse AgNPs with a shape of elongated pentagonal dipyramid (regular Johnson solid, J(16)). Faceted pentagonal particles exhibited remarkable optical properties with sharp plasmon resonances precisely tunable across visible and NIR. Due to the narrow size distribution, faceted pentagonal silver nanorods readily self-assembled into the 3-D arrays similar to smectic mesophases. Hexagonal arrangement in the array completely overrode five-fold symmetry of the nanorods. Overall, our findings highlight the importance of pentagonal symmetry in metal nanoparticles and offer a facile method of the preparation of monodisperse AgNPs with controlled dimensions and plasmonic properties that are promising for optical applications and functional self-assembly.

  9. A simple approach for the synthesis of Ag-coated Ni@TiO{sub 2} nanocomposites as recyclable photocatalysts and SERS substrate to monitor catalytic degradation of dye molecules

    SciTech Connect

    Ding, Qianqian; Zhang, Li; Yang, Liangbao

    2014-05-01

    Graphical abstract: - Highlights: • A simple approach was used to synthesize Ag-coated Ni@TiO{sub 2} nanocomposites. • The nanocomposites can be the convenient and effective SERS substrate. • The nanocomposites can be a self-cleaning SERS substrate. • The nanocomposites can monitor the catalytic degradation of dye molecules. - Abstract: In this work, we demonstrate an extremely simple and speedy approach to synthesis Ag-coated Ni@TiO{sub 2} nanocomposites, which can be a convenient and effective substrate for surface enhanced Raman spectroscopy (SERS) observation. Due to possessing the excellent magnetic properties and stable catalytic properties at room temperature, the nanocomposites can clean themselves by photocatalytic degradation of dye molecules under irradiation with UV light into inorganic small molecules for the self-cleaning SERS detection. Furthermore, the nanocomposites can be used as the SERS substrate for monitoring the catalytic degradation of dye molecules.

  10. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    SciTech Connect

    Saoud, Khaled; Alsoubaihi, Rola; Bensalah, Nasr; Bora, Tanujjal; Bertino, Massimo; Dutta, Joydeep

    2015-03-15

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescence and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.

  11. A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods.

    PubMed

    Silva, Francisco de Assis dos Santos; da Silva, Monique Gabriella Angelo; Lima, Phabyanno Rodrigues; Meneghetti, Mario Roberto; Kubota, Lauro Tatsuo; Goulart, Marilia Oliveira Fonseca

    2013-12-15

    A nanohybrid platform built with multi-walled carbon nanotubes and gold nanorods, prepared via a cationic surfactant-containing seed-mediated sequential growth process, in aqueous solution, on a glassy carbon substrate has been successfully developed to be used in the electrocatalytic oxidation of L-cysteine (Cys). The nanohybrid was characterized by transmission electron microscopy, Raman spectroscopy and electrochemical measurements. Cyclic voltammetry results had shown that the modified electrode allows the oxidation of Cys at a very low anodic potential (0.00 V vs. Ag/AgCl). The kinetic constant kcat for the catalytic oxidation of Cys was evaluated by chronoamperometry and provided a value of 5.6×10(4) L mol(-1) s(-1). The sensor presents a linear response range from 5.0 up to 200.0 µmol L(-1), detection limit of 8.25 nmol L(-1) and a sensitivity of 120 nA L µmol(-1).

  12. Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region.

    PubMed

    Chen, Hung-Ying; Lin, Hon-Way; Wu, Chen-Ying; Chen, Wei-Chun; Chen, Jyh-Shin; Gwo, Shangjr

    2008-05-26

    Vertically aligned gallium nitride (GaN) nanorod arrays grown by the catalyst-free, self-organized method based on plasma-assisted molecular-beam epitaxy are shown to behave as subwavelength optical media with low effective refractive indices. In the reflection spectra measured in the entire visible spectral region, strong reflectivity modulations are observed for all nanorod arrays, which are attributed to the effects of Fabry-Pérot microcavities formed within the nanorod arrays by the optically flat air/nanorods and nanorods/substrate interfaces. By analyzing the reflectivity interference fringes, we can quantitatively determine the refractive indices of GaN nanorod arrays as functions of light wavelength. We also propose a model for understanding the optical properties of GaN nanorod arrays in the transparent region. Using this model, good numerical fitting can be achieved for the reflectivity spectra.

  13. Novel design of highly [110]-oriented barium titanate nanorod array and its application in nanocomposite capacitors.

    PubMed

    Yao, Lingmin; Pan, Zhongbin; Zhai, Jiwei; Chen, Haydn H D

    2017-03-23

    Nanocomposites in capacitors combining highly aligned one dimension ferroelectric nanowires with polymer would be more desirable for achieving higher energy density. However, the synthesis of the well-isolated ferroelectric oxide nanorod arrays with a high orientation has been rather scant, especially using glass-made substrates. In this study, a novel design that is capable of fabricating a highly [110]-oriented BaTiO3 (BT) nanorod array was proposed first, using a three-step hydrothermal reaction on glass-made substrates. The details for controlling the dispersion of the nanorod array, the orientation and the aspect ratio are also discussed. It is found that the alkaline treatment of the TiO2 (TO) nanorod array, rather than the completing transformation into sodium titanate, favors the transformation of the TO into the BT nanorod array, as well as protecting the glass-made substrate. The dispersity of the nanorod array can be controlled by the introduction of a glycol ether-deionized water mixed solvent and soluble salts. Moreover, the orientation of the nanorod arrays could be tuned by the ionic strength of the solution. This novel BT nanorod array was used as a filler in a nanocomposite capacitor, demonstrating that a large energy density (11.82 J cm(-3)) can be achieved even at a low applied electric field (3200 kV cm(-1)), which opens us a new application in nanocomposite capacitors.

  14. Bending Gold Nanorods with Light.

    PubMed

    Babynina, Anastasia; Fedoruk, Michael; Kühler, Paul; Meledin, Alexander; Döblinger, Markus; Lohmüller, Theobald

    2016-10-12

    V-shaped gold nanoantennas are the functional components of plasmonic metasurfaces, which are capable of manipulating light in unprecedented ways. Designing a metasurface requires the custom arrangement of individual antennas with controlled shape and orientation. Here, we show how highly crystalline gold nanorods in solution can be bent, one-by-one, into a V-shaped geometry and printed to the surface of a solid support through a combination of plasmonic heating and optical force. Significantly, we demonstrate that both the bending angle and the orientation of each rod-antenna can be adjusted independent from each other by tuning the laser intensity and polarization. This approach is applicable for the patterning of V-shaped plasmonic antennas on almost any substrate, which holds great potential for the fabrication of ultrathin optical components and devices.

  15. Plasmonic ZnO/Ag embedded structures as collecting layers for photogenerating electrons in solar hydrogen generation photoelectrodes.

    PubMed

    Chen, Hao Ming; Chen, Chih Kai; Tseng, Ming Lun; Wu, Pin Chieh; Chang, Chia Min; Cheng, Liang-Chien; Huang, Hsin Wei; Chan, Ting Shan; Huang, Ding-Wei; Liu, Ru-Shi; Tsai, Din Ping

    2013-09-09

    A new fabrication strategy in which Ag plasmonics are embedded in the interface between ZnO nanorods and a conducting substrate is experimentally demonstrated using a femtosecond-laser (fs-laser)-induced plasmonic ZnO/Ag photoelectrodes. This fs-laser fabrication technique can be applied to generate patternable plasmonic nanostructures for improving their effectiveness in hydrogen generation. Plasmonic ZnO/Ag nanostructure photoelectrodes show an increase in the photocurrent of a ZnO nanorod photoelectrodes by higher than 85% at 0.5 V. Both localized surface plasmon resonance in metal nanoparticles and plasmon polaritons propagating at the metal/semiconductor interface are available for improving the capture of sunlight and collecting charge carriers. Furthermore, in-situ X-ray absorption spectroscopy is performed to monitor the plasmonic-generating electromagnetic field upon the interface between ZnO/Ag nanostructures. This can reveal induced vacancies on the conduction band of ZnO, which allow effective separation of charge carriers and improves the efficiency of hydrogen generation. Plasmon-induced effects enhance the photoresponse simultaneously, by improving optical absorbance and facilitating the separation of charge carriers.

  16. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates.

    PubMed

    Hu, Xiaoye; Meng, Guowen; Huang, Qing; Xu, Wei; Han, Fangming; Sun, Kexi; Xu, Qiaoling; Wang, Zhaoming

    2012-09-28

    We present a surface-enhanced Raman scattering (SERS) substrate featured by large-scale homogeneously distributed Ag nanoparticles (Ag-NPs) with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO(2) film. The two-layered honeycomb-like TiO(2) film was achieved by a two-step anodization of pure Ti foil, with its upper layer consisting of hexagonally arranged shallow nano-bowls of 160 nm in diameter, and the lower layer consisting of arrays of about fifty vertically aligned sub-20 nm diameter nanopores. The shallow nano-bowls in the upper layer divide the whole TiO(2) film into regularly arranged arrays of uniform hexagonal nano-cells, leading to a similar distribution pattern for the ion-sputtered Ag-NPs in each nano-cell. The lower layer with sub-20 nm diameter nanopores prevents the aggregation of the sputtered Ag-NPs, so that the Ag-NPs can get much closer with gaps in the sub-10 nm range. Therefore, large-scale high-density and quasi-ordered sub-10 nm gaps between the adjacent Ag-NPs were achieved, which ensures homogeneously distributed 'hot spots' over a large area for the SERS effect. Moreover, the honeycomb-like structure can also facilitate the capture of target analyte molecules. As expected, the SERS substrate exhibits an excellent SERS effect with high sensitivity and reproducibility. As an example, the SERS substrate was utilized to detect polychlorinated biphenyls (PCBs, a kind of persistent organic pollutants as global environmental hazard) such as 3,3',4,4'-pentachlorobiphenyl (PCB-77) with concentrations down to 10(-9) M. Therefore the large-scale Ag-NPs with sub-10 nm gaps assembled on the two-layered honeycomb-like TiO (2) film have potentials in SERS-based rapid trace detection of PCBs.

  17. One-pot polyol synthesis of highly monodisperse short green silver nanorods.

    PubMed

    Patarroyo, Javier; Genç, Aziz; Arbiol, Jordi; Bastús, Neus G; Puntes, Victor

    2016-09-21

    Green silver nanorods (Ag NRs) of a low aspect ratio (2.8) have been produced in high yields via an optimized, simple, and robust one-pot polyol method in the presence of tannic acid, which favors the nucleation of decahedral seeds needed for the production of monodisperse Ag NRs. These Ag NRs were further used as sacrificial templates to produce Au hollow nanostructures via galvanic replacement reaction with HAuCl4 at room temperature.

  18. Surface plasmon enhanced green light emitting diodes with silver nanorod arrays embedded in p-GaN

    NASA Astrophysics Data System (ADS)

    Huang, Yaping; Yun, Feng; Wang, Yue; Ding, Wen; Li, Yufeng; Wang, Hong; Zhang, Ye; Guo, Maofeng; Su, Xilin; Liu, Shuo; Hou, Xun

    2014-08-01

    We demonstrated surface-plasmon (SP) enhanced green light-emitting diodes (LEDs). Three types of Ag nanorod arrays with a minimum distance between the quantum well (QW) and Ag of 20, 40, and 55 nm respectively were fabricated on p-GaN layer. Photoluminescence measurements showed ˜175% emission enhancement for the 20 nm spacing while almost no enhancement for the 55 nm spacing. Simulation result showed that a localized surface plasmon resonance (LSPR) at a wavelength of ˜500 nm generated by Ag nanorod arrays induced InGaN/GaN QW and SP coupling. However, the electrical field of the LSPR generated by Ag nanorods only spread ˜40 nm in the vertical direction in GaN. This simulation result well explains the observation of SP-QW coupling emission enhancement for 20 nm spacing between Ag and QW, and the lack of enhancement for the 55 nm spacing samples.

  19. Effect of growth time on ZnO nanorod arrays by a facile sonicated sol-gel immersion technique

    NASA Astrophysics Data System (ADS)

    Malek, M. F.; Mamat, M. H.; Musa, M. Z.; Ishak, A.; Saurdi, I.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    A facile sonicated sol-gel immersion technique has been presented for synthesizing ZnO nanorod arrays with controllable diameter and lengths on glass substrates. A sol-gel dip-coating deposition was first used to grow a thin layer of ZAO nanocrystals on substrate serving as seeds for the subsequent growth of the nanorod arrays. The effect of growth time of the ZnO nanorod arrays on the ZAO seed layer were investigated. The optical transmission properties of the ZnO nanorods has been investigated. The thickness of the nanorods can be controlled by the growth time. These highly oriented ZnO nanorod arrays are potential for the creation of functional materials, such as the electrode of the solar cells, optoelectronic devices and etc.

  20. Studies on properties of Ag/Co0.05Ti0.95O2 random nanocomposite as metamaterials

    NASA Astrophysics Data System (ADS)

    Khorshidi, Zahra; Gholipur, Reza; Bahari, Ali

    2016-10-01

    In this work, random metal-dielectric nanocomposites consisting of Ag nanorods embedded in Co0.05Ti0.95O2 are studied. The aspect ratio of Ag nanorods is about 15, and different contents of Ag nanorods are investigated. The nanocomposites with Ag content exceeding its percolation threshold, show metal-like behavior with negative permittivity. Moreover, in these nanocomposites, Ag nanorods form silver networks with diamagnetic response which combine with the magnetic resonance of ferromagnetic Co0.05Ti0.95O2 particles. The permeability spectra show that CTO-Ag15 33% nanocomposite has strongest diamagnetic behavior. These results indicate that the CTO-Ag15 33% sample is a promising candidate for the double negative materials.

  1. Amplification of raman scattering by localized plasmons in silver nanoparticles on the surface of zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Kaidashev, V. E.; Lyanguzov, N. V.; Yuzyuk, Yu. I.; Kaidashev, E. M.

    2012-10-01

    The magnetron sputtering of Ag nanoparticles onto ZnO nanorod arrays is studied. The lateral faces of the nanorods are coated with nanoparticles at a much lower density as compared to the flat faces at comparable sputtering times. The silver density is high on the edges of the lateral faces of the nanorods. The plasmon absorption in the synthesized arrays of nanorods coated with individual Ag nanoparticles is maximal at 450-500 nm. The appearance of local plasmon excitations increases the intensity of the multiphonon processes with the participation of ZnO polar modes in Raman spectra. The cross section of resonance Raman scattering for A 1(LO) phonon overtones increases with the equivalent Ag film thickness.

  2. Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria.

    PubMed

    Hu, Bo; Wang, Ning; Han, Lu; Chen, Ming-Li; Wang, Jian-Hua

    2015-01-01

    A novel bactericidal material comprising rod-shaped core-shell-shell Au-Ag-Au nanorods is constructed as a nanoheater in the near-infrared (NIR) region. The outer Au shell melts under laser irradiation and results in exposure of the inner Ag shell, facilitating the controlled release of the antibacterial Ag shell/layer or Ag(+). This results in the Au-Ag-Au nanorods having a favorable bactericidal ability as it combines the features of physical photothermal ablation sterilization of the outer Au shell and the antibacterial effect of the inner Ag shell or Ag(+) to the surrounding bacteria. The sterilizing ability of Au-Ag-Au nanorods is investigated with Escherichia coli O157:H7 as a model bacterial strain. Under low-power NIR laser irradiation (785 nm, 50 mW cm(-2)), the Au-Ag-Au nanoheater exhibits a higher photothermal conversion efficiency (with a solution temperature of 44°C) with respect to that for the Au-Ag nanorods (39°C). Meanwhile, a much improved stability with respect to Au-Ag nanorods is observed, i.e., 16 successive days of monitoring reveal virtually no change in the ultraviolet-visible spectrum of Au-Ag-Au nanorods, while a significant drop in absorption along with a 92 nm red shift of Localized Surface Plasmon Resonance is recorded for the Au-Ag nanorods. This brings an increasing bactericidal efficiency and long-term stability for the Au-Ag-Au nanorods. At a dosage of 10 μg ml(-1), a killing rate of 100% is reached for the E. coli O157:H7 cells under 20 min of irradiation. The use of Au-Ag-Au nanorods avoids the abuse of broad-spectrum antibiotics and reduces the damage of tissues by alleviating the toxicity of silver under controlled release and by the use of low-power laser irradiation. These features could make the bimetallic core-shell-shell nanorods a favorable nanoheater for in vivo biomedical applications.

  3. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.

    PubMed

    Wang, S; Tay, L-L; Liu, H

    2016-03-07

    Optical excitation of coupled plasmonic nanoparticles supports intense localized electromagnetic "hot-spots" which enable a variety of surface enhanced spectroscopies with the best known example being surface enhanced Raman scattering (SERS), currently of great interest for sensing applications. In this study, we present a novel SERS and electrical dual transduction chemical sensor based on gas-phase generated, negatively charged, silver nanoparticles self-assembled on glass slide forming a close-packed plasmonic monolayer thin-film that supports both SERS and electrical sensing. We demonstrate broad tunability of the localized surface plasmon resonance (LSPR) of the close-packed plasmonic nanoparticle monolayer thin-film sensors through control of the nanoparticle (NP) deposition time which directly influences the plasmonic coupling between neghibouring NPs. This broad tunability supports strong SERS activity from visible to near infrared (NIR) excitation wavelengths. We performed SERS and electrical measurements of a non-resonant molecule 4-mercaptobenzonitrile (4-MBN) as a sample Raman reporter molecule to determine the SERS enhancement factor of our SERS substrate. We measured an average SERS enhancement factor of 10(7) from our close-packed plasmonic nanoparticle monolayer thin-film sensor. Films which were grown below or above one nanoparticle monolayer both exhibited significantly lower SERS performance in one or more of SERS enhancement factor (EF), uniformity or repeatability. Our close-packed plasmonic nanoparticle monolayer thin-film sensors are highly uniform from point-to-point across the entire substrate and showed good reproducibility from batch-to-batch. These qualities are highly desirable for quantifiable detection of chemical and biological molecules. As an example application, this type of substrates provides an affordable and reliable sensing and identification capability for combatting new and emerging chemical and biological threats in

  4. Transitions in Wetting Behavior Between Liquid Ag-CuO Alloys and Al2O3Substrates

    SciTech Connect

    Friant, Jared R.; Meier, Alan; Darsell, Jens T.; Weil, K. Scott; Rohrer, G.

    2012-02-24

    Reactive air brazing (RAB) is a method for joining ceramics with applications in high temperature technologies such as gas separation and solid oxide fuel cell (SOFC) components. An understanding of wetting behavior is critical for optimization of the brazing process. In the current study, the wetting behavior of Ag-CuO on Al2O3 was evaluated. Based on in-situ contact angle measurements, three regions of wetting behavior were identified in the composition range of 0 to 40 mol% CuO. The first transition, a 20° decrease between 2 mol% CuO and 4 mol% CuO, was attributed to the liquid composition miscibility gap, and the second, a 10° decrease between 10 mol% CuO and 20 mol% CuO, was hypothesized to be dominated by the formation of a reaction product. Small, discontinuous reaction regions were identified via electron probe microanalysis (EPMA) but could not be verified with X-ray photoelectron spectroscopy analysis (XPS).

