Science.gov

Sample records for ag nanorod substrates

  1. Influence of substrate temperature on glancing angle deposited Ag nanorods

    SciTech Connect

    Khare, C.; Patzig, C.; Gerlach, J. W.; Rauschenbach, B.; Fuhrmann, B.

    2010-07-15

    When Ag sculptured thin films were grown with glancing angle deposition by ion beam sputtering at either room temperature or elevated substrate temperatures T{sub S}, a large morphological difference was observed. The incident particle flux reached the silicon substrate at a glancing angle {beta}{>=}80 deg. as measured to the substrate normal. A slit aperture was used in order to reduce the particle beam divergence. At room temperature, columnar structures were formed, irrespective of the presence of the slit aperture. At elevated temperatures (573 and 623 K) and collimated particle flux in the presence of the slit aperture, however, enhanced surface diffusion causes the growth of crystalline nanorod- and nanowirelike structures. In the absence of the slit aperture, the flux beam divergence is higher, resulting in island- and mountainlike crystalline structures. The density of the nanorods and nanowires was observed to be higher on the planar Si substrates in comparison to honeycomblike prepatterned substrates with different pattern periods. On the patterned substrates, the nanorods are not necessarily found to be evolving on the seed points but can rather be also observed in-between the artificial seeds. The glancing angle deposited films at high temperatures were observed to be polycrystalline, where the (111) crystal orientation of the film is dominant, while the presence of the less intense (200) reflection was noticed from the x-ray diffraction measurements. In contrast, compact thin films deposited with {beta}{approx_equal}0 deg. at high temperatures were found to be epitaxial with (200) orientation.

  2. Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates

    NASA Astrophysics Data System (ADS)

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Xie, Zheng; Zhang, Zhengjun

    2015-10-01

    TiO2-coated Ag nanorods (Ag@TiO2 NRs) have been fabricated as multifunctional surface-enhanced Raman scattering (SERS) substrates. Uniform TiO2 shells could sufficiently protect the internal Ag NRs against oxidation and sulfuration, thus the temporal stability of SERS substrates was markedly improved. Meanwhile, due to the synergetic effect between crystalline TiO2 and Ag, the nanocomposites could clean themselves via photocatalytic degradation of the adsorbed molecules under ultraviolet irradiation and water dilution, making the SERS substrates renewable. Such Ag@TiO2 NRs were shown to serve as outstanding SERS sensors featuring high sensitivity, superior stability and recyclability.

  3. Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates

    PubMed Central

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Xie, Zheng; Zhang, Zhengjun

    2015-01-01

    TiO2-coated Ag nanorods (Ag@TiO2 NRs) have been fabricated as multifunctional surface-enhanced Raman scattering (SERS) substrates. Uniform TiO2 shells could sufficiently protect the internal Ag NRs against oxidation and sulfuration, thus the temporal stability of SERS substrates was markedly improved. Meanwhile, due to the synergetic effect between crystalline TiO2 and Ag, the nanocomposites could clean themselves via photocatalytic degradation of the adsorbed molecules under ultraviolet irradiation and water dilution, making the SERS substrates renewable. Such Ag@TiO2 NRs were shown to serve as outstanding SERS sensors featuring high sensitivity, superior stability and recyclability. PMID:26486994

  4. Controlled growth of standing Ag nanorod arrays on bare Si substrate using glancing angle deposition for self-cleaning applications

    NASA Astrophysics Data System (ADS)

    Singh, Dhruv P.; Singh, J. P.

    2014-03-01

    A facile approach to manipulate the hydrophobicity of surface by controlled growth of standing Ag nanorod arrays is presented. Instead of following the complicated conventional method of the template-assisted growth, the morphology or particularly average diameter and number density (nanorods cm-2) of nanorods were controlled on bare Si substrate by simply varying the deposition rate during glancing angle deposition. The contact angle measurements showed that the evolution of Ag nanorods reduces the surface energy and makes an increment in the apparent water contact angle compared to the plain Ag thin film. The contact angle was found to increase for the Ag nanorod samples grown at lower deposition rates. Interestingly, the morphology of the nanorod arrays grown at very low deposition rate (1.2 Å sec-1) results in a self-cleaning superhydrophobic surface of contact angle about 157° and a small roll-off angle about 5°. The observed improvement in hydrophobicity with change in the morphology of nanorod arrays is explained as the effect of reduction in solid fraction within the framework of Cassie-Baxter model. These self-cleaning Ag nanorod arrays could have a significant impact in wide range of applications such as anti-icing coatings, sensors and solar panels.

  5. The Silver Nanorod Array SERS Substrates

    NASA Astrophysics Data System (ADS)

    Zhao, Yiping; Liu, Yongjun

    2010-08-01

    The fabrication of large area, uniform and high enhancement substrates for surface enhanced Raman scattering (SERS) based sensing is a bottle-neck for practical applications of SERS. Recently using oblique angle deposition (OAD) method, we have fabricated silver nanorod arrays with SERS enhancement factor >108, and SERS intensity variation <14%. The SERS spectra from those substrates have been demonstrated to be able to distinguish different viruses and virus strains, bacteria, microRNAs, or other chemical and biological molecules. We have performed a detailed characterization on those Ag nanorod substrates. The SERS enhancement factor depends strongly on the nanorod length and the fabrication conditions. For different deposition angle, there is an optimal nanorod length that gives the maximum enhancement. The SERS enhancement seems to directly depend on the reflectivity of the Ag nanorod substrates at the excitation wavelength regardless of the deposition angles and rod length. The SERS performance also depends strongly on the configurations of the excitation laser beam: the incident angle, the polarization, and the reflectance of the underlayer substrates. A simple modified Greenler's model is proposed to qualitatively explain those effects. The possible origin for the high enhancement of the Ag nanorod substrates has been studied by placing the Raman probe molecules on different locations of the substrates, and we have found that the side surfaces of the nanorod arrays contributes more to the SERS enhancement compared to the ends. We propose that this is due to the anisotropic absorbance nature of the Ag nanorod substrates.

  6. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-03-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  7. Controlled growth of ZnO nanorods on textured silicon wafer and the application for highly effective and recyclable SERS substrate by decorating Ag nanoparticles

    SciTech Connect

    Tao, Q.; Li, S.; Zhang, Q.Y. Kang, D.W.; Yang, J.S.; Qiu, W.W.; Liu, K.

    2014-06-01

    Highlights: • The growth behavior of ZnO nanorods (NRs) is studied on the textured Si wafer. • A new surface-enhanced Raman scattering (SERS) substrate has been achieved by assembling Ag nanoparticles onto the ZnO NRs. • The SERS substrate exhibits good performance in terms of high sensitivity, good reproducibility and recyclability. - Abstract: Based on the study of growth behavior of ZnO nanorods on the textured Si wafer, a new three-dimensional surface-enhanced Raman scattering substrate has been achieved by assembling Ag nanoparticles onto the ZnO nanorods to form a radial plasmonic nanostructure. It is found that the new substrate exhibits good performance in terms of high sensitivity and good reproducibility for surface-enhanced Raman scattering. The determined enhancement factor is in the order of 10{sup 7} and the Raman spectra exhibit the remarkable consistency with the deviation below 5.0%. Compared to the substrate fabricated with ZnO nanorod array on the flat Si wafer, the new substrates have the higher utility of excitation light. Meanwhile, the new substrate is demonstrated to be recyclable after the irradiation of ultraviolet light.

  8. Large-scale fabrication of polymer/Ag core-shell nanorod array as flexible SERS substrate by combining direct nanoimprint and electroless deposition

    NASA Astrophysics Data System (ADS)

    Liu, Sisi; Xu, Zhimou; Sun, Tangyou; Zhao, Wenning; Wu, Xinghui; Ma, Zhichao; Xu, Haifeng; He, Jian; Chen, Cunhua

    2014-06-01

    We demonstrate a highly sensitive surface-enhanced Raman scattering (SERS) substrate, which consists of Ag nanoparticles (NPs) assembled on the surface of a nanopatterned polymer film. The fabrication route of a polymer/Ag core-shell nanorod (PACSN) array employed a direct nanoimprint technique to create a high-resolution polymer nanorod array. The obtained nanopatterned polymer film was subjected to electroless deposition to form a sea-cucumber-like Ag shell over the surface of the polymer nanorod. The morphology and structures of PACSNs were analyzed by using scanning electron microscopy and X-ray diffraction. The as-synthesized PACSNs exhibited a remarkable SERS activity and Raman signal reproducibility to rhodamine 6G, and a concentration down to 10-12 M can be identified. The effect of electroless deposition time of Ag NPs onto the polymer nanorod surface was investigated. It was found that the electroless deposition time played an important role in SERS activity. Our results revealed that the combination of direct nanoimprint and electroless deposition provided a convenient and cost-effective way for large-scale fabrication of reliable SERS substrates without the requirement of expensive instruments.

  9. Enhanced thermal stability of Ag nanorods through capping

    SciTech Connect

    Bachenheimer, Lou; Elliott, Paul; Stagon, Stephen; Huang, Hanchen

    2014-11-24

    Ag nanorods may serve as sensors in the detection of trace amounts of chemical agents, even single molecules, through surface enhanced Raman spectroscopy (SERS). However, thermal coarsening of Ag nanorods near room temperature limits their applications. This letter proposes the use of a thin oxide capping layer to enhance the thermal stability of Ag nanorods beyond 100 °C. Using electron microscopy characterization and SERS tests, the authors show that the proposed method is effective in stabilizing both morphology and sensitivity of Ag nanorods. The results of this work extend the applicability of Ag nanorods as chemical sensors to higher temperatures.

  10. Aligned Silver Nanorod Array as SERS Substrates for Viral Sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Yiping; Shanmukh, Saratchandra; Chaney, Stephen B.; Jones, Les; Dluhy, Richard A.; Tripp, Ralph A.

    2006-03-01

    The aligned silver nanorod array substrates prepared by the oblique angle deposition method are capable of providing extremely high enhancement factors (˜10^9) at near-infrared wavelengths (785 nm) for a standard reporter molecule 1,2 trans-(bis)pyridyl-ethene (BPE). The enhancement factor depends strongly on the length of the Ag nanorods, the substrate coating, as well as the polarization of the excitation laser beam. With the current optimum structure, we demonstrate that the detection limit for BPE can be lower than 0.1 fM. The applicability of this substrate to the detection of bioagents has been investigated by looking several viruses, such as Adenovirus, HIV, Rhinovirus and Respiratory Syncytial Virus (RSV), at low quantities (˜0.5uL). Different viruses have different fingerprint Raman spectrum. The detection of virus presented in infected cells has also been demonstrated.

  11. Component conversion from pure Au nanorods to multiblock Ag-Au-Ag nanorods assisted by Pt nanoframe templates

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Kim, Seong Kyu; Park, Sungho

    2016-06-01

    We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications.We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03484e

  12. Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates.

    PubMed

    Zhou, Qitao; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Tang, Haibin; Qian, Yiwu; Chen, Bin; Chen, Bensong

    2014-02-28

    NiO-nanoflakes (NiO-NFs) grafted Ni-nanorod (Ni-NR) arrays stuck out of the porous anodic aluminum oxide (AAO) template are achieved by a combinatorial process of AAO-confined electrodeposition of Ni-NRs, selectively etching part of the AAO template to expose the Ni-NRs, wet-etching the exposed Ni-NRs in ammonia to obtain Ni(OH)2-NFs grafted onto the cone-shaped Ni-NRs, and annealing to transform Ni(OH)2-NFs in situ into NiO-NFs. By top-view sputtering, Ag-nanoparticles (Ag-NPs) are decorated on each NiO-NFs grafted Ni-NR (denoted as NiO-NFs@Ni-NR). The resultant Ag-NPs-decorated NiO-NFs@Ni-NR (denoted as Ag-NPs@NiO-NFs@Ni-NR) arrays exhibit not only strong surface-enhanced Raman scattering (SERS) activity but also reproducible SERS-signals over the whole array. It is demonstrated that the strong SERS-activity is mainly ascribed to the high density of sub-10 nm gaps (hot spots) between the neighboring Ag-NPs, the semiconducting NiO-NFs induced chemical enhancement effect, and the lightning rod effect of the cone-shaped Ni-NRs. The three-level hierarchical nanostructure arrays stuck out of the AAO template can be utilized to probe polychlorinated biphenyls (PCBs, a kind of global environmental hazard) with a concentration as low as 5 × 10(-6) M, showing promising potential in SERS-based rapid detection of organic environmental pollutants. PMID:24419246

  13. Ag-doped ZnO nanorods synthesized by two-step method

    NASA Astrophysics Data System (ADS)

    Chen, Xian-Mei; Ji, Yong; Gao, Xiao-Yong; Zhao, Xian-Wei

    2012-11-01

    A two-step method is adopted to synthesize Ag-doped ZnO nanorods. A ZnO seed layer is first prepared on a glass substrate by thermal decomposition of zinc acetate. Ag-doped ZnO nanorods are then assembled on the ZnO seed layer using the hydrothermal method. The influences of the molar percentage of Ag ions to Zn ions (RAg/Zn) on the structural and optical properties of the ZnO nanorods obtained are carefully studied using X-ray diffractometry, scanning electron microscopy and spectrophotometry. Results indicate that Ag ions enter into the crystal lattice through the substitution of Zn ions. The (002) c-axis-preferred orientation of the ZnO nanorods decreases as RAg/Zn increases. At RAg/Zn > 1.0%, ZnO nanorods lose their c-axis-preferred orientation and generate Ag precipitates from the ZnO crystal lattice. The average transmissivity in the visible region first increases and then decreases as RAg/Zn increases. The absorption edge is first blue shifted and then red shifted. The influence of Ag doping on the average head face, and axial dimensions of the ZnO nanorods may be optimized to improve the average transmissivity at RAg/Zn < 1.0%.

  14. Kinetics-controlled growth of bimetallic RhAg on Au nanorods and their catalytic properties

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Guo, Xia; Xie, Fang; Zhu, Rui; Zhao, Qing; Yang, Jian

    2014-03-01

    Controlled growth of hybrid metallic nanocomposites for a desirable structure in a combination of selected components is highly important for their applications. Herein, the controllable growth of RhAg on the gold nanorods is achieved from the dumbbell-like RhAg-tipped nanorods to the brushy RhAg-coated nanorods, or the rod-like Au@Ag-Rh nanorattles. These different growth modes of RhAg on the gold nanorods are correlated with the reducing kinetics of RhCl3 and AgNO3. In view of the promising catalytic properties of Rh, the gold nanorods modified by RhAg in different structures are examined as catalysts for the oxidation of o-phenylenediamine. It is found that brushy RhAg-coated nanorods present a higher catalytic efficiency than dumbbell-like RhAg-tipped nanorods and rod-like Au@Ag-Rh nanorattles. These results would benefit the overgrowth control on the one-dimensional metallic nanorods and the rational design of new generation heterogeneous catalysts and optical devices.Controlled growth of hybrid metallic nanocomposites for a desirable structure in a combination of selected components is highly important for their applications. Herein, the controllable growth of RhAg on the gold nanorods is achieved from the dumbbell-like RhAg-tipped nanorods to the brushy RhAg-coated nanorods, or the rod-like Au@Ag-Rh nanorattles. These different growth modes of RhAg on the gold nanorods are correlated with the reducing kinetics of RhCl3 and AgNO3. In view of the promising catalytic properties of Rh, the gold nanorods modified by RhAg in different structures are examined as catalysts for the oxidation of o-phenylenediamine. It is found that brushy RhAg-coated nanorods present a higher catalytic efficiency than dumbbell-like RhAg-tipped nanorods and rod-like Au@Ag-Rh nanorattles. These results would benefit the overgrowth control on the one-dimensional metallic nanorods and the rational design of new generation heterogeneous catalysts and optical devices. Electronic

  15. Growth of Au@Ag core-shell pentatwinned nanorods: tuning the end facets.

    PubMed

    Zhang, Weiqing; Goh, Hao Ying Johnny; Firdoz, Shaik; Lu, Xianmao

    2013-09-16

    Au@Ag core-shell nanorods with tunable end facets are obtained by coating Au bipyramids (BPs) with Ag. The resultant nanorods exhibit a pentatwinned crystal structure with tips terminated with either {110} or {111} facets. The control over the end facets is achieved by varying the capping agents and tuning the reduction rate of Ag. Specifically, when Ag is reduced slowly, Au@Ag nanorods with flat {110} end facets are formed with cetyltrimethylammonium bromide (CTAB) as the capping agent. If CTAB is replaced with cetyltrimethylammonium chloride (CTAC), Au@Ag nanorods with tips terminated with {111} facets are obtained. However, at a high Ag reduction rate, dumbbell-shaped Au@Ag nanorods are formed, with either CTAB or CTAC as the capping agent. The morphological evolution of the nanorods in each case is closely followed and a growth mechanism is proposed. PMID:23934938

  16. Substrate-bound growth of Au-Pd diblock nanowire and hybrid nanorod-plate

    NASA Astrophysics Data System (ADS)

    He, Jiating; Wang, Yawen; Fan, Zhanxi; Lam, Zhenhui; Zhang, Hua; Liu, Bin; Chen, Hongyu

    2015-04-01

    We expand the scope of the previously developed Active Surface Growth mode for growing substrate-bound ultrathin Pd (d = 4 nm) and Ag nanowires (d = 30 nm) in aqueous solution under ambient conditions. Using Au nanorods as the seeds, selective growth at the contact line between the rod and the substrate eventually leads to an attached Pd nanoplate. The unique growth mode also allows sequential growth of different materials via a single seed, giving substrate-bound Au-Pd diblock nanowires. The new abilities to use seed shape to pre-define the active sites and to apply sequential growth open windows for new pathways to hybrid nanostructures.We expand the scope of the previously developed Active Surface Growth mode for growing substrate-bound ultrathin Pd (d = 4 nm) and Ag nanowires (d = 30 nm) in aqueous solution under ambient conditions. Using Au nanorods as the seeds, selective growth at the contact line between the rod and the substrate eventually leads to an attached Pd nanoplate. The unique growth mode also allows sequential growth of different materials via a single seed, giving substrate-bound Au-Pd diblock nanowires. The new abilities to use seed shape to pre-define the active sites and to apply sequential growth open windows for new pathways to hybrid nanostructures. Electronic supplementary information (ESI) available: Supporting TEM and SEM images of control experiments with different reaction conditions and another type of diblock nanowires. See DOI: 10.1039/c5nr00361j

  17. Metal enhanced fluorescence improved protein and DNA detection by zigzag Ag nanorod arrays.

    PubMed

    Ji, Xiaofan; Xiao, Chenyu; Lau, Wai-Fung; Li, Jianping; Fu, Junxue

    2016-08-15

    As metal nano-arrays show great potential on metal enhanced fluorescence (MEF) than random nanostructures, MEF of Ag zigzag nanorod (ZNR) arrays made by oblique angle deposition has been studied for biomolecule-protein interaction and DNA hybridization. By changing the folding number and the deposition substrate temperature, a 14-fold enhancement factor (EF) is obtained for biotin-neutravidin detection. The optimal folding number is decided as Z=7, owing to the high scattering intensity of Ag ZNRs. The substrate temperature T=25°C and 0°C slightly alters the morphology of Ag ZNRs but has no big difference in EF. Further, Ag ZNRs deposited on a layer of Ag film have been introduced to the DNA hybridization and a significant signal enhancement has been observed through the fluorescence microscope. Through a detailed quantitative EF analysis, which excludes the enhancing effect from the increased surface area of ZNRs and only considers the contribution of MEF, an EF of 28 is achieved for the hybridization of two single-stranded oligonucleotides with 33 bases. Furthermore, a limit of detection is determined as 0.01pM. We believe that the Ag ZNR arrays can serve as a universal and sensitive bio-detection platform. PMID:27088369

  18. Label free detection of DNA on Au/ZnO/Ag hybrid structure based SERS substrate

    NASA Astrophysics Data System (ADS)

    Pal, Anil Kumar; Mohan, D. Bharathi

    2016-04-01

    Au/ZnO/Ag based SERS substrate was fabricated for the label free detection of DNA of Escherichia Coli bacteria. The SERS substrate was fabricated by growing ZnO nanorod arrays on thermally evaporated ultrathin Ag film of 5 nm thickness using hydrothermal process. Non-spherical like Au nanoparticles were decorated on ZnO nanorod arrays by sputtering technique with sputtering time of 45 sec. The surface of Au/ZnO/Ag was observed to be nearly superhydrophobic exhibiting the contact angle of 144 °. A low volume (5 µl) of aqueous solution of DNA of laboratory strain Escherichia Coli with very low concentration was adsorbed on fabricated SERS substrate by drop casting. The SERS detection of DNA molecules was achieved up to lower concentration of 10-8 M due to strong local electric field enhancement at the nanometer gap among Au nanoparticles and superhydrophobic nature of Au/ZnO/Ag surface.

  19. Si/ZnO nanorods/Ag/AZO structures as promising photovoltaic plasmonic cells

    SciTech Connect

    Placzek-Popko, E. Gwozdz, K.; Gumienny, Z.; Zielony, E.; Jacak, W.; Pietruszka, R.; Witkowski, B. S.; Wachnicki, Ł.; Gieraltowska, S.; Chang, Liann-Be

    2015-05-21

    The test structures for photovoltaic (PV) applications based on zinc oxide nanorods (NRs) that were grown using a low-temperature hydrothermal method on p-type silicon substrates (100) covered with Ag nanoparticles (NPs) were studied. The NPs of three different diameters, i.e., 5–10 nm, 20-30 nm, and 50–60 nm, were deposited using a sputtering method. The morphology and crystallinity of the structures were confirmed by scanning electron microscopy and Raman spectroscopy. It was found that the nanorods have a hexagonal wurtzite structure. An analysis of the Raman and photoluminescence spectra permitted the identification of the surface modes at 476 cm{sup −1} and 561 cm{sup −1}. The presence of these modes is evidence of nanorods oriented along the wurtzite c-axis. The NRs with Ag NPs were covered with a ZnO:Al (AZO) layer that was grown using the low-temperature atomic layer deposition technique. The AZO layer served as a transparent ohmic contact to the ZnO nanorods. The applicability of the AZO layer for this purpose and the influence of the Ag nanoparticles on the effectiveness of light acquisition by such prepared PV cells were checked by reflectance and transmittance measurements of the AZO/glass and AZO/NPs/glass reference structures. Based on these studies, the high-energy transmittance edge was assigned to the ZnO energy gap, although it is blueshifted with respect to the bulk ZnO energy gap because of Al doping. It was also shown that the most optimal PV performance is obtained from a structure containing Ag nanoparticles with a diameter of 20–30 nm. This result is confirmed by the current-voltage measurements performed with 1-sun illumination. The structures show a plasmonic effect within the short wavelength range: the PV response for the structure with Ag nanoparticles is twice that of the structure without the nanoparticles. However, the influence of the Ag nanoparticle diameters on the plasmonic effect is ambiguous.

  20. SPR sensitivity of silver nanorods in CsBr-Ag nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Lovkush; Ravikant, Chhaya; Arun, P.; Kumar, Kuldeep

    2016-07-01

    We have investigated the optical and morphological properties of CsBr-Ag complex thin films deposited by thermal evaporation on glass substrate. By varying the thickness of the film with fixed mass ratio of cesium bromide and silver, we observed a broad absorption peak in the visible region from 350 to 450 nm corresponding to the transverse and longitudinal surface plasmon resonance (SPR) mode. Red shift is observed, with varying film thickness, in SPR peak position corresponding to longitudinal mode with no significant change in transverse mode due to variation in the aspect ratio of the silver nano crystalline grains. Scanning electron microscope and EDX revealed the formation of silver nanorods in film samples. Such, stable and tunable CsBr-Ag films can be used in optical filters.

  1. MICROWAVE-ASSISTED SHAPE CONTROLLED BULK SYNTHESIS OF AG AND FE NANORODS IN POLY (ETHYLENE GLYCOL) SOLUTIONS

    EPA Science Inventory

    Bulk syntheses of silver (Ag) and iron (Fe) nanorods using poly (ethylene glycol), PEG, under microwave irradiation (MW) conditions are reported. Favorable conditions to make Ag nanorods were established and can be extended to make Fe nanorods with uniform size and shape. The nan...

  2. Synthesis of defect-rich, (001) faceted-ZnO nanorod on a FTO substrate as efficient photocatalysts for dehydrogenation of isopropanol to acetone

    NASA Astrophysics Data System (ADS)

    Tan, Sin Tee; Umar, Akrajas Ali; Salleh, Muhamad Mat

    2016-06-01

    Highly oriented ZnO nanorod was successfully synthesised on Ag nanoseed coated FTO substrate via a microwave hydrolysis approach. It was found that the morphology and the optical properties of the ZnO nanorod are strongly influenced by the power of the microwave irradiation used during the growth process. The aspect ratio of the nanorods changed from high to low with the increasing of microwave power. It was also found that the optical band gap of the ZnO nanorod red shifted with the increasing of the microwave power, reflecting an excellent tune ability of the optical properties of ZnO nanorods. The photocatalytic activity of these unique nanorod was evaluated by a dehydrogenation process of isopropanol to acetone in the presence of ZnO nanorod. It was found that the ZnO nanorod exhibited an excellent catalytic performance by showing an ability to accelerate the production of 0.031 mol L-1 of acetone within only 35 min or 0.9 mmol L-1 min-1 from isopropyl alcohol dehydrogenation. It was almost no conversion from isopropyl alcohol when ZnO nanorods was absence during the reaction. In this report, a detailed mechanism of ZnO nanorod formation and the relationship between morphology and optical energy band gap are described.

  3. EXAFS Studies of Bimetallic Ag-Pt and Ag-Pd Nanorods

    SciTech Connect

    Lahiri, D.; Chattopadhyay, S.; Bunker, B.A.; Doudna, C.M.; Bertino, M.F.; Blum, F.; Tokuhiro, A.; Terry, J.

    2008-10-30

    Nanoparticles of Ag-Pt and Ag-Pd with high aspect ratios were synthesized using a radiolysis method. Gamma rays at dose rates below 0.5 kGy/h were used for irradiation. The nanoparticles were characterized by transmission electron microscopy (TEM), optical absorption spectroscopy and x-ray Absorption Fine Structure (XAFS) spectroscopy. Bright field micrographs show that Ag-Pt nanowires are composed of large particles with diameters ranging from 20-30 nm and joined by filaments of diameter between 2-5 nm. The Ag-Pd nanowires have diameters of 20-25 nm and lengths of 1.5 {micro}m. For XAFS measurements, the Pt L3 edge (11.564 keV), Ag K-edge (25.514 keV) and Pd K-edge (24.350 keV) were excited to determine the local structure around the respective atoms in the cluster. The Ag-Pt particles were found to possess a distinct core-shell structure with Pt in the core surrounded by Ag shell, with no indication of alloy formation. However, nanorods of Ag-Pd have formed an alloy for all the alloy compositions.

  4. Fabrication of Ag-Nanorods/Polyimide Nanocomposites and Their Thermal, Mechanical, Electrical, and Dielectric Properties.

    PubMed

    Weng, Ling; Yan, Li-Wen; Li, Hong-Xia; Liu, Li-Zhu

    2016-02-01

    Silver nanorods/polyimide (Ag-NRs/PI) nanocomposites with high conductivity (An order of magnitude higher than pure PI), frequency-independent dielectric permittivity (3.8-4.2) and low dielectric loss (<0.05) were prepared by an in-situ polymerization process. Ag-nanorods with a mean width of approximately 300 nm and an average length over 8 microm were synthesized in the presence of polyvinylpyrrolidone (PVP) and NaCl by polyol process. SEM images showed that metallic Ag-nanorods were well dispersed in PI matrix. The structure of Ag-NRs was not destroyed or changed in nanocomposite films and the order of PI molecular chains was maintained as well. The orientation of the Ag-NRs in the PI matrix improved the mechanical properties of nanocomposite films. TGA results showed that the thermal property of nanocomposite films was almost as good as pure PI. PMID:27433637

  5. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids.

    PubMed

    He, Xuan; Wang, Hui; Li, Zhongbo; Chen, Dong; Liu, Jiahui; Zhang, Qi

    2015-05-14

    A simple and efficient self-approach strategy was used to apply ultrasensitivity and self-revive ZnO-Ag hybrid surface-enhanced Raman scattering (SERS) sensors for the highly sensitive and selective detection of explosive TNT in both solution and vapour conditions. The good ultrasensitive sensing performance is a result of the abundant Raman hot spots, which were spontaneously formed in a reversible way by the self-approaching of flexible ZnO-Ag hybrid nanorods driven by the capillary force of solvent evaporation. Moreover, the enhancement effect was repeatedly renewed by the reconstruction of molecular bridges, which could selectively detect TNT with a lower limit of 4 × 10(-14) M. In addition, TNT vapor was also tested under this sensor, whereby once the ZnO-Ag NRs hybrid substrate was dipped in TNT, this substrate could detect the existence of TNT even in 5 detection cycles via a capillarity-constructed reversible hot spots approach. Compared with other pure Ag-based SERS sensors, this ZnO-Ag hybrid SERS sensor could rapidly self-revive SERS-activity by simple UV light irradiation and could retain stable SERS sensitivity for one month when used for TNT detection. This stable and ultrasensitive SERS substrate demonstrates a new route to eliminate the oxidized inactive problem of traditional Ag-based SERS substrates and suggests promising use in the applications of such hybrids as real-time online sensors for explosives detection.

  6. Controllable synthesis porous Ag2CO3 nanorods for efficient photocatalysis

    NASA Astrophysics Data System (ADS)

    Guo, Shenghui; Bao, Jianxing; Hu, Tu; Zhang, Libo; Yang, Li; Peng, Jinhui; Jiang, Caiyi

    2015-04-01

    The novel porous Ag2CO3 nanorods were facilely synthesized via a one-pot aqueous solution reaction at room temperature. The crystalline phase and size distribution of the nanorods were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. In addition, the porous feature of nanorods was confirmed by transmission electron microscopy (TEM) and nitrogen adsorption-desorption. The morphology and size of the Ag2CO3 crystal can be regulated via the choice of dispersing agents and adding approaches of reactants. Photocatalytic results show that the porous Ag2CO3 nanorods exhibit excellent photodegradation of rhodamine B (RhB) under visible-light irradiation, particularly the photoactivity performance and stability can be further improved in the presence of sodium bicarbonate (NaHCO3). It is indicated that NaHCO3 can prevent effectively the photocorrosion and promote the probability of electron-hole separation.

  7. Facile synthesis of S-Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S-Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70-160 nm and lengths of 200-360 nm. X-ray diffraction of the S-Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S-Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S-Ag nanocomposites with diameters of 10-40 nm were obtained. The formation mechanism of the S-Ag nanocomposites was studied by designing a series of experiments using ultraviolet-visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S-Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S-Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  8. Facile synthesis of S–Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S–Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70–160 nm and lengths of 200–360 nm. X-ray diffraction of the S–Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S–Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S–Ag nanocomposites with diameters of 10–40 nm were obtained. The formation mechanism of the S–Ag nanocomposites was studied by designing a series of experiments using ultraviolet–visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S–Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S–Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  9. Facile formation of Ag{sub 2}WO{sub 4}/AgX (X = Cl, Br, I) hybrid nanorods with enhanced visible-light-driven photoelectrochemical properties

    SciTech Connect

    Li, Jingjing; Yu, Caiyun; Zheng, Changcheng; Etogo, Atangana; Xie, Yunlong; Zhong, Yijun; Hu, Yong

    2015-01-15

    Highlights: • Ag{sub 2}WO{sub 4}/AgX hybrid nanorods were prepared by a facile in-situ anion exchange reaction. • Ag{sub 2}WO{sub 4} nanorods and different X{sup −} ions were reacted in water at room temperature. • The hybrids possess significantly enhanced photoelectrochemical properties. • Ag{sub 2}WO{sub 4}/AgBr hybrids exhibit the highest photocatalytic activity among three samples. • The active species tests were also investigated to confirm photocatalytic mechanism. - Abstract: In this work, we demonstrated a general strategy for the preparation of a series of uniform Ag{sub 2}WO{sub 4}/AgX (X = Cl, Br, I) hybrid nanorods by a facile in-situ anion exchange reaction occurring at room temperature between pregrown Ag{sub 2}WO{sub 4} nanorods and different X{sup −} ions in water. Compared with Ag{sub 2}WO{sub 4} nanorods, further investigation has revealed that the as-prepared hybrid nanorods possess significantly enhanced photocurrent response and photocatalytic activity in degrading methyl orange (MO) under visible-light irradiation. In particular, the Ag{sub 2}WO{sub 4}/AgBr hybrid nanorods exhibit the highest photocatalytic activity among the three kinds of samples. The active species tests indicate that superoxide anion radicals and photogenerated holes are responsible for the enhanced photocatalytic performance.

  10. ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction

    NASA Astrophysics Data System (ADS)

    Gao, S. Y.; Li, H. D.; Yuan, J. J.; Li, Y. A.; Yang, X. X.; Liu, J. W.

    2010-02-01

    The zinc oxide (ZnO) nanorods/plates are obtained via hydrothermal method assisted by etched porous Al film on Si substrate. The products consist of nanorods with average diameter of 100 nm and nanoplates with thickness of 200-300 nm, which are uniformly distributed widely and grown perpendicularly to the substrate. The ZnO nanoplates with thickness of 150-300 nm were grown on Si substrate coated with a thin continuous Al film (without etching) in the same aqueous solution. The growth mechanism and room temperature photoluminescence (PL) properties of ZnO nanorods/plates and nanoplates were investigated. It is found that the introduction of the etched Al film plays a key role in the formation of ZnO nanorods/plates. The annealing process is favorable to enhance the UV PL emissions of the ZnO nanorods/plates.

  11. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    SciTech Connect

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mahmood, Arshad

    2014-04-21

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects in ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn{sup 2+} interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.

  12. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity

    NASA Astrophysics Data System (ADS)

    Agnihotri, Shekhar; Bajaj, Geetika; Mukherji, Suparna; Mukherji, Soumyo

    2015-04-01

    Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a nanoreactor for in situ synthesis and as an immobilizing template in the presence of arginine. The presence of arginine enhanced the stability of ZnO deposition on the glass substrate by hindering the dissolution of zinc under alkaline conditions. Various Ag/ZnO hybrid nanorod (HNR) samples were screened to obtain a high amount of silver immobilization on the ZnO substrate. Ag/ZnO HNRs displayed potent antibacterial ability and could achieve 100% kill for both Escherichia coli and Bacillus subtilis strains under various test conditions. The hybrid material mediated its dual mode of antibacterial action through direct contact-killing and release of silver ions/nanoparticles and showed superior bactericidal performance compared to pure ZnO nanorods and colloidal AgNPs. No significant decline in antibacterial efficacy was observed even after the same substrate was repeatedly reused multiple times. Interestingly, the amount of Ag and Zn release was much below their maximal limit in drinking water, thus preventing potential health hazards. Immobilized AgNPs showed no cytotoxic effects on the human hepatocarcinoma cell line (HepG2). Moreover, treating cells with the antibacterial substrate for 24 hours did not lead to significant generation of reactive oxygen species (ROS). The good biocompatibility and bactericidal efficacy would thus make it feasible to utilize this immobilization strategy for preparing new-generation antibacterial coatings.Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a

  13. ZnO/Ag composite nanorod arrays for surface-plasmon-enhanced emission study

    SciTech Connect

    Pal, Anil Kumar E-mail: d.bharathimohan@gmail.com; Mohan, D. Bharathi E-mail: d.bharathimohan@gmail.com

    2014-04-24

    The surface plasmon resonance enhanced emission through coupling of surface plasmons and exciton band energies is studied in hybrid ZnO/Ag nanostructure. The catalytic growth of ZnO nanorods is controlled in seed mediated growth by altering size distribution of Ag nanoislands. X-ray diffraction shows a predominant (002) crystal plane confirming the preferential growth of ZnO nanorods on as-deposited Ag. Increase of surface roughness in Ag film by post deposition annealing process enhances the light emission due to momentum matching between surface plasmons and excitons as well as a red shift of 32 meV occurs due to multi phonon and phonon-exciton interaction.

  14. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids

    NASA Astrophysics Data System (ADS)

    He, Xuan; Wang, Hui; Li, Zhongbo; Chen, Dong; Liu, Jiahui; Zhang, Qi

    2015-04-01

    A simple and efficient self-approach strategy was used to apply ultrasensitivity and self-revive ZnO-Ag hybrid surface-enhanced Raman scattering (SERS) sensors for the highly sensitive and selective detection of explosive TNT in both solution and vapour conditions. The good ultrasensitive sensing performance is a result of the abundant Raman hot spots, which were spontaneously formed in a reversible way by the self-approaching of flexible ZnO-Ag hybrid nanorods driven by the capillary force of solvent evaporation. Moreover, the enhancement effect was repeatedly renewed by the reconstruction of molecular bridges, which could selectively detect TNT with a lower limit of 4 × 10-14 M. In addition, TNT vapor was also tested under this sensor, whereby once the ZnO-Ag NRs hybrid substrate was dipped in TNT, this substrate could detect the existence of TNT even in 5 detection cycles via a capillarity-constructed reversible hot spots approach. Compared with other pure Ag-based SERS sensors, this ZnO-Ag hybrid SERS sensor could rapidly self-revive SERS-activity by simple UV light irradiation and could retain stable SERS sensitivity for one month when used for TNT detection. This stable and ultrasensitive SERS substrate demonstrates a new route to eliminate the oxidized inactive problem of traditional Ag-based SERS substrates and suggests promising use in the applications of such hybrids as real-time online sensors for explosives detection.A simple and efficient self-approach strategy was used to apply ultrasensitivity and self-revive ZnO-Ag hybrid surface-enhanced Raman scattering (SERS) sensors for the highly sensitive and selective detection of explosive TNT in both solution and vapour conditions. The good ultrasensitive sensing performance is a result of the abundant Raman hot spots, which were spontaneously formed in a reversible way by the self-approaching of flexible ZnO-Ag hybrid nanorods driven by the capillary force of solvent evaporation. Moreover, the enhancement

  15. A DNA-Assembled Fe3O4@Ag Nanorod in Silica Matrix for Cholesterol Biosensing

    NASA Astrophysics Data System (ADS)

    Satvekar, R. K.; Tiwari, A. P.; Rohiwal, S. S.; Tiwale, B. M.; Pawar, S. H.

    2015-12-01

    A novel nanocomposite having DNA-assembled Fe3O4@Ag nanorods in silica matrix has been proposed for fabrication of bienzymatic cholesterol nanobiosensor. Cholesterol oxidase and horseradish peroxidase have been co-encapsulated in Silica/Fe3O4@Ag-DNA nanocomposite deposited on the indium tin oxide electrode. Cyclic voltammetry was employed for the electrochemical behavior of proposed biosensor and used to estimate cholesterol with a linear range of 5-195 mg/dL.

  16. Synthesis and electrochemical capacitance of long tungsten oxide nanorod arrays grown vertically on substrate

    SciTech Connect

    Park, Sun Hwa; Kim, Young Heon; Lee, Tae Geol; Shon, Hyun Kyong; Park, Hyun Min; Song, Jae Yong

    2012-11-15

    Highlights: ► Growth of long amorphous tungsten oxide nanorods on a substrate. ► Formation of single-crystalline tungsten oxide nanorods by a heat-treatment. ► High electrochemical pseudocapacitance of 2.8 mF cm{sup −2}. ► Excellent cyclability of psuedocapacitance up to 1000 cycles. -- Abstract: Long tungsten oxide nanorods are vertically grown on Al/W/Ti coated silicon substrates using a two-step anodization process. The first anodization of the Al film forms a mesh-like mask of anodic aluminum oxide, and the second anodization of the W film results in the formation of a buffer layer, a bottom nanorod, and a top nanorod of amorphous tungsten oxide. A pore-widening process prior to the second anodization leads to the enhancement of nanorod length above approximately 500 nm. After a heat-treatment, the tungsten oxide nanorods are crystallized to form a single crystalline structure while the buffer layer forms a polycrystalline structure. The crystalline tungsten oxide nanorods show a cyclic voltammogram retaining the quasi-rectangular shape of an electrochemically reversible faradaic redox reaction, i.e., a typical pseudocapacitive behavior. The maximum electrochemical capacitance per apparent surface area reaches approximately 2.8 mF cm{sup −2} at the voltage scan rate of 20 mV s{sup −1}, and the excellent cyclability of charge–discharge process is maintained up to 1000 cycles.

  17. Ag2Mo3O10 Nanorods Decorated with Ag2S Nanoparticles: Visible-Light Photocatalytic Activity, Photostability, and Charge Transfer.

    PubMed

    Chen, Xianjie; Liu, Fenglin; Yan, Xiaodong; Yang, Yang; Chen, Qian; Wan, Juan; Tian, Lihong; Xia, Qinghua; Chen, Xiaobo

    2015-12-14

    Ag2Mo3O10 nanorods decorated with Ag2 S nanoparticles have been synthesized by an anion-exchange route. With thiourea as the sulfur source, sulfur ions replace [Mo3O10](2-) units of active sites on the surface of Ag2Mo3O10 nanorods, forming Ag2Mo3O10 nanorods decorated with Ag2S nanoparticles. This induces enhanced absorption in the visible-light region. Ag2 S nanoparticles decorate the surface of Ag2Mo3O10 nanorods uniformly with a suitable amount of thiourea. The Ag2S/Ag2Mo3O10 nanoheterostructure enhances the photocatalytic activity on the degradations of Rhodamine B and glyphosate under visible light. This enhancement is attributed to the improved absorption of visible light and effective separation of charge carriers in the nanoheterostructure. Meanwhile, the Ag2S/Ag2Mo3O10 nanoheterostructure displays good photocatalytic stability based on cyclic photocatalytic experiments.

  18. Buckling and mechanical instability of ZnO nanorods grown on different substrates under uniaxial compression.

    PubMed

    Riaz, M; Fulati, A; Zhao, Q X; Nur, O; Willander, M; Klason, P

    2008-10-15

    Mechanical instability and buckling characterization of vertically aligned single-crystal ZnO nanorods grown on different substrates including Si, SiC and sapphire (α-Al(2)O(3)) was done quantitatively by the nanoindentation technique. The nanorods were grown on these substrates by the vapor-liquid-solid (VLS) method. The critical load for the ZnO nanorods grown on the Si, SiC and Al(2)O(3) substrates was found to be 188, 205 and 130 µN, respectively. These observed critical loads were for nanorods with 280 nm diameters and 900 nm length using Si as a substrate, while the corresponding values were 330 nm, 3300 nm, and 780 nm, 3000 nm in the case of SiC and Al(2)O(3) substrates, respectively. The corresponding buckling energies calculated from the force displacement curves were 8.46 × 10(-12), 1.158 × 10(-11) and 1.092 × 10(-11) J, respectively. Based on the Euler model for long nanorods and the J B Johnson model (which is an extension of the Euler model) for intermediate nanorods, the modulus of elasticity of a single rod was calculated for each sample. Finally, the critical buckling stress and strain were also calculated for all samples. We found that the buckling characteristic is strongly dependent on the quality, lattice mismatch and adhesion of the nanorods with the substrate. PMID:21832659

  19. Maximizing the photo catalytic and photo response properties of multimodal plasmonic Ag/WO(3-x) heterostructure nanorods by variation of the Ag size.

    PubMed

    Ghosh, Sirshendu; Saha, Manas; Paul, Sumana; De, S K

    2015-11-21

    High quality nearly monodisperse colloidal WO3-x nanorods with an aspect ratio ∼18 were synthesized using the thermal decomposition technique. The effects of a capping agent and an activating agent on the nanorod aspect ratio have been studied. Excess carrier concentration due to large oxygen vacancy and smaller width of the nanorods compared to the Bohr exciton radius gives rise to an increase of the band gap. Shape anisotropy in nanorods results in two plasmonic absorbance bands at about 890 nm and 5900 nm corresponding to short axis and long axis plasmon modes. The short axis mode reveals an excellent plasmonic sensitivity of ∼345 nm per refractive index. A plasmonic photocatalysis process based on WO3-x nanorods has been developed to synthesize Ag/WO3-x heterostructures consisting of multiple Ag dots with ∼2 nm size, randomly decorated on the surface of the WO3-x nanorods. Long time irradiation leads to an increase in the size (5 nm) of Ag nanocrystals concomitant with decrease in the number of Ag nanocrystals attached per WO3-x nanorod. Plasmonic photocatalysis followed by thermal annealing produces only one Ag nanocrystal of size ∼10 nm on each WO3-x nanorod. Red shifting and broadening of plasmon bands of Ag nanocrystals and WO3-x nanorods confirm the formation of heterostructures between the metal and semiconductor. Detailed transmission electron micrograph analysis indicates the epitaxial growth of Ag nanocrystals onto WO3-x nanorods. A high photocurrent gain of about 4000 is observed for Ag (10 nm)/WO3-x heterostructures. The photodegradation rate for Rhodamine-B and methylene blue is maximum for Ag (10 nm)/WO3-x heterostructures due to efficient electron transfer from WO3-x nanorods to Ag nanocrystals. Metal plasmon-semiconductor exciton coupling, prominent plasmon absorbance of metal nanoparticles, and formation of an epitaxial interface are found to be the important factors to achieve the maximum photocatalytic activity and fabrication of a

  20. Enhanced photocurrent and dynamic response in vertically aligned In₂S₃/Ag core/shell nanorod array photoconductive devices.

    PubMed

    Cansizoglu, Hilal; Cansizoglu, Mehmet F; Watanabe, Fumiya; Karabacak, Tansel

    2014-06-11

    Enhanced photocurrent values were achieved through a semiconductor-core/metal-shell nanorod array photoconductive device geometry. Vertically aligned indium sulfide (In2S3) nanorods were formed as the core by using glancing angle deposition technique (GLAD). A thin silver (Ag) layer is conformally coated around nanorods as the metallic shell through a high pressure sputter deposition method. This was followed by capping the nanorods with a metallic blanket layer of Ag film by utilizing a new small angle deposition technique combined with GLAD. Radial interface that was formed by the core/shell geometry provided an efficient charge carrier collection by shortening carrier transit times, which led to a superior photocurrent and gain. Thin metal shells around nanorods acted as a passivation layer to decrease surface states that cause prolonged carrier lifetimes and slow recovery of the photocurrent in nanorods. A combination of efficient carrier collection with surface passivation resulted in enhanced photocurrent and dynamic response at the same time in one device structure. In2S3 nanorod devices without the metal shell and with relatively thicker metal shell were also fabricated and characterized for comparison. In2S3 nanorods with thin metal shell showed the highest photosensitivity (photocurrent/dark current) response compared to two other designs. Microstructural, morphological, and electronic properties of the core/shell nanorods were used to explain the results observed.

  1. Microfluidic-based metal enhanced fluorescence for capillary electrophoresis by Ag nanorod arrays

    NASA Astrophysics Data System (ADS)

    Xiao, Chenyu; Cao, Zhen; Deng, Junhong; Huang, Zhifeng; Xu, Zheng; Fu, Junxue; Yobas, Levent

    2014-06-01

    As metal nanorods show much higher metal enhanced fluorescence (MEF) than metal nanospheres, microfluidic-based MEF is first explored with Ag nanorod (ND) arrays made by oblique angle deposition. By measuring the fluorescein isothiocyanate (FITC) solution sandwiched between the Ag NDs and a piece of cover slip, the enhancement factors (EFs) are found as 3.7 ± 0.64 and 6.74 ± 2.04, for a solution thickness at 20.8 μm and 10 μm, respectively. Because of the strong plasmonic coupling between the adjacent Ag NDs, only the emission of the fluorophores present in the three-dimensional NDs array gets enhanced. Thus, the corresponding effective enhancement factors (EEFs) are revealed to be relatively close, 259 ± 92 and 340 ± 102, respectively. To demonstrate the application of MEF in microfluidic systems, a multilayer of SiO2 NDs/Ag NDs is integrated with a capillary electrophoresis device. At a microchannel depth of 10 μm, an enhancement of 6.5 fold is obtained for amino acids separation detection. These results are very encouraging and open the possibility of MEF applications for the Ag ND arrays decorated microchannels. With the miniaturization of microfluidic devices, microfluidic-based MEF by Ag ND arrays will likely find more applications with further enhancement.

  2. Wettability control of a transparent substrate using ZnO nanorods.

    PubMed

    Choi, Jae-Hoon; You, Xueqiu; Chang, Jong-Hyeon; Ju, Byeong-Kwon; Pak, James Jungho

    2011-07-01

    This paper presents a simple way of controlling the wettability of a structured surface with ZnO nanorods on a transparent substrate. A combination of ZnO nanostructures and stearic acid was used to create superhydrophobic surfaces with the potential properties of being self-cleaning, waterproof, and antifog. ZnO nanorods were uniformly covered on glass substrates through a simple hydrothermal method with varying growth time which affects the surface morphology. When a substrate is dipped into 10 mM stearic acid in ethanol for 24 h, chemisorption of the stearic acid takes place on the ZnO nanorod surface, after which the hydrophilic ZnO nanorod surfaces are modified into hydrophobic ones. The contact angle of a water droplet on this superhydrophobic ZnO nanorod surface increased from 110 degrees to 150 degrees depending on the growth time (from 3 to 6 h) with a high transparency of above 60%. In addition, the water contact angle can be made to as low as 27 degrees after exposing the substrate to 10-mW/cm2 UV for 1 h.

  3. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates.

    PubMed

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-12-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions. PMID:27033846

  4. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates.

    PubMed

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-12-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions.

  5. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates

    NASA Astrophysics Data System (ADS)

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-03-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions.

  6. Synthesis and characterization of Cu-doped ZnO nanorods chemically grown on flexible substrate

    NASA Astrophysics Data System (ADS)

    Shabannia, R.

    2016-08-01

    Vertically aligned undoped and Cu-doped ZnO nanorods array were successfully grown on flexible substrate by chemical bath deposition method at a low 0074emperature. The fabricated materials were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy. XRD analysis showed that Cu doping improves the crystallinity of the fabricated ZnO nanorods. The mean diameter and bending of the ZnO nanorods increase with an increase of Cu doping, but the density of Cu-doped ZnO nanorods almost unchanged. Room temperature PL measurement displayed increased intensity in UV peak and decreased visible peak after Cu doping.

  7. Growth of Well-Aligned InN Nanorods on Amorphous Glass Substrates.

    PubMed

    Li, Huijie; Zhao, Guijuan; Wei, Hongyuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan

    2016-12-01

    The growth of well-aligned nanorods on amorphous substrates can pave the way to fabricate large-scale and low-cost devices. In this work, we successfully prepared vertically well-aligned c-axis InN nanorods on amorphous glass substrate by metal-organic chemical vapor deposition. The products formed directly on bare glass are randomly oriented without preferential growth direction. By inserting a GaN/Ti interlayer, the nanowire alignment can be greatly improved as indicated by scanning electron microscopy and X-ray diffraction. PMID:27229517

  8. Maximizing the photo catalytic and photo response properties of multimodal plasmonic Ag/WO3-x heterostructure nanorods by variation of the Ag size

    NASA Astrophysics Data System (ADS)

    Ghosh, Sirshendu; Saha, Manas; Paul, Sumana; de, S. K.

    2015-10-01

    High quality nearly monodisperse colloidal WO3-x nanorods with an aspect ratio ~18 were synthesized using the thermal decomposition technique. The effects of a capping agent and an activating agent on the nanorod aspect ratio have been studied. Excess carrier concentration due to large oxygen vacancy and smaller width of the nanorods compared to the Bohr exciton radius gives rise to an increase of the band gap. Shape anisotropy in nanorods results in two plasmonic absorbance bands at about 890 nm and 5900 nm corresponding to short axis and long axis plasmon modes. The short axis mode reveals an excellent plasmonic sensitivity of ~345 nm per refractive index. A plasmonic photocatalysis process based on WO3-x nanorods has been developed to synthesize Ag/WO3-x heterostructures consisting of multiple Ag dots with ~2 nm size, randomly decorated on the surface of the WO3-x nanorods. Long time irradiation leads to an increase in the size (5 nm) of Ag nanocrystals concomitant with decrease in the number of Ag nanocrystals attached per WO3-x nanorod. Plasmonic photocatalysis followed by thermal annealing produces only one Ag nanocrystal of size ~10 nm on each WO3-x nanorod. Red shifting and broadening of plasmon bands of Ag nanocrystals and WO3-x nanorods confirm the formation of heterostructures between the metal and semiconductor. Detailed transmission electron micrograph analysis indicates the epitaxial growth of Ag nanocrystals onto WO3-x nanorods. A high photocurrent gain of about 4000 is observed for Ag (10 nm)/WO3-x heterostructures. The photodegradation rate for Rhodamine-B and methylene blue is maximum for Ag (10 nm)/WO3-x heterostructures due to efficient electron transfer from WO3-x nanorods to Ag nanocrystals. Metal plasmon-semiconductor exciton coupling, prominent plasmon absorbance of metal nanoparticles, and formation of an epitaxial interface are found to be the important factors to achieve the maximum photocatalytic activity and fabrication of a high speed

  9. Ag-DNA Emitter: Metal Nanorod or Supramolecular Complex?

    PubMed

    Ramazanov, Ruslan R; Sych, Tomash S; Reveguk, Zakhar V; Maksimov, Dmitriy A; Vdovichev, Artem A; Kononov, Alexei I

    2016-09-15

    Ligand-stabilized luminescent metal clusters, in particular, DNA-based Ag clusters, are now employed in a host of applications such as sensing and bioimaging. Despite their utility, the nature of their excited states as well as detailed structures of the luminescent metal-ligand complexes remain poorly understood. We apply a new joint experimental and theoretical approach based on QM/MM-MD simulations of the fluorescence excitation spectra for three Ag clusters synthesized on a 12-mer DNA. Contrary to a previously proposed "rod-like" model, our results show that (1) three to four Ag atoms suffice to form a partially oxidized nanocluster emitting in visible range; (2) charge transfer from Ag cluster to DNA contributes to the excited states of the complexes; and (3) excitation spectra of the clusters are strongly affected by the bonding of Ag atoms to DNA bases. The presented approach can also provide a practical way to determine the structure and properties of other luminescent metal clusters. PMID:27564452

  10. Ag(I)-triggered one-pot synthesis of Ag nanoparticles onto natural nanorods as a multifunctional nanocomposite for efficient catalysis and adsorption.

    PubMed

    Tian, Guangyan; Wang, Wenbo; Mu, Bin; Kang, Yuru; Wang, Aiqin

    2016-07-01

    A multifunctional palygorskite/polyaniline/Ag nanoparticles (PAL/PANI/AgNPs) nanocomposite was prepared at room temperature using a simple one-pot in-situ polymerization reaction of aniline monomers triggered by Ag(I) on the surface of natural PAL nanorods. Ag(I) served as both the oxidant and the precursor of the AgNPs, which initiated the polymerization of aniline monomers on PAL nanorods while simultaneously being reduced to form Ag(0) nanoparticles (AgNPs). The in-situ formed AgNPs were evenly distributed on the surface of the PAL nanorods because the interfacial effect of PAL prevents their aggregation. The density and size of the AgNPs and the catalytic activity of the nanocomposites could be controlled by altering the molar ratio of aniline to Ag(I). The performance evaluation revealed that the nanocomposites could be used as highly active catalysts, which rapidly catalyzed the reduction of 4-nitrophenol (4-NP) within 2min and Congo red (CR) within 10min. The nanocomposites are also an effective adsorbent for H2PO4(-) able to remove 99.40% of H2PO4(-) (only 61.77% for raw PAL) from a solution with an initial concentration of 50mg/L. This multifunctional nanocomposite synthesized by a simple one-pot approach is a promising material for environmental applications.

  11. Synthesis of reduced graphene oxide/ZnO nanorods composites on graphene coated PET flexible substrates

    SciTech Connect

    Huang, Lei Guo, Guilue; Liu, Yang; Chang, Quanhong; Shi, Wangzhou

    2013-10-15

    Graphical abstract: - Highlights: • ZnO nanorods synthesized on CVD-graphene and rGO surfaces, respectively. • ZnO/CVD-graphene and ZnO/rGO form a distinctive porous 3D structure. • rGO/ZnO nanostructures possibility in energy storage devices. - Abstract: In this work, reduced graphene oxide (rGO)/ZnO nanorods composites were synthesized on graphene coated PET flexible substrates. Both chemical vapor deposition (CVD) graphene and reduced graphene oxide (rGO) films were prepared following by hydrothermal growth of vertical aligned ZnO nanorods. Reduced graphene sheets were then spun coated on the ZnO materials to form a three dimensional (3D) porous nanostructure. The morphologies of the ZnO/CVD graphene and ZnO/rGO were investigated by SEM, which shows that the ZnO nanorods grown on rGO are larger in diameters and have lower density compared with those grown on CVD graphene substrate. As a result of fact, the rough surface of nano-scale ZnO on rGO film allows rGO droplets to seep into the large voids of ZnO nanorods, then to form the rGO/ZnO hierarchical structure. By comparison of the different results, we conclude that rGO/ZnO 3D nanostructure is more desirable for the application of energy storage devices.

  12. Surface-enhanced Raman scattering from 4-aminothiophenol molecules embedded inside Ag coated gold nanorods

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Boris N.

    2016-04-01

    Here we report on the preparation of uniform Au@Ag core/shell nanorods with a controllable Ag shell thickness. 4- aminothiophenol molecules, used as the Raman reporters, were placed between the Au core and the Ag shell. The dependence of Raman intensity on the inside/surface location of the reporter molecules was studied. The interior molecules showed a strong and uniform Raman intensity, at least an order of magnitude higher than that of the molecules on the nanoparticle surface. In contrast to usual surface-functionalized Raman tags, aggregation and clustering of nanoparticles with embedded molecules decreased the SERS signal. The findings from this study provide the basis for a novel technique of low analyte concentration detection based on high SERS response inside the core/shell metal nanostructures.

  13. Formation mechanism and properties of CdS-Ag2S nanorod superlattices

    SciTech Connect

    Wang, Lin-Wang; Demchenko, Denis O.; Robinson, Richard D.; Sadtler, Bryce; Erdonmez, Can K.; Alivisatos, A. Paul; Wang, Lin-Wang

    2008-08-11

    The mechanism of formation of recently fabricated CdS-Ag{sub 2}S nanorod superlattices is considered and their elastic properties are predicted theoretically based on experimental structural data. We consider different possible mechanisms for the spontaneous ordering observed in these 1D nanostructures, such as diffusion-limited growth and ordering due to epitaxial strain. A simplified model suggests that diffusion-limited growth partially contributes to the observed ordering, but cannot account for the full extent of the ordering alone. The elastic properties of bulk Ag{sub 2}S are predicted using a first principles method and are fed into a classical valence force field (VFF) model of the nanostructure. The VFF results show significant repulsion between Ag{sub 2}S segments, strongly suggesting that the interplay between the chemical interface energy and strain due to the lattice mismatch between the two materials drives the spontaneous pattern formation.

  14. Synthesis, microstructure, and cathodoluminescence of [0001]-oriented GaN nanorods grown on conductive graphite substrate.

    PubMed

    Yuan, Fang; Liu, Baodan; Wang, Zaien; Yang, Bing; Yin, Yao; Dierre, Benjamin; Sekiguchi, Takashi; Zhang, Guifeng; Jiang, Xin

    2013-11-27

    One-dimensional GaN nanorods with corrugated morphology have been synthesized on graphite substrate without the assistance of any metal catalyst through a feasible thermal evaporation process. The morphologies and microstructures of GaN nanorods were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results from HRTEM analysis indicate that the GaN nanorods are well-crystallized and exhibit a preferential orientation along the [0001] direction with Ga(3+)-terminated (101̅1) and N(3-)-terminated (101̅1̅) as side facets, finally leading to the corrugated morphology surface. The stabilization of the electrostatic surface energy of {101̅1} polar surface in a wurtzite-type hexagonal structure plays a key role in the formation of GaN nanorods with corrugated morphology. Room-temperature cathodoluminescence (CL) measurements show a near-band-edge emission (NBE) in the ultraviolet range and a broad deep level emission (DLE) in the visible range. The crystallography and the optical emissions of GaN nanorods are discussed. PMID:24164686

  15. Self-organized TiO2 nanorod arrays on glass substrate for self-cleaning antireflection coatings.

    PubMed

    Mu, Qinghui; Li, Yaogang; Wang, Hongzhi; Zhang, Qinghong

    2012-01-01

    Herein we report the direct fabrication of TiO(2) subwavelength structures with 1-dimensional TiO(2) nanorods on glass substrate through solvothermal process to form self-cleaning antireflection coatings. TiO(2) precursor solutions with different solvent constituents create TiO(2) nanorods with much different morphologies grown on glass substrates. Apiculate TiO(2) nanorods with vertical orientation are grown on the glass substrate which is solvothermally treated in the precursor solution containing ethylene glycol. This glass substrate exhibit the highest transmittance of 70-85% in the range of 520-800 nm and negligible absorption in visible light region (400-800 nm). Furthermore, the TiO(2) nanorod arrays show high hydrophobicity and photocatalytic degradation ability which offer the glass substrate self-cleaning properties for both hydrophilic and oily contaminants.

  16. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  17. Controllable vertically aligned ZnO nanorods on flexible polyethylene naphthalate (PEN) substrate using chemical bath deposition synthesis

    NASA Astrophysics Data System (ADS)

    Shabannia, R.; Abu Hassan, H.

    2014-02-01

    Zinc oxide (ZnO) nanorods were successfully grown on polyethylene naphthalate substrates with a seed layer using a wet chemical bath deposition method at a low temperature. Using various precursor concentrations, the diameter, length, and density of the ZnO nanorods were controlled, and their optical and crystallinity properties were investigated. X-ray diffraction and field emission scanning electron microscopy were used to examine the structure and morphology of the ZnO nanorods. The obtained ZnO nanorods were hexagonal and grew vertically from the substrate in the (002) direction along the c-axis. The low compressive strain values confirmed the high-quality crystal structure of the synthesized ZnO nanorods. A 0.050 M precursor concentration resulted in nanorods with a uniform diameter along their entire length and diameters ranging from 10 nm to 40 nm. The photoluminescence results indicated that the ZnO nanorods grown using a 0.050 M precursor concentration exhibited the sharpest and most intense PL peaks in the UV range compared with the other samples. Therefore, the precursor concentration considerably influenced the growth of the ZnO nanorods. These ZnO nanorods can be greatly applied for the development of flexible, elastic electronic, and optoelectronic devices.

  18. Electronic Reconstruction of α-Ag2WO4 Nanorods for Visible-Light Photocatalysis.

    PubMed

    Lin, Zhaoyong; Li, Jiling; Zheng, Zhaoqiang; Yan, Jiahao; Liu, Pu; Wang, Chengxin; Yang, Guowei

    2015-07-28

    α-Ag2WO4 (AWO) has been studied extensively due to its H2 evolution and organic pollution degradation ability under the irradiation of UV light. However, the band gap of AWO is theoretically calculated to be 3.55 eV, resulting in its sluggish reaction to visible light. Herein, we demonstrated that, by using the electronic reconstruction of AWO nanorods upon a unique process of laser irradiation in liquid, these nanorods performed good visible-light photocatalytic organics degradation and H2 evolution. Using commercial AWO powders as the starting materials, we achieved the electronic reconstruction of AWO by a recrystallization of the starting powders upon laser irradiation in liquid and synthesized AWO nanorods. Due to the weak bond energy of AWO and the far from thermodynamic equilibrium process created by laser irradiation in liquid, abundant cluster distortions, especially [WO6] cluster distortions, are introduced into the crystal lattice, the defect density increases by a factor of 2.75, and uneven intermediate energy levels are inset into the band gap, resulting in a 0.44 eV decrease of the band gap, which modified the AWO itself by electronic reconstruction to be sensitive to visible light without the addition of others. Further, the first-principles calculation was carried out to clarify the electronic reconstruction of AWO, and the theoretical results confirmed the deduction based on the experimental measurements.

  19. Comparative study of photocatalytic activities of hydrothermally grown ZnO nanorod on Si(001) wafer and FTO glass substrates.

    PubMed

    Jeon, Eun Hee; Yang, Sena; Kim, Yeonwoo; Kim, Namdong; Shin, Hyun-Joon; Baik, Jaeyoon; Kim, Hyun Sung; Lee, Hangil

    2015-12-01

    ZnO nanorods have been grown on Si(001) wafer and fluorine-doped tin oxide (FTO) glass substrates for 1 and 4 h with the hydrothermal methods. The morphologies and photocatalytic activities of the ZnO nanorods were found to depend on the substrates. We investigated their properties by using spectroscopic analysis and demonstrated that the shape of nanorod and the ratios of external defects can be controlled by varying the substrates. Our experiments revealed that the nanorods grown on Si(001) have a single-crystalline wurtzite structure with (002) facets and that the number of surface oxygen defects increases with their length as the growth time increases. The nanorods grown on Si(001) have different facets, in particular wider (002) facets, and a higher ratio of the oxygen defect than the nanorods on FTO glass substrate. Moreover, the photocatalytic activities with respect to 2-aminothiophenol (2-ATP) of these nanorods were investigated with high-resolution photoemission spectroscopy (HRPES). We demonstrated that their photocatalytic activity is influenced by the ratios of surface oxygen defects, which varies with the substrate surface.

  20. Comparative study of photocatalytic activities of hydrothermally grown ZnO nanorod on Si(001) wafer and FTO glass substrates

    NASA Astrophysics Data System (ADS)

    Jeon, Eun Hee; Yang, Sena; Kim, Yeonwoo; Kim, Namdong; Shin, Hyun-Joon; Baik, Jaeyoon; Kim, Hyun Sung; Lee, Hangil

    2015-09-01

    ZnO nanorods have been grown on Si(001) wafer and fluorine-doped tin oxide (FTO) glass substrates for 1 and 4 h with the hydrothermal methods. The morphologies and photocatalytic activities of the ZnO nanorods were found to depend on the substrates. We investigated their properties by using spectroscopic analysis and demonstrated that the shape of nanorod and the ratios of external defects can be controlled by varying the substrates. Our experiments revealed that the nanorods grown on Si(001) have a single-crystalline wurtzite structure with (002) facets and that the number of surface oxygen defects increases with their length as the growth time increases. The nanorods grown on Si(001) have different facets, in particular wider (002) facets, and a higher ratio of the oxygen defect than the nanorods on FTO glass substrate. Moreover, the photocatalytic activities with respect to 2-aminothiophenol (2-ATP) of these nanorods were investigated with high-resolution photoemission spectroscopy (HRPES). We demonstrated that their photocatalytic activity is influenced by the ratios of surface oxygen defects, which varies with the substrate surface.