  5. Development of a physical and electronic model for RuO 2 nanorod rectenna devices

    NASA Astrophysics Data System (ADS)

    Dao, Justin

    Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications. In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. Conductive Atomic Force Microscopy (C-AFM) measurements were performed on single nanorods to characterize structure and electrical conductivity. The C-AFM probe tip is placed on a single nanorod and I-V characteristics are measured, potentially exhibiting rectifying capabilities. An analysis of these results using fundamental semiconductor physics principles is presented. Experimental data for silicon substrates was most closely approximated by the Simmons model for direct electron tunneling, whereas that of aluminum substrates was well approximated by Fowler-Nordheim tunneling. The native oxide of titanium is regarded as a semiconductor rather than an insulator and its ability to function as a rectifier is not strong. An electronic model for these nanorods is described herein.

  6. Differentiation and classification of bacteria using vancomycin functionalized silver nanorods array based surface-enhanced Raman spectroscopy and chemometric analysis.

    PubMed

    Wu, Xiaomeng; Huang, Yao-Wen; Park, Bosoon; Tripp, Ralph A; Zhao, Yiping

    2015-07-01

    Twenty seven different bacteria isolates from 12 species were analyzed using intrinsic surface-enhanced Raman scattering (SERS) spectra with recently developed vancomycin coated silver nanorod (VAN AgNR) substrates. The VAN AgNR substrates could generate reproducible SERS spectra of the bacteria with little to no interference from the environment or bacterial by-products as compared to the pristine substrates. By taking advantage of the structural composition of the cellular wall which varies from species to species, the differentiation of bacterial species is demonstrated by using chemometric analyses on those spectra. A second chemometric analysis step within the species cluster is able to differentiate serotypes and strains. The spectral features used for serotype differentiation arises from the surface proteins, while Raman peaks from adenine dominate the differentiation of strains. In addition, due to the intrinsic structural differences in the cell walls, the SERS spectra can distinguish Gram-positive from Gram-negative bacteria with high sensitivity and specificity, as well as 100% accuracy on predicting test samples. Our results provide important insights for using SERS as a bacterial diagnostic tool and further guide the design of a SERS-based detection platform.

  7. Optoacoustic detection of viral antigens using targeted gold nanorods

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher; Woodward, Lee; Glickman, Randolph D.; Barsalou, Norman

    2009-02-01

    We are detecting antigens (Ag), isolated from infectious organisms, utilizing laser optoacoustic spectroscopy and antibody-coupled gold nanorod (NR) contrast agents specifically targeted to the antigen of interest. We have detected, in clinical ocular samples, both Herpes Simplex Virus Type 1 and 2 (HSV-1 and HSV-2) . A monoclonal antibody (Ab) specific to both HSV-1 and HSV-2 was conjugated to gold nanorods to produce a targeted contrast agent with a strong optoacoustic signal. Elutions obtained from patient corneal swabs were adsorbed in standard plastic micro-wells. An immunoaffinity reaction was then performed with the functionalized gold nanorods, and the results were probed with an OPO laser, emitting wavelengths at the peak absorptions of the nanorods. Positive optoacoustic responses were obtained from samples containing authentic (microbiologically confirmed) HSV-1 and HSV-2. To obtain an estimate of the sensitivity of the technique, serial dilutions from 1 mg/ml to 1 pg/ml of a C. trachomatis surface Ag were prepared, and were probed with a monoclonal Ab, specific to the C. trachomatis surface Ag, conjugated to gold nanorods. An optoacoustic response was obtained, proportional to the concentration of antigen, and with a limit of detection of about 5 pg/ml. The optoacoustic signals generated from micro-wells containing albumin or saline were similar to those from blank wells. The potential benefit of this method is identify viral agents more rapidly than with existing techniques. In addition, the sensitivity of the assay is comparable or superior to existing colorimetric- or fluorometric-linked immunoaffinity assays.

  8. Gold nanorod-templated synthesis of polymetallic hollow nanostructures with enhanced electrocatalytic performance

    NASA Astrophysics Data System (ADS)

    Guo, Xia; Ye, Wei; Zhu, Rui; Wang, Wenxin; Xie, Fang; Sun, Hongyan; Zhao, Qing; Ding, Yi; Yang, Jian

    2014-09-01

    Anisotropic polymetallic hollow nanostructures are highly desired for many applications because of their unique morphology, large specific surface areas and attractive electronic effects. Here, a simple method using gold nanorods as a self-sacrificed template has been developed for the fabrication of hollow dumbbell-like nanorods of Au@PtAg. The formation of the hollow structures involves the growth of another metallic shell first, and then the etching of gold nanorods, which is induced by oxygen and ascorbic acid. The lattice mismatch and cohesive energy of the shell, along with its surface passivation, greatly affect the subsequent etching and the resulting products, as has been demonstrated by a positive control in the case of Rh and a negative control in the case of Pd. Hollow dumbbell-like nanorods of Au@PtAg show great enhancement for the dehydrogenation pathway in the oxidation of formic acid, as compared to solid Au@PtAg nanorods, PtAu nanotubes and commercial Pt/C.Anisotropic polymetallic hollow nanostructures are highly desired for many applications because of their unique morphology, large specific surface areas and attractive electronic effects. Here, a simple method using gold nanorods as a self-sacrificed template has been developed for the fabrication of hollow dumbbell-like nanorods of Au@PtAg. The formation of the hollow structures involves the growth of another metallic shell first, and then the etching of gold nanorods, which is induced by oxygen and ascorbic acid. The lattice mismatch and cohesive energy of the shell, along with its surface passivation, greatly affect the subsequent etching and the resulting products, as has been demonstrated by a positive control in the case of Rh and a negative control in the case of Pd. Hollow dumbbell-like nanorods of Au@PtAg show great enhancement for the dehydrogenation pathway in the oxidation of formic acid, as compared to solid Au@PtAg nanorods, PtAu nanotubes and commercial Pt/C. Electronic

  9. Photoluminescence and field emission of 1D ZnO nanorods fabricated by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Wang, B.; Jin, X.; Ouyang, Z. B.; Xu, P.

    2012-07-01

    Four kinds of new one-dimensional nanostructures, celery-shaped nanorods, needle-shaped nanorods, twist fold-shaped nanorods, and awl-shaped nanorods of ZnO, have been grown on single silicon substrates by an Au catalyst assisted thermal evaporation of ZnO and active carbon powders. The morphology and structure of the prepared nanorods are determined on the basis of field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The photoluminescence spectra (PL) analysis noted that UV emission band is the band-to-band emission peak and the emission bands in the visible range are attributed to the oxygen vacancies, Zn interstitials, or impurities. The field-emission properties of four kinds of ZnO nanorods have been invested and the awl-shaped nanorods of ZnO have preferable characteristics due to the smallest emitter radius on the nanoscale in the tip in comparison with other nanorods. The growth mechanism of the ZnO nanorods can be explained on the basis of the vapor-liquid-solid (VLS) processes.

  10. Growth of vertically aligned ZnO nanorods using textured ZnO films

    PubMed Central

    2011-01-01

    A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.) PMID:21899743

  11. Effect of Reflow Time on Wetting Behavior, Microstructure Evolution, and Joint Strength of Sn-2.5Ag-0.5Cu Solder on Bare and Nickel-Coated Copper Substrates

    NASA Astrophysics Data System (ADS)

    Sona, Mrunali; Prabhu, K. Narayan

    2016-07-01

    The effect of reflow time on wetting behavior of Sn-2.5Ag-0.5Cu lead-free solder on bare and nickel-coated copper substrates has been investigated. The solder alloy was reflowed at 270°C for various reflow times of 10 s, 100 s, 300 s, and 500 s. On bare copper substrate, the intermetallic compound (IMC) thickness increased with increase in reflow time, whereas on Ni-coated Cu substrate, the IMC thickness increased up to 300 s followed by a drop for solder alloy reflowed for 500 s. The spreading behavior of the solder alloy was categorized into capillary, gravity (diffusion), and viscous zones. Gravity zone was obtained from 3.8 ± 0.43 s to 38.97 ± 3.38 s and from 5.99 ± 0.5 s to 77.82 ± 8.84 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. Sn-2.5Ag-0.5Cu solder alloy was also reflowed for the period corresponding to the end of the gravity zone (40 s and 80 s on bare and Ni-coated Cu, respectively). The joint strength was maximum at reflow time of 40 s and 80 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. The dynamic contact angle at the end of the gravity (diffusion) zone ( θ gz) was found to be a better parameter compared with the stabilized contact angle ( θ f) to assess the effect of the wettability of the liquid solder on the microstructure and joint strength. The present investigation reveals the significance of the gravity zone in assessment of optimum reflow time for lead-free solder alloys.

  12. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces.

    PubMed

    Sławiński, Grzegorz W; Zamborini, Francis P

    2007-09-25

    Here we describe the synthesis of Ag nanorods (NRs) (aspect ratio <20) and nanowires (NWs) (aspect ratio > or =20) directly on surfaces by seed-mediated growth. The procedure involves attaching gold seed nanoparticles (Au NPs) to 3-mercaptopropyltrimethoxysilane (MPTMS)-functionalized silicon or glass surfaces and growing them into NRs/NWs by placing the substrates into a solution containing cetyltrimethylammonium bromide (CTAB), silver nitrate, and ascorbic acid with the pH ranging from 7 to 12. Under our conditions, Ag NRs/NWs grow optimally at pH 10.6 with a 3% yield, where spherical, triangular, and hexagonal nanostructures represent the other byproducts. The length of Ag NRs/NWs ranges from 50 nm to more than 10 microm, the aspect ratio (AR) ranges from 1.4 to >300, and the average diameter is approximately 35 nm. Approximately 40% of the 1D structures are NRs, and 60% are NWs as defined by their ARs. We also report the alignment of Ag NRs/NWs directly on surfaces by growing the structures on amine-functionalized Si(100) surfaces after an amidation reaction with acetic acid and a method to improve the percentage of Ag NRs/NWs on the surface by removing structures of other shapes with adhesive tape. Surface-grown Ag NRs/NWs also react with salts of palladium, platinum, and gold via galvanic exchange reactions to form high-surface-area 1D structures of the corresponding metal. The combination of the seed-mediated growth of Ag on Au NRs followed by the galvanic exchange of Ag with Pd leads to interesting core/shell NRs grown directly on surfaces. We used scanning electron microscopy, UV-vis spectroscopy, and X-ray photoelectron spectroscopy to characterize the surface-grown nanostructures.

  13. Facet control of gold nanorods

    SciTech Connect

    Zhang, Qingfeng; Han, Lili; Jing, Hao; Blom, Douglas A.; Lin, Ye; Xin, Huolin L.; Wang, Hui

    2016-01-21

    While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair of surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.

  14. Effects of Microstructure and Loading on Fracture of Sn-3.8Ag-0.7Cu Joints on Cu Substrates with ENIG Surface Finish

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2014-12-01

    When dropped, electronic packages often undergo failure by propagation of an interfacial crack in solder joints under a combination of tensile and shear loading. Hence, it is crucial to understand and predict the fracture behavior of solder joints under mixed-mode high-rate loading conditions. In this work, the effects of the loading conditions (strain rate and loading angle) and microstructure [interfacial intermetallic compound (IMC) morphology and solder yield strength] on the mixed-mode fracture toughness of Sn-3.8 wt.%Ag-0.7 wt.%Cu solder joints sandwiched between two Cu substrates with electroless nickel immersion gold (ENIG) metallization have been studied, and compared with the fracture behavior of joints attached to bare Cu. Irrespective of the surface finish, the fracture toughness of the solder joints decreased monotonically with strain rate and mode-mixity, both resulting in increased fracture proportion through the interfacial IMC layer. Furthermore, the proportion of crack propagation through the interfacial IMC layer increased with increase in the thickness and the roughness of the interfacial IMC layer and the yield strength of the solder, resulting in a decrease in the fracture toughness of the joint. However, under most conditions, solder joints with ENIG finish showed higher resistance to fracture than joints attached directly to Cu substrates without ENIG metallization. Based on the experimental observations, a fracture mechanism map is constructed correlating the yield strength of the solder, the morphology and thickness of the interfacial IMC, and the fracture mechanisms as well as the fracture toughness values for different solder joints under mode I loading.

  15. Optoacoustic sensing of ocular bacterial antigen using targeted gold nanorods

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher; Page, Leland; Woodward, Lee; Glickman, Randolph D.; Barsalou, Norman

    2008-02-01

    Bacterial contamination can be detected using a minimally invasive optical method, based on laser-induced optoacoustic spectroscopy, to probe for specific antigens associated with a specific infectious agent. As a model system, we have used a surface antigen (Ag), isolated from Chlamydia trachomatis, and a complementary antibody (Ab). A preparation of 0.2 mg/ml of monoclonal Ab specific to the C. trachomatis surface Ag was conjugated to gold nanorods using standard commercial reagents, in order to produce a targeted contrast agent with a strong optoacoustic signal. The C. trachomatis Ag was absorbed in standard plastic microwells, and the binding of the complementary Ab-nanorod conjugate was tested in an immunoaffinity assay. Optoacoustic signals were elicited from the bound nanorods, using an optical parametric oscillator (OPO) laser system as the optical pump. The wavelength tuneability of the OPO optimized the spectroscopic measurement by exciting the nanorods at their optical absorption maxima. Optoacoustic responses were measured in the microwells using a probe beam deflection technique. Immunoaffinity assays were performed on several dilutions of purified C. trachomatis antigen ranging from 50 μg/ml to 1 pg/ml, in order to determine the detection limit for the optoacoustic-based assay. Only when the antigen was present, and the complementary Ab-NR reagent was introduced into the microwell, was an enhanced optoacoustic signal obtained, which indicated specific binding of the Ab-NR complex. The limit of detection with the current system design is between 1 and 5 pg/ml of bacterial Ag.

  16. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance.

    PubMed

    Li, Xingliang; Yang, Yun; Zhou, Guangju; Han, Shuhua; Wang, Wenfang; Zhang, Lijie; Chen, Wei; Zou, Chao; Huang, Shaoming

    2013-06-07

    Au nanostructures attract much attention due to their potential applications in many fields. The controlled synthesis is critical to their properties modulation and applications. AgNO3-assisted synthesis is a widely used method for controllably preparing Au nanostructures in aqueous system. Herein, the effect of AgNO3 on the growth of Au nanostructures in polyol is studied. We observe an unusual effect that AgNO3 can induce the formation of pentatwinned Au nanostructures (nanorods and decahedra) and block the growth of Au nanorods. More interestingly, this blocking effect can be tuned through controlling the amount of AgNO3. A moderate amount of AgNO3 facilitates the formation of Au nanorods. A large amount of AgNO3 completely blocks the growth of nanorods and favors the formation of high quality decahedra (decahedra can be considered as nanorods with 0 nm longitudinal length). Besides, this blocking effect also allows preparation of different high-index-faceted Au nanobipyramids. These prepared Au nanostructures further serve as starting templates to fabricate other heterostructured Au/Ag nanomaterials, such as Ag-Au-Ag segmental nanorods, Au@Ag core-shelled nanostructures. The prepared nanostructures exhibit size- and structure-dependent catalytic performance in the reduction of p-nitrophenol to p-aminophenol by sodium borohydride.

  17. Adsorption of the ionic liquid [BMP][TFSA] on Au(111) and Ag(111): substrate effects on the structure formation investigated by STM

    PubMed Central

    Alwast, Dorothea; Wagner, Nadja

    2013-01-01

    Summary In order to resolve substrate effects on the adlayer structure and structure formation and on the substrate–adsorbate and adsorbate–adsorbate interactions, we investigated the adsorption of thin films of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium-bis(trifluoromethylsulfonyl)imide [BMP][TFSA] on the close-packed Ag(111) and Au(111) surfaces by scanning tunneling microscopy, under ultra high vacuum (UHV) conditions in the temperature range between about 100 K and 293 K. At room temperature, highly mobile 2D liquid adsorbate phases were observed on both surfaces. At low temperatures, around 100 K, different adsorbed IL phases were found to coexist on these surfaces, both on silver and gold: a long-range ordered (‘2D crystalline’) phase and a short-range ordered (‘2D glass’) phase. Both phases exhibit different characteristics on the two surfaces. On Au(111), the surface reconstruction plays a major role in the structure formation of the 2D crystalline phase. In combination with recent density functional theory calculations, the sub-molecularly resolved STM images allow to clearly discriminate between the [BMP]+ cation and [TFSA]− anion. PMID:24367760

  18. Size and dielectric-environment dependence of transversal resonance modes of localized surface plasmons in silver nanorods.

    PubMed

    Yu, Jie; Zhang, Junxi; Zhang, Lide; Jia, Junhui; Xu, Wei; Wang, Junfeng; Fei, Guangtao

    2016-06-20

    Tuning transversal resonance modes of localized surface plasmons (LSPs) by the size and the ambient dielectric medium of Ag nanorods is presented. It is found that the resonance wavelength and intensity of the transversal modes of LSPs are closely related to the dimensions of the Ag nanorods embedded in anodic aluminum oxide membranes. The transversal resonance peak exhibits obvious redshifts from 365 to 396 nm with increasing nanorod diameter from 40 to 80 nm, and the resonance intensity remarkably enhances with increasing nanorod diameter. In addition, it is observed that the transversal resonance modes of LSPs in Ag nanorods are strongly sensitive to their surrounding dielectric medium such as water, ethanol, and cetyltrimethylammonium bromide, and the transversal resonance peak distinctly redshifts from 422 to 467 nm when the refractive index of the dielectric medium increases from 1.342 to 1.435. As a result, a refractive index sensitivity of up to 484 nm/RIU can be achieved based on the transversal resonance modes. The transverse resonance modes of LSPs in the Ag nanorods can be used for sensitive quantification of chemical and biological species.

  19. Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers

    PubMed Central

    Liu, Pai; Singh, Shalini; Guo, Yina; Wang, Jian-Jun; Xu, Hongxing; Silien, Christophe; Liu, Ning; Ryan, Kevin M.

    2017-01-01

    Herein we report the formation of multi-layered arrays of vertically aligned and close packed semiconductor nanorods in perfect registry at a substrate using electric field assisted assembly. The collective properties of these CdSexS1-x nanorod emitters are harnessed by demonstrating a relatively low amplified spontaneous emission (ASE) threshold and a high net optical gain at medium pump intensity. The importance of order in the system is highlighted where a lower ASE threshold is observed compared to disordered samples. PMID:28272427

  20. Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers

    NASA Astrophysics Data System (ADS)

    Liu, Pai; Singh, Shalini; Guo, Yina; Wang, Jian-Jun; Xu, Hongxing; Silien, Christophe; Liu, Ning; Ryan, Kevin M.

    2017-03-01

    Herein we report the formation of multi-layered arrays of vertically aligned and close packed semiconductor nanorods in perfect registry at a substrate using electric field assisted assembly. The collective properties of these CdSexS1-x nanorod emitters are harnessed by demonstrating a relatively low amplified spontaneous emission (ASE) threshold and a high net optical gain at medium pump intensity. The importance of order in the system is highlighted where a lower ASE threshold is observed compared to disordered samples.

  1. Growth of RuO2 nanorods in reactive sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Tsun; Chen, Chun-Yu; Hsiung, Chang-Po; Cheng, Kai-Wen; Gan, Jon-Yiew

    2006-08-01

    The synthesis of RuO2 nanorods with reactive sputtering was demonstrated in this work. The synthesis process is very much like the metal organic chemical vapor deposition, except that RuO3 generated with reactive sputtering under high oxygen-to-argon flow ratio (>5SCCM /15SCCM) (SCCM denotes cubic centimeter per minute at STP) and high substrate temperature (>300°C) is used in place of the metal organic precursor. RuO2 nanorods tend to grow steadily with constant aspect ratio (˜27) and the field-emission characteristics appear very sensitive to their spatial distribution.

  2. TUNING SILICON NANORODS FOR ANODES OF LI-ION RECHARGEABLE BATTERIES

    SciTech Connect

    Au, M.

    2010-11-23

    Silicon is a promising anode material for Li-ion batteries in regarding of high capacity, low cost and safety, but it suffers poor cycling stability due to the pulverization induced by severe volume expansion/shrinkage (297%) during lithium insertion/extraction. In our previous investigation on aluminum nanorods anodes, it is found the selection of substrates in which Al nanorods grown plays the role in prevention of pulverization resulting in the increase of cycling life. Adapting this knowledge, we investigated the Si based nanorods anodes by tuning its composition and element distribution. Our results show that although the Si nanorods demonstrated higher initial anodic capacity of 1500 mAh/g, it diminished after 50 cycles due to morphology change and pulverization. By codepositing Cu, the Si-Cu composite nanorods demonstrated sustainable capacity of 500 mAh/g in 100 cycles attributing to its flexible and less brittle nature.

  3. CdSe nanorods dominate photocurrent of hybrid CdSe-P3HT photovoltaic cell.

    PubMed

    Schierhorn, Martin; Boettcher, Shannon W; Peet, Jeffrey H; Matioli, Elison; Bazan, Guillermo C; Stucky, Galen D; Moskovits, Martin

    2010-10-26

    Photovoltaic devices based on organic semiconductors require charge-separating networks (bulk heterojunctions) for optimal performance. Here we report on the fabrication of organic-inorganic photovoltaic devices with tailored (n-type) CdSe nanorod arrays aligned perpendicularly to the substrate. The nanorod lengths varied from 58 ± 12 to 721 ± 15 nm, while the diameters and inter-rod spacings were kept constant at 89.5 ± 7.5 and 41.3 ± 9.9 nm, respectively. Short-circuit densities improved linearly with nanorod length, resulting in power conversion efficiencies of up to 1.38% for cells with nanorods 612 ± 46 nm long. Notably, the cell's efficiency was dominated by exciton generation in the CdSe nanorods.

  4. UV light sensing properties of Sm doped vertically aligned ZnO nanorod arrays

    SciTech Connect

    Kumar, D. Ranjith; Ranjith, K. S.; Rajendrakumar, R. T.

    2015-06-24

    Samarium doped ZnO nanorods were grown on silicon substrate by using vapor phase transport method (VPT) with the growth temperature of 950°C. The synthesized nanorods were characterized by XRD, field emission scanning electron microscopy, Raman spectra, and photocurrent measurements. The XRD result revealed that Sm was successfully doped into lattice plane of hexagonal ZnO nanorods. The FESEM result confirms the pure ZnO has nanorod like morphology with an average diameter and length of 130nm and 10µm respectively. The above observation is supported by the Micro-Raman spectroscopy result. The photocurrent in the visible region has been significantly enhanced due to deposition of Sm on the surface of the ZnO nanorods. Sm acts as a visible sensitizer because of its lower band gap compared to ZnO.

  5. Formation of iron-oxide nanorods on the surface of silicon by using annealing technique

    NASA Astrophysics Data System (ADS)

    Rawat, Nitin; Kumari, Sarita; Kumar, Rajesh

    2016-12-01

    In this article, we report the synthesis of iron-oxide nanorods on silicon (Si) substrates. The nanorods were formed by annealing an iron chloride solution on the surface of a Si at 950 °C in the presence of a reducing gas (H2) and a diluting gas (Ar). The surface morphologies of the nanorods were investigated by using field-emission scanning electron microscopy, and their compositions and structural characterization were investigated by elemental using energy dispersive X-ray spectroscopy and high-resolution transmission electron microscopy (HRTEM), respectively. The HRTEM study shows a crystalline formation of the nanorods. The electron diffraction pattern along the viewing (111) direction and the HRTEM result shows an interplanar distance equal to 2.17 Å, which is nearly equal to the standard value 2.3 Å of FeO. The as-fabricated nanorods can be used for many technological applications.

  6. Growth of well-aligned ZnO nanorods using auge catalyst by vapor phase transportation.

    PubMed

    Ha, S Y; Jung, M N; Park, S H; Ko, H J; Ko, H; Oh, D C; Yao, T; Chang, J H

    2006-11-01

    Well-aligned ZnO nanorods have been achieved using new alloy (AuGe) catalyst. Zn powder was used as a source material and it was transported in a horizontal tube furnace onto an AuGe deposited Si substrates. The structural and optical properties of ZnO nanorods were characterized by scanning electron microscopy, high resolution X-ray diffraction, and photoluminescence. ZnO nanorods grown at 650 degrees C on 53 nm thick AuGe layer show uniform shape with the length of 8 +/- 0.5 microm and the diameter of 150 +/- 5 nm. Also, the tilting angle of ZnO nanorods (+/- 5.5 degrees) is confirmed by HRXRD. High structural quality of the nanorods is conformed by the photoluminescence measurement. All samples show strong UV emission without considerable deep level emission. However, weak deep level emission appears at high (700 degrees C) temperature due to the increase of oxygen desertion.

  7. Visible light driven photocatalysis and antibacterial activity of AgVO{sub 3} and Ag/AgVO{sub 3} nanowires

    SciTech Connect

    Singh, Anamika; Dutta, Dimple P.; Ballal, A.; Tyagi, A.K.; Fulekar, M.H.

    2014-03-01

    Graphical abstract: - Highlights: • Ag/AgVO{sub 3} and pure AgVO{sub 3} nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO{sub 3} within 45 min. • Antibacterial activity of Ag/AgVO{sub 3} demonstrated. - Abstract: Ag/AgVO{sub 3} nanowires and AgVO{sub 3} nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO{sub 3} nanowires. The photocatalytic studies revealed that the Ag/AgVO{sub 3} nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO{sub 3} nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO{sub 3} nanorods prove that in case of the Ag dispersed Ag/AgVO{sub 3} nanowires, the enhanced antibacterial action is also due to contribution from the AgVO{sub 3} support.

  8. Sensitive detection of DNA based on the optical properties of core-shell gold nanorods

    NASA Astrophysics Data System (ADS)

    Huang, Haowen; Li, Chunhui; Qu, Caiting; Huang, Shaowen; Liu, Fang; Zeng, Yunlong

    2012-03-01

    In this article, a type of core-shell nanostructure, Au2S/AuAgS/Ag3AuS2-coated gold nanorods (GNRs) with unique optical properties was used as a sensing platform to detect fish sperm DNA (fsDNA). The prepared core-shell nanorods are positively charged due to the adsorption of the positively charged cetyltrimethylammonium bromide (CTAB) cations on their surface. fsDNA can form ternary fsDNA-CTAB-nanorod complexes together with CTAB and nanorod, which provides a useful platform to detect fsDNA through absorption spectra and resonance light scattering (RLS) spectroscopy. In this sensitive core-shell nanorod sensor, CTAB concentration and the nanoparticle dosage play important roles and have been investigated. Moreover, the fsDNA-CTAB-nanorod complexes induce a great enhancement of RLS intensity of the core-shell GNRs and directly proportional to the concentration of fsDNA, reaching a detection limit of about 10-9 mg/mL. This study will be significant for as-prepared core-shell GNRs for future application in biological systems.

  9. Organized Nanorod-Superconductor Composites.

    DTIC Science & Technology

    2007-11-02

    34 Preparation of Carbide Nanorods", 08/814,745, patent pending. 3. CM. Lieber and P. Yang, "Method of Producing Metal Oxide Nanorods", 08/790,824, patent...Growth of Nanowires Using Laser-Generated Nanoclusters ", Gordon Research Conference on Laser Interactions with Materials, Andover, NH, June 1998...to prepare MgO nanorods; (2) the preparation of MgO nanorod/HTS bulk composites with HTS = Bi2Sr2CaCu208 (BSCCO-2212) and Bi^Ca^O,,, (BSCCO-2223); (3

  10. Carbon nanotubes and tungsten oxide nanorods: Synthesis and applications

    NASA Astrophysics Data System (ADS)

    Xiao, Bing

    Synthesis and applications of two types of one-dimensional nanomaterials, carbon nanotubes (CNTs) and tungsten oxide nanorods, are investigated in this dissertation. Multi-walled CNTs have been successfully synthesized using two types of chemical vapor deposition (CVD) methods: microwave plasma enhanced CVD and atmospheric pressure thermal CVD. CNTs and their synthesis processes are characterized with various analysis techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and optical emission spectroscopy. Ultra-thin and high quality multi-walled CNTs are discovered in CNT films produced by MPCVD, which exhibit good field emission performance that is found to be dependent on the synthesis conditions, like the growth time and CH4/H2 flow ratio. CNTs grown by thermal CVD have similar field emission performance. Based on silicon surface micromachining techniques and thermal CVD method, a self-aligned method has been developed to fabricate CNT based gated field emitter arrays (FEAs) which demonstrate low turn-on voltage and good emission current. Tungsten oxide nanorods have been synthesized on various tungsten substrates via thermal annealing in argon at atmospheric pressure. Nanorod growth mechanism is proposed based on thermal oxidation of tungsten in gas ambient with a very low partial pressure of oxygen as well as the self-catalytic effect on tungsten surface. The lattice structure and composition of the tungsten oxide nanorods are observed and analyzed using high resolution TEM, selected area electron diffraction (SAD), and energy dispersive X-ray spectroscopy (EDXS). The analysis results reveal that the lattice structure of the tungsten oxide nanorods is closest to that of the monoclinic WO3 crystal. Tungsten oxide nanorods have been successfully grown on tungsten tips for use in scanning tunneling microscope (STM) as probes which readily produce atomic resolution images on sample surface. Nanorod

  11. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    PubMed Central

    2010-01-01

    SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP) immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM−1 cm−2), low detection limit (0.2 μM) and high selectivity with the apparent Michaelis–Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors. PMID:20596358

  12. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Jinping; Li, Yuanyuan; Huang, Xintang; Zhu, Zhihong

    2010-07-01

    SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP) immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM-1 cm-2), low detection limit (0.2 μM) and high selectivity with the apparent Michaelis-Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.

  13. The mechanism of growth of ZnO nanorods by reactive sputtering

    NASA Astrophysics Data System (ADS)

    Nandi, R.; Major, S. S.

    2017-03-01

    DC reactive magnetron sputtering of zinc target in argon-oxygen sputtering atmosphere has been used to grow ZnO thin films/nanorods on Si in a wide substrate temperature range of 300-750 °C and under different sputtering conditions, namely, DC power, sputtering pressure and oxygen percentage in the sputtering atmosphere. Powder X-ray diffraction, Raman spectroscopy and a combination of top-down and cross-sectional scanning electron microscopy studies of ZnO films and nanorods grown under different conditions, have shown that substrate temperature critically controls their growth behavior and morphology, eventually resulting in the growth of vertically c-axis oriented, highly aligned and separated ZnO nanorods at substrate temperatures of 700-750 °C. The strongly substrate temperature dependent growth of nanorods is explained by considering that the growth above 600 °C, takes place in the 'desorption regime', in which, the surface diffusion length decreases exponentially with temperature. The diameter of nanorods increases with increase of DC power or decrease of sputtering pressure, which is attributed to the increase of surface diffusion length at higher deposition flux. The morphology of ZnO nanorods is not significantly affected by oxygen percentage in the sputtering atmosphere, since it does not influence the deposition flux.

  14. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping

    NASA Astrophysics Data System (ADS)

    Kuang, Y.; van Lare, M. C.; Veldhuizen, L. W.; Polman, A.; Rath, J. K.; Schropp, R. E. I.

    2015-11-01

    We present a simple, low-cost, and scalable approach for the fabrication of efficient nanorod-based solar cells. Templates with arrays of self-assembled ZnO nanorods with tunable morphology are synthesized by chemical bath deposition using a low process temperature at 80 °C. The nanorod templates are conformally coated with hydrogenated amorphous silicon light absorber layers of 100 nm and 200 nm thickness. An initial efficiency of up to 9.0% is achieved for the optimized design. External quantum efficiency measurements on the nanorod cells show a substantial photocurrent enhancement both in the red and the blue parts of the solar spectrum. Key insights in the light trapping mechanisms in these arrays are obtained via a combination of three-dimensional finite-difference time-domain simulations, optical absorption, and external quantum efficiency measurements. Front surface patterns enhance the light incoupling in the blue, while rear side patterns lead to enhanced light trapping in the red. The red response in the nanorod cells is limited by absorption in the patterned Ag back contact. With these findings, we develop and experimentally realize a further advanced design with patterned front and back sides while keeping the Ag reflector flat, showing significantly enhanced scattering from the back reflector with reduced parasitic absorption in the Ag and thus higher photocurrent generation. Many of the findings in this work can serve to provide insights for further optimization of nanostructures for thin-film solar cells in a broad range of materials.

  15. Nonlinear dependence between the surface reflectance and the duty-cycle of semiconductor nanorod array.

    PubMed

    Pai, Yi-Hao; Lin, Yu-Chan; Tsai, Jai-Lin; Lin, Gong-Ru

    2011-01-31

    The nonlinear dependence between the duty-cycle of semiconductor nanorod array and its surface reflectance minimization is demonstrated. The duty-cycle control on thin-SiO2 covered Si nanorod array is performed by O(2-) plasma pre-etching the self-assembled polystyrene nanosphere array mask with area density of 4 × 10(8) rod/cm(-2). The 120-nm high SiO2 covered Si nanorod array is obtained after subsequent CF4/O2 plasma etching for 160 sec. This results in a tunable nanorod diameter from 445 to 285 nm after etching from 30 to 80 sec, corresponding to a varying nanorod duty-cycle from 89% to 57%. The TM-mode reflection analysis shows a diminishing Brewster angle shifted from 71° to 54° with increasing nanorod duty-cycle from 57% to 89% at 532 nm. The greatly reduced small-angle reflectance reveals a nonlinear trend with enlarging duty-cycle, leading to a minimum surface reflectance at nanorod duty-cycle of 85%. Both the simulation and experiment indicate that such a surface reflectance minimum is even lower than that of a uniformly SiO2 covered Si substrate on account of its periodical nanorod array architecture with tuned duty-cycle.

  16. Photoelectrochemical and photosensing behaviors of hydrothermally grown ZnO nanorods

    SciTech Connect

    Majumder, T.; Hmar, J. J. L.; Roy, J. N.; Mondal, S. P. E-mail: suvra.phy@nita.ac.in; Debnath, K.; Gogurla, N.; Ray, S. K.

    2014-07-21

    ZnO nanorods have been grown on indium-tin-oxide coated glass substrates by a low cost chemical process. Current-voltage characteristics have been studied using ZnO nanorods as photoanode in an electrochemical cell. The flat band voltage shift and depletion width of ZnO nanorods/electrolyte interface have been estimated from Mott-Schottky (MS) characteristics. The electrochemical impedance measurements have been carried out to study the charge transport mechanism at the semiconductor-electrolyte interface under dark and white light (100 mW/cm{sup 2}) illumination. The doping concentration of nanorods has been extracted from MS plot. Photoresponse behavior of ZnO nanorods is found to be enhanced than seed layers with the incident of white light. Spectral dependent photovoltage of ZnO nanorods has been carried out using monochromatic light of wavelength 250–600 nm. The photopotential recovery time has been estimated for nanorods and seed layers. The stability of ZnO nanorods as a photoanode has been investigated.

  17. Preparation and characterization of MgO nanorods coated with SnO2.

    PubMed

    Kim, Hyunsu; Jin, Changhyun; Kim, Hyoun Woo; Lee, Chongmu

    2012-05-01

    MgO nanorods have been grown by thermal evaporation of Mg3N2 powders on Si (100) substrates coated with gold (Au) thin films. The MgO nanorods grown on Al2O3 (0001) were 0.1-0.2 microm in diameter and up to a few tens of micrometers in length. MgO/SnO2 coaxial nanorods have also been prepared by atomic layer deposition (ALD) of SnO2 onto the nanorods. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis results indicate that the MgO-cores and the SnO2 shells of the annealed coaxial nanorods are of a single crystalline nature with cubic and orthorhombic structures, respectively. The photoluminescence (PL) spectroscopy analysis results show that SnO2 coating slightly increases the PL emission intensity of MgO nanorods. The PL emission of the SnO2-coated MgO nanorods is found to be considerably enhanced by thermal annealing and to strongly depend on the annealing atmosphere. The PL emission intensity of the MgO/SnO2 coaxial nanorods has been significantly increased by annealing in a reducing atmosphere. The origin of the PL enhancement by annealing in a reducing atmosphere is discussed on the basis of energy-dispersive X-ray spectroscopy analyses.

  18. Interactions of Bacterial Lipopolysaccharides with Gold Nanorod Surfaces Investigated by Refractometric Sensing.

    PubMed

    Abadeer, Nardine S; Fülöp, Gergő; Chen, Si; Käll, Mikael; Murphy, Catherine J

    2015-11-11

    The interface between nanoparticles and bacterial surfaces is of great interest for applications in nanomedicine and food safety. Here, we demonstrate that interactions between gold nanorods and bacterial surface molecules are governed by the nanoparticle surface coating. Polymer-coated gold nanorod substrates are exposed to lipopolysaccharides extracted from Pseudomonas aeruginosa, Salmonella enterica and Escherichia coli, and attachment is monitored using localized surface plasmon resonance refractometric sensing. The number of lipopolysaccharide molecules attached per nanorod is calculated from the shift in the plasmon maximum, which results from the change in refractive index after analyte binding. Colloidal gold nanorods in water are also incubated with lipopolysaccharides to demonstrate the effect of lipopolysaccharide concentration on plasmon shift, ζ-potential, and association constant. Both gold nanorod surface charge and surface chemistry affect gold nanorod-lipopolysaccharide interactions. In general, anionic lipopolysaccharides was found to attach more effectively to cationic gold nanorods than to neutral or anionic gold nanorods. Some variation in lipopolysaccharide attachment is also observed between the three strains studied, demonstrating the potential complexity of bacteria-nanoparticle interactions.