  1. Growth of TiO2 nanorods on a Ta substrate by metal-organic chemical vapor deposition.

    PubMed

    Lee, Kang Suk; Hyun, Jae-Sung; Seo, Hyun Ook; Kim, Young Dok; Boo, Jin-Hyo

    2010-05-01

    TiO2 nanorods were successfully grown on Tantalum (Ta) substrates using titanium tetra isopropoxide (TTIP) as a single precursor without any carriers or bubbling gases. For characterization of the TiO2 structures, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were employed. For substrate temperatures below 800 degrees C, a rough film structure without nanorods could be found. However, at a sample temperature of 800 degrees C, nanorod structures with a respective diameter and length of 0.1 approximately 0.2 microm and 0.7 approximately 1.5 microm, respectively, could be synthesized. The nanorods exhibited a rutile phase with a 2:1 stoichiometry of O:Ti, identified using XRD and XPS. When the growth temperature exceeded 800 degrees C, agglomeration of the nanorods was identified. PMID:20358953

  2. Manganese phosphide thin films and nanorods grown on gallium phosphide and on glass substrates

    NASA Astrophysics Data System (ADS)

    Nateghi, N.; Lambert-Milot, S.; Ménard, D.; Masut, R. A.

    2016-05-01

    We report a simple and fast route to grow ferromagnetic manganese phosphide polycrystalline films and nanorods on GaP and on glass substrates using metalorganic vapor phase deposition. Increasing the growth temperature (≥600 °C) and growth time (≥30 min) results in nucleation of secondary MnP crystals on the primary grains. The secondary crystals grow faster along a specific direction of orthorhombic MnP (c-axis) and form long rods (up to ~10 μm) whose diameters are in the nanoscale (20-100 nm). The nanorods can be easily detached from the glass substrate. The films exhibit ferromagnetic behavior with a range of transition temperatures, depending on the growth conditions.

  3. High-density, uniform gallium nitride nanorods grown on Au-coated silicon substrate

    NASA Astrophysics Data System (ADS)

    Cao, Chuanbao; Xiang, Xu; Zhu, Hesun

    2005-01-01

    High-density GaN nanorods with uniform diameters and lengths were successfully grown on Au-coated silicon substrate. The diameters were in the range of 50-80 nm, and the lengths ranged from 1 to 2 μm. A significant feature is that each nanorod was attached with nanoparticle at its very end, which is consistent with the vapor-liquid-solid (VLS) growth mechanism. It was also found that the as-grown final product is strongly dependent on the thickness of the Au thin film coated on the silicon substrate. According to the experimental results, we proposed that the catalytic activity of gold is determined by the size of Au particles, and just very small Au clusters exhibit effective reactivity in the growth of GaN one-dimensional nanostructures.

  4. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  5. Selective photochemical synthesis of Ag nanoparticles on position-controlled ZnO nanorods for the enhancement of yellow-green light emission

    NASA Astrophysics Data System (ADS)

    Park, Hyeong-Ho; Zhang, Xin; Lee, Keun Woo; Sohn, Ahrum; Kim, Dong-Wook; Kim, Joondong; Song, Jin-Won; Choi, Young Su; Lee, Hee Kwan; Jung, Sang Hyun; Lee, In-Geun; Cho, Young-Dae; Shin, Hyun-Beom; Sung, Ho Kun; Park, Kyung Ho; Kang, Ho Kwan; Park, Won-Kyu; Park, Hyung-Ho

    2015-12-01

    A novel technique for the selective photochemical synthesis of silver (Ag) nanoparticles (NPs) on ZnO nanorod arrays is established by combining ultraviolet-assisted nanoimprint lithography (UV-NIL) for the definition of growth sites, hydrothermal reaction for the position-controlled growth of ZnO nanorods, and photochemical reduction for the decoration of Ag NPs on the ZnO nanorods. During photochemical reduction, the size distribution and loading of Ag NPs on ZnO nanorods can be tuned by varying the UV-irradiation time. The photochemical reduction is hypothesized to facilitate the adsorbed citrate ions on the surface of ZnO, allowing Ag ions to preferentially form Ag NPs on ZnO nanorods. The ratio of visible emission to ultraviolet (UV) emission for the Ag NP-decorated ZnO nanorod arrays, synthesized for 30 min, is 20.5 times that for the ZnO nanorod arrays without Ag NPs. The enhancement of the visible emission is believed to associate with the surface plasmon (SP) effect of Ag NPs. The Ag NP-decorated ZnO nanorod arrays show significant SP-induced enhancement of yellow-green light emission, which could be useful in optoelectronic applications. The technique developed here requires low processing temperatures (120 °C and lower) and no high-vacuum deposition tools, suitable for applications such as flexible electronics.A novel technique for the selective photochemical synthesis of silver (Ag) nanoparticles (NPs) on ZnO nanorod arrays is established by combining ultraviolet-assisted nanoimprint lithography (UV-NIL) for the definition of growth sites, hydrothermal reaction for the position-controlled growth of ZnO nanorods, and photochemical reduction for the decoration of Ag NPs on the ZnO nanorods. During photochemical reduction, the size distribution and loading of Ag NPs on ZnO nanorods can be tuned by varying the UV-irradiation time. The photochemical reduction is hypothesized to facilitate the adsorbed citrate ions on the surface of ZnO, allowing Ag ions to

  6. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin B2: Catalytic Polymerisation of Aniline and Pyrrole

    EPA Science Inventory

    For the first time, we report green chemistry approach using vitamin B2 in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride (NaBH4) or hydroxylamine hydro...

  7. Photoinduced reversible changes in morphology of plasmonic Ag nanorods on TiO2 and application to versatile photochromism.

    PubMed

    Kazuma, Emiko; Tatsuma, Tetsu

    2012-02-01

    We achieved reversible changes in length and spectrum of Ag nanorods based on plasmon-induced photoelectrochemical reactions. The changes are applied to multi-wavelength and dual-polarization photochromism in visible-infrared regions. It allows display of invisible images viewable only by infrared cameras. Also possible is display of superimposed visible and invisible images.

  8. Tunable Ultra-high Aspect Ratio Nanorod Architectures grown on Porous Substrate via Electromigration.

    PubMed

    Mansourian, Ali; Paknejad, Seyed Amir; Wen, Qiannan; Vizcay-Barrena, Gema; Fleck, Roland A; Zayats, Anatoly V; Mannan, Samjid H

    2016-01-01

    The interplay between porosity and electromigration can be used to manipulate atoms resulting in mass fabrication of nanoscale structures. Electromigration usually results in the accumulation of atoms accompanied by protrusions at the anode and atomic depletion causing voids at the cathode. Here we show that in porous media the pattern of atomic deposition and depletion is altered such that atomic accumulation occurs over the whole surface and not just at the anode. The effect is explained by the interaction between atomic drift due to electric current and local temperature gradients resulting from intense Joule heating at constrictions between grains. Utilizing this effect, a porous silver substrate is used to mass produce free-standing silver nanorods with very high aspect ratios of more than 200 using current densities of the order of 10(8) A/m(2). This simple method results in reproducible formation of shaped nanorods, with independent control over their density and length. Consequently, complex patterns of high quality single crystal nanorods can be formed in-situ with significant advantages over competing methods of nanorod formation for plasmonics, energy storage and sensing applications. PMID:26923553

  9. Tunable Ultra-high Aspect Ratio Nanorod Architectures grown on Porous Substrate via Electromigration

    NASA Astrophysics Data System (ADS)

    Mansourian, Ali; Paknejad, Seyed Amir; Wen, Qiannan; Vizcay-Barrena, Gema; Fleck, Roland A.; Zayats, Anatoly V.; Mannan, Samjid H.

    2016-02-01

    The interplay between porosity and electromigration can be used to manipulate atoms resulting in mass fabrication of nanoscale structures. Electromigration usually results in the accumulation of atoms accompanied by protrusions at the anode and atomic depletion causing voids at the cathode. Here we show that in porous media the pattern of atomic deposition and depletion is altered such that atomic accumulation occurs over the whole surface and not just at the anode. The effect is explained by the interaction between atomic drift due to electric current and local temperature gradients resulting from intense Joule heating at constrictions between grains. Utilizing this effect, a porous silver substrate is used to mass produce free-standing silver nanorods with very high aspect ratios of more than 200 using current densities of the order of 108 A/m2. This simple method results in reproducible formation of shaped nanorods, with independent control over their density and length. Consequently, complex patterns of high quality single crystal nanorods can be formed in-situ with significant advantages over competing methods of nanorod formation for plasmonics, energy storage and sensing applications.

  10. Tunable Ultra-high Aspect Ratio Nanorod Architectures grown on Porous Substrate via Electromigration

    PubMed Central

    Mansourian, Ali; Paknejad, Seyed Amir; Wen, Qiannan; Vizcay-Barrena, Gema; Fleck, Roland A.; Zayats, Anatoly V.; Mannan, Samjid H.

    2016-01-01

    The interplay between porosity and electromigration can be used to manipulate atoms resulting in mass fabrication of nanoscale structures. Electromigration usually results in the accumulation of atoms accompanied by protrusions at the anode and atomic depletion causing voids at the cathode. Here we show that in porous media the pattern of atomic deposition and depletion is altered such that atomic accumulation occurs over the whole surface and not just at the anode. The effect is explained by the interaction between atomic drift due to electric current and local temperature gradients resulting from intense Joule heating at constrictions between grains. Utilizing this effect, a porous silver substrate is used to mass produce free-standing silver nanorods with very high aspect ratios of more than 200 using current densities of the order of 108 A/m2. This simple method results in reproducible formation of shaped nanorods, with independent control over their density and length. Consequently, complex patterns of high quality single crystal nanorods can be formed in-situ with significant advantages over competing methods of nanorod formation for plasmonics, energy storage and sensing applications. PMID:26923553

  11. Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

    PubMed Central

    Farhat, Omar F; Halim, Mohd M; Abdullah, Mat J; Ali, Mohammed K M

    2015-01-01

    Summary We report a facile synthesis of zinc oxide (ZnO) nanorod arrays using an optimized, chemical bath deposition method on glass, PET and Si substrates. The morphological and structural properties of the ZnO nanorod arrays were investigated using various techniques such as field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) measurements, which revealed the formation of dense ZnO nanorods with a single crystal, hexagonal wurtzite structure. The aspect ratio of the single-crystal ZnO nanorods and the growth rate along the (002) direction was found to be sensitive to the substrate type. The lattice constants and the crystallite size of the fabricated ZnO nanorods were calculated based on the XRD data. The obtained results revealed that the increase in the crystallite size is strongly associated with the growth conditions with a minor dependence on the type of substrate. The Raman spectroscopy measurements confirmed the existence of a compressive stress in the fabricated ZnO nanorods. The obtained results illustrated that the growth of high quality, single-crystal ZnO nanorods can be realized by adjusting the synthesis conditions. PMID:25821712

  12. ZnO nanorod array/CuAlO2 nanofiber heterojunction on Ni substrate: synthesis and photoelectrochemical properties.

    PubMed

    Ding, Juan; Sui, Yongming; Fu, Wuyou; Yang, Haibin; Zhao, Bo; Li, Minghui

    2011-07-22

    A novel ZnO nanorod array (NR)/CuAlO(2) nanofiber (NF) heterojunction nanostructure was grown on a substrate of Ni plates using sol-gel synthesis for the NFs and hydrothermal reaction for the NRs. Compared with a traditional ZnO/CuAlO(2) laminar film nanostructure, the photocurrent of this fibrous network heterojunction is significantly increased. A significant blue-shift of the absorption edge and a favorable forward current to reverse current ratio at applied voltages of -2 to +2 V were observed in this heterojunction with the increase of Zn(2+) ion concentration in the hydrothermal reaction. Furthermore, the photoelectrochemical properties were investigated and the highest photocurrent of 3.1 mA cm(-2) was obtained under AM 1.5 illumination with 100 mW cm(-2) light intensity at 0.71 V (versus Ag/AgCl). This novel 3D fibrous network nanostructure plays an important role in the optoelectronic field and can be extended to other binary or ternary oxide compositions for various applications. PMID:21677371

  13. ZnO nanorod array/CuAlO2 nanofiber heterojunction on Ni substrate: synthesis and photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Ding, Juan; Sui, Yongming; Fu, Wuyou; Yang, Haibin; Zhao, Bo; Li, Minghui

    2011-07-01

    A novel ZnO nanorod array (NR)/CuAlO2 nanofiber (NF) heterojunction nanostructure was grown on a substrate of Ni plates using sol-gel synthesis for the NFs and hydrothermal reaction for the NRs. Compared with a traditional ZnO/CuAlO2 laminar film nanostructure, the photocurrent of this fibrous network heterojunction is significantly increased. A significant blue-shift of the absorption edge and a favorable forward current to reverse current ratio at applied voltages of - 2 to + 2 V were observed in this heterojunction with the increase of Zn2 + ion concentration in the hydrothermal reaction. Furthermore, the photoelectrochemical properties were investigated and the highest photocurrent of 3.1 mA cm - 2 was obtained under AM 1.5 illumination with 100 mW cm - 2 light intensity at 0.71 V (versus Ag/AgCl). This novel 3D fibrous network nanostructure plays an important role in the optoelectronic field and can be extended to other binary or ternary oxide compositions for various applications.

  14. Facile Synthesis of Ag Nanorods with No Plasmon Resonance Peak in the Visible Region by Using Pd Decahedra of 16 nm in Size as Seeds.

    PubMed

    Luo, Ming; Huang, Hongwen; Choi, Sang-Il; Zhang, Chao; da Silva, Robson Rosa; Peng, Hsin-Chieh; Li, Zhi-Yuan; Liu, Jingyue; He, Zhike; Xia, Younan

    2015-10-27

    This article describes a seed-mediated approach to the synthesis of Ag nanorods with thin diameters and tunable aspect ratios. The success of this method is built upon our recent progress in the synthesis of Pd decahedra as uniform samples, together with controllable sizes. When used as a seed, the Pd decahedron could direct the deposition of Ag atoms along the 5-fold axis to generate a nanorod, with its diameter being determined by the lateral dimension of the seed. We were able to generate Ag nanorods with uniform diameters down to 20 nm. Under the conditions we used for growth, symmetry breaking occurred as the Ag atoms were only deposited along one side of the Pd decahedral seed to generate a Ag nanorod with the Pd seed being positioned at one of its two ends. We also systematically investigated the localized surface plasmon resonance (LSPR) properties of the Ag nanorods. With the transverse mode kept below 400 nm, the longitudinal mode could be readily tuned from the visible to the near-infrared region by varying the aspect ratio. As an important demonstration, we obtained Ag nanorods with no LSPR peak in the visible spectrum (400-800 nm), which are attractive for applications related to the fabrication of touchscreen displays, solar films, and energy-saving smart windows. PMID:26372854

  15. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells

    PubMed Central

    2013-01-01

    Ag2S quantum dots were deposited on the surface of TiO2 nanorod arrays by a two-step photodeposition. The prepared TiO2 nanorod arrays as well as the Ag2S deposited electrodes were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope, suggesting a large coverage of Ag2S quantum dots on the ordered TiO2 nanorod arrays. UV–vis absorption spectra of Ag2S deposited electrodes show a broad absorption range of the visible light. The quantum dot-sensitized solar cells (QDSSCs) based on these electrodes were fabricated, and the photoelectrochemical properties were examined. A high photocurrent density of 10.25 mA/cm2 with a conversion efficiency of 0.98% at AM 1.5 solar light of 100 mW/cm2 was obtained with an optimal photodeposition time. The performance of the QDSSC at different incident light intensities was also investigated. The results display a better performance at a lower incident light level with a conversion efficiency of 1.25% at 47 mW/cm2. PMID:23286551

  16. Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes

    DOE PAGES

    Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier; Fang, Ning

    2015-04-07

    In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of the hybridmore » nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less

  17. Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application

    PubMed Central

    Azam, Ameer; Babkair, Saeed Salem

    2014-01-01

    Well-aligned and single-crystalline zinc oxide (ZnO) nanorod arrays were grown on silicon (Si) substrate using a wet chemical route for the photodegradation of organic dyes. Structural analysis using X-ray diffraction, high-resolution transmission electron microscopy, and selected area electron diffraction confirmed the formation of ZnO nanorods grown preferentially oriented in the (001) direction and with a single phase nature with a wurtzite structure. Field emission scanning electron microscopy and transmission electron microscopy micrographs showed that the length and diameter of the well-aligned rods were about ~350–400 nm and ~80–90 nm, respectively. Raman scattering spectra of ZnO nanorod arrays revealed the characteristic E2 (high) mode that is related to the vibration of oxygen atoms in the wurtzite ZnO. The photodegradation of methylene blue (MB) using ZnO nanorod arrays was performed under ultraviolet light irradiation. The results of photodegradation showed that ZnO nanorod arrays were capable of degrading ~80% of MB within 60 minutes of irradiation, whereas ~92% of degradation was achieved in 120 minutes. Complete degradation of MB was observed after 270 minutes of irradiation time. Owing to enhanced photocatalytic degradation efficiency and low-temperature growth method, prepared ZnO nanorod arrays may open up the possibility for the successful utilization of ZnO nanorod arrays as a future photocatalyst for environmental remediation. PMID:24812511

  18. SERS substrates formed by gold nanorods deposited on colloidal silica films

    PubMed Central

    2013-01-01

    We describe a new approach to the fabrication of surface-enhanced Raman scattering (SERS) substrates using gold nanorod (GNR) nanopowders to prepare concentrated GNR sols, followed by their deposition on an opal-like photonic crystal (OPC) film formed on a silicon wafer. For comparative experiments, we also prepared GNR assemblies on plain silicon wafers. GNR-OPC substrates combine the increased specific surface, owing to the multilayer silicon nanosphere structure, and various spatial GNR configurations, including those with possible plasmonic hot spots. We demonstrate here the existence of the optimal OPC thickness and GNR deposition density for the maximal SERS effect. All other things being equal, the analytical integral SERS enhancement of the GNR-OPC substrates is higher than that of the thick, randomly oriented GNR assemblies on plain silicon wafers. Several ways to further optimize the strategy suggested are discussed. PMID:23697339

  19. Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application.

    PubMed

    Gorbunova, M V; Apyari, V V; Dmitrienko, S G; Garshev, A V

    2016-09-14

    Gold nanorods (AuNRs) stabilized by cetyltrimethylammonium bromide (CTAB) were synthesized and an interaction of catecholamines (CAs) with silver ions in the presence of the obtained AuNRs was studied. The reaction results into formation of core-shell Au@Ag nanorods (Au@AgNRs) and leads to a hypsochromic shift of the long-wave surface plasmon resonance (SPR) band in the absorption spectrum of AuNRs. The influence of a CA structure, excess of CTAB, interaction time, pH, concentration of AuNRs, silver ions and CAs on this interaction was studied. Based on correlation of the NRs spectral characteristics with the concentration of CAs, a method for spectrophotometric determination of dobutamine, epinephrine, norepinephrine and dopamine with detection limits 27, 18, 16 and 13 μg L(-1), respectively, has been developed. The method can be applied to the analysis of medicines. PMID:27566354

  20. Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application.

    PubMed

    Gorbunova, M V; Apyari, V V; Dmitrienko, S G; Garshev, A V

    2016-09-14

    Gold nanorods (AuNRs) stabilized by cetyltrimethylammonium bromide (CTAB) were synthesized and an interaction of catecholamines (CAs) with silver ions in the presence of the obtained AuNRs was studied. The reaction results into formation of core-shell Au@Ag nanorods (Au@AgNRs) and leads to a hypsochromic shift of the long-wave surface plasmon resonance (SPR) band in the absorption spectrum of AuNRs. The influence of a CA structure, excess of CTAB, interaction time, pH, concentration of AuNRs, silver ions and CAs on this interaction was studied. Based on correlation of the NRs spectral characteristics with the concentration of CAs, a method for spectrophotometric determination of dobutamine, epinephrine, norepinephrine and dopamine with detection limits 27, 18, 16 and 13 μg L(-1), respectively, has been developed. The method can be applied to the analysis of medicines.

  1. Modeling wrinkled-assisted assembly of ordered nanoparticles and nanorods on a wavy substrate

    NASA Astrophysics Data System (ADS)

    Luppi Sato, Camila; Yeh, Peter; Alexeev, Alexander; Mayer, Martin; Probst, Patrick; Fery, Andreas

    2015-11-01

    Wrinkle-assisted assembly is a technique that allows for fabrication of ordered structures of nanoparticles and nanorods on hydrophilic substrates. As an intermediate step in this process, nanoparticles are deposited within microscopically wrinkled surfaces, where they organize into patterned structures upon solvent evaporation. However, the dependence of the resulting pattern on nanoparticle concentration, particle size and shape, and substrate geometry is not well understood. We develop a model of the ordering process using dissipative particle dynamics (DPD) to predict the resulting nanostructures. We approximate the wavy sheet as a sinusoidal surface. One layer of DPD liquid containing nanoparticles fills the surface, while another layer of DPD fluid acts as the gaseous phase. We model the evaporative process by gradually replacing DPD liquid particles with DPD gaseous particles. The results of our work are useful in designing surface patterns that exhibit strong plasmonic coupling. Financial support from NSF CAREER Award DMR-1255288 is gratefully acknowledged.

  2. Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region

    NASA Astrophysics Data System (ADS)

    Ren, Shoutian; Zhao, Guoliang; Wang, Yingying; Wang, Benyang; Wang, Qiang

    2015-03-01

    Sandwiched ZnO@Ag@Cu2O nanorod films were synthesized by successive electrodeposition, magnetron sputtering and the second electrodeposition. The as-synthesized composites were characterized by x-ray diffraction patterns, field emission scanning electron microscopy, low- and high-resolution transmission electron microscopy and a UV-vis spectrophotometer. Their photocatalytic performance was estimated by the degradation of a methyl orange solution under UV or visible-light irradiation, respectively. In the visible region, due to localized surface plasmon resonance absorption of Ag NPs, ZnO@Ag@Cu2O showed a significantly enhanced photocatalytic performance. The enhancement factor of Ag NPs on the catalytic performance of ZnO@Ag@Cu2O was estimated as a function of the Cu2O deposition time, and the corresponding enhancement mechanism was also evaluated by the monochromatic photocatalytic experiment and discrete dipole approximation simulation. In the UV region, due to the formation of a Schottky junction (e.g. Ag/ZnO, Ag/Cu2O), a limited enhanced photocatalytic performance was also realized for ZnO@Ag@Cu2O photocatalysts.

  3. General Route to ZnO Nanorod Arrays on Conducting Substrates via Galvanic-cell-based approach

    PubMed Central

    Zheng, Zhaoke; Lim, Zhi Shiuh; Peng, Yuan; You, Lu; Chen, Lang; Wang, Junling

    2013-01-01

    Wurtzite ZnO nanorod exhibits many unique properties, which make it promising for various optoelectronic applications. To grow well-aligned ZnO nanorod arrays on various substrates, a seed layer is usually required to improve the density and vertical alignment. The reported works about seedless hydrothermal synthesis either require special substrates, or require external electrical field to enhance the ZnO nucleation. Here, we report a general method for the one-pot synthesis of homogenous and well-aligned ZnO nanorods on common conducting substrates without a seed layer. This method, based on the galvanic-cell structure, makes use of the contact potential between different materials as the driving force for ZnO growth. It is applicable to different conducting substrates at low temperature. More importantly, the as-grown ZnO nanorods show enhanced photoelectric response. This unique large scale low-temperature processing method could be of great importance for the application of ZnO nanostructures. PMID:23942316

  4. General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach.

    PubMed

    Zheng, Zhaoke; Lim, Zhi Shiuh; Peng, Yuan; You, Lu; Chen, Lang; Wang, Junling

    2013-01-01

    Wurtzite ZnO nanorod exhibits many unique properties, which make it promising for various optoelectronic applications. To grow well-aligned ZnO nanorod arrays on various substrates, a seed layer is usually required to improve the density and vertical alignment. The reported works about seedless hydrothermal synthesis either require special substrates, or require external electrical field to enhance the ZnO nucleation. Here, we report a general method for the one-pot synthesis of homogenous and well-aligned ZnO nanorods on common conducting substrates without a seed layer. This method, based on the galvanic-cell structure, makes use of the contact potential between different materials as the driving force for ZnO growth. It is applicable to different conducting substrates at low temperature. More importantly, the as-grown ZnO nanorods show enhanced photoelectric response. This unique large scale low-temperature processing method could be of great importance for the application of ZnO nanostructures.

  5. General Route to ZnO Nanorod Arrays on Conducting Substrates via Galvanic-cell-based approach

    NASA Astrophysics Data System (ADS)

    Zheng, Zhaoke; Lim, Zhi Shiuh; Peng, Yuan; You, Lu; Chen, Lang; Wang, Junling

    2013-08-01

    Wurtzite ZnO nanorod exhibits many unique properties, which make it promising for various optoelectronic applications. To grow well-aligned ZnO nanorod arrays on various substrates, a seed layer is usually required to improve the density and vertical alignment. The reported works about seedless hydrothermal synthesis either require special substrates, or require external electrical field to enhance the ZnO nucleation. Here, we report a general method for the one-pot synthesis of homogenous and well-aligned ZnO nanorods on common conducting substrates without a seed layer. This method, based on the galvanic-cell structure, makes use of the contact potential between different materials as the driving force for ZnO growth. It is applicable to different conducting substrates at low temperature. More importantly, the as-grown ZnO nanorods show enhanced photoelectric response. This unique large scale low-temperature processing method could be of great importance for the application of ZnO nanostructures.

  6. Optically anisotropic substrates via wrinkle-assisted convective assembly of gold nanorods on macroscopic areas

    PubMed Central

    Tebbe, Moritz; Mayer, Martin; Glatz, Bernhard A.; Hanske, Christoph; Probst, Patrick T.; Müller, Mareen B.; Karg, Matthias; Chanana, Munish; König, Tobias A. F.; Kuttner, Christian

    2015-01-01

    We demonstrate the large-scale organisation of anisotropic nanoparticles into linear assemblies displaying optical anisotropy on macroscopic areas. Monodisperse gold nanorods with a hydrophilic protein shell are arranged by dip-coating on wrinkled surfaces and subsequently transferred to indium tin oxide (ITO) substrates by capillary transfer printing. We elucidate how tuning the wrinkle amplitude enables us to precisely adjust the assembly morphology and fabricate single, double and triple nanorod lines. For the single lines, we quantify the order parameter of the assemblies as well as interparticle distances from scanning electron microscopy (SEM) images. We find an order parameter of 0.97 and a mean interparticle gap size of 7 nm. This combination of close to perfect uni-axial alignment and close-packing gives rise to pronounced macroscopic anisotropic optical properties due to strong plasmonic coupling. We characterise the optical response of the assemblies on ITO-coated glass via UV/vis/NIR spectroscopy and determine an optical order parameter of 0.91. The assemblies are thus plasmonic metamaterials, as their periodicity and building block sizes are well below the optical wavelength. The presented approach does not rely on lithographic patterning and provides access to functional materials, which could have applications in subwavelength waveguiding, photovoltaics, and for large-area metamaterial fabrication. PMID:25951174

  7. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    PubMed

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation.

  8. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    PubMed

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation. PMID:25262081

  9. Hexagonal core-shell and alloy Au/Ag nanodisks on ZnO nanorods and their optical enhancement effect

    PubMed Central

    2014-01-01

    Au and Ag hybrid hexagonal nanodisks were synthesized on ZnO nanorods' (0002) surface via a new two-step deposition-annealing method. The structural, compositional, as well as optical investigations were carried out systematically to find out the nanodisks' formation mechanism and optical enhancement effect. It was shown that the core-shell Au/Ag nanodisk can be formed under rapid annealing temperature of 500°C, while Au/Ag alloy nanodisks are formed if higher temperatures (>550°C) are applied. The optical effect from these nanodisks was studied through photoluminescence and absorption spectroscopy. It was found that the carrier-plasmon coupling together and carrier transfer between metal and ZnO contribute to the emission enhancement. Furthermore, the results suggest that the composition of nanodisk on the vicinity of metal/ZnO interface plays an important role in terms of the enhancement factors. PMID:24936157

  10. Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates.

    PubMed

    Qiu, Yu; Zhang, Heqiu; Hu, Lizhong; Yang, Dechao; Wang, Lina; Wang, Bin; Ji, Jiuyu; Liu, Guoqiang; Liu, Xin; Lin, Jianfan; Li, Fei; Han, Shijun

    2012-10-21

    Nanogenerators capable of harvesting energy from environmental mechanical energy are attractive for many applications. In this paper, we present a simple, low-cost approach to convert low-frequency mechanical energy into electric power using piezoelectric ZnO nanorods grown on a common paper substrate. This energy conversion device has ultrahigh flexibility and piezoelectric sensitivity and can produce an output voltage of up to 10 mV and an output current of about 10 nA. It is demonstrated that the device's electric output behavior can be optionally changed between four types of mode simply by controlling the straining rate. Furthermore, it is also shown that the electric output can be enhanced by scaling the size of the device. This energy-harvesting technology provides a simple and cost-effective platform to capture low-frequency mechanical energy, such as body movements, for practical applications. PMID:22971814

  11. Facile synthesis of hybrid nanorods with the Sb2Se3/AgSbSe2 heterojunction structure for high performance photodetectors.

    PubMed

    Chen, Shuo; Qiao, Xvsheng; Wang, Fengxia; Luo, Qun; Zhang, Xianghua; Wan, Xia; Xu, Yang; Fan, Xianping

    2016-01-28

    An effective colloidal process involving the hot-injection method is developed to synthesize uniform single-crystalline Sb2Se3 nanorods in high yields. The photoconductive characteristics of the as-synthesized Sb2Se3 nanorods are investigated by developing a film-based photodetector and this device displays a remarkable response to visible light with an "ON/OFF" ratio as high as 50 (with an incident light density of 12.05 mW cm(-2)), short response/recovery times and long-term durability. To overcome the challenge of the intrinsic low electrical conductivity of Sb2Se3, hybrid nanorods with the Sb2Se3/AgSbSe2 heterojunction structure having a type-II band alignment are firstly prepared. The electric current of the photodetector based on the Sb2Se3/AgSbSe2 hybrid nanorod film has been significantly increased both in the dark and under light illumination. The responsivity of the photodetector based on the Sb2Se3/AgSbSe2 hybrid nanorod film is about 4.2 times as much as that of the photodetector based on the Sb2Se3 nanorod film. This improvement can be considered as an important step to promote Sb2Se3 based semiconductors for applications in high performance photodetectors.

  12. Hydrogen treatment-improved uniform deposition of Ag nanoparticles on ZnO nanorod arrays and their visible-light photocatalytic and surface-enhanced Raman scattering properties

    PubMed Central

    2013-01-01

    ZnO nanorod arrays were synthesized by chemical bath deposition. After heat treatment in hydrogen or air, Ag nanoparticles were deposited on ZnO nanorod arrays by photo-reduction method. The size of Ag nanoparticles as well as the surface morphology, structure, composition, and optical property of ZnO nanorod arrays before and after the deposition of Ag nanoparticles were characterized by SEM, XRD, EDS, and UV/VIS/NIR spectrophotometer. As compared to the samples with heat treatment in air or without heat treatment, the ZnO nanorod arrays after heat treatment in hydrogen allowed Ag nanoparticles to be deposited more uniformly, densely, and numerously. Also, they exhibited higher efficiency for the visible light-driven photocatalytic degradation of Rhodamine 6G (R6G) dye. The effects of the amount of Ag nanoparticles, initial dye concentration, and temperature on the photocatalytic degradation efficiency were investigated. Furthermore, they also exhibited better surface-enhanced Raman scattering property for the detection of R6G dyes. PMID:23866904

  13. Fabrication and Characterization of ZnO Nanorods on Multiple Substrates.

    PubMed

    Rana, Abu ul Hassan Sarwar; Ko, Kyul; Hong, Sejun; Kang, Mingi; Kim, Hyun-Seok

    2015-11-01

    In this study, we present the fabrication and characterization of ZnO nanorods (NRs) grown on p-Si, gold (Au) and nickel (Ni) coated on Si wafer, indium tin oxide (ITO), and quartz substrates. The aqueous chemical growth method is used for the vertical growth of ZnO NRs on multiple substrates. The samples are characterized with scanning electron microscope and energy dispersive X-ray spectroscopy to probe into the growth, alignment, density, diameter, and length of ZnO NRs on multiple substrates. It is found that under same conditions, like growth temperature, growth time, and solution concentration, ZnO NRs on ITO and quartz have same length but comparatively larger diameter than on other samples. The effects of growth time on the diameter and length of ZnO NRs are also explored. All the samples are characterized with probe station to look at the current-voltage (I-V) behavior of ZnO NRs on multiple substrates. It is found that ZnO NRs on p-Si show a simple p-n heterojunction diode like behavior. ZnO NRs grown on Au- and Ni-coated Si wafers show Schottky I-V characteristic behaviors while ZnO NRs on ITO show a simple ohmic I-V response with comparatively higher level of current. Finally, the I-V response of ZnO NRs on p-Si is also studied under ultraviolet illumination. Because of the photo-generated carriers in ZnO, the sample shows higher level of current upon illumination. PMID:26726520

  14. Standing gold nanorod arrays as reproducible SERS substrates for measurement of pesticides in apple juice and vegetables.

    PubMed

    Zhang, Zhong; Yu, Qingsong; Li, Hao; Mustapha, Azlin; Lin, Mengshi

    2015-02-01

    There is an increasing interest in recent years in using novel nanomaterials as cost-effective, sensitive, and reproducible substrate for surface-enhanced Raman spectroscopy (SERS) applications. In this study, a novel SERS substrate was developed by assembling gold nanorods into standing arrays on a gold-coated silicon slide. The standing nanorod arrays were closely packed on the gold film, generating strong electromagnetic field and uniformly distributed SERS "hot-spots" on the array surface. The as-prepared SERS substrates were used to detect a widely used pesticide (that is, carbaryl) in acetonitrile-water solution, apple juice, and cabbage. Results demonstrate that the actual concentrations of carbaryl in apple juice and cabbage were linearly correlated with the concentrations predicted by the multiple linear regression models (R > 0.97). The detection limits of carbaryl in apple juice and cabbage were both 2.5 ppm, meeting the maximum residue limits set by US Environmental Protection Agency (EPA). SERS can detect as low as 0.1 ppm of carbaryl in acetonitrile-water solution. In addition, satisfactory recoveries were obtained for carbaryl in both apple juice and cabbage. These results indicate that SERS coupled with the standing gold nanorod array substrates is a sensitive and reproducible method and can accurately detect pesticides in foods.

  15. High-Quality AgGaTe2 Layers on Si Substrates with Ag2Te Buffer Layers

    NASA Astrophysics Data System (ADS)

    Uruno, Aya; Kobayashi, Masakazu

    2016-09-01

    AgGaTe2 layers were successfully grown on Si substrates by the close-spaced sublimation method. The Si substrates were confirmed to be etched during AgGaTe2 layer growth when the layer was grown directly on the substrate. To eliminate melt-back etching, a buffer layer of Ag2Te was introduced. It was found that the Ag2Te buffer layer changed into the AgGaTe2 layer during the growth process, and a uniform AgGaTe2 layer with an abrupt interface was formed. Both the diffusion of Ga into Ag2Te and the growth of AgGaTe2 occurred simultaneously. It was confirmed that uniform AgGaTe2 layers could be formed without any traces of the Ag2Te layer or melt-back etching by tuning the growth parameters. A solar cell was also fabricated using the p-AgGaTe2/n-Si heterojunction. This solar cell showed conversion efficiency of approximately 3%.

  16. Formation of one-dimensional Ag-Au solid solution colloids with Au nanorods as seeds, their alloying mechanisms, and surface plasmon resonances.

    PubMed

    Guo, Tao; Tan, Yiwei

    2013-01-21

    In this work, one dimensional (1D) Ag-Au solid solution nanoalloys were synthesized by rapidly diffusing Ag into the preformed Au nanorod (AuNR) seeds at ambient temperature in aqueous solution. By varying the molar ratio of AgCl/AuNR (in gold atoms), two kinds of 1D Ag-Au alloy nanostructures with a narrow size distribution--AgAu nanowires and Ag(33)Au(67) nanorods--could be obtained in high yields when NaCl and polyvinylpyrrolidone (PVP) were used as an additive and capping reagent, respectively. Based on HRTEM imaging combined with a series of control experiments, it is conceivable that vacancy/defect-motivated interdiffusion of Ag and Au atoms coupled with oxidative etching is a crucial stage in the mechanism responsible for this room-temperature alloying process, and the subsequent conjugation of the fused Ag-Au alloyed nanostructures is associated with the formation of the AgAu nanowires. The resulting 1D Ag-Au nanoalloys form stable colloidal dispersions and show unique localized surface plasmon resonance (LSPR) peaks in the ensemble extinction spectra.

  17. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin B 2 : Catalytic Polymerisation of Aniline and Pyrrole

    DOE PAGES

    Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2008-01-01

    Formore » the first time, we report green chemistry approach using vitamin B 2 in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires, and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride ( NaBH 4 ) or hydroxylamine hydrochloride and any special capping or dispersing agent. Vitamin B 2 was used as reducing agent as well as capping agent due to its high-water solubility, biodegradability, and low-toxicity compared with other reducing agents. The average particle size of nanoprticle was found to be Ag (average size 6.1 ± 0.1 nm) and Pd (average size 4.1 ± 0.1 nm) nanoparticles in ethylene glycol and Ag (average size 5.9 ± 0.1 nm, and average size 6.1 ± 0.1) nanoparticles in acetic acid and NMP, respectively. The formation of noble multiple shape nanostructures and their self assembly were dependent on the solvent employed for the preparation. When water was used as solvent media, Ag and Pd nanoparticles started to self-assemble into rod-like structures and in isopropanol Ag and Pd nanoparticles yielded wire-like structures with a thickness in the range of 10 to 20 nm and several hundred microns in length. In acetone and acetonitrile medium, the Ag and Pd nanoparticles are self-assembled into a regular pattern making nanorod structures with thicknesses ranging from 100 to 200 nm and lengths of a few microns. The so-synthesized nanostructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and UV spectroscopy. The ensuing Ag and Pd nanoparticles catalyzed the reactions of aniline and pyrrole to generate polyaniline and polypyrrole nanofibers and may find various technological and biological applications. This single-step greener approach is general and can be extended to other noble metals and transition metal oxides.« less

  18. 3D hierarchical MnO2 nanorod/welded Ag-nanowire-network composites for high-performance supercapacitor electrodes.

    PubMed

    Qiao, Zhensong; Yang, Xiaopeng; Yang, Shuhua; Zhang, Liqiang; Cao, Bingqiang

    2016-06-28

    3D MnO2 nanorod/welded Ag-nanowire-network supercapacitor electrodes were prepared. Welding treatment of the Ag nanowire-network leads to low resistance and long lifetime. Galvanostatic charge/discharge (GCD) induces an ever-lasting morphology changing from flower-like to honeycomb-like for MnO2, which manifests as increasing specific capacitance to 663.4 F g(-1) after 7000 GCD cycles. PMID:27263832

  19. 3D hierarchical MnO2 nanorod/welded Ag-nanowire-network composites for high-performance supercapacitor electrodes.

    PubMed

    Qiao, Zhensong; Yang, Xiaopeng; Yang, Shuhua; Zhang, Liqiang; Cao, Bingqiang

    2016-06-28

    3D MnO2 nanorod/welded Ag-nanowire-network supercapacitor electrodes were prepared. Welding treatment of the Ag nanowire-network leads to low resistance and long lifetime. Galvanostatic charge/discharge (GCD) induces an ever-lasting morphology changing from flower-like to honeycomb-like for MnO2, which manifests as increasing specific capacitance to 663.4 F g(-1) after 7000 GCD cycles.

  20. Constructing n-ZnO@Au heterogeneous nanorod arrays on p-Si substrate as efficient photocathode for water splitting

    NASA Astrophysics Data System (ADS)

    Bao, Zhijia; Xu, Xiaoyong; Zhou, Gang; Hu, Jingguo

    2016-07-01

    Developing ingenious heterostructure photoelectrodes in photoelectrochemical (PEC) cells to both harvest more solar photons and steer desired charge separation flow is a prerequisite challenge for PEC water splitting. Herein a hierarchical p-Si/n-ZnO@Au heterostructure was constructed via large-area growth of one-dimensional (1D) ZnO nanorod arrays (NRAs) on p-Si substrate followed by decorating with Au nanoparticles (NPs), which exhibited remarkably improved photocathode activity for PEC water splitting relative to the bare Si and Si/ZnO NRAs photocathodes. In addition to structural superiorities of 1D NRAs, a series of dynamic contributions from complementary band-gap structure, p–n heterojunctions and Au plasmon towards photon harvesting and charge separation were demonstrated to ensure a well-steered collection of photoelectrons at the exposed ZnO nanorods and Au NPs, enabling substantially improved photocathode performance.

  1. Constructing n-ZnO@Au heterogeneous nanorod arrays on p-Si substrate as efficient photocathode for water splitting

    NASA Astrophysics Data System (ADS)

    Bao, Zhijia; Xu, Xiaoyong; Zhou, Gang; Hu, Jingguo

    2016-07-01

    Developing ingenious heterostructure photoelectrodes in photoelectrochemical (PEC) cells to both harvest more solar photons and steer desired charge separation flow is a prerequisite challenge for PEC water splitting. Herein a hierarchical p-Si/n-ZnO@Au heterostructure was constructed via large-area growth of one-dimensional (1D) ZnO nanorod arrays (NRAs) on p-Si substrate followed by decorating with Au nanoparticles (NPs), which exhibited remarkably improved photocathode activity for PEC water splitting relative to the bare Si and Si/ZnO NRAs photocathodes. In addition to structural superiorities of 1D NRAs, a series of dynamic contributions from complementary band-gap structure, p-n heterojunctions and Au plasmon towards photon harvesting and charge separation were demonstrated to ensure a well-steered collection of photoelectrons at the exposed ZnO nanorods and Au NPs, enabling substantially improved photocathode performance.

  2. Enhanced photoresponse of conformal TiO{sub 2}/Ag nanorod array-based Schottky photodiodes fabricated via successive glancing angle and atomic layer deposition

    SciTech Connect

    Haider, Ali; Biyikli, Necmi; Cansizoglu, Hilal; Cansizoglu, Mehmet Fatih; Karabacak, Tansel; Okyay, Ali Kemal

    2015-01-01

    In this study, the authors demonstrate a proof of concept nanostructured photodiode fabrication method via successive glancing angle deposition (GLAD) and atomic layer deposition (ALD). The fabricated metal-semiconductor nanorod (NR) arrays offer enhanced photoresponse compared to conventional planar thin-film counterparts. Silver (Ag) metallic NR arrays were deposited on Ag-film/Si templates by utilizing GLAD. Subsequently, titanium dioxide (TiO{sub 2}) was deposited conformally on Ag NRs via ALD. Scanning electron microscopy studies confirmed the successful formation of vertically aligned Ag NRs deposited via GLAD and conformal deposition of TiO{sub 2} on Ag NRs via ALD. Following the growth of TiO{sub 2} on Ag NRs, aluminum metallic top contacts were formed to complete the fabrication of NR-based Schottky photodiodes. Nanostructured devices exhibited a photo response enhancement factor of 1.49 × 10{sup 2} under a reverse bias of 3 V.

  3. Mechanical and piezoelectric properties of zinc oxide nanorods grown on conductive textile fabric as an alternative substrate

    NASA Astrophysics Data System (ADS)

    Khan, Azam; Hussain, Mushtaque; Nur, Omer; Willander, Magnus

    2014-08-01

    The present research is devoted to understanding the mechanism and causes of variation in the piezoelectric potential generated from vertically aligned zinc oxide (ZnO) nanorods (NRs), which were grown on a conductive textile fabric as an alternative substrate by using the aqueous chemical growth method. The piezoelectric voltage was harvested from vertically aligned ZnO NRs having different physical parameters by using atomic force microscopy in contact mode and the variation in the generated piezoelectricity was investigated. The generated output potential indicates that different physical parameters such aspect ratio, crystal size and lattice internal crystal strain have a strong influence on the piezoelectric properties of vertically aligned ZnO NRs, which were grown on a textile fabric. Presented results indicate that textiles can be used as an alternative substrate just like the other conventional substrates, because our results are similar/better than many reported works on conventional substrates.

  4. Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes-gold nanorods hybrids.

    PubMed

    Caires, A J; Vaz, R P; Fantini, C; Ladeira, L O

    2015-10-01

    We report a simple and easy formation of hybrids between multi-wall carbon nanotubes and gold nanorods by one-pot in situ photochemical synthesis. Measurements of surface-enhanced Raman scattering (SERS) through the effect "coffee ring" in visible and near infrared (NIR) show high sensitivity with detection of nanomolar concentrations of aromatic dyes. The formation of nanocomposites between carbon nanotubes and gold nanorods without chemical binders simplifies the preparation. Photochemical synthesis is an advance over the techniques previously published.

  5. Spherical and sheetlike Ag/AgCl nanostructures: interesting photocatalysts with unusual facet-dependent yet substrate-sensitive reactivity.

    PubMed

    Shen, Yunfan; Chen, Penglei; Xiao, Dan; Chen, Chuncheng; Zhu, Mingshan; Li, Tiesheng; Ma, Wangong; Liu, Minghua

    2015-01-13

    We herein report that spherical and sheetlike Ag/AgCl nanostructures could be controllably synthesized by means of chemical reactions between AgNO3 and cetyltrimethylammonium chloride (CTAC) surfactant. In this synthesis system, AgNO3 works as the silver source, while CTAC serves not only as the chlorine source but also as the directing reagent for a controllable nanofabrication. We show that compared to the spherical Ag/AgCl nanostructures, the sheetlike counterparts, wherein the AgCl nanospecies are predominantly enriched with {111} facets, could exhibit superior catalytic performances toward the photodegradation of methyl orange. Interestingly, we further demonstrate that when 4-chlorophenol or phenol is used as the substrate, the sheetlike Ag/AgCl nanostructures exhibit inferior catalytic reactivity, whereas the spherical counterparts display superior catalytic performances comparatively. Our results disclose new insights on the facet-dependent catalytic performances with regard to a facet-selective but substrate-sensitive photoinduced electron-hole separation.

  6. Color-Controlled Ag Nanoparticles and Nanorods within Confined Mesopores: Microwave-Assisted Rapid Synthesis and Application in Plasmonic Catalysis under Visible-Light Irradiation.

    PubMed

    Mori, Kohsuke; Verma, Priyanka; Hayashi, Ryunosuke; Fuku, Kojirou; Yamashita, Hiromi

    2015-08-10

    Color-controlled spherical Ag nanoparticles (NPs) and nanorods, with features that originate from their particle sizes and morphologies, can be synthesized within the mesoporous structure of SBA-15 by the rapid and uniform microwave (MW)-assisted alcohol reduction method in the absence or presence of surface-modifying organic ligands. The obtained several Ag catalysts exhibit different catalytic activities in the H2 production from ammonia borane (NH3 BH3 , AB) under dark conditions, and higher catalytic activity is observed by smaller yellow Ag NPs in spherical form. The catalytic activities are specifically enhanced under the light irradiation for all Ag catalysts. In particular, under light irradiation, the blue Ag nanorod shows a maximum enhancement of more than twice that observed in the dark. It should be noted that the order of increasing catalytic performance is in close agreement with the order of absorption intensity owing to the Ag localized surface plasmon resonance (LSPR) at irradiation light wavelength. Upon consideration of infrared thermal effect, wavelength dependence on catalytic activity, and effect of radical scavengers, it can be concluded that the dehydrogenation of AB is promoted by change of charge density of the Ag NP surface derived from LSPR. The LSPR-enhanced catalytic activity can be further realized in the tandem reaction consisting of dehydrogenation of AB and hydrogenation of 4-nitrophenol, in which a similar tendency in the enhancement of catalytic activity is observed.

  7. Facile Decoration of Polyaniline Fiber with Ag Nanoparticles for Recyclable SERS Substrate.

    PubMed

    Mondal, Sanjoy; Rana, Utpal; Malik, Sudip

    2015-05-20

    Facile synthesis of polyaniline@Ag composite has been successfully demonstrated by a simple solution-dipping method using high-aspect-ratio benzene tetracarboxylic acid-doped polyaniline (BDP) fiber as a nontoxic reducing agent as well as template cum stabilizer. In BDP@Ag composite, BDP fibers are decorated with spherical Ag nanoparticles (Ag NPs), and the population of Ag NPs on BDP fibers is controlled by changing the molar concentration of AgNO3. Importantly, Ag-NP-decorated BDP fibers (BDP@Ag composites) have been evolved as a sensitive materials for the detection of trace amounts of 4-mercaptobenzoic acid and rhodamine 6G as an analyte of surface-enhanced Raman scattering (SERS), and the detection limit is down to nanomolar concentrations with excellent recyclability. Furthermore, synthesized BDP@Ag composites are applied simultaneously as an active SERS substrate and a superior catalyst for reduction of 4-nitrothiophenol.

  8. Preparation of SiO2@ Au nanorod array as novel surface enhanced Raman substrate for trace pollutants detection

    NASA Astrophysics Data System (ADS)

    Hou, Meng-Jing; Zhang, Xian; Cui, Xiao-Yang; Liu, Can; Li, Zheng-Cao; Zhang, Zheng-Jun

    2015-03-01

    An effective surface enhanced Raman scattering (SERS) substrate is designed and fabricated by synthesis of SiO2 nanorods array via glancing angle deposition, followed by coating Au nanoparticles onto SiO2 surface in order to create numerous “hot spots”. The detecting sensitivity of such substrate could be optimized by simply adjusting the deposition time of Au. Thus, it can be used for detection of Rhodamine 6G at concentration as low as 10-9 M. Furthermore, our SERS substrate is applied to detect 5 μg/g polychlorinated biphenyls in soil sample, which proves its potential for trace environmental pollutants detection. Project supported by the National Basic Research Program of China (Grant No. 2013CB934301), the National Natural Science Foundation of China (Grant No. 50931002), the Research Project of Chinese Ministry of Education (Grant No. 113007A), and the Initiative Scientific Research Program of Tsinghua University, China

  9. In situ fabrication of AgI films on various substrates

    SciTech Connect

    Zheng, Z. Liu, A.R.; Wang, S.M.; Huang, B.J.; Ma, X.M.; Zhao, H.X.; Li, D.P.; Zhang, L.Z.

    2008-08-04

    A facile solution-phase chemical route is developed to directly construct silver iodide (AgI) films/crystals on various substrates including silver foil, silicon wafer and glass, etc. The resulting AgI films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The AgI films with different morphologies can be obtained by controlling the reaction parameters. This method is a simple and fast way for in situ deposition of AgI crystals/films on different substrates. These films may be applied in chemical sensing systems and solid-state batteries as solid electrolytes.

  10. Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes

    SciTech Connect

    Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier; Fang, Ning

    2015-04-07

    In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of the hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.

  11. Transparent Conductive AGZO/Ag/AGZO Multilayers on PET Substrate by Roll-to-Roll Sputtering.

    PubMed

    Kim, Taehoon; Park, Kwangwon; Kim, Jongsu

    2016-02-01

    Indium-free Al and Ga-codoped ZnO (AGZO) multilayer films with nanoscale Ag interlayer were deposited by dual target roll-to-roll RF for AGZO and DC sputtering systems for Ag at room temperature for a large scale. The thicknesses of AGZO/Ag/AGZO multilayer were optimized by changing the roll speed: 0.15/1.1/0.15 m/min for AGZO/Ag/AGZO multilayers, respectively. The optimum thicknesses of AGZO/Ag/AGZO multilayer are 9.21, 8.32 and 8.04 nm, respectively. Optimized AGZO/Ag/AGZO multilayer films showed an excellent transparency (84% at 550 nm) and a low sheet resistance (9.2 omega/sq.) on PET substrates for opto-electronic applications. The effects of nanoscale Ag interlayer on optical and electrical properties of AGZO/Ag/AGZO multilayer films were discussed.

  12. Transparent Conductive AGZO/Ag/AGZO Multilayers on PET Substrate by Roll-to-Roll Sputtering.

    PubMed

    Kim, Taehoon; Park, Kwangwon; Kim, Jongsu

    2016-02-01

    Indium-free Al and Ga-codoped ZnO (AGZO) multilayer films with nanoscale Ag interlayer were deposited by dual target roll-to-roll RF for AGZO and DC sputtering systems for Ag at room temperature for a large scale. The thicknesses of AGZO/Ag/AGZO multilayer were optimized by changing the roll speed: 0.15/1.1/0.15 m/min for AGZO/Ag/AGZO multilayers, respectively. The optimum thicknesses of AGZO/Ag/AGZO multilayer are 9.21, 8.32 and 8.04 nm, respectively. Optimized AGZO/Ag/AGZO multilayer films showed an excellent transparency (84% at 550 nm) and a low sheet resistance (9.2 omega/sq.) on PET substrates for opto-electronic applications. The effects of nanoscale Ag interlayer on optical and electrical properties of AGZO/Ag/AGZO multilayer films were discussed. PMID:27433648

  13. Structural and Critical Behaviors of Ag Rough Films Deposited on Liquid Substrates

    NASA Astrophysics Data System (ADS)

    Ye, Gao-xiang; Feng, Chun-mu; Zhang, Qi-rui; Ge, Hong-liang; Zhang, Xuan-jia

    1996-10-01

    A new Ag rough film system, deposited on silicone oil surfaces by rf-magnetron sputtering method, has been fabricated. The chrysanthemum-like surface morphology at micron length scale is observed. It is proposed that the anomalous critical behavior mainly results from the relative shift between the Ag atom clusters and the substrate. The discussion of the deposition mechanism is also presented.

  14. Characterization of Anopheles gambiae Transglutaminase 3 (AgTG3) and Its Native Substrate Plugin*

    PubMed Central

    Le, Binh V.; Nguyen, Jennifer B.; Logarajah, Shankar; Wang, Bo; Marcus, Jacob; Williams, Hazel P.; Catteruccia, Flaminia; Baxter, Richard H. G.

    2013-01-01

    Male Anopheles mosquitoes coagulate their seminal fluids via cross-linking of a substrate, called Plugin, by the seminal transglutaminase AgTG3. Formation of the “mating plug” by cross-linking Plugin is necessary for efficient sperm storage by females. AgTG3 has a similar degree of sequence identity (∼30%) to both human Factor XIII (FXIII) and tissue transglutaminase 2 (hTG2). Here we report the solution structure and in vitro activity for the cross-linking reaction of AgTG3 and Plugin. AgTG3 is a dimer in solution and exhibits Ca2+-dependent nonproteolytic activation analogous to cytoplasmic FXIII. The C-terminal domain of Plugin is predominantly α-helical with extended tertiary structure and oligomerizes in solution. The specific activity of AgTG3 was measured as 4.25 × 10−2 units mg−1. AgTG3 is less active than hTG2 assayed using the general substrate TVQQEL but has 8–10× higher relative activity when Plugin is the substrate. Mass spectrometric analysis of cross-linked Plugin detects specific peptides including a predicted consensus motif for cross-linking by AgTG3. These results support the development of AgTG3 inhibitors as specific and effective chemosterilants for A. gambiae. PMID:23288850

  15. Measuring the Optical Absorption Cross-sections of Au-Ag Nanocages and Au Nanorods by Photoacoustic Imaging

    PubMed Central

    Cho, Eun Chul; Kim, Chulhong; Zhou, Fei; Cobley, Claire M.; Song, Kwang Hyun; Chen, Jingyi; Li, Zhi-Yuhan; Wang, Lihong V.; Xia, Younan

    2009-01-01

    This paper presents a method for measuring the optical absorption cross-sections (σa) of Au-Ag nanocages and Au nanorods. The method is based on photoacoustic (PA) imaging, where the detected signal is directly proportional to the absorption coefficient (μa) of the nanostructure. For each type of nanostructure, we firstly obtained μa from the PA signal by benchmarking against a linear calibration curve (PA signal vs. μa) derived from a set of methylene blue solutions with different concentrations. We then calculated σa by dividing the μa by the corresponding concentration of the Au nanostructure. Additonally, we obtained the extinction cross-section (σe, sum of absorption and scattering) from the extinction spectrum recorded using a conventional UV-vis-NIR spectrometer. From the measurements of σa and σe, we were able to easily derive both the absorption and scattering cross-sections for each type of gold nanostructure. The ratios of absorption to extinction obtained from experimental and theoretical approaches agreed well, demonstrating the potential use of this method in determining the optical absorption and scattering properties of gold nanostructures and other types of nanomaterials. PMID:19680423

  16. Reproducible and recyclable SERS substrates: Flower-like Ag structures with concave surfaces formed by electrodeposition

    NASA Astrophysics Data System (ADS)

    Bian, Juncao; Shu, Shiwei; Li, Jianfu; Huang, Chao; Li, Yang Yang; Zhang, Rui-Qin

    2015-04-01

    Direct synthesis of three-dimensional Ag structures on solid substrates for the purposes of producing reproducible and recyclable surface-enhanced Raman scattering (SERS) applications remains challenging. In this work, flower-like Ag structures with concave surfaces (FACS) were successfully electrodeposited onto ITO glass using the double-potentiostatic method. The FACS, with an enhancement factor of the order of 108, exhibited a SERS signal intensity 3.3 times stronger than that measured from Ag nanostructures without concave surfaces. A cleaning procedure involving lengthy immersion of the sample in ethanol and KNO3 was proposed to recycle the substrate and confirmed by using rhodamine 6G, adenine, and 4-aminothiophenol as target molecules. The findings can help to advance the practical applications of Ag nanostructure-based SERS substrates.

  17. The role of seeding in the morphology and wettability of ZnO nanorods films on different substrates

    NASA Astrophysics Data System (ADS)

    Rodríguez, Juan; Onna, Diego; Sánchez, Luis; Marchi, M. Claudia; Candal, Roberto; Ponce, Silvia; Bilmes, Sara A.

    2013-08-01

    Spray pyrolysis (SP) and spray-gel (SG) techniques were used to deposit ZnO seeds on Fluor doped tin oxide glasses (FTO), heated at 350 °C or 130 °C, and PET heated at 90 °C. The effect of seeding on the morphology and wettability of ZnO nanorods (NRs) films grown by wet chemical methods was analyzed. The morphology and wettability of ZnO NRs films depend on the seeding process. SP seeds formed from zinc acetate dissolved in water ethanol mixtures yield vertically aligned ZnO NRs, whose diameters and dispersion size are determined by the ethanol/water ratio in the precursor solution. SG seeds formed from a methanol ZnO sol produce a ring patterned distribution on the FTO substrate. The drying of ZnO sol drops impinging on the substrate produces high density of seeds along a ring yielding textured films with NRs vertically oriented on the rings and multi-oriented outside them. This effect was not observed when ZnO NRs grown onto the ZnO/PET substrate, however rod diameter is related with the density of seeds. This way to control the density and diameter of NRs deposited onto a substrate modify the wettability and opens new possibilities for the design of tailored nanomaterials for photochemical applications. Both type of NRs films showed a strong luminescence emission in the UV and in the blue, associated with surface and intrinsic defects.

  18. Laser-nanostructured Ag films as substrates for surface-enhanced Raman spectroscopy

    SciTech Connect

    Henley, S.J.; Carey, J.D.; Silva, S.R.P.

    2006-02-20

    Pulsed-laser (248 nm) irradiation of Ag thin films was employed to produce nanostructured Ag/SiO{sub 2} substrates. By tailoring the laser fluence, it was possible to controllably adjust the mean diameter of the resultant near-spherical Ag droplets. Thin films of tetrahedral amorphous carbon (ta-C) were subsequently deposited onto the nanostructured substrates. Visible Raman measurements were performed on the ta-C films, where it was observed that the intensity of the Raman signal was increased by nearly two orders of magnitude, when compared with ta-C films grown on nonstructured substrates. The use of laser annealing as a method of preparing substrates, at low macroscopic temperatures, for surface-enhanced Raman spectroscopy on subnanometer-thick films is discussed.

  19. Fabrication of highly homogeneous surface-enhanced Raman scattering substrates using Ag ion implantation

    NASA Astrophysics Data System (ADS)

    Li, Wenqing; Xiao, Xiangheng; Dai, Zhigao; Wu, Wei; Cheng, Li; Mei, Fei; Zhang, Xingang; Jiang, Changzhong

    2016-06-01

    In recent times, surface-enhanced Raman scattering (SERS) has attracted attention for its excellent potential application in chemical and biological detection. In this work, we demonstrate that a highly homogeneous SERS substrate can be realized by Ag ion implantation and the subsequent annealing process. Both the implantation and annealing parameters have been optimized for a high sensitivity SERS substrate. The SERS measurement indicates that a sample implanted by 20 kV Ag ions with a dosage of 3  ×  1016 ions cm-2 exhibits the highest SERS activity. In addition, the SERS activity of the Ag-implanted substrates depends highly on the annealing temperature and time. Since none of the fabrication processes contain chemical reactions, our substrate is a clean system without any chemical residues.

  20. Fractal structure formation from Ag nanoparticle films on insulating substrates.

    PubMed

    Tang, Jing; Li, Zhiyong; Xia, Qiangfei; Williams, R Stanley

    2009-07-01

    Two dimensional (2D) fractal structures were observed to form from fairly uniform Ag island films (equivalent mass thicknesses of 1.5 and 5 nm) on insulating silicon dioxide surfaces (thermally grown silicon oxide on Si or quartz) upon immersion in deionized water. This result is distinctly different from the previously observed three-dimensional (3D) growth of faceted Ag nanocrystals on conductive surfaces (ITO and graphite) as the result of an electrochemical Ostwald ripening process, which also occurs on native oxide covered silicon surfaces as reported here. The fractal structures formed by diffusion-limited aggregation (DLA) of Ag species on the insulating surfaces. We present the experimental observation of this phenomenon and discuss some possible mechanisms for the DLA formation. PMID:19496573

  1. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays

    PubMed Central

    Li, Zhengcao; Xiong, Shan; Wang, Guojing; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    In order to obtain a better photocatalytic performance under visible light, Ag2S-coupled TiO2 nanorod arrays (NRAs) were prepared through the electron beam deposition with glancing angle deposition (GLAD) technique, annealing in air, followed by the successive ionic layer absorption and reaction (SILAR) method. The properties of the photoelectrochemical and photocatalytic degradation of methyl orange (MO) were thus conducted. The presence of Ag2S on TiO2 NRAs was observed to have a significant improvement on the response to visible light. It’s resulted from that Ag2S coupling can improve the short circuit photocurrent density and enhance the photocatalytic activity remarkably. PMID:26790759

  2. Surfactant role of Ag atoms in the growth of Si layers on Si(111)√3×√3-Ag substrates

    SciTech Connect

    Yamagami, Tsuyoshi; Sone, Junki; Nakatsuji, Kan; Hirayama, Hiroyuki

    2014-10-13

    The growth of Si layers on Si(111)√3×√3-Ag substrates was studied for coverages of up to a few mono-layers. Atomically flat islands were observed to nucleate in the growth at 570 K. The top surfaces of the islands were covered in Ag atoms and exhibited a √3×√3 reconstruction with the same surface state dispersions as Si(111)√3×√3-Ag substrates. These results indicate that the Ag atoms on the substrate always hop up to the top of the Si layers.

  3. In situ controlled sputtering deposition of gold nanoparticles on MnO2 nanorods as surface-enhanced Raman scattering substrates for molecular detection.

    PubMed

    Jiang, Tao; Zhang, Li; Jin, Han; Wang, Xiaolong; Zhou, Jun

    2015-04-28

    Single-crystal tetragonal α-MnO2 nanorods with different amounts of gold nanoparticles (NPs) attached were successfully prepared by a facile sputtering deposition technique. Initially, the morphology and crystal structure of the bare α-MnO2 nanorods synthesized via a hydrothermal approach were investigated. Then, the amount of gold NPs at different sputtering times was analyzed. It was confirmed that the amount of the decorated gold NPs increased with the lengthening of the sputtering time until they completely covered the α-MnO2 nanorods. Theoretical calculation results indicated the advantages of the composite structure by showing the enhanced electromagnetic fields around both the bare α-MnO2 nanorods and the gold NP decorated ones. The surface-enhanced Raman scattering (SERS) efficiency of these nanocomposites was evaluated using methylene blue and 4-mercaptobenzoic acid as Raman probe molecules. It was found that the SERS intensity of the substrates strongly depended on the degree of aggregation of the gold NPs. Uniform SERS signals across the entire surface of these samples were obtained. Moreover, a typical chemical toxin, methyl parathion, was effectively detected over a broad concentration range from 1 × 10(-3) to 100 ppm using the gold NP decorated α-MnO2 nanorods, suggesting this hybrid structure is highly valuable for further applications on the rapid detection of organic environmental pollutants.

  4. Preparation and Photovoltaic Properties of Dye Sensitized Solar Cells Using ZnO Nanorods Stacking Films on AZO Substrate as Photoanode.

    PubMed

    Xu, Yang; Wang, Xina; Liu, Rong; Wang, Hao

    2016-04-01

    Three-dimensional stacking of ZnO nanorods on conducting aluminum-doped ZnO (AZO) glass were studied as efficient photoanodes of dye sensitized solar cells (DSSCs). By changing hydrothermal growth time and cycle times, the thickness of ZnO nanorods stacking films varied from 30 µm to 64 µm, and its influence on the energetic conversion efficiency of the DSSCs based on the stacking films photoanodes was investigated. The loading density of N719 on the surface of ZnO nanorods was studied to increase the efficiency of the cells. Annealing experiments showed that the AZO substrates remained good conductors until heated above 350 °C. A photoelectric conversion efficiency as high as ~2.0% together with ISC of ~9.5 mA/cm2, VOC of ~0.5 V and FF of ~41.4% was achieved for the DSSC using 50 µm-thick film stacking by ZnO nanorods as photoanode and N719 as sensitizer under illumination of AM1.5G solar light (power density of 100 mW/cm2). A charge separation and transfer mechanism was proposed for the ZnO nanorods stacking electrode-based DSSCs.

  5. Preparation and Photovoltaic Properties of Dye Sensitized Solar Cells Using ZnO Nanorods Stacking Films on AZO Substrate as Photoanode.