  19. Unstable reshaping of gold nanorods prepared by a wet chemical method in the presence of silver nitrate.

    PubMed

    Iqbal, Muhammad; Tae, Giyoong

    2006-11-01

    We characterized the stability of the gold nanorods synthesized by means of a seed mediated growth approach in the presence of AgNO3, which consists of synthesis of small diameter seed particles (approximately 4 nm) and subsequent growth of these nanoparticles into nanorods by addition to gold salt solution containing cetyltrimethylammonium bromide (CTAB) in the presence of ascorbic acid. The presence of silver nitrate significantly enhanced the nanorod synthesis as previously reported. However, the synthesized nanorods were unstable and reshaped in aqueous environment; the continuous blue-shift of the 2nd plasmon bands was monitored and the changes in the nanorod morphologies were also observed by electron microscopy with increasing storage time. This reshaping was observed at wide CTAB concentration range regardless of the removal of the unreacted gold or silver ions.

  20. Patterned growth of tungsten oxide and tungsten oxynitride nanorods from Au-coated W foil.

    PubMed

    Xu, Fang; Fahmi, Amir; Zhao, Yimin; Xia, Yongde; Zhu, Yanqiu

    2012-11-21

    This manuscript first describes a simple synthesis of tungsten oxide (WO(x)) nanorods from templated W foil using a chemical vapour deposition (CVD) technique at 600-750 °C, then presents the formation of tungsten oxynitride (WO(x)N(y)) nanorods via nitridation at 650 °C for different reaction times. The W foil, blade engraved, acid etched, or spin coated with Au-block copolymer composites then plasma etched, was used as a substrate for the nanorod growth. The Au patterns that were created on the surface of a W foil following the removal of the copolymer, led to a reverse patterned growth of WO(x) nanorods on the Au free areas. Consequently, following the oxide-to-nitride conversion, WO(x)N(y) nanorods were obtained with an identical patterned feature as to that of the parental WO(x). Combined techniques including XRD, SEM, TEM and Raman were used to visualise and analyse the resulting WO(x) and WO(x)N(y) nanorods. The diameter, length, and chemical composition of the nanorods are found to vary with reaction time and temperatures, as well as different substrate pre-treatments. This result represents a simple, innovative and efficient process for reverse-patterned growth of new nanomaterials.

  1. Domain structure of tetragonal Pb(Zr,Ti)O3 nanorods and its size dependence

    NASA Astrophysics Data System (ADS)

    Yamada, Tomoaki; Ito, Daisuke; Sakata, Osami; Kuroishi, Junki; Namazu, Takahiro; Imai, Yasuhiko; Shiraishi, Takahisa; Shimizu, Takao; Funakubo, Hiroshi; Yoshino, Masahito; Nagasaki, Takanori

    2015-10-01

    We fabricated {100} Pb(Zr0.35Ti0.65)O3 (PZT) nanorods by partly etching a film grown on a Nb-doped SrTiO3 substrate using a focused ion beam, followed by annealing to recover the etching damage and promote the formation of a stable domain structure in the form of nanorods. The application of synchrotron micro-X-ray diffraction enabled the detection of the diffraction intensity from a single nanorod, which allowed us to clarify the size dependence of the domain structure of the fabricated nanorods. We found that the a-domain fraction in the tetragonal PZT nanorods decreased with decreasing rod width and that an exclusively c-domain structure was formed in nanorods of ≤1 µm width. The preferred formation of the c-domain in these nanorods can be rationalized in terms of the large depolarizing field in the a-domain and/or the in-plane compressive strain near the PZT/substrate interface.

  2. Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric

    NASA Astrophysics Data System (ADS)

    Khan, Azam; Ali Abbasi, Mazhar; Hussain, Mushtaque; Hussain Ibupoto, Zafar; Wissting, Jonas; Nur, Omer; Willander, Magnus

    2012-11-01

    This investigation explores piezoelectricity generation from ZnO nanorods, which were grown on silver coated textile cotton fabrics using the low temperature aqueous chemical growth method. The morphology and crystal structure studies were carried out by x-ray diffraction, scanning electron microscopic and high resolution transmission electron microscopic techniques, respectively. ZnO nanorods were highly dense, well aligned, uniform in spatial distribution and exhibited good crystal quality. The generation of piezoelectricity from fabricated ZnO nanorods grown on textile cotton fabrics was measured using contact mode atomic force microscopy. The average output voltage generated from ZnO nanorods was measured to be around 9.5 mV. This investigation is an important achievement regarding the piezoelectricity generation on textile cotton fabric substrate. The fabrication of this device provides an alternative approach for a flexible substrate to develop devices for energy harvesting and optoelectronic technology on textiles.

  3. Catalyst free growth of ZnO nanorods by thermal evaporation method

    SciTech Connect

    Somvanshi, Divya; Jit, S.

    2013-06-03

    In this work, we report catalyst free growth of ZnO nanorods on n-Si substrate by a low cost thermal evaporation method. The surface morphology, chemical composition and crystalline structure of ZnO nanorods have been determined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) spectroscopy respectively. It is found that, the as -deposited ZnO seed layer reduces lattice mismatching between ZnO and Si from 40.3 to 0.28%, therefore enhances the subsequent growth and crystalline quality of ZnO nanorods on Si substrate. The present methodology is simple, cost effective and highly applicable for synthesis of ZnO nanorods for optoelectronics applications.

  4. A new silver nanorod SPR probe for detection of trace benzoyl peroxide

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiliang; Wen, Guiqing; Luo, Yanghe; Zhang, Xinghui; Liu, Qingye; Liang, Aihui

    2014-06-01

    The stable silver nanorod (AgNR) sol in red was prepared by the two-step procedure of NaBH4-H2O2 and citrate heating reduction. The AgNR had a transverse and a longitudinal surface plasmon resonance (SPR) absorption peak at 338 nm and 480 nm. Meanwhile, two transverse and longitudinal SPR Rayleigh scattering (SPR-RS) peaks at 340 nm and 500 nm were observed firstly using common fluorescence spectrometer. The SPR absorption, RS, surface enhanced Raman scattering (SERS) and electron microscope technology were used to study the formation mechanism of red silver nanorods and the SERS enhancement mechanism of nano-aggregation. The AgNR-BPO SPR absorption and AgNR-NaCl-BPO SPR-RS analytical systems were studied to develop two new simple, rapid, and low-cost SPR methods for the detection of trace BPO.

  5. Microwave assisted hydrothermal synthesize of ZnO nanorods and their characterization

    NASA Astrophysics Data System (ADS)

    Shojaee, Nadi; Ebadzadeh, Touradj; Aghaei, Alireza

    In present study ZnO nanorods were synthesized in an aqueous solution using a domestic microwave oven for irradiation. The nanorods have been grown on substrates immersed in an aqueous solution which contains zinc nitrate and hexamethylenetetramine as precursors. Eventually, effect of some parameters such as precursor's concentration and heating time on growth mechanism was characterized. The product phase was detected using X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) exhibited the resultant structure is uniform and single crystalline. Finally Uv-Vis spectroscopy was used to measure the nanorod's band gap.

  6. Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting.

    PubMed

    Wang, Degao; Zhang, Yuying; Peng, Cheng; Wang, Jianqiang; Huang, Qing; Su, Shao; Wang, Lianhui; Huang, Wei; Fan, Chunhai

    2015-04-01

    An effective strategy to overcome the morphology evolution of hematite nanorods under high-temperature activation is presented, via tuning the crystallinity and sintering temperature by substrate modification. It is demonstrated that the as-prepared doping-free hematite nanorods with fine nanostructures obtain a significantly higher photocurrent density of 2.12 mA cm(-2) at 1.23 V versus RHE, due to effective charge separation and transfer.

  7. Mechanical Strain Induced Tunable Anisotropic Wetting on Buckled PDMS Silver Nanorods Arrays.

    PubMed

    Goel, Pratibha; Kumar, Samir; Sarkar, Jayati; Singh, Jitendra P

    2015-04-29

    We report the fabrication of anisotropic superhydrophobic surface with dual-scale roughness by the deposition of silver nanorods arrays on prestretched poly(dimethylsiloxane) (PDMS) using oblique angle deposition and subsequent release of strain after the deposition, which resulted in the formation of microbuckles/wrinkles. The amplitude and periodicity of the wrinkles were tuned by varying the prestretching mechanical strain (ε) applied to the PDMS film from 0 to 30% prior to Ag nanorods deposition. The peaks and valleys in the surface topography of Ag nanorods arrays covered PDMS films lead to anisotropic wetting by water droplet. The droplet is free to move along the direction parallel to the wrinkles, but the droplet moving perpendicular to the wrinkles confront energy barrier leading to wetting anisotropy. The anisotropic wettability was tuned from 22 to 37° for 10-30% prestretched PDMS film. The dual scale roughness (nanorods on micro wrinkles) was found to be responsible for the superhydrophobicity (contact angle ∼155°) of the sample prepared for 30% prestretched PDMS film in perpendicular direction. The wetting behavior of the Ag nanorods PDMS film surface was reversibly tuned by applying the mechanical strain, which induces the change in the microscale roughness determined by amplitude (A) and periodicity (λ) of the buckles. Most interestingly, the water droplet also displayed the anisotropy in the roll-off angle. The effect of different A and λ on anisotropic wettability of Ag nanorods arrays/PDMS film was also demonstrated by lattice Boltzmann (LB) modeling. These findings may produce a promising way of controlling the direction of liquid flow such as in microfluidic devices and transportation of the microliter water droplets in a preset direction.

  8. The use of silver nanorod array based surface enhanced Raman scattering sensor for food safety applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the advancement of preventive strategies, it is critical to develop rapid and sensitive detection methods with nanotechnology for food safety applications. This article reports the recent development on the use of aligned silver nanorod (AgNR) arrays prepared by oblique angle deposition, as surf...

  9. BULK SYNTHESIS OF SILVER NANORODS IN POLY(ETHYLENE GLYCOL) USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-assisted (MW), surfactantless, greener approach to bulk synthesis of silver nanorods employing poly (ethylene glycol) (PEG) is described. An aqueous solution of silver nitrate (AgNO-3,- 0.1 M, 4 mL) and 4 mL of PEG (molecular weight 300) were mixed at room temperature t...

  10. First observation of enhanced luminescence from single lanthanide chelates on silver nanorods.

    PubMed

    Zhang, Jian; Ray, Krishanu; Fu, Yi; Lakowicz, Joseph R

    2014-08-25

    We used near-field interactions with a silver nanorod (AgNR) to greatly enhance luminescence of a lanthanide (Ln) chelate. The enhancement factor was 280-fold, making single lanthanide luminescence detectable. This is also the first observation on single molecule detection (SMD) of a lanthanide dye.

  11. Facet control of gold nanorods

    DOE PAGES

    Zhang, Qingfeng; Han, Lili; Jing, Hao; ...

    2016-01-21

    While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less

  12. Micro-Structural Properties of YBa2Cu3O(7-x)/ZnO Nanorods on SrTiO3.

    PubMed

    Jin, Zhenlan; Park, Changin; Song, Kyu Jeong; Kang, Sukil; Ko, Kyeong-Eun; Park, Chan; Ko, Rock Kil; Han, S W

    2015-01-01

    We examined the local structural and the interfacial properties of YBa2Cu3O(7-x) (YBCO)/ZnO nanorods on SrTiO3 (STO) substrates using various measurements. Vertically aligned ZnO nanorods were synthesized on STO substrates using a catalyst-free metal-organic chemical vapor deposition. YBCO films were deposited ex-situ on the ZnO nanorods/STO templates using a DC magnetron sputtering deposition. X-ray diffraction revealed that the YBCO films were crystallized along their c-axes on the ZnO nanorods/STO templates. Transmission electron microscopy measurements demonstrated that YBCO filled the space between ZnO nanorods and that both interfaces of YBCO/ZnO nanorods and ZnO nanorods/STO were quite clean with no disorder. Polarization-dependent extended X-ray absorption fine structure measurements at the Cu K edge showed extra disorder in the CuO2 planes of YBCO/ZnO nanorods/STO, compared with that of YBCO/STO. The superconductivity transition temperature (T(c)) of YBCO/ZnO nanorods/STO was approximately 50 K whereas that of YBCO/STO was 93 K. The decrease of T(c) of YBCO/ZnO nanorods/STO was ascribed to the structural disorder of CuO2 planes as well as grain boundaries in the YBCO films.

  13. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis.

    PubMed

    Zheng, Yuanhui; Zheng, Lirong; Zhan, Yingying; Lin, Xingyi; Zheng, Qi; Wei, Kemei

    2007-08-20

    A high yield of the dimer-type heterostructure of Ag/ZnO nanocrystals with different Ag contents is successfully prepared through a simple solvothermal method in the absence of surfactants. The samples are characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, and IR spectroscopy. The results show that all samples are composed of metallic Ag and ZnO; Ag nanoparticles locate on the surface of ZnO nanorods; the binding energy of Ag 3d(5/2) for the Ag/ZnO sample with a Ag content of 5.0 atom % shifts remarkably to the lower binding energy compared with the corresponding value of pure metallic Ag because of the interaction between Ag and ZnO nanocrystals; the concentration of oxygen vacancy for the as-synthesized samples varies with the increasing Ag content, and the Ag/ZnO sample with a Ag content of 5.0 atom % has the largest density of oxygen vacancy. In addition, the relationship between their structure and photocatalytic property is investigated in detail. It is found that the photocatalytic property is closely related to its structure, such as heterostructure, oxygen defect, and crystallinity. The presence of metallic Ag nanoparticles and oxygen vacancy on the surface of ZnO nanorods promotes the separation of photogenerated electron-hole pairs and thus enhances the photocatalytic activity.

  14. Hydrothermal synthesis of highly crystalline ZnO nanorod arrays: Dependence of morphology and alignment on growth conditions

    NASA Astrophysics Data System (ADS)

    Azzez, Shrook A.; Hassan, Z.; Hassan, J. J.; Alimanesh, M.; Rasheed, Hiba S.; Sabah, Fayroz A.; Abdulateef, Sinan A.

    2016-07-01

    Highly oriented zinc oxide nanorod were successfully grown on seeded p-type silicone substrate by hydrothermal methode. The morphology and the crystallinty of ZnO c-axis (002) arrays were systematically studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) methods. The effect of seed layer pre-annealing on nanorods properties was explained according to the nucleation site of ZnO nanoparticles on silicon substrate. In addition, the variation of the equal molarity of zinc nitrate hexahydrate and hexamine concentrations in the reaction vessel play a crucial role related to the ZnO nanorods.

  15. Synthesis of one-dimensional silver oxide nanoparticle arrays and silver nanorods templated by Langmuir monolayers.

    PubMed

    Liu, Hong-Guo; Xiao, Fei; Wang, Chang-Wei; Xue, Qingbin; Chen, Xiao; Lee, Yong-Ill; Hao, Jingcheng; Jiang, Jianzhuang

    2007-10-01

    One-dimensional (1D) silver oxide nanoparticle arrays were synthesized by illuminating the composite Langmuir-Blodgett monolayers of porphyrin derivatives/Ag(+) and n-hexadecyl dihydrogen phosphate (n-HDP)/Ag(+) deposited on carbon-coated copper grids with daylight and then exposing them to air. Transmission electron microscopy (TEM) observation shows that the nanoparticle size is around 3 nm, with the separation of about 2-3 nm. High-resolution TEM (HRTEM) investigation indicates that the particles are made up of Ag(2)O. Ag nanorods with the width of 15-35 nm and the length of several hundreds of nanometers were synthesized by irradiating the composite Langmuir monolayers of porphyrin derivatives/Ag(+) and n-HDP/Ag(+) by UV-light directly at the air/water interface at room temperature. HRTEM image and selected-area electron diffraction (SAED) pattern indicate that the nanorods are single crystals with the (110) face of the face-centered cubic (fcc) silver parallel to the air/water interface. The formation of the 1D arrays and the nanorods should be attributed to the templating effect of the linear supramolecules formed by porphyrin derivative or n-HDP molecules in Langmuir monolayers through non-covalent interactions.

  16. Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria

    NASA Astrophysics Data System (ADS)

    Akhavan, O.; Mehrabian, M.; Mirabbaszadeh, K.; Azimirad, R.

    2009-11-01

    Arrays of ZnO nanorods were synthesized on ZnO seed layer/glass substrates by a hydrothermal method at a low temperature of 70 °C. The effect of pH > 7 of the hydrated zinc nitrate-NaOH precursor on the morphology and topography (e.g. size, surface area and roughness), the optical characteristics (e.g. optical transmission and band-gap energy), hydrophilicity and antibacterial activity of the grown ZnO nanostructure and nanorod coatings were investigated. For pH = 11.33 of the precursor (NaOH concentration of 0.10M), a fast growth of ZnO nanorods on the seed layer (length of ~1 µm in 1.5 h) was observed. The fast growth of the ZnO nanorods resulted in a significant reduction in the optical band-gap energy of the nanorod coating, which was attributed to the formation of more defects in the nanorods during their fast growth. The surface of the ZnO nanorod arrays was relatively hydrophilic (with a water contact angle of 16°) even after the subtraction of their surface roughness effect (with a contact angle of ca 27°). This hydrophilicity of the ZnO nanorods was assigned to the observed surface OH bonds. These characteristics caused the ZnO nanorod arrays to show an excellent UV-induced photocatalytic degradation of Escherichia coli bacteria. Furthermore, the synthesized ZnO nanorods were found to be strong photo-induced antibacterial material, even without considering their high surface area ratio.

  17. ZnO Nanorods Grown Electrochemically on Different Metal Oxide Underlays

    NASA Astrophysics Data System (ADS)

    Gromyko, I.; Dedova, T.; Krunks, M.; Syritski, V.; Mere, A.; Mikli, V.; Unt, T.; Oja Acik, I.

    2015-03-01

    In this study we present results on electrochemically grown ZnO nanorods on different metal oxide underlays, such as ZnO seed layers with different morphologies, ZnS and TiO2 compact thin films produced by spray pyrolysis on transparent conductive oxide (TCO) substrates. Also in this work we present results on ZnO nanorods directly deposited on some chosen TCO substrates. The relationship between nanorod formation and substrate properties were studied. All ZnO nanorod layers were grown electrochemically using ZnCl2 aqueous solutions (c=0.2 mmol/L) at the bath temperature of 80 °C during one hour. The structural properties and morphology of metal oxide underlays and ZnO nanorods grown on them were studied by scanning electron microscopy (SEM), x-ray diffraction spectroscopy (XRD). Depending on the substrate morphology, ZnO rods with different dimension, orientation, shape and density were obtained. For instance, larger rods (d~200 nm, l~700 nm) were obtained on substrates, such as ITO/glass, FTO/glass and ZnO:In/ITO/glass. Smaller rods (d~60 nm, l~350 nm) were obtained on smooth, uniform and fine-grained underlays, such as ZnS and TiO2.

  18. Molecular Dynamics Study of Surface Anisotropy in Ag_{60} Cu_{40} Alloy at Nanoscale

    NASA Astrophysics Data System (ADS)

    Imran, Muhammad; Hussain, Fayyaz; Rashid, Muhammad; Kousar, Farhana; Javid, M. Arshad; Ullah, Hafeez; Ahmad, Ejaz; Ahmad, S. A.

    2017-03-01

    In the present study, molecular dynamics simulation has been performed to investigate the anisotropic behavior of free standing Ag_{60} Cu_{40} nanorods. We choose different orientations with various cross sections to study the dynamics of thermal behavior of Ag_{60} Cu_{40} nanorods. The system is modeled using embedded atom method potentials. The radial distribution functions are analyzed to reveal the dynamic evolution of the structural behavior of nanorods with different orientations and sample sizes. The total energy and mean square displacement is also calculated to characterize the melting phenomenon of various samples. The melting temperature of the nanorods is found to be significantly size and orientation dependent, and it increases with the increase in cross-sectional area. The nanorods with low-index crystallographic surfaces such as (110) exhibit lowest melting temperature as compared to compact surfaces (111).

  19. Magnetic-plasmonic multilayered nanorods

    NASA Astrophysics Data System (ADS)

    Thumthan, Orathai

    Multilayered nanorods which consist of alternating magnetic layers separated by Au layers combine two distinctive properties, magnetic properties and surface plasmonic resonance (SPR) properties into one nano-entity. Their magnetic properties are tunable by changing the layer thickness, varying from single domain to superparamagnetic state. Superparamagnetic is a key requirement for magnetic nanoparticles for bioapplications. Superparamagnetic nanoparticles exhibit high magnetic moments at low applied magnetic field while retain no magnetic moments when magnetic field is removed preventing them from aggregation due to magnetic attraction. Au layers in the nanorods provide anchorage sites for functional group attachment. Also, Au nanodisks exhibit SPR properties. The SPR peak can be tuned from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. In this research, there are three types of multilayered nanorod have been fabricated: Au/NiFe nanorods, Au/Fe nanorods, and Au/Co nanorods. These magnetic nanorods were fabricated by templated electrodeposition into the channels in Anodic Aluminum Oxide (AAO) membrane. The setup for AAO fabrication was developed as a part of this research. Our fabricated AAO membrane has channels with a diameter ranging from 40nm to 80 nm and a thickness of 10um to 12um. Magnetic properties of nanorods such as saturation field, saturation moment, coercivity and remanence are able to manipulate through their shape anisotropy. The magnetization will be easier in long axis rather than short axis of particle. In addition, Au nanodisks in the nanorod structure are not only serving as anchorage sites for functional groups but also provide SPR properties. Under irradiation of light Au nanodisks strongly absorb light at SPR frequency which ranging from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. The SPR tunability of nanorods in near

  20. pH-dependent growth of zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Baruah, Sunandan; Dutta, Joydeep

    2009-04-01

    Here we study the effect of pH variation on the dimension and morphology of zinc oxide (ZnO) nanorods grown through hydrothermal process at temperatures less than 100 °C. ZnO nanorods were grown on pre-seeded glass substrates using zinc nitrate hexahydrate as the source of Zn ions and hexamethylenetetramine as the source of hydroxyl ions. The pH of the reaction bath was found to change gradually from 6.4 to 7.3 in 5 h during the growth process. The growth of the ZnO nanorods was observed to be faster, both laterally and longitudinally, when the growth solution was in basic conditions. However, flower petal like ZnO nanostructures were obtained when the growth process was initiated in basic condition (pH 8-12), indicating that initial acidic conditions were required to obtain nanorods with well-defined hexagonal facets. ZnO is known to erode in acidic condition and the final dimension of the nanorods is determined by a competition between crystal growth and etching. ZnO nanorods of different dimensions, both laterally (diameters ranging from 220 nm to 1 μm) and longitudinally (lengths ranging from 1 to 5.6 μm) were successfully synthesized using the same concentration of zinc nitrate and hexamine in the reaction bath and the same growth duration of 5 h simply through appropriate control of the pH of the reactant solution between 6 and 7.3.

  1. Angle-resolved reflectance of obliquely aligned silver nanorods.

    PubMed

    Wang, X J; Abell, J L; Zhao, Y-P; Zhang, Z M

    2012-04-01

    Arrays of silver nanorods (AgNRs) formed by oblique-angle deposition (OAD) are strongly anisotropic, with either metallic or dielectric characteristics depending on the polarization of incident light, and may be used to enhance Raman scattering and surface plasmon polaritons. This work investigates the polarization-dependent reflectance of inclined AgNR arrays at the wavelengths of 635 and 977 nm. The specular reflectance at various incidence angles and the bidirectional reflectance distribution function were measured with a laser scatterometer, while the directional-hemispherical reflectance was measured with an integrating sphere. The AgNR layer is modeled as an effectively homogenous, optically uniaxial material using the effective medium theory to elucidate the dielectric or metallic response for differently polarized incidence. The thin-film optics formulation is modified considering optical anisotropy and surface scattering. This study helps gain a better understanding of optical properties of nanostructured materials.

  2. Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting

    PubMed Central

    2013-01-01

    In this work, we investigate the controlled fabrication of Sn-doped TiO2 nanorods (Sn/TiO2 NRs) for photoelectrochemical water splitting. Sn is incorporated into the rutile TiO2 nanorods with Sn/Ti molar ratios ranging from 0% to 3% by a simple solvothermal synthesis method. The obtained Sn/TiO2 NRs are single crystalline with a rutile structure. The concentration of Sn in the final nanorods can be well controlled by adjusting the molar ratio of the precursors. Photoelectrochemical experiments are conducted to explore the photocatalytic activity of Sn/TiO2 NRs with different doping levels. Under the illumination of solar simulator with the light intensity of 100 mW/cm2, our measurements reveal that the photocurrent increases with increasing doping level and reaches the maximum value of 1.01 mA/cm2 at −0.4 V versus Ag/AgCl, which corresponds to up to about 50% enhancement compared with the pristine TiO2 NRs. The Mott-Schottky plots indicate that incorporation of Sn into TiO2 nanorod can significantly increase the charge carrier density, leading to enhanced conductivity of the nanorod. Furthermore, we demonstrate that Sn/TiO2 NRs can be a promising candidate for photoanode in photoelectrochemical water splitting because of their excellent chemical stability. PMID:24191909

  3. Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Shi, Tielin; Peng, Zhengchun; Sheng, Wenjun; Jiang, Ting; Liao, Guanglan

    2013-11-01

    In this work, we investigate the controlled fabrication of Sn-doped TiO2 nanorods (Sn/TiO2 NRs) for photoelectrochemical water splitting. Sn is incorporated into the rutile TiO2 nanorods with Sn/Ti molar ratios ranging from 0% to 3% by a simple solvothermal synthesis method. The obtained Sn/TiO2 NRs are single crystalline with a rutile structure. The concentration of Sn in the final nanorods can be well controlled by adjusting the molar ratio of the precursors. Photoelectrochemical experiments are conducted to explore the photocatalytic activity of Sn/TiO2 NRs with different doping levels. Under the illumination of solar simulator with the light intensity of 100 mW/cm2, our measurements reveal that the photocurrent increases with increasing doping level and reaches the maximum value of 1.01 mA/cm2 at -0.4 V versus Ag/AgCl, which corresponds to up to about 50% enhancement compared with the pristine TiO2 NRs. The Mott-Schottky plots indicate that incorporation of Sn into TiO2 nanorod can significantly increase the charge carrier density, leading to enhanced conductivity of the nanorod. Furthermore, we demonstrate that Sn/TiO2 NRs can be a promising candidate for photoanode in photoelectrochemical water splitting because of their excellent chemical stability.

  4. Controllable growth of ZnO nanorod arrays with different densities and their photoelectric properties

    PubMed Central

    2012-01-01

    Since the photoelectric response and charge carriers transport can be influenced greatly by the density and spacing of the ZnO nanorod arrays, controlling of these geometric parameters precisely is highly desirable but rather challenging in practice. Here, we fabricated patterned ZnO nanorod arrays with different densities and spacing distances on silicon (Si) substrate by electron beam lithography (EBL) method combined with the subsequent hydrothermal reaction process. By using the EBL method, patterned ZnO seed layers with different areas and spacing distances were obtained firstly. ZnO nanorod arrays with different densities and various morphologies were obtained by the subsequent hydrothermal growth process. The combination of EBL and hydrothermal growth process was very attractive and could make us control the geometric parameters of ZnO nanorod arrays expediently. Finally, the vertical transport properties of the patterned ZnO nanorod arrays were investigated through the microprobe station equipment, and the I-V measurement results indicated that the back-to-back Schottky contacts with different barrier heights were formed in dark conditions. Under UV light illumination, the patterned ZnO nanorod arrays showed a high UV light sensitivity, and the response ratio was about 104. The controllable fabrication of patterned ZnO nanorod arrays and understanding their photoelectric transport properties were helpful to improve the performance of nanodevices based on them. PMID:22559262

  5. Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration

    PubMed Central

    2014-01-01

    Cu-doped ZnO nanorods have been grown at 90°C for 90 min onto a quartz substrate pre-coated with a ZnO seed layer using a hydrothermal method. The influence of copper (Cu) precursor and concentration on the structural, morphological, and optical properties of ZnO nanorods was investigated. X-ray diffraction analysis revealed that the nanorods grown are highly crystalline with a hexagonal wurtzite crystal structure grown along the c-axis. The lattice strain is found to be compressive for all samples, where a minimum compressive strain of −0.114% was obtained when 1 at.% Cu was added from Cu(NO3)2. Scanning electron microscopy was used to investigate morphologies and the diameters of the grown nanorods. The morphological properties of the Cu-doped ZnO nanorods were influenced significantly by the presence of Cu impurities. Near-band edge (NBE) and a broad blue-green emission bands at around 378 and 545 nm, respectively, were observed in the photoluminescence spectra for all samples. The transmittance characteristics showed a slight increase in the visible range, where the total transmittance increased from approximately 80% for the nanorods doped with Cu(CH3COO)2 to approximately 90% for the nanorods that were doped with Cu(NO3)2. PMID:24855460

  6. Photoelectrochemical water splitting properties of hydrothermally-grown ZnO nanorods with controlled diameters

    NASA Astrophysics Data System (ADS)

    Babu, Eadi Sunil; Hong, Soon-Ku; Vo, Thanh Son; Jeong, Jong-Ryul; Cho, Hyung Koun

    2015-01-01

    The effect of diameter change on photoelectrochemical water splitting was investigated in depth for ZnO nanorods. ZnO nanorods were grown on SiO2/Si and indium tin-oxide substrates by the hydrothermal growth method. By controlling the concentration ratio between zinc nitrate hexahydrate (ZNT) and hexamethylenetetramine (HMTA) nanorod diameters were changed from 45 to 275 nm, in which the diameter decreased with decreasing the ratio. Photoelectrochemical properties of ZnO nanorods with diameters from 45 to 255 nm were investigated under ultraviolet (UV) and visible light illumination. The maximum photoconversion efficiency of 45.3% was obtained from ZnO nanorods with 45 nm diameter under 365 nm UV light illumination. The photoconversion efficiency of 0.42% was obtained under Air Mass 1.5 Global simulated solar light illumination. Higher photoconversion efficiency for smaller diameter nanorods is attributed to the increase in the light absorption with decreasing the diameter that is confirmed by our simulation using finite-difference time domain. The length change of nanorods showed relatively negligible effects compared to the diameter change in our system.

  7. High conversion of HAuCl4 into gold nanorods: A re-seeding approach.

    PubMed

    Canonico-May, Stephanie Ann; Beavers, Kelsey Ross; Melvin, Michael James; Alkilany, Alaaldin M; Duvall, Craig L; Stone, John William

    2016-02-01

    Gold nanorods with varying aspect ratios have been utilized in recent years for a wide range of applications including vaccines, surface enhanced Raman spectroscopy (SERS) substrates, and as medicinal therapeutic agents. The surfactant-directed seed mediated approach is an aqueous based protocol that produces monodisperse nanorods with controlled aspect ratios. However, an inherent problem with this approach is poor efficiency of gold conversion from HAuCl4 into nanorods. In fact only ∼15% of gold is converted, motivating the need for alternate synthetic protocols in order to make the process more scalable and efficient as gold nanorods progress toward commercial applications. In the current study, we have significantly improved this conversion by growing rods in several iterations of supernatant solutions that were previously discarded as waste. Inductively coupled plasma mass spectrometry (ICP-MS) data indicates ∼14% gold conversion per nanorod solution with a total recovery of ∼75%. Gold nanorods prepared in consecutive supernatant solutions generally have slightly increased aspect ratios and maintain stability and monodispersity as measured by UV-vis and TEM. The increased nanorod yield minimizes gold waste and results in a greener synthetic approach.

  8. Patterned fabrication of single ZnO nanorods and measurement of their optoelectrical characteristics.

    PubMed

    Yu, Chun-Wei; Lai, Shang-Hung; Wang, Teng-Yi; Lan, Ming-Der; Ho, Mon-Shu

    2008-09-01

    This work develops a new process of growing well ordered ZnO nanorods in large scale on the Si(111) substrate. Nanosphere lithography (NSL) was adopted to produce a matrix in an extensive area. A pattern with a controlled amount of gold was formed through the nanosphere mask. The ZnO nanorods were then grown on a patterned Au/Si substrate through a metal catalytic vapor-liquid-solid (VLS) process. The structure and characteristics of ZnO nanorods were investigated by XRD, SEM and TEM. The hexagonal nanorods were dominated at (0002) direction with a lattice constant of approximately 5.03 A. The optoelectronical properties were studied by PL emission spectroscopy. A strong UV emission at 380 nm was observed. The band gap of the single ZnO nanorod was directly measured to be 3.36 eV using a conductive AFM. The superiority of patterned ZnO nanorods indicates their great potential in field emission display arrays.

  9. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    SciTech Connect

    Ramadhani, Muhammad F. Pasaribu, Maruli A. H. Yuliarto, Brian Nugraha

    2014-02-24

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.

  10. Light propagation in nanorod arrays

    NASA Astrophysics Data System (ADS)

    Rahachou, A. I.; Zozoulenko, I. V.

    2007-03-01

    We study the propagation of TM- and TE-polarized light in two-dimensional arrays of silver nanorods of various diameters in a gelatin background. We calculate the transmittance, reflectance and absorption of arranged and disordered nanorod arrays and compare the exact numerical results with the predictions of the Maxwell-Garnett effective-medium theory. We show that interactions between nanorods, multipole contributions and formations of photonic gaps affect strongly the transmittance spectra that cannot be accounted for in terms of the conventional effective-medium theory. We also demonstrate and explain the degradation of the transmittance in arrays with randomly located rods as well as the weak influence of their fluctuating diameter. For TM modes we outline the importance of the skin effect, which causes the full reflection of the incoming light. We then illustrate the possibility of using periodic arrays of nanorods as high-quality polarizers.

  11. Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly

    PubMed Central

    Park, Hoo Keun; Yoon, Seong Woong; Eo, Yun Jae; Chung, Won Woo; Yoo, Gang Yeol; Oh, Ji Hye; Lee, Keyong Nam; Kim, Woong; Do, Young Rag

    2016-01-01

    In this study, we report the concerted fabrication process, which is easy to transform the size of active emitting area and produce polarized surface light, using the electric-field-assisted assembly for horizontally assembled many tiny nanorod LEDs between two metal electrodes. We fabricate the millions of individually separated 1D nanorod LEDs from 2D nanorod arrays using nanosphere lithography, etching and cutting process of InGaN/GaN LED structure on a flat sapphire substrate. The horizontally assembled InGaN-based nanorods LED device shows bright (~2,130 cd/m2) and uniform polarized (polarization ratio, ρ = ~0.61) green emissions from large area (0.7 cm × 0.6 cm) planar surface. The realization of a horizontally assembled nanorod LED device can prove the concept of an innovative idea to fabricate formable and scalable polarized surface LED lighting. PMID:27324568

  12. Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly

    NASA Astrophysics Data System (ADS)

    Park, Hoo Keun; Yoon, Seong Woong; Eo, Yun Jae; Chung, Won Woo; Yoo, Gang Yeol; Oh, Ji Hye; Lee, Keyong Nam; Kim, Woong; Do, Young Rag

    2016-06-01

    In this study, we report the concerted fabrication process, which is easy to transform the size of active emitting area and produce polarized surface light, using the electric-field-assisted assembly for horizontally assembled many tiny nanorod LEDs between two metal electrodes. We fabricate the millions of individually separated 1D nanorod LEDs from 2D nanorod arrays using nanosphere lithography, etching and cutting process of InGaN/GaN LED structure on a flat sapphire substrate. The horizontally assembled InGaN-based nanorods LED device shows bright (~2,130 cd/m2) and uniform polarized (polarization ratio, ρ = ~0.61) green emissions from large area (0.7 cm × 0.6 cm) planar surface. The realization of a horizontally assembled nanorod LED device can prove the concept of an innovative idea to fabricate formable and scalable polarized surface LED lighting.

  13. Cost-Effective Plasmonic Platforms: Glass Capillaries Decorated with Ag@SiO2 Nanoparticles on Inner Walls as SERS Substrates.

    PubMed

    Shanthil, M; Fathima, Hemna; George Thomas, K

    2017-03-01

    A cost-effective method for the fabrication of a glass capillary based plasmonic platform for the selective detection and identification of analytes of importance in health, environment, and safety is demonstrated. This was achieved by coating Ag@SiO2 nanoparticles (Ag ∼ 60 nm) having silica shell of varying thickness (∼2 and ∼25 nm) on the inside walls of glass capillaries, over 2 cm in length, with uniform coverage. It was found that the particle density on the surface plays a decisive role on the enhancement of Raman signals. Multiple hot spots, which are essentially junctions of amplified electric field, were generated when ∼30 Ag@SiO2 particles/μm(2) were bound onto the walls of glass capillaries. The pores of the silica shell allow the localization of analyte molecules to the vicinity of hot spots resulting in signal enhancements of the order of 10(10) (using pyrene as analyte; excitation wavelength, 632.8 nm). The applicability of Ag@SiO2 coated capillaries for the detection of a wide range of molecules has been explored, by taking representative examples of polyaromatic hydrocarbons (pyrene), amino acids (tryptophan), proteins (bovine serum albumin), and explosives (trinitrotoluene). By increasing the thickness of the silica shell of Ag@SiO2 nanoparticles, an effective filtration cum detection method has been developed for the selective identification of small molecules such as amino acids, without the interference of large proteins.