    PubMed

    Xu, Yang; Wang, Xina; Liu, Rong; Wang, Hao

    2016-04-01

    Three-dimensional stacking of ZnO nanorods on conducting aluminum-doped ZnO (AZO) glass were studied as efficient photoanodes of dye sensitized solar cells (DSSCs). By changing hydrothermal growth time and cycle times, the thickness of ZnO nanorods stacking films varied from 30 µm to 64 µm, and its influence on the energetic conversion efficiency of the DSSCs based on the stacking films photoanodes was investigated. The loading density of N719 on the surface of ZnO nanorods was studied to increase the efficiency of the cells. Annealing experiments showed that the AZO substrates remained good conductors until heated above 350 °C. A photoelectric conversion efficiency as high as ~2.0% together with ISC of ~9.5 mA/cm2, VOC of ~0.5 V and FF of ~41.4% was achieved for the DSSC using 50 µm-thick film stacking by ZnO nanorods as photoanode and N719 as sensitizer under illumination of AM1.5G solar light (power density of 100 mW/cm2). A charge separation and transfer mechanism was proposed for the ZnO nanorods stacking electrode-based DSSCs. PMID:27451677

  6. Exploring Ag(111) Substrate for Epitaxially Growing Monolayer Stanene: A First-Principles Study

    NASA Astrophysics Data System (ADS)

    Gao, Junfeng; Zhang, Gang; Zhang, Yong-Wei

    2016-07-01

    Stanene, a two-dimensional topological insulator composed of Sn atoms in a hexagonal lattice, is a promising contender to Si in nanoelectronics. Currently it is still a significant challenge to achieve large-area, high-quality monolayer stanene. We explore the potential of Ag(111) surface as an ideal substrate for the epitaxial growth of monolayer stanene. Using first-principles calculations, we study the stability of the structure of stanene in different epitaxial relations with respect to Ag(111) surface, and also the diffusion behavior of Sn adatom on Ag(111) surface. Our study reveals that: (1) the hexagonal structure of stanene monolayer is well reserved on Ag(111) surface; (2) the height of epitaxial stanene monolayer is comparable to the step height of the substrate, enabling the growth to cross the surface step and achieve a large-area stanene; (3) the perfect lattice structure of free-standing stanene can be achieved once the epitaxial stanene monolayer is detached from Ag(111) surface; and finally (4) the diffusion barrier of Sn adatom on Ag(111) surface is found to be only 0.041 eV, allowing the epitaxial growth of stanene monolayer even at low temperatures. Our above revelations strongly suggest that Ag(111) surface is an ideal candidate for growing large-area, high-quality monolayer stanene.

  7. Exploring Ag(111) Substrate for Epitaxially Growing Monolayer Stanene: A First-Principles Study

    PubMed Central

    Gao, Junfeng; Zhang, Gang; Zhang, Yong-Wei

    2016-01-01

    Stanene, a two-dimensional topological insulator composed of Sn atoms in a hexagonal lattice, is a promising contender to Si in nanoelectronics. Currently it is still a significant challenge to achieve large-area, high-quality monolayer stanene. We explore the potential of Ag(111) surface as an ideal substrate for the epitaxial growth of monolayer stanene. Using first-principles calculations, we study the stability of the structure of stanene in different epitaxial relations with respect to Ag(111) surface, and also the diffusion behavior of Sn adatom on Ag(111) surface. Our study reveals that: (1) the hexagonal structure of stanene monolayer is well reserved on Ag(111) surface; (2) the height of epitaxial stanene monolayer is comparable to the step height of the substrate, enabling the growth to cross the surface step and achieve a large-area stanene; (3) the perfect lattice structure of free-standing stanene can be achieved once the epitaxial stanene monolayer is detached from Ag(111) surface; and finally (4) the diffusion barrier of Sn adatom on Ag(111) surface is found to be only 0.041 eV, allowing the epitaxial growth of stanene monolayer even at low temperatures. Our above revelations strongly suggest that Ag(111) surface is an ideal candidate for growing large-area, high-quality monolayer stanene. PMID:27373464

  8. Gold Nanorods as Colorful Chromogenic Substrates for Semiquantitative Detection of Nucleic Acids, Proteins, and Small Molecules with the Naked Eye.

    PubMed

    Ma, Xiaoming; Chen, Zhitao; Kannan, Palanisamy; Lin, Zhenyu; Qiu, Bin; Guo, Longhua

    2016-03-15

    Herein, we report for the first time a colorful chromogenic substrate, which displays vivid color responses in the presence of different concentration of analytes. Our investigation reveals that the selective shortening of gold nanorods (AuNRs) could generate a series of distinct colors that covers nearly the whole visible range from 400 to 760 nm. These vivid colors can be easily distinguished by the naked eye; as a result, the accuracy of visual inspection could be greatly improved. Next, we demonstrate the utility of AuNRs as multicolor chromogenic substrate to develop a number of colorimetric immunoassay methods, e.g., multicolor enzyme-linked immunosorbent assay (ELISA), multicolor competitive ELISA, and multicolor magnetic immunoassay (MIA). These methods allow us to visually quantify the concentration of a broad range of target molecules with the naked eye, and the obtained results are highly consistent with those state-of-the-art techniques that are tested by the sophisticated apparatus. These multicolor portable and cost-effective immunoassay approaches could be potentially useful for a number of applications, for example, in-home personal healthcare, on-site environmental monitoring, and food inspection in the field.

  9. Properties of cathodic arc deposited high-temperature superconducting composite thin films on Ag substrates

    NASA Astrophysics Data System (ADS)

    Chae, M. S.; Simnad, M. T.; Maple, M. B.; Anders, S.; Anders, A.; Brown, I. G.

    1996-02-01

    High temperature superconducting composite thin films on Ag substrates were prepared by cathodic arc deposition of alloy precursors. The deposition technique employed a cathode comprised of a precursor alloy for the vacuum arc plasma source. The precursor alloy was prepared by multiple arc-melting of mixed metallic constituents of the high-temperature superconducting material Bi 2Sr 2CaCu 2O y (Bi2212) and 50 wt.% of Ag. The presence of silver in the precursor alloy film was expected to allow accommodation of the lattice and thermal expansion mismatch between the oxidized film and the silver substrate. The as-deposited film could be formed to practically any desirable shape before being subjected to heat treatments. Following deposition, controlled oxidation of the precursor alloy thin film on the Ag substrate was performed to produce the superconducting composite on the silver substrate. After the heat treatment, the composite film consisted of Bi2212 highly c-axis oriented normal to the Ag substrate.

  10. The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates.

    PubMed

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-02-11

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 10(9)) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 10(7) and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones.

  11. Au@Ag Heterogeneous Nanorods as Nanozyme Interfaces with Peroxidase-Like Activity and Their Application for One-Pot Analysis of Glucose at Nearly Neutral pH.

    PubMed

    Han, Lei; Li, Cuncheng; Zhang, Tao; Lang, Qiaolin; Liu, Aihua

    2015-07-01

    As substitutes for natural peroxidases, most nanomaterial-based enzyme mimetics (nanozymes) have unique properties such as high stability, low-cost, large surface area, and high catalytic activity. However, they usually work in acidic conditions and thus impede their real applications. In this work, by modulating the nanostructure, composition, and surface property of the bimetallic materials, the positively charged poly(diallyldimethylammonium)-stabilized Au@Ag heterogeneous nanorods (NRs) were developed as synergistic peroxidase-like interfaces, which exhibited high activity over a wide pH range (pH 4.0-6.5) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as the chromogenic substrate. At pH 6.5, the peroxidase-like activity for the Au@Ag heterogeneous NRs was stable and optimal within 20-40 °C. Moreover, the Au@Ag heterogeneous NRs showed excellent temperature stability and long-term storage stability. Given these characters, the detection of H2O2 at pH 6.5 was proposed on the basis of the Au@Ag heterogeneous NRs catalyzing the colorimetric reaction of H2O2 and ABTS, where the oxidized ABTS showed a typical absorption peak at 414 nm. The absorbance at 414 nm was linear with H2O2 concentration from 0.01 to 10 mM. Further, considering that Au@Ag heterogeneous NRs and glucose oxidase (GOx) have similar optimal pH for catalytic activities, a novel one-pot method for the detection of glucose was developed by the coupled catalytic reaction using GOx, Au@Ag heterogeneous NRs, and ABTS at nearly neutral pH (pH 6.5) and 37 °C. This proposed method had simple and rapid processes, wide linear range (0.05-20 mM), and reliability for the successful analysis of real samples. On the basis of these attractive and unique characteristics, Au@Ag heterogeneous NRs can become promising substitutes for peroxidase in analytical chemistry and environmental science.

  12. Au@Ag Heterogeneous Nanorods as Nanozyme Interfaces with Peroxidase-Like Activity and Their Application for One-Pot Analysis of Glucose at Nearly Neutral pH.

    PubMed

    Han, Lei; Li, Cuncheng; Zhang, Tao; Lang, Qiaolin; Liu, Aihua

    2015-07-01

    As substitutes for natural peroxidases, most nanomaterial-based enzyme mimetics (nanozymes) have unique properties such as high stability, low-cost, large surface area, and high catalytic activity. However, they usually work in acidic conditions and thus impede their real applications. In this work, by modulating the nanostructure, composition, and surface property of the bimetallic materials, the positively charged poly(diallyldimethylammonium)-stabilized Au@Ag heterogeneous nanorods (NRs) were developed as synergistic peroxidase-like interfaces, which exhibited high activity over a wide pH range (pH 4.0-6.5) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as the chromogenic substrate. At pH 6.5, the peroxidase-like activity for the Au@Ag heterogeneous NRs was stable and optimal within 20-40 °C. Moreover, the Au@Ag heterogeneous NRs showed excellent temperature stability and long-term storage stability. Given these characters, the detection of H2O2 at pH 6.5 was proposed on the basis of the Au@Ag heterogeneous NRs catalyzing the colorimetric reaction of H2O2 and ABTS, where the oxidized ABTS showed a typical absorption peak at 414 nm. The absorbance at 414 nm was linear with H2O2 concentration from 0.01 to 10 mM. Further, considering that Au@Ag heterogeneous NRs and glucose oxidase (GOx) have similar optimal pH for catalytic activities, a novel one-pot method for the detection of glucose was developed by the coupled catalytic reaction using GOx, Au@Ag heterogeneous NRs, and ABTS at nearly neutral pH (pH 6.5) and 37 °C. This proposed method had simple and rapid processes, wide linear range (0.05-20 mM), and reliability for the successful analysis of real samples. On the basis of these attractive and unique characteristics, Au@Ag heterogeneous NRs can become promising substitutes for peroxidase in analytical chemistry and environmental science. PMID:26076372

  13. In situ plasma sputtering synthesis of ZnO nanorods-Ag nanoparticles hybrids and their application in non-enzymatic hydrogen peroxide sensing.

    PubMed

    Zhang, Dan; Zhang, Yuxia; Yang, Chi; Ge, Cunwang; Wang, Yuanhong; Wang, Hao; Liu, Hongying

    2015-08-21

    In this paper, ZnO nanorods-Ag nanoparticles hybrids were first synthesized via a facile, rapid, and in situ plasma sputtering method without using any silver precursor. The obtained materials were then characterized by scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and cyclic voltammetry. Based on the electrochemical catalytic properties of the obtained nanohybrids, a non-enzymatic hydrogen peroxide biosensor was constructed by immobilizing the obtained ZnO nanorods-Ag nanoparticles hybrids on the surface of a glassy carbon electrode. Under optimal conditions, the resulting biosensor displayed a good response for H2O2 with a linear range of 0.2 to 12.8 mM, and a detection limit of 7.8 μM at a signal-to-noise ratio of 3. In addition, it exhibited excellent anti-interference ability and fast response. The current work provides a feasible platform to fabricate a variety of non-enzymatic biosensors.

  14. Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Pei; Sun, Lin; Li, Cuncheng; Petrenko, Valery A.; Liu, Aihua

    2014-10-01

    Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm2. The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.

  15. In situ plasma sputtering synthesis of ZnO nanorods-Ag nanoparticles hybrids and their application in non-enzymatic hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Zhang, Yuxia; Yang, Chi; Ge, Cunwang; Wang, Yuanhong; Wang, Hao; Liu, Hongying

    2015-08-01

    In this paper, ZnO nanorods-Ag nanoparticles hybrids were first synthesized via a facile, rapid, and in situ plasma sputtering method without using any silver precursor. The obtained materials were then characterized by scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and cyclic voltammetry. Based on the electrochemical catalytic properties of the obtained nanohybrids, a non-enzymatic hydrogen peroxide biosensor was constructed by immobilizing the obtained ZnO nanorods-Ag nanoparticles hybrids on the surface of a glassy carbon electrode. Under optimal conditions, the resulting biosensor displayed a good response for H2O2 with a linear range of 0.2 to 12.8 mM, and a detection limit of 7.8 μM at a signal-to-noise ratio of 3. In addition, it exhibited excellent anti-interference ability and fast response. The current work provides a feasible platform to fabricate a variety of non-enzymatic biosensors.

  16. Synthesize and characterize of Ag3VO4/TiO2 nanorods photocatalysts and its photocatalytic activity under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Zou, Xuejun; Dong, Yuying; Zhang, Xiaodong; Cui, Yubo

    2016-03-01

    In this paper, in order to expand the light response range of TiO2, Ag3VO4/TiO2 nanorods photocatalysts were fabricated by a simple sol-gel method with microwave and hydrothermal method. The as-prepared samples were characterized by XRD, SEM, DRS, XPS and N2 adsorption-desorption. Meanwhile, their photocatalytic properties were investigated by the degradation of toluene under visible light irradiation. The degradation conversation of toluene had gotten to about 70% in 1% Ag3VO4/TiO2 nanorods after reaction 4 h. The predominant photocatalytic activity can be attributed to its strong absorption in visible light region and excellent charge separation characteristics. By using in situ FTIR, benzyl alcohol and benzaldehyde species could be observed during the reaction and the formed intermediates would be partially oxidized into CO2 and H2O. Electron spin resonance confirmed that OHrad and O2rad - were involved in the photocatalytic degradation of toluene.

  17. Resonant surface enhancement of Raman scattering of Ag nanoparticles on silicon substrates fabricated by dc sputtering

    SciTech Connect

    Fang Yingcui; Li Xiaxi; Blinn, Kevin; Mahmoud, Mahmoud A.; Liu Meilin

    2012-09-15

    Ag nanoparticles (AgNPs) were deposited onto silicon substrates by direct current (dc) magnetron sputtering. The influences of sputtering power and sputtering time on the AgNP film morphology were studied using atomic force microscopy. The particle size was successfully tuned from 19 nm to 53 nm by varying the sputtering time at a dc power of 10 W. When Rhodamine 6 G (R6G) was used as the probe molecule, the AgNP films showed significant surface enhanced Raman scattering effect. In particular, it is found that larger particles show stronger enhancement for lower concentrations of R6G while smaller particles display stronger enhancement for higher concentrations of R6G.

  18. Improvement of Light Extraction Efficiency in Flip-Chip Light Emitting Diodes on SiC Substrate via Transparent Haze Films with Morphology-Controlled Collapsed Alumina Nanorods.

    PubMed

    Baek, Seunghwa; Kang, Gumin; Shin, Dongheok; Bae, Kyuyoung; Kim, Yong Hyun; Kim, Kyoungsik

    2016-01-13

    We demonstrate GaN-based flip-chip light emitting diodes (FC-LEDs) on SiC substrate achieving high extraction efficiency by simply attaching the optically transparent haze films consisting of collapsed alumina nanorods. Through controlled etching time of alumina nanorods, we obtain four types of films that have different morphologies with different optical transmittance and haze properties. We show that the light output power of the FC-LEDs with film, which has 95.6% transmittance and 62.7% haze, increases by 20.4% in comparison to the bare LEDs. The angular radiation pattern of the LEDs also follows the Lambertian emission pattern without deteriorating the electrical properties of the device. The improvement of light extraction is mainly attributed to the reduced total internal reflection (TIR) via efficient out-coupling of guided light from SiC substrate to air by collapsed alumina nanorod structures in the film. The high transparency of film and reduced Fresnel reflection via graded refractive index transition between the film and SiC substrate also contribute to the extraction enhancement of the device. We systematically investigate the influence of haze film's geometrical or optical properties on the extraction efficiency of FC-LEDs, and this study will provide a novel approach to enhance the performance of various optoelectronic devices.

  19. Temperature-dependent photoluminescence spectra of ZnO nanorod arrays grown on transparent conducting substrates by hydrothermal routes

    NASA Astrophysics Data System (ADS)

    Li, S. P.; Gu, X. Q.

    2016-06-01

    Ordered ZnO nanorod (NR) arrays have been prepared on transparent conducting oxide (TCO) substrates by a facile seed-assisted hydrothermal route. The optical properties of the samples were investigated by temperature-dependent photoluminescence (PL) spectra. Two sharp peaks were clearly identified in the ultraviolet (UV) band, located at 3.34 and 3.26 eV in 10 K spectrum, and were labeled as peaks A and B. Both the peaks exhibited different quenching behaviors, although their red-shift characteristics were almost the same with temperature rising. Something gave rise to a possible mechanism to explain such a behavior. Specifically, peaks A and B were assigned to the bound excitons and carrier transitions from shallow donor levels to the valence band, respectively. The detailed analysis will be illustrated in this study. It is hoped that this work could render guided information for understanding the carrier recombination and dynamics behavior in single-crystal ZnO nanostructures.

  20. A flexible and transparent graphene/ZnO nanorod hybrid structure fabricated by exfoliating a graphite substrate.

    PubMed

    Nam, Gwang-Hee; Baek, Seong-Ho; Cho, Chang-Hee; Park, Il-Kyu

    2014-10-21

    We demonstrate the fabrication of a graphene/ZnO nanorod (NR) hybrid structure by mechanical exfoliation of ZnO NRs grown on a graphite substrate. We confirmed the existence of graphene sheets on the hybrid structure by analyzing the Raman spectra and current-voltage (I-V) characteristics. The Raman spectra of the exfoliated graphene/ZnO NR hybrid structure show G and 2D band peaks that are shifted to lower wavenumbers, indicating that the exfoliated graphene layer exists under a significant amount of strain. The I-V characteristics of the graphene/ZnO NR hybrid structure show current flow through the graphene layer, while no current flow is observed on the ZnO NR/polydimethylsiloxane (PDMS) composite without graphene, thereby indicating that the few-layer graphene was successfully transferred onto the hybrid structure. A piezoelectric nanogenerator is demonstrated by using the fabricated graphene/ZnO NR hybrid structure. The nanogenerator exhibits stable output voltage up to 3.04 V with alternating current output characteristics.

  1. Quantification of proteins using enhanced etching of Ag coated Au nanorods by the Cu2+/bicinchoninic acid pair with improved sensitivity

    NASA Astrophysics Data System (ADS)

    Liu, Wenqi; Hou, Shuai; Yan, Jiao; Zhang, Hui; Ji, Yinglu; Wu, Xiaochun

    2015-12-01

    Plasmonic nanosensors show great potential in ultrasensitive detection, especially with the plasmon peak position as the detection modality. Herein, a new sensitive but simple total protein quantification method termed the SPR-BCA assay is demonstrated by combining plasmonic nanosensors with protein oxidation by Cu2+. The easy tuning of localized surface plasmon resonance (LSPR) features of plasmonic nanostructures makes them ideal sensing platforms. We found that the Cu2+/bicinchoninic acid (BCA) pair exhibits accelerated etching of Au@Ag nanorods and results in the LSPR peak shift. A linear relationship between Cu2+ and the LSPR shift is found in a double logarithmic coordinate. Such double logarithm relationship is transferred to the concentration of proteins. Theoretical simulation shows that Au nanorods with large aspect ratios and small core sizes show high detection sensitivity. Via optimized sensor design, we achieved an increased sensitivity (the limit of detection was 3.4 ng ml-1) and a wide working range (0.5 to 1000 μg ml-1) compared with the traditional BCA assay. The universal applicability of our method to various proteins further proves its potential in practical applications.Plasmonic nanosensors show great potential in ultrasensitive detection, especially with the plasmon peak position as the detection modality. Herein, a new sensitive but simple total protein quantification method termed the SPR-BCA assay is demonstrated by combining plasmonic nanosensors with protein oxidation by Cu2+. The easy tuning of localized surface plasmon resonance (LSPR) features of plasmonic nanostructures makes them ideal sensing platforms. We found that the Cu2+/bicinchoninic acid (BCA) pair exhibits accelerated etching of Au@Ag nanorods and results in the LSPR peak shift. A linear relationship between Cu2+ and the LSPR shift is found in a double logarithmic coordinate. Such double logarithm relationship is transferred to the concentration of proteins. Theoretical

  2. Plasmonic color analysis of Ag-coated black-Si SERS substrate.

    PubMed

    Asiala, Steven M; Marr, James M; Gervinskas, Gediminas; Juodkazis, Saulius; Schultz, Zachary D

    2015-11-11

    Red-Green-Blue (RGB) dark-field imaging can direct the choice of laser excitation for Raman enhancements on nanostructured plasmonic surfaces. Here we demonstrate that black silicon (b-Si) is a structured surface that has been shown to effectively absorb broad wavelengths of light, but also enables surface enhanced Raman scattering (SERS) when coated with silver (Ag). Coating b-Si with increasing amounts of Ag results in increased dark-field scattering at discrete frequencies associated with localized plasmon resonances. The dark-field scattering was monitored by collecting a far-field image with an inexpensive complementary metal oxide semiconductor (CMOS) camera, similar to what is available on most mobile phones. Color analysis of the RGB pixel intensities correlates with the observed SERS intensity obtained with either green (532 nm) or red (633 nm) laser excitation in SERS experiments. Of particular note, the SERS response at 633 nm showed low spectral variation and a lack of background scattering compared to SERS at 532 nm. The difference in background suggests sub-radiant (dark or Fano resonances) may be associated with the SERS response at 633 nm and a non-resonant character of SERS. These results indicate that b-Si serves a template where Ag nucleates during physical vapor deposition. Increased deposition causes the deposits to coalesce, and at larger Ag thicknesses, bulk scattering is observed. Comparison with a high enhancement Ag SERS substrate further illustrates that a high density of plasmonic junctions, or hotspots, is important for maximizing the SERS response. The randomness of the b-Si substrate and the corresponding Ag nano-features contributes to a broadband spectral response and enhancement in SERS. Metal-coated b-Si is a promising SERS substrate due to its performance and facile fabrication.

  3. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF.

  4. Multiplexed detection of protein cancer markers on Au/Ag-barcoded nanorods using fluorescent-conjugated polymers.

    PubMed

    Zheng, Weiming; He, Lin

    2010-07-01

    Integration of fluorescent-conjugated polymers as detection moiety with metallic striped nanorods for multiplexed detection of clinically important cancer marker proteins in an immunoassay format was demonstrated in this report. Specifically, cationic conjugated polymers were introduced to protein complexes through electrostatic binding to negatively charged double-stranded DNA, which was tagged on detection antibodies prior to antigen recognition. The intense fluorescence emission of conjugated polymers resulted in highly sensitive detection of cancer marker proteins wherein an undiluted bovine serum sample as low as approximately 25 target molecules captured on each particle was detectable. Meanwhile, the use of polymer molecules as the detection probe did not obscure the optical pattern of underlying nanorods, i.e., the encoding capability of barcoded nanorods was preserved, which allowed simultaneous detection of three cancer marker proteins with good specificity.

  5. Direct deposition of YBCO on polished Ag substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ma, B.; Li, M.; Koritala, R. E.; Fisher, B. L.; Dorris, S. E.; Maroni, V. A.; Miller, D. J.; Balachandran, U.

    2002-09-01

    YBCO thin films were directly deposited on mechanically polished nontextured silver (Ag) substrates at elevated temperature by pulsed laser deposition with various inclination angles of 35°, 55°, and 72°. Strong fiber texture, with the c-axis parallel to the substrate normal was detected by X-ray diffraction pole figure analysis. Atomic force microscopy and scanning electron microscopy images revealed that a few a-axis-oriented grains were dispersed on the top surface of the YBCO films. Transmission electron microscopy revealed dense amorphous layer at the interface between the YBCO film and the Ag substrate. Energy dispersive spectrum analysis indicates that the YBCO film deposited on the Ag substrate is slightly Cu-deficient. A YBCO film deposited at 755 °C and an inclination angle of 55° exhibited Tc=90 K. Transport critical current density measured by the four-probe method at 77 K in self-field was ≈2.7×10 5 A/cm 2. This work demonstrated a simple and inexpensive method to fabricate YBCO-coated conductors with high critical current density.

  6. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods

    NASA Astrophysics Data System (ADS)

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P. K.

    2016-08-01

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390–800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min‑1, which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis.

  7. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods

    NASA Astrophysics Data System (ADS)

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P. K.

    2016-08-01

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390-800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min-1, which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis.

  8. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods.

    PubMed

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P K

    2016-08-01

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390-800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min(-1), which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis. PMID:27333816

  9. Ordering Ag nanowire arrays by a glass capillary: a portable, reusable and durable SERS substrate.

    PubMed

    Liu, Jian-Wei; Wang, Jin-Long; Huang, Wei-Ran; Yu, Le; Ren, Xi-Feng; Wen, Wu-Cheng; Yu, Shu-Hong

    2012-01-01

    Assembly of nanowires into ordered macroscopic structures with new functionalities has been a recent focus. In this Letter, we report a new route for ordering hydrophilic Ag nanowires with high aspect ratio by flowing through a glass capillary. The present glass capillary with well-defined silver nanowire films inside can serve as a portable and reusable substrate for surface-enhanced Raman spectroscopy (SERS), which may provide a versatile and promising platform for detecting mixture pollutions. By controlling the flow parameters of nanowire suspensions, initially random Ag nanowires can be aligned to form nanowire arrays with tunable density, forming cambered nanowire films adhered onto the inner wall of the capillary. Compared with the planar ordered Ag nanowire films by the Langmuir-Blodgett (LB) technique, the cambered nanowire films show better SERS performance.

  10. Tribological properties of Ag/Ti films on Al2O3 ceramic substrates

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1991-01-01

    Ag solid lubricant films, with a thin Ti interlayer for enhanced adhesion, were sputter deposited on Al2O3 substrate disks to reduce friction and wear. The dual Ag/Ti films were tested at room temperature in a pin-on-disk tribometer sliding against bare, uncoated Al2O3 pins under a 4.9 N load at a sliding velocity of 1 m/s. The Ag/Ti films reduced the friction coefficient by 50 percent to about 0.41 compared to unlubricated baseline specimens. Pin wear was reduced by a factor of 140 and disk wear was reduced by a factor of 2.5 compared to the baseline. These films retain their good tribological properties including adhesion after heat treatments at 850 C and thus may be able to lubricate over a wide temperature range. This lubrication technique is applicable to space lubrication, advanced heat engines, and advanced transportation systems.

  11. Ordering Ag nanowire arrays by a glass capillary: A portable, reusable and durable SERS substrate

    PubMed Central

    Liu, Jian-Wei; Wang, Jin-Long; Huang, Wei-Ran; Yu, Le; Ren, Xi-Feng; Wen, Wu-Cheng; Yu, Shu-Hong

    2012-01-01

    Assembly of nanowires into ordered macroscopic structures with new functionalities has been a recent focus. In this Letter, we report a new route for ordering hydrophilic Ag nanowires with high aspect ratio by flowing through a glass capillary. The present glass capillary with well-defined silver nanowire films inside can serve as a portable and reusable substrate for surface-enhanced Raman spectroscopy (SERS), which may provide a versatile and promising platform for detecting mixture pollutions. By controlling the flow parameters of nanowire suspensions, initially random Ag nanowires can be aligned to form nanowire arrays with tunable density, forming cambered nanowire films adhered onto the inner wall of the capillary. Compared with the planar ordered Ag nanowire films by the Langmuir-Blodgett (LB) technique, the cambered nanowire films show better SERS performance. PMID:23248750

  12. Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate

    NASA Astrophysics Data System (ADS)

    Jun Yin, Hong; Yang Chen, Zhao; Mei Zhao, Yong; Yang Lv, Ming; An Shi, Chun; Long Wu, Zheng; Zhang, Xin; Liu, Luo; Li Wang, Ming; Jun Xu, Hai

    2015-09-01

    Surface enhanced Raman scattering (SERS) substrate based on fabricated Ag@Au core-shell dendrite was achieved. Ag dendrites were grown on Si wafer by the hydrothermal corrosion method and Au nanofilm on the surface of Ag dendritic nanostructure was then fabricated by chemical reduction. With the help of sodium borohydride in water, Au surface absorbates such as thiophene, adenine, rhodamine, small anions (Br- and I-), and a polymer (PVP, poly(N-vinylpyrrolidone)) can be completely and rapidly removed. After four repeatable experiments, the substrate SERS function did not decrease at all, indicating that the Ag@Au dendrite should be of great significance to SERS application because it can save much resource. Six-month-duration stability tests showed that the Ag@Au core-shell dendrite substrate is much more stable than the Ag dendrite substrates. We have also experimented on fast detection of Cd2+ at 10-8  M concentration by decorating single-stranded DNA containing adenine and guanine bases on the surface of this Ag@Au dendrite. Finite-difference time-domain simulations were carried out to investigate the influence of Au nanolayer on Ag dendrites, which showed that the local electric fields and enhancement factor are hardly affected when a 4 nm Au nanolayer is coated on Ag dendrite surface.

  13. Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate

    PubMed Central

    Jun Yin, Hong; Yang Chen, Zhao; Mei Zhao, Yong; Yang Lv, Ming; An Shi, Chun; Long Wu, Zheng; Zhang, Xin; Liu, Luo; Li Wang, Ming; Jun Xu, Hai

    2015-01-01

    Surface enhanced Raman scattering (SERS) substrate based on fabricated Ag@Au core-shell dendrite was achieved. Ag dendrites were grown on Si wafer by the hydrothermal corrosion method and Au nanofilm on the surface of Ag dendritic nanostructure was then fabricated by chemical reduction. With the help of sodium borohydride in water, Au surface absorbates such as thiophene, adenine, rhodamine, small anions (Br– and I–), and a polymer (PVP, poly(N-vinylpyrrolidone)) can be completely and rapidly removed. After four repeatable experiments, the substrate SERS function did not decrease at all, indicating that the Ag@Au dendrite should be of great significance to SERS application because it can save much resource. Six-month-duration stability tests showed that the Ag@Au core-shell dendrite substrate is much more stable than the Ag dendrite substrates. We have also experimented on fast detection of Cd2+ at 10−8  M concentration by decorating single-stranded DNA containing adenine and guanine bases on the surface of this Ag@Au dendrite. Finite-difference time-domain simulations were carried out to investigate the influence of Au nanolayer on Ag dendrites, which showed that the local electric fields and enhancement factor are hardly affected when a 4 nm Au nanolayer is coated on Ag dendrite surface. PMID:26412773

  14. Reliability Investigations on SnAg Bumps on Substrate Pads with Different Pad Finish

    SciTech Connect

    Bauer, R.; Ebersberger, B.; Kupfer, C.; Alexa, L.

    2006-02-07

    SnAg solder bump is one bump type which is used to replace eutectic SnPb bumps. In this work tests have been done to characterize the reliability properties of this bump type. Electromigration (EM) tests, which were accelerated by high current and high temperature and high temperature storage (HTS) tests were performed. It was found that the reliability properties are sensitive to the material combinations in the interconnect stack. The interconnect stack includes substrate pad, pad finish, bump, underbump metallization (UBM) and the chip pad. Therefore separate test groups for SnAg bumps on Cu substrate pads with organic solderability preservative (OSP) finish and the identical bumps on pads with Ni/Au finish were used. In this paper the reliability test results and the corresponding failure analysis are presented. Some explanations about the differences in formation of intermetallic compounds (IMCs) are given.

  15. Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shao, Ming-Wang; Zhang, Ming-Liang; Wong, Ning-Bew; Ma, Dorothy Duo-duo; Wang, Hui; Chen, Weiwei; Lee, Shuit-Tong

    2008-12-01

    We report a unique substrate for surface-enhanced raman spectroscopy (SERS) based on silver nanoparticles-embedded silicon nanowires (SiNWs). The SiNWs were prepared by thermal evaporation of SiO powder via oxide-assisted growth, oxide removed with HF, and then used to reduce silver ions to form a highly decorated Ag-embedded surface. Such modified SiNWs substrates yielded ultrahigh SERS sensitivity, which could detect 25μl of 1×10-16M Rhodamine 6G, 1×10-16M crystal violet, and 1×10-14M nicotine in methanol solutions. An Ag-modified SiNW strand could also enable SERS detection of 25μl of 1×10-8mg/ml calf thymus DNA. The possible mechanisms for the ultrahigh SERS sensitivity were discussed.

  16. Revealing the substrate origin of the linear dispersion of silicene/Ag(111).

    PubMed

    Chen, M X; Weinert, M

    2014-09-10

    The band structure of the recently synthesized (3 × 3) silicene monolayer on (4 × 4) Ag(111) is investigated using density functional theory. A k-projection technique that includes the k⊥-dependence of the surface bands is used to separate the contributions arising from the silicene and the substrate, allowing a consistent comparison between the calculations and the angle-resolved photoemission experiments. Our calculations not only reproduce the observed gap and linear dispersion across the K point of (1 × 1) silicene but also demonstrate that these originate from the k⊥-dependence of Ag(111) substrate states (modified by interactions with the silicene) and not from a Dirac state.

  17. First-principles identifications of superstructures of germanene on Ag(111) surface and h-BN substrate.

    PubMed

    Li, Linyang; Zhao, Mingwen

    2013-10-21

    Using first-principle calculations, we show that germanene can attach on Ag(111) surface forming germanene/Ag superstructures via electrostatic interactions. In all the optimized superstructures, we found a kind of epitaxially grown germanene is similar to the isolated low-buckled germanene. The adsorption energy of germanene on Ag(111) surface is about -464 meV to -428 meV per Ge atom, close to that of silicene on Ag(111) surface. Germanene on Ag(111) is a continuous layer and the p-d hybridization between Ag and Ge is revealed. These indicate Ag(111) surface is a good substrate for stabilizing germanene. The band structures of germanene are submerged in electronic states of metallic Ag substrate. To preserve the excellent electronic structures of germanene, we also considered another substrate hexagonal boron nitride (h-BN). We show that germanene can stably attach on h-BN substrate via Van der Waals (vdW) interactions, forming germanene/BN Moiré superstructures. At equilibrium state, a small band gap of about 50 meV is opened up in the Dirac point of germanene, whose value is insensitive to the rotation angle and the sliding between the two lattices, but can be effectively tuned by changing the interlayer distance. In these superstructures, the high carrier mobility of germanene is well preserved. These imply that h-BN can act as an ideal substrate material for germanene to achieve specific applications in nanoscale electronic devices. PMID:23995323

  18. Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates

    NASA Astrophysics Data System (ADS)

    Qian, Yiwu; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Huang, Zhulin; Sun, Kexi; Chen, Bin

    2014-04-01

    We report on a synthetic approach to produce self-supported flexible surface-enhanced Raman scattering (SERS) active membranes consisting of polyamide (PA) nanofibers grafted with vertical Ag-nanosheets, via a combinatorial process of electrospinning PA-nanofiber membranes, assembling Au-nanoparticles on the PA-nanofibers as seeds for subsequent growth of Ag-nanosheets, and electrodepositing Ag-nanosheets on the electrospun PA-nanofibers. As a high density of Ag-nanosheets are vertically grown around each PA-nanofiber in the three-dimensional (3D) networked PA-nanofiber membranes, homogeneous nano-scaled gaps between the neighboring Ag-nanosheets are formed, leading to a high density of 3D SERS ``hot spots'' within the Ag-nanosheet-grafted PA-nanofiber membranes. The Ag-nanosheet-grafted PA-nanofiber membranes demonstrate high SERS activity with excellent Raman signal reproducibility for rhodamine 6G over the whole membrane. For a SERS-based trial analysis of polychlorinated biphenyls (PCBs, a kind of global environmental hazard), the 3D SERS substrate membranes are modified with mono-6-β-cychlodextrin to effectively capture PCB molecules. As a result, not only a low concentration down to 10-6 M is reached, but also two congeners of PCBs in their mixed solution are identified, showing promising potential in SERS-based rapid detection of trace organic pollutants such as PCBs in the environment.We report on a synthetic approach to produce self-supported flexible surface-enhanced Raman scattering (SERS) active membranes consisting of polyamide (PA) nanofibers grafted with vertical Ag-nanosheets, via a combinatorial process of electrospinning PA-nanofiber membranes, assembling Au-nanoparticles on the PA-nanofibers as seeds for subsequent growth of Ag-nanosheets, and electrodepositing Ag-nanosheets on the electrospun PA-nanofibers. As a high density of Ag-nanosheets are vertically grown around each PA-nanofiber in the three-dimensional (3D) networked PA

  19. Substrate-Structure Dependence of Ag Electromigration on Au-Precovered Si(111) Surfaces

    NASA Astrophysics Data System (ADS)

    Shi, Fangxiao; Shiraki, Ichiro; Nagao, Tadaaki; Hasegawa, Shuji

    2000-07-01

    Electromigration of Ag on Au-precovered Si(111) surfaces was investigated by in-situ ultrahigh vacuum scanning electron microscopy and μ-probe reflection-high-energy electron diffraction (RHEED). Migration behaviors of a Ag-film patch strongly depended on Au coverage θAu and corresponding surface structures. When θAu<0.7 monolayer (ML), the patch expanded preferentially towards the cathode to attain a maximum area in which the sum of Ag and Au coverages were always about 1 ML irrespective of θAu, resulting in two-dimensional (2D) alloy phases (showing \\sqrt{3}×\\sqrt{3} RHEED patterns) with different Au/Ag concentration ratios. The largest expansion of the patch area was achieved on a (5× 2+α-\\sqrt{3}×\\sqrt{3})-Au mixed phase structure (θAu˜ 0.7 ML). However, when θAu>0.7 ML, the patch expansion was greatly reduced. Especially on the β-\\sqrt{3}×\\sqrt{3}-Au surface (θAu˜ 1.0 ML), the patch showed no directional expansion towards the cathode. But Ag atoms were observed to migrate inside the patches on all substrates (including the β-\\sqrt{3}×\\sqrt{3}-Au surface) to form 3D islands near terrace edges.

  20. Well aligned ZnO nanorods growth on the gold coated glass substrate by aqueous chemical growth method using seed layer of Fe3O4 and Co3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ibupoto, Z. H.; Khun, K.; Lu, Jun; Liu, Xianjie; AlSalhi, M. S.; Atif, M.; Ansari, Anees A.; Willander, M.

    2013-04-01

    In this study, Fe3O4 and Co3O4 nanoparticles were prepared by co-precipitation method and sol-gel method respectively. The synthesised nanoparticles were characterised by X-ray diffraction [XRD] and Raman spectroscopy techniques. The obtained results have shown the nanocrystalline phase of obtained Fe3O4 and Co3O4 nanoparticles. Furthermore, the Fe3O4 and Co3O4 nanoparticles were used as seed layer for the fabrication of well-aligned ZnO nanorods on the gold coated glass substrate by aqueous chemical growth method. Scanning electron microscopy (SEM), high resolution transmission electron microscopy [HRTEM], as well as XRD and energy dispersive X-ray techniques were used for the structural characterisation of synthesised ZnO nanorods. This study has explored highly dense, uniform, well-aligned growth pattern along 0001 direction and good crystal quality of the prepared ZnO nanorods. ZnO nanorods are only composed of Zn and O atoms. Moreover, X-ray photoelectron spectroscopy was used for the chemical analysis of fabricated ZnO nanorods. In addition, the structural characterisation and the chemical composition study and the optical investigation were carried out for the fabricated ZnO nanorods and the photoluminescence [PL] spectrum have shown strong ultraviolet (UV) peak at 381 nm for Fe3O4 nanoparticles seeded ZnO nanorods and the PL spectrum for ZnO nanorods grown with the seed layer of Co3O4 nanoparticles has shown a UV peak at 382 nm. The green emission and orange/red peaks were also observed for ZnO nanorods grown with both the seed layers. This study has indicated the fabrication of well aligned ZnO nanorods using the one inorganic nanomaterial on other inorganic nanomaterial due to their similar chemistry.

  1. High-intensity laser for Ta and Ag implantation into different substrates for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Mackova, A.; Malinsky, P.; Matousek, J.; Torrisi, L.; Ullschmied, J.

    2015-07-01

    High-intensity lasers generating non-equilibrium plasma, can be employed to accelerate ions in the keV-MeV region, useful for many applications. In the present work, we performed study of ion implantation into different substrates by using a high-intensity laser at the PALS laboratory in Prague. Multi-energy ions generated by plasma from Ta and Ag targets were implanted into polyethylene and metallic substrates (Al, Ti) at energies of tens of keV per charge state. The ion emission was monitored online using time-of-flight detectors and electromagnetic deflection systems. Rutherford Backscattering Spectrometry (RBS) was used to characterise the elemental composition in the implanted substrates by ion plasma emission and to provide the implanted ion depth profiling. These last measurements enable offline plasma characterisation and provide information on the useful potentiality of multi-ion species and multi-energy ion implantation into different substrates. XPS analysis gives information on the chemical bonds and their modifications in the first superficial implanted layers. The depth distributions of implanted Ta and Ag ions were compared with the theoretical ones achieved by using the SRIM-2012 simulation code.

  2. Sonochemically synthesized Ag nanoparticles as a SERS active substrate and effect of surfactant

    NASA Astrophysics Data System (ADS)

    Dar, Nitzan; Chen, Kuang-Yu; Nien, Yung-Tang; Perkas, Nina; Gedanken, Aharon; Chen, In-Gann

    2015-03-01

    Surface enhanced Raman scattering (SERS) enables the detection of substances at low concentrations using silver or gold nanostructure. The SERS technique has many applications, such as environmental detection and biosensing. Sonochemistry is an excellent and cheap deposition technique for coating substrates in a form of nanostructure at ambient temperature. It can also be utilized to prepare large SERS substrates. Here, we used the advantages of sonochemistry to deposit solid SERS substrates immobilized on GaN nanostructure. Morphology was studied by scanning electron microscopy. The elemental composition and the spatial distribution were examined by energy dispersive X-ray spectroscopy. The crystal structure and atomic presence was confirmed by X-ray diffraction. SERS substrates were examined with the analytes crystal violet (10-5 M) and rhodamine 6G (10-6 M), they showed prominent characteristic peaks. We discovered that the SERS intensity of poly-vinyl-pyrrolidinone aided sonochemical deposition of Ag nanoparticles was increased. The reason for the effect is morphological changes of the Ag nanoparticles. Smaller nanoparticles were fabricated, which increase their SERS intensity.

  3. SERS-active Ag Nanostars Substrates for Sensitive Detection of Ethyl Carbamate in Wine.

    PubMed

    Li, Manli; Zhao, Yuan; Cui, Malin; Wang, Chan; Song, Qijun

    2016-01-01

    A simple and sensitive surface-enhanced Raman scattering (SERS) method for the detection of ethyl carbamate (EC) is reported in this work. Star-shaped silver nanostars (Ag NSs) were used as a novel SERS substrate. In comparison to other plasmonic nanoparticles (NPs), including Au NPs, Au NSs and Ag NPs, Ag NSs exhibit best SERS activity. Raman signal of EC at a trace level can be enhanced by several orders of magnitude with the help of Ag NSs. The Raman intensity of EC increased linearly with an increase of the EC concentration in the range from 5 × 10(-9) mol L(-1) to 1.0 × 10(-4) mol L(-1) with detection limit (LOD) of 1.37 × 10(-9) mol L(-1) (S/N = 3). The developed SERS approach also has the advantages of being simple, fast and requiring less amount of the sample. It could serve as a useful technology for the rapid determination of EC in both alcoholic beverages and fermented food. PMID:27396651

  4. Cathodoluminescence spectra of gallium nitride nanorods

    PubMed Central

    2011-01-01

    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio. PMID:22168896

  5. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.

    PubMed

    Shu, Lei; Zhou, Jun; Yuan, Xiaocong; Petti, Lucia; Chen, Jinping; Jia, Zhenhong; Mormile, Pasquale

    2014-06-01

    A super-high-sensitivity immunoassay based on surface-enhanced Raman scattering (SERS) was implemented using the nano-Au immune probes and nano-Ag immune substrate. Ultraviolet-visible extinction spectra, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images, and SERS spectra were used to characterise the nano-Au immune probes and the nano-Ag immune substrate. The nano-Ag immune substrate was prepared by the in situ growth of Ag nanoparticles and the subsequent linkage of these nanoparticles with anti-apolipoprotein B on a silicon wafer. The nano-Ag immune substrate exhibited strong SERS activity, excellent reproducibility, and high biospecificity. The nano-Au immune probes were prepared by immobilising 4-mercaptobenzoic acid (4MBA) molecules as a Raman reporter and anti-apolipoprotein B onto the surfaces of Au nanoparticles. It was found that 4MBA induced the aggregation of Au nanoparticles, resulting in the generation of vast hot spots. Moreover, the nano-Au immune probes exhibited strong SERS activity and high biospecificity. A sandwich-type immunoassay structure consisting of the nano-Au immune probes and nano-Ag immune substrate was used to detect the concentration of apolipoprotein B, where the detection limit was as low as 2 fg/mL (3.878×10(-18) mol/L). Taken together, the experimental results indicate that the proposed immunoassay protocol has a great potential application in biological sensing and clinical diagnostics.

  6. Formation of oxides and their role in the growth of Ag nanoplates on GaAs substrates.

    SciTech Connect

    Sun, Y.; Gosztola, D.; Lei, C.; Haasch, R.; Center for Nanoscale Materials; Univ. of Illinois

    2008-10-21

    Simple galvanic reactions between highly doped n-type GaAs wafers and a pure aqueous solution of AgNO3 at room temperature provide an easy and efficient protocol to directly deposit uniform Ag nanoplates with tunable dimensions on the GaAs substrates. The anisotropic growth of the Ag nanoplates in the absence of surfactant molecules might be partially ascribed to the codeposition of oxides of gallium and arsenic, which are revealed by extensive data from electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy, during the growth of the Ag nanoplates. The electron microscopic characterization shows that each Ag nanoplate has a 'necked' geometry, that is, it pins on the GaAs lattices through only a tiny neck (with sizes of <10 nm). In addition, the as-grown Ag nanoplates exhibit strong enhancement toward Raman scattering of materials on (or around) their surfaces.

  7. Galvanic-cell-induced growth of Ag nanosheet-assembled structures as sensitive and reproducible SERS substrates.

    PubMed

    Li, Zhongbo; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Zhang, Zhuo; Li, Xiangdong

    2012-11-19

    SERS up: Ag nanosheet-assembled structures with controlled morphologies were achieved on indium tin oxide substrates by galvanic-cell-induced growth (see figure). These structures exhibit a highly active and homogeneous surface-enhanced Raman scattering (SERS) effect, and show promising potential as reliable SERS substrates for detection of trace polychlorinated biphenyls.

  8. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.

    PubMed

    Kim, Kwan; Choi, Jeong-Yong; Lee, Hyang Bong; Shin, Kuan Soo

    2011-09-28

    A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). Accordingly, although no Raman signal is observable when 4-aminobenzenethiol (4-ABT), for instance, is self-assembled on a flat Au substrate, a distinct spectrum is obtained when Ag or Au nanoparticles are adsorbed on the pendent amine groups of 4-ABT. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Ag or Au nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap even by visible light. To appreciate the Raman scattering enhancement and also to seek the optimal condition for SERS at the nanogap, we have thoroughly examined the size effect of Ag nanoparticles, along with the excitation wavelength dependence, by assembling 4-ABT between planar Au and a variable-size Ag nanoparticle (from 20- to 80-nm in diameter). Regarding the size dependence, a higher Raman signal was observed when larger Ag nanoparticles were attached onto 4-ABT, irrespective of the excitation wavelength. Regarding the excitation wavelength, the highest Raman signal was measured at 568 nm excitation, slightly larger than that at 632.8 nm excitation. The Raman signal measured at 514.5 and 488 nm excitation was an order of magnitude weaker than that at 568 nm excitation, in agreement with the finite-difference time domain simulation. It is noteworthy that placing an Au nanoparticle on 4-ABT, instead of an Ag nanoparticle, the enhancement at the 568 nm excitation was several tens of times weaker than that at the 632.8 nm excitation, suggesting the importance of the localized surface plasmon resonance of the Ag nanoparticles for an effective coupling with the surface plasmon polariton of the planar Au substrate to induce a very intense electric field at the nanogap.

  9. Silicene-derived phases on Ag(111) substrate versus coverage: Ab initio studies

    NASA Astrophysics Data System (ADS)

    Pflugradt, P.; Matthes, L.; Bechstedt, F.

    2014-01-01

    Silicene is systematically investigated as an epitaxial overlayer on an Ag(111) substrate based on the ab initio density functional theory. The geometry and stability of five silicene-silver adsorbate systems with four coincidence lattices, √7 ×√7 on √13 ×√13 , 3×3 on 4×4, 2×2 on √7 ×√7 , and √7 ×√7 on 2√3 ×2√3 , are related to the Si coverage, biaxial strain, and preparation conditions. Their phase diagram is calculated for varying chemical potential of the Si reservoir. The scanning tunneling microscopy images calculated for the optimized atomic geometries agree with those observed experimentally. The destruction of the original honeycomb symmetry and the strong adsorbate-substrate interaction significantly influence the electronic structure. Four peeled-off silicene sheets show conical linear bands, with small gaps. However, the band edges of the 3×3 on 4×4 geometry cannot be explained in terms of gap opening between Dirac cones for symmetry reasons. We confirm the conclusion that the linear bands observed by ARPES are due to folded Ag bands.

  10. Fabrication of Hetero-Structured Three-Dimensional Nanorod Arrays by Dynamic Shadowing Growth

    NASA Astrophysics Data System (ADS)

    Zhao, Yiping

    2007-11-01

    Multilayered heterogeneous one-dimensional (1D) nanostructures are important building blocks for nanodevice applications. A practical nanofabrication technique to produce heterogeneous nanostructures with arbitrary materials must meet the following criteria: (1) The ability to fabricate heterogeneous nanostructures with arbitrarily selected materials; (2) The ability to control the dimensions and uniformity of the heterogeneous nanostructures; (3) The ability to control the alignment of the heterogeneous nanostructures; (4) The ability to control the interfacial properties of the heterogeneous nanostructures. Here, we demonstrate a simple but versatile method to fabricate three-dimensional heterogeneous nanorod structures by multilayer dynamic shadowing growth (DSG). DSG is based on geometric shadowing effect and substrate rotation in a physical vapor deposition system. By programming the azimuthal rotation of the substrate, different shapes of aligned nanorod arrays, such as zig-zag, c-shape, spirals, etc, can be fabricated. With the change of the source materials during the deposition, we demonstrate that complicated heterostructured nanorod arrays, such as Si/Ni multilayer nanosprings, can be easily produced, and they exhibit particular magnetic anisotropic behavior. We also use DSG technique to design catalytic nanomotors with different geometries that are capable of performing different and desired motions in a fuel solution. Using the shadowing effect, a thin catalyst layer can be coated asymmetrically on the side of a nanorod backbone. Catalytic nanomotors such as rotary Si/Pt nanorods, rotary L-shaped Si/Pt and Si/Ag nanorods, and rolling Si/Ag nanosprings, have been fabricated, and their autonomous motions have been demonstrated in a diluted hydrogen peroxide solution. We observed that the catalytic decomposition of hydrogen peroxide on the surface of catalyst generated a propelling force to push the nanorod from the catalyst side. This fabrication method

  11. Zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Chik, Hope Wuming

    Non-lithographic, bottom-up techniques have been developed to advance the state of the art and contribute to the development of new material structures, fabrication methods, devices, and applications using the Zinc Oxide material system as a demonstration vehicle. The novel low temperature catalytic vapour-liquid-solid growth process developed is technologically simple, inexpensive, and a robust fabrication technique offering complete control over the physical dimensions of the nanorod such as its diameter and length, and over the positioning of the nanorods for site-selective growth. By controlling the distribution of the Au catalysts with the use of a self-organized anodized aluminum oxide nanopore membrane as a template, we have been able to synthesize highly ordered, hexagonally packed, array of ZnO nanorods spanning a large area. These nanorods are single crystal, hexagonally shaped, indicative of the wurtzite structure, and are vertically aligned to the substrate. By pre-patterning the template, arbitrary nanorod patterns can be formed. We have also demonstrated the assembly of the nanorods into functional devices using controlled methods that are less resource intensive, easily scalable, and adaptable to other material systems, without resorting to the manipulation of each individual nanostructures. Examples of these devices include the random network device that exploits the common attributes of the nanorods, and those formed using an external field to control the nanorod orientation. Two and three terminal device measurements show that the as-grown nanorods are n-type doped, and that by controlling the external optical excitation and its test environment, the photoconductivity can be altered dramatically. Self assemble techniques such as the spontaneous formation of nanodendrites into complex networks of interconnects were studied. Controlled formation of interconnects achieved by controlling the placement of the catalyst is demonstrated by growing the

  12. Preparation of thin hexagonal highly-ordered anodic aluminum oxide (AAO) template onto silicon substrate and growth ZnO nanorod arrays by electrodeposition

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.

    2014-12-01

    In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).

  13. Synthesis and characterization of Ag@Cu nano/microstructure ordered arrays as SERS-active substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Pinhua; Cui, Guangliang; Xiao, Chuanhai; Zhang, Mingzhe; Chen, Li; Shi, Changmin

    2016-06-01

    We fabricated an Ag decorated Cu (Ag@Cu) nano/microstructure ordered array by facile template-free 2D electrodeposition combined with a galvanic reduction method for SERS applications. The Cu nano/microstructure ordered arrays were first synthesized by a 2D electrodeposition method, then Ag nanocubes were decorated on the arrays by galvanic reduction without any capping agent. The pollution-free surface and edge-to-face heterostructure of Ag nanocubes and Cu nano/microstructure arrays provide the powerful field-enhancements for SERS performance. The results verified that the Ag@Cu nano/microstructure ordered arrays have excellent activity for 4-Mercaptopyridine, and the sensitivity limit is as low as 10-8 M. Therefore, this facile route provides a useful platform for the fabrication of a SERS substrate based on nano/microstructure ordered arrays.

  14. Silver photo-diffusion and photo-induced macroscopic surface deformation of Ge33S67/Ag/Si substrate

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Y.; Asaoka, H.; Uozumi, Y.; Kondo, K.; Yamazaki, D.; Soyama, K.; Ailavajhala, M.; Mitkova, M.

    2016-08-01

    Ge-chalcogenide films show various photo-induced changes, and silver photo-diffusion is one of them which attracts lots of interest. In this paper, we report how silver and Ge-chalcogenide layers in Ge33S67/Ag/Si substrate stacks change under light exposure in the depth by measuring time-resolved neutron reflectivity. It was found from the measurement that Ag ions diffuse all over the matrix Ge33S67 layer once Ag dissolves into the layer. We also found that the surface was macroscopically deformed by the extended light exposure. Its structural origin was investigated by a scanning electron microscopy.

  15. Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Meng, Guowen; Li, Zhongbo; Huang, Zhulin; Li, Xiangdong

    2015-10-01

    Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) ``hot spots'' created from the large quantities of the neighboring Ag-NPs and large-scale uniform morphology, the hierarchical Ag-NP@Ge-nanotaper/Si-micropillar arrays exhibit strong and reproducible SERS activity. Using our hierarchical 3D SERS-substrates, both methyl parathion (a commonly used pesticide) and PCB-2 (one congener of highly toxic polychlorinated biphenyls) with concentrations down to 10-7 M and 10-5 M have been detected respectively, showing great potential in SERS-based rapid trace-level detection of toxic organic pollutants in the environment.Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) ``hot spots'' created from the large quantities of the neighboring Ag-NPs and large-scale uniform

  16. Ligand-induced substrate steering and reshaping of [Ag2(H)](+) scaffold for selective CO2 extrusion from formic acid.

    PubMed

    Zavras, Athanasios; Khairallah, George N; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A J

    2016-01-01

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)](+) by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)](+) and [Ph3PAg2(H)](+) react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)](+) is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)(+) scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)](+) and H2. Decarboxylation of [dppmAg2(O2CH)](+) via CID regenerates [dppmAg2(H)](+). These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH. PMID:27265868

  17. Ligand-induced substrate steering and reshaping of [Ag2(H)]+ scaffold for selective CO2 extrusion from formic acid

    PubMed Central

    Zavras, Athanasios; Khairallah, George N.; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J.; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A. J.

    2016-01-01

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)]+ by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)]+ and [Ph3PAg2(H)]+ react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)]+ is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)+ scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)]+ and H2. Decarboxylation of [dppmAg2(O2CH)]+ via CID regenerates [dppmAg2(H)]+. These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH. PMID:27265868

  18. A facile route of microwave to fabricate PVA-coating Ag nanofilm used as NIR-SERS active substrate

    NASA Astrophysics Data System (ADS)

    Liu, Renming; Feng, Mingjun; Zhang, Deqing; Su, Yongbo; Cai, Chenbo; Si, Minzhen

    2013-04-01

    Surface-enhanced Raman spectroscopy (SERS) is a very sensitive and selective technique for detecting surface species. Recently, SERS has been increasingly employed in the study of biological macromolecules, from DNA and peptides to whole proteins, and cells. However, visible laser sources usually employed in SERS detections always lead to photochemical reactions as well as intensive fluorescence emission from the biological samples. A way to avoid these questions is the employment of near infrared (NIR) laser excitation; thus, it demands the appropriate designs of NIR-SERS substrates in order to obtain the maximum enhancement of the Raman signals from biological analytes. In this work, we demonstrate the fabrication of a new NIR-SERS substrate of polyvinyl alcohol (PVA) coating Ag nanofilms (PVA-coating Ag nanofilm) using a simple and low-cost microwave strategy. The experimental data show that, the plasmon resonance band of the PVA-coating Ag nanofilm is in the region of 400-900 nm, and the maximum center is at ∼780 nm, which matches well with the 785 nm laser excitation employed in this work. With the NIR-SERS detections of hematin and hemoglobin molecules adsorbed on this PVA-coating Ag nanofilm, one can see that the NIR-SERS activity and spectroscopy reproducibility of this NIR-SERS substrate are all perfect. By using of the tested molecule of hematin, the PVA-coating Ag nanofilm shows a high enhancement factor (EF) of ∼107. As the fabrication process of this NIR-SERS substrate is very simple and inexpensive, this method may be used in large-scale preparation of SERS substrates that have been widely applied in Raman analysis. Especially, this PVA-coating Ag nanofilm can also be served as a novel NIR-SERS substrate in biochemical analysis due to its good NIR characteristics.

  19. Surfactant-assisted synthesis of Ag nanostructures and their self-assembled films on copper and aluminum substrate

    NASA Astrophysics Data System (ADS)

    Zhuo, Yujiang; Sun, Wendong; Dong, Lihong; Chu, Ying

    2011-10-01

    In this paper, silver nanostructures with controlled morphologies, such as plates, rods, belts, sheets and their self-assembled films have been prepared on copper and aluminum substrates by a surfactant-assisted colloidal chemical method. The X-ray powder diffraction (XRD) and the selected area electron diffraction (SAED) patterns indicated that the Ag nanostructures grew on the substrates with cubic symmetry and single-crystalline in nature. An oriented attachment with surfactant-assisted mechanism and a cooperative effect of surfactant and chloride ion on the morphology of Ag nanostructures were investigated systematically and synthetically.

  20. Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes.

    PubMed

    Yao, Yung-Chi; Yang, Zu-Po; Hwang, Jung-Min; Chuang, Yi-Lun; Lin, Chia-Ching; Haung, Jing-Yu; Chou, Chun-Yang; Sheu, Jinn-Kong; Tsai, Meng-Tsan; Lee, Ya-Ju

    2016-02-28

    ZnO nanorods (NRs) and Ag nanoparticles (NPs) are known to enhance the luminescence of light-emitting diodes (LEDs) through the high directionality of waveguide mode transmission and efficient energy transfer of localized surface plasmon (LSP) resonances, respectively. In this work, we have demonstrated Ag NP-incorporated n-ZnO NRs/p-GaN heterojunctions by facilely hydrothermally growing ZnO NRs on Ag NP-covered GaN, in which the Ag NPs were introduced and randomly distributed on the p-GaN surface to excite the LSP resonances. Compared with the reference LED, the light-output power of the near-band-edge (NBE) emission (ZnO, λ = 380 nm) of our hybridized structure is increased almost 1.5-2 times and can be further modified in a controlled manner by varying the surface morphology of the surrounding medium of the Ag NPs. The improved light-output power is mainly attributed to the LSP resonance between the NBE emission of ZnO NRs and LSPs in Ag NPs. We also observed different behaviors in the electroluminescence (EL) spectra as the injection current increases for the treatment and reference LEDs. This observation might be attributed to the modification of the energy band diagram for introducing Ag NPs at the interface between n-ZnO NRs and p-GaN. Our results pave the way for developing advanced nanostructured LED devices with high luminescence efficiency in the UV emission regime.

  1. Optical and structural properties of Cr and Ag thin films deposited on glass substrate

    NASA Astrophysics Data System (ADS)

    Rauf, A.; Ahmed, K.; Nasim, F.; Khan, A. N.; Gul, A.

    2016-08-01

    Most of the rotating or noting patterns are being developed by using silver plating through chemical coating. Silver layers deteriorate with the passage of time and become less reflective while undergo through cleaning process due to its softness and the results become unpredictable. In this paper an alternate method for development of above mentioned pattern has been demonstrated. Chromium (Cr) and Silver (Ag) thin films of 200nm and 160nm thick respectively have been realized using electron beam evaporation (PVD technique) on quartz substrate. Structural analysis has been carried out by XRD and SEM while optical transmission/reflection has been studied using spectrophotometer. XRD analysis shows that Ag coated thin films exhibit FCC structure while Cr coated thin films reveals a BCC structure. SEM analysis shows almost smooth and uniform surfaces in both cases. After passing through high and low temperature cycles it was found that the results of pattern structures developed by chromium coating were more reliable than obtained through silver platting process.

  2. FO-SPR based dextrose sensor using Ag/ZnO nanorods/GOx for insulinoma detection.

    PubMed

    Usha, Sruthi P; Shrivastav, Anand M; Gupta, Banshi D

    2016-11-15

    In this piece of work, a fiber optic sensor has been fabricated and characterized using surface plasmon resonance for dextrose sensing. The concentration range used in this study is for diagnosing the cases of hypoglycaemia especially in suppression tests of insulinoma. Insulinoma is a medical case in which the person is recognized being hypoglycaemic with the blood dextrose level falling down to 2.2mM or less. Thus, the sensor has been characterized for the dextrose concentration range of 0 mM-10mM including the cases of normal blood dextrose range. Coatings of silver layer and zinc oxide nanorods have been carried out on the bare core fiber with a dual role of zinc oxide followed by immobilization of glucose oxidase. A three stage optimization procedure has been adopted for the best performance of the sensor. Absorbance spectra have been plotted and peak absorbance wavelengths have been extracted for each concentration chosen along with the sensitivities. The results have been made conclusive with control experiments. The probe has also been tested on sample having blood serum to check the reliability of the sensor. The sensor shows better selectivity and response time along with its real time applications, online monitoring, remote sensing and reusability.

  3. Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates.

    PubMed

    Wang, Zhiwei; Meng, Guowen; Huang, Zhulin; Li, Zhongbo; Zhou, Qitao

    2014-12-21

    We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS "hot spots" are generated from the electromagnetic coupling of the densely distributed Ag-NPs, and the semiconducting ZnO-mesoporous-NSs also have chemical supporting enhancement and distinct molecule adsorbing abilities, the composite SERS-substrates demonstrate high SERS-sensitivity with good signal reproducibility. As a trial for potential applications, the composite SERS-substrates were used to identify pesticides and highly toxic polychlorinated biphenyls (PCBs), and low concentrations down to 10(-7) M for methyl parathion and 5 × 10(-6) M for PCB-77 were reached, respectively, showing promising potential for the SERS-based rapid detection of toxic organic pollutants in the environment.

  4. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  5. Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons

    NASA Astrophysics Data System (ADS)

    Zhang, Cen; Marvinney, Claire Elizabeth; Xu, Hai Yang; Liu, Wei Zhen; Wang, Chun Liang; Zhang, Li Xia; Wang, Jian Nong; Ma, Jian Gang; Liu, Yi Chun

    2014-12-01

    Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ~9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their ``remote'' separation. Thereby, two possible models involving the dynamic process of interactions among excitons, photons, and LSPs, were established to understand the selective enhancement of ZnO EL.Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ~9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their ``remote'' separation

  6. Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs

    NASA Astrophysics Data System (ADS)

    Chen, Bensong; Meng, Guowen; Zhou, Fei; Huang, Qing; Zhu, Chuhong; Hu, Xiaoye; Kong, Mingguang

    2014-04-01

    Large-scale hexagonally close-packed arrays of Au-nanobowls (Au-NBs) with tens of Ag-nanoparticles (Ag-NPs) dispersed in each bowl (denoted as Ag-NPs@Au-NB arrays) are achieved and utilized as effective surface-enhanced Raman scattering (SERS) substrates. The field enhancement benefiting from the special particle-in-cavity geometrical structure as well as the high density of SERS hot spots located in the sub-10 nm gaps between adjacent Ag-NPs and at the particle-cavity junctions all together contribute to the high SERS activity of the Ag-NPs@Au-NB arrays; meanwhile the ordered morphological features of the Ag-NPs@Au-NB arrays guarantee uniformity and reproducibility of the SERS signals. By modifying the Ag-NPs@Au-NB arrays with mono-6-thio-β-cyclodextrin, the SERS detection sensitivity to 3,3‧,4,4‧-tetrachlorobiphenyl (PCB-77, one congener of polychlorinated biphenyls (PCBs, kinds of persistent organic pollutants which represent a global environmental hazard)) can be further improved and a low concentration down to 5 × 10-7 M can still be examined, showing promising potential for application in rapid detection of trace-level PCBs in the environment.

  7. Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing.

    PubMed

    Huang, Jian; Ma, Dayan; Chen, Feng; Bai, Min; Xu, Kewei; Zhao, Yongxi

    2015-10-20

    Surface-enhanced Raman scattering (SERS) has been considered as a promising sensing technique to detect low-level analytes. However, its practical application was hindered owing to the lack of uniform SERS substrates for ultrasensitive and reproducible assay. Herein, inspired by the natural cactus structure, we developed a cactus-like 3D nanostructure with uniform and high-density hotspots for highly efficient SERS sensing by both grafting the silicon nanoneedles onto Ag dendrites and subsequent decoration with Ag nanoparticles. The hierarchical scaffolds and high-density hotspots throughout the whole substrate result in great amplification of SERS signal. A high Raman enhancement factor of crystal violet up to 6.6 × 10(7) was achieved. Using malachite green (MG) as a model target, the fabricated SERS substrates exhibited good reproducibility (RSD ∼ 9.3%) and pushed the detection limit down to 10(-13) M with a wide linear range of 10(-12) M to 10(-7) M. Excellent selectivity was also demonstrated by facilely distinguishing MG from its derivative, some organics, and coexistent metal ions. Finally, the practicality and reliability of the 3D SERS substrates were confirmed by the quantitative analysis of spiked MG in environmental water with high recoveries (91.2% to 109.6%). By virtue of the excellent performance (good reproducibility, high sensitivity, and selectivity), the cactus-like 3D SERS substrate has great potential to become a versatile sensing platform in environmental monitoring, food safety, and medical diagnostics. PMID:26406111

  8. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate.