  14. Zinc oxide nanorod growth on gold islands prepared by microsphere lithography on silicon and quartz.

    PubMed

    Blackledge, Charles W; Szarko, Jodi M; Dupont, Aurélie; Chan, George H; Read, Elizabeth L; Leone, Stephen R

    2007-09-01

    Gold islands, vapor deposited on silicon and quartz by microsphere lithography patterning, are used to nucleate arrays of ZnO nanorods. ZnO is grown on approximately 0.32 microm2 Au islands by carbothermal reduction in a tube furnace. Scanning electron microscopy (SEM) and energy dispersive atomic X-ray spectroscopy (EDS) confirm that the gold effectively controls the sites of nucleation of ZnO. Atomic force microscopy (AFM) shows that approximately 30 nm diameter nanorods grow horizontally, along the surface. Alloy droplets that are characteristic of the vapor-liquid-solid (VLS) mechanism are observed at the tips of the nanorods. The spatial growth direction of VLS catalyzed ZnO nanorods is along the substrate when they nucleate from gold islands on silicon and quartz. The energy of adhesion of the VLS droplet to the surface can account for the horizontal growth.

  15. Comparison of photovoltaic properties of TiO2 electrodes prepared with nanoparticles and nanorods.

    PubMed

    Nam, Sang-Hun; Ju, Dong-Woo; Boo, Jin-Hyo

    2014-12-01

    In this report, single crystalline rutile TiO2 nanoparticles and nanorods were synthesized via the hydrothermal method using titanium tetra-isopropoxide as a precursor then, these were coated on top of a fluorine-doped tin oxide (FTO) substrate by using a doctor blade and direct deposition, respectively. Consequently, TiO2 nanorods-based dye-sensitized solar cells (DSSC) exhibit a J(sc) of 3.37 mA/cm2, a V(oc) of 0.82 V and fill factor of 60.1% with an overall conversion efficiency of 1.66%. This result shows an increase of around 38% for current density and 35% for conversion efficiency. Also, with respect to the impedance data, TiO2 nanorods-based DSSCs had smaller semicircles than did the nanoparticles-based DSSCs. These results demonstrate that the nanorod structure can have fast electron transport and reduced charge recombination.

  16. Raman silent modes in vertically aligned undoped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Sundara Venkatesh, P.; Ramakrishnan, V.; Jeganathan, K.

    2016-01-01

    We report the observation of Raman silent modes of B1low (276 cm-1) and B1high (582 cm-1) in vertically aligned ZnO nanorods due to the breakdown of translational symmetry. The structural studies reveal the high crystalline nature of the ZnO nanorods on the lattice mismatched silicon substrates. The dominant donor bound exciton emission and the phonon replicas signify the good quality of the nanorods which substantiate that the anomalous Raman modes could not be attributed to the intrinsic point defects. Further, our results show that the observed silent modes of wurtzite-ZnO become Raman active due to the breakdown of the wave-vector selection rule by loss of translational symmetry induced by nanorods geometry.

  17. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.

    PubMed

    Singh, D P; Polychronopoulou, K; Rebholz, C; Aouadi, S M

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly beta-AgV O(3)) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 microm and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 degrees C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O(3) completely transformed into silver vanadium oxide (Ag(2)V(4)O(11)) and silver with an increase in temperature from RT to 700 degrees C.

  18. Fully alloyed metal nanorods with highly tunable properties.

    PubMed

    Albrecht, Wiebke; van der Hoeven, Jessi E S; Deng, Tian-Song; de Jongh, Petra E; van Blaaderen, Alfons

    2017-02-23

    Alloyed metal nanorods offer a unique combination of enhanced plasmonic and photothermal properties with a wide variety in optical and catalytic properties as a function of the alloy composition. Here, we show that fully alloyed anisotropic nanoparticles can be obtained with complete retention of the particle shape via thermal treatment at surprisingly low temperatures. By coating Au-Ag, Au-Pd and Au-Pt core-shell nanorods with a protective mesoporous silica shell the transformation of the rods to a more stable spherical shape was successfully prevented during alloying. For the Au-Ag core-shell NRs the chemical stability was drastically increased after alloying, and from Mie-Gans and finite-difference time-domain (FDTD) calculations it followed that alloyed AuAg rods also exhibit much better plasmonic properties than their spherical counterparts. Finally, the generality of our method is demonstrated by alloying Au-Pd and Au-Pt core-shell NRs, whereby the AuPd and AuPt alloyed NRs showed a surprisingly high increase in thermal stability of several hundred degrees compared with monometallic silica coated Au NRs.

  19. Fabrication of highly ordered Ta2O5 and Ta3N5 nanorod arrays by nanoimprinting and through-mask anodization.

    PubMed

    Li, Yanbo; Nagato, Keisuke; Delaunay, Jean-Jacques; Kubota, Jun; Domen, Kazunari

    2014-01-10

    Using highly ordered porous anodic alumina membrane fabricated with the aid of nanoimprinting as a mask, Ta2O5 nanorod array with uniform diameter, length, and distribution is grown in situ on a Ta substrate by through-mask anodization. The Ta2O5 nanorod array is further transformed into Ta3N5 nanorod array without damaging the nanorod structure by nitridation. Solar-driven photoelectrochemical water splitting with a maximum solar energy conversion efficiency of 0.36% is demonstrated with the Ta3N5 nanorod array after modifying the surface with cobalt-phosphate as a co-catalyst. The Ta2O5 and Ta3N5 nanorod arrays have potential applications in catalysis, photonics, UV photodetection and solar energy conversion.

  20. Solution-Processed Hybrid Light-Emitting Devices Comprising TiO2 Nanorods and WO3 Layers as Carrier-Transporting Layers

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Yan; Yan, Po-Ruei; Yang, Sheng-Hsiung

    2016-11-01

    The goal of this research is to prepare inverted light-emitting devices with improved performance by combining titanium dioxide (TiO2) nanorods and tungsten trioxide (WO3) layer. TiO2 nanorods with different lengths were established directly on the fluorine-doped tin oxide (FTO) substrates by the hydrothermal method. The prepared TiO2 nanorods with lengths shorter than 200 nm possess transmittance higher than 80% in the visible range. Inverted light-emitting devices with the configuration of FTO/TiO2 nanorods/ionic PF/MEH-PPV/PEDOT:PSS/WO3/Au were constructed. The best device based on 100-nm-height TiO2 nanorods achieved a max brightness of 4493 cd/m2 and current efficiency of 0.66 cd/A, revealing much higher performance compared with those using TiO2 compact layer or nanorods with longer lengths as electron-transporting layers.

  1. Nylon and nylon blend nanotubes and nanorods

    NASA Astrophysics Data System (ADS)

    Simonetti, Valentina; Park, Jason Y.; Panaro, Nicholas J.; Kricka, Larry J.

    2008-02-01

    Nylon nanorods and nanotubes (200 nm diameter) were fabricated by the membrane wetting technique (solvent and melt wetting) from a range of nylons (6; 6,6; 6,9; 6,10; 6,12; 11; 12, 6(3)T) and nylon blended with different dyes (Nylon Cast Blue, Nylon 6/6 Black) or with molybdenum disulfide (Nylon cast MDS). The 65-μm long nylon nanotubes and nanorods were characterized by scanning electron microscopy. The nanoscale nylon 6,6 served as an effective high surface area alternative to a nylon membrane as a solid support in a chemiluminescent assay for nylon-bound biotinylated nucleic acids based on streptavidin- alkaline phosphatase and chemiluminescent detection of the bound alkaline phosphatase label with the dioxetane substrate, CDP-Star. Layer-by-layer deposition of the cationic polymer (Sapphire-II™; Tropix) onto the nylon 6,6 nanostructures prior to UV-cross-linking with biotinylated DNA resulted in further enhancement of binding and detection of biotinylated DNA.

  2. Label-free SERS study of galvanic replacement reaction on silver nanorod surface and its application to detect trace mercury ion

    PubMed Central

    Wang, Yaohui; Wen, Guiqing; Ye, Lingling; Liang, Aihui; Jiang, Zhiliang

    2016-01-01

    It is significant to explore a rapid and highly sensitive galvanic replacement reaction (GRR) surface enhanced Raman scattering (SERS) method for detection of trace mercury ions. This article was reported a new GRR SERS analytical platform for detecting Hg(II) with label-free molecular probe Victoria blue B (VBB). In HAc-NaCl-silver nanorod (AgNR) substrate, the molecular probe VBB exhibited a strong SERS peak at 1609 cm−1. Upon addition of Hg(II), the GRR occurred between the AgNR and Hg(II), and formed a weak SERS activity of Hg2Cl2 that deposited on the AgNR surfaces to decrease the SERS intensity at 1609 cm−1. The decreased SERS intensity was linear to Hg(II) concentration in the range of 1.25–125 nmol/L, with a detection limit of 0.2 nmol/L. The GRR was studied by SERS, transmission electron microscopy and other techniques, and the GRR mechanism was discussed. PMID:26792071

  3. Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection.

    PubMed

    Tan, En-Zhong; Yin, Peng-Gang; You, Ting-Ting; Wang, Hua; Guo, Lin

    2012-07-25

    We have designed a large-scale three-dimensional (3D) hybrid nanostructure as surface-enhanced Raman scattering (SERS) sensor by decorating silver nanoparticles on TiO2 nanorods scaffold (Ag/TiO2). Taking p-mercaptobenzoic acid (PMBA) as the probe molecule, the SERS signals collected by point-to-point and time mapping modes show that the relative standard deviation (RSD) in the intensity of the main Raman vibration modes (1079, 1586 cm(-1)) is less than 10%, demonstrating good spatial uniformity and time stability. This hybrid substrate also exhibits excellent SERS enhancement effect due to the formation of high-density hot spots among the AgNPs, which was proved by finite-difference time-domain (FDTD) simulations. The application of the new nanostructures as SERS sensors was demonstrated with the detection of malachite green (MG). The quantification of MG can be accomplished with the detection limit of 1 × 10(-12) M based on the Raman intensity. The results show that the Ag/TiO2 nanostructure can be a promising candidate for SERS sensor.

  4. High-frequency mechanical stirring initiates anisotropic growth of seeds requisite for synthesis of asymmetric metallic nanoparticles like silver nanorods.

    PubMed

    Mahmoud, Mahmoud A; El-Sayed, Mostafa A; Gao, Jianping; Landman, Uzi

    2013-10-09

    High-speed stirring at elevated temperatures is shown to be effective in the symmetry-breaking process needed for the growth of the hard-to-synthesize silver nanorods from the polyol reduction of silver ions. This process competes with the facile formation of more symmetrical, spherical and cubic, nanoparticles. Once the seed is formed, further growth proceeds predominantly along the long axis, with a consequent increase of the particles' aspect ratio (that of the nanorod). When stirring is stopped shortly after seed formation, nanorods with a broad distribution of aspect ratios are obtained, while when the high-frequency stirring continues the distribution narrows significantly. The width of the nanorods can only be increased if the initial concentration of Ag(+) ions increases. Reducing the stirring speeds during seed formation lowers the yield of nanorods. Molecular dynamics simulations reveal that the formation of a nanometer-scale thin boundary region between a solid facet of the nanoparticle and the liquid around it, and the accommodation processes of metal (Ag) atoms transported through this boundary region from the liquid to the solid growth interface, are frustrated by sufficiently fast shear flow caused by high-frequency stirring. This arrests growth on seed facets parallel to the flow, leading, together with the preferential binding of the capping polymer to the (100) facet, to the observed growth in the (110) direction, resulting in silver nanorods capped at the ends by (111) facets and exposing (100) facets on the side walls.

  5. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    NASA Astrophysics Data System (ADS)

    Junaidi, Yunus, Muhammad; Triyana, Kuwat; Harsojo, Suharyadi, Edi

    2016-04-01

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  6. Thioxanthone functionalized silver nanorods as smart photoinitiating assemblies to generate photopolymer/metal nano-objects

    NASA Astrophysics Data System (ADS)

    Niu, Songlin; Schneider, Raphaël; Vidal, Loïc; Balan, Lavinia

    2013-06-01

    Silver nanorods (AgNRs) with lengths in the 50-60 nm range were synthesized and functionalized with 2-(2-mercaptoethyl)thioxanthone (C2TX) to generate AgNR@C2TX nanoassemblies. When irradiated at 377 nm in the presence of a diacrylate monomer, these dispersed nanoassemblies initiate radical photopolymerization, indicating that the excited singlet to triplet intersystem crossing process of C2TX in the vicinity of AgNRs was favored while the fluorescence of C2TX was completely quenched at the surface of NRs. SEM and TEM images confirmed the formation of a AgNR-polymer nanocomposite and the homogeneous dispersion of AgNRs in the polymer film. Moreover, under specific experimental conditions allowing the spatial extent of the polymerization to be limited, polymer-capped AgNRs were obtained (polymer diameter of ca. 1 nm).Silver nanorods (AgNRs) with lengths in the 50-60 nm range were synthesized and functionalized with 2-(2-mercaptoethyl)thioxanthone (C2TX) to generate AgNR@C2TX nanoassemblies. When irradiated at 377 nm in the presence of a diacrylate monomer, these dispersed nanoassemblies initiate radical photopolymerization, indicating that the excited singlet to triplet intersystem crossing process of C2TX in the vicinity of AgNRs was favored while the fluorescence of C2TX was completely quenched at the surface of NRs. SEM and TEM images confirmed the formation of a AgNR-polymer nanocomposite and the homogeneous dispersion of AgNRs in the polymer film. Moreover, under specific experimental conditions allowing the spatial extent of the polymerization to be limited, polymer-capped AgNRs were obtained (polymer diameter of ca. 1 nm). Electronic supplementary information (ESI) available: Additional TEM image. See DOI: 10.1039/c3nr01256e

  7. Bi-directional-bi-dimensionality alignment of self-supporting Mn3O4 nanorod and nanotube arrays with different bacteriostasis and magnetism

    NASA Astrophysics Data System (ADS)

    Chen, Qun; Wei, Chengzhen; Gao, Feng; Pang, Huan; Lu, Qingyi

    2013-11-01

    Self-supported Mn3O4 patterns of aligned nanorods and nanotubes were synthesized through a bi-directional-bi-dimensionality growth model by using sodium gluconate and urea as additives under mild hydrothermal conditions without the use of any substrates. In one direction, Mn3O4 grows to form one-dimensional nanorods or nanotubes, while in the other direction Mn3O4 grows into two-dimensional nanoplates to support the nanorods or nanotubes to align into arrays. These two kinds of new nanostructures, a nanotube pattern and a nanorod pattern, show similar and good bacteriostasis for Gram positive bacteria, but for Gram negative bacteria the nanotube pattern shows much better bacterial restraint than the nanorod pattern. Magnetic studies show that the nanorod arrays display similar magnetic properties to the commercial Mn3O4, while the nanotube arrays show different ferromagnetic behaviors with enhanced remnant magnetization and saturation magnetization (Ms) at low temperature.Self-supported Mn3O4 patterns of aligned nanorods and nanotubes were synthesized through a bi-directional-bi-dimensionality growth model by using sodium gluconate and urea as additives under mild hydrothermal conditions without the use of any substrates. In one direction, Mn3O4 grows to form one-dimensional nanorods or nanotubes, while in the other direction Mn3O4 grows into two-dimensional nanoplates to support the nanorods or nanotubes to align into arrays. These two kinds of new nanostructures, a nanotube pattern and a nanorod pattern, show similar and good bacteriostasis for Gram positive bacteria, but for Gram negative bacteria the nanotube pattern shows much better bacterial restraint than the nanorod pattern. Magnetic studies show that the nanorod arrays display similar magnetic properties to the commercial Mn3O4, while the nanotube arrays show different ferromagnetic behaviors with enhanced remnant magnetization and saturation magnetization (Ms) at low temperature. Electronic supplementary

  8. Digital selective fabrication of micro/nano-composite structured TiO2 nanorod arrays by laser direct writing

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; He, Xiaoning; Liu, Hongzhong; Yin, Lei; Shi, Yongsheng; Ding, Yucheng

    2014-11-01

    In this article, we report on the digital selective fabrication of micro/nano-composite structured TiO2 nanorod arrays by laser direct writing. The pattern of TiO2 nanorod arrays can be easily designed and fabricated by laser scanning technology integrated with a computer-aided design system, which allows a high degree of freedom corresponding to the various pattern design demands. The approach basically involves the hydrothermal growth of TiO2 nanorod arrays on a transparent conductive substrate, the micropattern of TiO2 nanorod arrays and surface fluorination treatment. With these micro/nano-composite TiO2 nanorod array based films, we have demonstrated superhydrophilic patterned TiO2 nanorod arrays with rapid water spreading ability and superhydrophobic patterned TiO2 nanorod arrays with an excellent droplet bouncing effect and a good self-cleaning performance. The dynamic behaviours of the water droplets observed on the patterned TiO2 nanorod arrays were demonstrated by experiments and simulated by a finite element method. The approaches we will show are expected to provide potential applications in fields such as self-cleaning, surface protection, anticrawling and microfluidic manipulation.

  9. Formation of ZnS nanorods by simple evaporation technique

    NASA Astrophysics Data System (ADS)

    Velumani, S.; Ascencio, J. A.

    Semiconductor nanocrystals and nanorods whose properties are largely determined by the quantum confinement effect are currently being intensively studied by materials scientists, physicists and chemists. Zinc sulphide (ZnS), a II-VI group semiconductor material possessing a direct band gap of 3.66 eV, has recently been extensively investigated due to its multifaceted applications. We report the synthesis of ZnS nanorods by a simple physical vapor deposition method and an in-detail surface analysis for device applications. Our interest in this material mainly lies behind its use as an n-window layer for our investigations on different window layers for CdTe- and CIS (Copper Indium diselenide) based solar cells and for photocatalytic production of hydrogen from water using the photocatalysts CdS/ZnS. ZnS films are deposited onto well-cleaned glass substrates at a vacuum of 5×10-5 Torr and various parameters are determined. The distance between the substrate and the source was maintained at 0.15 cm. The deposition time was about 20 min at a constant rate of evaporation and the substrates were maintained at room temperature. Structural analysis reveals the cubic nature of the crystallites, which is confirmed from atomic force microscopy (AFM) analysis. The AFM analysis reveals the formation of nanorods due to coalescence, which is substantiated from sectional analysis. A further analysis reveals the preferential growth of the nanorods and the coalescence limited by the energy in the (002) face. The composition was analyzed using an energy-dispersive X-ray method (EDX) and the film was found to possess excess sulfur. The band gap of the vacuum-deposited ZnS film was found to be 3.6 eV.

  10. Template synthesis and characterizations of nickel nanorods

    SciTech Connect

    Ghosh, T.; Satpati, B.

    2012-06-05

    Template assisted Ni nanorods were grown using electro-deposition process and investigated using an Analytical Transmission Electron Microscope. Transmission Electron Microscopy (TEM) images and diffraction patterns reveal the polycrystalline nature of grown Ni nanorods and the composition of these nanorods were verified using energy dispersive X-ray (EDX) spectroscopy. The morphology of the grown nanorods was also characterized using Scanning Electron Microscope (SEM).