    PubMed

    Huang, M L; Yang, F

    2014-01-01

    The downsizing of solder balls results in larger interfacial intermetallic compound (IMC) grains and less Cu substrate consumption in lead-free soldering on Cu substrates. This size effect on the interfacial reaction is experimentally demonstrated and theoretically analyzed using Sn-3.0Ag-0.5Cu and Sn-3.5Ag solder balls. The interfacial reaction between the Sn-xAg-yCu solders and Cu substrates is a dynamic response to a combination of effects of interfacial IMC growth, Cu substrate consumption and composition variation in the interface zone. A concentration gradient controlled (CGC) kinetics model is proposed to explain the combined effects. The concentration gradient of Cu at the interface, which is a function of solder volume, initial Cu concentration and reaction time, is the root cause of the size effect. We found that a larger Cu concentration gradient results in smaller Cu(6)Sn(5) grains and more consumption of Cu substrate. According to our model, the growth kinetics of interfacial Cu(6)Sn(5) obeys a t(1/3) law when the molten solder has approached the solution saturation, and will be slower otherwise due to the interfering dissolution mechanism. The size effect introduced in this model is supported by a good agreement between theoretical and experimental results. Finally, the scope of application of this model is discussed. PMID:25408359

  9. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Yang, F.

    2014-11-01

    The downsizing of solder balls results in larger interfacial intermetallic compound (IMC) grains and less Cu substrate consumption in lead-free soldering on Cu substrates. This size effect on the interfacial reaction is experimentally demonstrated and theoretically analyzed using Sn-3.0Ag-0.5Cu and Sn-3.5Ag solder balls. The interfacial reaction between the Sn-xAg-yCu solders and Cu substrates is a dynamic response to a combination of effects of interfacial IMC growth, Cu substrate consumption and composition variation in the interface zone. A concentration gradient controlled (CGC) kinetics model is proposed to explain the combined effects. The concentration gradient of Cu at the interface, which is a function of solder volume, initial Cu concentration and reaction time, is the root cause of the size effect. We found that a larger Cu concentration gradient results in smaller Cu6Sn5 grains and more consumption of Cu substrate. According to our model, the growth kinetics of interfacial Cu6Sn5 obeys a t1/3 law when the molten solder has approached the solution saturation, and will be slower otherwise due to the interfering dissolution mechanism. The size effect introduced in this model is supported by a good agreement between theoretical and experimental results. Finally, the scope of application of this model is discussed.

  10. Ag-nanoparticles on UF-microsphere as an ultrasensitive SERS substrate with unique features for rhodamine 6G detection.

    PubMed

    Hao, Zhixian; Mansuer, Mulati; Guo, Yuqing; Zhu, Zhirong; Wang, Xiaogang

    2016-01-01

    Urea and formaldehyde (UF) microsphere (MS) adsorbing Ag nanoparticles (NPs) was employed as a surface enhanced Raman scattering (SERS) substrate for rhodamine 6G (R6G) detection. The UF MSs and citrate-reduced Ag colloid supplying Ag NPs are synthesized separately and all the subsequent fabrication procedure is then implemented within 2 mL centrifuge tube. Influences of the composition and drying temperature of the UF MSs and the drying method and modification of AgNP/UFMS on the final SERS performance have first been reported. Excess formaldehyde useful in the formation of UF MSs again plays an important role in the SERS detection. Some interesting phenomena in the approach, such as swelling/deswelling of UF MSs and R6G diffusion within hydrophilic environment of UF MSs, are found to be of variable factors affecting the SERS performance. The substrate AgNP/UFMS confidently achieves a detection limit of 10(-13) M R6G and can be used as a simple and effective platform in the SERS spectroscopy. PMID:26695301

  11. Ag-nanoparticles on UF-microsphere as an ultrasensitive SERS substrate with unique features for rhodamine 6G detection.

    PubMed

    Hao, Zhixian; Mansuer, Mulati; Guo, Yuqing; Zhu, Zhirong; Wang, Xiaogang

    2016-01-01

    Urea and formaldehyde (UF) microsphere (MS) adsorbing Ag nanoparticles (NPs) was employed as a surface enhanced Raman scattering (SERS) substrate for rhodamine 6G (R6G) detection. The UF MSs and citrate-reduced Ag colloid supplying Ag NPs are synthesized separately and all the subsequent fabrication procedure is then implemented within 2 mL centrifuge tube. Influences of the composition and drying temperature of the UF MSs and the drying method and modification of AgNP/UFMS on the final SERS performance have first been reported. Excess formaldehyde useful in the formation of UF MSs again plays an important role in the SERS detection. Some interesting phenomena in the approach, such as swelling/deswelling of UF MSs and R6G diffusion within hydrophilic environment of UF MSs, are found to be of variable factors affecting the SERS performance. The substrate AgNP/UFMS confidently achieves a detection limit of 10(-13) M R6G and can be used as a simple and effective platform in the SERS spectroscopy.

  12. Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons.

    PubMed

    Zhang, Cen; Marvinney, Claire Elizabeth; Xu, Hai Yang; Liu, Wei Zhen; Wang, Chun Liang; Zhang, Li Xia; Wang, Jian Nong; Ma, Jian Gang; Liu, Yi Chun

    2015-01-21

    Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ∼9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their "remote" separation. Thereby, two possible models involving the dynamic process of interactions among excitons, photons, and LSPs, were established to understand the selective enhancement of ZnO EL. PMID:25475883

  13. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    SciTech Connect

    Fujii, S.; Kawamura, S.; Maitani, M. M.; Suzuki, E.; Wada, Y.; Mochizuki, D.

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  14. Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for Sub-10 nm Nanogaps.

    PubMed

    Wang, Yi; Wang, Hailong; Wang, Yuyang; Shen, Yanting; Xu, Shuping; Xu, Weiqing

    2016-06-22

    Plasmonic nanogaps serve as a useful configuration for light concentration and local field amplification owing to the extreme localization of surface plasmons. Here, a smart plasmonic nanogap device is fabricated by the dynamic response of an Ag decorated hierarchically structural vertical polymer nanorod array under the light irradiation. Seven nanorods in one unit bend because of plasmonic heating effect and they are centrally collected due to the attraction of the plasmon-induced polaritons, leading to the significantly enhanced local electromagnetic field at the sub-10 nm gaps among the constricted nanorod tops. Compared with tuning capillarity in microscale by wetting and drying, using light as external stimuli is much easier and more tunable in nanoscale. This plasmonic nanogap device is used for a surface-enhanced Raman scattering (SERS) substrate. Its hydrophobic surface with a contact angle of 142 degree can make the probed aqueous solution only access to the Ag tips of nanorods. Thus, the analytes can be driven to the "hot spot" regions where located at the tops of nanorods during the solvent evaporation process, which is beneficial to SERS detection. Discovery of this smart plasmon-driven process broadens the scope for further functionality of both the dynamic nanostructure design and the smart plasmonic devices in the communities of chemistry, biomedicine, and microfluidic engineering. PMID:27250862

  15. Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO₂ Core-Shell Nanorods on Flat Alumina Substrates.

    PubMed

    Ju, Dian-Xing; Xu, Hong-Yan; Qiu, Zhi-Wen; Zhang, Zi-Chao; Xu, Qi; Zhang, Jun; Wang, Jie-Qiang; Cao, Bing-Qiang

    2015-09-01

    Chemiresistive gas sensors with low power consumption, fast response, and reliable fabrication process for a specific target gas have been now created for many applications. They require both sensitive nanomaterials and an efficient substrate chip for heating and electrical addressing. Herein, a near room working temperature and fast response triethylamine (TEA) gas sensor has been fabricated successfully by designing gold (Au)-loaded ZnO/SnO2 core-shell nanorods. ZnO nanorods grew directly on Al2O3 flat electrodes with a cost-effective hydrothermal process. By employing pulsed laser deposition (PLD) and DC-sputtering methods, the construction of Au nanoparticle-loaded ZnO/SnO2 core/shell nanorod heterostructure is highly controllable and reproducible. In comparison with pristine ZnO, SnO2, and Au-loaded ZnO, SnO2 sensors, Au-ZnO/SnO2 nanorod sensors exhibit a remarkably high and fast response to TEA gas at working temperatures as low as 40 °C. The enhanced sensing property of the Au-ZnO/SnO2 sensor is also discussed with the semiconductor depletion layer model introduced by Au-SnO2 Schottky contact and ZnO/SnO2 N-N heterojunction. PMID:26280916

  16. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    SciTech Connect

    Wu, Y.; Li, X.; Xu, P.; Wang, Y.; Shen, X.; Liu, X.; Yang, Q.; Hasan, T.

    2015-02-02

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5 nm. The dominant emission, detectable at ultralow (<1 μA) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25 μA current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter < 250 nm), this trend breaks down due to heat accumulation in the NWs. Our simple device architecture offers a potentially cost-effective scheme to fabricate high efficiency Schottky junction-based UV-LEDs.

  17. Synthesis and characterization of ZnO nanostructures on noble-metal coated substrates

    NASA Astrophysics Data System (ADS)

    Dikovska, A. Og.; Atanasova, G. B.; Avdeev, G. V.; Nedyalkov, N. N.

    2016-06-01

    In this work, ZnO nanostructures were fabricated on noble-metal (Au, Ag and Au-Ag alloys) coated silicon substrates by applying pulsed laser deposition. The samples were prepared at a substrate temperature of 550 °C, an oxygen pressure of 5 Pa, and a laser fluence of 2 J cm-2 - process parameters usually used for deposition of smooth and dense thin films. The metal layer's role is substantial for the preparation of nanostructures. Heating of the substrate changed the morphology of the metal layer and, subsequently, nanoparticles were formed. The use of different metal particles resulted in different morphologies and properties of the ZnO nanostructures synthesized. The morphology of the ZnO nanostructures was related to the Au-Ag alloy's content of the catalyst layer. It was found that the morphology of the ZnO nanostructures evolved from nanorods to nanobelts as the ratio of Au/Ag in the alloy catalyst was varied. The use of a small quantity of Ag in the Au-Ag catalyst (Au3Ag) layer resulted predominantly in the deposition of ZnO nanorods. A higher Ag content in the catalyst alloy (AuAg2) layer resulted in the growth of a dense structure of ZnO nanobelts.

  18. Gold coated ZnO nanorod biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anuradha; Jain, Chhavi; Rao, V. Padmanapan; Banerjee, S.

    2012-06-01

    Gold coated ZnO nanorod based biosensor has been fabricated for its glucose detecting abilities and compared with that of ZnO nanorod based biosensor. SEM images of electrochemically grown ZnO nanorods show hexagonally grown ZnO nanorods on an ITO substrate. Electrochemical analysis show that gold coated ZnO based biosensors have higher sensitivity, lower limit of detection and a wider linear range for glucose detection. The results demonstrate that gold coated ZnO nanorod based biosensors are a promising material for biosensor applications over single component ZnO nanorod based biosensor.

  19. Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yao, Yung-Chi; Yang, Zu-Po; Hwang, Jung-Min; Chuang, Yi-Lun; Lin, Chia-Ching; Haung, Jing-Yu; Chou, Chun-Yang; Sheu, Jinn-Kong; Tsai, Meng-Tsan; Lee, Ya-Ju

    2016-02-01

    ZnO nanorods (NRs) and Ag nanoparticles (NPs) are known to enhance the luminescence of light-emitting diodes (LEDs) through the high directionality of waveguide mode transmission and efficient energy transfer of localized surface plasmon (LSP) resonances, respectively. In this work, we have demonstrated Ag NP-incorporated n-ZnO NRs/p-GaN heterojunctions by facilely hydrothermally growing ZnO NRs on Ag NP-covered GaN, in which the Ag NPs were introduced and randomly distributed on the p-GaN surface to excite the LSP resonances. Compared with the reference LED, the light-output power of the near-band-edge (NBE) emission (ZnO, λ = 380 nm) of our hybridized structure is increased almost 1.5-2 times and can be further modified in a controlled manner by varying the surface morphology of the surrounding medium of the Ag NPs. The improved light-output power is mainly attributed to the LSP resonance between the NBE emission of ZnO NRs and LSPs in Ag NPs. We also observed different behaviors in the electroluminescence (EL) spectra as the injection current increases for the treatment and reference LEDs. This observation might be attributed to the modification of the energy band diagram for introducing Ag NPs at the interface between n-ZnO NRs and p-GaN. Our results pave the way for developing advanced nanostructured LED devices with high luminescence efficiency in the UV emission regime.ZnO nanorods (NRs) and Ag nanoparticles (NPs) are known to enhance the luminescence of light-emitting diodes (LEDs) through the high directionality of waveguide mode transmission and efficient energy transfer of localized surface plasmon (LSP) resonances, respectively. In this work, we have demonstrated Ag NP-incorporated n-ZnO NRs/p-GaN heterojunctions by facilely hydrothermally growing ZnO NRs on Ag NP-covered GaN, in which the Ag NPs were introduced and randomly distributed on the p-GaN surface to excite the LSP resonances. Compared with the reference LED, the light-output power of the

  20. Immunoassay for tumor markers in human serum based on Si nanoparticles and SiC@Ag SERS-active substrate.

    PubMed

    Zhou, Lu; Zhou, Jun; Feng, Zhao; Wang, Fuyan; Xie, Shushen; Bu, Shizhong

    2016-04-21

    Based on a sandwich structure consisting of nano-Si immune probes and a SiC@Ag SERS-active immune substrate, a kind of ultra-sensitive immunoassay protocol is presented to detect tumor markers in human serum. The nano-Si immune probes were prepared by immobilizing the detecting antibodies onto the surfaces of SiO2-coated Si nanoparticles (NPs) which were modified with 3-(aminopropyl)trimethoxysilane, and the SiC@Ag SERS-active immune substrates were prepared by immobilizing the captured antibodies on Ag film sputtered on SiC sandpaper. To the best of our knowledge, it is the first time that Si NPs are directly used as Raman tags in an immunoassay strategy. And, the SiC@Ag SERS-active substrates exhibit excellent surface enhanced Raman scattering (SERS) performances with an enhancement factor of ∼10(5), owing to the plasmonic effect of the Ag film on the rough surface of the SiC sandpaper. In our experiments, the sandwich immunoassay structure has been successfully applied to detect prostate specific antigen (PSA), α-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA19-9) in a human serum sample and the limit of detections are as low as 1.79 fg mL(-1), 0.46 fg mL(-1) and 1.3 × 10(-3) U mL(-1), respectively. It reveals that the proposed immunoassay protocol has demonstrated a high sensitivity for tumor markers in human serum and a potential practicability in biosensing and clinical diagnostics. PMID:27003871

  1. Memristive switching of ZnO nanorod mesh

    NASA Astrophysics Data System (ADS)

    Yevgeniy, Puzyrev; Shen, Xiao; Ni, Kai; Zhang, Xuan; Hachtel, Jordan; Choi, Bo; Chisholm, Matthew; Fleetwood, Daniel; Schrimpf, Ronald; Pantelides, Sokrates

    We present a combined experimental and theoretical study of memristive switching in a self-assembled mesh of ZnO nanorods. A ZnO nanorod mesh spans the area between Ag contacts in a device that exhibits hysteresis with large ON/OFF ratio, reaching ION/IOFF values of 104. We show that switching behavior depends critically on the geometry of the nanorod mesh. We employ density functional theory (DFT) calculations to deduce the mechanism for resistive switching for the nanorod mesh. Redistribution of Ag atoms, driven by an electrical field, leads to the formation and evolution of a conducting path through nanorods. Field-induced migration of Ag atoms changes the doping level of nanorods and modulates their conductivity. Using static DFT and nudged-elastic-band calculations, we investigate the energy of interaction between Ag clusters and a ZnO surface, including migration barriers of Ag atoms. Current-voltage (I-V) characteristics are modeled using percolation theory in a nanorod mesh. To describe the dynamics of SET/RESET phenomena, model parameters include the experimentally observed nanorod geometry and the energetics of Ag on ZnO surfaces, obtained from DFT calculations. This work was supported by NSF Grant DMR-1207241, DOE Grant DE-FG02-09ER46554, and the McMinn Endowment at Vanderbilt University. Computational support was provided by the NSF XSEDE under Grant #DMR TG-DMR130121.

  2. Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwei; Meng, Guowen; Huang, Zhulin; Li, Zhongbo; Zhou, Qitao

    2014-11-01

    We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS ``hot spots'' are generated from the electromagnetic coupling of the densely distributed Ag-NPs, and the semiconducting ZnO-mesoporous-NSs also have chemical supporting enhancement and distinct molecule adsorbing abilities, the composite SERS-substrates demonstrate high SERS-sensitivity with good signal reproducibility. As a trial for potential applications, the composite SERS-substrates were used to identify pesticides and highly toxic polychlorinated biphenyls (PCBs), and low concentrations down to 10-7 M for methyl parathion and 5 × 10-6 M for PCB-77 were reached, respectively, showing promising potential for the SERS-based rapid detection of toxic organic pollutants in the environment.We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS ``hot spots'' are generated from the electromagnetic coupling of the densely

  3. Annealing effects on the optical and morphological properties of ZnO nanorods on AZO substrate by using aqueous solution method at low temperature

    PubMed Central

    2014-01-01

    Vertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates were fabricated by a single-step aqueous solution method at low temperature. In order to optimize optical quality, the effects of annealing on optical and structural properties were investigated by scanning electron microscopy, X-ray diffraction, photoluminescence (PL), and Raman spectroscopy. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions. The best characteristics have been obtained by employing annealing at 400°C in air for 2 h, bringing about a sharp and intense NBE emission. The defect-related recombinations were also suppressed effectively. However, the enhancement decreases with higher annealing temperature and prolonged annealing. PL study indicates that the NBE emission is dominated by radiative recombination associated with hydrogen donors. Thus, the enhancement of NBE is due to the activation of radiative recombinations associated with hydrogen donors. On the other hand, the reduction of visible emission is mainly attributed to the annihilation of OH groups. Our results provide insight to comprehend annealing effects and an effective way to improve optical properties of low-temperature-grown ZnO NRs for future facile device applications. PMID:25520589

  4. Effective electrocatalysis based on Ag2O nanowire arrays supported on a copper substrate.

    PubMed

    Ji, Rong; Wang, Lingling; Yu, Liutao; Geng, Baoyou; Wang, Guangfeng; Zhang, Xiaojun

    2013-11-13

    Silver oxide nanowire arrays (Ag2O NWAs) were first synthesized on a copper (Cu) rod by a simple and facile wet-chemistry approach without using any surfactants. The as-synthesized Ag2O NWA/Cu rod not only can be used as an integrated electrode (called a Ag2O NWA/CRIE) to detect hydrazine (HZ) but also can serve as the catalyst layer for a direct HZ fuel cell. The current density of HZ oxidation on Ag2O NWA (94.4 mA cm(-2)) is much bigger than that on a bare Cu rod (3.9 mA cm(-2)) at -0.6 V, and other Ag2O NWAs have the lowest onset potential (-0.85 V). This suggests that a Ag2O NWA integrated electrode has potential application in catalytic fields that contain the HZ fuel cell. PMID:23978111

  5. Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates

    NASA Astrophysics Data System (ADS)

    Li, Zhongbo; Meng, Guowen; Liang, Ting; Zhang, Zhuo; Zhu, Xiaoguang

    2013-01-01

    We report a facile low-cost synthetic approach to large-scale Ag nanosheet-assembled films with a high density of uniformly distributed sub-10 nm gaps between the adjacent nanosheets on Si substrates via galvanic cell reactions. The distribution density of Ag nanosheets on substrates could be tailored by tuning the duration of the HF-etching and the concentration of citric acid in the solution. Furthermore, in conjunction with a conventional photolithography, highly uniform patterned Ag nanosheet-assembled structures with different morphologies can be achieved on Si substrates via galvanic-cell-induced growth. By using rhodamine 6G as a standard test molecule, the large-scale Ag nanosheet-assembled films exhibit highly active and homogenous surface-enhanced Raman scattering (SERS) effect and also show promising potentials as reliable SERS substrates for rapid detection of trace polychlorinated biphenyls (PCBs).

  6. A simple method for preparation of Ag nanofilm used as active, stable, and biocompatible SERS substrate by using electrostatic self-assembly.

    PubMed

    Liu, Renming; Si, Minzhen; Kang, Yipu; Zi, Xingfa; Liu, Zhenquan; Zhang, Deqing

    2010-03-01

    A new SERS-active Ag nanofilm on the surface of a glass slide has been prepared by a low-cost electrochemical strategy using polyvinyl alcohol (PVA) at a proper voltage. The two-dimensional morphology of the Ag nanofilm has been examined by scanning electron microscopy (SEM). The average size of the aggregated particles on the surface of the Ag nanofilm is up to ca. 200+/-50 nm, which is much larger than that of PVA-protected Ag colloidal nanoparticles (PVA-Ag CNPs, 45+/-8 nm). Meanwhile, many nano-scale regions with average sizes of ca. 300+/-50 nm are formed between the adjacent Ag nanoparticles. By the SERS measurements of human serum (HS) and hemoglobin (Hb), this Ag nanofilm is shown to be an excellent SERS substrate with good stability and biocompatibility. As the fabrication process of this SERS substrate is simple and inexpensive, this method may be used in large-scale preparation of substrates that have been widely applied in Raman analysis. In addition, this SERS-active Ag nanofilm can serve as a novel SERS substrate in biochemical analysis due to the biocompatibility.

  7. Ag Nanoparticle-Grafted PAN-Nanohump Array Films with 3D High-Density Hot Spots as Flexible and Reliable SERS Substrates.

    PubMed

    Li, Zhongbo; Meng, Guowen; Huang, Qing; Hu, Xiaoye; He, Xuan; Tang, Haibin; Wang, Zhiwei; Li, Fadi

    2015-10-28

    A facile fabrication approach of large-scale flexible films is reported, with one surface side consisting of Ag-nanoparticle (Ag-NP) decorated polyacrylonitrile (PAN) nanohump (denoted as Ag-NPs@PAN-nanohump) arrays. This is achieved via molding PAN films with ordered nanohump arrays on one side and then sputtering much smaller Ag-NPs onto each of the PAN-nanohumps. Surface-enhanced Raman scattering (SERS) activity of the Ag-NPs@PAN-nanohump array films can be improved by curving the flexible PAN film with ordered nanohump arrays during the Ag-sputtering process to increase the density of the Ag-NPs on the sidewalls of the PAN-nanohumps. More 3D hot spots are thus achieved on a large-scale. The Ag-NPs@PAN-nanohump array films show high SERS activity with good Raman signal reproducibility for Rhodamine 6G probe molecules. To trial their practical application, the Ag-NPs@PAN-nanohump array films are employed as SERS substrates for trace detection of trinitrotoluene and a congener of polychlorinated biphenyls. A lower detection limit of 10(-12) m and 10(-5) m can be achieved, respectively. Furthermore, the flexible Ag-NPs@PAN-nanohump array films can also be utilized as swabs to probe traces of methyl parathion on the surface of fruits such as apples. The as-fabricated SERS substrates therefore have promising potential for applications in rapid safety inspection and environmental protection.

  8. Study on deposition technique and properties of Pd/Ag alloy film sensor supported on ceramic substrate

    NASA Astrophysics Data System (ADS)

    Geng, Z. T.; He, Q.; Jin, C. G.

    2016-07-01

    Developing high-quality hydrogen sensitive material is the core part of hydrogen sensor, whose performance is determined by the sensitive response, reproducibility and recovery of hydrogen material etc. In order to overcome the defects of hydrogen embrittlement in previous hydrogen sensor which were based on the pure palladium, sliver as the second component added to the palladium was studied. Using photochemical etching technology to produce a bent metal mask, the mask is put on the ceramic substrate. Firstly, the thin film of Ta2O5 as a transition layer grew on the ceramic substrate. Then, a series of Pd/Ag alloy film sensors were prepared, and each performance characterization of Pd/Ag alloy film was studied. Testing results indicated that the thin film had a good linear output performance at 0∼⃒30% hydrogen concentration range, and demonstrates a high responsiveness and good repeatability. With temperature increasing, the strength of the responsive signal of the Pd/Ag alloy film decreases and its responsive time was also shortened.

  9. Growth and properties of YBCO thin films on polycrystalline Ag substrates by inclined substrate pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Li, M.; Ma, B.; Koritala, R. E.; Fisher, B. L.; Dorris, S. E.; Venkataraman, K.; Balachandran, U.

    2002-06-01

    Fully c-axis-oriented YBCO films were directly deposited on polycrystalline silver substrates by inclined substrate pulsed laser ablation. The orientation and microstructure of the YBCO films were characterized by x-ray diffraction 2θ-scans, Ω-scans and pole figure analysis. Surface morphology was examined by scanning electron microscopy. Irregular-mosaic-shaped supergrains were observed in the films. Raman spectroscopy was used to evaluate the quality of the YBCO films. The superconducting transition temperature (Tc) and the critical current density (Jc) of the films were determined by inductive and transport measurements, respectively. Tc = 91 K with sharp transition and Jc = 2.7 × 105 A cm-2 at 77 K in zero field were obtained on a film that was 0.14 μm thick, 5 mm wide and 10 mm long. This work demonstrated a promising approach to obtain high-Jc YBCO films on nontextured polycrystalline silver substrate.

  10. Growth of metal-semiconductor core-multishell nanorods with optimized field confinement and nonlinear enhancement

    NASA Astrophysics Data System (ADS)

    Nan, Fan; Xie, Fang-Ming; Liang, Shan; Ma, Liang; Yang, Da-Jie; Liu, Xiao-Li; Wang, Jia-Hong; Cheng, Zi-Qiang; Yu, Xue-Feng; Zhou, Li; Wang, Qu-Quan; Zeng, Jie

    2016-06-01

    This paper describes a facile method for the synthesis of Au/AuAg/Ag2S/PbS core-multishell nanorods with double trapping layers. The synthesis, in sequence, involved deposition of Ag shells onto the surfaces of Au nanorod seeds, formation of AuAg shells by a galvanic replacement reaction, and overgrowth of the Ag2S shells and PbS shells. The resulting core-multishell nanorod possesses an air gap between the Au core and the AuAg shell. Together with the Ag2S shell, the air gap can efficiently trap light, causing strong field confinement and nonlinear enhancement. The as-prepared Au/AuAg/Ag2S/PbS core-multishell nanorods display distinct localized surface plasmon resonance and nonlinear optical properties, demonstrating an effective pathway for maneuvering the optical properties of nanocavities.This paper describes a facile method for the synthesis of Au/AuAg/Ag2S/PbS core-multishell nanorods with double trapping layers. The synthesis, in sequence, involved deposition of Ag shells onto the surfaces of Au nanorod seeds, formation of AuAg shells by a galvanic replacement reaction, and overgrowth of the Ag2S shells and PbS shells. The resulting core-multishell nanorod possesses an air gap between the Au core and the AuAg shell. Together with the Ag2S shell, the air gap can efficiently trap light, causing strong field confinement and nonlinear enhancement. The as-prepared Au/AuAg/Ag2S/PbS core-multishell nanorods display distinct localized surface plasmon resonance and nonlinear optical properties, demonstrating an effective pathway for maneuvering the optical properties of nanocavities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09151a

  11. Effects of variations in precursor concentration on the growth of rutile TiO2 nanorods on Si substrate with fabricated fast-response metal-semiconductor-metal UV detector

    NASA Astrophysics Data System (ADS)

    Selman, Abbas M.; Hassan, Z.

    2015-06-01

    This study aimed to investigate the effects of variations in precursor concentration (TiCl3 solution) on the structural, morphological, and optical properties of rutile titanium dioxide (TiO2) nanorods and fabricated metal-semiconductor-metal UV detector depending on the optimal sample. The nanorods were prepared from an aqueous solution of titanium (III) chloride (TiCl3) on p-type, (1 1 1)-oriented Si substrates at different concentrations of TiCl3 solutions (2, 3, 4, and 5 mM). The experimental results showed that the TiO2 nanorods grown at 4 mM concentration exhibited optimal structural properties. A fast-response metal-semiconductor-metal UV detector was fabricated by depositing Pt contacts on the front of the optimal sample via RF reactive magnetron sputtering. Upon exposure to 365 nm light (2.3 mW/cm2) at 5 V bias voltage, the device showed 44.4 sensitivity. In addition, the internal gain was 1.45, and the photoresponse peak was 70 mA/W. The response and the recovery times were calculated to be 7.8 ms upon illumination to a pulse UV light (365 nm) at 5 V bias voltage.

  12. Mechanically reinforced {1 1 0} <1 1 0> textured Ag/Ni-alloys composite substrates for low-cost coated conductors

    NASA Astrophysics Data System (ADS)

    Suo, Hongli; Genoud, Jean-Yves; Caracino, Paola; Spreafico, Sergio; Schindl, Michael; Walker, Eric; Flükiger, René

    2002-08-01

    New, reinforced {1 1 0} <1 1 0> textured Ag/Ni-alloys composite ribbons were developed as possible substrates for coated conductors without any buffer layer. The texture quality and tensile strength were investigated. A new technique to bond the Ag and Ni or alloy layers through a Cu foil was presented. The Ag/Ni-alloys composite ribbons were fabricated by choosing proper sintering processing to bond the different layers followed by cold rolling and recrystallization. A thin Cu foil was intercalated between the initial Ag and Ni or alloy pieces to get a tough bond. A unique and stable {1 1 0} <1 1 0> annealing texture was obtained in 300 μm thick Ag/Ni composite ribbon after annealing. X-ray ODF analysis and EBSD measurements in the top Ag layer showed distribution of misorientation angles around 10-15°. A {1 1 0} <1 1 0> texture was also found in ribbons as thin as 50 μm, which cannot be obtained with pure Ag ribbons. A pronounced reduction of Ag amount was obtained in 60 μm thick Ag/NiCrV ribbons, with a textured Ag top layer being as thin as 7 μm. The amount of Ag was decreased by 75% compared to pure Ag ribbons of the same thickness. A strong enhancement of the mechanical properties was observed. The yield strength σ0.2 at 77 K was 220 MPa for Ag/NiCrV ribbons, i.e. considerably higher than the 30 MPa for pure Ag ribbons.

  13. Effect of wettability on surface morphologies and optical properties of Ag thin films grown on glass and polymer substrates by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Lv, Jing

    2013-05-01

    A series of Ag films with different thicknesses were deposited on BK-7 glass, PET and PC substrates under identical conditions by thermal evaporation. The effect of the wettability on the morphology and optical properties of Ag/glass and Ag/polymer films was studied by atomic force microscopy and spectrophotometry. The experimental results show that the wettability of Ag grains with polymer is stronger than with glass, which results in the aggregation of bigger grains in initial layer. During deposition the interaction of interlayer plays an important role for the formation of the surface morphology. The strong wettability activates the nonlinear optical properties of Ag grains grown on polymer substrates, which result in the strong absorbance in short wavelength. The effect of the bare substrate on the transmittance of Ag films is more obvious than the reflectance. With the increasing of the thickness, the effect of the wettability on the morphology and optical properties of Ag films decline. In this experiment when the thickness is above 50 nm, the effect almost vanished.

  14. Structural and optical properties of AgAlTe{sub 2} layers grown on sapphire substrates by closed space sublimation method

    SciTech Connect

    Uruno, A. Usui, A.; Kobayashi, M.

    2014-11-14

    AgAlTe{sub 2} layers were grown on a- and c-plane sapphire substrates using a closed space sublimation method. Grown layers were confirmed to be single phase layers of AgAlTe{sub 2} by X-ray diffraction. AgAlTe{sub 2} layers were grown to have a strong preference for the (112) orientation on both kinds of substrates. The variation in the orientation of grown layers was analyzed in detail using the X-ray diffraction pole figure measurement, which revealed that the AgAlTe{sub 2} had a preferential epitaxial relationship with the c-plane sapphire substrate. The atomic arrangement between the (112) AgAlTe{sub 2} layer and sapphire substrates was compared. It was considered that the high order of the lattice arrangement symmetry probably effectively accommodated the lattice mismatch. The optical properties of the grown layer were also evaluated by transmittance measurements. The bandgap energy was found to be around 2.3 eV, which was in agreement with the theoretical bandgap energy of AgAlTe{sub 2}.

  15. Resistive switching characteristics of a compact ZnO nanorod array grown directly on an Al-doped ZnO substrate

    NASA Astrophysics Data System (ADS)

    Yoo, E. J.; Shin, J. Y.; Yoon, T. S.; Kang, C. J.; Choi, Y. J.

    2016-07-01

    ZnO’s resistive switching properties have drawn much attention because ZnO has a simple chemical composition and is easy to manipulate. The propulsion mechanism for resistive switching in ZnO is based on a conducting filament that consists of oxygen vacancies. In the case of film structure, the random formation of the conducting filaments occasionally leads to unstable switching characteristics. Limiting the direction in which the conducting filaments are formed is one way to solve this problem. In this study, we demonstrate reliable resistive switching behavior in a device with an Au/compact ZnO nanorod array/Al-doped ZnO structure with stable resistive switching over 105 cycles and a long retention time of 104 s by confining conducting filaments along the boundaries between ZnO nanorods. The restrictive formation of conducting filaments along the boundaries between ZnO nanorods is observed directly using conductive atomic force microscopy.

  16. Substrate-Linked Conformational Change in the Periplasmic Component of a Cu(I)/Ag(I) Efflux System

    SciTech Connect

    Bagai, I.; Liu, W.; Rensing, C.; Blackburn, N.J.; McEvoy, M.M.

    2009-06-02

    Gram-negative bacteria utilize dual membrane resistance nodulation division-type efflux systems to export a variety of substrates. These systems contain an essential periplasmic component that is important for assembly of the protein complex. We show here that the periplasmic protein CusB from the Cus copper/silver efflux system has a critical role in Cu(I) and Ag(I) binding. Isothermal titration calorimetry experiments demonstrate that one Ag(I) ion is bound per CusB molecule with high affinity. X-ray absorption spectroscopy data indicate that the metal environment is an all-sulfur 3-coordinate environment. Candidates for the metal-coordinating residues were identified from sequence analysis, which showed four conserved methionine residues. Mutations of three of these methionine residues to isoleucine resulted in significant effects on CusB metal binding in vitro. Cells containing these CusB variants also show a decrease in their ability to grow on copper-containing plates, indicating an important functional role for metal binding by CusB. Gel filtration chromatography demonstrates that upon binding metal, CusB undergoes a conformational change to a more compact structure. Based on these structural and functional effects of metal binding, we propose that the periplasmic component of resistance nodulation division-type efflux systems plays an active role in export through substrate-linked conformational changes.

  17. Novel One-pot Fabrication of Lab-on-a-Bubble@Ag Substrate without Coupling-agent for Surface Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Jiang, Jizhou; Ou-Yang, Lei; Zhu, Lihua; Zou, Jing; Tang, Heqing

    2014-02-01

    Through in-situ reduction of silver nitrate without using any coupling-agent, a substrate for surface-enhanced Raman scattering (SERS) was prepared by coating silver on hollow buoyant silica microspheres as a lab on a bubble (LoB). The silver coated LoBs (LoBs@Ag) floated on surface of a solution could provide a very convenient platform for the detection of target molecules in the solution. The LoBs@Ag substrate not only immobilized well-distributed Ag nanoparticles on the surface LoBs, but excluded the interference of coupling agents. This yielded high-resolution SERS spectra with excellent reproducibility. The adsorption of crystal violet (CV) on the LoBs@Ag substrate was investigated by means of SERS combined with density functional theory (DFT) calculations. The LoBs@Ag substrate exhibited a remarkable Raman enhancement effect for CV with an enhancement factor of 6.9 × 108 and wide adaptability from dye, pesticide to bio-molecules. On the basis of this substrate, a simple and sensitive SERS method was proposed for the determination of trace organic pollutants or bio-molecules.

  18. Novel One-pot Fabrication of Lab-on-a-Bubble@Ag Substrate without Coupling-agent for Surface Enhanced Raman Scattering

    PubMed Central

    Jiang, Jizhou; Ou-Yang, Lei; Zhu, Lihua; Zou, Jing; Tang, Heqing

    2014-01-01

    Through in-situ reduction of silver nitrate without using any coupling-agent, a substrate for surface-enhanced Raman scattering (SERS) was prepared by coating silver on hollow buoyant silica microspheres as a lab on a bubble (LoB). The silver coated LoBs (LoBs@Ag) floated on surface of a solution could provide a very convenient platform for the detection of target molecules in the solution. The LoBs@Ag substrate not only immobilized well-distributed Ag nanoparticles on the surface LoBs, but excluded the interference of coupling agents. This yielded high-resolution SERS spectra with excellent reproducibility. The adsorption of crystal violet (CV) on the LoBs@Ag substrate was investigated by means of SERS combined with density functional theory (DFT) calculations. The LoBs@Ag substrate exhibited a remarkable Raman enhancement effect for CV with an enhancement factor of 6.9 × 108 and wide adaptability from dye, pesticide to bio-molecules. On the basis of this substrate, a simple and sensitive SERS method was proposed for the determination of trace organic pollutants or bio-molecules. PMID:24487575

  19. Silver Nanorods Wrapped with Ultrathin Al2O3 Layers Exhibiting Excellent SERS Sensitivity and Outstanding SERS Stability

    PubMed Central

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Xie, Zheng; Zhang, Zhengjun

    2015-01-01

    Silver nanostructures have been considered as promising substrates for surface-enhanced Raman scattering (SERS) with extremely high sensitivity. The applications, however, are hindered by the facts that their morphology can be easily destroyed due to the low melting points (~100 °C) and their surfaces are readily oxidized/sulfured in air, thus losing the SERS activity. It was found that wrapping Ag nanorods with an ultrathin (~1.5 nm) but dense and amorphous Al2O3 layer by low-temperature atomic layer deposition (ALD) could make the nanorods robust in morphology up to 400 °C, and passivate completely their surfaces to stabilize the SERS activity in air, without decreasing much the SERS sensitivity. This simple strategy holds great potentials to generate highly robust and stable SERS substrates for real applications. PMID:26264281

  20. Electrochemically grown ZnO nanorods for hybrid solar cell applications

    SciTech Connect

    Hames, Yakup; Alpaslan, Zuehal; Koesemen, Arif; San, Sait Eren; Yerli, Yusuf

    2010-03-15

    A hybrid solar cell is designed and proposed as a feasible and reasonable alternative, according to acquired efficiency with the employment of zinc oxide (ZnO) nanorods and ZnO thin films at the same time. Both of these ZnO structures were grown electrochemically and poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester; (P3HT:PCBM) was used as an active polymer blend, which was found to be compatible to prepared indium-tin-oxide (ITO) substrate base. This ITO base was introduced with mentioned ZnO structure in such a way that, the most efficient configuration was optimized to be ITO/ZnO film/ZnO nanorod/P3HT: PCBM/Ag. Efficiency of this optimized device is found to be 2.44%. All ZnO works were carried out electrochemically, that is indeed for the first time and at relatively lower temperatures. (author)

  1. Ag-nanoparticle-decorated Ge nanocap arrays protruding from porous anodic aluminum oxide as sensitive and reproducible surface-enhanced Raman scattering substrates.

    PubMed

    Liu, Jing; Meng, Guowen; Li, Xiangdong; Huang, Zhulin

    2014-11-25

    We report on the fabrication of Ag nanoparticle (Ag NP) decorated germanium (Ge) nanocap (Ag-NPs@Ge-nanocap) arrays protruding from highly ordered porous anodic aluminum oxide (AAO) template as highly sensitive and uniform surface-enhanced Raman scattering (SERS) substrates. The hybrid SERS substrates are fabricated via a combinatorial process of AAO template-assisted growth of Ge nanotubes with each tube having a hemispherical nanocap on the AAO pore bottom, wet chemical etching of the remaining aluminum and the AAO barrier layer to expose the Ge nanocaps, and sputtering Ag NPs on the Ge nanocap arrays. Because sufficient SERS "hot spots" are created from the electromagnetic coupling among the Ag NPs on the Ge nanocap and the highly ordered Ge nanocap arrays also have semiconducting chemical supporting enhancement, the hybrid SERS substrates have high SERS sensitivity and good signal reproducibility. Using the hybrid SERS substrates, Rhodamine 6G with a concentration down to 10(-11) M is identified, and one congener of highly toxic polychlorinated biphenyls with a concentration as low as 10(-6) M is also recognized, showing great potential for SERS-based rapid detection of organic pollutants in the environment.

  2. Structural and optical properties of dense vertically aligned ZnO nanorods grown onto silver and gold thin films by galvanic effect with iron contamination

    SciTech Connect

    Scarpellini, D.; Paoloni, S.; Medaglia, P.G.; Pizzoferrato, R.; Orsini, A.; Falconi, C.

    2015-05-15

    Highlights: • ZnO nanorods were grown on Au and Ag films in aqueous solution by galvanic effect. • The method is prone to metal contamination which can influence the ZnO properties. • Iron doping improves the lattice matching between ZnO and the substrate. • Energy levels of point defects are lowered and the light emission is red-shifted. • Galvanic-induced nucleation starts and proceeds continuously during the growth. - Abstract: Dense arrays of vertically aligned ZnO nanorods have been grown onto either silver or gold seedless substrates trough a simple hydrothermal method by exploiting the galvanic effect between the substrate and metallic parts. The nanorods exhibit larger bases and more defined hexagonal shapes, in comparison with standard non-galvanic wet-chemistry synthesis. X-ray diffraction (XRD) shows that the iron contamination, associated with the galvanic contact, significantly improves the in-plane compatibility of ZnO with the Au and Ag cubic lattice. Photoluminescence (PL) measurements indicate that the contamination does not affect the number density of localized defects, but lowers their energy levels uniformly; differently, the band-edge emission is not altered appreciably. Finally, we have found that the ZnO hetero-nucleation by galvanic effect initiates at different times in different sites of the substrate area. Our results can be useful for the fabrication of high performance piezonanodevices comprising high-density metal-to-ZnO nanoscaled junctions without intermediate polycrystalline layers.

  3. Methods of making functionalized nanorods

    DOEpatents

    Gur, Ilan; Milliron, Delia; Alivisatos, A. Paul; Liu, Haitao

    2012-01-10

    A process for forming functionalized nanorods. The process includes providing a substrate, modifying the substrate by depositing a self-assembled monolayer of a bi-functional molecule on the substrate, wherein the monolayer is chosen such that one side of the bi-functional molecule binds to the substrate surface and the other side shows an independent affinity for binding to a nanocrystal surface, so as to form a modified substrate. The process further includes contacting the modified substrate with a solution containing nanocrystal colloids, forming a bound monolayer of nanocrystals on the substrate surface, depositing a polymer layer over the monolayer of nanocrystals to partially cover the monolayer of nanocrystals, so as to leave a layer of exposed nanocrystals, functionalizing the exposed nanocrystals, to form functionalized nanocrystals, and then releasing the functionalized nanocrystals from the substrate.

  4. Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants

    NASA Astrophysics Data System (ADS)

    Ye, Yingjie; Chen, Jin; Ding, Qianqian; Lin, Dongyue; Dong, Ronglu; Yang, Liangbao; Liu, Jinhuai

    2013-06-01

    Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization.Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization. Electronic supplementary information (ESI) available: Additional XRD patterns and SEM images of Fe3O4@C particles, SERS spectra of 4-ATP and 4-MPY using Fe3O4@C@Ag particles as the active substrates, magnetic behaviour of Fe3O4@C and Fe3O4@C@Ag particles. See DOI: 10.1039/c3nr01273e

  5. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids.

    PubMed

    Ren, Wen; Fang, Youxing; Wang, Erkang

    2011-08-23

    Herein graphene oxide/Ag nanoparticle hybrids (GO/PDDA/AgNPs) were fabricated according to a self-assembly procedure. Using the obtained GO/PDDA/AgNPs as SERS substrates, an ultrasensitive and label-free detection of folic acid in water and serum was demonstrated based on the inherent SERS spectra of folic acid. The modified graphene oxide exhibited strong enrichment of folic acid due to the electrostatic interaction, and the self-assembled Ag nanoparticles greatly enhanced the SERS spectra of folic acid, both of which led to an ultrahigh sensitivity. Therefore, although the SERS enhancement of p-ATP on GO/PDDA/AgNPs was weaker than that on Ag nanoparticles, the SERS signals of folic acid on GO/PDDA/AgNPs were much stronger than that on Ag nanoparticles. To improve the detection, the concentration of GO/PDDA/AgNPs was optimized to reduce background of the graphene oxide. The SERS spectra of the folic acid showed that the minimum detected concentration of folic acid in water was as low as 9 nM with a linear response range from 9 to 180 nM. To estimate the feasibility of the detection method based on GO/PDDA/AgNPs for the practical applications, diluted serum containing different concentrations of folic acid was taken as real samples. It was established that the sensitivity and the linear range for the folic acid in serum were comparable to that in water. This ultrasensitive and label-free SERS detection of folic acid based on GO/PDDA/AgNPs offers great potential for practical applications of medicine and biotechnology.

  6. Formation processes of Bi-2212 films prepared on Ag( 0 0 1 ) substrate by an atomization technique

    NASA Astrophysics Data System (ADS)

    Su, Yanjing; Satoh, Yoshimasa; Arisawa, Shunichi; Takano, Yoshihiko; Ishii, Akira; Hatano, Takeshi; Togano, Kazumasa

    2002-08-01

    We have studied in detail the growth of Bi-2212 ribbon-like thin film by melting Bi-2212 powders dispersed on flat, sputter-deposited Ag(0 0 1) films with order of tens of nm root-mean-square surface roughness. The formation processes of Bi-2212 ribbon-like thin films were studied by in situ high-temperature microscope observations. Because the powders melt incongruently, the liquid phase disperses with residual solid phases on the substrate. The residual solid phases act as the barrier for the melting phase to diffuse. Nearly monophasic Bi-2212 with excellent c-axis orientation in these thin films, proved by X-ray diffraction results, is the result of shortened diffusion length of the liquid phase. These techniques can be used especially to synthesize high quality Bi-based superconducting thin films for intrinsic Josephson junction devices.

  7. Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates

    NASA Astrophysics Data System (ADS)

    Bir, F.; Khireddine, H.; Touati, A.; Sidane, D.; Yala, S.; Oudadesse, H.

    2012-07-01

    Fluoridated hydroxyapatite (FHA, Ca10(PO4)6(OH)2-xFx where 0 < x < 2 is the degree of fluoridation) and inorganic ions (Zn2+, Cu2+, Ag+) substituted fluoridated hydroxyapatite coatings (M-FHA) were deposited on the surface of medical grade 316L stainless steel samples by electrochemical deposition technique. The FHA coatings were co-substituted with antibacterial ions (Zn2+, Cu2+ or Ag+) by co-precipitation and ion-exchange methods. Characterization studies of coatings from X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX) showed that the obtained layers are monophase crystals FHA and did not contain any discernible crystalline impurity. The particles of all samples are of nano size that gives thin layers. The surface morphology, microstructure and Ca/P atomic ratio of the FHA coatings can be regulated by varying electrolyte temperature. This later affects the porosity of the coating surface and the chemical compositions of the deposits. Quantitative elemental analysis indicates that the copper, zinc and silver ions are incorporated into the Fluorohydroxyapatite. The antimicrobial effects of doped fluorohydroxyapatite coatings against pathogen bacterial strains Staphylococcus aureus were tested in liquid media. The results are promising and demonstrated that all doped FHA samples exhibit excellent antimicrobial activity "in vitro" against the microorganism, so the antimicrobial properties of the coatings developed are improved.

  8. Polymer-templated electrodeposition of Ag nanosheets assemblies array as reproducible surface-enhanced Raman scattering substrate.

    PubMed

    Liu, Sisi; Xu, Zhimou; Sun, Tangyou; Zhao, Wenning; Wu, Xinghui; Ma, Zhichao; Zhang, Xueming; He, Jian; Chen, Cunhua

    2014-06-01

    Position-configurable, reproducible, vertically aligned nanosheets assemblies (ANAs) arrays are fabricated by polymer-templated electrodeposition method at room temperature. Here, nanoimprint lithography is utilized to fabricate polymer template on the fluorine-doped tin oxide substrate for the purpose of evenly tuning the location of Ag nanostructures. Subsequently, vertically aligned ANAs can be achieved at the bottom of each hole via electrodeposition in a mixed aqueous solution of AgNO3 and citric acid. To obtain uniform ANAs array, we have systematically investigated the factors that influenced the electrodeposition. It was found that the formation of uniform ANAs arrays is strongly depended on the seeding layer, citric acid concentration, electrodeposition potential and time. The as-synthesized ANAs array exhibited a remarkable SERS activity and Raman signal reproducibility to rhodamine 6G, a concentration down to 10(-13) M can be identified. Our results revealed that the ANAs array is a highly desirable candidate as the reliable enhancer for high performance SERS analysis.

  9. Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Fei Chan, Yu; Xing Zhang, Chang; Long Wu, Zheng; Mei Zhao, Dan; Wang, Wei; Jun Xu, Hai; Sun, Xiao Ming

    2013-05-01

    Dendritic silver nanostructures coated with silica nanofilm are synthesized via hydrothermal etching using silver nitrate, hydrofluoric acid, and hydrogen peroxide and controlling the reagent concentration, reaction time, and temperature. The silver dendritic nanostructures are employed as substrates for surface-enhanced Raman scattering (SERS) and exhibit high sensitivity and excellent stability. Calibration of the Raman peak intensities of rhodamine 6G and thiram allowed quantitative detection of these organic molecules. Our findings are a significant advance in developing robust SERS substrates for fast detection of trace organic contaminants.

  10. Optical and photoelectrochemical performance study based on n-ZnO nanorod arrays/p-CuAlO2 laminar films/Ni heterojunction

    NASA Astrophysics Data System (ADS)

    Ding, Juan; Yang, Haibin; Deng, Weiwen

    2014-06-01

    A novel ZnO nanorod arrays (NRs)/CuAlO2 laminar films heterojunction nanostructure was grown on the substrate of Ni plates using sol-gel synthesis for laminar films and subsequent hydrothermal reaction for nanorod arrays. The surface morphology, structure, optical and photoelectrochemical behaviors of this heterojunction were considered. Two significant absorption peaks of UV-vis spectra and a favorable forward current to reverse current ratio at applied voltage of -0.7 V to +2 V were observed in this heterojunction. Furthermore, the photoelectrochemical property was indicated that the highest photocurrent of 0.67 mA/cm2 was obtained under AM 1.5 illumination (vs Ag/AgCl). This heterojunction will play an important role in the optoelectronic fields and can be extended to other binary or ternary oxide compositions for optoelectronic applications.

  11. Electric Field Assisted Assembly of Perpendicular Oriented NanorodSuperlattices

    SciTech Connect

    Ryan, Kevin M.; Mastroianni, Alex; Stancil, Kimani A.; Liu,Haitao; Alivisatos, Paul A.

    2006-04-10

    We observe the assembly of CdS nanorod superlattices by thecombination of a DC electric field and solvent evaporation. In eachelectric field (1 V/um) assisted assembly, CdS nanorods (5 x 30 nm)suspended initially in toluene were observed to align perpendicularly tothe substrate. Azimuthal alignment along the nanorod crystal faces andthe presence of stacking faults indicate that both 2D and 3D assemblieswere formed by a process of controlled super crystal growth.

  12. Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics

    SciTech Connect

    Park, Yong-Seok; Kim, Han-Ki

    2010-01-15

    The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 {epsilon}/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10{sup -3} {Omega}{sup -1} on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

  13. A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system

    NASA Astrophysics Data System (ADS)

    Chen, P. X.; Qiu, H. W.; Xu, S. C.; Liu, X. Y.; Li, Z.; Hu, L. T.; Li, C. H.; Guo, J.; Jiang, S. Z.; Huo, Y. Y.

    2016-07-01

    Few layers MoS2 were directly synthesized on Ag nanoparticles (AgNPs) by thermal decomposion method to fabricate a MoS2/AgNPs hybrid system for surface-enhanced Raman scattering (SERS). The MoS2/AgNPs hybrid system shows high performance in terms of sensitivity, signal-to-noise ratio, reproducibility and stability. The minimum detected concentration from MoS2/AgNPs hybrid system for R6 G can reach 10-9 M, which is one order of magnitude lower than that from AgNPs system. The hybrid system shows the reasonable linear response between the Raman intensity and concentration that R2 is reached to 0.988. The maximum deviations of SERS intensities from 20 positions of the SERS substrate are less than 13%. Besides, the hybrid system has a good stability, the Raman intensity only drop by 20% in a month. This work can provide a basis for the fabrication of novel SERS substrates.

  14. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Chang Xing; Su, Lei; Chan, Yu Fei; Wu, Zheng Long; Zhao, Yong Mei; Xu, Hai Jun; Sun, Xiao Ming

    2013-08-01

    Ag nanoparticles (NPs) coated with silica nanolayers were decorated onto a large-scale and uniform silicon nanowire array (SiNWA) by simple chemical etching and metal reduction processes. The three-dimensional Ag/SiNWAs thus formed are employed as a substrate for surface-enhanced Raman scattering (SERS), and a detection limit for rhodamine 6G as low as 10-16 M and a Raman enhancement factor as large as 1014 were obtained. Simulation results show that two kinds of inter-Ag-NP nanogaps in three-dimensional geometry create a huge number of SERS ‘hot spots’ where electromagnetic fields are substantially amplified, contributing to the higher SERS sensitivity and lower detection limit. The excellent SERS stability of Ag/SiNWAs is attributed to the presence of the SiO2 nanolayer around Ag NPs that prevented the Ag NP surface from being oxidized. The calibration of the Raman peak intensities of rhodamine 6G and thiram allowed their quantitative detection. Our finding is a significant advance in developing SERS substrates for the fast and quantitative detection of trace organic molecules.

  15. Utilizing vertically aligned CdSe/CdS nanorods within a luminescent solar concentrator

    NASA Astrophysics Data System (ADS)

    Fisher, Martyn; Farrell, Daniel; Zanella, Marco; Lupi, Antonio; Stavrinou, Paul N.; Chatten, Amanda J.

    2015-01-01

    Optical characterisation methodologies are employed to validate a nanorod self-alignment technique for use in luminescent solar concentrators (LSCs). The nanorods utilised in this work were CdSe/CdS core/shell nanorods, and the self-alignment technique relied on the evaporation of a highly concentrated nanorod/xylene solution onto a glass substrate. Position and angular dependent light absorptivity measurements revealed evidence of vertical nanorod alignment over a limited region at the centre of the LSC sample. Vertical nanorod alignment is beneficial for absorbing diffuse/scattered sunlight and provides for a high light trapping efficiency in the LSC.

  16. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    SciTech Connect

    Das, Sayantan; Alford, T. L.

    2013-06-28

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  17. YBa2Cu3O7-δ - ag Sputtered Thin Films on MgO (100) and LaAlO3 (100) Biased and Unbiased Substrates

    NASA Astrophysics Data System (ADS)

    Moshfegh, A. Z.; Akhavan, O.; Salamati, H.; Kameli, P.; Akhavan, M.

    2000-09-01

    In this investigation, we have deposited YBa2Cu3O7-δ - Ag thin films on various biased and unbiased substrates, including MgO (100), LaAlO3 (100) and Si (111), using a single stoichiometric composite target of YBa2Cu3O7-δ with 10 wt.% Ag content, applying DC sputtering technique. The growth parameters are varied as following: sputtering gas pressure PAr = 100 - 300 mtorr, sputtering power P = 30 - 80 W, substrate bias voltage Vb= 0 - 220 V and film thickness t = 500 - 5000 Å. An optimum bias voltage of Vb= - 100 V was obtained under our experimental conditions. The post annealed (930°C for 1 hr in O2 environment) films exhibit superconducting state with Tc (onset) of about 40 K for biased (on - axis), and 86 K for unbiased (off- axis) post annealed (800 ° C, 3 hr) films grown over both MgO(100) and LaAlO3 (100) substrates. According to our SEM analysis, Ag particles are uniformly distributed in the annealed films with average grain size of about 0.3 μm located mostly at the grain boundaries. PIXE compositional analysis of the deposited films indicates deficiency of Cu and Ba for unannealed and Cu rich concentration for the annealed YBCO - Ag films grown over unbiased LaAlO3 (100) substrate.

  18. Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates: I. Effects of Loading and Processing Conditions

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Kumar, P.; Dutta, I.; Pang, J. H. L.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2012-02-01

    During service, microcracks form inside solder joints, making microelectronic packages highly prone to failure on dropping. Hence, the fracture behavior of solder joints under drop conditions at high strain rates and under mixed-mode conditions is a critically important design consideration for robust joints. This study reports on the effects of joint processing and loading conditions on the microstructure and fracture response of Sn-3.8%Ag-0.7%Cu (SAC387) solder joints attached to Cu substrates. The impact of parameters which control the microstructure (reflow condition, aging) as well as loading conditions (strain rate and loading angle) are explicitly studied. A methodology based on the calculation of the critical energy release rate, G C, using compact mixed-mode (CMM) samples was developed to quantify the fracture toughness of the joints under conditions of adhesive (i.e., interface-related) fracture. In general, higher strain rate and increased mode-mixity resulted in decreased G C. G C also decreased with increasing dwell time at reflow temperature, which produced a thicker intermetallic layer at the solder-substrate interface. Softer solders, produced by slower cooling following reflow, or post-reflow aging, showed enhanced G C. The sensitivity of the fracture toughness to all of the aforementioned parameters reduced with an increase in the mode-mixity. Fracture mechanisms, elucidating the effects of the loading conditions and process parameters, are briefly highlighted.

  19. Noble metal nanodisks epitaxially formed on ZnO nanorods and their effect on photoluminescence

    NASA Astrophysics Data System (ADS)

    Chu, Sheng; Ren, Jingjian; Yan, Dong; Huang, Jian; Liu, Jianlin

    2012-07-01

    Triangular and hexagonal shaped noble metal (Au, Ag, Pt, Pd) nanodisks were synthesized on the top facets of ZnO nanorods via simple deposition-annealing method. Other metals (Ni, Cu, Cr, Pb, Al) only formed irregular shaped nanostructures on ZnO nanorods. The morphology, elemental composition, as well as growth mechanism of the metal nanodisks/ZnO nanorod composite materials were studied. The localized surface plasmon resonant effects from different metal nanodisks on the photoluminescence of ZnO nanorods were investigated. It was demonstrated that the carriers transfer between the metal nanodisks and ZnO can efficiently manipulate the photoluminescence intensities from the nanorods.

  20. Glass-(nAg, nCu) Biocide Coatings on Ceramic Oxide Substrates

    PubMed Central

    Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín

    2012-01-01

    The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram−, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1–2 µg/cm2 in the case of silver nanoparticles, and 10–15 µg/cm2 for the copper nanoparticles. PMID:22427967

  1. Tensile and fatigue behaviors of printed Ag thin films on flexible substrates

    SciTech Connect

    Sim, Gi-Dong; Won, Sejeong; Lee, Soon-Bok

    2012-11-05

    Flexible electronics using nanoparticle (NP) printing has been highlighted as a key technology enabling eco-friendly, low-cost, and large-area fabrication. For NP-based printing to be used as a successive alternative to photolithography and vacuum deposition, stretchability and long term reliability must be considered. This paper reports the stretchability and fatigue behavior of 100 nm thick NP-based silver thin films printed on polyethylene-terephthalate substrate and compares it to films deposited by electron-beam evaporation. NP-based films show stretchability and fatigue life comparable to evaporated films with intergranular fracture as the dominant failure mechanism.

  2. Plasmon-induced broadband fluorescence enhancement on Al-Ag bimetallic substrates

    PubMed Central

    Hao, Qi; Du, Deyang; Wang, Chenxi; Li, Wan; Huang, Hao; Li, Jiaqi; Qiu, Teng; Chu, Paul K.

    2014-01-01

    Surface enhanced fluorescence (SEF) utilizes the local electromagnetic environment to enhance fluorescence from the analyte on the surface of a solid substrate with nanostructures. While the detection sensitivity of SEF is improved with the development of nano-techniques, detection of multiple analytes by SEF is still a challenge due to the compromise between the high enhancing efficiency and broad response bandwidth. In this article, a high-efficiency SEF substrate with broad response bandwidth is obtained by embedding silver in an aluminum film to produce additional bonding and anti-bonding hybridized states. The bimetallic film is fabricated by ion implantation and the ion energy and fluence are tailored to control subsurface location of the fabricated bimetallic nanostructures. The process circumvents the inherent limit of aluminum materials and extends the plasmon band of aluminum from deep UV to visible range. Fluorescence from different dyes excited by 310 nm to 555 nm is enhanced by up to 11 folds on the single bimetallic film and the result is theoretically confirmed by finite-difference time-domain simulations. This work demonstrates that bimetallic film can be used for optical detection of multiple analytes. PMID:25109261

  3. Superconducting YBCO thin film on multicrystalline Ag film evaporated on MgO substrate

    NASA Astrophysics Data System (ADS)

    Azoulay, Jacob; Verdyan, Armen; Lapsker, Igor

    Superconducting YBa 2Cu 3O 7-δ films were grown by resistive evaporation on multicrystalline silver film which was evaporated on MgO substrate. A simple inexpensive vacuum system equipped with resistively heated boat was used for the whole process. Silver film was first evaporated on MgO substrate kept at 400°C during the evaporation after which with no further annealing a precursor mixture of yttrium small grains and Cu and BaF2 in powder form weighed in the atomic proportion to yield stoichiometric YBa 2Cu 3O 7 was evaporated. The films thus obtained were annealed at 740°C under low oxygen partial pressure of about 1Pa for 30 minutes to form the superconducting phase. X-ray diffraction and scanning electron microscopy techniques were used for texture and surface analysis. Electrical properties were determined using a standard dc four-probe for electrical measurements. The physical and electrical properties of the YBCO films are discussed in light of the fact that X-ray diffraction measurements done on the silver film have revealed a multicrystalline structure

  4. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection

    NASA Astrophysics Data System (ADS)

    Zuo, Zewen; Zhu, Kai; Gu, Chuan; Wen, Yibing; Cui, Guanglei; Qu, Jun

    2016-08-01

    Transparent, flexible surface-enhanced Raman scattering (SERS) substrates were fabricated by metalization of structured polyethylene terephthalate (PET) sheets. The resultant Ag-coated structured PET SERS substrates were revealed to be highly sensitive with good reproducibility and stability, an enhancement factor of 3 × 106 was acquired, which can be attributed mainly to the presence of plentiful multiple-type hot spots within the quasi-three-dimensional surface of the structured PET obtained by oxygen plasma etching. In addition, detections of model molecules on fruit skin were also carried out, demonstrating the great potential of the Ag-coated structured PET in in-situ detection of analyte on irregular objects. Importantly, the technique used for the preparation of such substrate is completely compatible with well-established silicon device technologies, and large-area fabrication with low cost can be readily realized.

  5. Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

    SciTech Connect

    Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich; Wang, Lin-Wang; Alivisatos, A. Paul

    2008-12-18

    The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

  6. Aligned growth of gold nanorods in PMMA channels: parallel preparation of nanogaps.

    PubMed

    Jain, Titoo; Lara-Avila, Samuel; Kervennic, Yann-Vai; Moth-Poulsen, Kasper; Nørgaard, Kasper; Kubatkin, Sergey; Bjørnholm, Thomas

    2012-05-22

    We demonstrate alignment and positional control of gold nanorods grown in situ on substrates using a seed-mediated synthetic approach. Alignment control is obtained by directing the growth of spherical nanoparticle seeds into nanorods in well-defined poly(methyl methacrylate) nanochannels. Substrates with prepatterned metallic electrodes provide an additional handle for the position of the gold nanorods and yield nanometer-sized gaps between the electrode and nanorod. The presented approach is a novel demonstration of bottom-up device fabrication of multiple nanogap junctions on a single chip mediated viain situ growth of gold nanorods acting as nanoelectrodes.

  7. Electrochemical deposition of zinc oxide nanorods for hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Torres Damasco Ty, Jennifer; Yanagi, Hisao

    2015-04-01

    Zinc oxide (ZnO) nanorod arrays for inorganic/organic hybrid solar cells were electrochemically deposited on indium tin oxide (ITO) substrates with a rotating disk electrode setup. The addition of a ZnO seed layer on the ITO prior to electrochemical deposition improved the morphology of the nanorods, resulting in nanorods with smaller and homogenous diameters as well as a higher degree of vertical orientation on to the substrate. The ZnO films deposited on the seeded ITO substrates had higher optical transmittance and lower concentration of defects. Chronoamperometric transient curves show that nucleation and coalescence occurred later for bare ITO substrates, indicating lower densities of initial nuclei, resulting in the growth of nanorods with larger diameters. The solar cell characteristics of the devices fabricated from the seeded ITO substrates were better. The seed layer also acts as a hole-blocking layer, preventing the direct contact between the hole-transporting polymer material and the ITO.

  8. Rich variety of substrates for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van; Nhung Tran, Hong

    2016-09-01

    The efficiency of the application of surface enhanced Raman spectroscopy (SERS) technique to each specified purpose significantly depends on the choice of the SERS substrate with an appropriate structure as well as on its performance. Until the present time a rich variety of SERS substrates was fabricated. They can be classified according to their structures. The present work is a review of main types of SERS substrates for using in the trace analysis application. They can be classified into 4 groups: (1) Substrates using gold nanoparticles (AuNPs) with spherical shape such as colloidal AuNPs, AuNPs fabricated by pulsed laser deposition, by sputtering or by capillary force assembly (CFA), substrates fabricated by electrospinning technique, substrates using metallic nanoparticle arrays fabricated by electron beam lithography combined with CFA method, substrates using silver nanoparticle (AgNP) arrays grain by chemical seeded method, substrates with tunable surface plasmon resonance, substrates based on precies subnanometer plasmonic junctions within AuNP assemblies, substrates fabricated by simultaneously immobilizing both AuNPs and AgNPs on the same glass sides etc. (2) Substrates using nanostructures with non-spherical shapes such as gold nanowire (NW), or highly anisotropic nickel NW together with large area, free-standing carpets, substrates with obviously angular, quasi-vertically aligned cuboid-shaped TiO2 NW arrays decorated with AgNPs, substrates using gold nanoprism monolayer films, substrates using silver nanocube dimmers or monodisperse close-packed gold nanotriangle monolayers. (3) Substrates using multiparticle complex nanostructure such as nanoparticle cluster arrays, gold nanoflowers and nanodendrites. (4) Flexible substrate such as paper-based swab with gold nanorods, adhesive polymer tapes fabricated by inkjet printing method and flexible and adhesive SERS tapes fabricated by decorating AuNPs via the conventional drop-dry method.

  9. Ultrafast carrier dynamics in GaN nanorods

    SciTech Connect

    Yang, Chi-Yuan; Chia, Chih-Ta; Chen, Hung-Ying; Gwo, Shangjr; Lin, Kung-Hsuan

    2014-11-24

    We present ultrafast time-resolved optical spectroscopy on GaN nanorods at room temperature. The studied GaN nanorods, with diameters of ∼50 nm and lengths of ∼400 nm, were grown on the silicon substrate. After femtosecond optical pulses excited carriers in the GaN nanorods, the carriers thermalized within a few picoseconds. Subsequently, the electrons are trapped by the surface states on the order of 20 ps. After the surface electric field was reformed in the GaN nanorods, we found the lifetime of the residue carriers in GaN nanorods is longer than 1.7 ns at room temperature, while the lifetime of carriers in GaN thin film is typically a few hundred picoseconds. Our findings indicate that GaN nanorods have higher electrical quality compared with GaN thin film.

  10. Influence of a hot and humid environment on thermal transport across the interface between a Ag thin-film line and a substrate

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Noguchi, Kyohei; Saka, Masumi

    2016-04-01

    To evaluate the reliability of Ag thin-film lines for a wide range of applications in electronic devices, knowledge of the thermal transport across the interface between the line and the underlying substrate is of great importance. This is because such thermal transport significantly affects the temperature distribution in the line, the electrical performance of the line and the service life of the device the line is installed on. In this work, we examine the influence of a hot and humid environment on the thermal transport across the interface between a Ag thin-film line and a substrate. By performing a series of current-stressing experiments using the four-point probe method at atmospheric conditions (296 K and 30 RH%) on a Ag thin-film line for different durations of exposure to a hot and humid environment (323 K and 90 RH%), the electrical resistivity was found to increase with the exposure duration. Such an increase is believed to be the result of a decrease in the interfacial thermal conductance, which indicates less thermal transport from the line to the substrate. Moreover, by observing the surface morphology changes in the line and conducting a one-dimensional electro-thermal analysis, such variations can be attributed to the generation and growth of voids within the line, which hinder heat transfer from the line to the substrate through the interface.

  11. Synthesis and optical properties of gold nanorods with controllable morphology.

    PubMed

    Ye, Tianyu; Dai, Zhigao; Mei, Fei; Zhang, Xingang; Zhou, Yuanming; Xu, Jinxia; Wu, Wei; Xiao, Xiangheng; Jiang, Changzhong

    2016-11-01

    Searching for architectural building blocks with tunable morphology and peculiarity is a prominent challenge for novel diagnostic and therapeutic applications. Here, the aqueous-based seed-mediated methods for preparing highly mono-dispersed Au nanorods with a different aspect ratio are systematically studied by controlling the amounts of Ag ions and seeds. We also explore the effect of pH on the synthesis of gold nanorods. The realization of the overlap of longitudinal plasmon band and excitation source with different degrees is made by changing the aspect ratio of nanorod in order to determine its effect on the overall surface enhancement. In addition, the gold octahedra are prepared by overgrowth on Au nanorods. The SERS effects of Au nanorods are researched and the FDTD simulations are performed to reveal the morphology induced plasmon modes. PMID:27602883

  12. Synthesis and optical properties of gold nanorods with controllable morphology

    NASA Astrophysics Data System (ADS)

    Ye, Tianyu; Dai, Zhigao; Mei, Fei; Zhang, Xingang; Zhou, Yuanming; Xu, Jinxia; Wu, Wei; Xiao, Xiangheng; Jiang, Changzhong

    2016-11-01

    Searching for architectural building blocks with tunable morphology and peculiarity is a prominent challenge for novel diagnostic and therapeutic applications. Here, the aqueous-based seed-mediated methods for preparing highly mono-dispersed Au nanorods with a different aspect ratio are systematically studied by controlling the amounts of Ag ions and seeds. We also explore the effect of pH on the synthesis of gold nanorods. The realization of the overlap of longitudinal plasmon band and excitation source with different degrees is made by changing the aspect ratio of nanorod in order to determine its effect on the overall surface enhancement. In addition, the gold octahedra are prepared by overgrowth on Au nanorods. The SERS effects of Au nanorods are researched and the FDTD simulations are performed to reveal the morphology induced plasmon modes.

  13. LED Die-Bonded on the Ag/Cu Substrate by a Sn-BiZn-Sn Bonding System

    NASA Astrophysics Data System (ADS)

    Tang, Y. K.; Hsu, Y. C.; Lin, E. J.; Hu, Y. J.; Liu, C. Y.

    2016-08-01

    In this study, light emitting diode (LED) chips were die-bonded on a Ag/Cu substrate by a Sn-BixZn-Sn bonding system. A high die-bonding strength is successfully achieved by using a Sn-BixZn-Sn ternary system. At the bonding interface, there is observed a Bi-segregation phenomenon. This Bi-segregation phenomenon solves the problems of the brittle layer-type Bi at the joint interface. Our shear test results show that the bonding interface with Bi-segregation enhances the shear strength of the LED die-bonding joints. The Bi-0.3Zn and Bi-0.5Zn die-bonding cases have the best shear strength among all die-bonding systems. In addition, we investigate the atomic depth profile of the deposited Bi-xZn layer by evaporating Bi-xZn E-gun alloy sources. The initial Zn content of the deposited Bi-Zn alloy layers are much higher than the average Zn content in the deposited Bi-Zn layers.

  14. GaN based nanorods for solid state lighting

    SciTech Connect

    Li Shunfeng; Waag, Andreas

    2012-04-01

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  15. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate.

    PubMed

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-09-02

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the "V"-shaped or "U"-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications.

  16. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate

    PubMed Central

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-01-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the “V”-shaped or “U”-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications. PMID:27586562

  17. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate.

    PubMed

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-01-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the "V"-shaped or "U"-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications. PMID:27586562

  18. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate

    NASA Astrophysics Data System (ADS)

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-09-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the “V”-shaped or “U”-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications.

  19. Facile in situ growth of highly monodispersed Ag nanoparticles on electrospun PU nanofiber membranes: Flexible and high efficiency substrates for surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Amarjargal, Altangerel; Tijing, Leonard D.; Shon, Ho Kyong; Park, Chan-Hee; Kim, Cheol Sang

    2014-07-01

    In this study, by utilizing a two-step route of electrospinning and polyol immersion, in the absence of any surfactant or sensitizing and stabilizing reagent, a well-distributed assembly of Ag NPs on the electrospun polyurethane (PU) nanofibers was successfully fabricated through a simple and controllable manner. Based on the FE-SEM, XRD and FT-IR analyses, the polyol medium plays an important role in the growth of highly monodispersed Ag NPs, wherein the hydroxyl group of ethylene glycol (EG) can be bridged to the amide group on the surface of the PU nanofibers through intermolecular hydrogen bonds. Fabrication of a polymer fibrous membrane effectively attached/decorated with noble metal NPs, which is essential as flexible and high efficiency substrates for SERS application where the molecule analytes are directly adsorbed on their surfaces is important, could be realized by the present electrospun PU-Ag(EG) nanofibers, employing 4-mercaptobenzoic acid (4-MBA) as probe molecules.

  20. Piezoelectric and opto-electrical properties of silver-doped ZnO nanorods synthesized by low temperature aqueous chemical method

    SciTech Connect

    Nour, E. S. Echresh, A.; Willander, M.; Nur, O.; Liu, Xianjie; Broitman, E.

    2015-07-15

    In this paper, we have synthesized Zn{sub 1−x}Ag{sub x}O (x = 0, 0.03, 0.06, and 0.09) nanorods (NRs) via the hydrothermal method at low temperature on silicon substrate. The characterization and comparison between the different Zn{sub 1−x}Ag{sub x}O samples, indicated that an increasing Ag concentration from x = 0 to a maximum of x = 0.09; All samples show a preferred orientation of (002) direction with no observable change of morphology. As the quantity of the Ag dopant was changed, the transmittances, as well as the optical band gap were decreased. X-ray photoelectron spectroscopy data clearly indicate the presence of Ag in ZnO crystal lattice. A nanoindentation-based technique was used to measure the effective piezo-response of different concentrations of Ag for both direct and converse effects. The value of the piezoelectric coefficient (d{sub 33}) as well as the piezo potential generated from the ZnO NRs and Zn{sub 1−x}Ag{sub x}O NRs was found to decrease with the increase of Ag fraction. The finding in this investigation reveals that Ag doped ZnO is not suitable for piezoelectric energy harvesting devices.

  1. Low temperature processing of single domain YBa 2Cu 3O y thick films from Y 2O 3 fabrics on Ag-Pd alloy substrates

    NASA Astrophysics Data System (ADS)

    Reddy, E. S.; Goodilin, E. A.; Tarka, M.; Zeisberger, M.; Schmitz, G. J.

    2002-08-01

    Single domain YBa 2Cu 3O y (Y123) thick films (∼100 μm) were fabricated on untextured Ag12 wt.%Pd alloy substrates from Y 2O 3 cloths by an infiltration and growth process. The process involves the infiltration of Y 2O 3 cloths placed on metallic substrates by barium cuprates and copper oxide liquids at 970 °C. The infiltrated Y 2O 3 cloth is subsequently transformed into single domain Y123 during a slow cooling schedule in the presence of a c-axis oriented Nd123 seed crystal placed at the top center of the fabric. The solidification window for single domain growth is lowered to 970-950 °C using liquid phases containing up 10 wt.% Ag and small amounts of BaF 2.

  2. Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates

    NASA Astrophysics Data System (ADS)

    Eraković, S.; Janković, A.; Ristoscu, C.; Duta, L.; Serban, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Socol, M.; Iordache, O.; Dumitrescu, I.; Luculescu, C. R.; Janaćković, Dj.; Miškovic-Stanković, V.

    2014-02-01

    Hydroxyapatite (HA) is a widely used biomaterial for implant thin films, largely recognized for its excellent capability to chemically bond to hard tissue inducing the osteogenesis without immune response from human tissues. Nowadays, intense research efforts are focused on development of antimicrobial HA doped thin films. In particular, HA doped with Ag (Ag:HA) is expected to inhibit the attachment of microbes and contamination of metallic implant surface. We herewith report on nano-sized HA and Ag:HA thin films synthesized by pulsed laser deposition on pure Ti and Ti modified with 100 nm diameter TiO2 nanotubes (fabricated by anodization of Ti plates) substrates. The HA-based thin films were characterized by SEM, AFM, EDS, FTIR, and XRD. The cytotoxic activity was tested with HEp2 cells against controls. The antifungal efficiency of the deposited layers was tested against the Candida albicans and Aspergillus niger strains. The Ti substrates modified with TiO2 nanotubes covered with Ag:HA thin films showed the highest antifungal activity.

  3. Ag-TiO2 nanoparticle codoped SiO2 films on ZrO2 barrier-coated glass substrates with antibacterial activity in ambient condition.

    PubMed

    Mukhopadhyay, Anindita; Basak, Sujit; Das, Jugal Kishore; Medda, Samar Kumar; Chattopadhyay, Krishnananda; De, Goutam

    2010-09-01

    Anatase TiO2 and Ag nanoparticles (NPs) codoped SiO2 films were prepared by the sol-gel method. Proportionate amounts of 3-(glycidoxypropyl)trimethoxysilane (GLYMO), tetraethylorthosilicate (TEOS) and 3-(methacryloxypropyl)trimethoxysilane (MEMO) derived inorganic-organic silica sol, commercially available dispersed anatase TiO2 NPs, and AgNO3 were used to prepare the sols. The films were prepared on ZrO2 (cubic) precoated soda-lime glass substrates by a single-dipping technique and heat-treated at 450 °C in air and H2/Ar atmosphere to obtain hard, relatively porous, and transparent coatings of thickness>600 nm. The ZrO2 barrier layer was previously applied on soda-lime glass to restrict the diffusion of Ag into the substrate. The Ag-TiO2 NPs incorporated SiO2 films were intense yellow in color and found to be fairly stable at ambient condition for several days under fluorescent light. These films show a considerable growth inhibition on contact with the gram negative bacteria E. coli.

  4. 3D Ag/ZnO hybrids for sensitive surface-enhanced Raman scattering detection

    NASA Astrophysics Data System (ADS)

    Huang, Chenyue; Xu, Chunxiang; Lu, Junfeng; Li, Zhaohui; Tian, Zhengshan

    2016-03-01

    To combine the surface plasma resonance of metal and local field enhancement in metal/semiconductor interface, Ag nanoparticles (NPs) were assembled on a ZnO nanorod array which was grown by hydrothermally on carbon fibers. The construction of dimensional (3D) Surface-Enhanced Raman Scattering (SERS) substrate is used for the sensitive detection of organic pollutants with the advantages such as facile synthesis, short detection time and low cost. The hybrid substrate was manifested a high sensitivity to phenol red at a lower concentration of 1 × 10-9 M and a higher enhancement factor of 3.18 × 109. Moreover, the ZnO nanostructures decorated with Ag NPs were demonstrated self-cleaning function under UV irradiation via photocatalytic degradation of the analytic molecules. The fabrication process of the materials and sensors, optimization of the SERS behaviors for different sized Ag NPs, the mechanism of SERS and recovery were presented with a detailed discussion.

  5. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al{sub 2}O{sub 3}(0001) substrates

    SciTech Connect

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-05-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al{sub 2}O{sub 3}(0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively.

  6. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique.

    PubMed

    Fu, Qun; Zhan, Zhibing; Dou, Jinxia; Zheng, Xianzheng; Xu, Rui; Wu, Minghong; Lei, Yong

    2015-06-24

    Applicable surface enhanced Raman scattering (SERS) active substrates require high enhancement factor (EF), excellent spatial reproducibility, and low-cost fabrication method on a large area. Although several SERS substrates with high EF and relative standard deviation (RSD) of signal less than 5% were reported, reliable fabrication for large area SERS substrates with both high sensitivity and high reproducibility via low-cost routes remains a challenge. Here, we report a facile and cost-effective fabrication process for large-scale SERS substrate with Ag inter-nanoparticle (NP) gaps of 5 nm based on ultrathin alumina mask (UTAM) surface pattern technique. Such closely packed Ag NP arrays with high density of electromagnetic field enhancement ("hot spots") on large area exhibit high SERS activity and excellent reproducibility, simultaneously. Rhodamine 6G molecules with concentration of 1 × 10(-7) M are used to determine the SERS performance, and an EF of ∼10(9) is obtained. It should be noted that we obtain RSDs about 2% from 10 random spots on an area of 1 cm(2), which implies the highly reproducible signals. Finite-difference time-domain simulations further suggest that the enhanced electric field originates from the narrow gap, which agrees well with the experimental results. The low value of RSD and the high EF of SERS signals indicate that the as-prepared substrate may be promising for highly sensitive and uniform SERS detection.

  7. Spectroscopy and imaging of arrays of nanorods toward nanopolarimetry.

    PubMed

    Lereu, A L; Passian, A; Farahi, R H; Abel-Tiberini, L; Tetard, L; Thundat, T

    2012-02-01

    The polarization dependence of the optical scattering properties of two-dimensional arrays of metal nanostructures with sub-wavelength dimensions (nanoantennas) has been investigated. Arrays of 500 nm × 100 nm gold nanorods covering a 100 × 100 µm(2) area were fabricated with varying orientations on an electrically conductive substrate. The experimental and computational analysis of the angularly organized nanorods suggest potential use toward the development of an integrated polarimeter. Using the gold nanorods on a transparent substrate as a preliminary system, we show that in the proper spectral range the scattering properties of the structures may be tuned for such an application. PMID:22214608

  8. Surface area-dependent second harmonic generation from silver nanorods.

    PubMed

    Ngo, Hoang Minh; Luong, Thanh Tuyen; Ledoux-Rak, Isabelle

    2016-08-17

    The nonlinear optical (NLO) properties of metallic nanoparticles strongly depend on their size and shape. Metallic gold nanorods have already been widely investigated, but other noble metals could also be used for nanorod fabrication towards applications in photonics. Here we report on the synthesis and NLO characterization of silver nanorods (AgNRs) with controllable localized surface plasmon resonance. We have implemented an original, one-step and seedless synthesis method, based on a spontaneous particle growth technique in the presence of polyvinylpyrrolidone (PVP) as a capping agent. Colloidal solutions of AgNRs with various aspect ratios (5.0; 6.3; 7.5; 8.2 and 9.7) have been obtained and characterized using Harmonic light scattering (HLS) at 1064 nm, in order to investigate their quadratic NLO properties. From HLS experiments, we demonstrate that hyperpolarizability (β) values of AgNRs display a strong dependence on their surface area.

  9. Surface area-dependent second harmonic generation from silver nanorods.

    PubMed

    Ngo, Hoang Minh; Luong, Thanh Tuyen; Ledoux-Rak, Isabelle

    2016-08-17

    The nonlinear optical (NLO) properties of metallic nanoparticles strongly depend on their size and shape. Metallic gold nanorods have already been widely investigated, but other noble metals could also be used for nanorod fabrication towards applications in photonics. Here we report on the synthesis and NLO characterization of silver nanorods (AgNRs) with controllable localized surface plasmon resonance. We have implemented an original, one-step and seedless synthesis method, based on a spontaneous particle growth technique in the presence of polyvinylpyrrolidone (PVP) as a capping agent. Colloidal solutions of AgNRs with various aspect ratios (5.0; 6.3; 7.5; 8.2 and 9.7) have been obtained and characterized using Harmonic light scattering (HLS) at 1064 nm, in order to investigate their quadratic NLO properties. From HLS experiments, we demonstrate that hyperpolarizability (β) values of AgNRs display a strong dependence on their surface area. PMID:27498825

  10. Hydroquinone Based Synthesis of Gold Nanorods.

    PubMed

    Picciolini, Silvia; Mehn, Dora; Ojea-Jiménez, Isaac; Gramatica, Furio; Morasso, Carlo

    2016-08-10

    Gold nanorods are an important kind of nanoparticles characterized by peculiar plasmonic properties. Despite their widespread use in nanotechnology, the synthetic methods for the preparation of gold nanorods are still not fully optimized. In this paper we describe a new, highly efficient, two-step protocol based on the use of hydroquinone as a mild reducing agent. Our approach allows the preparation of nanorods with a good control of size and aspect ratio (AR) simply by varying the amount of hexadecyl trimethylammonium bromide (CTAB) and silver ions (Ag(+)) present in the "growth solution". By using this method, it is possible to markedly reduce the amount of CTAB, an expensive and cytotoxic reagent, necessary to obtain the elongated shape. Gold nanorods with an aspect ratio of about 3 can be obtained in the presence of just 50 mM of CTAB (versus 100 mM used in the standard protocol based on the use of ascorbic acid), while shorter gold nanorods are obtained using a concentration as low as 10 mM.

  11. Hydroquinone Based Synthesis of Gold Nanorods.

    PubMed

    Picciolini, Silvia; Mehn, Dora; Ojea-Jiménez, Isaac; Gramatica, Furio; Morasso, Carlo

    2016-01-01

    Gold nanorods are an important kind of nanoparticles characterized by peculiar plasmonic properties. Despite their widespread use in nanotechnology, the synthetic methods for the preparation of gold nanorods are still not fully optimized. In this paper we describe a new, highly efficient, two-step protocol based on the use of hydroquinone as a mild reducing agent. Our approach allows the preparation of nanorods with a good control of size and aspect ratio (AR) simply by varying the amount of hexadecyl trimethylammonium bromide (CTAB) and silver ions (Ag(+)) present in the "growth solution". By using this method, it is possible to markedly reduce the amount of CTAB, an expensive and cytotoxic reagent, necessary to obtain the elongated shape. Gold nanorods with an aspect ratio of about 3 can be obtained in the presence of just 50 mM of CTAB (versus 100 mM used in the standard protocol based on the use of ascorbic acid), while shorter gold nanorods are obtained using a concentration as low as 10 mM. PMID:27585238

  12. Gold Nanobipyramid-Directed Growth of Length-Variable Silver Nanorods with Multipolar Plasmon Resonances.

    PubMed

    Zhuo, Xiaolu; Zhu, Xingzhong; Li, Qian; Yang, Zhi; Wang, Jianfang

    2015-07-28

    We report on a method for the preparation of uniform and length-variable Ag nanorods through anisotropic Ag overgrowth on high-purity Au nanobipyramids. The rod diameters can be roughly tailored from ∼20 nm to ∼50 nm by judicious selection of differently sized Au nanobipyramids. The rod lengths can be tuned from ∼150 nm to ∼550 nm by varying the Ag precursor amount during the overgrowth process and/or by anisotropic shortening through mild oxidation. The controllable aspect ratios, high purity, and high dimensional uniformity of these Ag nanorods enable the observation of Fabry-Pérot-like multipolar plasmon resonance modes in the colloidal suspensions at the ensemble level, which has so far been demonstrated only on Au nanorods prepared electrochemically with anodic aluminum oxide templates. Depending on the mode order and geometry of the Ag nanorods, the multipolar plasmon wavelengths can be readily tailored over a wide spectral range from the visible to near-infrared region. We have further elucidated the relationships between the multipolar plasmon wavelengths and the geometric dimensions of the Ag nanorods at both the ensemble and single-particle levels. Our results indicate that the Au nanobipyramid-directed, dimensionally controllable Ag nanorods will be an attractive and promising candidate for developing multipolar plasmon-based devices and applications.

  13. Gold Nanobipyramid-Directed Growth of Length-Variable Silver Nanorods with Multipolar Plasmon Resonances.

    PubMed

    Zhuo, Xiaolu; Zhu, Xingzhong; Li, Qian; Yang, Zhi; Wang, Jianfang

    2015-07-28

    We report on a method for the preparation of uniform and length-variable Ag nanorods through anisotropic Ag overgrowth on high-purity Au nanobipyramids. The rod diameters can be roughly tailored from ∼20 nm to ∼50 nm by judicious selection of differently sized Au nanobipyramids. The rod lengths can be tuned from ∼150 nm to ∼550 nm by varying the Ag precursor amount during the overgrowth process and/or by anisotropic shortening through mild oxidation. The controllable aspect ratios, high purity, and high dimensional uniformity of these Ag nanorods enable the observation of Fabry-Pérot-like multipolar plasmon resonance modes in the colloidal suspensions at the ensemble level, which has so far been demonstrated only on Au nanorods prepared electrochemically with anodic aluminum oxide templates. Depending on the mode order and geometry of the Ag nanorods, the multipolar plasmon wavelengths can be readily tailored over a wide spectral range from the visible to near-infrared region. We have further elucidated the relationships between the multipolar plasmon wavelengths and the geometric dimensions of the Ag nanorods at both the ensemble and single-particle levels. Our results indicate that the Au nanobipyramid-directed, dimensionally controllable Ag nanorods will be an attractive and promising candidate for developing multipolar plasmon-based devices and applications. PMID:26135608

  14. Growth process for gallium nitride porous nanorods

    SciTech Connect

    Wildeson, Isaac Harshman; Sands, Timothy David

    2015-03-24

    A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.

  15. Asymmetric hollow nanorod formation through a partial galvanic replacement reaction.

    PubMed

    Seo, Daeha; Song, Hyunjoon

    2009-12-30

    An asymmetric single hollow structure was generated from Ag-Au-Ag heterometal nanorods by a partial galvanic replacement reaction for the first time. The C(2)-symmetry breaking took place because of the random generation of a single pit on only one end of the silver domain at an early stage of the reaction. Careful control of the reaction kinetics could also yield a double-hollow structure on both ends of the silver domain. The resulting single- and double-hollow nanorods exhibited characteristic extinctions in the near-IR range.

  16. Tailoring the optical and hydrophobic property of zinc oxide nanorod by coating with amorphous graphene

    NASA Astrophysics Data System (ADS)

    Pahari, D.; Das, N. S.; Das, B.; Chattopadhyay, K. K.; Banerjee, D.

    2016-09-01

    Zinc oxide (ZnO) nanorods were synthesized at room temperature on potassium permanganate activated silicon and glass substrate by simple chemical method using zinc acetate as precursor. To modify the surface energy of the as prepared ZnO thin films the samples were coated with amorphous graphene (a-G) synthesized by un-zipping of chemically synthesized amorphous carbon nanotubes (a-CNTs). All the pure and coated samples were characterized by x-ray diffraction, field emission scanning electron microscope, Raman spectroscopy, and Fourier transformed infrared spectroscopy. The roughness analysis of the as prepared samples was done by atomic force microscopic analysis. The detail optical properties of all the samples were studied with the help of a UV-Visible spectrophotometer. The surface energy of the as prepared pure and coated samples was calculated by measuring the contact angle of two different liquids. It is seen that the water repellence of ZnO nanorods got increased after they are being coated with a-Gs. Also even after UV irradiation the contact angle remain same unlike the case for the uncoated sample where the contact angle gets decreased significantly after UV irradiation. Existing Cassie-Wenzel model has been employed along with the Owen's approach to determine the different components of surface energy.

  17. A comparative study on in situ grown superconducting YBCO and YBCO-Ag thin films by PLD on polycrystalline SmBa2NbO6 substrate

    NASA Astrophysics Data System (ADS)

    Kurian, J.; John, Asha M.; Wariar, P. R. S.; Sajith, P. K.; Koshy, J.; Pai, S. P.; Pinto, R.

    2000-02-01

    The development and characterization of SmBa2NbO6, which is a new ceramic substrate material for the YBa2Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> superconductor, are reported. SmBa2NbO6 has a complex cubic perovskite structure with lattice constant a = 8.524 Å. The dielectric properties of SmBa2NbO6 are in a range suitable for its use as a substrate for microwave applications. SmBa2NbO6 was found to have a thermal conductivity of 77 W m-1 K-1 and a thermal expansion coefficient of 7.8 × 10-6 °C-1 at room temperature. Superconducting YBa2 Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> and YBa2Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> -Ag thin films have been grown in situ on polycrystalline SmBa2NbO6 by the pulsed laser ablation technique. The films exhibited (00l) orientation of an orthorhombic YBa2 Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> phase and gave a zero resistivity superconducting transition (TC(0)) at 90 K with a transition width of ~1.5 K. The critical current density of YBCO-Ag thin films grown on polycrystalline SmBa2NbO6 substrate was ~3 × 105 A cm-2 at 77 K. A comparative study of YBCO and YBCO-Ag thin films developed on polycrystalline SmBa2NbO6 substrate by PLD based on the crystallinity, orientation and critical current density of the YBCO film is discussed in detail.

  18. Electrospun TiO₂ nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering.

    PubMed

    Zhao, Yong; Sun, Lei; Xi, Min; Feng, Quan; Jiang, Chaoyang; Fong, Hao

    2014-04-23

    In this study, the free-standing electrospun nanofibrous mat (i.e., nanofelt) consisting of anatase-phase TiO2 nanofibers with diameters of ∼200 nm was prepared, and the nanofelt was subsequently surface-decorated with Ag nanoparticles via an electroless plating method. The sensitivity toward surface enhanced Raman scattering (SERS) and UV-cleanable property of electrospun TiO2/Ag nanofelt were then investigated. In the SERS tests, the target analyte (i.e., 4-mercaptobenzoic acid, Rhodamine 6G, and 4-aminothiophenol) was first adsorbed onto the TiO2/Ag nanofelt as the probe analyte; this was followed by the measurements of Raman intensity and SERS maps. Thereafter, the nanofelt adsorbed with target analyte was cleaned and regenerated/recovered upon UV irradiation in O2-saturated water, and the removal of target analyte was attributed to photodegradation property of anatase-phase TiO2. This study suggested that the electrospun TiO2/Ag nanofelt would be promising as SERS-active substrate with UV-cleanable property for cost-effective and reproducible SERS applications.

  19. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.

    PubMed

    Wang, Chaoguang; Wu, Xuezhong; Dong, Peitao; Chen, Jian; Xiao, Rui

    2016-12-15

    Paraquat (PQ) pollutions are ultra-toxic to human beings and hard to be decomposed in the environment, thus requiring an on-site detection strategy. Herein, we developed a robust and rapid PQ sensing strategy based on the surface-enhanced Raman scattering (SERS) technique. A hybrid SERS substrate was prepared by grafting the Au@Ag core-shell nanoparticles (NPs) on the Au film over slightly etched nanoparticles (Au FOSEN). Hotspots were engineered at the junctions as indicated by the finite difference time domain calculation. SERS performance of the hybrid substrate was explored using p-ATP as the Raman probe. The hybrid substrate gives higher enhancement factor comparing to either the Au FOSEN substrate or the Au@Ag core-shell NPs, and exhibits excellent reproducibility, homogeneity and stability. The proposed SERS substrates were prepared in batches for the practical PQ sensing. The total analysis time for a single sample, including the pre-treatment and measurement, was less than 5min with a PQ detection limit of 10nM. Peak intensities of the SERS signal were plotted as a function of the PQ concentrations to calibrate the sensitivity by fitting the Hill's equation. The plotted calibration curve showed a good log-log linearity with the coefficient of determination of 0.98. The selectivity of the sensing proposal was based on the "finger print" Raman spectra of the analyte. The proposed substrate exhibited good recovery when it applied to real water samples, including lab tap water, bottled water, and commercially obtained apple juice and grape juice. This SERS-based PQ detection method is simple, rapid, sensitive and selective, which shows great potential in pesticide residue and additives abuse monitoring. PMID:27498319

  20. Improving photoelectrochemical performance by building Fe{sub 2}O{sub 3} heterostructure on TiO{sub 2} nanorod arrays

    SciTech Connect

    Cao, Chunlan; Hu, Chenguo; Shen, Weidong; Wang, Shuxia; Song, Sihong; Wang, Mingjun

    2015-10-15

    Highlights: • Fe{sub 2}O{sub 3}@TiO{sub 2} heterostructure was fabricated by two-step method. • The photoelectrochemical properties were studied upon visible light irradiation. • Fe{sub 2}O{sub 3}@TiO{sub 2} heterostructure shows superior photoelectrochemical property. • A possible mechanism for enhanced photoelectrochemical property was put forward. - Abstract: Fe{sub 2}O{sub 3}@TiO{sub 2} heterostructure nanorod arrays were synthesized on a fluorine-doped tin oxide conductive (FTO) glass substrate via two-step method for improving photoelectrochemical activity of TiO{sub 2}. The TiO{sub 2} nanorod arrays on FTO substrate were first prepared by hydrothermal method and then Fe{sub 2}O{sub 3} nanoparticles were coated onto the surface of TiO{sub 2} nanorod arrays through chemical bath deposition. The heterojunction yielded a photocurrent density of 39.75 μA cm{sup −2} at a bias potential of 0 V (vs. Ag/AgCl) under visible light irradiation, which is 2.2 times as much as that produced by the pure TiO{sub 2} nanorod arrays. The enhanced photoelectrochemical activity is attributed to the extension of the light response range and efficient separation of photogenerated carriers. Our results have demonstrated the advantage of the novel Fe{sub 2}O{sub 3}@TiO{sub 2} heterojunction and will provide a new path to the fabrication of heterostructural materials.

  1. Ag electrode modified with polyhexamethylene biguanide stabilized silver nanoparticles: a new type of SERS substrates for detection of enzymatically generated thiocholine

    NASA Astrophysics Data System (ADS)

    Tepanov, A. A.; Nechaeva, N. L.; Prokopkina, T. A.; Kudrinskiy, A. A.; Kurochkin, I. N.; Lisichkin, G. V.

    2015-11-01

    The detection of thiocholine is one of the most widespread techniques for estimation of the cholinesterase activity - acetylcholinesterase and butyrylcholinesterase. Both cholinesterases can be inhibited by organophosphates and carbamates and accordingly can be considered for estimation of these pollutants in the environment. In the current work, SERS spectroscopy was applied for the thiocholine detection. The Ag electrodes modified with silver nanoparticles stabilized by polyhexamethylene biguanide were for the first time suggested as SERS-substrates for that purpose. Such electrodes can be applicable for SERS detection of submicromolar concentrations of thiocholine.

  2. Multifunctional nanotube-like Fe3O4/PANI/CDs/Ag hybrids: An efficient SERS substrate and nanocatalyst.

    PubMed

    Yan, Manqing; Shen, Yang; Zhang, Guiyang; Bi, Hong

    2016-01-01

    In this paper, the stable and environment-friendly Fe3O4 nanotubes with polyaniline (Fe3O4 NTs/PANI hybrids) have been prepared via mesoporous anodic alumina oxide (AAO) template, sol-gel method and in-situ polymerization. Then multifunctional Fe3O4 NTs/PANI/Ag hybrids have been obtained by decorating Ag nanoparticles by glucose reduction on surface of Fe3O4 NTs/PANI hybrids. The morphologies and structures of these hybrids were subsequently investigated by SEM, XRD, TEM and XPS measurements. The Fe3O4 NTs/PANI/Ag hybrids presented high catalytic activity due to the template-assisted presence, preventing Ag particulate agglomeration. Importantly, the Fe3O4 NTs/PANI/Ag hybrids achieve sensitive surface-enhanced Raman scattering (SERS) signals. Furthermore, the introduction of carbon dots (CDs) endows these hybrids good dispersion and stable photoluminescence (PL). Therefore, the obtained hybrids may have potential applications in waste water treatment, biomedicine, photocatalyst, and environmental analysis.

  3. Multifunctional nanotube-like Fe3O4/PANI/CDs/Ag hybrids: An efficient SERS substrate and nanocatalyst.

    PubMed

    Yan, Manqing; Shen, Yang; Zhang, Guiyang; Bi, Hong

    2016-01-01

    In this paper, the stable and environment-friendly Fe3O4 nanotubes with polyaniline (Fe3O4 NTs/PANI hybrids) have been prepared via mesoporous anodic alumina oxide (AAO) template, sol-gel method and in-situ polymerization. Then multifunctional Fe3O4 NTs/PANI/Ag hybrids have been obtained by decorating Ag nanoparticles by glucose reduction on surface of Fe3O4 NTs/PANI hybrids. The morphologies and structures of these hybrids were subsequently investigated by SEM, XRD, TEM and XPS measurements. The Fe3O4 NTs/PANI/Ag hybrids presented high catalytic activity due to the template-assisted presence, preventing Ag particulate agglomeration. Importantly, the Fe3O4 NTs/PANI/Ag hybrids achieve sensitive surface-enhanced Raman scattering (SERS) signals. Furthermore, the introduction of carbon dots (CDs) endows these hybrids good dispersion and stable photoluminescence (PL). Therefore, the obtained hybrids may have potential applications in waste water treatment, biomedicine, photocatalyst, and environmental analysis. PMID:26478345

  4. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  5. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  6. A Multiscale TiO2 Nanorod Array for Ultrasensitive Capture of Circulating Tumor Cells.

    PubMed

    Sun, Na; Li, Xinpan; Wang, Zhili; Zhang, Ruihua; Wang, Jine; Wang, Kewei; Pei, Renjun

    2016-05-25

    In this work, a uniform multiscale TiO2 nanorod array is fabricated to provide a "multi-scale interacting platform" for cell capture, which exhibits excellent capture specificity and sensitivity of the target cells after modification with bovine serum albumin (BSA) and DNA aptamer. After studying the capture performance of the BSA-aptamer TiO2 nanorod substrates and other nanostructured substrates, we can conclude that the multisacle TiO2 nanorod substrates could indeed effectively enhance the capture yields of target cancer cells. The capture yield of artificial blood samples on the BSA-aptamer TiO2 nanorod substrates is up to 85%-95%, revealing the potential application of the TiO2 nanorods on efficient and sensitive capture of rare circulating tumor cells. PMID:27176724

  7. Hierarchically assembled NiCo@SiO2@Ag magnetic core-shell microspheres as highly efficient and recyclable 3D SERS substrates.

    PubMed

    Zhang, Maofeng; Zhao, Aiwu; Wang, Dapeng; Sun, Henghui

    2015-01-21

    The hierarchically nanosheet-assembled NiCo@SiO2@Ag (NSA) core-shell microspheres have been synthesized by a layer-by-layer procedure at ambient temperature. The mean particle size of NSA microspheres is about 1.7 μm, which is made up of some nanosheets with an average thickness of ∼20 nm. The outer silver shell surface structures can be controlled well by adjusting the concentration of Ag(+) ions and the reaction times. The obtained NSA 3D micro/nanostructures show a structure enhanced SERS performance, which can be attributed to the special nanoscale configuration with wedge-shaped surface architecture. We find that NSA microspheres with nanosheet-assembled shell structure exhibit the highest enhancement efficiency and high SERS sensitivity to p-ATP and MBA molecules. We show that the detection limits for both p-ATP and MBA of the optimized NSA microsphere substrates can approach 10(-7) M. And the relative standard deviation of the Raman peak maximum is ∼13%, which indicates good uniformity of the substrate. In addition, the magnetic NSA microspheres with high saturation magnetization show a quick magnetic response, good recoverability and recyclability. Therefore, such NSA microspheres may have great practical potential applications in rapid and reproducible trace detection of chemical, biological and environment pollutants with a simple portable Raman instrument.

  8. Electrostatic Assemblies of Well-Dispersed AgNPs on the Surface of Electrospun Nanofibers as Highly Active SERS Substrates for Wide-Range pH Sensing.

    PubMed

    Yang, Tong; Ma, Jun; Zhen, Shu Jun; Huang, Cheng Zhi

    2016-06-15

    Surface-enhanced Raman scattering (SERS) has shown high promise in analysis and bioanalysis, wherein noble metal nanoparticles (NMNPs) such as silver nanoparticles were employed as substrates because of their strong localized surface plasmon resonance (LSPR) properties. However, SERS-based pH sensing was restricted because of the aggregation of NMNPs in acidic medium or biosamples with high ionic strength. Herein, by using the electrostatic interaction as a driving force, AgNPs are assembled on the surface of ethylene imine polymer (PEI)/poly(vinyl alcohol) (PVA) electrospun nanofibers, which are then applied as highly sensitive and reproducible SERS substrate with an enhancement factor (EF) of 10(7)-10(8). When p-aminothiophenol (p-ATP) is used as an indicator with its b2 mode, a good and wide linear response to pH ranging from 2.56 to 11.20 could be available, and the as-prepared nanocomposite fibers then could be fabricated as excellent pH sensors in complicated biological samples such as urine, considering that the pH of urine could reflect the acid-base status of a person. This work not only emerges a cost-effective, direct, and convenient approach to homogeneously decorate AgNPs on the surface of polymer nanofibers but also supplies a route for preparing other noble metal nanofibrous sensing membranes. PMID:27214514

  9. Electrostatic Assemblies of Well-Dispersed AgNPs on the Surface of Electrospun Nanofibers as Highly Active SERS Substrates for Wide-Range pH Sensing.

    PubMed

    Yang, Tong; Ma, Jun; Zhen, Shu Jun; Huang, Cheng Zhi

    2016-06-15

    Surface-enhanced Raman scattering (SERS) has shown high promise in analysis and bioanalysis, wherein noble metal nanoparticles (NMNPs) such as silver nanoparticles were employed as substrates because of their strong localized surface plasmon resonance (LSPR) properties. However, SERS-based pH sensing was restricted because of the aggregation of NMNPs in acidic medium or biosamples with high ionic strength. Herein, by using the electrostatic interaction as a driving force, AgNPs are assembled on the surface of ethylene imine polymer (PEI)/poly(vinyl alcohol) (PVA) electrospun nanofibers, which are then applied as highly sensitive and reproducible SERS substrate with an enhancement factor (EF) of 10(7)-10(8). When p-aminothiophenol (p-ATP) is used as an indicator with its b2 mode, a good and wide linear response to pH ranging from 2.56 to 11.20 could be available, and the as-prepared nanocomposite fibers then could be fabricated as excellent pH sensors in complicated biological samples such as urine, considering that the pH of urine could reflect the acid-base status of a person. This work not only emerges a cost-effective, direct, and convenient approach to homogeneously decorate AgNPs on the surface of polymer nanofibers but also supplies a route for preparing other noble metal nanofibrous sensing membranes.

  10. Comparison of a Fluorinated Aryl Thiol Self-Assembled Monolayer with Its Hydrogenated Counterpart on Polycrystalline Ag Substrates

    SciTech Connect

    Schalnat, Matthew C.; Pemberton, Jeanne E.

    2010-07-20

    The effects of perfluorination of aryl thiols on surface coverage, surface electronic properties, and molecular orientation of self-assembled monolayers of thiophenol (TP) and pentafluorothiophenol (F5TP) on polycrystalline Ag were evaluated using linear sweep voltammetry, ultraviolet photoelectron spectroscopy (UPS), and surface Raman spectroscopy, respectively. Electrochemical reductive desorption by linear sweep voltammetry indicates a surface coverage for the TP monolayer of (5.07 ± 1.29) × 10-10 mol/cm2, equating to a molecular area of 32.8 ± 8.3 Å2, and a surface coverage for the F5TP monolayer of (1.95 ± 0.59) × 10-10 mol/cm2, equating to an area of 85.2 ± 25.8 Å2/molecule. TP-modified Ag exhibits a change in work function (ΔΦ) of -0.64 eV relative to bare Ag, whereas F5TP-modified Ag exhibits a ΔΦ of +0.54 eV relative to bare Ag. Quantitative analysis of the UPS and reductive desorption results yields molecular pictures of the proposed interfaces with TP molecules tilted <20° from the surface normal in a herringbone pattern spaced 6.4 Å apart and F5TP molecules in a more disordered arrangement tilted 67° from the surface normal with an intermolecular distance of 10.4 Å. Qualitative surface Raman spectroscopic analysis of in-plane and out-of-plane modes for these systems confirms that TP molecules are oriented more vertical than F5TP molecules in these monolayers.

  11. Electromagnetic enhancement of ordered silver nanorod arrays evaluated by discrete dipole approximation

    PubMed Central

    Wei, Guoke; Wang, Jinliang

    2015-01-01

    Summary The enhancement factor (EF) of surface-enhanced Raman scattering (SERS) from two-dimensional (2D) hexagonal silver nanorod (AgNR) arrays were investigated in terms of electromagnetic (EM) mechanism by using the discrete dipole approximation (DDA) method. The dependence of EF on several parameters, i.e., structure, length, excitation wavelength, incident angle and polarization, and gap size has been investigated. “Hotspots” were found distributed in the gaps between adjacent nanorods. Simulations of AgNR arrays of different lengths revealed that increasing the rod length from 374 to 937 nm (aspect ratio from 2.0 to 5.0) generated more “hotspots” but not necessarily increased EF under both 514 and 532 nm excitation. A narrow lateral gap (in the incident plane) was found to result in strong EF, while the dependence of EF on the diagonal gap (out of the incident plane) showed an oscillating behavior. The EF of the array was highly dependent on the angle and polarization of the incident light. The structure of AgNR and the excitation wavelength were also found to affect the EF. The EF of random arrays was stronger than that of an ordered one with the same average gap of 21 nm, which could be explained by the exponential dependence of EF on the lateral gap size. Our results also suggested that absorption rather than extinction or scattering could be a good indicator of EM enhancement. It is expected that the understanding of the dependence of local field enhancement on the structure of the nanoarrays and incident excitations will shine light on the optimal design of efficient SERS substrates and improved performance. PMID:25821708

  12. Colloidal luminescent silicon nanorods.

    PubMed

    Lu, Xiaotang; Hessel, Colin M; Yu, Yixuan; Bogart, Timothy D; Korgel, Brian A

    2013-07-10

    Silicon nanorods are grown by trisilane decomposition in hot squalane in the presence of tin (Sn) nanocrystals and dodecylamine. Sn induces solution-liquid-solid nanorod growth with dodecylamine serving as a stabilizing ligand. As-prepared nanorods do not luminesce, but etching with hydrofluoric acid to remove residual surface oxide followed by thermal hydrosilylation with 1-octadecene induces bright photoluminescence with quantum yields of 4-5%. X-ray photoelectron spectroscopy shows that the ligands prevent surface oxidation for months when stored in air. PMID:23731184

  13. Synthesis and magnetic properties of Cu doped ZnO nanorods via radio frequency plasma deposition

    SciTech Connect

    Wu, Z. F.; Wu, X. M.; Chen, X. M.; Wang, X. F.; Zhuge, L. J.

    2008-07-14

    Well-aligned Cu doped ZnO nanorods were synthesized by simple radio frequency plasma deposition in the absence of extra catalysts. The synthesized nanorods having a typical average diameter of about 60 nm, were about 700 nm in length and well aligned along the normal direction of the substrate. Magnetic measurements indicate that the nanorods are ferromagnetic at room temperature. The presence of considerable oxygen vacancies in the nanorods does allow possible defect mediated mechanisms (e.g., bound magnetic polarons) for mediating exchange coupling of the dopant Cu ions resulting in room temperature ferromagnetism.

  14. Hydrodynamic fabrication of structurally gradient ZnO nanorods.

    PubMed

    Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok

    2016-02-26

    We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation. PMID:26807679

  15. Novel nanorods based on PANI / PEO polymers using electrospinning method

    NASA Astrophysics Data System (ADS)

    Al-Hazeem, Nabeel Z.; Ahmed, Naser M.; Matjafri, M. Z.; Sabah, Fayroz A.; Rasheed, Hiba S.

    2016-07-01

    In this work, we fabricated nanorods by applying an electric potential on poly (ethylene oxide) (PEO) and polyaniline (PANI) as a polymeric solution by electrospinning method. Testing was conducted on the samples by field emission scanning Electron microscope (FE-SEM), X-ray diffraction (XRD) and Photoluminescence. And the results showed the emergence of nanorods in the sample within glass substrate. Diameters of nanorods have ranged between (52.78-122.40)nm And a length of between (1.15 - 1.32)μm. The emergence of so the results are for the first time, never before was the fabrication of nanorods for polymers using the same method used in this research.

  16. Quantitative analysis of gold nanorod alignment after electric field-assisted deposition.

    PubMed

    Ahmed, Waqqar; Kooij, E Stefan; van Silfhout, Arend; Poelsema, Bene

    2009-11-01

    We have studied the alignment of colloidal gold nanorods, deposited from solution onto well-defined substrates in the presence of an AC electric field generated by micrometer spaced electrodes. The field strengths employed in our experiments are sufficiently large to overcome Brownian motion and induce accumulation and alignment of the nanorods in the region near the electrodes with their long axis parallel to the field. However, despite the large fields, we find that the degree of alignment is considerably smaller than what was previously reported for field-induced nanorod alignment in suspension. We show that hydrodynamic interactions and capillary effects during drying, as well as friction of nanorods on the substrate surface, to not play a major role. The limited alignment of nanorods is ascribed to the different experimental configuration and the correspondingly larger density of nanorods. The mutual interactions of nanorods give rise to a disturbance of the local electric field and therewith their orientation. For sufficiently large field strengths, these interactions lead to the formation of nanorod chains that ultimately bridge the electrode gap. Furthermore, for small electrode spacing, the nanorods accumulate on the electrode surface, and the screening of their mutual interactions results into considerably improved alignment. PMID:19719154

  17. Surface chemistry of SnO2 nanowires on Ag-catalyst-covered Si substrate studied using XPS and TDS methods

    PubMed Central

    2014-01-01

    In this paper we investigate the surface chemistry, including surface contaminations, of SnO2 nanowires deposited on Ag-covered Si substrate by vapor phase deposition (VPD), thanks to x-ray photoelectron spectroscopy (XPS) in combination with thermal desorption spectroscopy (TDS). Air-exposed SnO2 nanowires are slightly non-stoichiometric, and a huge amount of C contaminations is observed at their surface. After the thermal physical desorption (TPD) process, SnO2 nanowires become almost stoichiometric without any surface C contaminations. This is probably related to the fact that C contaminations, as well as residual gases from air, are weakly bounded to the crystalline SnO2 nanowires and can be easily removed from their surface. The obtained results gave us insight on the interpretation of the aging effect of SnO2 nanowires that is of great importance for their potential application in the development of novel chemical nanosensor devices. PMID:24461127

  18. Structure and Thermoelectric Properties of Te-Ag-Ge-Sb (TAGS) Materials Obtained by Reduction of Melted Oxide Substrates

    NASA Astrophysics Data System (ADS)

    Kusz, B.; Miruszewski, T.; Bochentyn, B.; Łapiński, M.; Karczewski, J.

    2016-02-01

    Ge0.77Ag0.1Sb0.13Te1 alloy was fabricated by a novel two-step route. Firstly, oxide reagents were melted at high temperature and quenched into pellets. The pellets were milled to powder and then reduced in hydrogen at various temperatures for various periods of time. Energy-dispersive x-ray analysis indicated the possibility of successful fabrication of stoichiometric thermoelectric materials from the Te-Ag-Ge-Sb system. The electrical conductivity and Seebeck coefficient have been determined over the temperature range from 20°C to 340°C in argon atmosphere. It was also shown that, for most of the fabricated samples, the crystallite size as well as electrical parameters such as the electrical conductivity, Seebeck coefficient, and figure of merit ( ZT) increased with increasing reduction time. The highest value of ZT (˜1.0 at 340°C) was obtained for samples reduced in hydrogen atmosphere at 400°C for 20 h and 40 h.

  19. Orientation-and polarization-dependent optical properties of the single Ag nanowire/glass substrate system excited by the evanescent wave

    NASA Astrophysics Data System (ADS)

    Yang, Mu; Cai, Wei; Wang, Yingjie; Sun, Mengtao; Shang, Guangyi

    2016-05-01

    As an important plasmon one-dimensional material, orientation- and polarization-dependent properties of single Ag nanowires/glass substrate system are investigated by a powerful platform consisting of evanescent wave excitation, near-/far-field detection and a micromanipulator. In the case of the nanowire perpendicular or parallel to the incident plane and p- ors-polarized evanescent excitation respectively, optical properties of the nanowire is measured both in far-field and near-field. For the perpendicular situation, scattering light from the nanowire shows strong dependence on the polarization of incident light, and period patterns along the nanowire are observed both in the near- and far-field. The chain of dipole model is used to explain the origin of this pattern. The discrepancy of the period patterns observed in the near- and far-field is due to the different resolution of the near- and far-field detection. For the parallel case, light intensity from the output end also depends on the incident polarization. Both experimental and calculation results show that the polarization dependence effect results from the surface plasmon excitation. These results on the orientation- and polarization-dependent properties of the Ag nanowires detected by the combination of near- and far-field methods would be helpful to understand interactions of one-dimensional plasmonic nanostructures with light.

  20. Orientation-and polarization-dependent optical properties of the single Ag nanowire/glass substrate system excited by the evanescent wave

    PubMed Central

    Yang, Mu; Cai, Wei; Wang, Yingjie; Sun, Mengtao; Shang, Guangyi

    2016-01-01

    As an important plasmon one-dimensional material, orientation- and polarization-dependent properties of single Ag nanowires/glass substrate system are investigated by a powerful platform consisting of evanescent wave excitation, near-/far-field detection and a micromanipulator. In the case of the nanowire perpendicular or parallel to the incident plane and p- ors-polarized evanescent excitation respectively, optical properties of the nanowire is measured both in far-field and near-field. For the perpendicular situation, scattering light from the nanowire shows strong dependence on the polarization of incident light, and period patterns along the nanowire are observed both in the near- and far-field. The chain of dipole model is used to explain the origin of this pattern. The discrepancy of the period patterns observed in the near- and far-field is due to the different resolution of the near- and far-field detection. For the parallel case, light intensity from the output end also depends on the incident polarization. Both experimental and calculation results show that the polarization dependence effect results from the surface plasmon excitation. These results on the orientation- and polarization-dependent properties of the Ag nanowires detected by the combination of near- and far-field methods would be helpful to understand interactions of one-dimensional plasmonic nanostructures with light. PMID:27157123

  1. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    SciTech Connect

    Saoud, Khaled; Alsoubaihi, Rola; Bensalah, Nasr; Bora, Tanujjal; Bertino, Massimo; Dutta, Joydeep

    2015-03-15

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescence and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.

  2. A simple approach for the synthesis of Ag-coated Ni@TiO{sub 2} nanocomposites as recyclable photocatalysts and SERS substrate to monitor catalytic degradation of dye molecules

    SciTech Connect

    Ding, Qianqian; Zhang, Li; Yang, Liangbao

    2014-05-01

    Graphical abstract: - Highlights: • A simple approach was used to synthesize Ag-coated Ni@TiO{sub 2} nanocomposites. • The nanocomposites can be the convenient and effective SERS substrate. • The nanocomposites can be a self-cleaning SERS substrate. • The nanocomposites can monitor the catalytic degradation of dye molecules. - Abstract: In this work, we demonstrate an extremely simple and speedy approach to synthesis Ag-coated Ni@TiO{sub 2} nanocomposites, which can be a convenient and effective substrate for surface enhanced Raman spectroscopy (SERS) observation. Due to possessing the excellent magnetic properties and stable catalytic properties at room temperature, the nanocomposites can clean themselves by photocatalytic degradation of dye molecules under irradiation with UV light into inorganic small molecules for the self-cleaning SERS detection. Furthermore, the nanocomposites can be used as the SERS substrate for monitoring the catalytic degradation of dye molecules.

  3. A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods.

    PubMed

    Silva, Francisco de Assis dos Santos; da Silva, Monique Gabriella Angelo; Lima, Phabyanno Rodrigues; Meneghetti, Mario Roberto; Kubota, Lauro Tatsuo; Goulart, Marilia Oliveira Fonseca

    2013-12-15

    A nanohybrid platform built with multi-walled carbon nanotubes and gold nanorods, prepared via a cationic surfactant-containing seed-mediated sequential growth process, in aqueous solution, on a glassy carbon substrate has been successfully developed to be used in the electrocatalytic oxidation of L-cysteine (Cys). The nanohybrid was characterized by transmission electron microscopy, Raman spectroscopy and electrochemical measurements. Cyclic voltammetry results had shown that the modified electrode allows the oxidation of Cys at a very low anodic potential (0.00 V vs. Ag/AgCl). The kinetic constant kcat for the catalytic oxidation of Cys was evaluated by chronoamperometry and provided a value of 5.6×10(4) L mol(-1) s(-1). The sensor presents a linear response range from 5.0 up to 200.0 µmol L(-1), detection limit of 8.25 nmol L(-1) and a sensitivity of 120 nA L µmol(-1).

  4. Watching single gold nanorods grow.

    PubMed

    Wei, Zhongqing; Qi, Hua; Li, Min; Tang, Bochong; Zhang, Zhengzheng; Han, Ruiling; Wang, Jiaojiao; Zhao, Yuliang

    2012-05-01

    The consecutive evolution process of single gold nanorods is monitored using atomic force microscopy (AFM). The single-crystal gold nanorods investigated are grown directly on surfaces to which gold seed particles are covalently linked. The growth kinetics for single nanorods is derived from the 3D information recorded by AFM. A better understanding of the seed-mediated growth mechanism may ultimately lead to the direct growth of aligned nanorods on surfaces. PMID:22378704

  5. Studies on properties of Ag/Co0.05Ti0.95O2 random nanocomposite as metamaterials

    NASA Astrophysics Data System (ADS)

    Khorshidi, Zahra; Gholipur, Reza; Bahari, Ali

    2016-10-01

    In this work, random metal-dielectric nanocomposites consisting of Ag nanorods embedded in Co0.05Ti0.95O2 are studied. The aspect ratio of Ag nanorods is about 15, and different contents of Ag nanorods are investigated. The nanocomposites with Ag content exceeding its percolation threshold, show metal-like behavior with negative permittivity. Moreover, in these nanocomposites, Ag nanorods form silver networks with diamagnetic response which combine with the magnetic resonance of ferromagnetic Co0.05Ti0.95O2 particles. The permeability spectra show that CTO-Ag15 33% nanocomposite has strongest diamagnetic behavior. These results indicate that the CTO-Ag15 33% sample is a promising candidate for the double negative materials.

  6. Effect of thicknesses of copper catalyst and oxide sublayer on morphology of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Lyanguzov, N. V.; Kaydashev, V. E.; Kaidashev, E. M.; Abdulvakhidov, K. G.

    2011-03-01

    The influence of thicknesses of a ZnO sublayer and a copper catalyst film on the morphology of ZnO nanorods grown by carbothermal synthesis on α-Al2O3(11-20) substrates has been studied. An increase in the Cu catalyst film thickness leads to a growth in the diameters, heights, and surface density of nanorods. As the ZnO sublayer thickness is increased, the average diameter of nanorods also increases, while their lengths and surface density decrease. The effect of elevated temperatures on the thermal decomposition of ultrathin Cu films deposited on α-Al2O3 substrates has been studied. The photoluminescence characteristics of nanorod arrays have been measured at high levels of optical pumping. An increase in the pumping level to 250-280 kW/cm2 leads to superluminescence of the nanorods.

  7. Improvement of critical current density and thermally assisted individual vortex depinning in pulsed-laser-deposited YBa2Cu3O7-δ thin films on SrTiO3 (100) substrate with surface modification by Ag nanodots

    NASA Astrophysics Data System (ADS)

    Li, A. H.; Liu, H. K.; Ionescu, M.; Wang, X. L.; Dou, S. X.; Collings, E. W.; Sumption, M. D.; Bhatia, M.; Lin, Z. W.; Zhu, J. G.

    2005-05-01

    YBa2Cu3O7 films were fabricated by pulsed laser deposition on SrTiO3 (100) single-crystal substrates whose surfaces were modified by the introduction of Ag nanodots. The critical current density (Jc) was found to increase with the number of Ag shots. Zero-field magnetic Jc0 at 77K increased from 8×105 up to 3.5×106A /cm2 as the number of Ag shots increased from 0 to over 150 times. Microstructure investigations indicated that the crystallinity and the ab alignment gradually improved as the number of Ag nanodots increased. Thermally activated depinning of individual vortices is suggested responsible for a field-independent Jc plateau.

  8. Surface-enhanced Raman scattering of 4-mercaptobenzoic acid and hemoglobin adsorbed on self-assembled Ag monolayer films with different shapes

    NASA Astrophysics Data System (ADS)

    Zhu, Shuangmei; Fan, Chunzhen; Wang, Junqiao; He, Jinna; Liang, Erjun

    2014-06-01

    Polyvinylpyrrolidone (PVP)-protected silver nanostructures of various shapes, including nanocubes, nanospheres, and hybrid shapes with nanospheres and nanorods, on the surface of glass or Si substrates (PVP-Ag films) are prepared by using electrostatic self-assembly. With 4-mercaptobenzoic acid (4-MBA) as a probe molecule, it is demonstrated that the PVP-protected silver nanocubes films (PVP-Ag NCs) have better surface-enhanced Raman scattering (SERS) activity with an order of magnitude larger enhancement factors (EF) than the PVP-protected silver nanospheres films and the PVP-protected silver hybrid shapes films, which is confirmed by our numerical simulations. The EF of 4-MBA on the PVP-Ag NCs film are up to ~5.38 × 106, and the detection limit is at least down to ~10-8 M. The uniformity and reproducibility of the SERS signals on PVP-Ag NCs film are tested by point-to-point and batch-to-batch measurements. Meanwhile, the PVP-Ag films are also shown to be an excellent SERS substrate with good biocompatibility for hemoglobin detection. It is shown that the PVP-Ag NCs films can be used as excellent SERS substrate with good activity, uniformity, reproducibility, and biocompatibility and are promising for a myriad of chemical and biochemical sensing applications.

  9. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoye; Meng, Guowen; Huang, Qing; Xu, Wei; Han, Fangming; Sun, Kexi; Xu, Qiaoling; Wang, Zhaoming

    2012-09-01

    We present a surface-enhanced Raman scattering (SERS) substrate featured by large-scale homogeneously distributed Ag nanoparticles (Ag-NPs) with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film. The two-layered honeycomb-like TiO2 film was achieved by a two-step anodization of pure Ti foil, with its upper layer consisting of hexagonally arranged shallow nano-bowls of 160 nm in diameter, and the lower layer consisting of arrays of about fifty vertically aligned sub-20 nm diameter nanopores. The shallow nano-bowls in the upper layer divide the whole TiO2 film into regularly arranged arrays of uniform hexagonal nano-cells, leading to a similar distribution pattern for the ion-sputtered Ag-NPs in each nano-cell. The lower layer with sub-20 nm diameter nanopores prevents the aggregation of the sputtered Ag-NPs, so that the Ag-NPs can get much closer with gaps in the sub-10 nm range. Therefore, large-scale high-density and quasi-ordered sub-10 nm gaps between the adjacent Ag-NPs were achieved, which ensures homogeneously distributed ‘hot spots’ over a large area for the SERS effect. Moreover, the honeycomb-like structure can also facilitate the capture of target analyte molecules. As expected, the SERS substrate exhibits an excellent SERS effect with high sensitivity and reproducibility. As an example, the SERS substrate was utilized to detect polychlorinated biphenyls (PCBs, a kind of persistent organic pollutants as global environmental hazard) such as 3,3‧,4,4‧-pentachlorobiphenyl (PCB-77) with concentrations down to 10-9 M. Therefore the large-scale Ag-NPs with sub-10 nm gaps assembled on the two-layered honeycomb-like TiO 2 film have potentials in SERS-based rapid trace detection of PCBs.

  10. Adsorption of the ionic liquid [BMP][TFSA] on Au(111) and Ag(111): substrate effects on the structure formation investigated by STM.

    PubMed

    Uhl, Benedikt; Buchner, Florian; Alwast, Dorothea; Wagner, Nadja; Behm, R Jürgen

    2013-01-01

    In order to resolve substrate effects on the adlayer structure and structure formation and on the substrate-adsorbate and adsorbate-adsorbate interactions, we investigated the adsorption of thin films of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium-bis(trifluoromethylsulfonyl)imide [BMP][TFSA] on the close-packed Ag(111) and Au(111) surfaces by scanning tunneling microscopy, under ultra high vacuum (UHV) conditions in the temperature range between about 100 K and 293 K. At room temperature, highly mobile 2D liquid adsorbate phases were observed on both surfaces. At low temperatures, around 100 K, different adsorbed IL phases were found to coexist on these surfaces, both on silver and gold: a long-range ordered ('2D crystalline') phase and a short-range ordered ('2D glass') phase. Both phases exhibit different characteristics on the two surfaces. On Au(111), the surface reconstruction plays a major role in the structure formation of the 2D crystalline phase. In combination with recent density functional theory calculations, the sub-molecularly resolved STM images allow to clearly discriminate between the [BMP](+) cation and [TFSA](-) anion. PMID:24367760

  11. Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria.

    PubMed

    Hu, Bo; Wang, Ning; Han, Lu; Chen, Ming-Li; Wang, Jian-Hua

    2015-01-01

    A novel bactericidal material comprising rod-shaped core-shell-shell Au-Ag-Au nanorods is constructed as a nanoheater in the near-infrared (NIR) region. The outer Au shell melts under laser irradiation and results in exposure of the inner Ag shell, facilitating the controlled release of the antibacterial Ag shell/layer or Ag(+). This results in the Au-Ag-Au nanorods having a favorable bactericidal ability as it combines the features of physical photothermal ablation sterilization of the outer Au shell and the antibacterial effect of the inner Ag shell or Ag(+) to the surrounding bacteria. The sterilizing ability of Au-Ag-Au nanorods is investigated with Escherichia coli O157:H7 as a model bacterial strain. Under low-power NIR laser irradiation (785 nm, 50 mW cm(-2)), the Au-Ag-Au nanoheater exhibits a higher photothermal conversion efficiency (with a solution temperature of 44°C) with respect to that for the Au-Ag nanorods (39°C). Meanwhile, a much improved stability with respect to Au-Ag nanorods is observed, i.e., 16 successive days of monitoring reveal virtually no change in the ultraviolet-visible spectrum of Au-Ag-Au nanorods, while a significant drop in absorption along with a 92 nm red shift of Localized Surface Plasmon Resonance is recorded for the Au-Ag nanorods. This brings an increasing bactericidal efficiency and long-term stability for the Au-Ag-Au nanorods. At a dosage of 10 μg ml(-1), a killing rate of 100% is reached for the E. coli O157:H7 cells under 20 min of irradiation. The use of Au-Ag-Au nanorods avoids the abuse of broad-spectrum antibiotics and reduces the damage of tissues by alleviating the toxicity of silver under controlled release and by the use of low-power laser irradiation. These features could make the bimetallic core-shell-shell nanorods a favorable nanoheater for in vivo biomedical applications.

  12. Effect of growth time on ZnO nanorod arrays by a facile sonicated sol-gel immersion technique

    NASA Astrophysics Data System (ADS)

    Malek, M. F.; Mamat, M. H.; Musa, M. Z.; Ishak, A.; Saurdi, I.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    A facile sonicated sol-gel immersion technique has been presented for synthesizing ZnO nanorod arrays with controllable diameter and lengths on glass substrates. A sol-gel dip-coating deposition was first used to grow a thin layer of ZAO nanocrystals on substrate serving as seeds for the subsequent growth of the nanorod arrays. The effect of growth time of the ZnO nanorod arrays on the ZAO seed layer were investigated. The optical transmission properties of the ZnO nanorods has been investigated. The thickness of the nanorods can be controlled by the growth time. These highly oriented ZnO nanorod arrays are potential for the creation of functional materials, such as the electrode of the solar cells, optoelectronic devices and etc.

  13. Antibacterial activity of ordered gold nanorod arrays.

    PubMed

    Zhu, Yuejing; Ramasamy, Mohankandhasamy; Yi, Dong Kee

    2014-09-10

    Well-packed two- and three-dimensional (2D and 3D) gold nanorod (AuNR) arrays were fabricated using confined convective arraying techniques. The array density could be controlled by changing the concentration of the gold nanorods solution, the velocity of the moving substrate, and the environment air-temperature. The hydrophilic behavior of glass substrates before and after surface modification was studied through contact angle measurements. The affinity and alignment of the AuNR arrays with varying nanorod concentrations and the resulting different array densities were studied using field emission scanning electron microscopy (FE-SEM). Under stable laser intensity irradiation, the photothermal response of the prepared arrays was measured using a thermocouple and the results were analyzed quantitatively. Synthesized AuNR arrays were added to Escherichia coli (E. coli) suspensions and evaluated for photothermal bactericidal activity before and after laser irradiation. The results showed promising bactericidal effect. The severity of pathogen destruction was measured and quantified using fluorescence microscopy, bioatomic force microscopy (Bio-AFM) and flow cytometry techniques. These results indicated that the fabricated AuNR arrays at higher concentrations were highly capable of complete bacterial destruction by photothermal effect compared to the low concentration AuNR arrays. Subsequent laser irradiation of the AuNR arrays resulted in rapid photoheating with remarkable bactericidal activity, which could be used for water treatment to produce microbe-free water. PMID:25148531

  14. Development of a physical and electronic model for RuO 2 nanorod rectenna devices

    NASA Astrophysics Data System (ADS)

    Dao, Justin

    Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications. In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. Conductive Atomic Force Microscopy (C-AFM) measurements were performed on single nanorods to characterize structure and electrical conductivity. The C-AFM probe tip is placed on a single nanorod and I-V characteristics are measured, potentially exhibiting rectifying capabilities. An analysis of these results using fundamental semiconductor physics principles is presented. Experimental data for silicon substrates was most closely approximated by the Simmons model for direct electron tunneling, whereas that of aluminum substrates was well approximated by Fowler-Nordheim tunneling. The native oxide of titanium is regarded as a semiconductor rather than an insulator and its ability to function as a rectifier is not strong. An electronic model for these nanorods is described herein.