  11. A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate.

    PubMed

    Zhang, Si; Huang, Na; Lu, Qiujun; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2016-03-15

    In this paper, a double signal electrochemical Human immunoglobulin G (HIgG) immunosensor based on AgNPs/carbon nanocomposite (Ag/C NC) as the signal probe and catalytic substrate was developed for fast and sensitive detection of HIgG. The as-prepared AuNPs-PDA-rGO nanocomposite and Ag/C NC were confirmed by UV-vis, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. Electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical properties of the proposed immunosensor. The AuNPs-PDA-rGO nanocomposite can improve the electron transfer rate and capture more Ab1. In the sandwich-type immunoassay process, the Ag/C NC functionalized bioconjugates were captured on HIgG/Ab1/AuNPs-PDA-rGO surface and the electrochemical double-signal strategy was employed. These double electrochemical detection signals were directly monitored the oxidation current originated from Ag/C NC and indirectly detected the reduction current of benzoquinone which was produced from the reaction of H2O2 and HQ by catalysis of Ag/C NC in electrochemical detection of HIgG. Under the optimized conditions, the current responses were changed with the concentrations of HIgG for the proposed immunosensor with wide linear ranges of 0.1 to 100 ngmL(-1) and 0.01-100 ngmL(-1) with the lowest detection concentration of 0.001 ng mL(-1) in the absence and presence of H2O2 and HQ. The double-signal strategy is used for detection of HIgG, and the results came from the two signals were well consistent with each other. The proposed immunosensor was successfully applied in analysis of human IgG in real samples and this strategy may provide a relative simple and effective method for construction of other immunsensors in detection of other biomarkers in clinical medicine.

  12. Enhanced photocatalytic activity of Ag-TiO2/Ag heterogeneous films

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Wang, ShaoHua; Guo, PengFeng

    2015-11-01

    Ag-deposited TiO2 and Ag (Ag-TiO2/Ag) films coated on glass substrates were prepared using a simple sol-gel and dip-coating method. The Ag chemical state was investigated through X-ray diffractometry and X-ray photoelectron spectroscopy. Results showed that the Ag mainly exists in metallic state in the Ag-TiO2 film. Ag-TiO2/Ag exhibits higher photocatalytic activity than individual Ag-TiO2 and TiO2/Ag films. This enhanced photocatalytic activity was attributed to high surface plasmon resonance effects and separation rates of photoinduced electron-hole pairs of Ag nanoparticles. Results were verified by photoluminescence and UV-Vis spectroscopy.

  13. Polarized light emission by deposition of aligned semiconductor nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Penninck, Lieven; Aubert, Tangi; Gomes, Raquel; Hens, Zeger; Strubbe, Filip; Neyts, Kristiaan

    2014-08-01

    The ability to control the position and orientation of nanorods in a device is interesting both from a scientific and a technological point of view. Because semiconductor nanorods exhibit anisotropic absorption, and spontaneous and stimulated emission, aligning individual NRs to a preferred axis is attractive for many applications in photonics such as solar cells, light-emitting devices, optical sensors, switches, etc. Electric-field-driven deposition from colloidal suspensions has proven to be an efficient method for the controlled positioning and alignment of anisotropic particles. In this work, we present a novel technique for the homogeneous deposition and alignment of CdSe/CdS NRs on a glass substrate patterned with transparent indium tin oxide interdigitated electrodes, with a spacing of a few micrometers. This method is based on applying a strong AC electric field over the electrodes during a dip-coating procedure and subsequent evaporation of the solvent. The reproducible and homogeneous deposition on large substrates is required for large size applications such as solar cells or OLEDs. The accumulation, alignment, and polarized fluorescence of the nanorods as a function of the electrical field during deposition are investigated. A preferential alignment with an order parameter of 0.92 has been achieved.

  14. Growth of Si nanorods in honeycomb and hexagonal-closed-packed arrays using glancing angle deposition

    SciTech Connect

    Patzig, Christian; Rauschenbach, Bernd; Fuhrmann, Bodo; Leipner, Hartmut S.

    2008-01-15

    Regular arrays of Si nanorods with a circular cross section in hexagonal-closed-packed and triangular cross section in honeycomblike arrangements were grown using glancing angle deposition on Si(100) and fused silica substrates that were patterned with Au dots using self-assembled mono- and double layers of polystyrene nanospheres as an evaporation mask. The Au dots were used as an etching mask for the underlying silica substrates in a reactive ion beam etching process, which greatly enhanced the height of the seeding spaces for the subsequent glancing angle deposition. An elongated shadowing length l of the prepatterned nucleation sites and less growth of Si structures between the surface mounds could be achieved this way. Differences in form, height, and diameter of the Si nanorods grown on either hcp or honeycomb arrays are explained by purely geometrical arguments. Different seed heights and interseed distances are found to be the main reasons for the strong distinctions between the grown nanorod arrays.

  15. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  16. Highly selective electrodeposition of sub-10 nm crystalline noble metallic nanorods inside vertically aligned multiwall carbon nanotubes.

    PubMed

    Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin

    2016-07-08

    In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter.

  17. Highly selective electrodeposition of sub-10 nm crystalline noble metallic nanorods inside vertically aligned multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin

    2016-07-01

    In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter.

  18. Comparative Study of Optical Properties of Polarizing Oxide Glasses with Silver Nanorods and Chalcogenide Glasses with Copper Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kavetskyy, Taras; Stepanov, Andrey L.; Bazarov, Valerii V.; Tsmots, Volodymyr; Ren, Jing; Chen, Guorong; Zhao, Xiujian

    The femtosecond Z-scan measurements with open-aperture of nonlinear absorption of the R2O-B2O3-SiO2 (R = Li, Na, K) polarizing oxide glass containing Ag nanorods at polarizing angle Θ = 0 and 90 degrees are performed and compared with the earlier Z-scan data obtained for the chalcogenide glasses with Cu nanoparticles (Cu:As2S3 and Cu:Ge15.8As21S63.2). The results of the present study reveal that (i) when the polarization of the laser is parallel to the long axis of the Ag nanorods (Θ=0 degrees), the saturated nonlinear absorption takes place; and (ii) when the polarization of light is perpendicular to the long axis of the Ag nanorods (Θ=90 degrees), the saturated nonlinear absorption and two-photon nonlinear absorption are observed likely to Cu:chalcogenide glasses. Ellipsometric measurements show also a dependence of the properties of the investigated polarizing glass on the sample orientation in consistence with Ag nanorod locations.

  19. Nanoheteroepitaxy of GaN on AlN/Si(111) nanorods fabricated by nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Shin, In-Su; Jin, Lu; Kim, Donghyun; Park, Yongjo; Yoon, Euijoon

    2016-06-01

    Nanoheteroepitaxy (NHE) of GaN on an AlN/Si(111) nanorod structure was investigated by metal-organic chemical vapor deposition. Silica nanosphere lithography was employed to fabricate a periodic hexagonal nanorod array with a narrow gap of 30 nm between the nanorods. We were successful in obtaining a fully coalesced GaN film on the AlN/Si(111) nanorod structure. Transmission electron microscopy revealed that threading dislocation (TD) bending and termination by stacking faults occurred near the interface between GaN and the AlN/Si(111) nanorods, resulting in the reduction of TD density for the NHE GaN layer. The full width at half-maximum of the X-ray rocking curve for (102) plane of the NHE GaN was found to decrease down to 728 arcsec from 1005 arcsec for the GaN layer on a planar AlN/Si(111) substrate, indicating that the crystalline quality of the NHE GaN was improved. Also, micro-Raman measurement showed that tensile stress in the NHE GaN layer was reduced significantly as much as 70% by introducing air voids between the nanorods.

  20. Formation and bioactivity of HA nanorods on micro-arc oxidized zirconium.

    PubMed

    Zhang, Lan; Zhu, Shaoyu; Han, Yong; Xiao, Chengzhang; Tang, Wu

    2014-10-01

    A microporous and CaO partially stabilized zirconia (Ca-PSZ) coating covered with hydroxyapatite (HA) nanorods is fabricated on Zr substrate by a hybrid approach of micro-arc oxidation (MAO) and hydrothermal treatment (HT). The effect of P ions in HT solution on the density and morphology of HA was investigated; the hydrophilicity and apatite-forming ability of the Ca-PSZ coating with HA nanorods were also examined. High-density HA nanorods (with a mean diameter of 50 nm and length of 450 nm) grow on the Ca-PSZ coating after HT in a solution containing 0.002 M β-glycerophosphate disodium (β-GP). However, only a few of coarse-grained HA crystallites grow in the MAOed pores after HT in distilled water or in an ammonia aqueous solution with an initial pH value equal to the solution containing 0.002 M β-GP. P ions in the HT solution are thought to significantly promote the formation of HA nanorods. The Ca-PSZ coating covered with HA nanorods displays good hydrophilicity and excellent apatite-inducing ability, and the induced apatite prefers to nucleate on the basal-faceted surfaces of HA nanorods.

  1. Modification of far-field radiation pattern by shaping InGaN/GaN nanorods

    NASA Astrophysics Data System (ADS)

    Jiao, Q. Q.; Chen, Z. Z.; Feng, Y. L.; Zhang, S.; Li, S. F.; Jiang, S. X.; Li, J. Z.; Chen, Y. F.; Yu, T. J.; Kang, X. N.; Gu, E.; Shen, B.; Zhang, G. Y.

    2017-01-01

    In this work, we report on the fabrication of "golftee," "castle," and "pillar" shaped InGaN/GaN nanorod light-emitting diode (LED) arrays with a typical rod diameter of 200 nm based on nanoimprint lithography, dry etching, and wet etching. The photoluminescence (PL) integral intensities per active region area for "golftee," "castle," and "pillar" shaped nanorod samples were found to be 2.6, 1.9, and 2.2 times stronger than that of a conventional planar LED. Additionally, the far-field radiation patterns of the three different shaped nanorod samples were investigated based on angular resolved PL (ARPL) measurements. It was found that the sharp lobes appeared at certain angles in the ARPL curve of the "golftee" sample, while broad lobes were observed in the ARPL curves of the "castle" and "pillar" samples. Further analysis suggests that the shorter PL lifetime and smaller spectral width of the "golftee" sample were due to the coupling of photon modes with excitons, which also led to the observed high efficiency and directional emission pattern of the "golftee" sample. Finally, three dimensional finite difference time domain simulations were carried out to study the near-field distribution of the "golftee," "castle," and "pillar" shaped nanorods. The simulation results showed not only a strong enhancement of the electric field in the nanocavities of the three nanorod structures but also a reduction of the guided modes into the nanorod substrate for the "golftee" shaped structure.

  2. Investigating the optical XNOR gate using plasmonic nano-rods

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Majid; Kaboli, Milad

    2016-04-01

    In this paper, a coherent perfect absorption (CPA)-type XNOR gate based on plasmonic nano particle is proposed. It consists of two plasmonic nano rod arrays on top of two parallel arms with quartz substrate. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-particles waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-rod and the nano rod location, an efficient binary optimization method based the Particle Swarm Optimization (PSO) algorithm is used to design an optimized array of the plasmonic nano-rod in order to achieve the maximum absorption coefficient in the 'off' state and the minimum absorption coefficient in the 'on' state. In Binary PSO (BPSO), a group of birds consists a matrix with binary entries, control the presence ('1‧) or the absence ('0‧) of nano rod in the array.

  3. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance

    NASA Astrophysics Data System (ADS)

    Li, Xingliang; Yang, Yun; Zhou, Guangju; Han, Shuhua; Wang, Wenfang; Zhang, Lijie; Chen, Wei; Zou, Chao; Huang, Shaoming

    2013-05-01

    Au nanostructures attract much attention due to their potential applications in many fields. The controlled synthesis is critical to their properties modulation and applications. AgNO3-assisted synthesis is a widely used method for controllably preparing Au nanostructures in aqueous system. Herein, the effect of AgNO3 on the growth of Au nanostructures in polyol is studied. We observe an unusual effect that AgNO3 can induce the formation of pentatwinned Au nanostructures (nanorods and decahedra) and block the growth of Au nanorods. More interestingly, this blocking effect can be tuned through controlling the amount of AgNO3. A moderate amount of AgNO3 facilitates the formation of Au nanorods. A large amount of AgNO3 completely blocks the growth of nanorods and favors the formation of high quality decahedra (decahedra can be considered as nanorods with 0 nm longitudinal length). Besides, this blocking effect also allows preparation of different high-index-faceted Au nanobipyramids. These prepared Au nanostructures further serve as starting templates to fabricate other heterostructured Au/Ag nanomaterials, such as Ag-Au-Ag segmental nanorods, Au@Ag core-shelled nanostructures. The prepared nanostructures exhibit size- and structure-dependent catalytic performance in the reduction of p-nitrophenol to p-aminophenol by sodium borohydride.Au nanostructures attract much attention due to their potential applications in many fields. The controlled synthesis is critical to their properties modulation and applications. AgNO3-assisted synthesis is a widely used method for controllably preparing Au nanostructures in aqueous system. Herein, the effect of AgNO3 on the growth of Au nanostructures in polyol is studied. We observe an unusual effect that AgNO3 can induce the formation of pentatwinned Au nanostructures (nanorods and decahedra) and block the growth of Au nanorods. More interestingly, this blocking effect can be tuned through controlling the amount of AgNO3. A moderate

  4. Fabrication of ZnO nanorods and assessment of changes in optical and gas sensing properties by increasing their lengths

    NASA Astrophysics Data System (ADS)

    Mehrabian, Masood; Mirabbaszadeh, Kavoos; Afarideh, Hossein

    2013-12-01

    We report a low-temperature process to synthesize highly oriented arrays of ZnO nanorods, based on the epitaxial growth of the ZnO seed layer at a low temperature of 70 °C. The ZnO seed layer was deposited by sol-gel process under mild conditions on the glass substrates. The morphologies and crystal structures of the film and nanorods were characterized by x-ray diffraction and scanning electron microscopy, respectively. ZnO nanorods were grown on ZnO seed layers by hydrothermal method. The effect of growth period on the morphology and optical characteristics (e.g. optical transmission and band-gap energy), hydrophilicity and gas sensing properties of the grown ZnO seed layer (film) and nanorods were investigated. The long nanorods on the seed layer were observed. The increase in the length of the nanorods resulted in a significant reduction in the optical band-gap energy of the nanorods, which was attributed to the formation of further defects in the nanorods during their fast growth. The surface of the ZnO nanorods grown for 6 h was relatively hydrophilic (with a water contact angle of 18°). The fabricated sensors were used to gauge different concentrations of ethanol vapor in the air at different temperatures and evaluated the surface resistance of the sensors as a function of operating temperature and ethanol concentrations. The results showed that the sensitivity of the nanorods changed from 1.3 to 6 (at 300 °C) by increasing the growth period.

  5. Distance-Dependent Measurements of the Conductance of Porphyrin Nanorods Studied with Conductive Probe Atomic Force Microscopy.

    PubMed

    Zhai, Xianglin; Alexander, Denzel; Derosa, Pedro; Garno, Jayne C

    2017-02-07

    Protocols for nanopatterning porphyrins on Au(111) were developed based on immersion particle lithography. Porphyrins with and without a central metal ion, 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin cobalt(II) (CoTPP), were selected for study, which spontaneously formed nanorod geometries depending on concentration parameters. The elongated shapes of the nanorods offers an opportunity for successive distance-dependent conductive probe atomic force microscopy (CP-AFM) measurements along the length of the nanorods. To prepare patterns of TPP and CoTPP nanorods, a mask of silica mesospheres was placed on gold substrates to generate nanoholes within an alkanethiol matrix film. The nanoholes prepared by particle lithography with an immersion step were backfilled with porphyrins by a second immersion step. By controlling the concentration and immersion interval, nanorods of porphyrins were generated with one end of the nanostructure attached to gold within a nanohole. The porphyrin nanorods exhibited slight differences in dimensions at the nanoscale to enable size-dependent measurements of conductive properties. The conductivity along the horizontal direction of the nanorods was evaluated with CP-AFM studies. Changes in conductivity were measured along the long axis of TPP and CoTPP nanorods. The TPP nanorods exhibited conductive profiles of an insulating material, and the CoTPP nanorods exhibited profiles of a semiconductor. The experiments demonstrate the applicability of particle lithography for preparing unique and functional surface platforms of porphyrins to measure distance-dependent conductive properties on gold.

  6. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping

    SciTech Connect

    Kuang, Y.; Lare, M. C. van; Polman, A.; Veldhuizen, L. W.; Schropp, R. E. I.; Rath, J. K.

    2015-11-14

    We present a simple, low-cost, and scalable approach for the fabrication of efficient nanorod-based solar cells. Templates with arrays of self-assembled ZnO nanorods with tunable morphology are synthesized by chemical bath deposition using a low process temperature at 80 °C. The nanorod templates are conformally coated with hydrogenated amorphous silicon light absorber layers of 100 nm and 200 nm thickness. An initial efficiency of up to 9.0% is achieved for the optimized design. External quantum efficiency measurements on the nanorod cells show a substantial photocurrent enhancement both in the red and the blue parts of the solar spectrum. Key insights in the light trapping mechanisms in these arrays are obtained via a combination of three-dimensional finite-difference time-domain simulations, optical absorption, and external quantum efficiency measurements. Front surface patterns enhance the light incoupling in the blue, while rear side patterns lead to enhanced light trapping in the red. The red response in the nanorod cells is limited by absorption in the patterned Ag back contact. With these findings, we develop and experimentally realize a further advanced design with patterned front and back sides while keeping the Ag reflector flat, showing significantly enhanced scattering from the back reflector with reduced parasitic absorption in the Ag and thus higher photocurrent generation. Many of the findings in this work can serve to provide insights for further optimization of nanostructures for thin-film solar cells in a broad range of materials.

  7. Growth of 18O isotopically enriched ZnO nanorods by two novel VPT methods

    NASA Astrophysics Data System (ADS)

    Gray, Ciarán; Trefflich, Lukas; Röder, Robert; Ronning, Carsten; Henry, Martin O.; McGlynn, Enda

    2017-02-01

    We have developed two novel vapour phase transport methods to grow ZnO nanorod arrays isotopically enriched with 18O. Firstly, a three-step process used to grow natural and Zn-enriched ZnO nanorods has been further modified, by replacing the atmospheric O2 with enriched 18O2, in order to grow 18O-enriched ZnO nanorods using this vapour-solid method on chemical bath deposited buffer layers. In addition, 18O-enriched ZnO nanorods were successfully grown using 18O isotopically enriched ZnO source powders in a vapour-liquid-solid growth method. Scanning electron microscopy studies confirmed the success of both growth methods in terms of nanorod morphology, although in the case of the vapour-liquid-solid samples, the nanorods' c-axes were not vertically aligned due to the use of a non-epitaxial substrate. Raman and PL studies indicated clearly that O-enrichment was successful in both cases, although the results indicate that the enrichment is at a lower level in our samples compared to previous reports with the same nominal enrichment levels. The results of our studies also allow us to comment on both levels of enrichment achieved and on novel effects of the high temperature growth environment on the nanorod growth, as well as suggesting possible mechanisms for such effects. Very narrow photoluminescence line widths, far narrower than those reported previously in the literature for isotopically enriched bulk ZnO, are seen in both the vapour-solid and vapour-liquid-solid nanorod samples demonstrating their excellent optical quality and their potential for use in detailed optical studies of defects and impurities using low temperature photoluminescence.

  8. Gold nanorod plasmonic upconversion microlaser.

    PubMed

    Shi, Ce; Soltani, Soheil; Armani, Andrea M

    2013-01-01

    Plasmonic-photonic interactions have stimulated significant interdisciplinary interest, leading to rapid innovations in solar design and biosensors. However, the development of an optically pumped plasmonic laser has failed to keep pace due to the difficulty of integrating a plasmonic gain material with a suitable pump source. In the present work, we develop a method for coating high quality factor toroidal optical cavities with gold nanorods, forming a photonic-plasmonic laser. By leveraging the two-photon upconversion capability of the nanorods, lasing at 581 nm with a 20 μW threshold is demonstrated.

  9. Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods.

    PubMed

    Fulati, Alimujiang; Ali, Syed M Usman; Riaz, Muhammad; Amin, Gul; Nur, Omer; Willander, Magnus

    2009-01-01

    ZnO nanotubes and nanorods grown on gold thin film were used to create pH sensor devices. The developed ZnO nanotube and nanorod pH sensors display good reproducibility, repeatability and long-term stability and exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl reference electrode over a large dynamic pH range. We found the ZnO nanotubes provide sensitivity as high as twice that of the ZnO nanorods, which can be ascribed to the fact that small dimensional ZnO nanotubes have a higher level of surface and subsurface oxygen vacancies and provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods, thus affording the ZnO nanotube pH sensor a higher sensitivity. Experimental results indicate ZnO nanotubes can be used in pH sensor applications with improved performance. Moreover, the ZnO nanotube arrays may find potential application as a novel material for measurements of intracellular biochemical species within single living cells.

  10. Ergonomic Synthesis Suitable for Industrial Production of Silver-Festooned Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Khan, G. R.; Khan, R. A.

    2015-07-01

    For maximizing productivity, minimizing cost, time-boxing process and optimizing human effort, a single-step, cost-effective, ultra-fast and environmentally benign synthesis suitable for industrial production of nanocrystalline ZnO, and Ag-doped ZnO has been reported in this paper. The synthesis based on microwave-supported aqueous solution method used zinc acetate dehydrate and silver nitrate as precursors for fabrication of nanorods. The synthesized products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Vis-NIR spectroscopy. The undoped and Ag-doped ZnO nanorods crystallized in a hexagonal wurtzite structure having spindle-like morphology. The blue shift occurred at absorption edge of Ag-doped ZnO around 260 nm compared to 365 nm of bulk ZnO. The red shift occurred at Raman peak site of 434 cm-1 compared to characteristic wurtzite phase peak of ZnO (437 cm-1). The bandgap energies were found to be 3.10 eV, 3.11 eV and 3.18 eV for undoped, 1% Ag-doped, and 3% Ag-doped ZnO samples, respectively. The TEM results provided average particle sizes of 17 nm, 15 nm and 13 nm for undoped, and 1% and 3% Ag-doped ZnO samples, respectively.

  11. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  12. Supercapacitor behavior of α-MnMoO{sub 4} nanorods on different electrolytes

    SciTech Connect

    Purushothaman, K.K.; Cuba, M.; Muralidharan, G.

    2012-11-15

    Graphical abstract: SEM image of α-MnMoO{sub 4} nanorods on FTO substrate. Highlights: ► Synthesis of α-MnMoO{sub 4} nanorods by spin coating method. ► First study on the effect of electrolyte on the pseudocapacitance behavior. ► α-MnMoO{sub 4} nanorods exhibit maximum specific capacitance of 998 F/g. ► At higher scan rates p-TSA electrolyte exhibits superior capacitive behavior. -- Abstract: α-MnMoO{sub 4} nanorods were prepared on conducting glass substrate via sol–gel spin coating method at the optimum doping level. The effect of electrolyte on the pseudocapacitance behavior of the α-MnMoO{sub 4} nanorods was studied using para toluene sulfonic acid (p-TSA), sulfuric acid (H{sub 2}SO{sub 4}) and hydrochloric acid (HCl) as electrolytes. X-ray diffraction analysis reveals the formation of α-MnMoO{sub 4} in monoclinic phase. FTIR spectra contain vibrational bands associated with Mo=O, M–O and Mo–O–Mo bonds. SEM image reveals the formation of nanorods. Supercapacitor behavior has been studied using cyclic voltammetry (CV) analysis. α-MnMoO{sub 4} nanorods exhibit maximum specific capacitance of 998 F/g at a scan rate of 5 mV/s in H{sub 2}SO{sub 4} electrolyte while a specific capacitance of 784 F/g and 530 F/g have been obtained using p-TSA and HCl electrolytes, respectively. At higher scan rates p-TSA electrolyte exhibits superior capacitive behavior than H{sub 2}SO{sub 4}.

  13. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    PubMed

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  14. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials

    NASA Astrophysics Data System (ADS)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S.; Zhang, Lin

    2016-10-01

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  15. Plasmonic Perovskite Light-Emitting Diodes Based on the Ag-CsPbBr3 System.

    PubMed

    Zhang, Xiaoli; Xu, Bing; Wang, Weigao; Liu, Sheng; Zheng, Yuanjin; Chen, Shuming; Wang, Kai; Sun, Xiao Wei

    2017-02-08

    The enhanced luminescence through semiconductor-metal interactions suggests the great potential of device performance improvement via properly tailored plasmonic nanostructures. Surface plasmon enhanced electroluminescence in an all-inorganic CsPbBr3 perovskite light-emitting diode (LED) is fabricated by decorating the hole transport layer with the synthesized Ag nanorods. An increase of 42% and 43.3% in the luminance and efficiency is demonstrated for devices incorporated with Ag nanorods. The device with Ag introduction indicates identical optoelectronic properties to the controlled device without Ag nanostructures. The increased spontaneous emission rate caused by the Ag-induced plasmonic near-field effect is responsible for the performance enhancement. Therefore, the plasmonic Ag-CsPbBr3 nanostructure studied here provides a novel strategy on the road to the future development of perovskite LEDs.

  16. The formation of vertically aligned biaxial tungsten nanorods using a novel shadowing growth technique

    NASA Astrophysics Data System (ADS)

    Krishnan, R.; Parker, T.; Lee, S.; Lu, T.-M.

    2009-11-01

    Biaxially textured tungsten nanorods (A15 crystal structure) have been grown by oblique angle DC magnetron sputtering using a novel rotation mode called 'two-step rotation'. In this mode, the substrate is given a fast rotation through 180° at 90 rpm and this is followed by a rest period of 30 s. These nanorods are vertically aligned and have a [100] texture normal to the substrate along with preferential in-plane texture as shown by x-ray pole figure analysis. In contrast, the tungsten nanorods obtained without substrate rotation are slanted at an angle of ~45° and have a [100] texture tilted 16° with respect to the substrate normal. The flux is incident from two diametrically opposite points on the sample at an oblique angle, averaging out the growth into vertical columns that retain the in-plane texture. Scanning electron microscopy shows that the tungsten nanorods have a mixture of {211} and {421} crystal habits; these planes are both minimum surface energy planes for a cubic A15 crystal structure.

  17. Interfacial Analysis of (La0.6Sr0.4)(Co0.2Fe0.8)O3-δ Substrates Wetted by Ag-CuO

    SciTech Connect

    Weil, K. Scott; Kim, Jin Yong Y.; Hardy, John S.

    2005-05-01

    Recently a new method of brazing has been developed to hermetically seal high-temperature, solid-state electrochemical devices, such as as oxygen and hydrogen separators, fuel gas reformers, solid oxide fuel cells, and chemical sensors. Based on a two-phase liquid composed of silver and copper oxide, brazing is conducted directly in air without the need of an inert cover gas or the use of surface reactive fluxes. A key issue in the development of this joining technique is understanding the effect of braze composition on wetting behavior. In the present paper we consider the wetting behaviors of two candidate braze filler materials, Ag-CuO and Ag-CuO-TiO2, on a protoypical mixed ionic/electronic conducting oxide substrate, lanthanum strontium cobalt ferrite [(La0.6Sr0.4)(Co0.2Fe0.8)O3-δ]. It was found that additions of CuO to silver exhibit a tremendous effect on both the wettability and joint strength characteristics of the subsequent braze relative to polycrystalline alumina substrates. The effect is particularly significant at low CuO content, with substantial improvements in wetting observed in the 1 – 8 mol% range. The corresponding strength of the brazed polycrystalline alumina joints appears to be maximized at a copper oxide content of 8 mol%, with a maximum room temperature flexural strength approaching that of monolithic alumina. While further increases in oxide content lead to improved wetting on polycrystalline alumina, the effect on joint strength is deleterious. It appears that the formation of a continuous brittle copper-based oxide layer along the interface between the braze and alumina faying surface is responsible for the poor mechanical behavior observed in joints fabricated with higher CuO content brazes.

  18. The effect of modified layers on the performance of inverted ZnO nanorods/MEH-PPV solar cells

    NASA Astrophysics Data System (ADS)

    Yan, Yue; Zhao, SuLing; Xu, Zheng; Wei, Gong; Wang, LiHui

    2011-03-01

    We fabricate inverted organic/inorganic hybrid solar cells based on vertically oriented ZnO nanorods and polymer MEH-PPV. The morphology of ZnO nanorods and ZnO nanorods/MEH-PPV hybrid structure is depicted by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscope (AFM), respectively. It is observed that ZnO nanorods array grows primarily aligned along the perpendicular direction of the ITO substrate. The MEH-PPV molecule does not enter the interspace between ZnO nanorods completely according to SEM picture. It results in the small and bad contact area between ZnO nanorods and MEH-PPV. To improve the photovoltaic performance, we also fabricate another kind of photovoltaic (PV) device modified by N719 dye, and exploit the effect of N719. After the modification of ZnO nanorods by N719, not only J sc increases from 0.257 mA/cm2 to 0.42 mA/cm2, but also V oc enhances from 0.37 V to 0.42 V. Insert LiF buffer layer between MEH-PPV and anode, J sc of 1.05 mA/cm2 is obtained, and it is 2.5 times that the device without LiF.

  19. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids.

    PubMed

    Liu, Mingzhao; Guyot-Sionnest, Philippe

    2005-12-01

    The seed-mediated growth of gold nanostructures is shown to be strongly dependent on the gold seed nanocrystal structure. The gold seed solutions can be prepared such that the seeds are either single crystalline or multiply twinned. With added silver(I) in the cetyltrimethylammonium bromide (CTAB) aqueous growth solutions, the two types of seeds yield either nanorods or elongated bipyramidal nanoparticles, in good yields. The gold nanorods are single crystalline, with a structure similar to those synthesized electrochemically (Yu, Y. Y. et al. J. Phys. Chem. B 1997, 101, 6661). In contrast, the gold bipyramids are pentatwinned. These bipyramids are strikingly monodisperse in shape. This leads to the sharpest ensemble longitudinal plasmon resonance reported so far for metal colloid solutions, with an inhomogeneous width as narrow as 0.13 eV for a resonance at approximately 1.5 eV. Ag(I) plays an essential role in the growth mechanism. Ag(I) slows down the growth of the gold nanostructures. Ag(I) also leads to high-energy side facets that are {110} for the single crystalline gold nanorods and unusually highly stepped {11n} (n approximately 7) for the bipyramid. To rationalize these observations, it is proposed that it is the underpotential deposition of Ag(I) that leads to the dominance of the facets with the more open surface structures. This forms the basis for the one-dimensional growth mechanism of single crystal nanorods, while it affects the shape of the nanostructures growing along a single twinning axis.

  20. Synthesis and characterization of silicon nanorod on n-type porous silicon.

    PubMed

    Behzad, Kasra; Mat Yunus, Wan Mahmood; Bahrami, Afarin; Kharazmi, Alireza; Soltani, Nayereh

    2016-03-20

    This work reports a new method for growing semiconductor nanorods on a porous silicon substrate. After preparation of n-type porous silicon samples, a thin layer of gold was deposited on them. Gold deposited samples were annealed at different temperatures. The structural, thermal, and optical properties of the samples were studied using a field emission scanning electron microscope (FESEM), photoacoustic spectroscopy, and photoluminescence spectroscopy, respectively. FESEM analysis revealed that silicon nanorods of different sizes grew on the annealed samples. Thermal behavior of the samples was studied using photoacoustic spectroscopy. Photoluminescence spectroscopy showed that the emission peaks were degraded by gold deposition and attenuated for all samples by annealing.

  1. Templated electrodeposition and photocatalytic activity of cuprous oxide nanorod arrays.

    PubMed

    Haynes, Keith M; Perry, Collin M; Rivas, Marlene; Golden, Teresa D; Bazan, Antony; Quintana, Maria; Nesterov, Vladimir N; Berhe, Seare A; Rodríguez, Juan; Estrada, Walter; Youngblood, W Justin

    2015-01-14

    Cuprous oxide (Cu2O) nanorod arrays have been prepared via a novel templated electrodeposition process and were characterized for their photocatalytic behavior in nonaqueous photoelectrochemical cells. Zinc oxide (ZnO) nanorod films serve as sacrificial templates for the in situ formation of polymer nanopore membranes on transparent conductive oxide substrates. Nitrocellulose and poly(lactic acid) are effective membrane-forming polymers that exhibit different modes of template formation, with nitrocellulose forming conformal coatings on the ZnO surface while poly(lactic acid) acts as an amorphous pore-filling material. Robust template formation is sensitive to the seeding method used to prepare the precursor ZnO nanorod films. Photoelectrochemical cells prepared from electrodeposited Cu2O films using methyl viologen as a redox shuttle in acetonitrile electrolyte exhibit significant charge recombination that can be partially suppressed by a combination of surface passivation methods. Surface-passivated nanostructured Cu2O films show enhanced photocurrent relative to planar electrodeposited Cu2O films of similar thickness. We have obtained the highest photocurrent ever reported for electrodeposited Cu2O in a nonaqueous photoelectrochemical cell.

  2. Optoelectronic performance optimization for transparent conductive layers based on randomly arranged silver nanorods.

    PubMed

    Marus, Mikita; Hubarevich, Aliaksandr; Wang, Hong; Smirnov, Aliaksandr; Sun, Xiaowei; Fan, Weijun

    2015-03-09

    Optoelectronic performance of transparent conductive layers (TCLs) based on randomly arranged silver (Ag) nanorods (NRs) is simulated. Models for calculation of optical and electronic properties were proposed founded on finite-difference time-domain method and percolation theory respectively. Obtained simulation results are well conformed to experimental data. The influence of angle deviation of NR crossings on the transmittance and sheet resistance are demonstrated. The balance between transmittance and sheet resistance which can be easily set by varying the combinations of NR radius and NR number is shown. Our results demonstrate that randomly arranged Ag layers are promising candidates for flexible TCLs.

  3. Physiological investigation of gold nanorods toward watermelon.

    PubMed

    Wan, Yujie; Li, Junli; Ren, Hongxuan; Huang, Jin; Yuan, Hong

    2014-08-01

    The objective of the present study was to evaluate the phytotoxicity and oxidant stress of the gold nanorods toward watermelon, and hence give a quantitative risk assessment of both seeds and plants phase. The seed germination, the activity of antioxidant enzymes, and the contents of soluble protein and malondialdehyde (MDA) have been measured while the plant roots were observed by transmission electron microscopy (TEM). It was found that the gold nanorods significantly promoted the root elongation. Furthermore, the results on the enzymes activities of plant indicated that oxidative stress happened in the plant treated with gold nanorods. However, the gold nanorods resulted in the phytotoxicity toward plant especially at high concentration. The TEM images of the plant roots with and without the treatment of gold nanorods showed the significant different size of starch granules. In conclusion, significant physiological changes of plant occurred after treatment with the gold nanorods.

  4. Enhancement at the junction of silver nanorods.

    PubMed

    Gu, Geun Hoi; Suh, Jung Sang

    2008-08-19

    The enhancement of surface enhanced Raman scattering (SERS) at the junction of linearly joined silver nanorods (31 nm in diameter) deposited in the pores of anodic aluminum oxide templates was studied systematically by excitation with a 632.8 nm laser line. The single and joined silver nanorod arrays showed a similar extinction spectrum when their length was the same. Maximum enhancement was observed from the junction system of two nanorods of the same size with a total length of 62 nm. This length also corresponded to the optimum length of single nanorods for SERS by excitation with a 632.8 nm laser line. The enhancement at the junction was approximately 40 times higher than that of the 31 nm single nanorod, while it was 4 times higher than that of the 62 nm single nanorod. The enhancement factor at the junction after oxide removal was approximately 3.9 x 10 (9).

  5. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria

    SciTech Connect

    Solovyov, VF; Wu, LJ; Rupich, MW; Sathyamurthy, S; Li, XP; Li, Q

    2014-12-15

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2 nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 mu m long nano-rods with an average diameter of approximate to 20 nm. 2014 Elsevier B.V. All rights reserved.

  6. Large-area zinc oxide nanorod arrays templated by nanoimprint lithography: control of morphologies and optical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Huang, Xiaohu; Liu, Hongfei; Chua, Soo Jin; Ross, Caroline A.

    2016-12-01

    Vertically aligned, highly ordered, large area arrays of nanostructures are important building blocks for multifunctional devices. Here, ZnO nanorod arrays are selectively synthesized on Si substrates by a solution method within patterns created by nanoimprint lithography. The growth modes of two dimensional nucleation-driven wedding cakes and screw dislocation-driven spirals are inferred to determine the top end morphologies of the nanorods. Sub-bandgap photoluminescence of the nanorods is greatly enhanced by the manipulation of the hydrogen donors via a post-growth thermal treatment. Lasing behavior is facilitated in the nanorods with faceted top ends formed from wedding cakes growth mode. This work demonstrates the control of morphologies of oxide nanostructures in a large scale and the optimization of the optical performance.

  7. Room temperature synthesis of In{sub 2}S{sub 3} micro- and nanorod textured thin films

    SciTech Connect

    Datta, Anuja; Panda, Subhendu K.; Gorai, Soma; Ganguli, Dibyendu; Chaudhuri, Subhadra

    2008-04-01

    Thin films of indium sulfide (In{sub 2}S{sub 3}) micro- and nanorods were successfully prepared by sulfurization of electrodeposited metal indium layers. The films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-vis spectroscopy. From XRD and TEM observations it was concluded that the In{sub 2}S{sub 3} nanorods and microrods have {approx}50 nm and {approx}0.5 {mu}m diameter, respectively. A plausible top-growth mechanism was proposed for the formation of the nanorods in which the hydroxide layer was found to play an important role. The micro- and nanorods showed optical bandgap of {approx}2.2 and {approx}2.54 eV, respectively. This facile and cost effective method may be extended to fabricate other metal chalcogenide nanostructures on solid substrates.

  8. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on(001) ceria

    DOE PAGES

    Solovyov, Vyacheslav F.; Wu, Li-jun; Rupich, Martin W.; ...

    2014-09-20

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2nano-rods nucleate on the deposit by homoepit