  15. Optoacoustic detection of viral antigens using targeted gold nanorods

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher; Woodward, Lee; Glickman, Randolph D.; Barsalou, Norman

    2009-02-01

    We are detecting antigens (Ag), isolated from infectious organisms, utilizing laser optoacoustic spectroscopy and antibody-coupled gold nanorod (NR) contrast agents specifically targeted to the antigen of interest. We have detected, in clinical ocular samples, both Herpes Simplex Virus Type 1 and 2 (HSV-1 and HSV-2) . A monoclonal antibody (Ab) specific to both HSV-1 and HSV-2 was conjugated to gold nanorods to produce a targeted contrast agent with a strong optoacoustic signal. Elutions obtained from patient corneal swabs were adsorbed in standard plastic micro-wells. An immunoaffinity reaction was then performed with the functionalized gold nanorods, and the results were probed with an OPO laser, emitting wavelengths at the peak absorptions of the nanorods. Positive optoacoustic responses were obtained from samples containing authentic (microbiologically confirmed) HSV-1 and HSV-2. To obtain an estimate of the sensitivity of the technique, serial dilutions from 1 mg/ml to 1 pg/ml of a C. trachomatis surface Ag were prepared, and were probed with a monoclonal Ab, specific to the C. trachomatis surface Ag, conjugated to gold nanorods. An optoacoustic response was obtained, proportional to the concentration of antigen, and with a limit of detection of about 5 pg/ml. The optoacoustic signals generated from micro-wells containing albumin or saline were similar to those from blank wells. The potential benefit of this method is identify viral agents more rapidly than with existing techniques. In addition, the sensitivity of the assay is comparable or superior to existing colorimetric- or fluorometric-linked immunoaffinity assays.

  16. Short gold nanorod growth revisited: the critical role of the bromide counterion.

    PubMed

    Si, Satyabrata; Leduc, Cecile; Delville, Marie-Hélène; Lounis, Brahim

    2012-01-16

    A one-step, surfactant-assisted, seed-mediated method has been utilized for the growth of short gold nanorods with reasonable yield by modifying an established synthesis protocol. Among the various parameters that influence nanorod growth, the impact of the bromide counterion has been closely scrutinized. During this study it has been shown that, irrespective of its origin, the bromide counterion [cetyltrimethylammonium bromide (CTAB) or NaBr] plays a crucial role in the formation of nanorods in the sense that there is a critical [Br(-)]/[Au(3+)] ratio (around 200) to achieve nanorods with a maximum aspect ratio. Beyond this value, bromide can be considered as a poisoning agent unless shorter nanorods are required. The use of AgNO(3) helps in symmetry breaking for gold nanorod growth, whereas the bromide counterion controls the growth kinetics by selective adsorption on the facets of the growth direction. Thus, a proper balance between bromide ions and gold cations is also one of the necessary parameters for controlling the size of the gold nanorods; this has been discussed thoroughly. The results have been discussed based on their absorption spectra and finally shape evolution has been confirmed by TEM. Due to their efficient absorption in the near-IR region, these short nanorods were used in photothermal imaging of living COS-7 cells with improved signal-to-background ratios.

  17. Differentiation and classification of bacteria using vancomycin functionalized silver nanorods array based surface-enhanced Raman spectroscopy and chemometric analysis.

    PubMed

    Wu, Xiaomeng; Huang, Yao-Wen; Park, Bosoon; Tripp, Ralph A; Zhao, Yiping

    2015-07-01

    Twenty seven different bacteria isolates from 12 species were analyzed using intrinsic surface-enhanced Raman scattering (SERS) spectra with recently developed vancomycin coated silver nanorod (VAN AgNR) substrates. The VAN AgNR substrates could generate reproducible SERS spectra of the bacteria with little to no interference from the environment or bacterial by-products as compared to the pristine substrates. By taking advantage of the structural composition of the cellular wall which varies from species to species, the differentiation of bacterial species is demonstrated by using chemometric analyses on those spectra. A second chemometric analysis step within the species cluster is able to differentiate serotypes and strains. The spectral features used for serotype differentiation arises from the surface proteins, while Raman peaks from adenine dominate the differentiation of strains. In addition, due to the intrinsic structural differences in the cell walls, the SERS spectra can distinguish Gram-positive from Gram-negative bacteria with high sensitivity and specificity, as well as 100% accuracy on predicting test samples. Our results provide important insights for using SERS as a bacterial diagnostic tool and further guide the design of a SERS-based detection platform.

  18. Gold nanorod-templated synthesis of polymetallic hollow nanostructures with enhanced electrocatalytic performance

    NASA Astrophysics Data System (ADS)

    Guo, Xia; Ye, Wei; Zhu, Rui; Wang, Wenxin; Xie, Fang; Sun, Hongyan; Zhao, Qing; Ding, Yi; Yang, Jian

    2014-09-01

    Anisotropic polymetallic hollow nanostructures are highly desired for many applications because of their unique morphology, large specific surface areas and attractive electronic effects. Here, a simple method using gold nanorods as a self-sacrificed template has been developed for the fabrication of hollow dumbbell-like nanorods of Au@PtAg. The formation of the hollow structures involves the growth of another metallic shell first, and then the etching of gold nanorods, which is induced by oxygen and ascorbic acid. The lattice mismatch and cohesive energy of the shell, along with its surface passivation, greatly affect the subsequent etching and the resulting products, as has been demonstrated by a positive control in the case of Rh and a negative control in the case of Pd. Hollow dumbbell-like nanorods of Au@PtAg show great enhancement for the dehydrogenation pathway in the oxidation of formic acid, as compared to solid Au@PtAg nanorods, PtAu nanotubes and commercial Pt/C.Anisotropic polymetallic hollow nanostructures are highly desired for many applications because of their unique morphology, large specific surface areas and attractive electronic effects. Here, a simple method using gold nanorods as a self-sacrificed template has been developed for the fabrication of hollow dumbbell-like nanorods of Au@PtAg. The formation of the hollow structures involves the growth of another metallic shell first, and then the etching of gold nanorods, which is induced by oxygen and ascorbic acid. The lattice mismatch and cohesive energy of the shell, along with its surface passivation, greatly affect the subsequent etching and the resulting products, as has been demonstrated by a positive control in the case of Rh and a negative control in the case of Pd. Hollow dumbbell-like nanorods of Au@PtAg show great enhancement for the dehydrogenation pathway in the oxidation of formic acid, as compared to solid Au@PtAg nanorods, PtAu nanotubes and commercial Pt/C. Electronic

  19. Metallic nanorods array for magnified subwavelength imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ohashi, Yoshiro; Ranjan, Bikas; Saito, Yuika; Verma, Prabhat

    2015-08-01

    Earlier, our group proposed a lens made of metallic nanorods, stacked in 3D arrays tapered in a conical shape. This nanolens could theoretically realize super-resolution color imaging in the visible range. The image could be magnified and transferred through metallic nanorods array. Lithography or self-assembly are common ways to fabricate such nanostructured devices. However, to precisely arrange nanorods is challenging due to the limitations to scale down components, and to increase accuracy of assembling particles in large area. Here we experimentally demonstrated 2D nanolens with long chains of metallic nanorods placed at tapered angles in a fan-like shape to magnify images. In the fabrication, we chemically synthesized gold nanorods coated with CTAB surfactant to ensure a 10 nm gap between the rods for the resonance control of nanolens. And we prepared trenches patterned by FIB lithography on a PMMA coated glass substrate. The different hydrophobicity of PMMA and CTAB coats enabled to optimize capillary force in gold nanorod solution and selectively assemble nanorods into hydrophilic trenches. Finally, we obtained 2D nanolens after lift-off of the PMMA layer. We numerically estimated the resonance property of nanorods chain and found a broad peak in the visible range located at a wavelength of 727 nm. The broadness of this peak (~178 nm) confirms that a broad range of wavelength can be resonant with this structure. This phenomenon was also confirmed experimentally by optical measurements. These results show that the combination of lithography and self-assembly has the potential to realize plasmonic nanolens.

  20. Nanorod structures for energy conversion applications

    NASA Astrophysics Data System (ADS)

    Teki, Ranganath

    The remarkable size-, surface-, and shape-dependence of physical, optical, and electronic properties of nanoscale materials make them compelling components of modern materials applications in a variety of fields. They are currently playing a key role in the development of alternate energy devices like fuel cells and solar cells as well as modern energy storage devices like lithium-ion batteries. Oblique angle deposition (OAD) is a technique which allows for fabrication of unique nanostructures, which cannot be grown by advanced lithographic techniques. OAD is a physical vapor deposition technique in which flux arrives at a large oblique incidence angle from the substrate normal. It is simple, fast, cheap, has high mass production capability and can generate unique two- and thee-dimensional nanostructures with large aspect ratio and controllable porosity, shape and symmetry. The fact that these structures can be integrated onto a substrate platform makes them practical for many realistic applications. We have tried to utilize nanorods grown by OAD in various key device applications of today's energy starved society. We first explained the enhanced photoemissive response of nanostructured topologies, which could result in the development of new photo-multiplier systems with dramatically improved performance. We optimized the growth of single crystalline ZnO nanorods and ITO nanorods by magnetron sputtering at low temperatures and explored their use as enhanced transparent conducting electrodes for polymeric photovoltaic cells. We studied various Pt nanorod based electrode architectures for proton exchange membrane fuel cells and showed that they give higher mass specific performance than conventional Pt-black electrodes. We demonstrated that nanostructured Si thin film based anodes are potentially better than conventional carbon based anodes and can lead to enhanced rechargeable Li-ion batteries with higher capacity.

  1. Photoluminescence and field emission of 1D ZnO nanorods fabricated by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Wang, B.; Jin, X.; Ouyang, Z. B.; Xu, P.

    2012-07-01

    Four kinds of new one-dimensional nanostructures, celery-shaped nanorods, needle-shaped nanorods, twist fold-shaped nanorods, and awl-shaped nanorods of ZnO, have been grown on single silicon substrates by an Au catalyst assisted thermal evaporation of ZnO and active carbon powders. The morphology and structure of the prepared nanorods are determined on the basis of field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The photoluminescence spectra (PL) analysis noted that UV emission band is the band-to-band emission peak and the emission bands in the visible range are attributed to the oxygen vacancies, Zn interstitials, or impurities. The field-emission properties of four kinds of ZnO nanorods have been invested and the awl-shaped nanorods of ZnO have preferable characteristics due to the smallest emitter radius on the nanoscale in the tip in comparison with other nanorods. The growth mechanism of the ZnO nanorods can be explained on the basis of the vapor-liquid-solid (VLS) processes.

  2. Growth of vertically aligned ZnO nanorods using textured ZnO films

    PubMed Central

    2011-01-01

    A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.) PMID:21899743

  3. Dye-sensitized solar cells based on ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Xie, Yu; Li, Shaoyan; Zhang, Ting; Joshi, Prakash; Fong, Hao; Ropp, Mike; Galipeau, David; Qiao, Qiquan

    2008-08-01

    A series of dye-sensitized solar cells (DSSCs) were fabricated using ZnO nanorod arrays as the anode electrode. The ZnO nanorod arrays were grown on the fluorine doped tin dioxide (FTO) substrates by a hydrothermal method. The scanning electron microscopy (SEM) images indicated that the ZnO nanorod arrays were highly oriented on FTO substrates with an average diameter of ~40 nm and an average length of ~1 μm. After sensitized by Z-907 dye via impregnation in solution, ZnO nanorod arrays changed the color from white to pink. This indicated that the dye had been successfully attached to ZnO nanorods. The high-aspect-ratio (~25) ZnO nanorod arrays are expected to improve charge transport through the formation of continuous channels along the nanorods. We fabricated photovoltaic cells based on these ZnO nanorod arrays and found the deposition time and effective area were two important factors affecting short circuit current densities and cell efficiencies. The device performance (Voc = 0.48 V, Jsc = 5.39 mA/cm2, η = 0.73 %) showed a great potential for solar energy conversion.

  4. Effect of Reflow Time on Wetting Behavior, Microstructure Evolution, and Joint Strength of Sn-2.5Ag-0.5Cu Solder on Bare and Nickel-Coated Copper Substrates

    NASA Astrophysics Data System (ADS)

    Sona, Mrunali; Prabhu, K. Narayan

    2016-07-01

    The effect of reflow time on wetting behavior of Sn-2.5Ag-0.5Cu lead-free solder on bare and nickel-coated copper substrates has been investigated. The solder alloy was reflowed at 270°C for various reflow times of 10 s, 100 s, 300 s, and 500 s. On bare copper substrate, the intermetallic compound (IMC) thickness increased with increase in reflow time, whereas on Ni-coated Cu substrate, the IMC thickness increased up to 300 s followed by a drop for solder alloy reflowed for 500 s. The spreading behavior of the solder alloy was categorized into capillary, gravity (diffusion), and viscous zones. Gravity zone was obtained from 3.8 ± 0.43 s to 38.97 ± 3.38 s and from 5.99 ± 0.5 s to 77.82 ± 8.84 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. Sn-2.5Ag-0.5Cu solder alloy was also reflowed for the period corresponding to the end of the gravity zone (40 s and 80 s on bare and Ni-coated Cu, respectively). The joint strength was maximum at reflow time of 40 s and 80 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. The dynamic contact angle at the end of the gravity (diffusion) zone ( θ gz) was found to be a better parameter compared with the stabilized contact angle ( θ f) to assess the effect of the wettability of the liquid solder on the microstructure and joint strength. The present investigation reveals the significance of the gravity zone in assessment of optimum reflow time for lead-free solder alloys.

  5. Synthesis, characterization, and photocatalytic activities of Cobalt(II)-Titanium dioxide nanorods, and electrophoretic deposition of Titanium dioxide nanoparticle/nanorod composite films for self-cleaning applications

    NASA Astrophysics Data System (ADS)

    Kang, Wonjun

    This dissertation consists of two projects. The first project is synthesis, characterization, and photocatalytic activities of Co(II)-TiO2 nanorods. We modified brookite TiO2 nanorods with cobalt(II) ions to design new photocatalysts with visible light absorption. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) data indicated that the local structure of Co(II)-TiO2 nanorods was shown as tetrahedral and octahedral Co(II) sites at TiO2 nanorod surface. Dimethylglyoxime (DMG) has been used to remove surface Co(II) from Co(II)-TiO2 nanorods to determine single-site Co(II) ions selectively attached to the TiO 2 nanorod surface. We proposed a mechanism that the Co-Co bond of the precursor Co2(CO)8 undergoes heterolysis followed by disproportionation of Co(I) to produce Co(II) and Co(0) precipitate. Finally, the Co(II)-TiO2 nanorods showed greater activity than TiO 2 nanorods in the degradation of 5,8-dihydroxy-1,4-naphthoquinone (DHNQ) dye under visible light irradiation. The second project is electrophoretic deposition (EPD) of TiO2 nanoparticle/nanorod composite films for self-cleaning applications. We developed novel electrolyte system for EPD of TiO2 nanoparticle/nanorod composites for self-cleaning coatings. A mixture of TiO2 powder and TiO2 nanorods was used as EPD suspension in a mixture of THF and acetone. TiO2 nanoparticle/nanorod composite films were fabricated on aluminium substrates via the EPD method, and were characterized by scanning electron microscope (SEM). SEM images showed that TiO2 nanoparticle/nanorod composite films had a uniform pore structure. The hydrophobic properties of surfaces in TiO2 nanoparticle/nanorod composite films were evaluated by water contact angle measurements. It was found that the surfaces of TiO2 nanoparticle/nanorod composite films were hydrophobic with contact angle of 103°. These hydrophobic surfaces are expected to have potential applications for self-cleaning.

  6. Optoacoustic sensing of ocular bacterial antigen using targeted gold nanorods

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher; Page, Leland; Woodward, Lee; Glickman, Randolph D.; Barsalou, Norman

    2008-02-01

    Bacterial contamination can be detected using a minimally invasive optical method, based on laser-induced optoacoustic spectroscopy, to probe for specific antigens associated with a specific infectious agent. As a model system, we have used a surface antigen (Ag), isolated from Chlamydia trachomatis, and a complementary antibody (Ab). A preparation of 0.2 mg/ml of monoclonal Ab specific to the C. trachomatis surface Ag was conjugated to gold nanorods using standard commercial reagents, in order to produce a targeted contrast agent with a strong optoacoustic signal. The C. trachomatis Ag was absorbed in standard plastic microwells, and the binding of the complementary Ab-nanorod conjugate was tested in an immunoaffinity assay. Optoacoustic signals were elicited from the bound nanorods, using an optical parametric oscillator (OPO) laser system as the optical pump. The wavelength tuneability of the OPO optimized the spectroscopic measurement by exciting the nanorods at their optical absorption maxima. Optoacoustic responses were measured in the microwells using a probe beam deflection technique. Immunoaffinity assays were performed on several dilutions of purified C. trachomatis antigen ranging from 50 μg/ml to 1 pg/ml, in order to determine the detection limit for the optoacoustic-based assay. Only when the antigen was present, and the complementary Ab-NR reagent was introduced into the microwell, was an enhanced optoacoustic signal obtained, which indicated specific binding of the Ab-NR complex. The limit of detection with the current system design is between 1 and 5 pg/ml of bacterial Ag.

  7. Visible light driven photocatalysis and antibacterial activity of AgVO{sub 3} and Ag/AgVO{sub 3} nanowires

    SciTech Connect

    Singh, Anamika; Dutta, Dimple P.; Ballal, A.; Tyagi, A.K.; Fulekar, M.H.

    2014-03-01

    Graphical abstract: - Highlights: • Ag/AgVO{sub 3} and pure AgVO{sub 3} nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO{sub 3} within 45 min. • Antibacterial activity of Ag/AgVO{sub 3} demonstrated. - Abstract: Ag/AgVO{sub 3} nanowires and AgVO{sub 3} nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO{sub 3} nanowires. The photocatalytic studies revealed that the Ag/AgVO{sub 3} nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO{sub 3} nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO{sub 3} nanorods prove that in case of the Ag dispersed Ag/AgVO{sub 3} nanowires, the enhanced antibacterial action is also due to contribution from the AgVO{sub 3} support.

  8. TUNING SILICON NANORODS FOR ANODES OF LI-ION RECHARGEABLE BATTERIES

    SciTech Connect

    Au, M.

    2010-11-23

    Silicon is a promising anode material for Li-ion batteries in regarding of high capacity, low cost and safety, but it suffers poor cycling stability due to the pulverization induced by severe volume expansion/shrinkage (297%) during lithium insertion/extraction. In our previous investigation on aluminum nanorods anodes, it is found the selection of substrates in which Al nanorods grown plays the role in prevention of pulverization resulting in the increase of cycling life. Adapting this knowledge, we investigated the Si based nanorods anodes by tuning its composition and element distribution. Our results show that although the Si nanorods demonstrated higher initial anodic capacity of 1500 mAh/g, it diminished after 50 cycles due to morphology change and pulverization. By codepositing Cu, the Si-Cu composite nanorods demonstrated sustainable capacity of 500 mAh/g in 100 cycles attributing to its flexible and less brittle nature.

  9. UV light sensing properties of Sm doped vertically aligned ZnO nanorod arrays

    SciTech Connect

    Kumar, D. Ranjith; Ranjith, K. S.; Rajendrakumar, R. T.

    2015-06-24

    Samarium doped ZnO nanorods were grown on silicon substrate by using vapor phase transport method (VPT) with the growth temperature of 950°C. The synthesized nanorods were characterized by XRD, field emission scanning electron microscopy, Raman spectra, and photocurrent measurements. The XRD result revealed that Sm was successfully doped into lattice plane of hexagonal ZnO nanorods. The FESEM result confirms the pure ZnO has nanorod like morphology with an average diameter and length of 130nm and 10µm respectively. The above observation is supported by the Micro-Raman spectroscopy result. The photocurrent in the visible region has been significantly enhanced due to deposition of Sm on the surface of the ZnO nanorods. Sm acts as a visible sensitizer because of its lower band gap compared to ZnO.

  10. Photochemical synthesis of gold nanorods.

    PubMed

    Kim, Franklin; Song, Jae Hee; Yang, Peidong

    2002-12-01

    Gold nanorods have been synthesized by photochemically reducing gold ions within a micellar solution. The aspect ratio of the rods can be controlled with the addition of silver ions. This process reported here is highly promising for producing uniform nanorods, and more importantly it will be useful in resolving the growth mechanism of anisotropic metal nanoparticles due to its simplicity and the relatively slow growth rate of the nanorods. PMID:12452700

  11. Nucleation of single GaN nanorods with diameters smaller than 35 nm by molecular beam epitaxy

    SciTech Connect

    Chen, Yen-Ting; Araki, Tsutomu; Palisaitis, Justinas; Persson, Per O. Å.; Olof Holtz, Per; Birch, Jens; Chen, Li-Chyong; Chen, Kuei-Hsien; Nanishi, Yasushi

    2013-11-11

    Nucleation mechanism of catalyst-free GaN nanorod grown on Si(111) is investigated by the fabrication of uniform and narrow (<35 nm) nanorods without a pre-defined mask by molecular beam epitaxy. Direct evidences show that the nucleation of GaN nanorods stems from the sidewall of the underlying islands down to the Si(111) substrate, different from commonly reported ones on top of the island directly. Accordingly, the growth and density control of the nanorods is exploited by a “narrow-pass” approach that only narrow nanorod can be grown. The optimal size of surrounding non-nucleation area around single nanorod is estimated as 88 nm.

  12. Gold nanorod-templated synthesis of polymetallic hollow nanostructures with enhanced electrocatalytic performance.

    PubMed

    Guo, Xia; Ye, Wei; Zhu, Rui; Wang, Wenxin; Xie, Fang; Sun, Hongyan; Zhao, Qing; Ding, Yi; Yang, Jian

    2014-10-21

    Anisotropic polymetallic hollow nanostructures are highly desired for many applications because of their unique morphology, large specific surface areas and attractive electronic effects. Here, a simple method using gold nanorods as a self-sacrificed template has been developed for the fabrication of hollow dumbbell-like nanorods of Au@PtAg. The formation of the hollow structures involves the growth of another metallic shell first, and then the etching of gold nanorods, which is induced by oxygen and ascorbic acid. The lattice mismatch and cohesive energy of the shell, along with its surface passivation, greatly affect the subsequent etching and the resulting products, as has been demonstrated by a positive control in the case of Rh and a negative control in the case of Pd. Hollow dumbbell-like nanorods of Au@PtAg show great enhancement for the dehydrogenation pathway in the oxidation of formic acid, as compared to solid Au@PtAg nanorods, PtAu nanotubes and commercial Pt/C. PMID:25155233

  13. Surface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting

    PubMed Central

    Shen, Shaohua; Zhou, Jigang; Dong, Chung-Li; Hu, Yongfeng; Tseng, Eric Nestor; Guo, Penghui; Guo, Liejin; Mao, Samuel S.

    2014-01-01

    Given the narrow band gap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for water splitting over hematite (α-Fe2O3) photoanodes. In this study, a facile and inexpensive method was demonstrated to develop core/shell structured α-Fe2O3 nanorod arrays. A thin, Ag-doped overlayer of ~2–3 nm thickness was formed along α-Fe2O3 nanorods via ultrasonication treatment of solution-based β-FeOOH nanorods in Ag precursor solution followed by high temperature annealing. The obtained α-Fe2O3/AgxFe2−xO3 core/shell nanorod films demonstrated much higher photoelectrochemical performances as photoanodes than the pristine α-Fe2O3 nanorod film, especially in the visible light region; the incident photon-to-current efficiency (IPCE) at 400 nm was increased from 2.2% to 8.4% at 1.23 V vs. RHE (Reversible hydrogen electrode). Mott-Schottky analysis and X-ray absorption spectra revealed that the Ag-doped overlayer not only increased the carrier density in the near-surface region but also accelerated the surface oxidation reaction kinetics, synergistically contributing to the improved photoelectrochemical performances. These findings provide guidance for the design and optimization of nanostructured photoelectrodes for efficient solar water splitting. PMID:25316219

  14. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Jinping; Li, Yuanyuan; Huang, Xintang; Zhu, Zhihong

    2010-07-01

    SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP) immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM-1 cm-2), low detection limit (0.2 μM) and high selectivity with the apparent Michaelis-Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.

  15. Photoelectrochemical and photosensing behaviors of hydrothermally grown ZnO nanorods

    SciTech Connect

    Majumder, T.; Hmar, J. J. L.; Roy, J. N.; Mondal, S. P. E-mail: suvra.phy@nita.ac.in; Debnath, K.; Gogurla, N.; Ray, S. K.

    2014-07-21

    ZnO nanorods have been grown on indium-tin-oxide coated glass substrates by a low cost chemical process. Current-voltage characteristics have been studied using ZnO nanorods as photoanode in an electrochemical cell. The flat band voltage shift and depletion width of ZnO nanorods/electrolyte interface have been estimated from Mott-Schottky (MS) characteristics. The electrochemical impedance measurements have been carried out to study the charge transport mechanism at the semiconductor-electrolyte interface under dark and white light (100 mW/cm{sup 2}) illumination. The doping concentration of nanorods has been extracted from MS plot. Photoresponse behavior of ZnO nanorods is found to be enhanced than seed layers with the incident of white light. Spectral dependent photovoltage of ZnO nanorods has been carried out using monochromatic light of wavelength 250–600 nm. The photopotential recovery time has been estimated for nanorods and seed layers. The stability of ZnO nanorods as a photoanode has been investigated.

  16. Interactions of Bacterial Lipopolysaccharides with Gold Nanorod Surfaces Investigated by Refractometric Sensing.

    PubMed

    Abadeer, Nardine S; Fülöp, Gergő; Chen, Si; Käll, Mikael; Murphy, Catherine J

    2015-11-11

    The interface between nanoparticles and bacterial surfaces is of great interest for applications in nanomedicine and food safety. Here, we demonstrate that interactions between gold nanorods and bacterial surface molecules are governed by the nanoparticle surface coating. Polymer-coated gold nanorod substrates are exposed to lipopolysaccharides extracted from Pseudomonas aeruginosa, Salmonella enterica and Escherichia coli, and attachment is monitored using localized surface plasmon resonance refractometric sensing. The number of lipopolysaccharide molecules attached per nanorod is calculated from the shift in the plasmon maximum, which results from the change in refractive index after analyte binding. Colloidal gold nanorods in water are also incubated with lipopolysaccharides to demonstrate the effect of lipopolysaccharide concentration on plasmon shift, ζ-potential, and association constant. Both gold nanorod surface charge and surface chemistry affect gold nanorod-lipopolysaccharide interactions. In general, anionic lipopolysaccharides was found to attach more effectively to cationic gold nanorods than to neutral or anionic gold nanorods. Some variation in lipopolysaccharide attachment is also observed between the three strains studied, demonstrating the potential complexity of bacteria-nanoparticle interactions.

  17. A new silver nanorod SPR probe for detection of trace benzoyl peroxide

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiliang; Wen, Guiqing; Luo, Yanghe; Zhang, Xinghui; Liu, Qingye; Liang, Aihui

    2014-06-01

    The stable silver nanorod (AgNR) sol in red was prepared by the two-step procedure of NaBH4-H2O2 and citrate heating reduction. The AgNR had a transverse and a longitudinal surface plasmon resonance (SPR) absorption peak at 338 nm and 480 nm. Meanwhile, two transverse and longitudinal SPR Rayleigh scattering (SPR-RS) peaks at 340 nm and 500 nm were observed firstly using common fluorescence spectrometer. The SPR absorption, RS, surface enhanced Raman scattering (SERS) and electron microscope technology were used to study the formation mechanism of red silver nanorods and the SERS enhancement mechanism of nano-aggregation. The AgNR-BPO SPR absorption and AgNR-NaCl-BPO SPR-RS analytical systems were studied to develop two new simple, rapid, and low-cost SPR methods for the detection of trace BPO.

  18. Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric

    NASA Astrophysics Data System (ADS)

    Khan, Azam; Ali Abbasi, Mazhar; Hussain, Mushtaque; Hussain Ibupoto, Zafar; Wissting, Jonas; Nur, Omer; Willander, Magnus

    2012-11-01

    This investigation explores piezoelectricity generation from ZnO nanorods, which were grown on silver coated textile cotton fabrics using the low temperature aqueous chemical growth method. The morphology and crystal structure studies were carried out by x-ray diffraction, scanning electron microscopic and high resolution transmission electron microscopic techniques, respectively. ZnO nanorods were highly dense, well aligned, uniform in spatial distribution and exhibited good crystal quality. The generation of piezoelectricity from fabricated ZnO nanorods grown on textile cotton fabrics was measured using contact mode atomic force microscopy. The average output voltage generated from ZnO nanorods was measured to be around 9.5 mV. This investigation is an important achievement regarding the piezoelectricity generation on textile cotton fabric substrate. The fabrication of this device provides an alternative approach for a flexible substrate to develop devices for energy harvesting and optoelectronic technology on textiles.

  19. Conformable coating of SiO2 on hydrothermally grown ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Chu, B. H.; Leu, L. C.; Chang, C. Y.; Lugo, F.; Norton, D.; Lele, T.; Keselowsky, B.; Pearton, S. J.; Ren, F.

    2008-12-01

    Coating silicon dioxide on hydrothermally grown ZnO nanorods is demonstrated using a low temperature plasma enhanced chemical vapor deposition (PECVD) system. Wurtzite structured ZnO nanorods were prepared by spin coating ZnO nanocrystals onto plastics or glass substrates. Then, the nanorods were subsequently grown in a zinc nitrate solution. SiO2 was deposited by PECVD at 50 °C. No current could be measured through the patterned metal dots on the SiO2 coated sample, which indicates that SiO2 was covered seamlessly across the entire substrate. Photoluminescence measurements indicated that the SiO2 layer covering the nanorods did not alter the optical properties of the ZnO.

  20. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    PubMed Central

    Witkowski, Bartlomiej Slawomir; Luka, Grzegorz; Wachnicki, Lukasz; Gieraltowska, Sylwia; Kopalko, Krzysztof; Zielony, Eunika; Bieganski, Piotr; Placzek-Popko, Ewa; Godlewski, Marek

    2014-01-01

    Summary Selected properties of photovoltaic (PV) structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100) are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%. PMID:24605282

  1. The use of silver nanorod array based surface enhanced Raman scattering sensor for food safety applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the advancement of preventive strategies, it is critical to develop rapid and sensitive detection methods with nanotechnology for food safety applications. This article reports the recent development on the use of aligned silver nanorod (AgNR) arrays prepared by oblique angle deposition, as surf...

  2. BULK SYNTHESIS OF SILVER NANORODS IN POLY(ETHYLENE GLYCOL) USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-assisted (MW), surfactantless, greener approach to bulk synthesis of silver nanorods employing poly (ethylene glycol) (PEG) is described. An aqueous solution of silver nitrate (AgNO-3,- 0.1 M, 4 mL) and 4 mL of PEG (molecular weight 300) were mixed at room temperature t...

  3. Facet Control of Gold Nanorods.

    PubMed

    Zhang, Qingfeng; Han, Lili; Jing, Hao; Blom, Douglas A; Lin, Ye; Xin, Huolin L; Wang, Hui

    2016-02-23

    While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure-property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair of surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities. PMID:26795706

  4. Facet control of gold nanorods

    DOE PAGES

    Zhang, Qingfeng; Han, Lili; Jing, Hao; Blom, Douglas A.; Lin, Ye; Xin, Huolin L.; Wang, Hui

    2016-01-21

    While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less

  5. Structural evolution of gold nanorods during controlled secondary growth.

    PubMed

    Keul, Heidrun A; Möller, Martin; Bockstaller, Michael R

    2007-09-25

    Single-crystalline gold nanorods synthesized by the Ag(I)-mediated seeded-growth method (see: El-Sayed, M. A.; Nikoobakht, B. Chem. Mater. 2003, 15, 1957) were used as seeds for the preferential overgrowth of gold on particular crystallographic facets by systematic variation of the conditions during overgrowth. The results support previous reports about the relevance of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and Ag(I) in stabilizing anisotropic particle shapes and demonstrate that the regulation of the amount of ascorbic acid facilitates the preferential overgrowth of {111} crystal facets to form Xi-type particle shapes. Interestingly, secondary overgrowth is found to inevitably result in a loss of particle shape anisotropy. A mechanism based on surface reconstruction is proposed to rationalize the "shape-reversal" that is generally observed in the nanorod growth process, that is, the initial increase and subsequent decrease of particle anisotropy with increasing reaction time. High-resolution electron microscopy analysis of gold nanorods reveals clear evidence for (1 x 2) missing row surface reconstruction of high energetic {110} facets that form during the initial phase during particle growth. PMID:17713936

  6. Hydrothermal synthesis of highly crystalline ZnO nanorod arrays: Dependence of morphology and alignment on growth conditions

    NASA Astrophysics Data System (ADS)

    Azzez, Shrook A.; Hassan, Z.; Hassan, J. J.; Alimanesh, M.; Rasheed, Hiba S.; Sabah, Fayroz A.; Abdulateef, Sinan A.

    2016-07-01

    Highly oriented zinc oxide nanorod were successfully grown on seeded p-type silicone substrate by hydrothermal methode. The morphology and the crystallinty of ZnO c-axis (002) arrays were systematically studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) methods. The effect of seed layer pre-annealing on nanorods properties was explained according to the nucleation site of ZnO nanoparticles on silicon substrate. In addition, the variation of the equal molarity of zinc nitrate hexahydrate and hexamine concentrations in the reaction vessel play a crucial role related to the ZnO nanorods.

  7. Effect of phosphorus incorporation on morphology and optical properties of ZnO nanorods

    SciTech Connect

    Fan, Donghua; Zhang, Rong; Wang, Xianghu

    2011-04-15

    Graphical abstract: XPS spectra of the P-doped ZnO nanorods: (a) Zn 2p, (b) O 1s, and (c) P 2p spectra. The red curve in c is the Gauss-fitting curve. (d) Raman spectra of P-doped (curve 1) and pure (curve 2) ZnO nanorods. Research highlights: {yields} P-doped ZnO nanorods have been prepared on Si substrates without any catalyst. {yields} The introduction of phosphorus leads to the growth of tapered tip in the nanorods. {yields} The formation of tapered tip is attributed to the relaxation of the lattice strain along the radial direction. {yields} The strong ultraviolet peak is connected with the phosphorus acceptor-related emissions. -- Abstract: Phosphorus-doped ZnO nanorods have been prepared on Si substrates by thermal evaporation process without any catalyst. X-ray photoelectron spectroscopy and Raman spectra indicate that phosphorus entering into ZnO nanorods mainly occupies Zn site rather than O one. The introduction of phosphorus leads to the morphological changes of nanorods from hexagonal tip to tapered one, which should be attributed to the relaxation of the lattice strain caused by phosphorus occupying Zn site along the radial direction. Transmission electron microscopy shows that phosphorus-doped ZnO nanorods still are single crystal and grow along [0 0 0 1] direction. The effect of phosphorous dopant on optical properties of ZnO nanorods also is studied by the temperature-dependent photoluminescence spectra, which indicates that the strong ultraviolet emission is connected with the phosphorus acceptor-related emissions.

  8. The preparation of concentric-tubular composite microstructures and nanorod sols using template synthesis

    NASA Astrophysics Data System (ADS)

    Cepak, Veronica Marie

    1998-12-01

    Membrane-based template synthesis has been employed in the fabrication of concentric-tubular composite microstructures and nanorod organosols of two materials, metals and semiconductors. This type of template synthesis is unique because the cylindrical pores of filtration membranes were used as templates to prepare these materials. Insulating polymer nanofibrils and microtubules were prepared by template-assisted deposition. This method entailed filtering a polymer solution through a filtration membrane. Insulating microtubules that were obtained were further used to prepare concentric-tubular composite microstructure arrays consisting of an outer tubule of polystyrene surrounding an inner fibril of the conductive polymer, polypyrrole. The preparation and characterization of insulating polymer structures along with this microcomposite array was discussed. In addition, template synthesis has also been used to prepare a variety of other types of concentric-tubular microcomposite structures. Examples prepared consisted of Au/poly(phenylene oxide)/polypyrrole, Au/TiO2, and Au/ZnO to demonstrate the versatility of this method. These examples used the following chemistries: the electroless deposition of Au, electrochemical deposition of conductive and insulating polymers, electrodeposition of semiconductors, and sol-gel methods. Membrane-based template synthesis has also been used to prepare metal and semiconductor nanorod sols in organic solvents. Nanorods were prepared in the polycarbonate membrane's pores by electrochemical deposition of metals or semiconductors. The nanorod organosols were then prepared by immersing a nanorod/membrane composite into either CHCl3 or hexafluoroisopropanol. These organic solvents dissolved the template membrane and simultaneously dispersed the nanorods to form a sol. Ag, Au, CdS, and ZnO nanorod sols were prepared in this fashion. The metal nanorod sols were investigated by visible absorption spectroscopy. The position of the plasmon

  9. Semiconductor nanorod liquid crystals

    SciTech Connect

    Li, Liang-shi; Walda, Joost; Manna, Liberato; Alivisatos, A. Paul

    2002-01-28

    Rodlike molecules form liquid crystalline phases with orientational order and positional disorder. The great majority of materials in which liquid crystalline phases have been observed are comprised of organic molecules or polymers, even though there has been continuing and growing interest in inorganic liquid crystals. Recent advances in the control of the sizes and shapes of inorganic nanocrystals allow for the formation of a broad class of new inorganic liquid crystals. Here we show the formation of liquid crystalline phases of CdSe semiconductor nanorods. These new liquid crystalline phases may have great importance for both application and fundamental study.

  10. Aligned silver nanorod arrays for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Qiu, Teng; Zhang, Wenjun; Chu, Paul K.

    2009-05-01

    A convenient nanotechnique is used to place analyte molecules between closely spaced silver nanorods for investigating surface-enhanced Raman scattering (SERS). The route involves letting absorption of saturated AgNO 3 solution in the pores of the porous anodic alumina templates, followed by drying and decomposition of the salt at high temperatures. The silver nanorod arrays boast a high SERS enhancement and large dynamic range. The interrod-coupling-induced enhancement was attributed to the broadening of the plasmon resonance peak because the probability of the resonance covering both the excitation wavelength and the Raman peak increases with its width. The method will be useful in the development of plasmon-based analytical devices, specifically SERS-based biosensors.

  11. Active modulation of nanorod plasmons.

    PubMed

    Khatua, Saumyakanti; Chang, Wei-Shun; Swanglap, Pattanawit; Olson, Jana; Link, Stephan

    2011-09-14

    Confining visible light to nanoscale dimensions has become possible with surface plasmons. Many plasmonic elements have already been realized. Nanorods, for example, function as efficient optical antennas. However, active control of the plasmonic response remains a roadblock for building optical analogues of electronic circuits. We present a new approach to modulate the polarized scattering intensities of individual gold nanorods by 100% using liquid crystals with applied voltages as low as 4 V. This novel effect is based on the transition from a homogeneous to a twisted nematic phase of the liquid crystal covering the nanorods. With our method it will be possible to actively control optical antennas as well as other plasmonic elements.

  12. Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting

    PubMed Central

    2013-01-01

    In this work, we investigate the controlled fabrication of Sn-doped TiO2 nanorods (Sn/TiO2 NRs) for photoelectrochemical water splitting. Sn is incorporated into the rutile TiO2 nanorods with Sn/Ti molar ratios ranging from 0% to 3% by a simple solvothermal synthesis method. The obtained Sn/TiO2 NRs are single crystalline with a rutile structure. The concentration of Sn in the final nanorods can be well controlled by adjusting the molar ratio of the precursors. Photoelectrochemical experiments are conducted to explore the photocatalytic activity of Sn/TiO2 NRs with different doping levels. Under the illumination of solar simulator with the light intensity of 100 mW/cm2, our measurements reveal that the photocurrent increases with increasing doping level and reaches the maximum value of 1.01 mA/cm2 at −0.4 V versus Ag/AgCl, which corresponds to up to about 50% enhancement compared with the pristine TiO2 NRs. The Mott-Schottky plots indicate that incorporation of Sn into TiO2 nanorod can significantly increase the charge carrier density, leading to enhanced conductivity of the nanorod. Furthermore, we demonstrate that Sn/TiO2 NRs can be a promising candidate for photoanode in photoelectrochemical water splitting because of their excellent chemical stability. PMID:24191909

  13. Effect of Zn2+ source concentration on hydrothermally grown ZnO nanorods.

    PubMed

    Kim, Ah Ra; Lee, Ju-Young; Jang, Bo Ra; Lee, Ji Yeon; Kim, Hong Seung; Jang, Nak Won

    2011-07-01

    We studied the effect of Zn2+ source concentration on the structural and optical properties of hydrothermally grown ZnO nanorods. The nanorods were grown on ZnO/p-Si(111) substrate using by a hydrothermal process in various concentrations of reagent at a low temperature (approximately 95 degrees C) and the structural and optical characteristics of ZnO nanorods were subsequently investigated by X-ray diffraction, field-emission scanning electron microscopy, and room temperature photoluminescence. The results demonstrate that the morphology and crystallinity of ZnO nanorods are influenced by the overall concentration of the precursor. The density and diameter of ZnO nanorods with a hexagonal structure are especially sensitivite to concentration of reactants. Furthermore, the structural transition is shown by increasing concentration. At the lowest concentration of Zn2+, the ZnO nanorods grow as single crystals with a low density and variable orientations. On the contrary, at the highest concentration, the nanorods grow as polycrystas due to the supersaturated Zn2+ source.

  14. Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration.

    PubMed

    Babikier, Musbah; Wang, Dunbo; Wang, Jinzhong; Li, Qian; Sun, Jianming; Yan, Yuan; Yu, Qingjiang; Jiao, Shujie

    2014-01-01

    Cu-doped ZnO nanorods have been grown at 90°C for 90 min onto a quartz substrate pre-coated with a ZnO seed layer using a hydrothermal method. The influence of copper (Cu) precursor and concentration on the structural, morphological, and optical properties of ZnO nanorods was investigated. X-ray diffraction analysis revealed that the nanorods grown are highly crystalline with a hexagonal wurtzite crystal structure grown along the c-axis. The lattice strain is found to be compressive for all samples, where a minimum compressive strain of -0.114% was obtained when 1 at.% Cu was added from Cu(NO3)2. Scanning electron microscopy was used to investigate morphologies and the diameters of the grown nanorods. The morphological properties of the Cu-doped ZnO nanorods were influenced significantly by the presence of Cu impurities. Near-band edge (NBE) and a broad blue-green emission bands at around 378 and 545 nm, respectively, were observed in the photoluminescence spectra for all samples. The transmittance characteristics showed a slight increase in the visible range, where the total transmittance increased from approximately 80% for the nanorods doped with Cu(CH3COO)2 to approximately 90% for the nanorods that were doped with Cu(NO3)2.

  15. High conversion of HAuCl4 into gold nanorods: A re-seeding approach.

    PubMed

    Canonico-May, Stephanie Ann; Beavers, Kelsey Ross; Melvin, Michael James; Alkilany, Alaaldin M; Duvall, Craig L; Stone, John William

    2016-02-01

    Gold nanorods with varying aspect ratios have been utilized in recent years for a wide range of applications including vaccines, surface enhanced Raman spectroscopy (SERS) substrates, and as medicinal therapeutic agents. The surfactant-directed seed mediated approach is an aqueous based protocol that produces monodisperse nanorods with controlled aspect ratios. However, an inherent problem with this approach is poor efficiency of gold conversion from HAuCl4 into nanorods. In fact only ∼15% of gold is converted, motivating the need for alternate synthetic protocols in order to make the process more scalable and efficient as gold nanorods progress toward commercial applications. In the current study, we have significantly improved this conversion by growing rods in several iterations of supernatant solutions that were previously discarded as waste. Inductively coupled plasma mass spectrometry (ICP-MS) data indicates ∼14% gold conversion per nanorod solution with a total recovery of ∼75%. Gold nanorods prepared in consecutive supernatant solutions generally have slightly increased aspect ratios and maintain stability and monodispersity as measured by UV-vis and TEM. The increased nanorod yield minimizes gold waste and results in a greener synthetic approach.

  16. Wettability properties of PTFE/ZnO nanorods thin film exhibiting UV-resilient superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Bayat, A.; Ebrahimi, M.; Nourmohammadi, A.; Moshfegh, A. Z.

    2015-06-01

    In this research, initially anodization process was used to fabricate ZnO nanorods on Zn substrate and then RF sputtering technique was applied to grow a thin layer of polytetrafluoroethylene (PTFE, Teflon) on the coated ZnO nanorods for producing a superhydrophobic surface. According to scanning electron microscopy (SEM) observations, ZnO nanorods were formed with average diameter and length of about ∼180 nm and 14 μm, respectively. Superhydrophilic property of ZnO nanorods and superhydrophobic property of PTFE/ZnO nanorods was investigated by water contact angle (WCA) measurements. It was found that the contact angle varied with the PTFE deposition time. The highest contact angle measurement was obtained at 160° for the PTFE (60 min coating)/ZnO as optimum sample which indicates its superhydrophobic property. X-ray photoelectron spectroscopy (XPS) determined surface chemical composition and F/C ratio of about 1.27 for this sample. A change of water contact angle from 3° to 160° indicates transition from superhydrophilic to superhydrophobic state. Very low contact angle hysteresis (CAH) of ∼2° and sliding angle (SA) of ∼1° as well as unchanged contact angle under UV illumination was observed for the synthesized optimum PTFE/ZnO sample exhibits an excellent superhydrophobic property. Based on our data analysis, the ZnO nanorods and the PTFE/ZnO nanorods obey Wenzel and Cassie-Baxter model, respectively.

  17. Direct growth of tellurium nanorod arrays on Pt/FTO/glass through a surfactant-assisted chemical reduction.

    PubMed

    Liu, Hongmei; Zeng, Boming; Jia, Falong

    2011-07-29

    Uniform tellurium nanorod arrays (TNA) have been successfully deposited directly on Pt/FTO (F-doped SnO(2))/glass substrate through a facile surfactant-assisted approach, which involved chemical reduction of TeO(3)(2-) ions by hydrazine hydrate. The whole synthesis process is highly repeatable and performed simply by immersing the Pt/FTO/glass in the solution for a certain time. During the growth of TNA, Pt catalyzed the reduction of TeO(3)(2-) ions by hydrazine hydrate and Te nanoparticles were deposited firmly on the substrate at first. Then, under the regulation of the surfactant (cetyltrimethylammonium bromide, CTAB), the deposited Te grew into nanorod arrays and adhered firmly to the substrate. Similar Te nanorod arrays could also grow on a Pd substrate which has the same catalytic performance as that of Pt. The as-synthesized TNA could be used as a good template to synthesize platinum-and gold-coated nanorods through convenient galvanic replacement. As a demonstration of potential application, the gold/tellurium nanorods showed uniform surface-enhanced Raman scattering (SERS) using rhodamine 6G (Rh6G) as the analyte. This approach provides a simple route for the growth of standing Te nanorods on a substrate, which may be used for the synthesis of other standing one-dimensional materials through a similar mechanism. PMID:21719969

  18. Direct growth of tellurium nanorod arrays on Pt/FTO/glass through a surfactant-assisted chemical reduction

    NASA Astrophysics Data System (ADS)

    Liu, Hongmei; Zeng, Boming; Jia, Falong

    2011-07-01

    Uniform tellurium nanorod arrays (TNA) have been successfully deposited directly on Pt/FTO (F-doped SnO2)/glass substrate through a facile surfactant-assisted approach, which involved chemical reduction of TeO32 - ions by hydrazine hydrate. The whole synthesis process is highly repeatable and performed simply by immersing the Pt/FTO/glass in the solution for a certain time. During the growth of TNA, Pt catalyzed the reduction of TeO32 - ions by hydrazine hydrate and Te nanoparticles were deposited firmly on the substrate at first. Then, under the regulation of the surfactant (cetyltrimethylammonium bromide, CTAB), the deposited Te grew into nanorod arrays and adhered firmly to the substrate. Similar Te nanorod arrays could also grow on a Pd substrate which has the same catalytic performance as that of Pt. The as-synthesized TNA could be used as a good template to synthesize platinum-and gold-coated nanorods through convenient galvanic replacement. As a demonstration of potential application, the gold/tellurium nanorods showed uniform surface-enhanced Raman scattering (SERS) using rhodamine 6G (Rh6G) as the analyte. This approach provides a simple route for the growth of standing Te nanorods on a substrate, which may be used for the synthesis of other standing one-dimensional materials through a similar mechanism.

  19. Plasmonic Fano resonances in metallic nanorod complexes.

    PubMed

    Yang, Zhong-Jian; Hao, Zhong-Hua; Lin, Hai-Qing; Wang, Qu-Quan

    2014-05-21

    Plasmonic Fano resonances (FRs) in nanostructures have been extensively studied in recent years. Nanorod-based complexes for FRs have also attracted much attention. The basic optical properties and fabrication technology of different kinds of plasmonic nanorods have been greatly developed over the last several years. The mutipole plasmon resonances and their flexible adjustment ranges on nanorods make them promising for FR modifications and structure diversity. In this paper, we review some recently studied plasmonic nanorod based nanostructures for FRs, including single nanorods, dimers, mutipole rods and nanorod-nanoparticle hybrids. The corresponding applications of the FRs are also briefly discussed.

  20. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    SciTech Connect

    Ramadhani, Muhammad F. Pasaribu, Maruli A. H. Yuliarto, Brian Nugraha

    2014-02-24

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.

  1. Enhanced Jc's of YBa2Cu3O7 - x-Ag ex situ annealed coevaporated films on LaAlO3 (100) substrates

    NASA Astrophysics Data System (ADS)

    Clausen, T.; Ejrnæs, M.; Olesen, M.; Hilger, K.; Skov, J. L.; Bodin, P.; Kühle, A.; Chorkendorff, I.

    1994-10-01

    A 5× increase of the critical current density (Jc) at 77 K was obtained by coating a coevaporated 500 nm thick Y, BaF2, Cu film with 50 nm Ag prior to the ex situ annealing. Jc increased from 0.2 for uncoated samples to 1 MA/cm2 for the Ag-coated sample without severely affecting the zero resistance transition temperature (Tc0). Scanning electron microscopy showed that the surface morphology was improved and that the normally observed trellislike structure was greatly reduced. By combining electron microscopy and sputter assisted Auger analysis it was found that the Ag nucleated in droplets on the surface of the superconductor with only small amounts of Ag in the superconductor matrix. X-ray diffraction confirmed that the Ag-coated film was highly c-axis oriented. The increase in Jc is believed to be due to the improved surface properties of the superconductor, indicating that a larger amount of the film is c-axis oriented or that the single-crystalline grains are larger.

  2. Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly

    NASA Astrophysics Data System (ADS)

    Park, Hoo Keun; Yoon, Seong Woong; Eo, Yun Jae; Chung, Won Woo; Yoo, Gang Yeol; Oh, Ji Hye; Lee, Keyong Nam; Kim, Woong; Do, Young Rag

    2016-06-01

    In this study, we report the concerted fabrication process, which is easy to transform the size of active emitting area and produce polarized surface light, using the electric-field-assisted assembly for horizontally assembled many tiny nanorod LEDs between two metal electrodes. We fabricate the millions of individually separated 1D nanorod LEDs from 2D nanorod arrays using nanosphere lithography, etching and cutting process of InGaN/GaN LED structure on a flat sapphire substrate. The horizontally assembled InGaN-based nanorods LED device shows bright (~2,130 cd/m2) and uniform polarized (polarization ratio, ρ = ~0.61) green emissions from large area (0.7 cm × 0.6 cm) planar surface. The realization of a horizontally assembled nanorod LED device can prove the concept of an innovative idea to fabricate formable and scalable polarized surface LED lighting.

  3. Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly

    PubMed Central

    Park, Hoo Keun; Yoon, Seong Woong; Eo, Yun Jae; Chung, Won Woo; Yoo, Gang Yeol; Oh, Ji Hye; Lee, Keyong Nam; Kim, Woong; Do, Young Rag

    2016-01-01

    In this study, we report the concerted fabrication process, which is easy to transform the size of active emitting area and produce polarized surface light, using the electric-field-assisted assembly for horizontally assembled many tiny nanorod LEDs between two metal electrodes. We fabricate the millions of individually separated 1D nanorod LEDs from 2D nanorod arrays using nanosphere lithography, etching and cutting process of InGaN/GaN LED structure on a flat sapphire substrate. The horizontally assembled InGaN-based nanorods LED device shows bright (~2,130 cd/m2) and uniform polarized (polarization ratio, ρ = ~0.61) green emissions from large area (0.7 cm × 0.6 cm) planar surface. The realization of a horizontally assembled nanorod LED device can prove the concept of an innovative idea to fabricate formable and scalable polarized surface LED lighting. PMID:27324568

  4. Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly.

    PubMed

    Park, Hoo Keun; Yoon, Seong Woong; Eo, Yun Jae; Chung, Won Woo; Yoo, Gang Yeol; Oh, Ji Hye; Lee, Keyong Nam; Kim, Woong; Do, Young Rag

    2016-01-01

    In this study, we report the concerted fabrication process, which is easy to transform the size of active emitting area and produce polarized surface light, using the electric-field-assisted assembly for horizontally assembled many tiny nanorod LEDs between two metal electrodes. We fabricate the millions of individually separated 1D nanorod LEDs from 2D nanorod arrays using nanosphere lithography, etching and cutting process of InGaN/GaN LED structure on a flat sapphire substrate. The horizontally assembled InGaN-based nanorods LED device shows bright (~2,130 cd/m(2)) and uniform polarized (polarization ratio, ρ = ~0.61) green emissions from large area (0.7 cm × 0.6 cm) planar surface. The realization of a horizontally assembled nanorod LED device can prove the concept of an innovative idea to fabricate formable and scalable polarized surface LED lighting. PMID:27324568

  5. Hydrothermal growth and characterization of vertically well-aligned and dense ZnO nanorods on glass and silicon using a simple optimizer system

    NASA Astrophysics Data System (ADS)

    Mohammad, Sabah M.; Hassan, Z.; Ahmed, Naser M.; Talib, Rawnaq A.; Abd-Alghafour, Nabeel M.; Omar, A. F.

    2016-07-01

    Vertically, well-aligned and high density ZnO nanorods were successfully hydrothermally grown on glass and silicon substrates using a simple and low cost system. The mechanism of synthesis of ZnO nanorods, generated with our system under hydrothermal conditions, is investigated in this report. Field-emission scanning electron microscopy indicated that the fabricated ZnO nanorods on both substrates have hexagonal shape with diameters ranging from 20 nm to 70 nm which grew vertically from the substrate. XRD analysis confirms the formation of wurtzite ZnO phase with a preferred orientation along (002) direction perpendicular on the substrate and enhanced crystallinity. The low value of the tensile strain (0.126 %) revealed that ZnO nanorods preferred to grow along the c-axis for both substrates. Photoluminescence spectra exhibited a strong, sharp UV near band edge emission peak with narrow FWHM values for both samples.

  6. Electrical conduction and NO2 gas sensing properties of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Şahin, Yasin; Öztürk, Sadullah; Kılınç, Necmettin; Kösemen, Arif; Erkovan, Mustafa; Öztürk, Zafer Ziya

    2014-06-01

    Thermally stimulated current (TSC), photoresponse and gas sensing properties of zinc oxide (ZnO) nanorods were investigated depending on heating rates, illumination and dark aging times with using sandwich type electrode system. Vertically aligned ZnO nanorods were grown on indium tin oxide (ITO) coated glass substrate by hydrothermal process. TSC measurements were performed at different heating rates under constant potential. Photoresponse and gas sensing properties were investigated in dry air ambient at 200 °C. For gas sensing measurements, ZnO nanorods were exposed to NO2 (100 ppb to 1 ppm) in dark and illuminated conditions and the resulting resistance transient was recorded. It was found from dark electrical measurements that the dependence of the dc conductivity on temperature followed Mott's variable range hopping (VRH) model. In addition, response time and recovery times of ZnO nanorods to NO2 gas decreased by exposing to white light.

  7. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    NASA Astrophysics Data System (ADS)

    Nakate, U. T.; Bulakhe, R. N.; Lokhande, C. D.; Kale, S. N.

    2016-05-01

    The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  8. Zinc oxide nanorod growth on gold islands prepared by microsphere lithography on silicon and quartz.

    PubMed

    Blackledge, Charles W; Szarko, Jodi M; Dupont, Aurélie; Chan, George H; Read, Elizabeth L; Leone, Stephen R

    2007-09-01

    Gold islands, vapor deposited on silicon and quartz by microsphere lithography patterning, are used to nucleate arrays of ZnO nanorods. ZnO is grown on approximately 0.32 microm2 Au islands by carbothermal reduction in a tube furnace. Scanning electron microscopy (SEM) and energy dispersive atomic X-ray spectroscopy (EDS) confirm that the gold effectively controls the sites of nucleation of ZnO. Atomic force microscopy (AFM) shows that approximately 30 nm diameter nanorods grow horizontally, along the surface. Alloy droplets that are characteristic of the vapor-liquid-solid (VLS) mechanism are observed at the tips of the nanorods. The spatial growth direction of VLS catalyzed ZnO nanorods is along the substrate when they nucleate from gold islands on silicon and quartz. The energy of adhesion of the VLS droplet to the surface can account for the horizontal growth. PMID:18019171

  9. Temperature dependence of the growth of ZnO nanorod arrays by electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Kim, Hyunghoon; Moon, Jin Young; Lee, Ho Seong

    2011-03-01

    ZnO nanorod arrays were prepared by the electrochemical deposition route on conductive Au/Si substrates. The effect of the bath temperature on the growth of the ZnO nanorod arrays was investigated. With an increase in bath temperature from 30°C to 80°C, the deposited ZnO changed from an amorphous structure to a hexagonal crystal structure. The ZnO nanorod arrays grown above 50°C were dense and vertically well-aligned. Scanning and transmission electron microscopy results showed that the diameter of the hexagon-shaped ZnO nanorod arrays ranged from 100 nm to 180 nm and the length was about 500 nm. On the basis of the characteristics of the ZnO crystal structure and the effect of the bath temperature, the growth mechanism is described.

  10. Growth-induced Stacking Faults of ZnO Nanorods Probed by Spatial Resolved Cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Xie, Yong; Jie, Wan-Qi; Wang, Tao; Wiedenmann, Michael; Neuschl, Benjamin; Madel, Manfred; Wang, Ya-Bin; Feneberg, Martin; Thonke, Klaus

    2012-07-01

    Low density ZnO nanorods are grown by modified chemical vapor deposition on silicon substrates using gold as a catalyst. We use high resolution photoluminescence spectroscopy to gain the optical properties of these nanorods in large scale. The as-grown samples show sharp near-band-gap luminescence with a full width at half maximum of bound exciton peaks at about 300 μeV, and the ratio of ultraviolet/yellow luminescence larger than 100. Highly spatial and spectral resolved scanning electron microscope-cathodoluminescence is performed to excite the ZnO nanorods in single rods or different positions of single rods with the vapour-solid growth mechanism. The bottom of the nanorod has a 3.31-eV luminescence, which indicates that basal plane stacking faults are related to the defects that are created at the first stage of growth due to the misfit between ZnO and Si.

  11. Infrared Resonances in Plasmonic Nanorod and Nanoarc Antennas

    NASA Astrophysics Data System (ADS)

    Lawson, Andrew; Ellis, Chase; Tischler, Joseph; Rabin, Oded

    Tunability of the frequency and polarization of localized surface plasmon resonances (LSPR) of nanostructures is crucial for their implementation in nanophotonics applications such as photovoltaics, chiroptical spectroscopy, and infrared detection. We report spectroscopic data of plasmonic nanorods and nanoarcs collected by polarized Fourier transform infrared reflectance spectroscopy (FTIR). The effects of the nanostructure material, geometry and substrate material are investigated by patterning gold and aluminum structures with varying length on silicon and glass substrates, as well as on anodic aluminum oxide, a cost effective alternative to standard transparent substrates. By varying such parameters for straight rods and arcs, we find that the measured LSPR frequencies of our nanostructures span the mid-infrared spectral range (λ=2-12 microns). However, we find that bending the nanostructures (i.e., forming arcs rather than straight rods) results in additional resonances with unique polarizations not observed in straight nanorods. We find that the nanorods exhibit half-wave antenna behavior which can be modeled using antenna theory with a linearly scaled effective wavelength which accounts for structure dimensions and material.

  12. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    NASA Astrophysics Data System (ADS)

    Junaidi, Yunus, Muhammad; Triyana, Kuwat; Harsojo, Suharyadi, Edi

    2016-04-01

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  13. Label-free SERS study of galvanic replacement reaction on silver nanorod surface and its application to detect trace mercury ion

    PubMed Central

    Wang, Yaohui; Wen, Guiqing; Ye, Lingling; Liang, Aihui; Jiang, Zhiliang

    2016-01-01

    It is significant to explore a rapid and highly sensitive galvanic replacement reaction (GRR) surface enhanced Raman scattering (SERS) method for detection of trace mercury ions. This article was reported a new GRR SERS analytical platform for detecting Hg(II) with label-free molecular probe Victoria blue B (VBB). In HAc-NaCl-silver nanorod (AgNR) substrate, the molecular probe VBB exhibited a strong SERS peak at 1609 cm−1. Upon addition of Hg(II), the GRR occurred between the AgNR and Hg(II), and formed a weak SERS activity of Hg2Cl2 that deposited on the AgNR surfaces to decrease the SERS intensity at 1609 cm−1. The decreased SERS intensity was linear to Hg(II) concentration in the range of 1.25–125 nmol/L, with a detection limit of 0.2 nmol/L. The GRR was studied by SERS, transmission electron microscopy and other techniques, and the GRR mechanism was discussed. PMID:26792071

  14. Bi-directional-bi-dimensionality alignment of self-supporting Mn3O4 nanorod and nanotube arrays with different bacteriostasis and magnetism.

    PubMed

    Chen, Qun; Wei, Chengzhen; Gao, Feng; Pang, Huan; Lu, Qingyi

    2013-12-21

    Self-supported Mn3O4 patterns of aligned nanorods and nanotubes were synthesized through a bi-directional-bi-dimensionality growth model by using sodium gluconate and urea as additives under mild hydrothermal conditions without the use of any substrates. In one direction, Mn3O4 grows to form one-dimensional nanorods or nanotubes, while in the other direction Mn3O4 grows into two-dimensional nanoplates to support the nanorods or nanotubes to align into arrays. These two kinds of new nanostructures, a nanotube pattern and a nanorod pattern, show similar and good bacteriostasis for Gram positive bacteria, but for Gram negative bacteria the nanotube pattern shows much better bacterial restraint than the nanorod pattern. Magnetic studies show that the nanorod arrays display similar magnetic properties to the commercial Mn3O4, while the nanotube arrays show different ferromagnetic behaviors with enhanced remnant magnetization and saturation magnetization (Ms) at low temperature.

  15. Fabrication of highly ordered Ta2O5 and Ta3N5 nanorod arrays by nanoimprinting and through-mask anodization

    NASA Astrophysics Data System (ADS)

    Li, Yanbo; Nagato, Keisuke; Delaunay, Jean-Jacques; Kubota, Jun; Domen, Kazunari

    2014-01-01

    Using highly ordered porous anodic alumina membrane fabricated with the aid of nanoimprinting as a mask, Ta2O5 nanorod array with uniform diameter, length, and distribution is grown in situ on a Ta substrate by through-mask anodization. The Ta2O5 nanorod array is further transformed into Ta3N5 nanorod array without damaging the nanorod structure by nitridation. Solar-driven photoelectrochemical water splitting with a maximum solar energy conversion efficiency of 0.36% is demonstrated with the Ta3N5 nanorod array after modifying the surface with cobalt-phosphate as a co-catalyst. The Ta2O5 and Ta3N5 nanorod arrays have potential applications in catalysis, photonics, UV photodetection and solar energy conversion.

  16. Effects of Silver and Antimony Content in Lead-Free High-Temperature Solders of Bi-Ag and Bi-Sb on Copper Substrate

    NASA Astrophysics Data System (ADS)

    Nahavandi, M.; Hanim, M. A. Azmah; Ismarrubie, Z. N.; Hajalilou, A.; Rohaizuan, R.; Fadzli, M. Z. Shahrul

    2014-02-01

    Replacing high-temperature leaded solders with lead-free alternatives is an important issue in the electronics industry. This study investigates the viability of lead-free Bi-Ag and Bi-Sb solder alloys, ranging in composition from 1.5 to 5 wt.% Ag and Sb. The effects of melting point, wetting angle, microstructure, and morphology were analysed by differential scanning calorimetry, optical microscopy, and scanning electron microscope-energy dispersive x-ray analysis. The results showed that all tested alloys had suitable melting temperatures, ranging from 271 to 276°C. The wetting angle increased by raising the Sb content, but, in contrast, by increasing the wt.% of Ag, the wetting angle decreased. A Cu-rich phase was present in all Bi-Ag alloys, The Cu-rich phase was also present in decreasing amounts with increasing Sb, but, with 5Sb, there was no Cu-rich phase, and a Cu3Sb intermetallic compound was present in the interface and as precipitates in the solder. Grooving along Cu grain boundaries was observed at the interface for the rest of the alloys.

  17. Self-Catalyzed Growth of Vertically Aligned InN Nanorods by Metal-Organic Vapor Phase Epitaxy.

    PubMed

    Tessarek, C; Fladischer, S; Dieker, C; Sarau, G; Hoffmann, B; Bashouti, M; Göbelt, M; Heilmann, M; Latzel, M; Butzen, E; Figge, S; Gust, A; Höflich, K; Feichtner, T; Büchele, M; Schwarzburg, K; Spiecker, E; Christiansen, S

    2016-06-01

    Vertically aligned hexagonal InN nanorods were grown mask-free by conventional metal-organic vapor phase epitaxy without any foreign catalyst. The In droplets on top of the nanorods indicate a self-catalytic vapor-liquid-solid growth mode. A systematic study on important growth parameters has been carried out for the optimization of nanorod morphology. The nanorod N-polarity, induced by high temperature nitridation of the sapphire substrate, is necessary to achieve vertical growth. Hydrogen, usually inapplicable during InN growth due to formation of metallic indium, and silane are needed to enhance the aspect ratio and to reduce parasitic deposition beside the nanorods on the sapphire surface. The results reveal many similarities between InN and GaN nanorod growth showing that the process despite the large difference in growth temperature is similar. Transmission electron microscopy, spatially resolved energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been performed to analyze the structural properties. Spatially resolved cathodoluminescence investigations are carried out to verify the optical activity of the InN nanorods. The InN nanorods are expected to be the material of choice for high-efficiency hot carrier solar cells. PMID:27187840

  18. Enhanced Raman scattering and photocatalytic activity of Ag/ZnO heterojunction nanocrystals.

    PubMed

    Chen, Chongqi; Zheng, Yuanhui; Zhan, Yingying; Lin, Xingyi; Zheng, Qi; Wei, Kemei

    2011-10-01

    In this work, we study the enhancement of Raman signals and photocatalytic activity of Ag/ZnO heterojunctions with an Ag content of 1 at.%, which were synthesized by photochemical deposition of Ag nanoparticles onto pre-synthesized ZnO nanorods. A strong interaction between Ag and ZnO nanocrystals were evidenced by XPS and UV-vis spectroscopy. The binding energy of Ag nanoparticles shifts toward lower energy compared to that of pure Ag nanoparticles, revealing that electrons transfer from Ag to the ZnO nanocrystals. The red shift of the plasmon absorption peak of Ag nanoparticles in Ag/ZnO heterojunctions further confirms the strong interaction between the two components. This strong interaction, arising from the coupling between Ag and ZnO nanocrystals, is responsible for the enhancement of Raman signals and photocatalytic activity of the Ag/ZnO heterojunctions. PMID:21847472

  19. A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate.

    PubMed

    Zhang, Si; Huang, Na; Lu, Qiujun; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2016-03-15

    In this paper, a double signal electrochemical Human immunoglobulin G (HIgG) immunosensor based on AgNPs/carbon nanocomposite (Ag/C NC) as the signal probe and catalytic substrate was developed for fast and sensitive detection of HIgG. The as-prepared AuNPs-PDA-rGO nanocomposite and Ag/C NC were confirmed by UV-vis, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. Electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical properties of the proposed immunosensor. The AuNPs-PDA-rGO nanocomposite can improve the electron transfer rate and capture more Ab1. In the sandwich-type immunoassay process, the Ag/C NC functionalized bioconjugates were captured on HIgG/Ab1/AuNPs-PDA-rGO surface and the electrochemical double-signal strategy was employed. These double electrochemical detection signals were directly monitored the oxidation current originated from Ag/C NC and indirectly detected the reduction current of benzoquinone which was produced from the reaction of H2O2 and HQ by catalysis of Ag/C NC in electrochemical detection of HIgG. Under the optimized conditions, the current responses were changed with the concentrations of HIgG for the proposed immunosensor with wide linear ranges of 0.1 to 100 ngmL(-1) and 0.01-100 ngmL(-1) with the lowest detection concentration of 0.001 ng mL(-1) in the absence and presence of H2O2 and HQ. The double-signal strategy is used for detection of HIgG, and the results came from the two signals were well consistent with each other. The proposed immunosensor was successfully applied in analysis of human IgG in real samples and this strategy may provide a relative simple and effective method for construction of other immunsensors in detection of other biomarkers in clinical medicine.

  20. Multifunctional transparent ZnO nanorod films

    NASA Astrophysics Data System (ADS)

    Kwak, Geunjae; Jung, Sungmook; Yong, Kijung

    2011-03-01

    Transparent ZnO nanorod (NR) films that exhibit extreme wetting states (either superhydrophilicity or superhydrophobicity through surface chemical modification), high transmittance, UV protection and antireflection have been prepared via the facile ammonia hydrothermal method. The periodic 1D ZnO NR arrays showed extreme wetting states as well as antireflection properties due to their unique surface structure and prevented the UVA region from penetrating the substrate due to the unique material property of ZnO. Because of the simple, time-efficient and low temperature preparation process, ZnO NR films with useful functionalities are promising for fabrication of highly light transmissive, antireflective, UV protective, antifogging and self-cleaning optical materials to be used for optical devices and photovoltaic energy devices.

  1. Large hexagonal arrays of aligned ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Rybczynski, J.; Huang, J. Y.; Wang, D. Z.; Kempa, K.; Ren, Z. F.

    2005-02-01

    Large-scale truly periodic arrays of vertically aligned zinc oxide nanorods were grown on pre-patterned and pre-annealed gold dots on a-plane sapphire substrates via the vapor liquid solid mechanism. Periodic arrays of triangular gold islands were first patterned on the a-plane sapphire substrates by the nanosphere self-assembly technique. Zinc has been found to be an effective interfacial modifier between gold and sapphire to form single catalytic dots from triangular islands. The successful fabrication of zinc oxide nanowires in truly periodic arrays opens up the possibility of achieving enhanced room-temperature ultraviolet lasing and photonic crystal based devices and sensors.

  2. Vertically aligned ZnO nanorods via self-assembled spray pyrolyzed nanoparticles for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Dwivedi, Charu; Dutta, V.

    2012-03-01

    Well-aligned zinc oxide (ZnO) nanorods are fabricated on indium-tin-oxide (ITO) coated glass substrates via self-assembly of ZnO nanoparticles created using continuous spray pyrolysis (CoSP) technique. The method involves pre-treatment by dip-coating the substrate with a solution comprising of zinc salt for creating a seed layer, and then spray-pyrolyzed ZnO nanoparticles self-assemble on the pre-treated substrate. The effect of the substrate pre-treatment and the deposition time (tdep) of nanoparticles is investigated. The results show that the substrate pre-treatment influences the growth of ZnO nanorods which are absent without the pre-treatment. Nanoparticle collection and nanorod growth on different substrates are done simultaneously. The thin films of as-grown nanorods are used as photoelectrode materials to fabricate dye-sensitized solar cells (DSSCs) and the effect of nanorods grown for different times has been studied. The best performance with this cell structure is found for the layer with tdep=15 min, which showed a conversion efficiency of 1.77% for the cell area of 0.25 cm2.

  3. Aptamer-based immunosensor on the ZnO nanorods networks.

    PubMed

    Nam, Yoonkyung; Park, Jungil; Pak, Youngmi Kim; Pak, James Jungho

    2012-07-01

    This paper presents the fabrication and characteristics of a new aptamer-based electrochemical immunosensor on the patterned zinc oxide nanorod networks (ZNNs) for detecting thrombin. Aptamers are single-stranded RNA or DNA sequence that binds to target materials with high specificity and affinity. An antibody-antigen-aptamer sandwich structure was employed to this immunosensor for detecting thrombin. First, hydrothermally grown ZNNs were patterned on the patterned 0.02 cm2 Au/Ti electrodes on a glass substrate by lift-off process. The high isoelectric point (IEP, approximately 9.5) of nanostructured ZnO makes it suitable for immobilizing proteins with low IEP. Then 5 microL of the 500 nM antibody was immobilized on the ZNNs electrode. 5 micro/L of the mixture of 1 microM aptamer labeled by ferrocene (Fc) and thrombin was dropped on the electrode for antibody-antigen binding. The peak oxidation currents of the immunosensors at various thrombin concentrations were measured by using cyclic voltammetry. The peak oxidation current was observed at 340 mV versus Ag/AgCl electrode, and the peak oxidation current increased linearly from 62.26 nA to 354.13 nA with the logarithmic concentration of thrombin in the range from 100 pM to 250 nM. Fabrication of an aptamer-based immunosensor for thrombin detection is a new attempt and the characteristics of the fabricated immunosensors showed that the fabricated aptamer-baded immunosensor worked electrochemically well and had a low detection limit (approximately 91.04 pM) and good selectivity.

  4. Highly selective electrodeposition of sub-10 nm crystalline noble metallic nanorods inside vertically aligned multiwall carbon nanotubes.

    PubMed

    Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin

    2016-07-01

    In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter.

  5. Highly selective electrodeposition of sub-10 nm crystalline noble metallic nanorods inside vertically aligned multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin

    2016-07-01

    In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter.

  6. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance

    NASA Astrophysics Data System (ADS)

    Li, Xingliang; Yang, Yun; Zhou, Guangju; Han, Shuhua; Wang, Wenfang; Zhang, Lijie; Chen, Wei; Zou, Chao; Huang, Shaoming

    2013-05-01

    Au nanostructures attract much attention due to their potential applications in many fields. The controlled synthesis is critical to their properties modulation and applications. AgNO3-assisted synthesis is a widely used method for controllably preparing Au nanostructures in aqueous system. Herein, the effect of AgNO3 on the growth of Au nanostructures in polyol is studied. We observe an unusual effect that AgNO3 can induce the formation of pentatwinned Au nanostructures (nanorods and decahedra) and block the growth of Au nanorods. More interestingly, this blocking effect can be tuned through controlling the amount of AgNO3. A moderate amount of AgNO3 facilitates the formation of Au nanorods. A large amount of AgNO3 completely blocks the growth of nanorods and favors the formation of high quality decahedra (decahedra can be considered as nanorods with 0 nm longitudinal length). Besides, this blocking effect also allows preparation of different high-index-faceted Au nanobipyramids. These prepared Au nanostructures further serve as starting templates to fabricate other heterostructured Au/Ag nanomaterials, such as Ag-Au-Ag segmental nanorods, Au@Ag core-shelled nanostructures. The prepared nanostructures exhibit size- and structure-dependent catalytic performance in the reduction of p-nitrophenol to p-aminophenol by sodium borohydride.Au nanostructures attract much attention due to their potential applications in many fields. The controlled synthesis is critical to their properties modulation and applications. AgNO3-assisted synthesis is a widely used method for controllably preparing Au nanostructures in aqueous system. Herein, the effect of AgNO3 on the growth of Au nanostructures in polyol is studied. We observe an unusual effect that AgNO3 can induce the formation of pentatwinned Au nanostructures (nanorods and decahedra) and block the growth of Au nanorods. More interestingly, this blocking effect can be tuned through controlling the amount of AgNO3. A moderate

  7. Vertically aligned ZnO nanorods of high crystalline and optical quality grown by dc reactive sputtering

    NASA Astrophysics Data System (ADS)

    Nandi, R.; Appani, Shravan K.; Major, S. S.

    2016-09-01

    ZnO nanorods were grown on Si and quartz substrates by direct current reactive magnetron sputtering of metallic zinc target in argon–oxygen ambient, without the use of any seed layer or catalyst. A combination of top-down and cross-sectional scanning electron microscopy studies have shown that the substrate temperature critically controls the growth behavior and morphology of ZnO films, eventually resulting in the growth of well aligned and separated ZnO nanorods at substrate temperature of ∼750 °C. High resolution x-ray diffraction studies of ZnO nanorods grown at 750 °C have shown that the nanorods are highly c-axis oriented and vertically aligned perpendicular to both Si and quartz substrates, and display small values of tilt and micro-strain, particularly in the case of Si substrate (1.26° and 4 × 10‑4, respectively). Cross-sectional transmission electron microscopy of ZnO nanorods demonstrates their single-crystalline nature and growth along [0002] direction. Room temperature photoluminescence spectra of ZnO nanorods display extremely high near-band-edge emission and weak defect emission due to point defects, compared to that of the ZnO films grown at lower substrate temperatures. The drastic enhancement of near-band-edge emission of ZnO nanorods (over two orders of magnitude) and strong suppression of defect emission are attributed to their high crystalline quality and absence of interface defects due to lateral coalescence.

  8. Vertically aligned ZnO nanorods of high crystalline and optical quality grown by dc reactive sputtering

    NASA Astrophysics Data System (ADS)

    Nandi, R.; Appani, Shravan K.; Major, S. S.

    2016-09-01

    ZnO nanorods were grown on Si and quartz substrates by direct current reactive magnetron sputtering of metallic zinc target in argon-oxygen ambient, without the use of any seed layer or catalyst. A combination of top-down and cross-sectional scanning electron microscopy studies have shown that the substrate temperature critically controls the growth behavior and morphology of ZnO films, eventually resulting in the growth of well aligned and separated ZnO nanorods at substrate temperature of ˜750 °C. High resolution x-ray diffraction studies of ZnO nanorods grown at 750 °C have shown that the nanorods are highly c-axis oriented and vertically aligned perpendicular to both Si and quartz substrates, and display small values of tilt and micro-strain, particularly in the case of Si substrate (1.26° and 4 × 10-4, respectively). Cross-sectional transmission electron microscopy of ZnO nanorods demonstrates their single-crystalline nature and growth along [0002] direction. Room temperature photoluminescence spectra of ZnO nanorods display extremely high near-band-edge emission and weak defect emission due to point defects, compared to that of the ZnO films grown at lower substrate temperatures. The drastic enhancement of near-band-edge emission of ZnO nanorods (over two orders of magnitude) and strong suppression of defect emission are attributed to their high crystalline quality and absence of interface defects due to lateral coalescence.

  9. Growth of Si nanorods in honeycomb and hexagonal-closed-packed arrays using glancing angle deposition

    SciTech Connect

    Patzig, Christian; Rauschenbach, Bernd; Fuhrmann, Bodo; Leipner, Hartmut S.

    2008-01-15

    Regular arrays of Si nanorods with a circular cross section in hexagonal-closed-packed and triangular cross section in honeycomblike arrangements were grown using glancing angle deposition on Si(100) and fused silica substrates that were patterned with Au dots using self-assembled mono- and double layers of polystyrene nanospheres as an evaporation mask. The Au dots were used as an etching mask for the underlying silica substrates in a reactive ion beam etching process, which greatly enhanced the height of the seeding spaces for the subsequent glancing angle deposition. An elongated shadowing length l of the prepatterned nucleation sites and less growth of Si structures between the surface mounds could be achieved this way. Differences in form, height, and diameter of the Si nanorods grown on either hcp or honeycomb arrays are explained by purely geometrical arguments. Different seed heights and interseed distances are found to be the main reasons for the strong distinctions between the grown nanorod arrays.

  10. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  11. Nanoheteroepitaxy of GaN on AlN/Si(111) nanorods fabricated by nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Shin, In-Su; Jin, Lu; Kim, Donghyun; Park, Yongjo; Yoon, Euijoon

    2016-06-01

    Nanoheteroepitaxy (NHE) of GaN on an AlN/Si(111) nanorod structure was investigated by metal-organic chemical vapor deposition. Silica nanosphere lithography was employed to fabricate a periodic hexagonal nanorod array with a narrow gap of 30 nm between the nanorods. We were successful in obtaining a fully coalesced GaN film on the AlN/Si(111) nanorod structure. Transmission electron microscopy revealed that threading dislocation (TD) bending and termination by stacking faults occurred near the interface between GaN and the AlN/Si(111) nanorods, resulting in the reduction of TD density for the NHE GaN layer. The full width at half-maximum of the X-ray rocking curve for (102) plane of the NHE GaN was found to decrease down to 728 arcsec from 1005 arcsec for the GaN layer on a planar AlN/Si(111) substrate, indicating that the crystalline quality of the NHE GaN was improved. Also, micro-Raman measurement showed that tensile stress in the NHE GaN layer was reduced significantly as much as 70% by introducing air voids between the nanorods.

  12. Optoelectrical and magnetic characteristics of Mn doped Zn1-xSnxO nanorods

    NASA Astrophysics Data System (ADS)

    Hsu, Tsung-Yin; Lai, Shang-Hung; Hsieh, Hui-Huang; Lan, Ming-Der; Su, Chih-Chuan; Ho, Mon-Shu

    2013-01-01

    This paper describes a new method of fabricating Mn doped Zn1-xSnxO nanorod arrays on a silicon (111) substrate. The proposed method is a gold catalytic vapor-liquid-solid mechanism in a multi-layer deposition process using nanosphere lithographic patterning. Each step of the growth process was monitored using atomic force microscopy to ensure uniformity in the patterns and nanorods. The crystal structure and characteristics of the Mn doped Zn1-xSnxO nanaorods were determined using the X-ray diffraction analysis, scanning electron microscopy, high resolution transmission electron microscopy, and electron diffraction patterns corresponding to the selected area. The lattice constant along the Z-axis was calculated from the indexed pattern, as approximately 5.1 Å. This differs slightly from what was expected for undoped ZnO nanorods. Energy dispersive X-ray spectrometry provided information related to the chemistry of the ZnO nanorods and electro-optical properties at 363 nm were determined from photoluminescence emissions. Using conductive AFM, the band gap for single doped-ZnO nanorods was determined to be 3-3.45 eV. The magnetic properties were characterized by the measurement of a hysteresis loop. This investigation demonstrates the outstanding potential of patterned Mn doped Zn1-xSnxO nanorods for applications requiring dilute magnetic semiconductors in the future.

  13. Growth mechanism, structure and IR photoluminescence studies of indium nitride nanorods

    NASA Astrophysics Data System (ADS)

    Lan, Z. H.; Wang, W. M.; Sun, C. L.; Shi, S. C.; Hsu, C. W.; Chen, T. T.; Chen, K. H.; Chen, C. C.; Chen, Y. F.; Chen, L. C.

    2004-08-01

    High-quality single crystal indium nitride nanorods were grown on Si substrates by catalytic chemical vapor deposition. Both Raman and high resolution transmission electron microscopic analyses suggested that even a minute amount of oxygen, from the residual oxygen in the growth environment and/or native oxide on the Si, would effectively help the growth of InN nanorods. The In 2O 3 formed on Au nanoparticles helped dissolve nitrogen as a catalyst with the subsequent growth of InN nanorods. Variations in the apparent color and photoluminescence (PL) spectra of the InN nanorods were observed. For the optically brown InN nanorods that exhibited diameters in the range of 30-50 nm, the PL study showed a peak at 1.9 eV, the possible origins of which are discussed. In contrast, for the optically black InN nanorods that exhibited diameters in the range of 50-100 nm, the PL peak at approximately 0.766 eV measured at 20 K was attributed to band edge emission.

  14. Thermo-electrochemical selective growth of ZnO nanorods on any noble metal electrodes

    NASA Astrophysics Data System (ADS)

    You, Xueqiu; Park, Jungil; Choi, Jae-hoon; Pak, James Jungho

    2010-10-01

    Selective growth of ZnO nanorods has been successfully performed on the patterned Au/Ti metal electrode regions on a glass substrate by using a seeded thermo-electrochemical method in an acidic growth solution. The selective growth mechanism of the thermo-electrochemical method was proposed by using a series of chemical reactions for the first time. The thermo-electrochemical selective ZnO growth was performed on the cathode electrode at a temperature below 90 °C. A ZnO seed layer was precoated and selectively etched away from the non-metal regions in order to create the patterned selective nucleation sites on which the precursors are transferred and crystallized into ZnO nanorods. Both the dimensions and the placements of the ZnO nanorods have been simultaneously controlled. Energy dispersive X-ray spectrometry showed that the selectively grown ZnO nanorods consist of only Zn and O, indicating that the selectively grown ZnO nanorods are pure and contamination free. XRD and electron diffraction patterns revealed that the obtained ZnO nanorods have a wurtzite single-crystal structure.

  15. Investigating the optical XNOR gate using plasmonic nano-rods

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Majid; Kaboli, Milad

    2016-04-01

    In this paper, a coherent perfect absorption (CPA)-type XNOR gate based on plasmonic nano particle is proposed. It consists of two plasmonic nano rod arrays on top of two parallel arms with quartz substrate. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-particles waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-rod and the nano rod location, an efficient binary optimization method based the Particle Swarm Optimization (PSO) algorithm is used to design an optimized array of the plasmonic nano-rod in order to achieve the maximum absorption coefficient in the 'off' state and the minimum absorption coefficient in the 'on' state. In Binary PSO (BPSO), a group of birds consists a matrix with binary entries, control the presence ('1‧) or the absence ('0‧) of nano rod in the array.

  16. Gold nanorods dispersed in homopolymer films: optical properties controlled by self-assembly and percolation of nanorods.

    PubMed

    Jiang, Guoqian; Hore, Michael J A; Gam, Sangah; Composto, Russell J

    2012-02-28

    In this paper, polymer nanocomposite films containing gold nanorods (AuNRs) and poly(2-vinyl pyridine) (P2VP) have been investigated for their structure-optical property relationship. Using transmission electron microscopy (TEM), the assembly of AuNRs (7.9 nm × 28.4 nm) grafted with a P2VP brush in P2VP films is examined as a function of the AuNR volume fraction Ø(AuNRs) and film thickness h. For h ∼ 40 nm, AuNRs are confined to align parallel to the film and uniformly dispersed at low Ø(AuNRs). Upon increasing Ø(AuNRs), nanorods form discrete aggregates containing mainly side-by-side arrays due to depletion-attraction forces. For Ø(AuNRs) = 2.7%, AuNRs assemble into a 2D network where the discrete aggregates are connected by end-to-end linked nanorods. As Ø(AuNRs) further increases, the polymer-rich regions of the network fill in with nanorods and rod overlap is observed. Monte Carlo simulations capture the experimentally observed morphologies. The effect of film thickness is investigated at Ø(AuNRs) = 2.7%, where thicker films (40 and 70 nm) show a dense array of percolated nanorods and thinner films (20 nm) exhibit mainly isolated nanorods. Using Rutherford backscattering spectrometry (RBS), the AuNRs are observed to segregate near the substrate during spin-casting. Optically, the longitudinal surface plasmon resonance (LSPR) peaks are correlated with the local orientation of the AuNRs, where side-by-side and end-to-end alignments induce blue and red shifts, respectively. The LSPR undergoes a red shift up to 51 nm as Ø(AuNRs) increases from 1.6 to 2.7%. These studies indicate that the optical properties of polymer nanocomposite films containing gold nanorods can be fine-tuned by changing Ø(AuNRs) and h. These results are broadly applicable and provide guidelines for dispersing other functional nanoparticles, such as quantum dots and carbon nanotubes. PMID:22283716

  17. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping

    SciTech Connect

    Kuang, Y.; Lare, M. C. van; Polman, A.; Veldhuizen, L. W.; Schropp, R. E. I.; Rath, J. K.

    2015-11-14

    We present a simple, low-cost, and scalable approach for the fabrication of efficient nanorod-based solar cells. Templates with arrays of self-assembled ZnO nanorods with tunable morphology are synthesized by chemical bath deposition using a low process temperature at 80 °C. The nanorod templates are conformally coated with hydrogenated amorphous silicon light absorber layers of 100 nm and 200 nm thickness. An initial efficiency of up to 9.0% is achieved for the optimized design. External quantum efficiency measurements on the nanorod cells show a substantial photocurrent enhancement both in the red and the blue parts of the solar spectrum. Key insights in the light trapping mechanisms in these arrays are obtained via a combination of three-dimensional finite-difference time-domain simulations, optical absorption, and external quantum efficiency measurements. Front surface patterns enhance the light incoupling in the blue, while rear side patterns lead to enhanced light trapping in the red. The red response in the nanorod cells is limited by absorption in the patterned Ag back contact. With these findings, we develop and experimentally realize a further advanced design with patterned front and back sides while keeping the Ag reflector flat, showing significantly enhanced scattering from the back reflector with reduced parasitic absorption in the Ag and thus higher photocurrent generation. Many of the findings in this work can serve to provide insights for further optimization of nanostructures for thin-film solar cells in a broad range of materials.

  18. Hierarchical organization and molecular diffusion in gold nanorod/silica supercrystal nanocomposites

    NASA Astrophysics Data System (ADS)

    Hamon, Cyrille; Sanz-Ortiz, Marta N.; Modin, Evgeny; Hill, Eric H.; Scarabelli, Leonardo; Chuvilin, Andrey; Liz-Marzán, Luis M.

    2016-04-01

    Hierarchical organization of gold nanorods was previously obtained on a substrate, allowing precise control over the morphology of the assemblies and macroscale spatial arrangement. Herein, a thorough description of these gold nanorod assemblies and their orientation within supercrystals is presented together with a sol-gel technique to protect the supercrystals with mesoporous silica films. The internal organization of the nanorods in the supercrystals was characterized by combining focused ion beam ablation and scanning electron microscopy. A mesoporous silica layer is grown both over the supercrystals and between the individual lamellae of gold nanorods inside the structure. This not only prevented the detachment of the supercrystal from the substrate in water, but also allowed small molecule analytes to infiltrate the structure. These nanocomposite substrates show superior Raman enhancement in comparison with gold supercrystals without silica owing to improved accessibility of the plasmonic hot spots to analytes. The patterned supercrystal arrays with enhanced optical and mechanical properties obtained in this work show potential for the practical implementation of nanostructured devices in spatially resolved ultradetection of biomarkers and other analytes.Hierarchical organization of gold nanorods was previously obtained on a substrate, allowing precise control over the morphology of the assemblies and macroscale spatial arrangement. Herein, a thorough description of these gold nanorod assemblies and their orientation within supercrystals is presented together with a sol-gel technique to protect the supercrystals with mesoporous silica films. The internal organization of the nanorods in the supercrystals was characterized by combining focused ion beam ablation and scanning electron microscopy. A mesoporous silica layer is grown both over the supercrystals and between the individual lamellae of gold nanorods inside the structure. This not only prevented the

  19. Fabrication of ZnO nanorods and assessment of changes in optical and gas sensing properties by increasing their lengths

    NASA Astrophysics Data System (ADS)

    Mehrabian, Masood; Mirabbaszadeh, Kavoos; Afarideh, Hossein

    2013-12-01

    We report a low-temperature process to synthesize highly oriented arrays of ZnO nanorods, based on the epitaxial growth of the ZnO seed layer at a low temperature of 70 °C. The ZnO seed layer was deposited by sol-gel process under mild conditions on the glass substrates. The morphologies and crystal structures of the film and nanorods were characterized by x-ray diffraction and scanning electron microscopy, respectively. ZnO nanorods were grown on ZnO seed layers by hydrothermal method. The effect of growth period on the morphology and optical characteristics (e.g. optical transmission and band-gap energy), hydrophilicity and gas sensing properties of the grown ZnO seed layer (film) and nanorods were investigated. The long nanorods on the seed layer were observed. The increase in the length of the nanorods resulted in a significant reduction in the optical band-gap energy of the nanorods, which was attributed to the formation of further defects in the nanorods during their fast growth. The surface of the ZnO nanorods grown for 6 h was relatively hydrophilic (with a water contact angle of 18°). The fabricated sensors were used to gauge different concentrations of ethanol vapor in the air at different temperatures and evaluated the surface resistance of the sensors as a function of operating temperature and ethanol concentrations. The results showed that the sensitivity of the nanorods changed from 1.3 to 6 (at 300 °C) by increasing the growth period.

  20. Ergonomic Synthesis Suitable for Industrial Production of Silver-Festooned Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Khan, G. R.; Khan, R. A.

    2015-07-01

    For maximizing productivity, minimizing cost, time-boxing process and optimizing human effort, a single-step, cost-effective, ultra-fast and environmentally benign synthesis suitable for industrial production of nanocrystalline ZnO, and Ag-doped ZnO has been reported in this paper. The synthesis based on microwave-supported aqueous solution method used zinc acetate dehydrate and silver nitrate as precursors for fabrication of nanorods. The synthesized products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Vis-NIR spectroscopy. The undoped and Ag-doped ZnO nanorods crystallized in a hexagonal wurtzite structure having spindle-like morphology. The blue shift occurred at absorption edge of Ag-doped ZnO around 260 nm compared to 365 nm of bulk ZnO. The red shift occurred at Raman peak site of 434 cm-1 compared to characteristic wurtzite phase peak of ZnO (437 cm-1). The bandgap energies were found to be 3.10 eV, 3.11 eV and 3.18 eV for undoped, 1% Ag-doped, and 3% Ag-doped ZnO samples, respectively. The TEM results provided average particle sizes of 17 nm, 15 nm and 13 nm for undoped, and 1% and 3% Ag-doped ZnO samples, respectively.

  1. Functionalized ZnO nanorod-based selective magnesium ion sensor for intracellular measurements.

    PubMed

    Asif, Muhammad H; Ali, Syed M Usman; Nur, Omer; Willander, Magnus; Englund, Ulrika H; Elinder, Fredrik

    2010-11-15

    ZnO nanorods were grown on a silver-coated tip of a borosilicate glass capillary (0.7 μm in tip diameter) and used as selective potentiometric sensor of intracellular free Mg(2+). To functionalize the ZnO nanorods for selectivity of Mg(2+), a polymeric membrane with Mg(2+)-selective ionophores were coated on the surface of the ZnO nanorods. These functionalized ZnO nanorods exhibited a Mg(2+)-dependent electrochemical potential difference versus an Ag/AgCl reference microelectrode within the concentration range from 500 nM to 100 mM. Two types of cells, human adipocytes and frog oocytes, were used for the intracellular Mg(2+) measurements. The intracellular concentration of free Mg(2+) in human adipocytes and frog oocytes were 0.4-0.5 and 0.8-0.9 mM, respectively. Such type of nanoelectrode device paves the way to enable analytical measurements in single living cells and to sense other bio-chemical species at the intracellular level. PMID:20846846

  2. Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods

    PubMed Central

    Fulati, Alimujiang; Ali, Syed M.Usman; Riaz, Muhammad; Amin, Gul; Nur, Omer; Willander, Magnus

    2009-01-01

    ZnO nanotubes and nanorods grown on gold thin film were used to create pH sensor devices. The developed ZnO nanotube and nanorod pH sensors display good reproducibility, repeatability and long-term stability and exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl reference electrode over a large dynamic pH range. We found the ZnO nanotubes provide sensitivity as high as twice that of the ZnO nanorods, which can be ascribed to the fact that small dimensional ZnO nanotubes have a higher level of surface and subsurface oxygen vacancies and provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods, thus affording the ZnO nanotube pH sensor a higher sensitivity. Experimental results indicate ZnO nanotubes can be used in pH sensor applications with improved performance. Moreover, the ZnO nanotube arrays may find potential application as a novel material for measurements of intracellular biochemical species within single living cells. PMID:22291545

  3. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  4. Supercapacitor behavior of α-MnMoO{sub 4} nanorods on different electrolytes

    SciTech Connect

    Purushothaman, K.K.; Cuba, M.; Muralidharan, G.

    2012-11-15

    Graphical abstract: SEM image of α-MnMoO{sub 4} nanorods on FTO substrate. Highlights: ► Synthesis of α-MnMoO{sub 4} nanorods by spin coating method. ► First study on the effect of electrolyte on the pseudocapacitance behavior. ► α-MnMoO{sub 4} nanorods exhibit maximum specific capacitance of 998 F/g. ► At higher scan rates p-TSA electrolyte exhibits superior capacitive behavior. -- Abstract: α-MnMoO{sub 4} nanorods were prepared on conducting glass substrate via sol–gel spin coating method at the optimum doping level. The effect of electrolyte on the pseudocapacitance behavior of the α-MnMoO{sub 4} nanorods was studied using para toluene sulfonic acid (p-TSA), sulfuric acid (H{sub 2}SO{sub 4}) and hydrochloric acid (HCl) as electrolytes. X-ray diffraction analysis reveals the formation of α-MnMoO{sub 4} in monoclinic phase. FTIR spectra contain vibrational bands associated with Mo=O, M–O and Mo–O–Mo bonds. SEM image reveals the formation of nanorods. Supercapacitor behavior has been studied using cyclic voltammetry (CV) analysis. α-MnMoO{sub 4} nanorods exhibit maximum specific capacitance of 998 F/g at a scan rate of 5 mV/s in H{sub 2}SO{sub 4} electrolyte while a specific capacitance of 784 F/g and 530 F/g have been obtained using p-TSA and HCl electrolytes, respectively. At higher scan rates p-TSA electrolyte exhibits superior capacitive behavior than H{sub 2}SO{sub 4}.

  5. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Growth mechanism and photoluminescence of the SnO2 nanotwists on thin film and the SnO2 short nanowires on nanorods

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Xu, Ping

    2009-01-01

    SnO2 nanotwists on thin film and SnO2 short nanowires on nanorods have been grown on single silicon substrates by using Au-Ag alloying catalyst assisted carbothermal evaporation of SnO2 and active carbon powders. The morphology and the structure of the prepared nanostructures are determined on the basis of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electronic diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD), Raman and photoluminescence (PL) spectra analysis. The new peaks at 356, 450, and 489 nm in the measured PL spectra of two kinds of SnO2 nanostructures are observed, implying that more luminescence centres exist in these SnO2 nanostructures due to nanocrystals and defects. The growth mechanism of these nanostructures belongs to the vapour-liquid-solid (VLS) mechanism.

  6. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    PubMed

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  7. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials

    NASA Astrophysics Data System (ADS)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S.; Zhang, Lin

    2016-10-01

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  8. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.

    PubMed

    Wang, Wenhui; Dong, Jingya; Ye, Xiaozhou; Li, Yang; Ma, Yurong; Qi, Limin

    2016-03-01

    Heterostructured TiO2 nanorod@nanobowl (NR@NB) arrays consisting of rutile TiO2 nanorods grown on the inner surface of arrayed anatase TiO2 nanobowls are designed and fabricated as a new type of photoanodes for photoelectrochemical (PEC) water splitting. The unique heterostructures with a hierarchical architecture are readily fabricated by interfacial nanosphere lithography followed by hydrothermal growth. Owing to the two-dimensionally arrayed structure of anatase nanobowls and the nearly radial alignment of rutile nanorods, the TiO2 NR@NB arrays provide multiple scattering centers and hence exhibit an enhanced light harvesting ability. Meanwhile, the large surface area of the NR@NB arrays enhances the contact with the electrolyte while the nanorods offer direct pathways for fast electron transfer. Moreover, the rutile/anatase phase junction in the NR@NB heterostructure improves charge separation because of the facilitated electron transfer. Accordingly, the PEC measurements of the TiO2 NR@NB arrays on the fluoride-doped tin oxide (FTO) substrate show significantly enhanced photocatalytic properties for water splitting. Under AM1.5G solar light irradiation, the unmodified TiO2 NR@NB array photoelectrode yields a photocurrent density of 1.24 mA cm(-2) at 1.23 V with respect to the reversible hydrogen electrode, which is almost two times higher than that of the TiO2 nanorods grown directly on the FTO substrate. PMID:26779803

  9. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    PubMed

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate. PMID:27607837

  10. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.

    PubMed

    Wang, Wenhui; Dong, Jingya; Ye, Xiaozhou; Li, Yang; Ma, Yurong; Qi, Limin

    2016-03-01

    Heterostructured TiO2 nanorod@nanobowl (NR@NB) arrays consisting of rutile TiO2 nanorods grown on the inner surface of arrayed anatase TiO2 nanobowls are designed and fabricated as a new type of photoanodes for photoelectrochemical (PEC) water splitting. The unique heterostructures with a hierarchical architecture are readily fabricated by interfacial nanosphere lithography followed by hydrothermal growth. Owing to the two-dimensionally arrayed structure of anatase nanobowls and the nearly radial alignment of rutile nanorods, the TiO2 NR@NB arrays provide multiple scattering centers and hence exhibit an enhanced light harvesting ability. Meanwhile, the large surface area of the NR@NB arrays enhances the contact with the electrolyte while the nanorods offer direct pathways for fast electron transfer. Moreover, the rutile/anatase phase junction in the NR@NB heterostructure improves charge separation because of the facilitated electron transfer. Accordingly, the PEC measurements of the TiO2 NR@NB arrays on the fluoride-doped tin oxide (FTO) substrate show significantly enhanced photocatalytic properties for water splitting. Under AM1.5G solar light irradiation, the unmodified TiO2 NR@NB array photoelectrode yields a photocurrent density of 1.24 mA cm(-2) at 1.23 V with respect to the reversible hydrogen electrode, which is almost two times higher than that of the TiO2 nanorods grown directly on the FTO substrate.

  11. Defect mediated optical emission of randomly oriented ZnO nanorods and unusual rectifying behavior of Schottky nanojunctions

    NASA Astrophysics Data System (ADS)

    Bayan, Sayan; Mohanta, Dambarudhar

    2011-09-01

    We report on the interrelation of optical emission of randomly oriented ZnO nanorod system with the carrier transport properties of Ag/ZnO nanorod-based rectifying junctions. The ZnO nanorods, exhibiting a hexagonal wurtzite phase, were fabricated by a cost-effective rapid thermal annealing process and at different annealing temperatures. The photoluminescence spectra of the as grown samples have revealed various Zn and O related native defects (e.g., vacancies, interstitials etc.) located at ˜400, 428, 491, and 535 nm. As evident from the I-V characteristic curves, though all the Ag/ZnO nanojunctions show Schottky behavior, the nanorods grown at a temperature of 550 °C and 650 °C are characterized by very large ideality factors of respective values 35.4 and 33.2, apart from displaying unusually high reverse currents. Whereas, the samples grown at 450 °C and 750 °C show usual rectifying nature having relatively lower ideality factors (18.4 and 12.2), along with low leakage-current under reverse biasing. The enhancement or suppression of the reverse currents can be attributed to the eventual lowering or raising of the Schottky barrier heights which result from the variation in the native defect states of various ZnO nanorod systems. Correlating optical events and electrical response through native defects would find scope in assessing figure of merit and sensitivity while making rectifying nanojunctions and single electron devices.

  12. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids.

    PubMed

    Liu, Mingzhao; Guyot-Sionnest, Philippe

    2005-12-01

    The seed-mediated growth of gold nanostructures is shown to be strongly dependent on the gold seed nanocrystal structure. The gold seed solutions can be prepared such that the seeds are either single crystalline or multiply twinned. With added silver(I) in the cetyltrimethylammonium bromide (CTAB) aqueous growth solutions, the two types of seeds yield either nanorods or elongated bipyramidal nanoparticles, in good yields. The gold nanorods are single crystalline, with a structure similar to those synthesized electrochemically (Yu, Y. Y. et al. J. Phys. Chem. B 1997, 101, 6661). In contrast, the gold bipyramids are pentatwinned. These bipyramids are strikingly monodisperse in shape. This leads to the sharpest ensemble longitudinal plasmon resonance reported so far for metal colloid solutions, with an inhomogeneous width as narrow as 0.13 eV for a resonance at approximately 1.5 eV. Ag(I) plays an essential role in the growth mechanism. Ag(I) slows down the growth of the gold nanostructures. Ag(I) also leads to high-energy side facets that are {110} for the single crystalline gold nanorods and unusually highly stepped {11n} (n approximately 7) for the bipyramid. To rationalize these observations, it is proposed that it is the underpotential deposition of Ag(I) that leads to the dominance of the facets with the more open surface structures. This forms the basis for the one-dimensional growth mechanism of single crystal nanorods, while it affects the shape of the nanostructures growing along a single twinning axis. PMID:16853888

  13. Ultra-violet Sensing Characteristic and Field Emission Properties of Vertically Aligned Aluminum Doped Zinc Oxide Nanorod Arrays

    SciTech Connect

    Mamat, M. H.; Malek, M. F.; Musa, M. Z.; Khusaimi, Z.; Rusop, M.

    2011-05-25

    Ultra-violet (UV) sensing behavior and field emission characteristic have been investigated on vertically aligned aluminum (Al) doped zinc oxide (ZnO) nanorod arrays prepared using sol-gel immersion method. Uniform and high coverage density of ZnO nanorod arrays have been successfully deposited on seeded-catalyst coated substrates. The synthesized nanorods have diameter sizes between 50 nm to 150 nm. The XRD spectra show Al doped ZnO nanorod array has high crystallinity properties with the dominancy of crystal growth along (002) plane or c-axis. UV photoresponse measurement indicates that Al doped ZnO nanorod array sensitively detects UV light as shown by conductance increment after UV illumination exposure. The nanorod array shows good field emission properties with low turn on field and threshold field at 2.1 V/{mu}m and 5.6 V/{mu}m, respectively. The result suggested that Al doped ZnO nanorod arrays prepared by low-cost sol-gel immersion method show promising result towards fabrication of multi applications especially in UV photoconductive sensor and field emission displays.

  14. Preparation N-F-codoped TiO{sub 2} nanorod array by liquid phase deposition as visible light photocatalyst

    SciTech Connect

    Lv, Yan; Fu, Zhengping; Yang, Beifang; Xu, Jiao; Wu, Min; Zhu, Changqiong; Zhao, Yongxun

    2011-03-15

    Research highlights: {yields} The formation of N, F-codoped TiO{sub 2} nanorod arrays via the LPD. {yields} Calcination temperature greatly effects the incorporation of N and F into TiO{sub 2}. {yields} TNRAs calcined at 450 {sup o}C showed highest visible light photocatalytic activity. {yields} A synergetic effect of 1D nanorod arrays and appropriate amount of N and F codoping. -- Abstract: An efficient method for the preparation of N-F-codoped visible light active TiO{sub 2} nanorod arrays is reported. In the process, simultaneous nitrogen and fluorine doped TiO{sub 2} nanorod arrays on the glass substrates were achieved by liquid phase deposition method using ZnO nanorod arrays as templates with different calcination temperature. The as-prepared samples were characterized by Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectra measurements. It was found that calcination temperature is an important factor influencing the microstructure and the amount of N and F in TiO{sub 2} nanorod arrays samples. The visible light photocatalytic properties were investigated using methylene blue (MB) dye as a model system. The results showed that N-F-codoped TiO{sub 2} nanorod arrays sample calcined at 450 {sup o}C demonstrated the best visible light activity in all samples, much higher than that of TiO{sub 2} nanoparticles and P25 particles films.

  15. VLS-like growth and characterizations of dense ZnO nanorods grown by e-beam process

    NASA Astrophysics Data System (ADS)

    Agarwal, D. C.; Chauhan, R. S.; Avasthi, D. K.; Sulania, I.; Kabiraj, D.; Thakur, P.; Chae, K. H.; Chawla, Amit; Chandra, R.; Ogale, S. B.; Pellegrini, G.; Mazzoldi, P.

    2009-02-01

    We present a new approach to produce ZnO nanorods in a reproducible manner at a temperature lower than other physical vapour deposition techniques, such as the vapour-liquid-solid mechanism. Arrays of well-aligned ZnO nanorods of uniform diameter have been synthesized on the Si substrate precoated with Au, using a simple electron beam evaporation method without the flow of any carrier gas. Scanning electron microscopy and atomic force microscopy characterizations show that as-grown nanorods are well aligned and uniform in diameter. X-ray diffraction measurements and clear lattice fringes in high-resolution transmission electron microscopy image show the growth of good quality polycrystalline hexagonal ZnO nanorods and a lang0 0 2rang growth direction. The polarization-dependent studies of near edge x-ray absorption fine structure (NEXAFS) are performed to investigate the electronic structure of the zinc and oxygen ions. The analysis of NEXAFS spectra at different angles of incidence of photon flux indicates the formation of ZnO nanorods having anisotropic behaviour of O and Zn states. The photoluminescence spectrum exhibits strong ultraviolet emission at 385 nm and the UV-visible spectrum also shows a band-gap transition around 390 nm indicating the good quality of nanorods. The catalytic growth mechanism of the ZnO nanorods is discussed on the basis of experimental results in this work.

  16. Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices

    NASA Astrophysics Data System (ADS)

    Yao, I.-Chuan; Lee, Dai-Ying; Tseng, Tseung-Yuen; Lin, Pang

    2012-04-01

    This study investigates the resistive switching behavior of Ga-doped ZnO (GZO) nanorod thin films with various Ga/Zn molar ratios. Vertically well-aligned and uniform GZO nanorod thin films were successfully grown on Au/Ti/SiO2/p-Si substrates using an aqueous solution method. X-ray diffraction (XRD) results indicate that GZO nanorods have [0001] highly preferred orientation. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show the formation of highly ordered and dense nanorod thin films. These compact GZO nanorod thin films can be used to make resistive switching memory devices. Such memory devices can be reversibly switched between ON and OFF states, with a stable resistance ratio of ten times, narrow dispersion of ON and OFF voltages, and good endurance performance of over 100 cycles. The resistive switching mechanism in these devices is related to the formation and rupture of conducting filaments consisting of oxygen vacancies, occurring at interfaces between GZO nanorods (grain boundaries). Results show that the resulting compact GZO nanorod thin films have a high potential for resistive memory applications.

  17. Physiological investigation of gold nanorods toward watermelon.

    PubMed

    Wan, Yujie; Li, Junli; Ren, Hongxuan; Huang, Jin; Yuan, Hong

    2014-08-01

    The objective of the present study was to evaluate the phytotoxicity and oxidant stress of the gold nanorods toward watermelon, and hence give a quantitative risk assessment of both seeds and plants phase. The seed germination, the activity of antioxidant enzymes, and the contents of soluble protein and malondialdehyde (MDA) have been measured while the plant roots were observed by transmission electron microscopy (TEM). It was found that the gold nanorods significantly promoted the root elongation. Furthermore, the results on the enzymes activities of plant indicated that oxidative stress happened in the plant treated with gold nanorods. However, the gold nanorods resulted in the phytotoxicity toward plant especially at high concentration. The TEM images of the plant roots with and without the treatment of gold nanorods showed the significant different size of starch granules. In conclusion, significant physiological changes of plant occurred after treatment with the gold nanorods. PMID:25936063

  18. An Electrochemical Glucose Sensor Based on Zinc Oxide Nanorods.

    PubMed

    Marie, Mohammed; Mandal, Sanghamitra; Manasreh, Omar

    2015-01-01

    A glucose electrochemical sensor based on zinc oxide (ZnO) nanorods was investigated. The hydrothermal sol-gel growth method was utilized to grow ZnO nanorods on indium tin oxide-coated glass substrates. The total active area of the working electrode was 0.3 × 0.3 cm2 where titanium metal was deposited to enhance the contact. Well aligned hexagonal structured ZnO nanorods with a diameter from 68 to 116 nm were obtained. The excitonic peak obtained from the absorbance spectroscopy was observed at ~370 nm. The dominant peak of Raman spectroscopy measurement was at 440 cm(-1), matching with the lattice vibration of ZnO. The uniform distribution of the GOx and Nafion membrane that has been done using spin coating technique at 4000 rotations per minute helps in enhancing the ion exchange and increasing the sensitivity of the fabricated electrochemical sensor. The amperometric response of the fabricated electrochemical sensor was 3 s. The obtained sensitivity of the fabricated ZnO electrochemical sensor was 10.911 mA/mM·cm2 and the lower limit of detection was 0.22 µM. PMID:26263988

  19. An Electrochemical Glucose Sensor Based on Zinc Oxide Nanorods.

    PubMed

    Marie, Mohammed; Mandal, Sanghamitra; Manasreh, Omar

    2015-01-01

    A glucose electrochemical sensor based on zinc oxide (ZnO) nanorods was investigated. The hydrothermal sol-gel growth method was utilized to grow ZnO nanorods on indium tin oxide-coated glass substrates. The total active area of the working electrode was 0.3 × 0.3 cm2 where titanium metal was deposited to enhance the contact. Well aligned hexagonal structured ZnO nanorods with a diameter from 68 to 116 nm were obtained. The excitonic peak obtained from the absorbance spectroscopy was observed at ~370 nm. The dominant peak of Raman spectroscopy measurement was at 440 cm(-1), matching with the lattice vibration of ZnO. The uniform distribution of the GOx and Nafion membrane that has been done using spin coating technique at 4000 rotations per minute helps in enhancing the ion exchange and increasing the sensitivity of the fabricated electrochemical sensor. The amperometric response of the fabricated electrochemical sensor was 3 s. The obtained sensitivity of the fabricated ZnO electrochemical sensor was 10.911 mA/mM·cm2 and the lower limit of detection was 0.22 µM.

  20. Well-aligned zinc oxide nanorods and nanowires prepared without catalyst

    NASA Astrophysics Data System (ADS)

    Liu, F.; Cao, P. J.; Zhang, H. R.; Shen, C. M.; Wang, Z.; Li, J. Q.; Gao, H. J.

    2005-01-01

    Without catalyst and at a low temperature (550 °C), well-aligned ZnO nanorods and nanowires were prepared on porous silicon substrates using a simple method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results confirm that both the nanorods and the nanowires are perfect single crystals with the wurtzite structure. The diameters range from 40 to 100 nm. The growth directions are along the [0 0 0 1] axis. Photoluminescence (PL) spectra show that the UV emission shifts slightly to low frequency and the intensity of green emission decreases with the improvement of ZnO crystallization.

  1. Facile fabrication of core-shell ZnO/Bi0.5Sb1.5Te3 nanorods: Enhanced photoluminescence through electron charge

    NASA Astrophysics Data System (ADS)

    Shen, Shengfei; Gao, Hongli; Deng, Yuan; Wang, Yao; Qu, Shengchun

    2016-01-01

    Surface decoration techniques are emerging as promising strategy to improve the optical properties of the ZnO based materials. The core-shell ZnO/Bi0.5Sb1.5Te3 nanorods were grown on a FTO substrate through a facile hydrothermal and magnetron sputtering combined approach. The microstructure of the core-shell nanorod arrays were investigated by the X-ray diffraction (XRD), a field emission Scanning electron microscopy (SEM) and high resolution transmission electron microscope (HTEM). The optical properties of the core-shell nanorod arrays were investigated through the diffuse reflectance absorption spectra and photoluminescence emission. The visible light absorption and especially the photoluminescence emission of the ZnO nanorods are enhanced markedly with the Bi0.5Sb1.5Te3 grains coating the ZnO nanorods through the electron charge.

  2. Influence of the absorber layer thickness and rod length on the performance of three-dimensional nanorods thin film hydrogenated amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Ho, Chung-I.; Liang, Wei-Chieh; Yeh, Dan-Ju; Su, Vin-Cent; Yang, Po-Chuan; Chen, Shih-Yen; Yang, Tsai-Ting; Lee, Jeng-Han; Kuan, Chieh-Hsiung; Cheng, I.-Chun; Lee, Si-Chen

    2013-04-01

    Performance of substrate-configured hydrogenated amorphous silicon solar cells based on ZnO nanorod arrays prepared by hydrothermal method has been investigated. The light harvest ability of three-dimensional nanorods solar cells is a compromise between the absorber layer thickness and the nanorods geometry. By optimizing the intrinsic a-Si:H absorber layer thickness from 75 to 250 nm and varying the length of the nanorods from 600 to 1800 nm, the highest energy conversion efficiency of 6.07% is obtained for the nanorods solar cell having thin absorber layer thickness of 200 nm with the rod length of 600 nm. This represents up to 28% enhanced efficiency compared to the conventional flat reference cell with similar absorber layer thickness.

  3. One-pot hydrothermal synthesis of heterostructured ZnO/ZnS nanorod arrays with high ethanol-sensing properties.

    PubMed

    Gao, Peng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Wang, Xiaona; Zhang, Guoli

    2012-04-10

    ZnO/ZnS heterostructured nanorod arrays with uniform diameter and length were synthesized from zinc substrates in a one-pot procedure by using a simple hydrothermal method. Structural characterization by HRTEM indicated that the heterostructured nanorods were composed of parallel segments of wurtzite-type ZnO and zinc-blende ZnS, with a distinct interface along the axial direction, which revealed the epitaxial relationship, ZnO (1010) and ZnS (111). The as-prepared ZnO/ZnS nanorods showed only two green emissions at around 523 nm and 576 nm. We also found that the nanorods exhibited high sensitivity to ethanol at relatively low temperatures, owing to their smaller size and structure.

  4. Mesoporous titania-vertical nanorod films with interfacial engineering for high performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ahmed, Irfan; Fakharuddin, Azhar; Wali, Qamar; Zainun, Ayib Rosdi Bin; Ismail, Jamil; Jose, Rajan

    2015-03-01

    Working electrode (WE) fabrication offers significant challenges in terms of achieving high-efficiency dye-sensitized solar cells (DSCs). We have combined the beneficial effects of vertical nanorods grown on conducting glass substrate for charge transport and mesoporous particles for dye loading and have achieved a high photoconversion efficiency of (η) > 11% with an internal quantum efficiency of ˜93% in electrode films of thickness ˜7 ± 0.5 μm. Controlling the interface between the vertical nanorods and the mesoporous film is a crucial step in attaining high η. We identify three parameters, viz., large surface area of nanoparticles, increased light scattering of the nanorod-nanoparticle layer, and superior charge transport of nanorods, that simultaneously contribute to the improved photovoltaic performance of the WE developed.

  5. Microstructure, optical properties, and catalytic performance of Cu2O-modified ZnO nanorods prepared by electrodeposition

    NASA Astrophysics Data System (ADS)

    Jiang, Xishun; Lin, Qibin; Zhang, Miao; He, Gang; Sun, Zhaoqi

    2015-01-01

    Cu2O-modified ZnO nanorods are prepared by a two-step electrodeposition method on ITO substrates, and the deposition time of Cu2O is 0, 1, 5, and 10 min, respectively. Cu2O particles are embedded in the interspaces of the ZnO nanorods, and the amounts of the Cu2O particles increase obviously when the deposition time lasts longer. The peaks corresponding to ZnO nanorods and Cu2O particles are detected from scanning electron microscope (SEM) and X-ray diffraction (XRD) results. UV-vis absorption spectra measurements have shown the bandgaps of ZnO nanorods shift from 3.22 to 2.75 eV. The methyl orange (MO) concentration can be reduced to around 15% in 100 min with Cu2O electrodeposition time for 10 min.

  6. The effect of growth temperature of seed layer on the structural and optical properties of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Gautam, Khyati; Singh, Inderpreet; Bhatnagar, P. K.; Peta, Koteswara Rao

    2016-05-01

    The structural and optical properties of ZnO nanorods are investigated as a function of growth temperature of the seed layer. The seed layer comprising of ZnO nanocrystallites is grown on ITO substrates at five different temperatures (150-550 °C) and the nanorods are grown on the seed layer by the facile hydrothermal method. The seed layer grown at 350 °C is observed to be uniformly textured with c-axis orientation leading to the synthesis of vertically aligned nanorods with smaller diameter. The HR-TEM analysis and the intense peak along (002) direction in the XRD spectra of this sample implied that the nanorods possess c-axis orientation. An enhanced UV emission is also observed in the photoluminescence spectra of this sample. The diversity in the morphology and orientation of the seeds at different temperatures has been explained by the growth kinetics of the ZnO nanocrystallites.

  7. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria

    SciTech Connect

    Solovyov, VF; Wu, LJ; Rupich, MW; Sathyamurthy, S; Li, XP; Li, Q

    2014-12-15

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2 nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 mu m long nano-rods with an average diameter of approximate to 20 nm. 2014 Elsevier B.V. All rights reserved.

  8. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on(001) ceria

    DOE PAGES

    Solovyov, Vyacheslav F.; Wu, Li-jun; Rupich, Martin W.; Sathyamurthy, Srivatsan; Li, Xiaoping; Li, Qiang

    2014-09-20

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 μm long nano-rods with an average diameter of ≈20 nm.

  9. Controllable synthesis of ZnxCd1-xS@ZnO core-shell nanorods with enhanced photocatalytic activity.

    PubMed

    Xie, Shilei; Lu, Xihong; Zhai, Teng; Gan, Jiayong; Li, Wei; Xu, Ming; Yu, Minghao; Zhang, Yuan-Ming; Tong, Yexiang

    2012-07-17

    We report the synthesis of Zn(x)Cd(1-x)S@ZnO nanorod arrays via a facile two-step process and the implementation of these core-shell nanorods as an environmental friendly and recyclable photocatalyst for methyl orange degradation. The band gap of Zn(x)Cd(1-x)S@ZnO core-shell nanorods can be readily tunable by adjusting the ratio of Zn/Cd during the synthesis. These Zn(x)Cd(1-x)S@ZnO core-shell nanorods exhibit a high photocatalytic activity and good stability in the degradation of the methyl orange. Moreover, these films grown on FTO substrates make the collection and recycle of the photocatalyst easier. These findings may open new opportunities for the design of effective, stable, and easy-recyclable photocatalytic materials.

  10. Mesoporous titania-vertical nanorod films with interfacial engineering for high performance dye-sensitized solar cells.

    PubMed

    Ahmed, Irfan; Fakharuddin, Azhar; Wali, Qamar; Bin Zainun, Ayib Rosdi; Ismail, Jamil; Jose, Rajan

    2015-03-13

    Working electrode (WE) fabrication offers significant challenges in terms of achieving high-efficiency dye-sensitized solar cells (DSCs). We have combined the beneficial effects of vertical nanorods grown on conducting glass substrate for charge transport and mesoporous particles for dye loading and have achieved a high photoconversion efficiency of (η) > 11% with an internal quantum efficiency of ∼93% in electrode films of thickness ∼7 ± 0.5 μm. Controlling the interface between the vertical nanorods and the mesoporous film is a crucial step in attaining high η. We identify three parameters, viz., large surface area of nanoparticles, increased light scattering of the nanorod-nanoparticle layer, and superior charge transport of nanorods, that simultaneously contribute to the improved photovoltaic performance of the WE developed. PMID:25687409

  11. Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide.

    PubMed

    Patil, Ranjit A; Chang, Cheng-Ping; Devan, Rupesh S; Liou, Yung; Ma, Yuan-Ron

    2016-04-20

    We synthesized unique one-dimensional (1D) nanorods and two-dimensional (2D) thin-films of NiO on indium-tin-oxide thin-films using a hot-filament metal-oxide vapor deposition technique. The 1D nanorods have an average width and length of ∼100 and ∼500 nm, respectively, and the densely packed 2D thin-films have an average thickness of ∼500 nm. The 1D nanorods perform as parallel units for charge storing. However, the 2D thin-films act as one single unit for charge storing. The 2D thin-films possess a high specific capacitance of ∼746 F/g compared to 1D nanorods (∼230 F/g) using galvanostatic charge-discharge measurements at a current density of 3 A/g. Because the 1D NiO nanorods provide more plentiful surface areas than those of the 2D thin-films, they are fully active at the first few cycles. However, the capacitance retention of the 1D nanorods decays faster than that of the 2D thin-films. Also, the 1D NiO nanorods suffer from instability due to the fast electrochemical dissolution and high nanocontact resistance. Electrochemical impedance spectroscopy verifies that the low dimensionality of the 1D NiO nanorods induces the unavoidable effects that lead them to have poor supercapacitive performances. On the other hand, the slow electrochemical dissolution and small contact resistance in the 2D NiO thin-films favor to achieve high specific capacitance and great stability.

  12. Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide.

    PubMed

    Patil, Ranjit A; Chang, Cheng-Ping; Devan, Rupesh S; Liou, Yung; Ma, Yuan-Ron

    2016-04-20

    We synthesized unique one-dimensional (1D) nanorods and two-dimensional (2D) thin-films of NiO on indium-tin-oxide thin-films using a hot-filament metal-oxide vapor deposition technique. The 1D nanorods have an average width and length of ∼100 and ∼500 nm, respectively, and the densely packed 2D thin-films have an average thickness of ∼500 nm. The 1D nanorods perform as parallel units for charge storing. However, the 2D thin-films act as one single unit for charge storing. The 2D thin-films possess a high specific capacitance of ∼746 F/g compared to 1D nanorods (∼230 F/g) using galvanostatic charge-discharge measurements at a current density of 3 A/g. Because the 1D NiO nanorods provide more plentiful surface areas than those of the 2D thin-films, they are fully active at the first few cycles. However, the capacitance retention of the 1D nanorods decays faster than that of the 2D thin-films. Also, the 1D NiO nanorods suffer from instability due to the fast electrochemical dissolution and high nanocontact resistance. Electrochemical impedance spectroscopy verifies that the low dimensionality of the 1D NiO nanorods induces the unavoidable effects that lead them to have poor supercapacitive performances. On the other hand, the slow electrochemical dissolution and small contact resistance in the 2D NiO thin-films favor to achieve high specific capacitance and great stability. PMID:27028491

  13. Fabrication of silver nanorods embedded in PDMS film and its application for strain sensing

    NASA Astrophysics Data System (ADS)

    Goel, Pratibha; Singh, J. P.

    2014-11-01

    Highly reflective and surface conductive strain gauges have been prepared by embedding the silver nanorods (AgNRs) into polydimethylsiloxane (PDMS). Thermal curing of PDMS on AgNRs grown Si wafer leads to a flexible, reflective and conductive silver surface. The reflectance of the as prepared films were observed to be 60% with a low value of sheet resistance. The reflectance of the film was able to be tuned from 60% to 15% in the visible region. The fabrication of a parallel plate capacitor strain sensor from AgNRs embedded PDMS, and tuning of the capacitance with respect to the applied strain, leads to a gauge factor of ~1. These mechanically tunable AgNRs/PDMS films demonstrate potential application as a strain sensor.

  14. Highly Sensitive Detection of Melamine Using a One-Step Sample Treatment Combined with a Portable Ag Nanostructure Array SERS Sensor

    PubMed Central

    Cheng, Jie; Su, Xiao-Ou; Yao, Yue; Han, Caiqin; Wang, Shi; Zhao, Yiping

    2016-01-01

    There is an urgent need for rapid and reliable methods able to detect melamine in animal feed. In this study, a quick, simple, and sensitive method for the determination of melamine content in animal feed was developed using surface-enhanced Raman spectroscopy on fabricated Ag nanorod (AgNR) array substrates with a one-step sample extraction procedure. The AgNR array substrates washed by HNO3 solvent (10−7 M) and methanol and showed the good stability within 6 months. The Raman shift at △ν = 682 cm−1 was used as the characteristic melamine peak in the calculations. Sufficient linearity was obtained in the 2–200 μg·g−1 range (R2 = 0.926). The limits of detection and quantification were 0.9 and 2 μg·g−1, respectively. The recovery rates were 89.7–93.3%, with coefficients of variation below 2.02%. The method showed good accuracy compared with the tradition GC-MS analysis. This new protocol only need 2 min to fininsh the detection which could be developed for rapid onsite screening of melamine contamination in quality control and market surveillance applications. PMID:27120183

  15. Position controlled and seed/catalyst free growth of ZnO nanorod arrays on reduced graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Li, Jinliang; Li, Lan; Mo, Zhaojun

    2016-09-01

    A new type of seed/catalyst-free and selective-growth process is developed for in situ grown vertically-aligned ZnO nanorods on the reduced graphene oxide (rGO) nanosheets. The dense and single-crystalline ZnO nanorods have been successfully grow on rGO nanosheets with the position- and size-controlled. The effect of rGO layer on the ZnO nanorods and the growth mechanism were investigated. The position of ZnO nanorod arrays correlates well with the size and position of rGO nanosheets, which is determined by dangling bonds such as oxygen-containing groups on rGO surface. Meanwhile, ZnO nanorods could grow laterally to form a continuous arrays with a large coverage on rGO substrates, which is mainly due to the step edges in rGO boundaries. The diameter and density of ZnO nanorods were readily determined by the growth temperature, and the length was easily controlled by the growth time. The absorption and PL spectrums suggest that ZnO nanorods/rGO have a strong UV absorption ranging from 330 to 375 nm and no obvious UV PL emission at room temperature, which indicates that the ZnO nanorods/rGO nanohybrids could be an excellent candidate for application in UV photodetectors. This work represents the success in seed/catalyst-free fabrication of aligned ZnO nanorod arrays directly on rGO nanosheets and the process can be readily scaled up for industrial applications of optoelectronic devices.

  16. Fabrication of Ag/CPs composite material, an effective strategy to improve the photocatalytic performance of coordination polymers under visible irradiation.

    PubMed

    Xu, Xinxin; Cui, Zhongping; Qi, Ji; Liu, Xiaoxia

    2013-10-01

    To enhance the photocatalytic property of coordination polymers (CPs) in the visible light region, Ag loaded coordination polymer composite materials (Ag/CPs) were synthesized successfully through a photoreduction reaction of Ag(+) on the surface of CPs. Photoluminescence (PL) was used to investigate the separation of photogenerated electron-hole pairs and the results illustrated Ag/CPs display higher quantum yields than CPs. This can be attributed to the strong interactions between Ag nanorods and coordination polymers, which lead to electron-hole pair separation between Ag nanorods and CPs. The degradation of Rhodamine B (RhB) was investigated to study the photocatalytic activities. Ag/CPs exhibited excellent photocatalytic activity in the UV and visible light region, while CPs can only decompose RhB under the irradiation of UV light. Furthermore, Ag/CPs showed outstanding stability during degradation of RhB.

  17. Single inorganic-organic hybrid photovoltaic nanorod

    NASA Astrophysics Data System (ADS)

    Yoo, Sang-Hoon; Liu, Lichun; Ku, Tea-Woong; Hong, Soonchang; Whang, Dongmok; Park, Sungho

    2013-09-01

    We demonstrate that single photovoltaic (PV) nanorods can be readily fabricated by electrochemical processing in solution-phase under ambient conditions. A porous Au nanorod electrode in the core of the PV nanorod was central to both its structural formation and superior performance. We examined an intrinsically conducting polymer (polypyrrole) and an inorganic semiconductor (cadmium selenide) as precursor materials. Through an extremely simple and cost-effective fashioning process (solution-phase, room temperature), unadorned PV nanorods with up to 1.1% power conversion efficiency were obtained.

  18. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2009-05-19

    Disclosed herein is a graded core/shell semiconductor nanorod having at least a first segment of a core of a Group II-VI, Group III-V or a Group IV semiconductor, a graded shell overlying the core, wherein the graded shell comprises at least two monolayers, wherein the at least two monolayers each independently comprise a Group II-VI, Group III-V or a Group IV semiconductor.

  19. HIPS-GLAD core shell nanorod array photodetectors with enhanced photocurrent and reduced dark current

    NASA Astrophysics Data System (ADS)

    Keles, Filiz; Cansizoglu, Hilal; Badraddin, Emad O.; Brozak, Matthew P.; Watanabe, Fumiya; Karabacak, Tansel

    2016-10-01

    Vertically aligned core/shell nanorod array photodetectors were fabricated by high pressure sputter (HIPS) deposition of copper indium sulfide (CIS) films on glancing angle deposited (GLAD) indium sulfide (In2S3) nanorods. For comparison, we also studied nanorod photodetectors with conventional low pressure sputtered (LPS) CIS film coatings and counterpart thin film devices incorporating HIPS or LPS-CIS on In2S3 films. HIPS-GLAD core/shell photodetectors have shown a superior photocurrent density response along with lowest dark current density. Photoresponsivity defined with the photocurrent density/dark current density ratio γ = |J ph/J dark| was about ∼1820 for HIPS-GLAD nanorod devices, which is several orders of magnitude higher compared to those of LPS-CIS thin film (γ ∼ 2) and HIPS-CIS thin film (γ ∼ 9) devices, and also about four-fold higher than LPS-CIS nanorod devices (γ ∼ 490). Enhanced photoresponsivity is attributed to the porous microstructure and improved conformality of HIPS-CIS film around the In2S3 nanorods confirmed by SEM and EDS measurements. Due to randomization of the sputtered flux at higher working gas pressures, HIPS can provide a more conformal while at the same time a voidy low-density film around nanostructured surfaces. Reduced interelectrode distance and improved p–n junction interface due to the more uniform conformality of HIPS-CIS result in a higher photocurrent in our HIPS-GLAD devices. In addition, the voids in HIPS-CIS film as a result of its porous nature can behave as highly resistive spots that lower the dark current. Therefore, we have demonstrated that by utilizing a simple and low-temperature HIPS-GLAD method, high-photocurrent and low-dark-current photodetectors can be achieved by controlling the conformality and microstructure of a shell layer around nanorod arrays. HIPS shell coating method can be extended to almost any type of nanostructured substrate.

  20. Compact hematite buffer layer as a promoter of nanorod photoanode performances

    PubMed Central

    Milan, R.; Cattarin, S.; Comisso, N.; Baratto, C.; Kaunisto, K.; Tkachenko, N. V.; Concina, I.

    2016-01-01

    The effect of a thin α-Fe2O3 compact buffer layer (BL) on the photoelectrochemical performances of a bare α-Fe2O3 nanorods photoanode is investigated. The BL is prepared through a simple spray deposition onto a fluorine-doped tin oxide (FTO) conducting glass substrate before the growth of a α-Fe2O3 nanorods via a hydrothermal process. Insertion of the hematite BL between the FTO and the nanorods markedly enhances the generated photocurrent, by limiting undesired losses of photogenerated charges at the FTO||electrolyte interface. The proposed approach warrants a marked improvement of material performances, with no additional thermal treatment and no use/dispersion of rare or toxic species, in agreement with the principles of green chemistry. PMID:27733756

  1. Field emission behavior of cuboid zinc oxide nanorods on zinc-filled porous silicon

    NASA Astrophysics Data System (ADS)

    Yu, Ke; Zhang, Yongsheng; Xu, Rongli; Jiang, Desheng; Luo, Laiqiang; Li, Qiong; Zhu, Ziqiang; Lu, Wei

    2005-01-01

    Single-crystalline zinc oxide (ZnO) nanorods with cuboid morphology have been prepared on the zinc-filled porous silicon substrate using a vapor phase transport method. Field-emission measurements showed that the turn-on field and threshold field of the cuboid ZnO nanorods film were about 3.2 and 8.2 V/μm respectively. From the emitter surface, a homogeneous emission image was observed with emission site density (ESD) of ˜10 4 cm -2. The better emission uniformity and the high ESD may be attributed to a large number of ZnO nanocrystallites as emitter on the surface of the nanorod end contributing to emission.

  2. Growth and optical properties of quadrangular zinc oxide nanorods on copper-filled porous silicon

    NASA Astrophysics Data System (ADS)

    Yu, K.; Zhang, Y.; Luo, L.; Wang, W.; Zhu, Z.; Wang, J.; Cui, Y.; Ma, H.; Lu, W.

    Zinc oxide (ZnO) nanorods with quadrangular morphology have been successfully prepared on a copper-filled porous silicon substrate using a vapor phase transport method. Scanning electron microscopy showed that the diameters of the nanorods were scattered in a range of 100-400 nm and the lengths up to 2 μm. High-resolution transmission electron microscopy and a selected-area electron-diffraction pattern confirmed that the quadrangular ZnO nanorods had a single-crystal wurtzite structure and grew along the (0001) direction. The photoluminescence spectrum under excitation at 325 nm showed an ultraviolet emission at 386 nm and a strong broad green emission at 518 nm at room temperature.

  3. Sputtering nickel-molybdenum nanorods as an excellent hydrogen evolution reaction catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Xiong, Kun; Nie, Yao; Wang, Xiaoxue; Liao, Jianhua; Wei, Zidong

    2015-11-01

    We report a novel fabrication of nickel-molybdenum alloy nanorods catalyst for hydrogen evolution reaction (HER), which is prepared by co-deposition of pure nickel and molybdenum in a multisource sputtering system on the surface of Ni foam substrate. The Ni-Mo alloy film exhibits favorable vertical nanorods structure and presents the most efficient activity for HER compared to the film only including one metal element. The remarkably enhanced catalytic activity is attributed to its ordered array geometry as well as the synergistic interaction between Ni and Mo. Meanwhile, the open space within nanorod arrays facilitates the electrolyte penetration and diffusion of ionic species, allowing high utilization efficiency of active species as well as rapidly release of evolved hydrogen gas from the electrode surface.

  4. Compact hematite buffer layer as a promoter of nanorod photoanode performances

    NASA Astrophysics Data System (ADS)

    Milan, R.; Cattarin, S.; Comisso, N.; Baratto, C.; Kaunisto, K.; Tkachenko, N. V.; Concina, I.

    2016-10-01

    The effect of a thin α-Fe2O3 compact buffer layer (BL) on the photoelectrochemical performances of a bare α-Fe2O3 nanorods photoanode is investigated. The BL is prepared through a simple spray deposition onto a fluorine-doped tin oxide (FTO) conducting glass substrate before the growth of a α-Fe2O3 nanorods via a hydrothermal process. Insertion of the hematite BL between the FTO and the nanorods markedly enhances the generated photocurrent, by limiting undesired losses of photogenerated charges at the FTO||electrolyte interface. The proposed approach warrants a marked improvement of material performances, with no additional thermal treatment and no use/dispersion of rare or toxic species, in agreement with the principles of green chemistry.

  5. Enhanced Photocatalytic Performance Using One Dimensional Ordered TiO2 Nanorods Modified by Graphene Oxide.

    PubMed

    Huang, Jinzhao; Fu, Ke; Yao, Nannan; Deng, Xiaolong; Ding, Meng; Shao, Minghui; Xu, Xijin; Wei, Mingzhi

    2016-02-01

    A new architecture of one dimensional ordered TiO2 nanorods modified by graphene oxide (GO) was assembled. The GO as the higher carrier mobility can reduce the recombination of carriers, which is more favourable for the methy orange (MO) degradation. Incorporating GO with the unblocked passageway for carrier transportation of the TiO2 nanorods can separate the transport pathway of electron and hole effectively. Furthermore, the large surface areas of TiO2 nanorods grown on the GO are beneficial to the enhancement of photocatalytic properties, and the reasonable band energy level can be obtained for the architecture, which is favorable for enhancing carrier separation and transportation. Finally, the higher transparency of the structure can enhance the light absorption. The photocatalyst grown on FTO substrates makes it easier to collect and recycle. PMID:27433607

  6. Synthesis and photoluminescence of quasi-arrayed ZnMgO nanorods

    NASA Astrophysics Data System (ADS)

    Wang, Fazhan; Zhao, Chao; Liu, Bo; Yuan, Sicong

    2009-06-01

    Quasi-arrayed ZnMgO single-crystal nanorods with different Mg concentrations have been fabricated by thermal evaporation of Zn and Mg on a Si substrate using Au as a catalyst. The synthesized ZnMgO nanorods had uniform flat hexagonal crystallorgraphic planes with diameters of about 300 nm. It was found that with the increase in the dopant concentration, the peak position of (0 0 2) was shifted towards the high-angle side (from 34.40° to 34. 54°) and the near-band-edge emission was blue-shifted to 364 nm (3.41 eV) from 385 nm (3.22 eV) in comparison with that of pure ZnO. The direct modulation of the band-gap caused by Mg substitution was responsible for the blue shift. The possible growth mechanism of the ZnMgO nanorods was discussed.

  7. Synthesis and characterization of quasi-aligned ZnCdO nanorods

    NASA Astrophysics Data System (ADS)

    Wang, F. Z.; Ye, Z. Z.; Ma, D. W.; Zhu, L. P.; Zhuge, F.; He, H. P.

    2005-10-01

    Quasi-aligned ZnCdO single-crystal nanorods were prepared for the first time by using thermal evaporation of Zn and CdCl2 on a Si substrate with the presence of Au catalyst. The maximum Cd content was up to about 16.7at.%, which was significantly larger than the thermodynamic solid solubility limits. The ZnCdO nanorods have uniform flat hexagonal crystallographic planes with diameters of about 150nm. Notably, with the Cd content increasing, the ultraviolet near-band-edge emission was redshifted to 407nm(3.04eV ) from 386nm(3.21eV). The direct modulation of the band gap caused by Cd substitution is responsible for the redshift. The possible growth mechanism of the ZnCdO nanorods was discussed.

  8. Strong photonic crystal behavior in regular arrays of core-shell and quantum disc InGaN/GaN nanorod light-emitting diodes

    SciTech Connect

    Lewins, C. J. Le Boulbar, E. D.; Lis, S. M.; Shields, P. A.; Allsopp, D. W. E.; Edwards, P. R.; Martin, R. W.

    2014-07-28

    We show that arrays of emissive nanorod structures can exhibit strong photonic crystal behavior, via observations of the far-field luminescence from core-shell and quantum disc InGaN/GaN nanorods. The conditions needed for the formation of directional Bloch modes characteristic of strong photonic behavior are found to depend critically upon the vertical shape of the nanorod sidewalls. Index guiding by a region of lower volume-averaged refractive index near the base of the nanorods creates a quasi-suspended photonic crystal slab at the top of the nanorods which supports Bloch modes. Only diffractive behavior could be observed without this region. Slab waveguide modelling of the vertical structure shows that the behavioral regime of the emissive nanorod arrays depends strongly upon the optical coupling between the nanorod region and the planar layers below. The controlled crossover between the two regimes of photonic crystal operation enables the design of photonic nanorod structures formed on planar substrates that exploit either behavior depending on device requirements.

  9. Hydrothermally Processed Photosensitive Field-Effect Transistor Based on ZnO Nanorod Networks

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Bhargava, Kshitij; Dixit, Tejendra; Palani, I. A.; Singh, Vipul

    2016-11-01

    Formation of a stable, reproducible zinc oxide (ZnO) nanorod-network-based photosensitive field-effect transistor using a hydrothermal process at low temperature has been demonstrated. K2Cr2O7 additive was used to improve adhesion and facilitate growth of the ZnO nanorod network over the SiO2/Si substrate. Transistor characteristics obtained in the dark resemble those of the n-channel-mode field-effect transistor (FET). The devices showed I on/ I off ratio above 8 × 102 under dark condition, field-effect mobility of 4.49 cm2 V-1 s-1, and threshold voltage of -12 V. Further, under ultraviolet (UV) illumination, the FET exhibited sensitivity of 2.7 × 102 in off-state (-10 V) versus 1.4 in on-state (+9.7 V) of operation. FETs based on such nanorod networks showed good photoresponse, which is attributed to the large surface area of the nanorod network. The growth temperature for ZnO nanorod networks was kept at 110°C, enabling a low-temperature, cost-effective, simple approach for high-performance ZnO-based FETs for large-scale production. The role of network interfaces in the FET performance is also discussed.

  10. Fabrication and photoluminescence of β-Ga 2O 3 nanorods

    NASA Astrophysics Data System (ADS)

    Xu, Qingjun; Zhang, Shiying

    2008-12-01

    β-Ga 2O 3 nanorods were successfully synthesized through annealing Ga 2O 3/Mo films deposited on the Si(111) substrate by a radio frequency magnetron sputtering technique. The as-synthesized nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results show that the formed nanorods are single-crystalline Ga 2O 3 with monoclinic structure. The diameters of nanorods are in the range of 200-400 nm and lengths typically up to several micrometers. X-ray photoelectron spectroscopy (XPS) confirms the formation of bonding between Ga and O, and yields the surface stoichiometry of Ga to N of 2:3. The representative photoluminescence spectrum at room temperature exhibits a strong and broad emission band centered at 414 nm and a relatively weak emission peak located at 438 nm. The growth process of β-Ga 2O 3 nanorods is also discussed.

  11. Hydrothermally Processed Photosensitive Field-Effect Transistor Based on ZnO Nanorod Networks

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Bhargava, Kshitij; Dixit, Tejendra; Palani, I. A.; Singh, Vipul

    2016-07-01

    Formation of a stable, reproducible zinc oxide (ZnO) nanorod-network-based photosensitive field-effect transistor using a hydrothermal process at low temperature has been demonstrated. K2Cr2O7 additive was used to improve adhesion and facilitate growth of the ZnO nanorod network over the SiO2/Si substrate. Transistor characteristics obtained in the dark resemble those of the n-channel-mode field-effect transistor (FET). The devices showed I on/I off ratio above 8 × 102 under dark condition, field-effect mobility of 4.49 cm2 V-1 s-1, and threshold voltage of -12 V. Further, under ultraviolet (UV) illumination, the FET exhibited sensitivity of 2.7 × 102 in off-state (-10 V) versus 1.4 in on-state (+9.7 V) of operation. FETs based on such nanorod networks showed good photoresponse, which is attributed to the large surface area of the nanorod network. The growth temperature for ZnO nanorod networks was kept at 110°C, enabling a low-temperature, cost-effective, simple approach for high-performance ZnO-based FETs for large-scale production. The role of network interfaces in the FET performance is also discussed.

  12. Selective growth of hierarchical ZnO nanorod arrays on the graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Li, Lan; Li, Jinliang; Mo, Zhaojun

    2016-01-01

    We report directly selective-area grown (SAG) high-quality hierarchical ZnO nanorod arrays on the graphene nanosheets without invoking damage or introducing a catalyst. The SAG behavior in the non-catalytic growth mechanism is attributed to dangling bonds on the boundary edges of graphene nanosheets, which serve as the preferential adsorption and nucleation sites of ZnO nanorod. High densities of hierarchical ZnO nanorods show single-crystalline hexagonal wurtzite structure and are vertically well-aligned on the graphene nanosheets, with the diameter and the density strongly dependent on the growth temperature. Furthermore, no carbon impurity can be seen in the tips of the ZnO nanorods and also no carbon-related defect peak in the 10 K PL spectrum of ZnO nanorods. Our approach using a graphene-nanosheet substrate provides an efficient route for the growth of high-quality ZnO with a one-dimensional (1D) hierarchical nanostructure, which is highly desirable for fabricating 1D ZnO hybrid optoelectronic devices, particularly for a fast-response UV photodetector and highly-sensitive gas sensor.

  13. Investigation of the structure of a Ag/Pd/Ag( 1 1 1 ) trilayer by means of electronic spectroscopies

    NASA Astrophysics Data System (ADS)

    Dumont, J.; Ghijsen, J.; Sporken, R.

    2002-06-01

    The growth of the Ag/Pd/Ag system has been studied by X-ray photoelectron spectroscopy and low energy electron diffraction. No chemical reaction or interdiffusion was observed between the Pd and Ag layers. The growth of the Pd interlayer follows the Frank Van der Merwe mode but is not pseudomorphic on the Ag(1 1 1) substrate. The growth of the top Ag layer on the Pd interlayer is pseudomorphic and layer by layer but contains around 12% of voids.

  14. Surfactant controlled synthesis of crystalline phosphovanadate nanorods

    SciTech Connect

    Asnani, Minakshi; Thomas, Jency; Sen, Prasenjit; Ramanan, Arunachalam . E-mail: aramanan@chemistry.iitd.ac.in

    2007-04-12

    Phosphovanadate nanorods were obtained in a reaction of vanadium (V) oxide as a precursor and a cationic surfactant, dodecylpyridinium chloride, as structure directing template at pH {approx}3 at room temperature. The composition and morphology of the nanorods was established by powder X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), fourier transform infra-red spectroscopy (FTIR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The obtained nanorods have diameters of 40-60 nm with lengths up to 1 {mu}m. The effect of reaction parameters such as concentration of surfactant and pH of the solution on the growth of nanorods has been investigated. A plausible mechanism involving the coalescence of nanoparticle 'seeds' leading to one-dimensional nanorods is also discussed. The same reaction when performed under hydrothermal condition, keeping other reaction parameters unchanged, resulted in the formation of phosphovanadate nanospheres of diameter 10-15 nm.

  15. Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications.

    PubMed

    Ma, Shuaishuai; Li, Rong; Lv, Changpeng; Xu, Wei; Gou, Xinglong

    2011-08-30

    A facile one-step hydrothermal route was demonstrated to grow ZnO nanorod arrays and hierarchical nanostructures on arbitrary substrates without any catalysts and seeds coated before the reaction, which are prerequisite in the current two-step protocol. Meanwhile, ZnO nanoflowers composed of nanorods were obtained at the bottom of the autoclaves in the absence of substrates. An in situ spontaneous-seeds-assisted growth mechanism was tentatively proposed on the basis of the experimental data to explain the growth process of ZnO nanostructures. Moreover, the obtained ZnO nanorod arrays exhibited superior photocatalytic activity for decomposing methyl orange, and the nanoflowers showed better gas sensing performance towards some flammable gases and corrosive vapors with high sensitivity, rapid response-recovery characteristics, good selectivity and long-term stability.

  16. Preparation and Photoluminescence of ZnO Comb-Like Structure and Nanorod Arrays

    NASA Astrophysics Data System (ADS)

    Yin, Song; Chen, Yi-qing; Su, Yong; Zhou, Qing-tao

    2007-06-01

    A large quantity of Zinc oxide (ZnO) comb-like structure and high-density well-aligned ZnO nanorod arrays were prepared on silicon substrate via thermal evaporation process without any catalyst. The morphology, growth mechanism, and optical properties of the both structures were investigated using XRD, SEM, TEM and PL. The resulting comb-teeth, with a diameter about 20 nm, growing along the [0001] direction have a well-defined epitaxial relationship with the comb ribbon. The ZnO nanorod arrays have a diameter about 200 nm and length up to several micrometers growing approximately vertical to the Si substrate. A ZnO film was obtained before the nanorods growth. A growth model is proposed for interpreting the growth mechanism of comb-like zigzag-notch nanostructure. Room temperature photoluminescence measurements under excitation wavelength of 325 nm showed that the ZnO comb-like nanostructure has a weak UV emission at around 384 nm and a strong green emission around 491 nm, which correspond to a near band-edge transition and the singly ionized oxygen vacancy, respectively. In contrast, a strong and sharp UV peak and a weak green peak was obtained from the ZnO nanorod arrays.

  17. A potentiometric biosensor for the detection of notch 3 using functionalized ZnO nanorods.

    PubMed

    Ibupoto, Z H; Khun, K; Liu, X; Willander, M

    2014-09-01

    The notch signalling plays a vital and radical role for the activity of cellular proliferation, differentiation and apoptosis. In this study, for the first time a particular biosensor is developed for the detection of notch 3. ZnO nanorods were fabricated on the gold coated glass substrate by hydrothermal method and afterwards were decorated with the gold nanoparticles by electrodepositing technique. Scanning electron microscopy (SEM) has shown the perpendicular to the substrate growth pattern of ZnO nanorods. X-ray diffraction (XRD) studies showed the c-axis oriented growth direction with wurtzite crystal structure of ZnO nanorods. X-ray Photoelectron Spectroscopy (XPS) and energy dispersive X-ray (EDX) techniques have shown the presence of Zn, O and Au atoms in the prepared functional material. Furthermore, the anti-notch 3 was physically adsorbed on the gold nanoparticles functionalized ZnO nanorods. The developed potentiometric immunosensor has shown response to the wide range of notch 3 molecules. The detected range included 1.00 x 10(-5)-1.50 x 10(0 ) μg/mL with a sensitivity of 23.15 ± 0.31 mV/decade. The analytical parameters including reproducibility, stability, and selectivity were also investigated and the observed results indicate the acceptable performance of the notch 3 biosensor. Moreover, the proposed notch 3 biosensor exhibited a fast response time of 10 s. PMID:25924320

  18. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    PubMed Central

    2011-01-01

    Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods. PACS: 78.55.Et, 81.15.Rs, 61.46.Km PMID:21711895

  19. Structural and Morphology of ZnO Nanorods Synthesized Using ZnO Seeded Growth Hydrothermal Method and Its Properties as UV Sensing

    PubMed Central

    Ridhuan, Nur Syafinaz; Abdul Razak, Khairunisak; Lockman, Zainovia; Abdul Aziz, Azlan

    2012-01-01

    In this study, zinc oxide (ZnO) nanorod arrays were synthesized using a simple hydrothermal reaction on ZnO seeds/n-silicon substrate. Several parameters were studied, including the heat-treatment temperature to produce ZnO seeds, zinc nitrate concentration, pH of hydrothermal reaction solution, and hydrothermal reaction time. The optimum heat-treatment temperature to produce uniform nanosized ZnO seeds was 400°C. The nanorod dimensions depended on the hydrothermal reaction parameters. The optimum hydrothermal reaction parameters to produce blunt tip-like nanorods (770 nm long and 80 nm in top diameter) were 0.1 M zinc nitrate, pH 7, and 4 h of growth duration. Phase analysis studies showed that all ZnO nanorods exhibited a strong (002) peak. Thus, the ZnO nanorods grew in a c-axis preferred orientation. A strong ultraviolet (UV) emission peak was observed for ZnO nanorods grown under optimized parameters with a low, deep-level emission peak, which indicated high optical property and crystallinity of the nanorods. The produced ZnO nanorods were also tested for their UV-sensing properties. All samples responded to UV light but with different sensing characteristics. Such different responses could be attributed to the high surface-to-volume ratio of the nanorods that correlated with the final ZnO nanorods morphology formed at different synthesis parameters. The sample grown using optimum synthesis parameters showed the highest responsivity of 0.024 A/W for UV light at 375 nm under a 3 V bias. PMID:23189199

  20. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    NASA Astrophysics Data System (ADS)

    Junaidi, Triyana, Kuwat; Harsojo, Suharyadi, Edi

    2016-04-01

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  1. Growth of oriented Bi nanorods at graphite step-edges

    SciTech Connect

    Scott, Shelley A.; Brown, Simon A.; Kral, Milo V.

    2005-11-15

    We report on the growth of ordered arrays of bismuth nanorods, extending outward from highly oriented pyrolitic-graphite (HOPG) step-edges. The rods grow via adatom diffusion in a multilayer two-dimensional growth mode, with {l_brace}0112{r_brace}{sub Bi} planes parallel to the basal plane of the substrate, and in-plane orientations aligned with the high symmetry directions of the substrate such that <1120>{sub Bi} parallel <1010>{sub HOPG}. The morphologies are characterized with varying particle flux and coverage. It is shown that bismuth aggregates become elongated when the particle flux is reduced. When coupled with an anisotropic diffusion field surrounding step-edge structures, this results in the manifestation of rods in a low flux growth environment. The rods are only {approx}2 nm tall and can extend up to several microns in length.

  2. Electrochemical Water Oxidation of Ultrathin Cobalt Oxide-Based Catalyst Supported onto Aligned ZnO Nanorods.

    PubMed

    Koteeswara Reddy, Nandanapalli; Winkler, Stefanie; Koch, Norbert; Pinna, Nicola

    2016-02-10

    A stable and durable electrochemical water oxidation catalyst based on CoO functionalized ZnO nanorods (NRs) is introduced. ZnO NRs were grown on fluorine-doped tin oxide (FTO) by using a low-temperature chemical solution method and were functionalized with cobalt oxide by electrochemical deposition. The electrochemical water oxidation performance of cobalt oxide functionalized ZnO NRs was studied under alkaline (pH = 10) conditions. From these studies, it is noticed that cobalt oxide functionalized ZnO NRs show electrocatalytic activity toward water oxidation with current density on the order of several mA cm(-2). Further, 30 s CoO deposited ZnO nanorods exhibited excellent galvanostatic stability at a current density of 1 mA cm(-2) and potentiostatic stability at 1.25 V vs Ag/AgCl over an electrolysis period of 1 h. PMID:26784675

  3. Plasmonics of Gold Nanorods. Considerations for Biosensing

    NASA Astrophysics Data System (ADS)

    Liz-Marzán, Luis M.; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel

    In this chapter, we explore the sensitivity of gold nanorods toward changes in the dielectric constant of the surrounding medium. Experimental data for pure and silica-coated nanorods with varying shell thickness are compared to calculations based on the boundary element method (BEM). They indicate that anisotropy and sharp tips make nanoparticles more environmentally sensitive. We also find that sensitivity decreases as silica shell thickness increases, as expected from a dielectric screening effect. Even when coated with thin shells, gold nanorods are found to be excellent candidates for biosensing applications.

  4. Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli.

    PubMed

    Wang, Lian; He, Hong; Yu, Yunbo; Sun, Li; Liu, Sijin; Zhang, Changbin; He, Lian

    2014-06-01

    Silver-loaded CeO2 nanomaterials (Ag/CeO2) including Ag/CeO2 nanorods, nanocubes, nanoparticles were prepared with hydrothermal and impregnation methods. Catalytic inactivation of Escherichia coli with Ag/CeO2 catalysts through the formation of reactive oxygen species (ROS) was investigated. For comparison purposes, the bactericidal activities of CeO2 nanorods, nanocubes and nanoparticles were also studied. There was a 3-4 log order improvement in the inactivation of E. coli with Ag/CeO2 catalysts compared with CeO2 catalysts. Temperature-programmed reduction of H2 showed that Ag/CeO2 catalysts had higher catalytic oxidation ability than CeO2 catalysts, which was the reason for that Ag/CeO2 catalysts exhibited stronger bactericidal activities than CeO2 catalysts. Further, the bactericidal activities of CeO2 and Ag/CeO2 depend on their shapes. Results of 5,5-dimethyl-1-pyrroline-N-oxide spin-trapping measurements by electron spin resonance and addition of catalase as a scavenger indicated the formation of OH, O2(-), and H2O2, which caused the obvious bactericidal activity of catalysts. The stronger chemical bond between Ag and CeO2 nanorods led to lower Ag(+) elution concentrations. The toxicity of Ag(+) eluted from the catalysts did not play an important role during the bactericidal process. Experimental results also indicated that Ag/CeO2 induced the production of intracellular ROS and disruption of the cell wall and cell membrane. A possible production mechanism of ROS and bactericidal mechanism of catalytic oxidation were proposed.

  5. Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity.

    PubMed

    Lu, Yan; Zhang, Junlong; Ge, Lei; Han, Changcun; Qiu, Ping; Fang, Siman

    2016-12-01

    The vertically aligned one-dimensional (1D) ZnO nanorod arrays decorated with AuPd alloy nanoparticles have been synthesized with ZnO nanorod arrays as template via a mild hydrothermal method. In this work, the as-prepared AuPd/ZnO nanorod arrays demonstrated high light-harvesting efficiency. The microstructures, morphologies and chemical properties of the obtained AuPd/ZnO composite photocatalyst were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectroscopy (XPS). The photoelectrochemical (PEC) performances of as-obtained AuPd/ZnO nanorod arrays were examined, and the photocurrent density was up to 0.98mAcm(-2) at 0.787V versus Ag/AgCl, which was about 2.4 times higher than the pure ZnO sample. A possible photocatalytic mechanism of the AuPd/ZnO hybrid nanostructures under the simulated sunlight irradiation was proposed to guide further improvement of other desirable materials. According to the above experiment results, it can be clearly found that AuPd/ZnO composite nanorod arrays showed excellent PEC performance and had promising applications in the utilization of solar energy. PMID:27552423

  6. Shape and surface chemistry effects on the cytotoxicity and cellular uptake of metallic nanorods and nanospheres.

    PubMed

    Favi, Pelagie Marlene; Valencia, Mariana Morales; Elliott, Paul Robert; Restrepo, Alejandro; Gao, Ming; Huang, Hanchen; Pavon, Juan Jose; Webster, Thomas Jay

    2015-12-01

    Metallic nanoparticles (such as gold and silver) have been intensely studied for wound healing applications due to their ability to be easily functionalized, possess antibacterial properties, and their strong potential for targeted drug release. In this study, rod-shaped silver nanorods (AgNRs) and gold nanorods (AuNRs) were fabricated by electron beam physical vapor deposition (EBPVD), and their cytotoxicity toward human skin fibroblasts were assessed and compared to sphere-shaped silver nanospheres (AgNSs) and gold nanospheres (AuNSs). Results showed that the 39.94 nm AgNSs showed the greatest toxicity with fibroblast cells followed by the 61.06 nm AuNSs, ∼556 nm × 47 nm (11.8:1 aspect ratio) AgNRs, and the ∼534 nm × 65 nm (8.2:1 aspect ratio) AuNRs demonstrated the least amount of toxicity. The calculated IC50 (50% inhibitory concentration) value for the AgNRs exposed to fibroblasts was greater after 4 days of exposure (387.3 μg mL(-1)) compared to the AgNSs and AuNSs (4.3 and 23.4 μg mL(-1), respectively), indicating that these spherical metallic nanoparticles displayed a greater toxicity to fibroblast cells. The IC50 value could not be measured for the AuNRs due to an incomplete dose response curve. The reduced cell toxicity with the presently developed rod-shaped nanoparticles suggests that they may be promising materials for use in numerous biomedical applications.

  7. Shape and surface chemistry effects on the cytotoxicity and cellular uptake of metallic nanorods and nanospheres.

    PubMed

    Favi, Pelagie Marlene; Valencia, Mariana Morales; Elliott, Paul Robert; Restrepo, Alejandro; Gao, Ming; Huang, Hanchen; Pavon, Juan Jose; Webster, Thomas Jay

    2015-12-01

    Metallic nanoparticles (such as gold and silver) have been intensely studied for wound healing applications due to their ability to be easily functionalized, possess antibacterial properties, and their strong potential for targeted drug release. In this study, rod-shaped silver nanorods (AgNRs) and gold nanorods (AuNRs) were fabricated by electron beam physical vapor deposition (EBPVD), and their cytotoxicity toward human skin fibroblasts were assessed and compared to sphere-shaped silver nanospheres (AgNSs) and gold nanospheres (AuNSs). Results showed that the 39.94 nm AgNSs showed the greatest toxicity with fibroblast cells followed by the 61.06 nm AuNSs, ∼556 nm × 47 nm (11.8:1 aspect ratio) AgNRs, and the ∼534 nm × 65 nm (8.2:1 aspect ratio) AuNRs demonstrated the least amount of toxicity. The calculated IC50 (50% inhibitory concentration) value for the AgNRs exposed to fibroblasts was greater after 4 days of exposure (387.3 μg mL(-1)) compared to the AgNSs and AuNSs (4.3 and 23.4 μg mL(-1), respectively), indicating that these spherical metallic nanoparticles displayed a greater toxicity to fibroblast cells. The IC50 value could not be measured for the AuNRs due to an incomplete dose response curve. The reduced cell toxicity with the presently developed rod-shaped nanoparticles suggests that they may be promising materials for use in numerous biomedical applications. PMID:26053238

  8. Optical forces in nanorod metamaterial

    PubMed Central

    Bogdanov, Andrey A.; Shalin, Alexander S.; Ginzburg, Pavel

    2015-01-01

    Optomechanical manipulation of micro and nano-scale objects with laser beams finds use in a large span of multidisciplinary applications. Auxiliary nanostructuring could substantially improve performances of classical optical tweezers by means of spatial localization of objects and intensity required for trapping. Here we investigate a three-dimensional nanorod metamaterial platform, serving as an auxiliary tool for the optical manipulation, able to support and control near-field interactions and generate both steep and flat optical potential profiles. It was shown that the ‘topological transition’ from the elliptic to hyperbolic dispersion regime of the metamaterial, usually having a significant impact on various light-matter interaction processes, does not strongly affect the distribution of optical forces in the metamaterial. This effect is explained by the predominant near-fields contributions of the nanostructure to optomechanical interactions. Semi-analytical model, approximating the finite size nanoparticle by a point dipole and neglecting the mutual re-scattering between the particle and nanorod array, was found to be in a good agreement with full-wave numerical simulation. In-plane (perpendicular to the rods) trapping regime, saddle equilibrium points and optical puling forces (directed along the rods towards the light source), acting on a particle situated inside or at the nearby the metamaterial, were found. PMID:26514667

  9. Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Son, Nguyen Thanh; Noh, Jin-Seo; Park, Sungho

    2016-08-01

    The effect of ZnO thin film on the growth of ZnO nanorods was investigated. ZnO thin films were sputter-deposited on Si substrate with varying the thickness. ZnO nanorods were grown on the thin film using a chemical bath deposition (CBD) method at 90 °C. The ZnO thin films showed granular structure and vertical roughness on the surface, which facilitated the vertical growth of ZnO nanorods. The average grain size and the surface roughness of ZnO film increased with an increase in film thickness, and this led to the increase in both the average diameter and the average length of vertically grown ZnO nanorods. In particular, it was found that the average diameter of ZnO nanorods was very close to the average grain size of ZnO thin film, confirming the role of ZnO film as a seed layer for the vertical growth of ZnO nanorods. The CBD growth on ZnO seed layers may provide a facile route to engineering vertically aligned ZnO nanorod arrays.

  10. Surface-roughness-assisted formation of large-scale vertically aligned CdS nanorod arrays via solvothermal method

    NASA Astrophysics Data System (ADS)

    Zhou, Minmin; Yan, Shancheng; Shi, Yi; Yang, Meng; Sun, Huabin; Wang, Jianyu; Yin, Yao; Gao, Fan

    2013-05-01

    Large-scale cadmium sulfide (CdS) nanorod arrays were successfully synthesized on several different substrates through solvothermal reaction. During the growth experiments, we observed that the adhesion strength of the CdS nanorod arrays to different substrates differed dramatically, causing some of the CdS coating being easily flushed away by deionized water (DI water). With doubts and suspicions, we seriously investigate the original morphology of all the substrates by using atomic force microscopy (AFM). The phase, morphology, crystal structure and photoelectric property of all the products were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and current-voltage (I-V) probe station. The growth mechanism of solvothermal reaction was proposed on the basis of all the characterizations. Our approach presents a universal method of liquid phase epitaxy of 1D material on a wide range of substrates of any shape.

  11. Photocatalytic paper using zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Baruah, Sunandan; Jaisai, Mayuree; Imani, Reza; Nazhad, Mousa M.; Dutta, Joydeep

    2010-10-01

    Zinc oxide (ZnO) nanorods were grown on a paper support prepared from soft wood pulp. The photocatalytic activity of a sheet of paper with ZnO nanorods embedded in its porous matrix has been studied. ZnO nanorods were firmly attached to cellulose fibers and the photocatalytic paper samples were reused several times with nominal decrease in efficiency. Photodegradation of up to 93% was observed for methylene blue in the presence of paper filled with ZnO nanorods upon irradiation with visible light at 963 Wm-2 for 120 min. Under similar conditions, photodegradation of approximately 35% was observed for methyl orange. Antibacterial tests revealed that the photocatalytic paper inhibits the growth of Escherichia coli under room lighting conditions.

  12. Tailoring terahertz plasmons with silver nanorod arrays

    PubMed Central

    Cao, Wei; Song, Chunyuan; Lanier, Thomas E.; Singh, Ranjan; O'Hara, John F.; Dennis, William M.; Zhao, Yiping; Zhang, Weili

    2013-01-01

    Plasmonic materials that strongly interact with light are ideal candidates for designing subwavelength photonic devices. We report on direct coupling of terahertz waves in metallic nanorods by observing the resonant transmission of surface plasmon polariton waves through lithographically patterned films of silver nanorod (100 nm in diameter) micro-hole arrays. The best enhancement in surface plasmon resonant transmission is obtained when the nanorods are perfectly aligned with the electric field direction of the linearly polarized terahertz wave. This unique polarization-dependent propagation of surface plasmons in structures fabricated from nanorod films offers promising device applications. We conclude that the anisotropy of nanoscale metallic rod arrays imparts a material anisotropy relevant at the microscale that may be utilized for the fabrication of plasmonic and metamaterial based devices for operation at terahertz frequencies.

  13. Optical trapping of the anisotropic crystal nanorod.

    PubMed

    Bareil, Paul B; Sheng, Yunlong

    2015-05-18

    We observed in the optical tweezers experiment that some anisotropic nanorod was stably trapped in an orientation tiled to the beam axis. We explain this trapping with the T-matrix calculation. As the vector spherical wave functions do not individually satisfy the anisotropic vector wave equation, we expand the incident and scattered fields in the isotropic buffer in terms of E→, and the internal field in the anisotropic nanoparticle in terms of D→, and use the boundary condition for the normal components of D→ to compute the T-matrix. We found that when the optical axes of an anisotropic nanorod are not aligned to the nanorod axis, the nanorod may be trapped stably at a tilted angle, under which the lateral torque equals to zero and the derivative of the torque is negative. PMID:26074566

  14. Orientation-dependent local structural properties of Zn(1-x)Mg(x)O nanorods studied by extended X-ray absorption fine structure.

    PubMed

    Jeong, E S; Park, Changin; Jin, Zhenlan; Yoo, Jinkyoung; Yi, Gyu-Chul; Han, S W

    2013-03-01

    The orientation-dependent structural properties of Zn(1-x)Mg(x)O nanorods with different Mg concentrations were investigated quantitatively using polarization-dependent extended X-ray absorption fine structure (EXAFS) measurements at the Zn K edge. Vertically-aligned Zn(1-x)Mg(x)O nanorods were synthesized on Si substrates using catalyst free metal organic chemical vapor deposition. Polarization-dependent EXAFS measurements showed that Mg ions mainly occupied the Zn sites of the nanorods. EXAFS revealed that the distance between Zn-Mg pairs in all directions is - 0.2 angstroms shorter than that of Zn-Zn pairs and that there is a substantial amount of disorder in the Mg sites of the nanorods, independent of Mg concentrations.

  15. Functionalized CdS nanospheres and nanorods

    NASA Astrophysics Data System (ADS)

    Lee, Hyeokjin; Yang, Heesun; Holloway, Paul H.

    2009-12-01

    Functionalized nanoparticles are discussed. Surfaces of CdS:Mn/ZnS core/shell nanospheres (Qdots) were converted from hydrophobic to hydrophilic by growth of a SiO 2 shell. The colloidal dispersion was stabilize by adding a surfactant with a negative surface charge, and a cell-penetrating-peptide, TAT, was attached through a primary amine group. The TAT functionalized Qdots were shown to pass the blood-brain-barrier and luminescence in the infused half of the brain. In addition, nanorods of S 2- rich CdS were synthesized by reaction of excess S with Cd precursors in the presence of ethylene diamine. The photoluminescence (PL) peak from the S 2- rich CdS nanorods was broad with a maximum at ∼710 nm, which was 40 nm longer in wavelength than the PL peak from Cd 2+ rich CdS (∼670 nm) nanorods. The influence of surface electron or hole trap states on the luminescent pathway of CdS nanorods were used to explain these shifts in wavelength. Nanocrystals of Au with ∼2 nm diameters were grown on S 2- rich surfaces of CdS nanorods. Significant quenching of photoluminescence was observed from Au nanocrystals on CdS nanorods due to interfacial charge separation. Charge separation by Au nanocrystals on CdS resulted in enhanced UV photocatalytic degradation of Procion red mix-5B (PRB) dye in aqueous solution.

  16. Antifouling properties of zinc oxide nanorod coatings.

    PubMed

    Al-Fori, Marwan; Dobretsov, Sergey; Myint, Myo Tay Zar; Dutta, Joydeep

    2014-01-01

    In laboratory experiments, the antifouling (AF) properties of zinc oxide (ZnO) nanorod coatings were investigated using the marine bacterium Acinetobacter sp. AZ4C, larvae of the bryozoan Bugula neritina and the microalga Tetraselmis sp. ZnO nanorod coatings were fabricated on microscope glass substrata by a simple hydrothermal technique using two different molar concentrations (5 and 10 mM) of zinc precursors. These coatings were tested for 5 h under artificial sunlight (1060 W m(-2) or 530 W m(-2)) and in the dark (no irradiation). In the presence of light, both the ZnO nanorod coatings significantly reduced the density of Acinetobacter sp. AZ4C and Tetraselmis sp. in comparison to the control (microscope glass substratum without a ZnO coating). High mortality and low settlement of B. neritina larvae was observed on ZnO nanorod coatings subjected to light irradiation. In darkness, neither mortality nor enhanced settlement of larvae was observed. Larvae of B. neritina were not affected by Zn(2+) ions. The AF effect of the ZnO nanorod coatings was thus attributed to the reactive oxygen species (ROS) produced by photocatalysis. It was concluded that ZnO nanorod coatings effectively prevented marine micro and macrofouling in static conditions.

  17. Antifouling properties of zinc oxide nanorod coatings.

    PubMed

    Al-Fori, Marwan; Dobretsov, Sergey; Myint, Myo Tay Zar; Dutta, Joydeep

    2014-01-01

    In laboratory experiments, the antifouling (AF) properties of zinc oxide (ZnO) nanorod coatings were investigated using the marine bacterium Acinetobacter sp. AZ4C, larvae of the bryozoan Bugula neritina and the microalga Tetraselmis sp. ZnO nanorod coatings were fabricated on microscope glass substrata by a simple hydrothermal technique using two different molar concentrations (5 and 10 mM) of zinc precursors. These coatings were tested for 5 h under artificial sunlight (1060 W m(-2) or 530 W m(-2)) and in the dark (no irradiation). In the presence of light, both the ZnO nanorod coatings significantly reduced the density of Acinetobacter sp. AZ4C and Tetraselmis sp. in comparison to the control (microscope glass substratum without a ZnO coating). High mortality and low settlement of B. neritina larvae was observed on ZnO nanorod coatings subjected to light irradiation. In darkness, neither mortality nor enhanced settlement of larvae was observed. Larvae of B. neritina were not affected by Zn(2+) ions. The AF effect of the ZnO nanorod coatings was thus attributed to the reactive oxygen species (ROS) produced by photocatalysis. It was concluded that ZnO nanorod coatings effectively prevented marine micro and macrofouling in static conditions. PMID:25115521

  18. Accelerating the clearance of mutant huntingtin protein aggregates through autophagy induction by europium hydroxide nanorods.

    PubMed

    Wei, Peng-Fei; Zhang, Li; Nethi, Susheel Kumar; Barui, Ayan Kumar; Lin, Jun; Zhou, Wei; Shen, Yi; Man, Na; Zhang, Yun-Jiao; Xu, Jing; Patra, Chitta Ranjan; Wen, Long-Ping

    2014-01-01

    Autophagy is one of the well-known pathways to accelerate the clearance of protein aggregates, which contributes to the therapy of neurodegenerative diseases. Although there are numerous reports that demonstrate the induction of autophagy with small molecules including rapamycin, trehalose and lithium, however, there are few reports mentioning the clearance of aggregate-prone proteins through autophagy induction by nanoparticles. In the present article, we have demonstrated that europium hydroxide [Eu(III)(OH)3] nanorods can reduce huntingtin protein aggregation (EGFP-tagged huntingtin protein with 74 polyQ repeats), responsible for neurodegenerative diseases. Again, we have found that these nanorods induce authentic autophagy flux in different cell lines (Neuro 2a, PC12 and HeLa cells) through the expression of higher levels of characteristic autophagy marker protein LC3-II and degradation of selective autophagy substrate/cargo receptor p62/SQSTM1. Furthermore, depression of protein aggregation clearance through the autophagy blockade has also been observed by using specific inhibitors (wortmannin and chloroquine), indicating that autophagy is involved in the degradation of huntingtin protein aggregation. Since [Eu(III)(OH)3] nanorods can enhance the degradation of huntingtin protein aggregation via autophagy induction, we strongly believe that these nanorods would be useful for the development of therapeutic treatment strategies for various neurodegenerative diseases in near future using nanomedicine approach.

  19. Synthesis and optical characteristics of yttrium-doped zinc oxide nanorod arrays grown by hydrothermal method.

    PubMed

    Park, Hyunggil; Kim, Younggyu; Ji, Iksoo; Lee, Sang-Heon; Kim, Jin Soo; Kim, Jin Soo; Leem, Jae-Young

    2014-11-01

    Yttrium-doped ZnO (YZO) nanorods were synthesized by hydrothermal growth on a quartz substrate with various post-annealing temperatures. To investigate the effects of post-annealing on the optical properties and parameters of the nanorods, X-ray diffractometry (XRD), photoluminescence (PL) measurement, and ultraviolet (UV)-visible spectroscopy were used. From the XRD investigation, the full width at half maximum (FWHM) and the dislocation density of the nanorods was found to increase with an increase in the post-annealing temperature. In the PL spectra, the intensity of the near band edge (NBE) emission peak in the UV region also increases with an increase in the temperature of post-annealing. The deep level emission (DLE) peak in the visible region changes with various post-annealing temperatures, and its intensity increases remarkably with post-annealing at 800 degrees C. In this paper, changes in the optical parameters of the nanorods caused by variation in the behavior of Y during post-annealing was investigated, with properties such as absorption coefficients, refractive indices, and dispersion parameters being obtained from transmittance and reflectance analysis.

  20. Field emission from zinc oxide nanorod bundles grown on silicon nanoporous pillar array

    NASA Astrophysics Data System (ADS)

    Wang, Ling Li; Gong, Shang Dong; Wu, Li Hong; Li, Xin Jian

    2013-04-01

    A large-area zinc oxide (ZnO) nanorod bundle array was grown on a silicon nanoporous pillar array (Si-NPA) substrate by a chemical vapor deposition method, and its field-emission properties was studied. The structural characterization disclosed that the bundles were composed of hexagonal ZnO nanorods growing along c-axis and taking roots into the silicon pillars of Si-NPA. The average diameter and length of the ZnO nanorods were ∼145 nm and ∼10 μm, respectively. The field-emission measurements showed that the turn-on field of ZnO/Si-NPA was 4.6 V/μm with an emission current density (ECD) of 1 μA/cm2, and an ECD of 420 μA/cm2 was achieved at an applied field of 8.89 V/μm. The field enhancement factor was calculated to be ∼1700 based on the Fowler-Nordheim theory. According to the obtained charge coupled device (CCD) image, the density and brightness of the emission dots increased with the applied field, and the high emission dot density was attributed to the formation of a large number of ZnO nanorod emitting tips. Our results indicated that ZnO/Si-NPA might be a promising electron emission source.

  1. Optoelectronic properties of cauliflower like ZnO-ZnO nanorod/p-Si heterostructure

    NASA Astrophysics Data System (ADS)

    Rajabi, M.; Dariani, R. S.; Iraji zad, A.; Zahedi, F.

    2013-02-01

    The cauliflower like ZnO nanostructures are grown on ZnO nanorods using spray pyrolysis method. First, ZnO nanorod arrays are grown on p-type silicon substrate without catalyst by chemical vapor transport and condensation method in a horizontal tube furnace. Afterwards, the cauliflower like ZnO nanostructures is deposited on top of the ZnO nanorod array. The PL spectra of cauliflower like ZnO nanostructures consist of UV emission bands around 387 nm and a visible emission at ˜440 nm. The current-voltage (I-V) measurement under dark and UV illumination condition are performed to study photodetection of the cauliflower like ZnO-ZnO nanorod/p-Si heterostructure. The experimental data of dark I-V curve show that the tunneling-recombination model is the dominant current transport mechanism in our device heterostructure below 2 V. It is observed that UV photons are absorbed in ZnO and device exhibit 0.07 A/W responsivity at 5 V reverse bias which correspond to quantum efficiency of 26%.

  2. Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation.

    PubMed

    Yang, Yawei; Que, Wenxiu; Zhang, Xinyu; Xing, Yonglei; Yin, Xingtian; Du, Yaping

    2016-11-01

    Vertically-aligned ZnO nanorod arrays on a fluorine-doped tin oxide glass substrate were homogeneously coated with visible light active CuInS2 quantum dots by using a controllable electrophoretic deposition strategy. Compared with the pure ZnO nanorod arrays, the formation of high-quality ZnO/CuInS2 heterojunction with well-matched band energy alignment expanded the light absorption from ultraviolet to visible region and facilitated efficient charge separation and transportation, thus yielding remarkable enhanced photoelectrochemical performance and photocatalytic activities for methyl orange and 4-chlorophenol degradation. The ZnO/CuInS2 film with the deposition duration of 80min showed the highest degradation rate and photocurrent density (0.95mA/cm(2)), which was almost 6.33 times higher than that of the pure ZnO nanorod arrays film. The CuInS2 QDs sensitized ZnO nanorod arrays film was proved to be a superior structure for photoelectrochemical and photocatalytic applications due to the optimized CuInS2 loading and well-maintained one-dimensional nanostructure. PMID:27322900

  3. Electrical characteristics and stability of gold and palladium Schottky contacts on ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Klason, P.; Nur, O.; Willander, M.

    2008-11-01

    The electrical characteristics and stability of Pd and Au Schottky contacts on ZnO nanorods grown on glass substrate have been investigated. The nanorods were grown using the aqueous chemical growth method. The nanorods were characterized with scanning electron microscopy (SEM), x-ray diffraction (XRD) and photoluminescence (PL). Prior to the metal contact deposition, an insulating PMMA layer was deposited between the nanorods. The best-produced Schottky contact was an as-deposited Pd/ZnO contact with an ideality factor of 1.74 ± 0.43 and a barrier height of 0.67 ± 0.09 eV. The relatively high ideality factor indicates that the current transport cannot be described by pure thermionic transport. The presence of surface states due to the high evaporation pressure is probably the reason for the high ideality factor. Post metal deposition annealing at 150 °C for 30 min in air lowered the barrier height and decreased the Au/ZnO ideality factor but increased it for Pd/ZnO. The current follows ohmic behavior when the applied forward bias, Vforward, is lower than 0.1 V, whereas for Vforward between 0.1 and 0.45 V the current follows I~exp(cV), and at higher forward biases the current-voltage characteristics follow the relation I~V2, indicating that the space-charge current-limiting mechanism is dominating the current transport.

  4. Oxidation dynamics of aluminum nanorods

    SciTech Connect

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2015-02-23

    Aluminum nanorods (Al-NRs) are promising fuels for pyrotechnics due to the high contact areas with oxidizers, but their oxidation mechanisms are largely unknown. Here, reactive molecular dynamics simulations are performed to study thermally initiated burning of oxide-coated Al-NRs with different diameters (D = 26, 36, and 46 nm) in oxygen environment. We found that thinner Al-NRs burn faster due to the larger surface-to-volume ratio. The reaction initiates with the dissolution of the alumina shell into the molten Al core to generate heat. This is followed by the incorporation of environmental oxygen atoms into the resulting Al-rich shell, thereby accelerating the heat release. These results reveal an unexpectedly active role of the alumina shell as a “nanoreactor” for oxidation.

  5. Citrate-Stabilized Gold Nanorods

    PubMed Central

    2015-01-01

    Stable aqueous dispersions of citrate-stabilized gold nanorods (cit-GNRs) have been prepared in scalable fashion by surfactant exchange from cetyltrimethylammonium bromide (CTAB)-stabilized GNRs, using polystyrenesulfonate (PSS) as a detergent. The surfactant exchange process was monitored by infrared spectroscopy, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopy (XPS). The latter established the quantitative displacement of CTAB (by PSS) and of PSS (by citrate). The Cit-GNRs are indefinitely stable at low ionic strength, and are conducive to further ligand exchange without loss of dispersion stability. The reliability of the surface exchange process supports the systematic analysis of ligand structure on the hydrodynamic size of GNRs, as described in a companion paper. PMID:25254292

  6. Oxidation dynamics of aluminum nanorods

    NASA Astrophysics Data System (ADS)

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2015-02-01

    Aluminum nanorods (Al-NRs) are promising fuels for pyrotechnics due to the high contact areas with oxidizers, but their oxidation mechanisms are largely unknown. Here, reactive molecular dynamics simulations are performed to study thermally initiated burning of oxide-coated Al-NRs with different diameters (D = 26, 36, and 46 nm) in oxygen environment. We found that thinner Al-NRs burn faster due to the larger surface-to-volume ratio. The reaction initiates with the dissolution of the alumina shell into the molten Al core to generate heat. This is followed by the incorporation of environmental oxygen atoms into the resulting Al-rich shell, thereby accelerating the heat release. These results reveal an unexpectedly active role of the alumina shell as a "nanoreactor" for oxidation.

  7. Synthesis of Vertically Aligned ZnO Nanorods on Ni-Based Buffer Layers Using a Thermal Evaporation Process

    NASA Astrophysics Data System (ADS)

    Kuo, Dong-Hau; He, Jheng-Yu; Huang, Ying-Sheng

    2012-03-01

    Uniform, vertically aligned ZnO nanorods have been grown mainly on Au-coated and ZnO-coated sapphire substrates, ZnO- and GaN-coated substrates, or self-catalyzing substrates. Conventionally, Ni-coated substrates have resulted in thick rods with diameter more than 250 nm, rods with nonuniform distribution in diameter, or rods with an alignment problem. In the best result in this paper, slender, uniform, vertically aligned, solely UV-emitting ZnO nanorods with diameter of 110 ± 25 nm and length of 30 ± 10 μm have been successfully grown at 700°C for 2 h on sapphire substrates covered with Ni-based buffer layers by using metallic zinc and oxygen as reactants. Scanning electron microscopy and room-temperature photoluminescence have been used to investigate the effects of process conditions on the slenderness and vertical alignment of the ZnO rods. To develop the desired ZnO nanorods, etched sapphire substrates, a second metallic Sn buffer layer on top of a spin-coated nickel oxide layer, polyvinyl alcohol binder at 10% concentration in solution of iron nitrate, and pyrolysis and reduction reactions were involved. Defect photoemission for thick ZnO rods is attributed to insufficient oxygen supply during the growth process with fixed oxygen flow rate.

  8. TOPICAL REVIEW: Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers

    NASA Astrophysics Data System (ADS)

    Willander, M.; Nur, O.; Zhao, Q. X.; Yang, L. L.; Lorenz, M.; Cao, B. Q.; Zúñiga Pérez, J.; Czekalla, C.; Zimmermann, G.; Grundmann, M.; Bakin, A.; Behrends, A.; Al-Suleiman, M.; El-Shaer, A.; Che Mofor, A.; Postels, B.; Waag, A.; Boukos, N.; Travlos, A.; Kwack, H. S.; Guinard, J.; LeSi Dang, D.

    2009-08-01

    Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence

  9. Magnetic and optical properties of Mn-doped ZnO vertically aligned nanorods synthesized by hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Panda, J.; Sasmal, I.; Nath, T. K.

    2016-03-01

    In this paper we have reported the synthesis of high quality vertically aligned undoped and Mn-doped ZnO single crystalline nanorods arrays on Si (100) substrates using two steps process, namely, initial slow seed layer formation followed by solution growth employing wet chemical hydrothermal method. The shapes of the as grown single crystalline nanorods are hexagonal. The diameter and length of the as grown undoped ZnO nanorods varies in the range of 80-150 nm and 1.0 - 1.4 μm, respectively. Along with the lattice parameters of the hexagonal crystal structure, the diameter and length of Mn doped ZnO nanorods are found to increase slightly as compared to the undoped ZnO nanorods. The X-ray photoelectron spectroscopy confirms the presence of Mn atoms in Mn2+ state in the single crystalline ZnO nanorods. The recorded photoluminescence spectrum contains two emissions peaks having UV exciton emissions along with a green-yellow emission. The green-yellow emissions provide the evidence of singly ionized oxygen vacancies. The magnetic field dependent magnetization measurements [M (H)] and zero field cooled (ZFC) and field cooled (FC) magnetization [M(T)] measurements have been carried out at different isothermal conditions in the temperature range of 5-300 K. The Mn doped ZnO nanorods clearly show room temperature ferromagnetic ordering near room temperature down to 5 K. The observed magnetization may be attributed to the long range ferromagnetic interaction between bound magnetic polarons led by singly charged oxygen vacancies.

  10. Spin coating of Ag nanoparticles: Effect of reduction

    SciTech Connect

    Ansari, A. A. Sartale, S. D.

    2014-04-24

    A surfactant free method for the growth of Ag nanoparticles on glass substrate by spin coating of Ag ions solution followed by chemical reduction in aqueous hydrazine hydrate (HyH) solution has been presented. Appearance of surface plasmon resonance confirms the formation of Ag nanoparticles. Morphology and absorbance spectra of Ag nanoparticles films are used to examine effect of hydrazine concentration on the growth of Ag nanoparticles. SEM images show uniformly distributed Ag nanoparticles. Rate constant was found to be dependent on HyH concentration as a consequence influence particle size.

  11. Bio-Functional Au/Si Nanorods for Pathogen Detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract Nanotechnology applications for food safety and biosecurity, especially development of nanoscale sensors for foodborne pathogen measurement are emerging. A novel bio-functional nanosensor for Salmonella detection was developed using hetero-nanorods. The silica nanorods were fabr...

  12. Growth of InN nanorods prepared by plasma-assisted molecular beam epitaxy with varying Cr thicknesses

    NASA Astrophysics Data System (ADS)

    Liu, K. W.; Young, S. J.; Chang, S. J.; Hsueh, T. H.; Chen, Y. Z.; Chen, K. J.; Hung, H.; Wang, S. M.; Wu, Y. L.

    2012-05-01

    This study investigates how the thickness of Cr deposited on the Si substrate after the nitridation process influences the AIN buffer layer and the InN nanorods. Atomic force microscopy results reveal that different thicknesses of Cr form varying sizes of CrN nanoislands. The results of scanning electron microscopy and X-ray diffraction show that a Cr deposition thickness of 10 nm results in CrN nanoislands after the nitridation process, improving the quality and density of InN nanorods. A Cr layer that was too thick led to polycrystalline InN growth. The results of transmission electron microscopy indicate a baseball bat-like InN nanorod growth mechanism.

  13. [The preparation and characterization of 1-D orderly ZnO nanorod arrarys].

    PubMed

    Liu, Ran; Zhang, Ting; Zhao, Su-ling; Xu, Zheng; Zhang, Fu-jun; Yuan, Guang-cai; Xu, Xu-rong

    2008-10-01

    Improving on the sealing and high pressure conditions of traditional hydrothermal method, vertical ZnO nanorod arrays were synthesized on indium tin oxide substrate by employing Zn(NO3)2 x 6H2O, (CH2)4N6 as the starting materials in the presence of polyethylenimine(PEI) at ambient pressure and low temperature (92 degrees). Between the substrate and the nanorods, a layer of ZnO flim was prepared as buffer layer and seed layer. The ZnO film was gained by spin-coating zinc acetate solution on indium tin oxide substrate, then annealed at 350 degrees C for 20 min, which can make zinc acetate decompose into zinc oxide. The zinc acetate spin-coating and decomposition procedure was carried out twice to ensure a complete and uniform coverage of ZnO seeds. The second layer was annealed at 500 degrees C for 30 mini Different spin-coating speeds were adopted, one was 2500 r x min(-1), and the other was 5000 r x min(-1). XRD result indicated that the seed layer with 5000 r x min(-1) has better alignment than the layer with 2500 r x min(-1). The aligned seeds with 5000 r x min(-1) show only a (002) reflection, indicating their complete c-axis texturing, whereas the spin-coated seeds give a powder pattern because they rest at all angles on the substrate. SEM result shows that the layer is made up of grains with an the average size of about 30 nm. Well-aligned ZnO nanorod arrays were synthesized by putting the substrate with ZnO seeds into the precursor solutions vertically for one hour. The nanorod arrays were taken out and rinsed with clean ethanol and pure-water for several times, blown dry with a stream of nitrogen, then annealed at 400 degrees C for 30 min in order to wipe off the organic solvent. At room-temperature, the SEM and XRD were measured. SEM results indicate that the crystal structure of most of ZnO nanorods is hexagonal wurtzite crystallographic phase structure, mainly vertical to the substrate. ZnO nanorods have good crystallization, the diameter of the rods is

  14. Using the Plasmon Linewidth to Calculate the Time and Efficiency of Electron Transfer between Gold Nanorods and Graphene

    PubMed Central

    Hoggard, Anneli; Wang, Lin-Yung; Ma, Lulu; Fang, Ying; You, Ge; Olson, Jana; Liu, Zheng; Chang, Wei-Shun; Ajayan, Pulickel M.; Link, Stephan

    2014-01-01

    We present a quantitative analysis of the electron transfer between single gold nanorods and monolayer graphene under no electrical bias. Using single particle dark-field scattering and photoluminescence spectroscopy to access the homogenous linewidth, we observe broadening of the surface plasmon resonance for gold nanorods on graphene compared to nanorods on a quartz substrate. Because of the absence of spectral plasmon shifts, dielectric interactions between the gold nanorods and graphene are not important and we instead assign the plasmon damping to charge transfer between plasmon-generated hot electrons and the graphene that acts as an efficient acceptor. Analysis of the plasmon linewidth yields an average electron transfer time of 160 ± 30 fs, which is otherwise difficult to measure directly in the time domain with single particle sensitivity. In comparison to intrinsic hot electron decay and radiative relaxation, we furthermore calculate from the plasmon linewidth that charge transfer between the gold nanorods and the graphene support occurs with an efficiency of ~ 10%. Our results are important for future applications of light harvesting with metal nanoparticle plasmons and efficient hot electron acceptors as well as for understanding hot electron transfer in plasmon-assisted chemical reactions. PMID:24266755

  15. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. <100> single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  16. Low-temperature growth of aligned ZnO nanorods: effect of annealing gases on the structural and optical properties.

    PubMed

    Umar, Ahmad; Hahn, Yoon-Bong; Al-Hajry, A; Abaker, M

    2014-06-01

    Aligned ZnO nanorods were grown on ZnO/Si substrate via simple aqueous solution process at low-temperature of - 65 degrees C by using zinc nitrate and hexamethylenetetramine (HMTA). The detailed morphological and structural properties measured by FESEM, XRD, EDS and TEM confirmed that the as-grown nanorods are vertically aligned, well-crystalline possessing wurtzite hexagonal phase and grown along the [0001] direction. The room-temperature photoluminescence spectrum of the grown nanorods exhibited a strong and broad green emission and small ultraviolet emission. The as-prepared ZnO nanorods were post-annealed in nitrogen (N2) and oxygen (O2) environments and further characterized in terms of their morphological, structural and optical properties. After annealing the nanorods exhibit well-crystallinity and wurtzite hexagonal phase. Moreover, by annealing the PL spectra show the enhancement in the UV emission and suppression in the green emission. The presented results demonstrate that simply by post-annealing process, the optical properties of ZnO nanostructures can be controlled.

  17. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene.

    PubMed

    Hoggard, Anneli; Wang, Lin-Yung; Ma, Lulu; Fang, Ying; You, Ge; Olson, Jana; Liu, Zheng; Chang, Wei-Shun; Ajayan, Pulickel M; Link, Stephan

    2013-12-23

    We present a quantitative analysis of the electron transfer between single gold nanorods and monolayer graphene under no electrical bias. Using single-particle dark-field scattering and photoluminescence spectroscopy to access the homogeneous linewidth, we observe broadening of the surface plasmon resonance for gold nanorods on graphene compared to nanorods on a quartz substrate. Because of the absence of spectral plasmon shifts, dielectric interactions between the gold nanorods and graphene are not important and we instead assign the plasmon damping to charge transfer between plasmon-generated hot electrons and the graphene that acts as an efficient acceptor. Analysis of the plasmon linewidth yields an average electron transfer time of 160 ± 30 fs, which is otherwise difficult to measure directly in the time domain with single-particle sensitivity. In comparison to intrinsic hot electron decay and radiative relaxation, we furthermore calculate from the plasmon linewidth that charge transfer between the gold nanorods and the graphene support occurs with an efficiency of ∼10%. Our results are important for future applications of light harvesting with metal nanoparticle plasmons and efficient hot electron acceptors as well as for understanding hot electron transfer in plasmon-assisted chemical reactions.

  18. Microstructural, chemical and textural characterization of ZnO nanorods synthesized by aerosol assisted chemical vapor deposition

    SciTech Connect

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Fuentes-Cobas, L.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C.; Pérez-García, S.A.; Miki-Yoshida, M.

    2014-12-15

    ZnO nanorods were synthesized by aerosol assisted chemical vapor deposition onto TiO{sub 2} covered borosilicate glass substrates. Deposition parameters were optimized and kept constant. Solely the effect of different nozzle velocities on the growth of ZnO nanorods was evaluated in order to develop a dense and uniform structure. The crystalline structure was characterized by conventional X-ray diffraction in grazing incidence and Bragg–Brentano configurations. In addition, two-dimensional grazing incidence synchrotron radiation diffraction was employed to determine the preferred growth direction of the nanorods. Morphology and growth characteristics analyzed by electron microscopy were correlated with diffraction outcomes. Chemical composition was established by X-ray photoelectron spectroscopy. X-ray diffraction results and X-ray photoelectron spectroscopy showed the presence of wurtzite ZnO and anatase TiO{sub 2} phases. Morphological changes noticed when the deposition velocity was lowered to the minimum, indicated the formation of relatively vertically oriented nanorods evenly distributed onto the TiO{sub 2} buffer film. By coupling two-dimensional X-ray diffraction and computational modeling with ANAELU it was proved that a successful texture determination was achieved and confirmed by scanning electron microscopy analysis. Texture analysis led to the conclusion of a preferred growth direction in [001] having a distribution width Ω = 20° ± 2°. - Highlights: • Uniform and pure single-crystal ZnO nanorods were obtained by AACVD technique. • Longitudinal and transversal axis parallel to the [001] and [110] directions, respectively. • Texture was determined by 2D synchrotron diffraction and electron microscopy analysis. • Nanorods have its [001] direction distributed close to the normal of the substrate. • Angular spread about the preferred orientation is 20° ± 2°.

  19. Vertical current-flow enhancement via fabrication of GaN nanorod p-n junction diode on graphene

    NASA Astrophysics Data System (ADS)

    Ryu, Sung Ryong; Ram, S. D. Gopal; Lee, Seung Joo; Cho, Hak-dong; Lee, Sejoon; Kang, Tae Won; Kwon, Sangwoo; Yang, Woochul; Shin, Sunhye; Woo, Yongdeuk

    2015-08-01

    Mg doped GaN nanorods were grown on undoped n-type GaN nanorods uniaxial on monolayer graphene by hydride vapor phase epitaxy (HVPE) method. The monolayer graphene used as the bottom electrode and a substrate as well provides good electrical contact, acts as a current spreading layer, well suitable for the growth of hexagonal GaN nanorod. In addition it has a work function suitable to that of n-GaN. The formed p-n nanorods show a Schottky behavior with a turn on voltage of 3 V. Using graphene as the substrate, the resistance of the nanorod is reduced by 700 times when compared with the case without using graphene as the current spreading layer. The low resistance of graphene acts in parallel with the resistance of the GaN buffer layer, and reduces the resistance drastically. The formed p-n junction in a single GaN nanorod is visualized by Kelvin Force Probe Microscopy (KPFM) to have distinctively contrast p and n regions. The measured contact potential difference of p-and n-region has a difference of 103 mV which well confirms the formed regions are electronically different. Low temperature photoluminescence (PL) spectra give evidence of dopant related acceptor bound emission at 3.2 eV different from 3.4 eV of undoped GaN. The crystalline structure, compositional purity is confirmed by X-ray diffraction (XRD), Transmission and Scanning electron microcopies (SEM), (TEM), Energy dispersive analysis by X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS) as well.

  20. Self-assembled, aligned ZnO nanorod buffer layers for high-current-density, inverted organic photovoltaics.

    PubMed

    Rao, Arun D; Karalatti, Suresh; Thomas, Tiju; Ramamurthy, Praveen C

    2014-10-01

    Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of ∼3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer.