Science.gov

Sample records for ag seed layer

  1. Effect of Ti seed layers on structure of self-organized epitaxial face-centered-cubic-Ag(001) oriented nanodots

    SciTech Connect

    Kamiko, M.; Nose, K.; Suenaga, R.; Kyuno, K.; Koo, J.-W.; Ha, J.-G.

    2013-12-28

    The influence of Ti seed layers on the structure of self-organized Ag nanodots, obtained with a Ti seed-layer-assisted thermal agglomeration method, has been investigated. The samples were grown on MgO(001) single crystal substrates by RF magnetron sputter deposition. The samples were deposited at room temperature and post-annealed at 350 °C for 4 h while maintaining the chamber vacuum conditions. The results of atomic force microscopy (AFM) observations indicated that the insertion of the Ti seed layer (0.6–5.0 nm) between the MgO substrate and Ag layer promotes the agglomeration process, forming the nanodot array. Comparisons between the AFM images revealed that the size of the Ag nanodots was increased with an increase in the Ti seed layer thickness. The atomic concentration of the film surface was confirmed by X-ray photoelectron spectroscopy (XPS). The XPS result suggested that the nanodot surface mainly consisted of Ag. Moreover, X-ray diffraction results proved that the initial deposition of the Ti seed layer (0.6–5.0 nm) onto MgO(001) prior to the Ag deposition yielded high-quality fcc-Ag(001) oriented epitaxial nanodots. The optical absorbance spectra of the fabricated Ag nanodots with various Ti seed layer thicknesses were obtained in the visible light range.

  2. Layered Seed-Growth of AgGe Football-like Microspheres via Precursor-Free Picosecond Laser Synthesis in Water

    PubMed Central

    Zhang, Dongshi; Gökce, Bilal; Notthoff, Christian; Barcikowski, Stephan

    2015-01-01

    Hybrid particles are of great significance in terms of their adjustable optical, electronic, magnetic, thermal and mechanical properties. As a novel technique, laser ablation in liquids (LAL) is famous for its precursor-free, “clean” synthesis of hybrid particles with various materials. Till now, almost all the LAL-generated particles originate from the nucleation-growth mechanism. Seed-growth of particles similar to chemical methods seems difficult to be achieved by LAL. Here, we not only present novel patch-joint football-like AgGe microspheres with a diameter in the range of 1 ~ 7 μm achievable by laser ablation in distilled water but also find direct evidences of their layered seed growth mechanism. Many critical factors contribute to the formation of AgGe microspheres: fast laser-generated plasma process provide an excellent condition for generating large amount of Ge and Ag ions/atoms, their initial nucleation and galvanic replacement reaction, while cavitation bubble confinement plays an important role for the increase of AgGe nuclei and subsequent layered growth in water after bubble collapse. Driven by work function difference, Ge acts as nucleation agent for silver during alloy formation. This new seed-growth mechanism for LAL technique opens new opportunities to develop a large variety of novel hybrid materials with controllable properties. PMID:26334136

  3. Layered Seed-Growth of AgGe Football-like Microspheres via Precursor-Free Picosecond Laser Synthesis in Water

    NASA Astrophysics Data System (ADS)

    Zhang, Dongshi; Gökce, Bilal; Notthoff, Christian; Barcikowski, Stephan

    2015-09-01

    Hybrid particles are of great significance in terms of their adjustable optical, electronic, magnetic, thermal and mechanical properties. As a novel technique, laser ablation in liquids (LAL) is famous for its precursor-free, “clean” synthesis of hybrid particles with various materials. Till now, almost all the LAL-generated particles originate from the nucleation-growth mechanism. Seed-growth of particles similar to chemical methods seems difficult to be achieved by LAL. Here, we not only present novel patch-joint football-like AgGe microspheres with a diameter in the range of 1 ~ 7 μm achievable by laser ablation in distilled water but also find direct evidences of their layered seed growth mechanism. Many critical factors contribute to the formation of AgGe microspheres: fast laser-generated plasma process provide an excellent condition for generating large amount of Ge and Ag ions/atoms, their initial nucleation and galvanic replacement reaction, while cavitation bubble confinement plays an important role for the increase of AgGe nuclei and subsequent layered growth in water after bubble collapse. Driven by work function difference, Ge acts as nucleation agent for silver during alloy formation. This new seed-growth mechanism for LAL technique opens new opportunities to develop a large variety of novel hybrid materials with controllable properties.

  4. Metal deposition using seed layers

    DOEpatents

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  5. A Comparison of AgI and CO2 Seeding Effects in Alberta Cumulus Clouds.

    NASA Astrophysics Data System (ADS)

    English, Marianne; Marwitz, John D.

    1981-05-01

    Three convective clouds extending above a stratocumulus layer were identified as being seedable on one day and were then seeded in a random sequence with CO2 pellets, a placebo and droppable AgI flares. The radar and microphysical seeding effects were observed with the Alberta Hail Project S-band radar and with the University of Wyoming Queen Air aircraft. Distinct seeding effects were observed in both seeded clouds by both data systems. The CO2 seeded cloud developed a single curtain of precipitation particles 18 min after seeding which reached the ground 20 min after seeding and ceased precipitating 10 min later. The placebo cloud failed to develop any precipitation-sized particles or radar echo and dissipated after 30 min. The AgI seeded cloud developed its first echo 8 min after seeding near the threshold temperature for AgI (7°C), produced precipitation at the ground 20 min after seeding, and continued to develop a new echo near the 7°C level and precipitate for 1 h. A natural echoing storm which occurred nearby was examined by radar and found to develop and evolve in a manner quite unlike the seeded clouds. It is plausible that the AgI continued to generate ice crystals in such a manner as to first initiate and then prolong the lifetime of precipitation while the curtain of CO2 pellets failed to initiate more than a single precipitation curtain.

  6. Chemical solution seed layer for rabits tapes

    SciTech Connect

    Goyal, Amit; Paranthaman, Mariappan; Wee, Sung-Hun

    2014-06-10

    A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.

  7. High-Quality AgGaTe2 Layers on Si Substrates with Ag2Te Buffer Layers

    NASA Astrophysics Data System (ADS)

    Uruno, Aya; Kobayashi, Masakazu

    2016-09-01

    AgGaTe2 layers were successfully grown on Si substrates by the close-spaced sublimation method. The Si substrates were confirmed to be etched during AgGaTe2 layer growth when the layer was grown directly on the substrate. To eliminate melt-back etching, a buffer layer of Ag2Te was introduced. It was found that the Ag2Te buffer layer changed into the AgGaTe2 layer during the growth process, and a uniform AgGaTe2 layer with an abrupt interface was formed. Both the diffusion of Ga into Ag2Te and the growth of AgGaTe2 occurred simultaneously. It was confirmed that uniform AgGaTe2 layers could be formed without any traces of the Ag2Te layer or melt-back etching by tuning the growth parameters. A solar cell was also fabricated using the p-AgGaTe2/n-Si heterojunction. This solar cell showed conversion efficiency of approximately 3%.

  8. Synthesis of Ag-coated polystyrene colloids by an improved surface seeding and shell growth technique

    SciTech Connect

    Tian Chungui; Wang Enbo . E-mail: wangenbo@public.cc.jl.cn; Kang Zhenhui; Mao Baodong; Zhang Chao; Lan Yang; Wang Chunlei; Song Yanli

    2006-11-15

    In this paper, an improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. Polyethyleneimine (PEI) could act as the linker between Ag ions (Ag nanoparticles) and polystyrene (PS) colloids and the reducing agent in the formation of Ag nanoparticles. Due to the multi-functional characteristic of PEI, Ag seeds formed in-situ and were immobilized on the surface of PEI-modified PS colloids and no free Ag clusters coexist with the Ag 'seeding' PS colloids in the system. Then, the additional agents could be added into the resulting dispersions straightly to produce a thick Ag nanoshell. The Ag nanoshell with controllable thickness was formed on the surface of PS by the 'one-pot' surface seeding and shell growth method. The Ag-coverage increased gradually with the increasing of mass ratio of AgNO{sub 3}/PS. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. - Graphical abstract: An improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. Display Omitted.

  9. PVP induce self-seeding process for growth of Au@Ag core@shell nanocomposites

    NASA Astrophysics Data System (ADS)

    Eisa, Wael H.; Al-Ashkar, Emad; El-Mossalamy, S. M.; Ali, Safaa S. M.

    2016-05-01

    A novel self-seeding route is developed for fabrication of metallic nanocomposites of gold (core) and silver (shell) (Au@Ag core@shell). Herein, polyvinylpyrrolidone (PVP) is used as both reducing and stabilizing agent. The surface plasmon resonance (SPR) of Au@Ag core@shell can be tuned by controlling the thickness of the Ag shell. The different growth stages of the Au@Ag core@shell have been traced by in situ UV-vis absorption spectra. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy are used for the characterization of the prepared samples.

  10. Seeded growth of robust SERS-active 2D Au@Ag nanoparticulate films

    SciTech Connect

    Baker, Gary A; Dai, Sheng; Hagaman, Edward {Ed} W; Mahurin, Shannon Mark; Zhu, Haoguo; Bao, Lili

    2008-01-01

    We demonstrate herein a novel and versatile solution-based methodology for fabricating self-organized two-dimensional (2D) Au nanoparticle arrays on glass using in situ nucleation at an aminosilane monolayer followed by seeded, electroless growth; subsequent deposition of Ag produced Au{at}Ag core-shell nanoparticulate films which proved highly promising as surface-enhanced Raman scattering (SERS) platforms.

  11. The mechanism of Ag top layer on the coercivity enhancement of FePt thin films

    SciTech Connect

    Zhao, Z.L.; Ding, J.; Yi, J.B.; Chen, J.S.; Zeng, J.H.; Wang, J.P.

    2005-05-15

    The magnetic properties of the FePt thin films with a Ag top layer prepared by magnetron sputtering have been studied. With 4 nm Ag layer deposited right after the deposition of FePt layer, the ordering temperature of the L1{sub 0} FePt phase decreased to 350 deg. C or below. X-ray photoelectron spectroscopy results indicate that Ag has diffused into the FePt layer when Ag was deposited at 350 deg. C, while Ag remains on the top of the FePt when Ag was deposited at room temperature. The Ag top layer deposited at 350 deg. C was also found to protect the FePt layer from oxidation.

  12. Layer-by-layer fabrication of AgCl-PANI hybrid nanocomposite films for electronic tongues.

    PubMed

    Manzoli, Alexandra; Shimizu, Flavio M; Mercante, Luiza A; Paris, Elaine C; Oliveira, Osvaldo N; Correa, Daniel S; Mattoso, Luiz H C

    2014-11-28

    The fabrication of nanostructured films with tailored properties is essential for many applications, particularly with materials such as polyaniline (PANI) whose electrical characteristics may be easily tuned. In this study we report the one-step synthesis of AgCl-PANI nanocomposites that could form layer-by-layer (LbL) films with poly(sodium 4-styrenesulfonate) (PSS) and be used for electronic tongues (e-tongues). The first AgCl-PANI layer was adsorbed on a quartz substrate according to a nucleation-and-growth mechanism explained using the Johnson-Mehl-Avrami (JMA) model, revealing a 3D film growth confirmed by atomic force microscopy (AFM) measurements for the AgCl-PANI/PSS LbL films. In contrast to conventional PANI-containing films, the AgCl-PANI/PSS LbL films deposited on interdigitated electrodes exhibited electrical resistance that was practically unaffected by changes in pH from 4 to 9, and therefore these films can be used in e-tongues for both acidic and basic media. With a sensor array made of AgCl-PANI/PSS LbL films with different numbers of bilayers, we demonstrated the suitability of the AgCl-PANI nanocomposite for an e-tongue capable of clearly discriminating the basic tastes from salt, acid and umami solutions. Significantly, the hybrid AgCl-PANI nanocomposite is promising for any application in which PANI de-doping at high pH is to be avoided.

  13. The use of buffer pellets to pseudo hot seed (RE)-Ba-Cu-O-(Ag) single grain bulk superconductors

    NASA Astrophysics Data System (ADS)

    Shi, Yunhua; Namburi, Devendra Kumar; Zhao, Wen; Durrell, John H.; Dennis, Anthony R.; Cardwell, David A.

    2016-01-01

    Reliable seeding of the superconducting (RE)Ba2Cu3O7-δ (RE-123) phase is a critical step in the melt growth of large, single grain, (RE)BaCuO ((RE)BCO) bulk superconductors. Recent improvements to the top seeded melt growth (TSMG) processing technique, which is an established method of fabricating bulk (RE)BCO superconductors, based on the use of a buffer layer between the seed and green body preform, has significantly improved the reliability of the single grain growth process. This technique has been used successfully for the primary TSMG and infiltration melt growth of all compositions within the ((RE)BCO-Ag) family of materials (where RE = Sm, Gd and Y), and in recycling processes. However, the mechanism behind the improved reliability of the melt process is not understood fully and its effect on the superconducting properties of the fully processed single grains is not clear. In this paper, we investigate the effect of the use of a buffer pellet between the seed and green body on the microstructure, critical current, critical temperature and trapped field of the bulk superconductor. We conclude that the introduction of the buffer pellet evolves the melt growth process towards that observed in the technologically challenging hot seeding technique, but has the potential to yield high quality single grain samples but by a commercially viable melt process.

  14. Insertion of Ag atoms into layered MoO{sub 3} via a template route

    SciTech Connect

    Shao, Ke; Wang, Hao

    2012-11-15

    Graphical abstract: PVP–Ag{sup +} complex self-assembled with inorganic (Mo{sub x}O{sub y}){sub ∞}{sup n−} chains into a layered hybrid, in which the PVP–Ag complex was intercalated between the (Mo{sub x}O{sub y}){sub ∞}{sup n−} layers. Calcinations of this hybrid at 500 °C lead to formation of Ag/MoO{sub 3} nanohybrid. By this method we have successfully inserted Ag atoms into the semiconductor MoO{sub 3} lattice. Display Omitted Highlights: ► We fabricated a PVP–Ag/polyoxomolybdate layered hybrid via in situ self-assembly. ► The PVP–Ag complex has been inserted between the molybdenum oxide layers. ► This layered hybrid transformed into Ag/MoO{sub 3} nanocomposite after calcinations. ► HR-TEM images show that Ag atoms of about 1 nm have been inserted in the MoO{sub 3} layers. -- Abstract: We report insertion of Ag atoms into layered MoO{sub 3} via an in situ template route. PVP–Ag{sup +} complex self-assembled with inorganic (Mo{sub x}O{sub y}){sub ∞}{sup n−} chains into a layered hybrid, in which the PVP–Ag complex was intercalated between the (Mo{sub x}O{sub y}){sub ∞}{sup n−} layers. Calcinations of this hybrid at 500 °C lead to formation of Ag/MoO{sub 3} hybrid, in which Ag nanoparticles of about 1 nm have been inserted between the MoO{sub 3} layers. By this method pillared MoO{sub 3} has been obtained very easily. We believe that this research opens new routes to fabricate novel intercalation compounds and metal/semiconductor nanohybrids via an efficient and green route.

  15. Seed-mediated synthesis and structural analysis of hierarchical silver microparticles (HiAgMPs) with highly nanotextured surfaces

    SciTech Connect

    Han, Sang Hun; Cheon, Jae Yeong; Joo, Sang Hoon; Lee, Jae-Seung

    2013-06-01

    Highlights: • Hierarchical silver microparticles (HiAgMPs) were synthesized by the seed-mediated method using silver nanoplates as seeds. • The growth of HiAgMPs under various synthetic conditions was analyzed by time-dependent scanning electron microscopy. • The internal structure of HiAgMPs was thoroughly investigated by direct electron microscopic observation and N{sub 2} isotherm. - Abstract: We developed a novel method to synthesize hierarchical silver microparticles (HiAgMPs) with highly nanotextured surfaces based on the seed-mediated synthesis by using silver nanoplates as seeds. The synthetic conditions for the resultant HiAgMPs were intensively investigated with various types and concentrations of nanoparticle seeds at different Ag{sup +} concentrations. The growth mechanism of the HiAgMPs was studied by monitoring the morphological evolution at different growth phases. Importantly, we, for the first time, analyzed the internal structure of the HiAgMPs, which are composed of a packed core surrounded by a grooved shell. The catalytic properties of the HiAgMPs were investigated and determined to be highly active for the reduction of 4-nitrophenol.

  16. Read-only memory disk with AgOx and AgInSbTe superresolution mask layer

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Wang, Yang; Xu, Wendong; Gan, Fuxi

    2005-06-01

    Two novel read-only memory (ROM) disks, one with an AgOx mask layer and the other with an AgInSbTe mask layer, are proposed and studied. The AgOx and the AgInSbTe films sputtered on the premastered substrates with pit depths of 50 nm and pit lengths (space) of 380 nm are studied by atomic force microscopy. Disk readout measurement is carried out using a dynamic setup with a laser wavelength of 632.8 nm and an object lens numerical aperture (NA) of 0.40. Results show that the superresolution effect happens only at a suitable oxygen flow ratio for the AgOx ROM disk. The best superresolution readout effect is achieved at an oxygen flow ratio of 0.5 with the smoothest film surface. Compared with the AgOx ROM disk, the AgInSbTe ROM disk has a much smoother film surface and better superresolution effect. A carrier-to-noise ratio (CNR) of above 40 dB can be obtained at an appropriate readout power and readout velocity. The readout CNR of both the AgOx and AgInSbTe ROM disks have a nonlinear dependence on the readout power. The superresolution readout mechanisms for these ROM disks are analyzed and compared as well.

  17. Titanium nitride as a seed layer for Heusler compounds

    SciTech Connect

    Niesen, Alessia Glas, Manuel; Ludwig, Jana; Schmalhorst, Jan-Michael; Reiss, Günter; Sahoo, Roshnee; Ebke, Daniel; Arenholz, Elke

    2015-12-28

    Titanium nitride (TiN) shows low resistivity at room temperature (27 μΩ cm), high thermal stability and thus has the potential to serve as seed layer in magnetic tunnel junctions. High quality TiN thin films with regard to the crystallographic and electrical properties were grown and characterized by x-ray diffraction and 4-terminal transport measurements. Element specific x-ray absorption spectroscopy revealed pure TiN inside the thin films. To investigate the influence of a TiN seed layer on a ferro(i)magnetic bottom electrode in magnetic tunnel junctions, an out-of-plane magnetized Mn{sub 2.45}Ga as well as in- and out-of-plane magnetized Co{sub 2}FeAl thin films were deposited on a TiN buffer, respectively. The magnetic properties were investigated using a superconducting quantum interference device and anomalous Hall effect for Mn{sub 2.45}Ga. Magneto optical Kerr effect measurements were carried out to investigate the magnetic properties of Co{sub 2}FeAl. TiN buffered Mn{sub 2.45}Ga thin films showed higher coercivity and squareness ratio compared to unbuffered samples. The Heusler compound Co{sub 2}FeAl showed already good crystallinity when grown at room temperature on a TiN seed-layer.

  18. Titanium nitride as a seed layer for Heusler compounds

    NASA Astrophysics Data System (ADS)

    Niesen, Alessia; Glas, Manuel; Ludwig, Jana; Schmalhorst, Jan-Michael; Sahoo, Roshnee; Ebke, Daniel; Arenholz, Elke; Reiss, Günter

    2015-12-01

    Titanium nitride (TiN) shows low resistivity at room temperature (27 μΩ cm), high thermal stability and thus has the potential to serve as seed layer in magnetic tunnel junctions. High quality TiN thin films with regard to the crystallographic and electrical properties were grown and characterized by x-ray diffraction and 4-terminal transport measurements. Element specific x-ray absorption spectroscopy revealed pure TiN inside the thin films. To investigate the influence of a TiN seed layer on a ferro(i)magnetic bottom electrode in magnetic tunnel junctions, an out-of-plane magnetized Mn2.45Ga as well as in- and out-of-plane magnetized Co2FeAl thin films were deposited on a TiN buffer, respectively. The magnetic properties were investigated using a superconducting quantum interference device and anomalous Hall effect for Mn2.45Ga. Magneto optical Kerr effect measurements were carried out to investigate the magnetic properties of Co2FeAl. TiN buffered Mn2.45Ga thin films showed higher coercivity and squareness ratio compared to unbuffered samples. The Heusler compound Co2FeAl showed already good crystallinity when grown at room temperature on a TiN seed-layer.

  19. Localised Ag(+) vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2.

    PubMed

    Damay, F; Petit, S; Rols, S; Braendlein, M; Daou, R; Elkaïm, E; Fauth, F; Gascoin, F; Martin, C; Maignan, A

    2016-01-01

    In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K(-1).m(-1) at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag(+) ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag(+) oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid. PMID:27000414

  20. Localised Ag+ vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2

    PubMed Central

    Damay, F.; Petit, S.; Rols, S.; Braendlein, M.; Daou, R.; Elkaïm, E.; Fauth, F.; Gascoin, F.; Martin, C.; Maignan, A.

    2016-01-01

    In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K−1.m−1 at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag+ ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag+ oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid. PMID:27000414

  1. Localised Ag+ vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2

    NASA Astrophysics Data System (ADS)

    Damay, F.; Petit, S.; Rols, S.; Braendlein, M.; Daou, R.; Elkaïm, E.; Fauth, F.; Gascoin, F.; Martin, C.; Maignan, A.

    2016-03-01

    In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K‑1.m‑1 at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag+ ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag+ oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid.

  2. Radiative behavior of a gas layer seeded with soot

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1976-01-01

    Gaseous film or transpiration cooling may be used to reduce the heat flux reaching the wall of a container or other structures. Such a protective film, however, is usually not effective for reducing radiative heat transfer as most gases are transparent in the temperature range for which solid walls can exist. Therefore, heat transfer was examined for a gaseous layer seeded with radiation-absorbing carbon particles (soot) and flowing along a surface. The layer was subjected to an external high temperature source of blackbody radiation. The radiative behavior was found to depend on a parameter containing particle concentration, layer thickness and source temperature. Only a very small particle volume concentration, in the range of .0001, was required to obtain high absorption in a 1-cm-thick layer for typical conditions. The results provide the distance along the surface for which the heat transfer to the wall remains within an acceptable limit and the particles remain below a temperature at which they will melt or vaporize. The wall protection by the layer lasts only until the particles vaporize or the layer becomes so hot that it reradiates substantially to the wall. Depending on the layer mass velocity the protection may be effective for a distance along the wall of only a few layer thickness. Hence, to protect greater wall lengths, it will be necessary to introduce the suspension through multiple slots or holes along the wall.

  3. Properties of MgB2 films deposited on single crystal Ag layers

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Wei, Y. K.; Zhang, C.; Feng, Q. R.; Ma, P.; Wang, Y.

    2014-04-01

    We have recently developed a method to deposit MgB2 thin films on single crystal Ag layers, and found that thin Ag layers reduced the the superconductivity of MgB2 not much, which may be a possible material to fabricate MgB2 SNS Josephson junctions. The single crystal Ag layers were deposited on (0 0 0 1) SiC substrates, and then the MgB2 thin films were deposited on the Ag layers. All the measurements included the XRD, M-T and M-H curves. The transition temperature of MgB2 films decreases from 39 K to 37 K, while the thickness of Ag layers grows from 0 to 20 nm, and the critical current density at 4.2 K decreases from 1.76 MA/cm2 to 1.24 MA/cm2, too.

  4. Self-healing of cracks in Ag joining layer for die-attachment in power devices

    NASA Astrophysics Data System (ADS)

    Chen, Chuantong; Nagao, Shijo; Suganuma, Katsuaki; Jiu, Jinting; Zhang, Hao; Sugahara, Tohru; Iwashige, Tomohito; Sugiura, Kazuhiko; Tsuruta, Kazuhiro

    2016-08-01

    Sintered silver (Ag) joining has attracted significant interest in power devices modules for its ability to form stable joints with a porous interconnection layer. A function for the self-healing of cracks in sintered porous Ag interlayers at high temperatures is discovered and reported here. A crack which was prepared on a Ag joining layer was closed after heating at 200 °C in air. The tensile strength of pre-cracked Ag joining layer specimens recovers to the value of non-cracked specimens after heating treatment. Transmission electron microscopy (TEM) was used to probe the self-healing mechanism. TEM images and electron diffraction patterns show that a large quantity of Ag nanoparticles formed at the gap with the size less than 10 nm, which bridges the crack in the self-healing process. This discovery provides additional motivation for the application of Ag as an interconnection material for power devices at high temperature.

  5. Growth of various Au Ag nanocomposites from gold seeds in amino acid solutions

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Fen; Lin, Yang-Wei; Chang, Huan-Tsung

    2006-10-01

    In this paper, we describe an easy procedure for the preparation of differently shaped and sized Au-Ag nanocomposites from gold nanorod (AuNR) seeds in various amino acid solutions—arginine (Arg), cysteine (Cys), glycine (Gly), glutamate (Glu), glutamine (Gln), histidine (His), lysine (Lys), and methionine (Met), respectively—at values of pH ranging from 8.0 to 11.5. Our results suggest that the pH, the nature of the amino acid, and its concentration all have significant impact on the preparation of Au-Ag nanocomposites; these factors exhibit their effects mainly through control over the reducing ability of ascorbate and/or its recognition capability, as well as through control over the surface charges of the amino acids on the AuNRs. Depending on the value of pH, we were able to prepare I-shaped, dumbbell-shaped, and/or sphere-shaped Au-Ag nanocomposites in 0.1 M solutions of Arg, Gly, Glu, Gln, Lys, and Met. In His solutions at pH 8.0 and 9.0, we obtained peanut-shaped Au-Ag nanocomposites. Corn-shaped Au-Ag nanocomposites were prepared in 0.1 M Met solutions (pH 9.0 and 10.0). By controlling the Lys concentration at pH 10.0, we synthesized pearl-necklace-shaped Au-Ag nanoparticles and Au-Ag wires. Based on the TEM images, we conclude that this simple and reproducible synthetic approach allows preparation of high-quality (>87%, beside>77% in His solutions) Au-Ag nanocomposites with various shapes and sizes under different conditions.

  6. Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides.

    PubMed

    Yadollahi, Mehdi; Namazi, Hassan; Aghazadeh, Mohammad

    2015-08-01

    This paper deals with the preparation of antibacterial nanocomposite hydrogels through the combination of carboxy methyl cellulose (CMC), layered double hydroxides (LDH), and silver nanoparticles (AgNPs). CMC-LDH hydrogels were prepared by intercalating CMC into different LDHs. Then, Ag/CMC-LDH nanocomposite hydrogels were prepared through in situ formation of AgNPs within the CMC-LDHs. XRD analysis confirmed the intercalating CMC into the LDH sheets and formation of intercalated structures, as well as formation of AgNPs within the CMC-LDHs. SEM and TEM micrographs indicated well distribution of AgNPs within the Ag/CMC-LDHs. The prepared hydrogels showed a pH sensitive swelling behavior. The Ag/CMC-LDH nanocomposite hydrogels have rather higher swelling in different aqueous solutions in comparison with CMC-LDHs. The antibacterial activity of CMC-LDHs increased considerably after formation of AgNPs and was stable for more than one month.

  7. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    NASA Astrophysics Data System (ADS)

    Li, Wei; Varlamov, Sergey; Xue, Chaowei

    2014-09-01

    This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, Voc and Jsc than the one on the seed layer without RTA treatment.

  8. Surface-segregated Si and Ge ultrathin films formed by Ag-induced layer exchange process

    NASA Astrophysics Data System (ADS)

    Kurosawa, Masashi; Ohta, Akio; Araidai, Masaaki; Zaima, Shigeaki

    2016-08-01

    We have developed a new method of growing Si or Ge ultrathin films on a Ag(111) surface by using a Ag-induced layer exchange (ALEX) process toward the creation of 2D honeycomb sheets of Si and Ge, known as silicene and germanene, respectively. In the present paper, we clarify ALEX features, specifically the surface segregation of Si (or Ge) atoms from the underlying substrate, focusing on the annealing temperature and time. Hard X-ray photoelectron spectroscopy analyses demonstrate that surface-segregated Si (or Ge) exists on the Ag surfaces after the epitaxial growth of the Ag layer on Si(111) [or Ge(111)] substrates; the amount of segregated Si (or Ge) can be controlled by a subsequent annealing. Also, we find that the segregation of an ultrathin Si or Ge layer proceeds at an interface between Ag and the AlO x capping layer.

  9. Annealing behaviour of c-SiO 2 implanted layer distributed with high density Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Zhengxin; Wang, Honghong

    1997-01-01

    High volume density Ag nanoparticles embedded in c-SiO 2 matrix have been prepared by Ag ion implantation at an energy of 200 keV and a current density of about 20 μA/cm 2 to a nominal dose of 6.7 × 10 16ions/cm 2 at RT. Bright-field transmission electron microscopy (TEM) image indicates that Ag nanoparticles show two groups of sizes: the larger diameter is about 25 nm and the smaller is less than 10 nm. RBS spectra show that the distribution of implanted Ag atoms is bimodal which is associated with the two groups of nanoparticles above. Thermal stability of the implanted layer which consists of Ag nanoparticles, dissolved Ag atoms and c-SiO 2 matrix has been investigated by RBS, TEM and Raman spectroscopy. RBS spectra prove that little migration of Ag atoms is found and Ag nanoparticles are considerably stable at 300°C annealing. Though the obvious change in the distribution of Ag is observed at 400°C annealing in RBS spectra, TEM image identifies that both the larger and the smaller Ag nanoparticles still exist at relatively stable state. Following 750°C annealing, Ag atoms drastically move, and furthermore, the bimodal character of the distribution disappears. On the other hand, the amorphized SiO 2 implanted layer recrystal after 300°C, 400°C annealing.

  10. Seed layer technique for high quality epitaxial manganite films

    PubMed Central

    Graziosi, P.; Gambardella, A.; Calbucci, M.; O’Shea, K.; MacLaren, D. A.; Bergenti, I.; Homonnay, N.; Schmidt, G.; Pullini, D.; Busquets-Mataix, D.; Dediu, V.

    2016-01-01

    We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

  11. Seed layer technique for high quality epitaxial manganite films

    NASA Astrophysics Data System (ADS)

    Graziosi, P.; Gambardella, A.; Calbucci, M.; O'Shea, K.; MacLaren, D. A.; Riminucci, A.; Bergenti, I.; Fugattini, S.; Prezioso, M.; Homonnay, N.; Schmidt, G.; Pullini, D.; Busquets-Mataix, D.; Dediu, V.

    2016-08-01

    We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

  12. Seed layer technique for high quality epitaxial manganite films

    PubMed Central

    Graziosi, P.; Gambardella, A.; Calbucci, M.; O’Shea, K.; MacLaren, D. A.; Bergenti, I.; Homonnay, N.; Schmidt, G.; Pullini, D.; Busquets-Mataix, D.; Dediu, V.

    2016-01-01

    We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived. PMID:27648371

  13. Seeding and layering of equatorial spread F by gravity waves

    SciTech Connect

    Hysell, D.L.; Kelley, M.C.; Swartz, W.E. ); Woodman, R.F. )

    1990-10-01

    Studies dating back more than 15 years have presented evidence that atmospheric gravity waves play a role in initiating nighttime equatorial F region instabilities. This paper analyzes a spectabular spread F event that for the first time demonstrates a layering which, the authors argue, is controlled by a gravity wave effect. The 50-km vertical wavelength of a gravity wave which they have found is related theoretically to a plasma layering irregularity that originated at low altitudes and then was convected, intact, to higher altitudes. Gravity waves also seem to have determined bottomside intermediate scale undulations, although this fact is not as clear in the data. The neutral wind dynamo effect yields wave number conditions on the gravity wave's ability to modulate the Rayleigh-Taylor instaiblity process. Finally, after evaluating the gravity wave dispersion relation and spatial resonance conditions, we estimate the properties of the seeding wave.

  14. Plasma Enhanced Atomic Layer Deposition of Cooper Seed Layers at Low Process Temperatures

    NASA Astrophysics Data System (ADS)

    Mao, Jiajun

    In conventional Cu interconnect fabrication, a sputtered copper seed layer is deposited before the electrochemically deposited (ECD) copper plating step. However, as interconnect dimensions scale down, non-conformal seed layer growth and subsequent voiding of metallized structures is becoming a critical issue. With its established excellent thickness controllability and film conformality, atomic layer deposition (ALD) is becoming an attractive deposition approach for the sub-24nm fabrication regime. However, in order to achieve a smooth and continuous seed layer deposition, a low process temperature (below 100°C) is needed, given the tendency of Cu agglomeration at elevated temperature. In this research, plasma enhanced ALD (PEALD) Cu processes at low process temperature are developed using two novel precursors: Cuprum and AbaCus. The volatility and thermal stability of these two precursors are presented. Self-limiting nature of the PEALD processes are demonstrated. Key film properties including purity, resistivity, conformality, adhesion and platability are evaluated using multiple characterization techniques. In addition, film nucleation and growth of PEALD Cu at room temperature on different liner materials are studied. Via structures are employed for the investigation of film continuity on side walls. It is also shown that film conformality and platability can be improved by over saturating the plasma reactions.

  15. Spoof-like plasmonic behavior of plasma enhanced atomic layer deposition grown Ag thin films

    SciTech Connect

    Prokes, S. M.; Glembocki, O. J.; Cleveland, Erin; Caldwell, Josh D.; Foos, Edward; Niinistoe, Jaakko; Ritala, Mikko

    2012-01-30

    The plasmonic behavior of Ag thin films produced by plasma enhanced atomic layer deposition (PEALD) has been investigated. We show that as-deposited flat PEALD Ag films exhibit unexpected plasmonic properties, and the plasmonic enhancement can differ markedly, depending on the microstructure of the Ag film. Electromagnetic field simulations indicate that this plasmonic behavior is due to air gaps that are an inherent property of the mosaic-like microstructure of the PEALD-grown Ag film, suggesting that this is a metamaterial with behavior very similar to what would be expected in spoof plasmonics where gaps are fabricated in films to create plasmonic-like resonances.

  16. Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides

    NASA Astrophysics Data System (ADS)

    Nourbakhsh, Amirhasan; Adelmann, Christoph; Song, Yi; Lee, Chang Seung; Asselberghs, Inge; Huyghebaert, Cedric; Brizzi, Simone; Tallarida, Massimo; Schmeißer, Dieter; van Elshocht, Sven; Heyns, Marc; Kong, Jing; Palacios, Tomás; de Gendt, Stefan

    2015-06-01

    Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the

  17. A Quantitative Analysis of the Role Played by Poly(vinyl pyrrolidone) in Seed-mediated Growth of Ag Nanocrystals

    PubMed Central

    Xia, Xiaohu; Zeng, Jie; Oetjen, L. Kyle; Li, Qingge; Xia, Younan

    2012-01-01

    This article presents a quantitative analysis of the role played by poly(vinyl pyrrolidone) (PVP) in seed-mediated growth of Ag nanocrystals. Starting from Ag nanocubes encased by {100} facets as the seeds, the resultant nanocrystals could take different shapes depending on the concentration of PVP in the solution. If the concentration was above a critical value, the seeds simply grew into larger cubes still enclosed by {100} facets. When the concentration fell below a critical value, the seeds would evolve into cuboctahedrons enclosed by a mix of {100} and {111} facets and eventually octahedrons completely covered by {111} facets. We derived the coverage density of PVP on Ag(100) surface by combining the results from two measurements: i) cubic seeds were followed to grow at a fixed initial concentration of PVP to find out when {111} facets started to appear on the surface; and ii) cubic seeds were allowed to grow at reduced initial concentrations of PVP to see at which concentration {111} facets started to appear from the very beginning. We could calculate the coverage density of PVP from the differences in PVP concentration and the total surface area of Ag nanocubes between these two samples. The coverage density was found to be 140 and 30 repeating units per nm2 for PVP of 55,000 and 10,000 g/mol in molecular weight, respectively, for cubic seeds of 40 nm in edge length. These values dropped slightly to 100 and 20 repeating units per nm2, respectively, when 100-nm Ag cubes were used as the seeds. PMID:22206387

  18. Ultraviolet photodetectors based on ZnO nanorods-seed layer effect and metal oxide modifying layer effect

    NASA Astrophysics Data System (ADS)

    Zhou, Hai; Fang, Guojia; Liu, Nishuang; Zhao, Xingzhong

    2011-12-01

    Pt/ZnO nanorod (NR) and Pt/modified ZnO NR Schottky barrier ultraviolet (UV) photodetectors (PDs) were prepared with different seed layers and metal oxide modifying layer materials. In this paper, we discussed the effect of metal oxide modifying layer on the performance of UV PDs pre- and post-deposition annealing at 300°C, respectively. For Schottky barrier UV PDs with different seed layers, the MgZnO seed layer-PDs without metal oxide coating showed bigger responsivity and larger detectivity ( D λ*) than those of PDs with ZnO seed layer, and the reason was illustrated through energy band theory and the electron transport mechanism. Also the ratio of D 254* to D 546* was calculated above 8 × 102 for all PDs, which demonstrated that our PDs showed high selectivity for detecting UV light with less influence of light with long wavelength.

  19. Direct observation of molecularly-aligned molecules in the second physisorbed layer-CO/Ag(110)

    SciTech Connect

    Lee, J.-G.; Hong, S.-H.; Ahner, J.; Zhao, X.; Chen, L.; Johnson, J.K.; Yates, J.T., Jr.

    2006-01-25

    We report the direct observation of oriented second-layer physisorbed molecules on a single crystal surface by electron stimulated desorption. Experiments and simulations show that the orientation of the second-layer physisorbed CO molecules on Ag(110) is the result of both electrostatic and dispersion forces from the underlying chemisorbed CO and Ag atoms. At 25 K, the physisorbed C-O bond is tilted and azimuthally oriented with the C-O bond axis inclined in an azimuthal plane at 45° to the principal Ag( 110) azimuthal crystallographic directions. The O atom in CO is directed outward, giving an O+ beam at 43° to the normal.

  20. Surfactant role of Ag atoms in the growth of Si layers on Si(111)√3×√3-Ag substrates

    SciTech Connect

    Yamagami, Tsuyoshi; Sone, Junki; Nakatsuji, Kan; Hirayama, Hiroyuki

    2014-10-13

    The growth of Si layers on Si(111)√3×√3-Ag substrates was studied for coverages of up to a few mono-layers. Atomically flat islands were observed to nucleate in the growth at 570 K. The top surfaces of the islands were covered in Ag atoms and exhibited a √3×√3 reconstruction with the same surface state dispersions as Si(111)√3×√3-Ag substrates. These results indicate that the Ag atoms on the substrate always hop up to the top of the Si layers.

  1. Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides.

    PubMed

    Nourbakhsh, Amirhasan; Adelmann, Christoph; Song, Yi; Lee, Chang Seung; Asselberghs, Inge; Huyghebaert, Cedric; Brizzi, Simone; Tallarida, Massimo; Schmeisser, Dieter; Van Elshocht, Sven; Heyns, Marc; Kong, Jing; Palacios, Tomás; De Gendt, Stefan

    2015-06-28

    Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.

  2. Seed-Mediated Hot-Injection Synthesis of Tiny Ag Nanocrystals on Nanoscale Solid Supports and Reaction Mechanism.

    PubMed

    Barhoum, Ahmed; Rehan, Mohamed; Rahier, Hubert; Bechelany, Mikhael; Van Assche, Guy

    2016-04-27

    Controlling the size and shape of noble Ag nanocrystals (NCs) is of great interest because of their unique size- and shape-dependent properties, especially below 20 nm, and because of interesting applications in drug delivery, sensing, and catalysis. However, the high surface energy and tendency of these tiny NCs to aggregate deteriorates their unique properties and limits their applications. To avoid the aggregation of Ag NCs and improve their performance, we report a seed-mediated hot injection approach to synthesize highly dispersed tiny Ag NCs on a nanosized solid CaCO3 support. This simple, low-cost, and effective chemical approach allows for synthesizing highly uniform Ag NCs (∼10 nm) on the surface of presynthesized CaCO3 single NCs (∼52 nm) without any aggregation of the Ag NCs. Viscose fibers were coated with the Ag@CaCO3 composite nanoparticles (NPs) produced, as well as with ∼126 nm Ag NPs for reference. The Ag@CaCO3 composite NPs show excellent UV protection and antibacterial activity against Escherichia coli. In addition, they give a satin sheen gold to a dark gold color to the viscose fibers, while the Ag NPs (∼126 nm) result in a silver color. The proposed synthesis approach is highly versatile and applicable for many other noble metals, like Au or Pt. PMID:27025589

  3. Electrodeposited Ag-Stabilization Layer for High Temperature Superconducting Coated Conductors: Preprint

    SciTech Connect

    Bhattacharya, R. N.; Mann, J.; Qiao, Y.; Zhang, Y.; Selvamanickam, V.

    2010-11-01

    We developed a non-aqueous based electrodepostion process of Ag-stabilization layer on YBCO superconductor tapes. The non-aqueous electroplating solution is non-reactive to the HTS layer thus does not detoriate the critical current capability of the superconductor layer when plated directly on the HTS tape. The superconducting current capabilities of these tapes were measured by non-contact magnetic measurements.

  4. Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota.

    PubMed

    Fajardo, C; Costa, G; Ortiz, L T; Nande, M; Rodríguez-Membibre, M L; Martín, M; Sánchez-Fortún, S

    2016-11-01

    Silver iodide is one of the most common nucleating materials used in cloud seeding. Previous cloud seeding studies have concluded that AgI is not practically bioavailable in the environment but instead remains in soils and sediments such that the free Ag amounts are likely too low to induce a toxicological effect. However, none of these studies has considered the continued use of this practice on the same geographical areas and thus the potential cumulative effect of environmental AgI. The aim of this study is to assess the risk of acute toxicity caused by AgI exposure under laboratory conditions at the concentration expected in the environment after repeated treatments on selected soil and aquatic biota. To achieve the aims, the viability of soil bacteria Bacillus cereus and Pseudomonas stutzeri and the survival of the nematode Caenorhabditis elegans exposed to different silver iodide concentrations have been evaluated. Freshwater green algae Dictyosphaerium chlorelloides and cyanobacteria Microcystis aeruginosa were exposed to silver iodide in culture medium, and their cell viability and photosynthetic activity were evaluated. Additionally, BOD5 exertion and the Microtox® toxicity test were included in the battery of toxicological assays. Both tests exhibited a moderate AgI adverse effect at the highest concentration (12.5µM) tested. However, AgI concentrations below 2.5µM increased BOD5. Although no impact on the growth and survival endpoints in the soil worm C. elegans was recorded after AgI exposures, a moderate decrease in cell viability was found for both of the assessed soil bacterial strains at the studied concentrations. Comparison between the studied species showed that the cyanobacteria were more sensitive than green algae. Exposure to AgI at 0.43μM, the reference value used in monitoring environmental impact, induced a significant decrease in photosynthetic activity that is primarily associated with the respiration (80% inhibition) and, to a lesser

  5. Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota.

    PubMed

    Fajardo, C; Costa, G; Ortiz, L T; Nande, M; Rodríguez-Membibre, M L; Martín, M; Sánchez-Fortún, S

    2016-11-01

    Silver iodide is one of the most common nucleating materials used in cloud seeding. Previous cloud seeding studies have concluded that AgI is not practically bioavailable in the environment but instead remains in soils and sediments such that the free Ag amounts are likely too low to induce a toxicological effect. However, none of these studies has considered the continued use of this practice on the same geographical areas and thus the potential cumulative effect of environmental AgI. The aim of this study is to assess the risk of acute toxicity caused by AgI exposure under laboratory conditions at the concentration expected in the environment after repeated treatments on selected soil and aquatic biota. To achieve the aims, the viability of soil bacteria Bacillus cereus and Pseudomonas stutzeri and the survival of the nematode Caenorhabditis elegans exposed to different silver iodide concentrations have been evaluated. Freshwater green algae Dictyosphaerium chlorelloides and cyanobacteria Microcystis aeruginosa were exposed to silver iodide in culture medium, and their cell viability and photosynthetic activity were evaluated. Additionally, BOD5 exertion and the Microtox® toxicity test were included in the battery of toxicological assays. Both tests exhibited a moderate AgI adverse effect at the highest concentration (12.5µM) tested. However, AgI concentrations below 2.5µM increased BOD5. Although no impact on the growth and survival endpoints in the soil worm C. elegans was recorded after AgI exposures, a moderate decrease in cell viability was found for both of the assessed soil bacterial strains at the studied concentrations. Comparison between the studied species showed that the cyanobacteria were more sensitive than green algae. Exposure to AgI at 0.43μM, the reference value used in monitoring environmental impact, induced a significant decrease in photosynthetic activity that is primarily associated with the respiration (80% inhibition) and, to a lesser

  6. Granatumins A-G, limonoids from the seeds of a Krishna mangrove, Xylocarpus granatum.

    PubMed

    Li, Min-Yi; Yang, Xiao-Bo; Pan, Jian-Yu; Feng, Gang; Xiao, Qiang; Sinkkonen, Jari; Satyanandamurty, Tirumani; Wu, Jun

    2009-12-01

    Seven new limonoids (1-7), named granatumins A-G, were isolated from seeds of an Indian mangrove (Xylocarpus granatum) collected from the wetlands of Krishna estuary, Andhra Pradesh. The known compounds khayasin T, tigloylseneganolide A, 6-deoxyswietenine, swietemahonolide, febrifugin A, gedunin, xylogranatinin, phaseic acid, (2R,3R)-3,4',5,7-tetrahydroxyflavanone, and (E)-4-hydroxycinnamic acid were also isolated. The structures were established on the basis of spectroscopic data. Granatumins A and B are mexicanolides with endo-conjugated Delta(8,30) and Delta(14,15) double bonds, and granatumins F and G are polyhydroxylated phragmalins found previously in plants of the Meliaceae. Khayasin T exhibited moderate insecticidal activity against fifth instar larvae of Brontispa longissima (Gestro) at a concentration of 20 mg/L. PMID:19888743

  7. Granatumins A-G, limonoids from the seeds of a Krishna mangrove, Xylocarpus granatum.

    PubMed

    Li, Min-Yi; Yang, Xiao-Bo; Pan, Jian-Yu; Feng, Gang; Xiao, Qiang; Sinkkonen, Jari; Satyanandamurty, Tirumani; Wu, Jun

    2009-12-01

    Seven new limonoids (1-7), named granatumins A-G, were isolated from seeds of an Indian mangrove (Xylocarpus granatum) collected from the wetlands of Krishna estuary, Andhra Pradesh. The known compounds khayasin T, tigloylseneganolide A, 6-deoxyswietenine, swietemahonolide, febrifugin A, gedunin, xylogranatinin, phaseic acid, (2R,3R)-3,4',5,7-tetrahydroxyflavanone, and (E)-4-hydroxycinnamic acid were also isolated. The structures were established on the basis of spectroscopic data. Granatumins A and B are mexicanolides with endo-conjugated Delta(8,30) and Delta(14,15) double bonds, and granatumins F and G are polyhydroxylated phragmalins found previously in plants of the Meliaceae. Khayasin T exhibited moderate insecticidal activity against fifth instar larvae of Brontispa longissima (Gestro) at a concentration of 20 mg/L.

  8. Effects of varying CoCrV seed layer deposition pressure on Ru crystallinity in perpendicular magnetic recording media

    SciTech Connect

    Joost, W.; Das, A.; Alford, T. L.

    2009-10-01

    The effects of varying deposition parameters of a CoCrV seed layer under Ru on the structural and interfacial properties of both layers were studied. While sputtering power showed little effect on film structure, sputtering pressure during deposition of the seed layer had a significant effect on the structural properties of the seed layer. In particular, the grain morphology and crystallinity of the seed layer varied considerably with deposition pressure. Deposition of Ru using a constant recipe for all samples demonstrated the effect of varying seed layer deposition pressure on the Ru layer. The strain energy of the Ru film, a measurement of contraction due to the registry with the seed layer, was greatest at moderate seed layer sputtering pressures, while the Ru(0002) peak area was greatest at low sputtering pressures. The competing contributions of interfacial energy and strain energy describe this effect, with interfacial energy dominating at low sputtering pressures.

  9. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering.

    PubMed

    Uhm, Soo-Hyuk; Song, Doo-Hoon; Kwon, Jae-Sung; Lee, Sang-Bae; Han, Jeon-Geon; Kim, Kyoung-Nam

    2014-04-01

    To reduce the incidence of postsurgical bacterial infection that may cause implantation failure at the implant-bone interface, surface treatment of titanium implants with antibiotic materials such as silver (Ag) has been proposed. The purpose of this work was to create TiO2 nanotubes using plasma electrolytic oxidation (PEO), followed by formation of an antibacterial Ag nanostructure coating on the TiO2 nanotube layer using a magnetron sputtering system. PEO was performed on commercially pure Ti sheets. The Ag nanostructure was added onto the resulting TiO2 nanotube using magnetron sputtering at varying deposition rates. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the surface, and Ag content on the TiO2 nanotube layer was analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. Scanning probe microscopy for surface roughness and contact angle measurement were used to indirectly confirm enhanced TiO2 nanotube hydrophilicity. Antibacterial activity of Ag ions in solution was determined by inductively coupled plasma mass spectrometry and antibacterial testing against Staphylococcus aureus (S. aureus). In vitro, TiO2 nanotubes coated with sputtered Ag resulted in significantly reduced S. aureus. Cell viability assays showed no toxicity for the lowest sputtering time group in the osteoblastic cell line MC3T3-E1. These results suggest that a multinanostructured layer with a biocompatible TiO2 nanotube and antimicrobial Ag coating is a promising biomaterial that can be tailored with magnetron sputtering for optimal performance.

  10. Morphological and optical data of AgNW embedded transparent conductive layer.

    PubMed

    Kim, Hong-Sik; Patel, Dipal B; Patel, Malkeshkumar; Kim, Joondong

    2016-12-01

    In this data article, morphological and optical data of AgNW encapsulated between ITO layers are presented to get insights into our article (DOI:10.1016/j.solmat.2016.04.038; Hong-Sik Kim, Pankaj Yadav, Malkeshkumar Patel, Hyunki Kim, Kavita Pandey, Joondong Kim, 2016) [1]. SEM images for the formation of AgNWs networks by number of spin coating are also presented. SEM photographs showing the surface morphologies before and after rapid thermal treatment of prepared samples have been presented. Apart from morphological data set, optical characteristics of this type of samples are given. The comparison plots of optical reflectance from AgNW encapsulated between ITO layers and bare ITO are given between the wavelength ranges from 300 to 1100 nm. At the end, transmittance and reflectance curves of native glass substrates used in this study are presented. PMID:27656670

  11. The role of Ag buffer layer in Fe islands growth on Ge (111) surfaces

    SciTech Connect

    Fu, Tsu-Yi Wu, Jia-Yuan; Jhou, Ming-Kuan; Hsu, Hung-Chan

    2015-05-07

    Sub-monolayer iron atoms were deposited at room temperature on Ge (111)-c(2 × 8) substrates with and without Ag buffer layers. The behavior of Fe islands growth was investigated by using scanning tunneling microscope (STM) after different annealing temperatures. STM images show that iron atoms will cause defects and holes on substrates at room temperature. As the annealing temperature rises, iron atoms pull out germanium to form various kinds of alloyed islands. However, the silver layer can protect the Ag/Ge(111)-(√3×√3) reconstruction from forming defects. The phase diagram shows that ring, dot, and triangular defects were only found on Ge (111)-c(2 × 8) substrates. The kinds of islands found in Fe/Ge system are similar to Fe/Ag/Ge system. It indicates that Ge atoms were pulled out to form islands at high annealing temperatures whether there was a Ag layer or not. But a few differences in big pyramidal or strip islands show that the silver layer affects the development of islands by changing the surface symmetry and diffusion coefficient. The structure characters of various islands are also discussed.

  12. Centre seeded infiltration and growth process for fabrication of large grain bulk YBCO/Ag superconducting composites

    NASA Astrophysics Data System (ADS)

    Parthasarathy, R.; Seshubai, V.

    2012-06-01

    We report the fabrication of a large grain bulk YBCO/Ag superconductor using a novel technique which we call Centre Seeded Infiltration and Growth Process (CSIGP). Using this technique, it has been made possible to get bulk YBCO/Ag composite sample with uniform grain growth textured along the c-axis. The resulting large grain sample has been found to have high critical current densities up to large magnetic fields. We correlate the improved superconducting and magnetic properties to the modified grain growth conditions employed in this fabrication technique.

  13. Pulsed laser deposition of Mg-Al layered double hydroxide with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Matei, A.; Birjega, R.; Vlad, A.; Luculescu, C.; Epurescu, G.; Stokker-Cheregi, F.; Dinescu, M.; Zavoianu, R.; Pavel, O. D.

    2013-03-01

    Powdered layered double hydroxides (LDHs)—also known as hydrotalcite-like (HT)—compounds have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic or organic molecules. Assembling thin films of nano-sized LDHs onto flat solid substrates is an expanding area of research, with promising applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. The exploitation of LDHs as vehicles to carry dispersed metal nanoparticles onto a substrate is a new approach to obtain composite thin films with prospects for biomedical and optical applications. We report the deposition of thin films of Ag nanoparticles embedded in a Mg-Al layered double hydroxide matrix by pulsed laser deposition (PLD). The Ag-LDH powder was prepared by co-precipitation at supersaturation and pH = 10 using aqueous solutions of Mg and Al nitrates, Na hydroxide and carbonate, and AgNO3, having atomic ratios of Mg/Al = 3 and Ag/Al = 0.55. The target to be used in laser ablation experiments was a dry pressed pellet obtained from the prepared Ag-LDH powder. Three different wavelengths of a Nd:YAG laser (266, 532 and 1064 nm) working at a repetition rate of 10 Hz were used. X-Ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and secondary ions mass spectrometry (SIMS) were used to investigate the structure, surface morphology and composition of the deposited films.

  14. Processing of nanoporous Ag layers by potential-controlled displacement (PCD) of Cu.

    PubMed

    Viyannalage, L T; Liu, Y; Dimitrov, N

    2008-08-01

    A cementation-like process taking place under potential control and introduced in this work as a "potential-controlled displacement" (PCD) is developed as a new method for processing of nanoporous Ag structures with controlled roughness (porosity) length scales. Most of the development work is done in a deoxygenated electrolyte containing 1 x 10(-3) M AgClO(4 )+ 5 x 10(-2) M CuSO(4) + 1 x 10(-1) M HClO(4) using a copper rotating disk electrode at 50 rpm. At this electrolyte concentration, the Ag deposition is under diffusion limitations whereas the Cu dissolution displays a typical Butler-Volmer anodic behavior. Thus, a careful choice of the operational current density enables strict control of the ratio between the dissolving and depositing metals as ascertained independently by atomic absorption spectrometry (AAS). The roughness length scale of the resulting surfaces is controlled by a careful selection of the current density applied. The highest surface area and finest morphology is obtained when the atomic ratio of Ag deposition and Cu dissolution becomes 1:1. Preseeding of uniform Ag clusters on the Cu surface made by pulse plating of Ag along with complementary plating and stripping of Pb monolayer is found to yield finer length scale resulting in up to a 67% higher surface area. An electrochemical technique using as a reference value the charge of an underpotentially deposited Pb layer on a flat Ag surface is used for measuring the real surface area. Scanning electron microscopy (SEM) studies are conducted to examine and characterize the deposit morphology of Ag grown by PCD on Cu substrates. PMID:18613704

  15. Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition

    PubMed Central

    2012-01-01

    We demonstrate the morphological control method of ZnO nanostructures by atomic layer deposition (ALD) on an Al2O3/ZnO seed layer surface and the application of a hierarchical ZnO nanostructure for a photodetector. Two layers of ZnO and Al2O3 prepared using ALD with different pH values in solution coexisted on the alloy film surface, leading to deactivation of the surface hydroxyl groups. This surface complex decreased the ZnO nucleation on the seed layer surface, and thereby effectively screened the inherent surface polarity of ZnO. As a result, a 2-D zinc hydroxyl compound nanosheet was produced. With increasing ALD cycles of ZnO in the seed layer, the nanostructure morphology changes from 2-D nanosheet to 1-D nanorod due to the recovery of the natural crystallinity and polarity of ZnO. The thin ALD ZnO seed layer conformally covers the complex nanosheet structure to produce a nanorod, then a 3-D, hierarchical ZnO nanostructure was synthesized using a combined hydrothermal and ALD method. During the deposition of the ALD ZnO seed layer, the zinc hydroxyl compound nanosheets underwent a self-annealing process at 150 °C, resulting in structural transformation to pure ZnO 3-D nanosheets without collapse of the intrinsic morphology. The investigation on band electronic properties of ZnO 2-D nanosheet and 3-D hierarchical structure revealed noticeable variations depending on the richness of Zn-OH in each morphology. The improved visible and ultraviolet photocurrent characteristics of a photodetector with the active region using 3-D hierarchical structure against those of 2-D nanosheet structure were achieved. PMID:22672780

  16. Effects of the physical properties of atomic layer deposition grown seeding layers on the preparation of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Ladanov, Mikhail; Algarin-Amaris, Paula; Villalba, Pedro; Emirov, Yusuf; Matthews, Garrett; Thomas, Sylvia; Ram, Manoj K.; Kumar, Ashok; Wang, Jing

    2013-11-01

    Zinc oxide (ZnO) nanowires are growing in interest as the number of devices for which they are well suited increases. Success in these applications requires defined and controlled geometric incorporation of the wires into the various platforms. Therefore, establishing the ability to tailor the growth ZnO nanowires to produce specified sizes, surface densities, and orientation will be important. In the reported work, the effects of the seeding layer on these factors were accessed. Atomic layer deposition (ALD) was used to produce thin films of ZnO under varying growth and post-processing conditions. These films were fully characterized, including their thickness, surface roughness, and crystalline orientation. Using these well-defined films as the seeding layer, ZnO nanowires were grown and subsequently characterized in terms of morphology and crystalline properties. It was shown that the resulting nanowire properties are dependent upon the nature of the seeding layer, and careful production of the seeding layer allows for some control over these properties.

  17. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30–200 nm and Comparison of Their Optical Properties

    PubMed Central

    Zhang, Qiang; Li, Weiyang; Moran, Christine; Zeng, Jie; Chen, Jingyi; Wen, Long-Ping; Xia, Younan

    2010-01-01

    Silver nanocubes with edge lengths controllable in the range of 30–200 nm were synthesized using an approach based on seeded growth. The key to the success of this synthesis is the use of single-crystal Ag seeds to direct the growth and the use of AgNO3 as a precursor to elemental Ag where the by-product HNO3 can block both the homogeneous nucleation and evolution of single-crystal seeds into twinned nanoparticles. Either spherical (in the shape of cubooctahedron) or cubic seeds could be employed for this growth process. The edge length of resultant Ag nanocubes can be readily controlled by varying the amount of Ag seeds used, the amount of AgNO3 added, or both. For the first time, we could obtain Ag nanocubes with uniform edge lengths controllable in the range of 30–200 nm and then compare their localized surface plasmon resonance and surface-enhanced Raman scattering properties. PMID:20698704

  18. Facile Synthesis of Ag Nanorods with No Plasmon Resonance Peak in the Visible Region by Using Pd Decahedra of 16 nm in Size as Seeds.

    PubMed

    Luo, Ming; Huang, Hongwen; Choi, Sang-Il; Zhang, Chao; da Silva, Robson Rosa; Peng, Hsin-Chieh; Li, Zhi-Yuan; Liu, Jingyue; He, Zhike; Xia, Younan

    2015-10-27

    This article describes a seed-mediated approach to the synthesis of Ag nanorods with thin diameters and tunable aspect ratios. The success of this method is built upon our recent progress in the synthesis of Pd decahedra as uniform samples, together with controllable sizes. When used as a seed, the Pd decahedron could direct the deposition of Ag atoms along the 5-fold axis to generate a nanorod, with its diameter being determined by the lateral dimension of the seed. We were able to generate Ag nanorods with uniform diameters down to 20 nm. Under the conditions we used for growth, symmetry breaking occurred as the Ag atoms were only deposited along one side of the Pd decahedral seed to generate a Ag nanorod with the Pd seed being positioned at one of its two ends. We also systematically investigated the localized surface plasmon resonance (LSPR) properties of the Ag nanorods. With the transverse mode kept below 400 nm, the longitudinal mode could be readily tuned from the visible to the near-infrared region by varying the aspect ratio. As an important demonstration, we obtained Ag nanorods with no LSPR peak in the visible spectrum (400-800 nm), which are attractive for applications related to the fabrication of touchscreen displays, solar films, and energy-saving smart windows. PMID:26372854

  19. Read-only memory disk with AgOx super-resolution mask layer

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Wang, Yang; Xu, Wendong; Shi, Hongren; Gan, Fuxi

    2005-02-01

    A novel read-only memory (ROM) disk with an AgOx mask layer was proposed and studied in this letter. The AgOx films sputtered on the premastered substrates, with pits depth of 50 nm and pits length of 380 nm, were studied by an atomic force microscopy. The transmittances of these AgOx films were also measured by a spectrophotometer. Disk measurement was carried out by a dynamic setup with a laser wavelength of 632.8 nm and a lens numerical aperture (NA) of 0.40. The readout resolution limit of this setup was ?/(4NA) (400 nm). Results showed that the super-resolution readout happened only when the oxygen flow ratios were at suitable values for these disks. The best super-resolution performance was achieved at the oxygen flow ratio of 0.5 with the smoothest film surface. The super-resolution readout mechanism of these ROM disks was analyzed as well.

  20. Chemically deposited In2S3-Ag2S layers to obtain AgInS2 thin films by thermal annealing

    NASA Astrophysics Data System (ADS)

    Lugo, S.; Peña, Y.; Calixto-Rodriguez, M.; López-Mata, C.; Ramón, M. L.; Gómez, I.; Acosta, A.

    2012-12-01

    AgInS2 thin films were obtained by the annealing of chemical bath deposited In2S3-Ag2S layers at 400 °C in N2 for 1 h. According to the XRD and EDX results the chalcopyrite structure of AgInS2 has been obtained. These films have an optical band gap, Eg, of 1.86 eV and an electrical conductivity value of 1.2 × 10-3 (Ω cm)-1.

  1. Improved multicrystalline silicon ingot quality using single layer silicon beads coated with silicon nitride as seed layer

    NASA Astrophysics Data System (ADS)

    babu, G. Anandha; Takahashi, Isao; Matsushima, Satoru; Usami, Noritaka

    2016-05-01

    We propose to utilize single layer silicon beads (SLSB) coated with silicon nitride as cost-effective seed layer to grow high-quality multicrystalline silicon (mc-Si) ingot. The texture structure of silicon nitride provides a large number of nucleation sites for the fine grain formation at the bottom of the crucible. No special care is needed to prevent seed melting, which would lead to decrease of red zone owing to decrease of feedstock melting time. As we expected, mc-Si ingot seeded with SLSB was found to consist of small, different grain orientations, more uniform grain distribution, high percentage of random grain boundaries, less twin boundaries, and low density of dislocation clusters compared with conventional mc-Si ingot grown under identical growth conditions. These results show that the SLSB seeded mc-Si ingot has enhanced ingot quality. The correlation between grain boundary structure and defect structure as well as the reason responsible for dislocation clusters reduction in SLSB seeded mc-Si wafer are also discussed.

  2. Ag/Ni Metallization Bilayer: A Functional Layer for Highly Efficient Polycrystalline SnSe Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    Park, Sang Hyun; Jin, Younghwan; Ahn, Kyunghan; Chung, In; Yoo, Chung-Yul

    2016-10-01

    The structural and electrical characteristics of Ag/Ni bilayer metallization on polycrystalline thermoelectric SnSe were investigated. Two difficulties with thermoelectric SnSe metallization were identified for Ag and Ni single layers: Sn diffusion into the Ag metallization layer and unexpected cracks in the Ni metallization layer. The proposed Ag/Ni bilayer was prepared by hot-pressing, demonstrating successful metallization on the SnSe surface without interfacial cracks or elemental penetration into the metallization layer. Structural analysis revealed that the Ni layer reacts with SnSe, forming several crystalline phases during metallization that are beneficial for reducing contact resistance. Detailed investigation of the Ni/SnSe interface layer confirms columnar Ni-Sn intermetallic phases [(Ni3Sn and Ni3Sn2) and Ni5.63SnSe2] that suppress Sn diffusion into the Ag layer. Electrical specific-contact resistivity (5.32 × 10-4 Ω cm2) of the Ag/Ni bilayer requires further modification for development of high-efficiency polycrystalline SnSe thermoelectric modules.

  3. Effects of Seed Layer on YBa2Cu3Ox Films Grown by Liquid Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Zama, Hideaki; Miyakoshi, Masayuki; Yamamoto, Hiroshi; Morishita, Tadataka

    1999-11-01

    Crack-free YBa2Cu3Ox (YBCO) films were grown by liquid phaseepitaxy (LPE) on MgO(100) substrates with a YBCO seed layer. Thecrystalline property of LPE was crucially dependent on that of theseed layer. On the purely c-axis-oriented seed layer, reasonable YBCOfilms were grown with a full-width at half maximum of the (005)reflection rocking curve, Δω, of 0.07°. In the case of the seedincluding an a-axis-oriented grain, the value of Δω of LPE films waspoor in reproducibility and larger than 0.1° on average. For thea-axis-oriented seed, no YBCO films grew under the growth conditionsin this study. X-ray topographic observations revealed that thecrystalline quality of MgO substrates limited the Δω of LPE films grownon them.

  4. Film transfer enabled by nanosheet seed layers on arbitrary sacrificial substrates

    SciTech Connect

    Dral, A. P.; Nijland, M.; Koster, G.; Elshof, J. E. ten

    2015-05-01

    An approach for film transfer is demonstrated that makes use of seed layers of nanosheets on arbitrary sacrificial substrates. Epitaxial SrTiO{sub 3}, SrRuO{sub 3}, and BiFeO{sub 3} films were grown on Ca{sub 2}Nb{sub 3}O{sub 10} nanosheet seed layers on phlogopite mica substrates. Cleavage of the mica substrates enabled film transfer to flexible polyethylene terephthalate substrates. Electron backscatter diffraction, X-ray diffraction, and atomic force microscopy confirmed that crystal orientation and film morphology remained intact during transfer. The generic nature of this approach is illustrated by growing films on zinc oxide substrates with a nanosheet seed layer. Film transfer to a flexible substrate was accomplished via acid etching.

  5. Use of Single-Layer g-C3N4/Ag Hybrids for Surface-Enhanced Raman Scattering (SERS)

    NASA Astrophysics Data System (ADS)

    Jiang, Jizhou; Zou, Jing; Wee, Andrew Thye Shen; Zhang, Wenjing

    2016-09-01

    Surface-enhanced Raman scattering (SERS) substrates with high activity and stability are desirable for SERS sensing. Here, we report a new single atomic layer graphitic-C3N4 (S-g-C3N4) and Ag nanoparticles (NPs) hybrid as high-performance SERS substrates. The SERS mechanism of the highly stable S-g-C3N4/Ag substrates was systematically investigated by a combination of experiments and theoretical calculations. From the results of XPS and Raman spectroscopies, it was found that there was a strong interaction between S-g-C3N4 and Ag NPs, which facilitates the uniform distribution of Ag NPs over the edges and surfaces of S-g-C3N4 nanosheets, and induces a charge transfer from S-g-C3N4 to the oxidizing agent through the silver surface, ultimately protecting Ag NPs from oxidation. Based on the theoretical calculations, we found that the net surface charge of the Ag atoms on the S-g-C3N4/Ag substrates was positive and the Ag NPs presented high dispersibility, suggesting that the Ag atoms on the S-g-C3N4/Ag substrates were not likely to be oxidized, thereby ensuring the high stability of the S-g-C3N4/Ag substrate. An understanding of the stability mechanism in this system can be helpful for developing other effective SERS substrates with long-term stability.

  6. Use of Single-Layer g-C3N4/Ag Hybrids for Surface-Enhanced Raman Scattering (SERS)

    PubMed Central

    Jiang, Jizhou; Zou, Jing; Wee, Andrew Thye Shen; Zhang, Wenjing

    2016-01-01

    Surface-enhanced Raman scattering (SERS) substrates with high activity and stability are desirable for SERS sensing. Here, we report a new single atomic layer graphitic-C3N4 (S-g-C3N4) and Ag nanoparticles (NPs) hybrid as high-performance SERS substrates. The SERS mechanism of the highly stable S-g-C3N4/Ag substrates was systematically investigated by a combination of experiments and theoretical calculations. From the results of XPS and Raman spectroscopies, it was found that there was a strong interaction between S-g-C3N4 and Ag NPs, which facilitates the uniform distribution of Ag NPs over the edges and surfaces of S-g-C3N4 nanosheets, and induces a charge transfer from S-g-C3N4 to the oxidizing agent through the silver surface, ultimately protecting Ag NPs from oxidation. Based on the theoretical calculations, we found that the net surface charge of the Ag atoms on the S-g-C3N4/Ag substrates was positive and the Ag NPs presented high dispersibility, suggesting that the Ag atoms on the S-g-C3N4/Ag substrates were not likely to be oxidized, thereby ensuring the high stability of the S-g-C3N4/Ag substrate. An understanding of the stability mechanism in this system can be helpful for developing other effective SERS substrates with long-term stability. PMID:27687573

  7. Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces.

    PubMed

    Fragal, Vanessa H; Cellet, Thelma S P; Pereira, Guilherme M; Fragal, Elizângela H; Costa, Marco Antonio; Nakamura, Celso Vataru; Asefa, Tewodros; Rubira, Adley F; Silva, Rafael

    2016-10-01

    The in situ synthesis of silver nanoparticles (AgNPs) within covalently-modified poly(ethylene terephthalate) (PET) films possessing ultra-thin layer of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) is successfully demonstrated. The resulting polymeric films are shown to exhibit antimicrobial activities toward Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungus (Candida albicans). To make the films, first PET surfaces were subject to photo-oxidation and subsequent solid-state grafting to attach a PVA layer, followed by a PAA layer. To synthesize the AgNPs inside the films, the PVA and PAA-modified PET was soaked in AgNO3 solution and the polymeric film was modified with the Ag(+) ions via Ag(+)-carboxylate interaction, and then the Ag(+) ions-containing polymer film was subject to either photo-reduction or thermal reduction processes. The PVA and PAA thin layers attached by covalent bonds to the PET surface uniquely promoted not only the in situ synthesis but also the stabilization of AgNPs. The formation of the AgNPs was confirmed by UV-vis spectroscopy or by monitoring the surface plasmon resonance (SPR) peak associated with AgNPs. The resulting PVA and PAA ultrathin layers modified and AgNPs containing PET served as bactericide and fungicide, inhibiting the growth of bacteria and fungi on the surfaces. Given PET's versatility and common use in many commercial processes, the method can be used for producing plastic surfaces with versatile antimicrobial and antibacterial properties. PMID:27196366

  8. NiO growth on Ag(001): A layer-by-layer vibrational study

    NASA Astrophysics Data System (ADS)

    Kostov, K. L.; Schumann, F. O.; Polzin, S.; Sander, D.; Widdra, W.

    2016-08-01

    The vibrational properties of NiO(001) films on Ag(001) with thicknesses up to 50 monolayers (ML) are characterized with high-resolution electron energy loss spectroscopy (HREELS). For NiO growth at 300 K, four different coverage regions are distinguished by HREELS. The film-thickness-dependent Fuchs-Kliewer (FK) phonon frequency shifts and intensity changes are identified from the NiO monolayer to bulklike thick films. Characteristic changes of the vibrational properties are analyzed to resolve restructuring processes during annealing and thermal decomposition of NiO films. A quantitative comparison of the experimental data, including a line shape analysis, with the calculated loss function based on dielectric theory reveals an excellent agreement between the bulk and the NiO(001) thin film phonon properties for film thicknesses above 15 ML. In contrast, a strong FK phonon softening is observed for thin films below 5 ML that cannot be explained by dielectric theory nor phonon standing waves. This softening is attributed to the presence of surface stress, which results from the -2 % lattice mismatch between NiO and Ag.

  9. Investigation of Gas Seeding for Planar Laser-Induced Fluorescence in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Arisman, C. J.; Johansen, C. T.; Bathel, B. F.; Danehy, P. M.

    2015-01-01

    Numerical simulations of the gas-seeding strategies required for planar laser-induced fluorescence in a Mach 10 (approximately Mach 8.2 postshock) airflow were performed. The work was performed to understand and quantify the adverse effects associated with gas seeding and to assess various types of seed gas that could potentially be used in future experiments. In prior experiments, NO and NO2 were injected through a slot near the leading edge of a flatplate wedge model used in NASA Langley Research Center's 31 in. Mach 10 air tunnel facility. In this paper, nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulations showing the deflection of the velocity boundary layer for each of the cases are presented. Streamwise distributions of velocity and concentration boundary-layer thicknesses, as well as vertical distributions of velocity, temperature, and mass distributions, are presented for each of the cases. A comparison between simulated streamwise velocity profiles and experimentally obtained molecular tagging velocimetry profiles using a nitric oxide seeding strategy is performed to verify the influence of such a strategy on the boundary layer. The relative merits of the different seeding strategies are discussed. The results from a custom solver based on OpenFOAM version 2.2.1 are compared against results obtained from ANSYS® Fluent version 6.3.

  10. Numerical Investigation of PLIF Gas Seeding for Hypersonic Boundary Layer Flows

    NASA Technical Reports Server (NTRS)

    Johanson, Craig T.; Danehy, Paul M.

    2012-01-01

    Numerical simulations of gas-seeding strategies required for planar laser-induced fluorescence (PLIF) in a Mach 10 air flow were performed. The work was performed to understand and quantify adverse effects associated with gas seeding and to compare different flow rates and different types of seed gas. The gas was injected through a slot near the leading edge of a flat plate wedge model used in NASA Langley Research Center's 31- Inch Mach 10 Air Tunnel facility. Nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulation results showing the deflection of the velocity field for each of the cases are presented. Streamwise distributions of velocity and concentration boundary layer thicknesses as well as vertical distributions of velocity, temperature, and mass distributions are presented for each of the cases. Relative merits of the different seeding strategies are discussed.

  11. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  12. Effects of ruthenium seed layer on the microstructure and spin dynamics of thin permalloy films

    SciTech Connect

    Jin Lichuan; Zhang Huaiwu; Tang Xiaoli; Bai Feiming; Zhong Zhiyong

    2013-02-07

    The spin dynamics and microstructure properties of a sputtered 12 nm Ni{sub 81}Fe{sub 19} thin film have been enhanced by the use of a ruthenium seed layer. Both the ferromagnetic resonance field and linewidth are enhanced dramatically as the thickness of ruthenium seed layer is increased. The surface anisotropy energy constant can also be largely tailored from 0.06 to 0.96 erg/cm{sup -2} by changing the seed layer thickness. The changes to the dynamics magnetization properties are caused by both ruthenium seed layer induced changes in the Ni{sub 81}Fe{sub 19} structure properties and surface topography properties. Roughness induced inhomogeneous linewidth broadening is also seen. The damping constant is highly tunable via the ruthenium thickness. This approach can be used to tailor both the structure and spin dynamic properties of thin Ni{sub 81}Fe{sub 19} films over a wide range. And it may benefit the applications of spin dynamics and spin current based devices.

  13. 7 CFR 52.1851 - Sizes of raisins with seeds-layer or cluster.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Processed Raisins 1 Type III-Raisins with Seeds § 52.1851 Sizes of raisins with seeds—layer...

  14. 7 CFR 52.1853 - Grades of raisins with seeds-layer or cluster.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Processed Raisins 1 Type III-Raisins with Seeds § 52.1853 Grades of raisins with seeds—layer...

  15. 7 CFR 52.1851 - Sizes of raisins with seeds-layer or cluster.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Processed Raisins 1 Type III-Raisins with Seeds § 52.1851 Sizes of raisins with seeds—layer...

  16. 7 CFR 52.1853 - Grades of raisins with seeds-layer or cluster.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Processed Raisins 1 Type III-Raisins with Seeds § 52.1853 Grades of raisins with seeds—layer...

  17. Morphological instability of Ag films caused by phase transition in the underlying Ta barrier layer

    SciTech Connect

    Mardani, Shabnam Vallin, Örjan; Wätjen, Jörn Timo; Norström, Hans; Olsson, Jörgen; Zhang, Shi-Li

    2014-08-18

    Wide-bandgap (WBG) semiconductor technologies are maturing and may provide increased device performance in many fields of applications, such as high-temperature electronics. However, there are still issues regarding the stability and reliability of WBG devices. Of particular importance is the high-temperature stability of interconnects for electronic systems based on WBG-semiconductors. For metallization without proper encapsulation, morphological degradation can occur at elevated temperatures. Sandwiching Ag films between Ta and/or TaN layers in this study is found to be electrically and morphologically stabilize the Ag metallization up to 800 °C, compared to 600 °C for uncapped films. However, the barrier layer plays a key role and TaN is found to be superior to Ta, resulting in the best achieved stability, whereas the difference between Ta and TaN caps is negligible. The β-to-α phase transition in the underlying Ta barrier layer is identified as the major cause responsible for the morphological instability observed above 600 °C. It is shown that this phase transition can be avoided using a stacked Ta/TaN barrier.

  18. Photocatalytic Properties of Layered Metal Oxides Substituted with Silver by a Molten AgNO3 Treatment.

    PubMed

    Horie, Hirotaka; Iwase, Akihide; Kudo, Akihiko

    2015-07-15

    K4Nb6O17 (BG: 3.67 eV) and Na2W4O13 (BG: 3.12 eV) layered oxide photocatalysts with wide band gaps were treated with a molten AgNO3 to substitute K+ and Na+ with Ag+, resulting in red-shifts of absorption edges in diffuse reflectance spectra. A part of Na+ ions in the interlayer of Na2W4O13 was substituted with Ag+ ions by the molten AgNO3 treatment with keeping the layered structure. Both Ag(I)-substituted K4Nb6O17 and Na2W4O13 showed photocatalytic activities for O2 evolution from aqueous solutions containing a sacrificial reagent utilizing the absorption bands newly formed by the Ag(I)-substitution. Notably, the Ag(I)-substituted Na2W4O13 produced O2 under visible light irradiation. When ball-milled Na2W4O13 was treated with a molten AgNO3, the Ag(I)-substitution rate increased. The Ag(I)-substituted Na2W4O13 with ball-milling showed higher photocatalytic activity for O2 evolution than that without ball-milling. Z-schematic water splitting proceeded under visible light irradiation by combining the Ag(I)-substituted Na2W4O13 of an O2-evolving photocatalyst with Ru-loaded SrTiO3 doped with Rh of a H2-evolving photocatalyst. PMID:26099451

  19. Photocatalytic Properties of Layered Metal Oxides Substituted with Silver by a Molten AgNO3 Treatment.

    PubMed

    Horie, Hirotaka; Iwase, Akihide; Kudo, Akihiko

    2015-07-15

    K4Nb6O17 (BG: 3.67 eV) and Na2W4O13 (BG: 3.12 eV) layered oxide photocatalysts with wide band gaps were treated with a molten AgNO3 to substitute K+ and Na+ with Ag+, resulting in red-shifts of absorption edges in diffuse reflectance spectra. A part of Na+ ions in the interlayer of Na2W4O13 was substituted with Ag+ ions by the molten AgNO3 treatment with keeping the layered structure. Both Ag(I)-substituted K4Nb6O17 and Na2W4O13 showed photocatalytic activities for O2 evolution from aqueous solutions containing a sacrificial reagent utilizing the absorption bands newly formed by the Ag(I)-substitution. Notably, the Ag(I)-substituted Na2W4O13 produced O2 under visible light irradiation. When ball-milled Na2W4O13 was treated with a molten AgNO3, the Ag(I)-substitution rate increased. The Ag(I)-substituted Na2W4O13 with ball-milling showed higher photocatalytic activity for O2 evolution than that without ball-milling. Z-schematic water splitting proceeded under visible light irradiation by combining the Ag(I)-substituted Na2W4O13 of an O2-evolving photocatalyst with Ru-loaded SrTiO3 doped with Rh of a H2-evolving photocatalyst.

  20. Formation of one-dimensional Ag-Au solid solution colloids with Au nanorods as seeds, their alloying mechanisms, and surface plasmon resonances.

    PubMed

    Guo, Tao; Tan, Yiwei

    2013-01-21

    In this work, one dimensional (1D) Ag-Au solid solution nanoalloys were synthesized by rapidly diffusing Ag into the preformed Au nanorod (AuNR) seeds at ambient temperature in aqueous solution. By varying the molar ratio of AgCl/AuNR (in gold atoms), two kinds of 1D Ag-Au alloy nanostructures with a narrow size distribution--AgAu nanowires and Ag(33)Au(67) nanorods--could be obtained in high yields when NaCl and polyvinylpyrrolidone (PVP) were used as an additive and capping reagent, respectively. Based on HRTEM imaging combined with a series of control experiments, it is conceivable that vacancy/defect-motivated interdiffusion of Ag and Au atoms coupled with oxidative etching is a crucial stage in the mechanism responsible for this room-temperature alloying process, and the subsequent conjugation of the fused Ag-Au alloyed nanostructures is associated with the formation of the AgAu nanowires. The resulting 1D Ag-Au nanoalloys form stable colloidal dispersions and show unique localized surface plasmon resonance (LSPR) peaks in the ensemble extinction spectra.

  1. The Arabidopsis thaliana aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed dormancy is a common phase of the plant life cycle and several parts of the seed can contribute to dormancy. Whole seeds, seeds lacking the testa, embryos, and isolated aleurone layers of Arabidopsis thaliana were used in experiments designed to identify components of the arabidopsis seed that ...

  2. Investigations into the impact of various substrates and ZnO ultra thin seed layers prepared by atomic layer deposition on growth of ZnO nanowire array

    PubMed Central

    2012-01-01

    The impact of various substrates and zinc oxide (ZnO) ultra thin seed layers prepared by atomic layer deposition on the geometric morphology of subsequent ZnO nanowire arrays (NWs) fabricated by the hydrothermal method was investigated. The investigated substrates included B-doped ZnO films, indium tin oxide films, single crystal silicon (111), and glass sheets. Scanning electron microscopy and X-ray diffraction measurements revealed that the geometry and aligment of the NWs were controlled by surface topography of the substrates and thickness of the ZnO seed layers, respectively. According to atomic force microscopy data, we suggest that the substrate, fluctuate amplitude and fluctuate frequency of roughness on ZnO seed layers have a great impact on the alignment of the resulting NWs, whereas the influence of the seed layers' texture was negligible. PMID:22759838

  3. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene.

    PubMed

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-07-06

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication.

  4. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene

    PubMed Central

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-01-01

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication. PMID:27381715

  5. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene

    NASA Astrophysics Data System (ADS)

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-07-01

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication.

  6. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene.

    PubMed

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-01-01

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication. PMID:27381715

  7. Effect of Ag doping and insulator buffer layer on the memory mechanism of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Kaur, Jagdish; Tripathi, S. K.

    2015-07-01

    Resistive memory devices based on nanocomposites have attracted great potential for future applications in electronic and optoelectronic devices. The successful synthesis of aqueous CdSe nanoparticles has been provided with UV-Vis and Photoluminescence spectroscopy. The two terminal planar devices of CdSe nanocomposite have been fabricated. The effect of Ag doping and additional dielectric buffer layers on the memory devices have been studied by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The devices show hysteresis loops in both positive and negative bias directions. The memory window has been found to be increased with both Ag doping and PVA layer addition. The charge carrier transport mechanism in the memory devices has been studied by fitting the I-V characteristics with the theoretical model, Space charge conduction model (SCLC). C-V hysteresis loop in both positive and negative bias directions indicate that both the electrons and holes are responsible for memory mechanism of the devices. The switching mechanism of the memory devices has been explained by charge trapping/detrapping model. The retention characteristics show good stability and reliability of the devices.

  8. The effect of growth temperature of seed layer on the structural and optical properties of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Gautam, Khyati; Singh, Inderpreet; Bhatnagar, P. K.; Peta, Koteswara Rao

    2016-05-01

    The structural and optical properties of ZnO nanorods are investigated as a function of growth temperature of the seed layer. The seed layer comprising of ZnO nanocrystallites is grown on ITO substrates at five different temperatures (150-550 °C) and the nanorods are grown on the seed layer by the facile hydrothermal method. The seed layer grown at 350 °C is observed to be uniformly textured with c-axis orientation leading to the synthesis of vertically aligned nanorods with smaller diameter. The HR-TEM analysis and the intense peak along (002) direction in the XRD spectra of this sample implied that the nanorods possess c-axis orientation. An enhanced UV emission is also observed in the photoluminescence spectra of this sample. The diversity in the morphology and orientation of the seeds at different temperatures has been explained by the growth kinetics of the ZnO nanocrystallites.

  9. Self-assembled Ag nanoparticle network passivated by a nano-sized ZnO layer for transparent and flexible film heaters

    SciTech Connect

    Seo, Ki-Won; Kim, Han-Ki; Kim, Min-Yi; Chang, Hyo-Sik

    2015-12-15

    We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs). The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, the TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.

  10. Bioactive Seed Layer for Surface-Confined Self-Assembly of Peptides.

    PubMed

    Vigier-Carrière, Cécile; Garnier, Tony; Wagner, Déborah; Lavalle, Philippe; Rabineau, Morgane; Hemmerlé, Joseph; Senger, Bernard; Schaaf, Pierre; Boulmedais, Fouzia; Jierry, Loïc

    2015-08-24

    The design and control of molecular systems that self-assemble spontaneously and exclusively at or near an interface represents a real scientific challenge. We present here a new concept, an active seed layer that allows to overcome this challenge. It is based on enzyme-assisted self-assembly. An enzyme, alkaline phosphatase, which transforms an original peptide, Fmoc-FFY(PO4 (2-) ), into an efficient gelation agent by dephosphorylation, is embedded in a polyelectrolyte multilayer and constitutes the "reaction motor". A seed layer composed of a polyelectrolyte covalently modified by anchoring hydrogelator peptides constitutes the top of the multilayer. This layer is the nucleation site for the Fmoc-FFY peptide self-assembly. When such a film is brought in contact with a Fmoc-FFY(PO4 (2-) ) solution, a nanofiber network starts to form almost instantaneously which extents up to several micrometers into the solution after several hours. We demonstrate that the active seed layer allows convenient control over the self-assembly kinetics and the geometric features of the fiber network simply by changing its peptide density. PMID:26179465

  11. Depth distribution and composition of seed banks under different tree layers in a managed temperate forest ecosystem

    NASA Astrophysics Data System (ADS)

    Godefroid, Sandrine; Phartyal, Shyam S.; Koedam, Nico

    2006-05-01

    In the present work we examined the composition and distribution across three soil layers of the buried soil seed bank under three different overstory types ( Fagus sylvatica, Quercus robur, Pinus sylvestris) and in logging areas in a 4383-ha forest in central Belgium. The objectives were: (1) to investigate whether species composition and species richness of soil seed banks are affected by different forest stands; (2) to examine how abundant are habitat-specific forest species in seed banks under different planted tree layers. The study was carried out in stands which are replicated, managed in the same way (even-aged high forest), and growing on the same soil type with the same land-use history. In the investigated area, the seed bank did show significant differences under oak, beech, pine and in logging areas, respectively in terms of size, composition and depth occurrence. All species and layers taken together, the seed bank size ranked as follows: oakwood > beechwood > logging area > pinewood. The same pattern was found for forest species. Seed numbers of Betula pendula, Calluna vulgaris, Dryopteris dilatata and Rubus fruticosus were significantly higher under the beech canopy. Carex remota, Impatiens parviflora and Lotus sp. showed a significantly denser seed bank in logging areas, while Digitalis purpurea seeds were significantly more abundant in soils under the oak canopy. The fact that the seed bank of an originally homogeneous forest varies under different planted stands highlights that a long period of canopy conversion can affect the composition and depth of buried seeds.

  12. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy.

    PubMed

    Bethke, Paul C; Libourel, Igor G L; Aoyama, Natsuyo; Chung, Yong-Yoon; Still, David W; Jones, Russell L

    2007-03-01

    Seed dormancy is a common phase of the plant life cycle, and several parts of the seed can contribute to dormancy. Whole seeds, seeds lacking the testa, embryos, and isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to identify components of the Arabidopsis seed that contribute to seed dormancy and to learn more about how dormancy and germination are regulated in this species. The aleurone layer was found to be the primary determinant of seed dormancy. Embryos from dormant seeds, however, had a lesser growth potential than those from nondormant seeds. Arabidopsis aleurone cells were examined by light and electron microscopy, and cell ultrastructure was similar to that of cereal aleurone cells. Arabidopsis aleurone cells responded to nitric oxide (NO), gibberellin (GA), and abscisic acid, with NO being upstream of GA in a signaling pathway that leads to vacuolation of protein storage vacuoles and abscisic acid inhibiting vacuolation. Molecular changes that occurred in embryos and aleurone layers prior to germination were measured, and these data show that both the aleurone layer and the embryo expressed the NO-associated gene AtNOS1, but only the embryo expressed genes for the GA biosynthetic enzyme GA3 oxidase.

  13. Influence of Dopant on Growth of Intermetallic Layers in Sn-Ag-Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Li, G. Y.; Bi, X. D.; Chen, Q.; Shi, X. Q.

    2011-02-01

    The interfacial interaction between Cu substrates and Sn-3.5Ag-0.7Cu- xSb ( x = 0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0) solder alloys has been investigated under different isothermal aging temperatures of 100°C, 150°C, and 190°C. Scanning electron microscopy (SEM) was used to measure the thickness of the intermetallic compound (IMC) layer and observe the microstructural evolution of the solder joints. The IMC phases were identified by energy-dispersive x-ray spectroscopy (EDX) and x-ray diffractometry (XRD). The growth of both the Cu6Sn5 and Cu3Sn IMC layers at the interface between the Cu substrate and the solder fits a power-law relationship with the exponent ranging from 0.42 to 0.83, which suggests that the IMC growth is primarily controlled by diffusion but may also be influenced by interface reactions. The activation energies and interdiffusion coefficients of the IMC formation of seven solder alloys were determined. The addition of Sb has a strong influence on the growth of the Cu6Sn5 layer, but very little influence on the formation of the Cu3Sn IMC phase. The thickness of the Cu3Sn layer rapidly increases with aging time and temperature, whereas the thickness of the Cu6Sn5 layer increases slowly. This is probably due to the formation of Cu3Sn at the interface between two IMC phases, which occurs with consumption of Cu6Sn5. Adding antimony to Sn-3.5Ag-0.7Cu solder can evidently increase the activation energy of Cu6Sn5 IMC formation, reduce the atomic diffusion rate, and thus inhibit excessive growth of Cu6Sn5 IMCs. This study suggests that grain boundary pinning is one of the most important mechanisms for inhibiting the growth of Cu6Sn5 IMCs in such solder joints when Sb is added.

  14. Engineering meniscus structure and function via multi-layered mesenchymal stem cell-seeded nanofibrous scaffolds.

    PubMed

    Fisher, Matthew B; Henning, Elizabeth A; Söegaard, Nicole; Bostrom, Marc; Esterhai, John L; Mauck, Robert L

    2015-06-01

    Despite advances in tissue engineering for the knee meniscus, it remains a challenge to match the complex macroscopic and microscopic structural features of native tissue, including the circumferentially and radially aligned collagen bundles essential for mechanical function. To mimic this structural hierarchy, this study developed multi-lamellar mesenchymal stem cell (MSC)-seeded nanofibrous constructs. Bovine MSCs were seeded onto nanofibrous scaffolds comprised of poly(ε-caprolactone) with fibers aligned in a single direction (0° or 90° to the scaffold long axis) or circumferentially aligned (C). Multi-layer groups (0°/0°/0°, 90°/90°/90°, 0°/90°/0°, 90°/0°/90°, and C/C/C) were created and cultured for a total of 6 weeks under conditions favoring fibrocartilaginous tissue formation. Tensile testing showed that 0° and C single layer constructs had stiffness values several fold higher than 90° constructs. For multi-layer groups, the stiffness of 0°/0°/0° constructs was higher than all other groups, while 90°/90°/90° constructs had the lowest values. Data for collagen content showed a general positive interactive effect for multi-layers relative to single layer constructs, while a positive interaction for stiffness was found only for the C/C/C group. Collagen content and cell infiltration occurred independent of scaffold alignment, and newly formed collagenous matrix followed the scaffold fiber direction. Structural hierarchies within multi-lamellar constructs dictated biomechanical properties, and only the C/C/C constructs with non-orthogonal alignment within layers featured positive mechanical reinforcement as a consequence of the layered construction. These multi-layer constructs may serve as functional substitutes for the meniscus as well as test beds to understand the complex mechanical principles that enable meniscus function.

  15. Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: Effects of ITO seed layer thickness

    NASA Astrophysics Data System (ADS)

    Alsultany, Forat H.; Hassan, Z.; Ahmed, Naser M.

    2016-07-01

    A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and UV-Vis spectrophotometer.

  16. Interface states of Ag/(110)GaAs Schottky diodes without and with interfacial layers

    SciTech Connect

    Platen, W.; Schmutzler, H.; Kohl, D.; Brauchle, K.; Wolter, K.

    1988-07-01

    GaAs(110) faces with different preparations: ultrahigh vacuum (UHV) cleaved, polished and etched, polished and sputtered: are prepared as Schottky diodes by the deposition of Ag. Diodes based on UHV-cleaved faces do show homogeneously distributed EL2 and EL5 states in deep level transient spectroscopy (DLTS). On polished and etched samples an additional interface state (IS) distribution with a density of 9 x 10/sup 11/ eV/sup -1/ cm/sup -2/ at the DLTS maximum appears. These states can be caused by defects at the oxidic interfacial layer. Polishing and sputtering also evokes the IS distribution. The absence of a DLTS signal from metal-induced gap states (MIGS) which pin the Fermi level at 0.49 eV above the valence-band maximum is related to the absence of an interfacial layer in the UHV prepared Schottky diodes. The sputter process increases the electron density in a thin layer below the interface by an As excess. The corresponding smaller extent of the barrier causes an additional electron emission via tunneling processes from the IS distribution. Furthermore, a near-interface state, EL6 (V/sub Ga/-V/sub As/), shows up. Its concentration at the interface attains N/sub EL6/ = 2.5 x 10/sup 16/ cm/sup -3/ comparable to the shallow donor concentration.

  17. Interface states of Ag/(110)GaAs Schottky diodes without and with interfacial layers

    NASA Astrophysics Data System (ADS)

    Platen, W.; Schmutzler, H.-J.; Kohl, D.; Brauchle, K.-A.; Wolter, K.

    1988-07-01

    GaAs(110) faces with different preparations—ultrahigh vacuum (UHV) cleaved, polished and etched, polished and sputtered—are prepared as Schottky diodes by the deposition of Ag. Diodes based on UHV-cleaved faces do show homogeneously distributed EL2 and EL5 states in deep level transient spectroscopy (DLTS). On polished and etched samples an additional interface state (IS) distribution with a density of 9×1011 eV-1 cm-2 at the DLTS maximum appears. These states can be caused by defects at the oxidic interfacial layer. Polishing and sputtering also evokes the IS distribution. The absence of a DLTS signal from metal-induced gap states (MIGS) which pin the Fermi level at 0.49 eV above the valence-band maximum is related to the absence of an interfacial layer in the UHV prepared Schottky diodes. The sputter process increases the electron density in a thin layer below the interface by an As excess. The corresponding smaller extent of the barrier causes an additional electron emission via tunneling processes from the IS distribution. Furthermore, a near-interface state, EL6 (VGa-VAs), shows up. Its concentration at the interface attains NEL6 =2.5×1016 cm-3 comparable to the shallow donor concentration.

  18. A novel biosensor based on single-layer MoS2 nanosheets for detection of Ag(+).

    PubMed

    Mao, Kang; Wu, Zitong; Chen, Yinran; Zhou, Xiaodong; Shen, Aiguo; Hu, Jiming

    2015-01-01

    In this work, we use for the first time single layer MoS2 as the fluorescence quencher to design a detection method for Ag(+) with excellent robustness, selectivity and sensitivity. To maintain the ultrathin MoS2, bulk MoS2 materials have been exfoliated by intercalation with lithium followed by reaction with water. As-prepared two-dimensional MoS2 not only has good water-solubility but also obtains high fluorescence quenching efficiency within 5 min. Importantly, the detection limit of this assay for Ag(+) (1 nM) was lower than the maximum limitation guided by the United States Environmental Protection Agency (EPA) and the World Health Organization (WHO). Further, this new Ag(+) probe was demonstrated in monitoring Ag(+) in lake water samples with satisfactory results. PMID:25476360

  19. Assembly and Testing of Stem Cell-Seeded Layered Collagen Constructs for Heart Valve Tissue Engineering

    PubMed Central

    Tedder, Mary E.; Simionescu, Agneta; Chen, Joseph; Liao, Jun

    2011-01-01

    Tissue engineering holds great promise for treatment of valvular diseases. Despite excellent progress in the field, current approaches do not fully take into account each patient's valve anatomical uniqueness, the presence of a middle spongiosa cushion that allows shearing of external fibrous layers (fibrosa and ventricularis), and the need for autologous valvular interstitial cells. In this study we propose a novel approach to heart valve tissue engineering based on bioreactor conditioning of mesenchymal stem cell-seeded, valve-shaped constructs assembled from layered collagenous scaffolds. Fibrous scaffolds were prepared by decellularization of porcine pericardium and spongiosa scaffolds by decellularization and elastase treatment of porcine pulmonary arteries. To create anatomically correct constructs, we created silicone molds from native porcine aortic valves, dried two identical fibrous scaffolds onto the molds, and stabilized them with penta-galloyl-glucose a reversible collagen-binding polyphenol that reduces biodegradation. The layers were fused with a protein/aldehyde scaffold bio-adhesive and neutralized to reduce cytotoxicity. Spongiosa scaffolds, seeded with human bone marrow-derived stem cells, were inserted within the valve-shaped layered scaffolds and sutured inside the original aortic root. The final product was mounted in a heart valve bioreactor and cycled in cell culture conditions. Most cells were alive after 8 days, elongated significantly, and stained positive for vimentin, similar to native human valvular interstitial cells, indicating feasibility of our approach. PMID:20673028

  20. Growth of periodic nano-layers of nano-crystals of Au, Ag, Cu by ion beam

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Zheng, B.; Muntele, C. I.; Muntele, I. C.; Ila, D.

    2005-01-01

    Multilayered thin films of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/, were grown by deposition. We have previously shown that MeV ion Bombardment of multi-nano-layers of SiO2/AU+ SiO2/ produces Au nanocrystals in the AU+ SiO2 layers. An increased number of nano-layers followed by MeV ion bombardment produces a wide optical absorption band, of which its FWHM depends on the number of nano-layers of SiO2/AU+ SiO2/. We have successfully repeated this process for nano-layers of SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/. In this work we used 5 MeV Si as the post deposition bombardment ion and monitored the location as well as the optical absorption's FWHM for each layered structure using Optical Absorption Photospectrometry. The concentration and location of the metal nano-crystals were measured by Rutherford Backscattering Spectrometry. We will report on the results obtained for nano-layered structures produced by post deposition bombardment of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/ layered systems as well as the results obtained from a system containing a periodic combination of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/.

  1. Atomic structures of silicene layers grown on Ag(111): scanning tunneling microscopy and noncontact atomic force microscopy observations.

    PubMed

    Resta, Andrea; Leoni, Thomas; Barth, Clemens; Ranguis, Alain; Becker, Conrad; Bruhn, Thomas; Vogt, Patrick; Le Lay, Guy

    2013-01-01

    Silicene, the considered equivalent of graphene for silicon, has been recently synthesized on Ag(111) surfaces. Following the tremendous success of graphene, silicene might further widen the horizon of two-dimensional materials with new allotropes artificially created. Due to stronger spin-orbit coupling, lower group symmetry and different chemistry compared to graphene, silicene presents many new interesting features. Here, we focus on very important aspects of silicene layers on Ag(111): First, we present scanning tunneling microscopy (STM) and non-contact Atomic Force Microscopy (nc-AFM) observations of the major structures of single layer and bi-layer silicene in epitaxy with Ag(111). For the (3 × 3) reconstructed first silicene layer nc-AFM represents the same lateral arrangement of silicene atoms as STM and therefore provides a timely experimental confirmation of the current picture of the atomic silicene structure. Furthermore, both nc-AFM and STM give a unifying interpretation of the second layer (√3 × √3)R ± 30° structure. Finally, we give support to the conjectured possible existence of less stable, ~2% stressed, (√7 × √7)R ± 19.1° rotated silicene domains in the first layer.

  2. Ultrathin cobalt-alloyed barrier layers for copper metallization by a new seeding and electroless-deposition process

    NASA Astrophysics Data System (ADS)

    Chen, Sung-Te; Liu, Yuan-Yu; Chen, Giin-Shan

    2015-11-01

    Pioneering activation-seeding processes grow catalytic particles with sizes exceeding 10 nm due to agglomeration, and thus are unable to act as a template for electroless deposition of a barrier layer with a thickness of 10 nm or less, which is desperately needed for the incoming ULSI copper interconnecting technology. In this work, the capacity of a seeding process to grow a continuous Co-P barrier layer of 8-nm thickness on thermally oxidized SiO2 layers using electroless deposition will be demonstrated. The Co-P barrier layer works effectively in retarding (a) Cu agglomeration and (b) Cu diffusion into the dielectric layer subjected to thermal annealing. Evidently, thermal stability of the Cu film on SiO2 is markedly strengthened by interposing the 8-nm-thick barrier layer. The mechanism of the interposed barrier layer in enhancing thermal stability of the metallization layer is currently under investigation.

  3. Structural evolution of Ag-Cu nano-alloys confined between AlN nano-layers upon fast heating.

    PubMed

    Janczak-Rusch, J; Chiodi, M; Cancellieri, C; Moszner, F; Hauert, R; Pigozzi, G; Jeurgens, L P H

    2015-11-14

    The structural evolution of a Ag-Cu/AlN nano-multilayer (NML), as prepared by magnetron-sputtering on a α-Al2O3 substrate, was monitored during fast heating by real-time in situ XRD analysis (at the synchrotron), as well as by ex situ microstructural analysis using SEM, XPS and in-house XRD. The as-deposited NML is constituted of alternating nano-layers (thickness ≈ 10 nm) of a chemically inert AlN barrier and a eutectic Ag-Cu(40at%) nano-alloy. The nano-alloy in the as-deposited state is composed of a fcc matrix of Ag nano-grains (≈6 nm), which are supersaturated by Cu, and some smaller embedded Cu rich nano-grains (≈4 nm). Heating up to 265 °C activates segregation of Cu out of the supersaturated Ag nano-grains phase, thus initiating phase separation. At T > 265 °C, the phase-separated Cu metal partially migrates to the top NML surface, thereby relaxing thermally-accumulated compressive stresses in the confined alloy nano-layers and facilitating grain coarsening of (still confined) phase-separated nano-crystallites. Further heating and annealing up to 420 °C results in complete phase separation, forming extended Ag and Cu domains with well-defined coherent Ag/AlN interfaces. The observed outflow of Cu well below the eutectic melting point of the bulk Ag-Cu alloy might provide new pathways for designing low-temperature nano-structured brazing materials.

  4. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  5. Enhanced performance of flexible nanocrystalline silicon thin-film solar cells using seed layers with high hydrogen dilution.

    PubMed

    Lee, Ji-Eun; Kim, Donghwan; Yoon, Kyung Hoon; Cho, Jun-Sik

    2013-12-01

    Flexible hydrogenated nanocrystalline (nc-Si:H) thin-film solar cells were prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD), and the effect of highly crystalline intrinsic Si seed layers at the initial growth stage of i nc-Si:H absorbers on their structural and electrical properties and on the performance of solar cells was investigated. The crystallization of i nc-Si:H absorbers was significantly enforced by the introduction of highly crystalline seed layers, resulting in the reduction of defect-dense a-Si:H grain boundary and incubation layer thickness. The open circuit voltage of the nc-Si:H solar cells with the seed layers was improved by the decrease of charged defect density in the defect-rich amorphous region.

  6. Formation of the seed layers for layer-transfer process silicon solar cells by zone-heating recrystallization of porous silicon structures

    NASA Astrophysics Data System (ADS)

    Lukianov, A.; Murakami, K.; Takazawa, C.; Ihara, M.

    2016-05-01

    Thin-film crystalline silicon is promising for photovoltaic application to reduce the cost of photovoltaic energy. Porous silicon structures have been intensively studied as a seed layer for epitaxial growth of thin Si film and layer-transfer process (LTP). In this article, another approach for LTP has been proposed. The seed layers for epitaxial silicon growth have been formed by zone-heating recrystallization of double-layer por-Si structures. The influence of annealing parameters on porous silicon structures was studied. The transformation of por-Si layer to crystalline Si was observed with the formation of smooth continuous surface with the roughness 0.3 nm, peak-to-valley distance around 3.5 nm, and reduced density of pores. The mechanism of the transformation of por-Si surface due to the action of hydrogen in the passivated pores with preventing surface oxidation was proposed.

  7. Spin polarization and additional magneto-optical activity of nonmagnetic layers in Fe/Ag CMF

    NASA Astrophysics Data System (ADS)

    Xu, Y. B.; Zhai, H. R.; Lu, M.; Jin, Q. Y.; Miao, Y. Z.

    1992-08-01

    The experimental magneto-optical Kerr rotation spectra of Fe/Ag compositionally modulated films reported by Katayama et al. are studied theoretically. It is found that the free electrons of Ag are spin polarized. The magnitude of the polarization is about 1% with a direction opposite to that of Fe. The polarized Ag also gives rise to an additional magneto-optical activity as in Pt and Pd.

  8. The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers.

    PubMed

    Kang, Kibum; Kim, Sung-Kyu; Kim, Cheol-Joo; Jo, Moon-Ho

    2008-02-01

    We report a controllably reproducible and spontaneous growth of single-crystalline NiSix nanowires using NiOx/Ni seed layers during SiH4 chemical vapor deposition (CVD). We provide evidence that upon the reactions of SiH4 (vapor)-Ni seed layers (solid), the presence of the NiOx overlayer on Ni seed layers plays the key role to promote the spontaneous one-dimensional growth of NiSix single crystals without employing catalytic nanocrystals. Specifically, the spontaneous nanowire formation on the NiOx overlayer is understood within the frame of the SiH4 vapor-phase reaction with out-diffused Ni from the Ni underlayers, where the Ni diffusion is controlled by the NiOx overlayers for the limited nucleation. We show that single-crystalline NiSix nanowires by this self-organized fashion in our synthesis display a narrow diameter distribution, and their average length is set by the thickness of the Ni seed layers. We argue that our simple CVD method employing the bilayers of transition metal and their oxides as the seed layers can provide implication as the general synthetic route for the spontaneous growth of metal-silicide nanowires in large scales.

  9. Second-harmonic generation in quaternary atomically thin layered AgInP2S6 crystals

    NASA Astrophysics Data System (ADS)

    Wang, Xingzhi; Du, Kezhao; Liu, Weiwei; Hu, Peng; Lu, Xin; Xu, Weigao; Kloc, Christian; Xiong, Qihua

    2016-09-01

    Nonlinear effects in two-dimensional (2D) atomic layered materials have attracted increasing interest. Here, we report the observation of optical second-harmonic generation (SHG) in two-dimensional atomically thin silver indium phosphorus sulfide (AgInP2S6) crystals, with odd layer thickness. The nonlinear signal facilitates the use of thickness-dependent SHG intensity to investigate the stacking type of this material, while the crystal-orientation dependent SHG intensity of the monolayer sample reveals the rotational symmetry of the AgInP2S6 lattice in plane. Our studies expand the 2D crystal family in nonlinear effect field, which opened considerable promise to the functionalities and potential applications of 2D materials.

  10. Dual layer hollow fiber PVDF ultra-filtration membranes containing Ag nano-particle loaded zeolite with longer term anti-bacterial capacity in salt water.

    PubMed

    Shi, Huyan; Xue, Lixin; Gao, Ailin; Zhou, Qingbo

    2016-01-01

    Dual layer polyvinylidene fluoride (PVDF), antibacterial, hollow fiber, ultra-filtration composite membranes with antibacterial particles (silver (Ag) nano-particles loaded zeolite (Z-Ag)) in the outer layer were prepared with high water flux and desired pore sizes. The amounts of Ag(+) released from the composite membranes, freshly made and stored in water and salt solution, were measured. The result indicated that dual layer PVDF antibacterial hollow fiber containing Z-Ag (M-1-Ag) still possessed the ability of continuous release of Ag(+) even after exposure to water with high ionic content, showing a longer term resistance to bacterial adhesion and antibacterial activity than membrane doped with Z-Ag(+) (M-1). Results from an anti-adhesion and bacteria killing test with Escherichia coli supported that the antibacterial efficiency of dual hollow fiber PVDF membranes with Z-Ag was much higher than those with Z-Ag(+) after long time storage in water or exposure to phosphate buffered saline (PBS) solution. This novel hollow fiber membrane may find applications in constructing sea water pretreatment devices with long term antifouling capability for the desalination processes.

  11. Dual layer hollow fiber PVDF ultra-filtration membranes containing Ag nano-particle loaded zeolite with longer term anti-bacterial capacity in salt water.

    PubMed

    Shi, Huyan; Xue, Lixin; Gao, Ailin; Zhou, Qingbo

    2016-01-01

    Dual layer polyvinylidene fluoride (PVDF), antibacterial, hollow fiber, ultra-filtration composite membranes with antibacterial particles (silver (Ag) nano-particles loaded zeolite (Z-Ag)) in the outer layer were prepared with high water flux and desired pore sizes. The amounts of Ag(+) released from the composite membranes, freshly made and stored in water and salt solution, were measured. The result indicated that dual layer PVDF antibacterial hollow fiber containing Z-Ag (M-1-Ag) still possessed the ability of continuous release of Ag(+) even after exposure to water with high ionic content, showing a longer term resistance to bacterial adhesion and antibacterial activity than membrane doped with Z-Ag(+) (M-1). Results from an anti-adhesion and bacteria killing test with Escherichia coli supported that the antibacterial efficiency of dual hollow fiber PVDF membranes with Z-Ag was much higher than those with Z-Ag(+) after long time storage in water or exposure to phosphate buffered saline (PBS) solution. This novel hollow fiber membrane may find applications in constructing sea water pretreatment devices with long term antifouling capability for the desalination processes. PMID:27148717

  12. Development and comparative investigation of Ag-sensitive layer based SAW and QCM sensors for mercury sensing applications.

    PubMed

    Kabir, K M Mohibul; Sabri, Ylias M; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J; Bhargava, Suresh K

    2016-04-21

    Piezoelectric acoustic wave devices integrated with noble metal surfaces provide exciting prospects for the direct measurement of toxic gas species such as mercury (Hg) in the atmosphere. Even though gold (Au) based acoustic wave sensors have been utilized extensively for detecting Hg, the potential of using other metal surfaces such as silver (Ag) is yet to be thoroughly studied. Here, we developed Ag sensitive layer-based surface acoustic wave (SAW) and quartz crystal microbalance (QCM) sensors and focused on their comparative analysis for Hg sensing applications with parameters such as the sensor sensitivity, selectivity, adsorption/desorption isotherm and Hg diffusion into the surface thoroughly studied. The SAW sensor was fabricated with nickel (Ni) interdigitated transducer (IDT) electrodes and a Ag thin film on the delay line of the device. In the case of the QCM sensor, the electrodes were constructed of Ag thin film and simultaneously employed as a sensitive layer. Mercury sensing experiments were conducted for a range of concentrations between 24-365 ppbv without/with the presence of some common industrial interfering gas species (i.e. ammonia, acetaldehyde, ethyl mercaptan, dimethyl disulphide, methyl ethyl ketone and humidity) at various operating temperatures in the range of 35-95 °C. The SAW sensor was found to possess up to 70 times higher response magnitudes than its QCM counterpart at 35 °C while up to 30 and 23 times higher response magnitudes were observed for the SAW sensor at elevated temperatures of 75 and 95 °C, respectively. Furthermore, the SAW sensor showed good selectivity (>89%) toward Hg(0) vapor in the presence of all the interferents tested at an operating temperature of 75 °C while the QCM sensor exhibited significant cross-sensitivity when ethyl mercaptan was introduced along with Hg(0) vapor. Overall, it is indicative that Ag-based acoustic wave sensors do have great potential for Hg sensing applications, given that right

  13. Photochemical bonding of epithelial cell-seeded collagen lattice to rat muscle layer for esophageal tissue engineering: a pilot study

    NASA Astrophysics Data System (ADS)

    Chan, Barbara P.; Sato, M.; Vacanti, Joseph P.; Kochevar, Irene E.; Redmond, Robert W.

    2005-04-01

    Bilayered tube structures consist of epithelial cell-seeded collagen lattice and muscle layer have been fabricated for esophageal tissue engineering. Good adhesion between layers in order to facilitate cell infiltration and neovascularization in the collagen lattice is required. Previous efforts include using other bioglues such as fibrin glue and silicone tube as the physical support. However, the former is subjected to chances of transmitting blood-born infectious disease and is time consuming while the latter requires a second surgical procedure. The current project aimed to bond the cell-seeded collagen lattice to muscle layer using photochemical bonding, which has previously been demonstrated a rapid and non-thermal procedure in bonding collagenous tissues. Rat esophageal epithelial cells were seeded on collagen lattice and together with the latissimus dorsi muscle layer, were exposed to a photosensitizer rose Bengal at the bonding surface. An argon laser was used to irradiate the approximated layers. Bonding strength was measured during the peeling test of the collagen layer from the muscle layer. Post-bonding cell viability was assessed using a modified NADH-diaphorase microassay. A pilot in vivo study was conducted by directly bonding the cell-seeded collagen layer onto the muscle flap in rats and the structures were characterized histologically. Photochemical bonding was found to significantly increase the adherence at the bonding interface without compromising the cell viability. This indicates the feasibility of using the technique to fabricate multi-layered structures in the presence of living cells. The pilot animal study demonstrated integration of the collagen lattice with the muscle layer at the bonding interface although the subsequent surgical manipulation disturbed the integration at some region. This means that an additional procedure removing the tube could be avoided if the approximation and thus the bonding are optimized. Cell infiltration

  14. Structural and optical properties of AgAlTe{sub 2} layers grown on sapphire substrates by closed space sublimation method

    SciTech Connect

    Uruno, A. Usui, A.; Kobayashi, M.

    2014-11-14

    AgAlTe{sub 2} layers were grown on a- and c-plane sapphire substrates using a closed space sublimation method. Grown layers were confirmed to be single phase layers of AgAlTe{sub 2} by X-ray diffraction. AgAlTe{sub 2} layers were grown to have a strong preference for the (112) orientation on both kinds of substrates. The variation in the orientation of grown layers was analyzed in detail using the X-ray diffraction pole figure measurement, which revealed that the AgAlTe{sub 2} had a preferential epitaxial relationship with the c-plane sapphire substrate. The atomic arrangement between the (112) AgAlTe{sub 2} layer and sapphire substrates was compared. It was considered that the high order of the lattice arrangement symmetry probably effectively accommodated the lattice mismatch. The optical properties of the grown layer were also evaluated by transmittance measurements. The bandgap energy was found to be around 2.3 eV, which was in agreement with the theoretical bandgap energy of AgAlTe{sub 2}.

  15. Enhancement of the nucleation of smooth and dense nanocrystalline diamond films by using molybdenum seed layers

    SciTech Connect

    Buijnsters, J. G.; Vazquez, L.; Celis, J. P.

    2010-11-15

    A method for the nucleation enhancement of nanocrystalline diamond (NCD) films on silicon substrates at low temperature is discussed. A sputter deposition of a Mo seed layer with thickness 50 nm on Si substrates was applied followed by an ultrasonic seeding step with nanosized detonation diamond powders. Hot-filament chemical vapor deposition (HF-CVD) was used to nucleate and grow NCD films on substrates heated up at 550 deg. C. The nucleation of diamond and the early stages of NCD film formation were investigated at different methane percentages in methane/hydrogen gas mixtures by atomic force microscopy, micro-Raman spectroscopy, scanning electron microscopy, and grazing incidence x-ray analyses in order to gain specific insight in the nucleation process of NCD films. The nucleation kinetics of diamond on the Mo-coated Si substrates was found to be up to ten times higher than on blank Si substrates. The enhancement of the nucleation of diamond on thin Mo interlayers results from two effects, namely, (a) the nanometer rough Mo surface shows an improved embedding of ultrasonically introduced nanosized diamond seeds that act as starting points for the diamond nucleation during HF-CVD and (b) the rapid carbonization of the Mo surface causes the formation of Mo{sub 2}C onto which diamond easily nucleates. The diamond nucleation density progressively increases at increasing methane percentages and is about 5x10{sup 10} cm{sup -2} at 4.0% methane. The improved nucleation kinetics of diamond on Mo interlayers facilitates the rapid formation of NCD films possessing a very low surface roughness down to {approx}6 nm, and allows a submicron thickness control.

  16. Thin-film monocrystalline-silicon solar cells based on a seed layer approach with 11% efficiency

    NASA Astrophysics Data System (ADS)

    Gordon, I.; Qiu, Y.; Van Gestel, D.; Poortmans, J.

    2010-09-01

    Solar modules made from thin-film crystalline-silicon layers of high quality on glass substrates could lower the price of photovoltaic electricity substantially. Almost half of the price of wafer-based silicon solar modules is currently due to the cost of the silicon wafers themselves. Using crystalline-silicon thin-film as the active material would substantially reduce the silicon consumption while still ensuring a high cell-efficiency potential and a stable cell performance. One way to create a crystalline-silicon thin film on glass is by using a seed layer approach in which a thin crystalline-silicon layer is first created on a non-silicon substrate, followed by epitaxial thickening of this layer. In this paper, we present new solar cell results obtained on 10-micron thick monocrystalline-silicon layers, made by epitaxial thickening of thin seed layers on transparent glass-ceramic substrates. We used thin (001)-oriented silicon single-crystal seed layers on glass-ceramic substrates provided by Corning Inc. that are made by a process based on anodic bonding and implant-induced separation. Epitaxial thickening of these seed layers was realized in an atmospheric-pressure chemical vapor deposition system. Simple solar cell structures in substrate configuration were made from the epitaxial mono-silicon layers. The Si surface was plasma-textured to reduce the front-side reflection. No other light trapping features were incorporated. Efficiencies of up to 11% were reached with Voc values above 600 mV indicating the good electronic quality of the material. We believe that by further optimizing the material quality and by integrating an efficient light trapping scheme, the efficiency potential of these single-crystal silicon thin films on glass-ceramics should be higher than 15%.

  17. Synthesis of triple-layered Ag@Co@Ni core-shell nanoparticles for the catalytic dehydrogenation of ammonia borane.

    PubMed

    Qiu, Fangyuan; Liu, Guang; Li, Li; Wang, Ying; Xu, Changchang; An, Cuihua; Chen, Chengcheng; Xu, Yanan; Huang, Yanan; Wang, Yijing; Jiao, Lifang; Yuan, Huatang

    2014-01-01

    Triple-layered Ag@Co@Ni core-shell nanoparticles (NPs) containing a silver core, a cobalt inner shell, and a nickel outer shell were formed by an in situ chemical reduction method. The thickness of the double shells varied with different cobalt and nickel contents. Ag0.04 @Co0.48 @Ni0.48 showed the most distinct core-shell structure. Compared with its bimetallic core-shell counterparts, this catalyst showed higher catalytic activity for the hydrolysis of NH3 BH3 (AB). The synergetic interaction between Co and Ni in Ag0.04 @Co0.48 @Ni0.48 NPs may play a critical role in the enhanced catalytic activity. Furthermore, cobalt-nickel double shells surrounding the silver core in the special triple-layered core-shell structure provided increasing amounts of active sites on the surface to facilitate the catalytic reaction. These promising catalysts may lead to applications for AB in the field of fuel cells. PMID:24302541

  18. Enhanced photoresponse of conformal TiO{sub 2}/Ag nanorod array-based Schottky photodiodes fabricated via successive glancing angle and atomic layer deposition

    SciTech Connect

    Haider, Ali; Biyikli, Necmi; Cansizoglu, Hilal; Cansizoglu, Mehmet Fatih; Karabacak, Tansel; Okyay, Ali Kemal

    2015-01-01

    In this study, the authors demonstrate a proof of concept nanostructured photodiode fabrication method via successive glancing angle deposition (GLAD) and atomic layer deposition (ALD). The fabricated metal-semiconductor nanorod (NR) arrays offer enhanced photoresponse compared to conventional planar thin-film counterparts. Silver (Ag) metallic NR arrays were deposited on Ag-film/Si templates by utilizing GLAD. Subsequently, titanium dioxide (TiO{sub 2}) was deposited conformally on Ag NRs via ALD. Scanning electron microscopy studies confirmed the successful formation of vertically aligned Ag NRs deposited via GLAD and conformal deposition of TiO{sub 2} on Ag NRs via ALD. Following the growth of TiO{sub 2} on Ag NRs, aluminum metallic top contacts were formed to complete the fabrication of NR-based Schottky photodiodes. Nanostructured devices exhibited a photo response enhancement factor of 1.49 × 10{sup 2} under a reverse bias of 3 V.

  19. Enhanced field emission from ZnO nanowire arrays utilizing MgO buffer between seed layer and silicon substrate

    NASA Astrophysics Data System (ADS)

    Chen, Si; Chen, Jiangtao; Liu, Jianlin; Qi, Jing; Wang, Yuhua

    2016-11-01

    Field emitters based on ZnO nanowires and other nanomaterials are promising high-brightness electron sources for field emission display, microscopy and other applications. The performance of a ZnO nanowire field emitter is linked to the quality, conductivity and alignment of the nanowires on a substrate, therefore requiring ways to improve these parameters. Here, ZnO nanowire arrays were grown on ZnO seed layer on silicon substrate with MgO buffer between the seed layer and Si. The turn-on field and enhancement factor of these nanowire arrays are 3.79 V/μm and 3754, respectively. These properties are improved greatly compared to those of ZnO nanowire arrays grown on ZnO seed layer without MgO buffer, which are 5.06 V/μm and 1697, respectively. The enhanced field emission properties can be attributed to better electron transport in seed layer, and better nanowire alignment because of MgO buffer.

  20. Timing is everything: early degradation of abscission layer is associated with increased seed shattering in U.S. weedy rice

    PubMed Central

    2011-01-01

    Background Seed shattering, or shedding, is an important fitness trait for wild and weedy grasses. U.S. weedy rice (Oryza sativa) is a highly shattering weed, thought to have evolved from non-shattering cultivated ancestors. All U.S. weedy rice individuals examined to date contain a mutation in the sh4 locus associated with loss of shattering during rice domestication. Weedy individuals also share the shattering trait with wild rice, but not the ancestral shattering mutation at sh4; thus, how weedy rice reacquired the shattering phenotype is unknown. To establish the morphological basis of the parallel evolution of seed shattering in weedy rice and wild, we examined the abscission layer at the flower-pedicel junction in weedy individuals in comparison with wild and cultivated relatives. Results Consistent with previous work, shattering wild rice individuals possess clear, defined abscission layers at flowering, whereas non-shattering cultivated rice individuals do not. Shattering weedy rice from two separately evolved populations in the U.S. (SH and BHA) show patterns of abscission layer formation and degradation distinct from wild rice. Prior to flowering, the abscission layer has formed in all weedy individuals and by flowering it is already degrading. In contrast, wild O. rufipogon abscission layers have been shown not to degrade until after flowering has occurred. Conclusions Seed shattering in weedy rice involves the formation and degradation of an abscission layer in the flower-pedicel junction, as in wild Oryza, but is a developmentally different process from shattering in wild rice. Weedy rice abscission layers appear to break down earlier than wild abscission layers. The timing of weedy abscission layer degradation suggests that unidentified regulatory genes may play a critical role in the reacquisition of shattering in weedy rice, and sheds light on the morphological basis of parallel evolution for shattering in weedy and wild rice. PMID:21235796

  1. Strong dependence of the tetragonal Mn2.1Ga thin film crystallization temperature window on seed layer

    NASA Astrophysics Data System (ADS)

    Li, Mingyang; Jiang, Xin; Samant, Mahesh G.; Felser, Claudia; Parkin, Stuart S. P.

    2013-07-01

    For spintronic applications, such as magnetic memory and logic, magnetic thin films with high perpendicular magnetic anisotropy and spin polarization are needed. An attractive candidate material is the Heusler compound Mn3-xGa (x varying from 0 to 2). We show that there is a correlation between the degree of crystallization of thin films of Mn3-xGa (x ˜ 0.9) and the magnitude of the perpendicular magnetic anisotropy. Moreover, we find that the crystallization temperature window varies with the seed layer on which the Mn3-xGa films are deposited. Seed layers of Pt, Cr, Ru, Mo and SrTiO3 were considered and the largest crystallization window was found for Pt(100) layers.

  2. Syntheses, structure and properties of three-dimensional pillared-layer Ag(I)-Ln(III) heterometallic coordination polymers based on mixed isonicotinate and hemimellitate ligands

    SciTech Connect

    Li, Xinfa; Cao, Rong

    2012-12-15

    Three pillared-layer 4d-4f Ag(I)-Ln(III) heterometallic coordination polymers (HCPs), formulated as [Ln{sub 2}Ag(hma){sub 2}(ina)(H{sub 2}O){sub 2}]{sub n} nH{sub 2}O [Ln=La(1), Pr(2), Nd(3); Hina=isonicotinic acid, H{sub 3}hma=hemimellitic acid], have been synthesized under hydrothermal conditions. Single-crystal and powder X-ray diffractions confirm that they are isostructural, which features a three-dimensional (3D) pillared-layer heterometallic structure built upon the strictly alternate arrangement of lanthanide-organic layers and [Ag(ina)] pillars. The layers and pillars are connected to each other by Ln-O and Ag-O coordination bonds. The photoluminescent property of the Nd derivative (3) has also been investigated. - Graphical abstract: Three pillared-layer 4d-4f Ag(I)-Ln(III) heterometallic coordination polymers have been synthesized and structurally characterized. Highlights: Black-Right-Pointing-Pointer Three 3D pillared-layer 4d-4f HCPs were synthesized by hydrothermal reactions. Black-Right-Pointing-Pointer The synergistic coordination strategy was employed. Black-Right-Pointing-Pointer It opens new perspective for the construction of structurally diversified 4d-4f HCPs.

  3. Associations of Pd, U and Ag in the SiC layer of neutron-irradiated TRISO fuel

    NASA Astrophysics Data System (ADS)

    Lillo, T. M.; van Rooyen, I. J.

    2015-05-01

    Knowledge of the associations and composition of fission products in the neutron irradiated SiC layer of high-temperature gas reactor TRISO fuel is important to the understanding of various aspects of fuel performance that presently are not well understood. Recently, advanced characterization techniques have been used to examine fuel particles from the Idaho National Laboratory's AGR-1 experiment. Nano-sized Ag and Pd precipitates were previously identified in grain boundaries and triple points in the SiC layer of irradiated TRISO nuclear fuel. Continuation of this initial research is reported in this paper and consists of the characterization of a relatively large number of nano-sized precipitates in three areas of the SiC layer of a single irradiated TRISO nuclear fuel particle using standardless EDS analysis on focused ion beam-prepared transmission electron microscopy samples. Composition and distribution analyses of these precipitates, which were located on grain boundaries, triple junctions and intragranular precipitates, revealed low levels, generally <10 atomic %, of palladium, silver and/or uranium with palladium being the most common element found. Palladium by itself, or associated with either silver or uranium, was found throughout the SiC layer. A small number of precipitates on grain boundaries and triple junctions were found to contain only silver or silver in association with palladium while uranium was always associated with palladium but never found by itself or in association with silver. Intergranular precipitates containing uranium were found to have migrated ∼23 μm along a radial direction through the 35 μm thick SiC coating during the AGR-1 experiment while silver-containing intergranular precipitates were found at depths up to ∼24 μm in the SiC layer. Also, Pd-rich, nano-precipitates (∼10 nm in diameter), without evidence for the presence of either Ag or U, were revealed in intragranular regions throughout the SiC layer. Because not

  4. Associations of Pd, U and Ag in the SiC layer of neutron-irradiated TRISO fuel

    SciTech Connect

    Lillo, Thomas; Rooyen, Isabella Van

    2015-05-01

    Knowledge of the associations and composition of fission products in the neutron irradiated SiC layer of high-temperature gas reactor TRISO fuel is important to the understanding of various aspects of fuel performance that presently are not well understood. Recently, advanced characterization techniques have been used to examine fuel particles from the Idaho National Laboratory’s AGR-1 experiment. Nano-sized Ag and Pd precipitates were previously identified in grain boundaries and triple points in the SiC layer of irradiated TRISO nuclear fuel. Continuation of this initial research is reported in this paper and consists of the characterization of a relatively large number of nano-sized precipitates in three areas of the SiC layer of a single irradiated TRISO nuclear fuel particle using standardless EDS analysis on focused ion beam-prepared transmission electron microscopy samples. Composition and distribution analyses of these precipitates, which were located on grain boundaries, triple junctions and intragranular precipitates, revealed low levels, generally <10 atomic %, of palladium, silver and/or uranium with palladium being the most common element found. Palladium by itself, or associated with either silver or uranium, was found throughout the SiC layer. A small number of precipitates on grain boundaries and triple junctions were found to contain only silver or silver in association with palladium while uranium was always associated with palladium but never found by itself or in association with silver. Intergranular precipitates containing uranium were found to have migrated ~23 μm along a radial direction through the 35 μm thick SiC coating during the AGR-1 experiment while silver-containing intergranular precipitates were found at depths up to ~24 μm in the SiC layer. Also, Pd-rich, nano-precipitates (~10 nm in diameter), without evidence for the presence of either Ag or U, were revealed in intragranular regions throughout the SiC layer. Because not all

  5. Improved conversion efficiency of Ag2S quantum dot-sensitized solar cells based on TiO2 nanotubes with a ZnO recombination barrier layer

    PubMed Central

    2011-01-01

    We improve the conversion efficiency of Ag2S quantum dot (QD)-sensitized TiO2 nanotube-array electrodes by chemically depositing ZnO recombination barrier layer on plain TiO2 nanotube-array electrodes. The optical properties, structural properties, compositional analysis, and photoelectrochemistry properties of prepared electrodes have been investigated. It is found that for the prepared electrodes, with increasing the cycles of Ag2S deposition, the photocurrent density and the conversion efficiency increase. In addition, as compared to the Ag2S QD-sensitized TiO2 nanotube-array electrode without the ZnO layers, the conversion efficiency of the electrode with the ZnO layers increases significantly due to the formation of efficient recombination layer between the TiO2 nanotube array and electrolyte. PMID:21777458

  6. Seed-layer-free hydrothermal growth of zinc oxide nanorods on porous silicon

    NASA Astrophysics Data System (ADS)

    Kim, Soaram; Kim, Min Su; Park, Hyunggil; Nam, Giwoong; Yoon, Hyunsik; Leem, Jae-Young

    2014-05-01

    Zinc oxide (ZnO) nanorods were grown on porous silicon (PS) using hydrothermal synthesis without a metal catalyst or a seed layer. Scanning electron microscopy, x-ray diffraction, and temperature-dependent photoluminescence (PL) were carried out to investigate the structural and optical properties of the ZnO-PS sample. Most of the nanorods had an average diameter about of 120 nm and an average length of 5 µm, and were assembled into flower-like clusters where several nanorods were joined at a central point. In some cases, ZnO nanorods were merged in parallel bundles. The ZnO nanorods exhibited an overall compressive residual stress. The Zn-O bond length was 1.953 Å. ZnO-PS exhibited one PL peak in the ultraviolet (UV) range, and two peaks in the visible range. The UV and green emission peak were generated from the ZnO nanorods, while the red emission peak was attributed to the PS. The fitting parameters for Varshni's empirical equation were α = 8 × 10-4 eV/K, β = 186 K, and E g (0) = 3.375 eV, and the thermal activation energy was about 32 meV.

  7. Modulation of localized surface plasmon resonance for an array of Ag nanostructures layered with nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shang, Zhenzhen; Huang, Haishen; Wan, Yuan; Deng, Luogen

    2016-08-01

    Sensitivity of the localized surface plasmon resonance (LSPR) for an array of Ag (silver) nanostructures layered with nematic liquid crystals (NLC) is investigated. Calculations are made by using finite-difference time-domain (FDTD) method under different geometrical and environmental parameters. Results show that the LSPR wavelength in this array can be controlled and tuned to infrared wavelength range by the rotation of the NLC optical-axis. The rotation of the array and the modifications to height of the NLC layer, the size and periods of the array can affect the sensitivity of the LSPR. The sensitivity is higher when the optical-axis is in xoz plane, than that for the optical-axis in xoy plane. An improved sensitivity has been obtained in the simulation.

  8. Modification of the structural and magnetic properties of granular FePt films by seed layer conditioning

    SciTech Connect

    Wicht, S.; Neu, V.; Schultz, L.; Rellinghaus, B.; Mehta, V.; Jain, S.; Reiner, J.; Mosendz, O.; Hellwig, O.; Weller, D.

    2015-01-07

    The steadily increasing amount of digital information necessitates the availability of reliable high capacity magnetic data storage. Here, future hard disk drives with extended areal storage densities beyond 1.0 Tb/in{sup 2} are envisioned by using high anisotropy granular and chemically L1{sub 0}-ordered FePt (002) perpendicular media within a heat-assisted magnetic recording scheme. Perpendicular texturing of the [001] easy axes of the individual grains can be achieved by using MgO seed layers. It is therefore investigated, if and how an Ar{sup +} ion irradiation of the MgO seed layer prior to the deposition of the magnetic material influences the MgO surface properties and hereby the FePt [001] texture. Structural investigations reveal a flattening of the seed layer surface accompanied by a change in the morphology of the FePt grains. Moreover, the fraction of small second layer particles and the degree of coalescence of the primarily deposited FePt grains strongly increases. As for the magnetic performance, this results in a reduced coercivity along the magnetic easy axis (out of plane) and in enhanced hard axis (in-plane) remanence values. The irradiation induced changes in the magnetic properties of the granular FePt-C films are traced back to the accordingly modified atomic structure of the FePt-MgO interface region.

  9. Hierarchical ZnO Nanowire Growth with Tunable Orientations on Versatile Substrates Using Atomic Layer Deposition Seeding

    SciTech Connect

    Bielinski, Ashley R.; Kazyak, Eric; Schleputz, Christian M.; Jung, Hee Joon; Wood, Kevin N.; Dasgupta, Neil P.

    2015-07-14

    The ability to synthesize semiconductor nanowires with deterministic and tunable control of orientation and morphology on a wide range of substrates, while high precision and repeatability are maintained, is a challenge currently faced for the development of many nanoscale material systems. Here we show that atomic layer deposition (ALD) presents a reliable method of surface and interfacial modification to guide nanowire orientation on a variety of substrate materials and geometries, including high-aspect-ratio, three-dimensional templates. We demonstrate control of the orientation and geometric properties of hydrothermally grown single crystalline ZnO nanowires via the deposition of a ZnO seed layer by ALD. The crystallographic texture and roughness of the seed layer result in tunable preferred nanowire orientations and densities for identical hydrothermal growth conditions. The structural and chemical relationship between the ALD layers and nanowires was investigated with synchrotron X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy to elucidate the underlying mechanisms of orientation and morphology control. The resulting control parameters were utilized to produce hierarchical nanostructures with tunable properties on a wide range of substrates, including vertical micropillars, paper fibers, porous polymer membranes, and biological substrates. This illustrates the power of ALD for interfacial engineering of heterogeneous material systems at the nanoscale, to provide a highly controlled and scalable seeding method for bottom-up synthesis of integrated nanosystems.

  10. Seeding Atomic Layer Deposition of High-k Dielectrics on Epitaxial Graphene with Organic Self-assembled Monolayers

    SciTech Connect

    Alaboson, Justice M. P.; Wang, Qing Hua; Emery, Jonathan D.; Lipson, Albert L.; Bedzyk, Michael J.; Elam, Jeffrey W.; Pellin, Michael J.; Hersam, Mark C.

    2011-06-28

    The development of high-performance graphene-based nanoelectronics requires the integration of ultrathin and pinhole-free high-k dielectric films with graphene at the wafer scale. Here, we demonstrate that self-assembled monolayers of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) act as effective organic seeding layers for atomic layer deposition (ALD) of HfO₂ and Al₂O₃ on epitaxial graphene on SiC(0001). The PTCDA is deposited via sublimation in ultrahigh vacuum and shown to be highly ordered with low defect density by molecular-resolution scanning tunneling microscopy. Whereas identical ALD conditions lead to incomplete and rough dielectric deposition on bare graphene, the chemical functionality provided by the PTCDA seeding layer yields highly uniform and conformal films. The morphology and chemistry of the dielectric films are characterized by atomic force microscopy, ellipsometry, cross-sectional scanning electron microscopy, and X-ray photoelectron spectroscopy, while high-resolution X-ray reflectivity measurements indicate that the underlying graphene remains intact following ALD. Using the PTCDA seeding layer, metal-oxide-graphene capacitors fabricated with a 3 nm Al₂O₃ and 10 nm HfO₂ dielectric stack show high capacitance values of ~700 nF/cm² and low leakage currents of ~5 × 10{sup –9} A/cm² at 1 V applied bias. These results demonstrate the viability of sublimated organic self-assembled monolayers as seeding layers for high-k dielectric films in graphene-based nanoelectronics.

  11. Correlation between SSM substrate effect and physical properties of ZnO nanowires electrodeposited with or without seed layer for enhanced photoelectrochemical applications

    NASA Astrophysics Data System (ADS)

    Lamouchi, A.; Slimi, B.; Ben Assaker, I.; Gannouni, M.; Chtourou, R.

    2016-06-01

    ZnO nanowires (NWs) were grown vertically by electrodeposition technique on a stainless-steel mesh (SSM) substrate in the presence and absence of seed layer. A new contribution to the knowledge of both substrate nature and seed layer dependence on structural, morphological, optical properties is reported. X-ray diffraction revealed that all the samples are mainly crystallized in the wurtzite ZnO phase. In the presence of seed layer onto the SSM substrate, the crystalline nature of ZnO NWs is improved by the enhancement of intensity in (002) peak, which indicates a preferential orientation along this peak. The scanning electron microscopy (SEM) images show that, in the presence of seed layer, nanowires appear uniform and stand perpendicular to the substrate with hexagonal shape, implying the occurrence of the wurtzite ZnO crystal structure. According to optical measurements, the decrease of the band-gap energy is due mainly to the seed layer effect and the SSM substrate contribution. To investigate the effect of seed layer and SSM substrate, a photoeletrochemical (PEC) analysis of ZnO NWs is performed. The photocurrent density produced by the ZnO NWs/ZnO/SSM electrode reached 0.2mA·cm^-2, about two times higher than that measured on the ZnO NWs/SSM electrode. These results indicate that both seed layer and substrate have great potential in photoelectrochemical devices.

  12. Investigating Quantum Oscillations in the Thermal Coefficient of Resistivity of Ultra-thin Ag Capping Layers on Cu for IC Interconnect Applications

    NASA Astrophysics Data System (ADS)

    Tatem, Elroy

    As the semiconductor industry continues to scale feature sizes, scattering from phonons, surfaces, and grain boundaries result in an increase of metal interconnect resistivity in state-of-the-art integrated circuits (ICs). The interconnect chapter of the 2011 International Technology Roadmap for Semiconductors (ITRS) stated that there are currently no manufacturable solutions in the near term for suitable Cu replacements. Previous studies of thin Ag films deposited on Cu demonstrated oscillations in the electron-phonon interactions within the bilayer system. This thesis investigates oscillations in the resistive properties of the Ag/Cu bilayer system and discusses the applicability of these oscillations to the resistivity challenges facing metal-based IC interconnects. Ag/Cu bilayer films were prepared by physical vapor deposition (PVD). The films were characterized by measuring the electrical resistance of the films at various temperatures and calculating the thermal coefficient of resistance (TCR) for various Ag capping layer thicknesses. Films were further characterized by atomic force microscopy (AFM), Rutherford backscattering (RBS), and scanning electron microscopy (SEM). Patterned Ag-capped Cu lines were fabricated, which exhibited resistive behavior similar to that of the Ag/Cu films. Compared to bare Cu, the resistances of Ag-capped Cu lines and films were lower and exhibited a reduced dependence on temperature. Smaller thermal coefficients of resistivity were also observed for Ag-capped Cu films and patterned lines when compared to Cu alone.

  13. Effect of nickel seed layer on growth of α-V{sub 2}O{sub 5} nanostructured thin films

    SciTech Connect

    Sharma, Rabindar Kumar; Kant, Chandra; Kumar, Prabhat; Singh, Megha Reddy, G. B.

    2015-08-28

    In this communication, we reported the role of Ni seed layer on the growth of vanadium pentoxide (α-V{sub 2}O{sub 5}) nanostructured thin films (NSTs) using plasma assisted sublimation process (PASP). Two different substrates, simple glass substrate and the Ni coated glass substrate (Ni thickness ∼ 100 nm) are employing in the present work. The influence of seed layer on structural, morphological, and vibrational properties have been studied systematically. The structural analysis divulged that both films deposited on simple glass as well as on Ni coated glass shown purely orthorhombic phase, no other phases are detected. The morphological studies of V{sub 2}O{sub 5} film deposited on both substrates are carried out by SEM, revealed that features of V{sub 2}O{sub 5} NSTs is completely modified in presence of Ni seed layer and the film possessing the excellent growth of nanorods (NRs) on Ni coated glass rather than simple glass. The HRTEM analysis of NRs is performed at very high magnification, shows very fine fringe pattern, which confirmed the single crystalline nature of nanorods. The vibrational study of NRs is performed using micro-Raman spectroscopy, which strongly support the XRD observations.

  14. Correlations of Optical Absorption, Charge Trapping, and Surface Roughness of TiO2 Photoanode Layer Loaded with Neat Ag-NPs for Efficient Perovskite Solar Cells.

    PubMed

    Yang, Dongwook; Jang, Jae Gyu; Lim, Joohyun; Lee, Jin-Kyu; Kim, Sung Hyun; Hong, Jong-In

    2016-08-24

    We systematically investigated the effect of silver nanoparticles (Ag-NPs) on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Neat, spherical Ag-NPs at loading levels of 0.0, 0.5, 1.0, and 2.0 wt % were embedded into the titanium dioxide (TiO2) photoanode layer. The plasmonic effect of the Ag-NPs strongly enhanced the incident light absorption over a wide range of the visible wavelength region in addition to the inherent absorbance of the perovskite sensitizer. The low conduction energy level of the Ag-NPs compared to that of TiO2 provides trap sites for free charge carriers. Thus, the correlation between the enhancement of the optical absorption and the number of charge traps provided by the Ag-NPs is critical to determine the device performance, especially current density (Jsc) and PCE. This is confirmed by the quantitative comparison of the incident light absorption and the time-resolved photoluminescence decay according to the loading levels of the Ag-NPs in the TiO2 layer. The absorption enhancement from 380 to 750 nm in the UV-visible spectrum is proportional to the increase in the loading levels of the Ag-NPs. However, the Jsc increases with the device with 0.5 wt % Ag-NPs and gradually decreases with increases in the loading level above 0.5 wt % because of the different contributions to the absorbance and the charge trapping by different Ag-NP loading levels. In addition, the suppression of the surface roughness with dense packing by the Ag-NPs helps to improve the Jsc and the following PCE. Consequently, the PCE of the PSC with 0.5 wt % Ag-NPs is increased to 11.96%. These results are attributed to the balance between increased absorbance by the localized surface plasmon resonance and the decreased charge trapping as well as the decreased surface roughness of the TiO2 layer with the Ag-NPs. PMID:27471777

  15. Highly (002) textured large grain bcc Cr{sub 80}Mn{sub 20} seed layer on Cr{sub 50}Ti{sub 50} amorphous layer for FePt-C granular film

    SciTech Connect

    Jeon, Seong-Jae Saito, Shin; Hinata, Shintaro; Takahashi, Migaku

    2015-05-07

    Effect of bcc Cr{sub 80}Mn{sub 20} seed layer and Cr{sub 50}Ti{sub 50} amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain size in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.

  16. The spatial distribution of deposited seeding material in the Earth boundary layer during weather modification

    NASA Astrophysics Data System (ADS)

    Ćurić, M.; Janc, D.

    2012-10-01

    Cloud seeding projects may have the time scale of half a century and cover the planetary-scale surface. Such activities among the positive also have negative consequences that include environmental pollution. Year after year cloud seeding over certain areas could produce large amounts of seeding agents washed out in precipitation. The sampling of these deposits is therefore important, but not applied in large space and time scales due to a high cost. As an alternative, the cloud seeding project measurements may be used for finding the deposit spatial pattern and locations of its maximum. In this study, we established the method for finding the spatial distribution of deposited silver iodide over a selected area after hail suppression using the observed characteristics of seeded hailstorms. The estimation of the silver iodide deposit maximum is 155 μg m-2 during a 6-year period. Our findings agree well with those obtained from sampling silver content in precipitation during the other convective cloud seeding experiments. On the other hand, our method gives an answer of where to place the samplers, and hence more detailed chemical analysis and monitoring can be done in the future. The proposed methodology may be applied for any other target area and cloud seeding scenario.

  17. Effect of initial growth on the quality of GaN on patterned sapphire substrate with ex situ physical vapor deposition AlN seed layer

    NASA Astrophysics Data System (ADS)

    Wang, Hongbo; Daigo, Yoshiaki; Seino, Takuya; Ishibashi, Sotaro; Sugiyama, Masakazu

    2016-10-01

    GaN epitaxy was explored on a cone-patterned sapphire substrate with an ex situ AlN seed layer prepared by physical vapor deposition (PVD). The effect of initial growth on the quality of the GaN epilayer was investigated using both ex situ PVD-AlN seed layers with various thicknesses and various deposition parameters such as temperature and reactor pressure in metal-organic vapor-phase epitaxy (MOVPE). It was found that the quality of GaN is insensitive to both the thickness of the ex situ PVD-AlN seed layer and the MOVPE growth conditions. A high-quality GaN film was realized, as indicated by room-temperature CL mapping (dark spot density of 1.6 × 108 cm-2), on a patterned sapphire substrate with a wide growth condition window by simply employing an ex situ PVD-AlN seed layer.

  18. Near-field microwave microscopy of high-κ oxides grown on graphene with an organic seeding layer

    SciTech Connect

    Tselev, Alexander Kalinin, Sergei V.; Sangwan, Vinod K.; Jariwala, Deep; Lauhon, Lincoln J.; Marks, Tobin J.; Hersam, Mark C.

    2013-12-09

    Near-field scanning microwave microscopy (SMM) is used for non-destructive nanoscale characterization of Al{sub 2}O{sub 3} and HfO{sub 2} films grown on epitaxial graphene on SiC by atomic layer deposition using a self-assembled perylene-3,4,9,10-tetracarboxylic dianhydride seeding layer. SMM allows imaging of buried inhomogeneities in the dielectric layer with a spatial resolution close to 100 nm. The results indicate that, while topographic features on the substrate surface cannot be eliminated as possible sites of defect nucleation, the use of a vertically heterogeneous Al{sub 2}O{sub 3}/HfO{sub 2} stack suppresses formation of large outgrowth defects in the oxide film, ultimately improving lateral uniformity of the dielectric film.

  19. Detrimental influence of catalyst seeding on the device properties of CVD-grown 2D layered materials: A case study on MoSe{sub 2}

    SciTech Connect

    Utama, M. Iqbal Bakti; Lu, Xin; Yuan, Yanwen; Xiong, Qihua

    2014-12-22

    Seed catalyst such as perylene-3,4,9,10-tetracarboxylic acid tetrapotassium (PTAS) salt has been used for promoting the growth of atomically thin layered materials in chemical vapor deposition (CVD) synthesis. However, the ramifications from the usage of such catalyst are not known comprehensively. Here, we report the influence of PTAS seeding on the transistor device performance from few-layered CVD-grown molybdenum diselenide (MoSe{sub 2}) flakes. While better repeatability and higher yield can be obtained with the use of PTAS seeds in synthesis, we observed that PTAS-seeded flakes contain particle impurities. Moreover, devices from PTAS-seeded MoSe{sub 2} flakes consistently displayed poorer field-effect mobility, current on-off ratio, and subthreshold swing as compared to unseeded flakes.

  20. Surface modification of nanoporous alumina layers by deposition of Ag nanoparticles. Effect of alumina pore diameter on the morphology of silver deposit and its influence on SERS activity

    NASA Astrophysics Data System (ADS)

    Pisarek, Marcin; Nowakowski, Robert; Kudelski, Andrzej; Holdynski, Marcin; Roguska, Agata; Janik-Czachor, Maria; Kurowska-Tabor, Elżbieta; Sulka, Grzegorz D.

    2015-12-01

    Self-organized Al2O3 nanoporous/nanotubular (Al2O3-NP) oxide layers decorated with silver nanoparticles (Ag-NPs) exhibiting specific properties may serve as attractive SERS substrates for investigating the interactions between an adsorbate and adsorbent, or as stable platforms for detecting various organic compounds. This article presents the influence of the size of the alumina nanopores with a deposit of silver nanoparticles obtained by the magnetron sputtering technique on the morphology of silver film. Moreover, the effect of pore diameter on the intensity of SERS spectra in Ag-NPs/Al2O3-NP/Al composites has also been estimated. For such investigations we used pyridine as a probe molecule, since it has a large cross-section for Raman scattering. To characterize the morphology of the composite oxide layer Ag-NPs/Al2O3-NP/Al, before and after deposition of Ag-NPs by PVD methods (Physical Vapor Deposition), we used scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface analytical technique of surface-enhanced Raman spectroscopy (SERS) was used to investigate the surface activity of the composite. The results obtained show that, for a carefully controlled amount of Ag (0.020 mg/cm2 - deposited on the top of alumina nanopores whose average size varies from ∼86 nm up to ∼320 nm) in the composites investigated, pore size significantly affects SERS enhancement. We obtained distinctly higher intensities of SERS spectra for substrates with an Ag-NPs deposit having a larger diameter of the alumina nanopores. AFM results suggest that both the lateral and perpendicular distribution of Ag-NPs within and on the top of the largest pores is responsible for the highest SERS activity of the resulting Ag-NPs/Al2O3-NP/Al composite layer, since it produces a variety of cavities and slits which function as resonators for the adsorbed molecules. The Ag-NPs/MeOx-NP/Me composite layers obtained ensure a good reproducibility of the SERS measurements. a

  1. Structural and optical properties of ZnO nanorods by electrochemical growth using multi-walled carbon nanotube-composed seed layers.

    PubMed

    Ko, Yeong Hwan; Kim, Myung Sub; Yu, Jae Su

    2012-01-01

    We reported the enhancement of the structural and optical properties of electrochemically synthesized zinc oxide [ZnO] nanorod arrays [NRAs] using the multi-walled carbon nanotube [MWCNT]-composed seed layers, which were formed by spin-coating the aqueous seed solution containing MWCNTs on the indium tin oxide-coated glass substrate. The MWCNT-composed seed layer served as the efficient nucleation surface as well as the film with better electrical conductivity, thus leading to a more uniform high-density ZnO NRAs with an improved crystal quality during the electrochemical deposition process. For ZnO NRAs grown on the seed layer containing MWCNTs (2 wt.%), the photoluminescence peak intensity of the near-band-edge emission at a wavelength of approximately 375 nm was enhanced by 2.8 times compared with that of the ZnO nanorods grown without the seed layer due to the high crystallinity of ZnO NRAs and the surface plasmon-meditated emission enhancement by MWCNTs. The effect of the MWCNT-composed seed layer on the surface wettability was also investigated.PACS: 81.07.-b; 81.16.-c; 81.07.Pr; 61.48.De. PMID:22221386

  2. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Guo, Hongwei; Liu, Yunlong; Xu, Yang; Meng, Nan; Wang, Hongtao; Hasan, Tawfique; Wang, Xinran; Luo, Jikui; Yu, Bin

    2014-09-01

    Ultrathin dielectric materials prepared by atomic-layer-deposition (ALD) technology are commonly used in graphene electronics. Using the first-principles density functional theory calculations with van der Waals (vdW) interactions included, we demonstrate that single-side fluorinated graphene (SFG) and hexagonal boron nitride (h-BN) exhibit large physical adsorption energy and strong electrostatic interactions with H2O-based ALD precursors, indicating their potential as the ALD seed layer for dielectric growth on graphene. In graphene-SFG vdW heterostructures, graphene is n-doped after ALD precursor adsorption on the SFG surface caused by vertical intrinsic polarization of SFG. However, graphene-h-BN vdW heterostructures help preserving the intrinsic characteristics of the underlying graphene due to in-plane intrinsic polarization of h-BN. By choosing SFG or BN as the ALD seed layer on the basis of actual device design needs, the graphene vdW heterostructures may find applications in low-dimensional electronics.

  3. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures.

    PubMed

    Guo, Hongwei; Liu, Yunlong; Xu, Yang; Meng, Nan; Wang, Hongtao; Hasan, Tawfique; Wang, Xinran; Luo, Jikui; Yu, Bin

    2014-09-01

    Ultrathin dielectric materials prepared by atomic-layer-deposition (ALD) technology are commonly used in graphene electronics. Using the first-principles density functional theory calculations with van der Waals (vdW) interactions included, we demonstrate that single-side fluorinated graphene (SFG) and hexagonal boron nitride (h-BN) exhibit large physical adsorption energy and strong electrostatic interactions with H2O-based ALD precursors, indicating their potential as the ALD seed layer for dielectric growth on graphene. In graphene-SFG vdW heterostructures, graphene is n-doped after ALD precursor adsorption on the SFG surface caused by vertical intrinsic polarization of SFG. However, graphene-h-BN vdW heterostructures help preserving the intrinsic characteristics of the underlying graphene due to in-plane intrinsic polarization of h-BN. By choosing SFG or BN as the ALD seed layer on the basis of actual device design needs, the graphene vdW heterostructures may find applications in low-dimensional electronics. PMID:25116064

  4. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures.

    PubMed

    Guo, Hongwei; Liu, Yunlong; Xu, Yang; Meng, Nan; Wang, Hongtao; Hasan, Tawfique; Wang, Xinran; Luo, Jikui; Yu, Bin

    2014-09-01

    Ultrathin dielectric materials prepared by atomic-layer-deposition (ALD) technology are commonly used in graphene electronics. Using the first-principles density functional theory calculations with van der Waals (vdW) interactions included, we demonstrate that single-side fluorinated graphene (SFG) and hexagonal boron nitride (h-BN) exhibit large physical adsorption energy and strong electrostatic interactions with H2O-based ALD precursors, indicating their potential as the ALD seed layer for dielectric growth on graphene. In graphene-SFG vdW heterostructures, graphene is n-doped after ALD precursor adsorption on the SFG surface caused by vertical intrinsic polarization of SFG. However, graphene-h-BN vdW heterostructures help preserving the intrinsic characteristics of the underlying graphene due to in-plane intrinsic polarization of h-BN. By choosing SFG or BN as the ALD seed layer on the basis of actual device design needs, the graphene vdW heterostructures may find applications in low-dimensional electronics.

  5. Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces

    SciTech Connect

    Benzo, Patrizio; Bonafos, Caroline; Bayle, Maxime; Carles, Robert; Cattaneo, Laura; Benassayag, Gerard; Pecassou, Beatrice; Farcau, Cosmin; Muller, Dominique

    2013-05-21

    We report on the shallow synthesis by low energy ion implantation of delta-layers of Ag nanocrystals in SiO{sub 2} at few nanometers under its free surface. Transmission electron microscopy observations, ballistic simulations, and reflectance measurements are coupled to define the conditions for which the synthesis is fully controlled and when, on the contrary, this control is lost. We show that low dose implantation leads to the formation of a well-defined single plane of nanocrystals, while for larger doses, sputtering and diffusion effects limit the control of the size, position, and volume amount of these nanocrystals. This paper provides the experimental evidence of the incorporated dose saturation predicted in the literature when implanting metal ions at high doses in glass matrices. Its consequences on the particle population and the plasmonic optical response of the composite layers are carefully analyzed. We show here that this saturation phenomenon is underestimated in standard simulation predictions due to diffusion of metal atoms towards the surface and nanocrystal nucleation during the implantation process.

  6. Polyamine Metabolism and Its Relation to Response of the Aleurone Layers of Barley Seeds to Gibberellic Acid 1

    PubMed Central

    Lin, Paul P. C.

    1984-01-01

    Polyamine metabolism and its relation to the induction of α-amylase formation in the aleurone layers of barley seeds (Hordeum vulgare cv Himalaya) in response to gibberellic acid (GA3) has been investigated. A high-performance liquid chromatographic system has been employed for qualitative and quantitative analyses of putrescine (Put), cadaverine (Cad), spermidine (Spd), spermine (Spm), and agmatine (Agm). Active polyamine metabolism occurs in the aleurone cells of deembryonate barley half seeds during imbibition. The aleurone layers isolated from fully imbibed half seeds contain about 880 nanomoles of Put, 920 nanomoles of Spd, and 610 nanomoles of Spm as free form per gram tissue dry weight while the levels of Cad and Agm are relatively low. The polyamine levels do not change significantly in the aleurone layers in response to added GA3 (1.5 micromolar) during the 8-hour lag period of the growth substance-induced formation of α-amylase. Also, the polyamine levels are not altered by the presence of abscisic acid (3 micromolar) which inhibits the enzyme induction by GA3. Kinetic studies show that both applied [U-14C]ornithine and [U-14C]arginine are primarily incorporated into Put during 2 hours of incubation, but the incorporation is not significantly affected by added GA3. Additionally, added GA3 does not affect the uptake and turnover of [1,4-14C]Put, nor does it affect the conversion of Put → Spd or Spd → Spm. Treatment of the aleurone layers with GA3 for 2 hours results in no significant changes in the total activities or the specific activities of ornithine decarboxylase and arginine decarboxylase. Experiments with polyamine synthesis inhibitors demonstrate that the level of Spd in the aleurone layers could be substantially reduced by the presence of methylglyoxal-bis(guanylhydrazone) (MGBG) during imbibition. MGBG treatment does not affect in vivo incorporation of [8-14C] adenosine into ATP. The lower the level of Spd the less α-amylase formation is

  7. Structural and optical properties of ZnO nanorods on Mg0.2Zn0.8O seed layers grown by hydrothermal method.

    PubMed

    Kim, Min Su; Kim, Do Yeob; Kim, Sung-O; Leem, Jae-Young

    2013-05-01

    ZnO nanorods were grown on the Mg0.2Zn0.8O seed layers with different thickness by hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the effects of the Mg0.2Zn0.8O seed layer thickness on the structural and the optical properties of the ZnO nanorods. The residual stress in the Mg0.2Zn0.8O seed layers was depended on the thickness while the texture coefficient of the Mg0.2Zn0.8O seed layers was not affected significantly. The smaller full width at half maximum (FWHM) of the ZnO (002) diffraction and near-band-edge emission (NBE) peak and the larger average grain size were observed from the ZnO nanorods grown on the Mg0.2Zn0.8O seed layers with 5 layers (thickness of 350 nm), which indicate the enhancement the structural and the optical properties of the ZnO nanorods.

  8. 7 CFR 52.1850 - Sizes of raisins with seeds-except layer or cluster.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Processed Raisins 1 Type III-Raisins with Seeds § 52.1850 Sizes of raisins...

  9. 7 CFR 52.1852 - Grades of raisins with seeds-except layer or cluster.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Processed Raisins 1 Type III-Raisins with Seeds § 52.1852 Grades of raisins...

  10. 7 CFR 52.1852 - Grades of raisins with seeds-except layer or cluster.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Processed Raisins 1 Type III-Raisins with Seeds § 52.1852 Grades of raisins...

  11. 7 CFR 52.1850 - Sizes of raisins with seeds-except layer or cluster.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Processed Raisins 1 Type III-Raisins with Seeds § 52.1850 Sizes of raisins...

  12. Separation of the Carotenoid Bixin from Annatto Seeds Using Thin-Layer and Column Chromatography

    ERIC Educational Resources Information Center

    McCullagh, James V.; Ramos, Nicholas

    2008-01-01

    In this experiment the carotenoid bixin is isolated from annatto ("Bixa orellana") seeds using column chromatography. The experiment has several key advantages over previous pigment separation experiments. First, unlike other experiments significant quantities of the carotenoid (typically 20 to 25 mg) can be isolated from small quantities of plant…

  13. High performance CaS solar-blind ultraviolet photodiodes fabricated by seed-layer-assisted growth

    SciTech Connect

    He, Qing Lin; Lai, Ying Hoi; Sou, Iam Keong; Liu, Yi; Beltjens, Emeline; Qi, Jie

    2015-11-02

    CaS, with a direct bandgap of 5.38 eV, is expected to be a strong candidate as the active-layer of high performance solar-blind UV photodiodes that have important applications in both civilian and military sectors. Here, we report that a seed-layer-assisted growth approach via molecular beam epitaxy can result in high crystalline quality rocksalt CaS thin films on zincblende GaAs substrates. The Au/CaS/GaAs solar-blind photodiodes demonstrated , more than five orders in its visible rejection power, a photoresponse of 36.8 mA/w at zero bias and a corresponding quantum efficiency as high as 19% at 235 nm.

  14. Magnesium content ratio effects of MgxZn1-xO seed layers on structural and optical properties of ZnO nanorods.

    PubMed

    Kim, Min Su; Kim, Do Yeob; Kim, Soaram; Nam, Giwoong; Kim, Sung-O; Lee, Dong-Yul; Kim, Jin Soo; Kim, Jong Su; Leem, Jae-Young

    2012-07-01

    ZnO nanorods were grown on MgxZn1-xO seed layers with different content ratio ranging from 0 to 0.3 by hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the effects of Mg content ratio for the MgxZn1-xO seed layers on the structural and optical properties of the ZnO nanorods. The surface morphology and structural properties of the MgxZn1-xO seed layers were changed by the Mg incorporation. However, the appearance, such as density, diameter, and shape, of the ZnO nanorods grown on the MgxZn1-xO seed layers was not changed significantly. The highest intensity ratio of the near-band-edge emission (NBE) to deep-level emission (DLE) and the narrowest full width at half maximum (FWHM) of the NBE peaks, indicating improvement in the crystallinity and luminescent properties of the ZnO crystals, were observed in the ZnO nanorods grown on the MgxZn1_xO seed layers with the content ratio of the 0.05.

  15. Studies of surface morphology and optical properties of ZnO nanostructures grown on different molarities of TiO2 seed layer

    NASA Astrophysics Data System (ADS)

    Asib, N. A. M.; Afaah, A. N.; Aadila, A.; Rusop, M.; Khusaimi, Z.

    2016-07-01

    Titanium dioxide (TiO2) seed layer was prepared by using sol-gel spin-coating technique, followed by growth of 0.01 M of Zinc oxide (ZnO) nanostructures by solution-immersion. The molarities of TiO2 seed layer were varied from 1.1 M to 0.100 M on glass substrates. The nanostructures thin films were characterized by Field Emission Scanning Electrons Microscope (FESEM), Photoluminescence (PL) spectroscopy and Ultraviolet-Visible (UV-Vis) spectroscopy. FESEM images demonstrate that needle-like ZnO nanostructures are formed on all TiO2 seed layer. The smallest diameter of needle-like ZnO nanostructures (90.3 nm) were deposited on TiO2 seed layer of 0.100 M. PL spectra of the TiO2: ZnO nanostructures thin films show the blue shifted emissions in the UV regions compared to the ZnO thin film. Meanwhile, UV-vis spectra of films display high absorption in the UV region and high trasparency in the visible region. The highest absorbance at UV region was recorded for sample which has 0.100 M of TiO2 seed layer.

  16. Normal zone propagation in superconducting thin-film fault current limiting elements with Au-Ag alloy shunt layers

    NASA Astrophysics Data System (ADS)

    Arai, K.; Yamasaki, H.; Kaiho, K.; Furuse, M.; Nakagawa, Y.; Sohma, M.; Yamaguchi, I.

    2008-02-01

    We have been developing a superconducting fault current limiter (FCL), in which YBCO superconducting thin films with Au-Ag alloy shunt layers are used. We have already achieved high electric fields (>40 Vpeak/cm), which enable the total length of FCL elements to be reduced drastically, thus greatly reducing the cost of FCLs. In this paper, we report the normal zone propagation velocity in our films when over-current was applied to the films at 50 Hz for 100 ms. The velocity plotted against the root-mean square values of the normalized film current showed a common curve or curves. The data were also discussed using the adiabatic theory. As the normal zone propagation velocity was not so fast, we divided one unit film of 120 mm length into two portions, to each of which an external resistance was attached. The test result showed that a high electric field of 45 Vpeak/cm and total voltage of 450 Vpeak were achieved in the first cycle after quenching, and the film withstood the voltage for five cycles. The temperature distribution along the length of the film was also shown.

  17. Improving the output power of GaN-based light-emitting diode using Ag particles embedded within a SiO2 current blocking layer

    NASA Astrophysics Data System (ADS)

    Park, Jae-Seong; Han, Jaecheon; Seong, Tae-Yeon

    2015-07-01

    GaN-based light-emitting diodes (LEDs) fabricated with Ag particles embedded within a SiO2 current blocking layer (CBL) are demonstrated. The Ag particles varied from 100 to 250 nm in size, and had a density of ∼3.8 × 108 cm-2. The transmittances obtained from GaN/sapphire and Ag particles/GaN/sapphire were 75 and 66% at 450 nm, respectively. The LEDs (chip size: 1000 × 1000 μm2) fabricated with ITO-only, ITO/SiO2 CBL, and ITO/Ag particles/SiO2 CBL showed forward-bias voltages of 3.05, 3.25 and 3.1 V at 20 mA, respectively. The LEDs with the ITO/Ag particles/SiO2 CBL yielded 11.9 and 7.0% higher light output powers (at 20 mA) than the LEDs with the ITO-only and ITO/SiO2 CBL, respectively. The improved output power is explained by the combined effects of the improved extraction and current spreading.

  18. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - an unexpected overdose effect decreasing their antibacterial efficacy.

    PubMed

    Roguska, A; Belcarz, A; Pisarek, M; Ginalska, G; Lewandowska, M

    2015-06-01

    Enhancement of biocompatibility and antibacterial properties of implant materials is potentially beneficial for their practical value. Therefore, the use of metallic and metallic oxide nanoparticles as antimicrobial coatings components which induce minimized antibacterial resistance receives currently particular attention. In this work, TiO2 nanotubes layers loaded with ZnO and Ag nanoparticles were designed for biomedical coatings and delivery systems and evaluated for antimicrobial activity. TiO2 nanotubes themselves exhibited considerable and diameter-dependent antibacterial activity against planktonic Staphylococcus epidermidis cells but favored bacterial adhesion. Loading of nanotubes with moderate amount of ZnO nanoparticles significantly diminished S. epidermidis cell adhesion and viability just after 1.5h contact with modified surfaces. However, an increase of loaded ZnO amount unexpectedly altered the structure of nanoparticle-nanolayer, caused partial closure of nanotube interior and significantly reduced ZnO solubility and antibacterial efficacy. Co-deposition of Ag nanoparticles enhanced the antibacterial properties of synthesized coatings. However, the increase of ZnO quantity on Ag nanoparticles co-deposited surfaces favored the adhesion of bacterial cells. Thus, ZnO/Ag/TiO2 nanotube composite layers may be promising delivery systems for combating post-operative infections in hard tissue replacement procedures. However, the amount of loaded antibacterial agents must be carefully balanced to avoid the overdose and reduced efficacy.

  19. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - an unexpected overdose effect decreasing their antibacterial efficacy.

    PubMed

    Roguska, A; Belcarz, A; Pisarek, M; Ginalska, G; Lewandowska, M

    2015-06-01

    Enhancement of biocompatibility and antibacterial properties of implant materials is potentially beneficial for their practical value. Therefore, the use of metallic and metallic oxide nanoparticles as antimicrobial coatings components which induce minimized antibacterial resistance receives currently particular attention. In this work, TiO2 nanotubes layers loaded with ZnO and Ag nanoparticles were designed for biomedical coatings and delivery systems and evaluated for antimicrobial activity. TiO2 nanotubes themselves exhibited considerable and diameter-dependent antibacterial activity against planktonic Staphylococcus epidermidis cells but favored bacterial adhesion. Loading of nanotubes with moderate amount of ZnO nanoparticles significantly diminished S. epidermidis cell adhesion and viability just after 1.5h contact with modified surfaces. However, an increase of loaded ZnO amount unexpectedly altered the structure of nanoparticle-nanolayer, caused partial closure of nanotube interior and significantly reduced ZnO solubility and antibacterial efficacy. Co-deposition of Ag nanoparticles enhanced the antibacterial properties of synthesized coatings. However, the increase of ZnO quantity on Ag nanoparticles co-deposited surfaces favored the adhesion of bacterial cells. Thus, ZnO/Ag/TiO2 nanotube composite layers may be promising delivery systems for combating post-operative infections in hard tissue replacement procedures. However, the amount of loaded antibacterial agents must be carefully balanced to avoid the overdose and reduced efficacy. PMID:25842121

  20. Assessment of enzyme supplementation on growth performance and apparent nutrient digestibility in diets containing undecorticated sunflower seed meal in layer chicks.

    PubMed

    Fafiolu, A O; Oduguwa, O O; Jegede, A V; Tukura, C C; Olarotimi, I D; Teniola, A A; Alabi, J O

    2015-08-01

    Six hundred and forty one-day-old layer chicks were used to investigate the effect of replacing soybean meal with undecorticated sunflower seed meal protein for protein at 0, 25, 50, and 75% levels. Diets were without enzyme supplementation or with enzyme supplementation with four replications of twenty birds. Growth performance and nutrient utilization were determined. Proximate composition of the undecorticated sunflower seed meal used revealed that undecorticated sunflower seed meal contained 925.9, 204.5, 336.2, 215.1, 52.0 and 192.2g/kg dry matter, crude protein, ether extract, crude fibre, ash and soluble carbohydrates, respectively. Results showed that the final weight of 484.4 g/bird was obtained for birds on 75% undecorticated sunflower seed meal diet, while the lowest value of 472.2g/bird was obtained for birds on 25% undecorticated sunflower seed meal diet. Weight gain per bird per day was not significantly (P > 0.05) affected as the level of undecorticated sunflower seed meal increased in the diets. Feed intake per bird per day increased (P < 0.05) across the treatment as a result of increased undecorticated sunflower seed meal inclusion in the diet. However, enzyme supplementation of the diets showed marked (P < 0.05) improvements in feed intake, weight gain, and final weight as well as the feed to gain ratio. Survivability was not affected by the treatments imposed. Dry matter digestibility were significantly (P < 0.05) reduced due to high undecorticated sunflower seed meal inclusion in the diet while crude protein digestibility progressively reduced (P < 0.05) as the level of undecorticated sunflower seed meal increased in the diet. Ash digestibility values were, however, increased (P < 0.05) as the level of undecorticated sunflower seed meal increased in the diets. Birds on enzyme-supplemented diets consistently showed superior (P < 0.05) digestibility values than those on diets without enzyme supplementation. However ether extract digestibility was

  1. Assessment of enzyme supplementation on growth performance and apparent nutrient digestibility in diets containing undecorticated sunflower seed meal in layer chicks.

    PubMed

    Fafiolu, A O; Oduguwa, O O; Jegede, A V; Tukura, C C; Olarotimi, I D; Teniola, A A; Alabi, J O

    2015-08-01

    Six hundred and forty one-day-old layer chicks were used to investigate the effect of replacing soybean meal with undecorticated sunflower seed meal protein for protein at 0, 25, 50, and 75% levels. Diets were without enzyme supplementation or with enzyme supplementation with four replications of twenty birds. Growth performance and nutrient utilization were determined. Proximate composition of the undecorticated sunflower seed meal used revealed that undecorticated sunflower seed meal contained 925.9, 204.5, 336.2, 215.1, 52.0 and 192.2g/kg dry matter, crude protein, ether extract, crude fibre, ash and soluble carbohydrates, respectively. Results showed that the final weight of 484.4 g/bird was obtained for birds on 75% undecorticated sunflower seed meal diet, while the lowest value of 472.2g/bird was obtained for birds on 25% undecorticated sunflower seed meal diet. Weight gain per bird per day was not significantly (P > 0.05) affected as the level of undecorticated sunflower seed meal increased in the diets. Feed intake per bird per day increased (P < 0.05) across the treatment as a result of increased undecorticated sunflower seed meal inclusion in the diet. However, enzyme supplementation of the diets showed marked (P < 0.05) improvements in feed intake, weight gain, and final weight as well as the feed to gain ratio. Survivability was not affected by the treatments imposed. Dry matter digestibility were significantly (P < 0.05) reduced due to high undecorticated sunflower seed meal inclusion in the diet while crude protein digestibility progressively reduced (P < 0.05) as the level of undecorticated sunflower seed meal increased in the diet. Ash digestibility values were, however, increased (P < 0.05) as the level of undecorticated sunflower seed meal increased in the diets. Birds on enzyme-supplemented diets consistently showed superior (P < 0.05) digestibility values than those on diets without enzyme supplementation. However ether extract digestibility was

  2. Comparison of Model-Predicted Transport and Diffusion of Seeding Material with NOAA Satellite-Observed Seeding Track in Supercooled Layer Clouds.

    NASA Astrophysics Data System (ADS)

    Yu, Xing; Dai, Jin; Rosenfeld, Daniel; Lei, Hengchi; Xu, Xiaohong; Fan, Peng; Chen, Zhengqi

    2005-06-01

    From 0615 to 0749 UTC 14 March 2000, an operation of cloud seeding for precipitation enhancement by aircraft was carried out in the middle part of Shaanxi Province, China. National Oceanic and Atmospheric Administration (NOAA)-14 satellite imagery was received at 0735 UTC for the study region. A vivid cloud track appeared on the satellite imagery; its length was about 350 km, and its average width and width maximum were 9 and 14 km, respectively. Through application of a three-dimensional numerical model of the transport and diffusion of the seeding material, the simulated plume shape, the turning points, and the width and length of seeding lines agree with that of the cloud pattern indicated by the satellite imagery. The track is consistent with the transport and diffusion of the seeding line. All of these factors suggest that the cloud track that is detected by satellite imaging is the direct physical evidence of cloud seeding near the cloud top, with the cloud responding to the transport and diffusion of the seeding material and/or the propagation of the glaciation by secondary effects. The track is indeed caused by the cloud seeding, and the model can predict the evolution of the response zone of cloud seeding. For this seeding case, the duration for segments of the seeding line varies between 20 and 80 min, and the time period for each segment of the seeding line diffusing to the maximum width is about from 40 to 70 min. One hour after cloud seeding, the dispersion rate of the cloud track is 7.0 km h-1, and the predicted expansion rates of the seeding material concentrations of 1 and 4 L-1 are 7.6 and 4.6 km h-1, respectively. The comparison demonstrates that the numerical model of transport and diffusion can predict the main characteristics of transport and diffusion of the seeding effect, and the simulation results are reasonable.

  3. Seed-layer mediated orientation evolution in dielectric Bi-Zn-Ti-Nb-O thin films

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Noh, Jun Hong; Lee, Sangwook; Yoon, Sung-Hun; Cho, Chin Moo; Hong, Kug Sun; Jung, Hyun Suk; Lee, Jung-Kun

    2007-12-01

    Highly (hhh)-oriented pyrochlore Bi-Zn-Ti-Nb-O (BZTN) thin films were fabricated via metal-organic decomposition using orientation template layers. The preferred orientation was ascribed to the interfacial layer, the lattice parameter of which is similar to BZTN. High-resolution transmission electron microscopy supported that the interfacial layer consists of Bi and Pt. The (hhh)-oriented thin films exhibited a highly insulating nature enabling feasible applications in electronic devices, particularly voltage tunable application. The BZTN thin films did not show any apparent dielectric anisotropy and the slightly enhanced dielectric properties were discussed in connection to the internal stress and the grain boundary effect.

  4. Size effect and odd-even alternation in the melting of single and stacked AgSCn layers: synthesis and nanocalorimetry measurements.

    PubMed

    de la Rama, Lito P; Hu, Liang; Ye, Zichao; Efremov, Mikhail Y; Allen, Leslie H

    2013-09-25

    We report a systematic study of melting of layered lamella of silver alkanethiolates (AgSCn). A new synthesis method allows us to independently change the thickness of the crystal in two ways-by modulating chain length (n = 7-18) and by stacking these crystals to a specific layer number (m = 1-10). This method produces magic size lamella, having a well-spaced discrete melting point, Tm, distribution. Nanocalorimetry shows stepwise increases in Tm, as the lamella thickness increases by integer increments of chain length. The relationship between Tm and the inverse thickness follows the linear scaling law of Gibbs-Thomson effect. Layer stacking dramatically changes the degree and nature of size-effect melting. There is odd/even effect in stacked 2, 3, and 4 layers. Tm values of single-layer and multilayer samples do not show noticeable odd/even alternation. We develop a phenomenological model of size effect based on the cumulative excess free energy, G(excess), contributions of four spatially separate regions of the crystal: surface, Ag-S central plane, substrate interface, and interlayer interface. The selective appearance of the odd/even effect is due to the significant stabilization (1.4 kJ/mol) of interlamellae interfaces of odd-chain samples, possibly due to registration/packing. Stabilization occurs only for the mobile lamellae situated close to the free surface, and thus 2-layer samples show the highest degree of stabilization. X-ray diffraction shows that the chains are tilted 18° with respect to the basal plane normal but that the van der Waals gap is 0.3 Å smaller for crystals with odd chains.

  5. SiO2/bi-layer GZO/Ag structures for near-infrared broadband wide-angle perfect absorption

    NASA Astrophysics Data System (ADS)

    Zhu, Chaoting; Li, Jia; Yang, Ye; Huang, Jinhua; Lu, Yuehui; Zhao, Xunna; Tan, Ruiqin; Dai, Ning; Song, Weijie

    2016-10-01

    In this work, near-infrared (NIR) perfect absorbers with a silicon dioxide (SiO2)/gallium-doped zinc oxide (GZO)/silver (Ag) multi-layer structure were designed and experimentally demonstrated. The results show that a broadband perfect absorption (PA) from 1.24 µm to 1.49 µm was achieved by adopting bi-layer GZO thin films with different carrier concentrations. This absorption remained higher than 97% for incident angles up to 60°. The perfect NIR absorber reported here has a simple structure as well as broadband and wide-angle absorption features, which is promising for practical applications.

  6. Pinning properties of Y211 added cold top-seeded YBCO grown on Y2O3 layer

    NASA Astrophysics Data System (ADS)

    Çakır, Bakiye; Duman, Şeyda; Aydıner, Alev

    2016-04-01

    In this study, samples having different composition were prepared with the cold top seeding-melt-growth (TSMG) process by using Nd123 seed. Y2O3 buffer layer was placed to bottom of the pellets consist of Y123: Y211 powder mixtures. Two samples were fabricated in stoichiometric ratios of 1:0 and 1:0.4 labeled as Y0 and Y40, respectively. The Tc onset values of Y0 and Y40 were found to be 93.4 and 93.6 K at 0 T, respectively. The dependence of the effective activation energy U of the flux pinning on the magnetic field and temperature of the sample were determined using the Arrhenius activation energy law from the resistivity curves. The magnetization measurements were performed using a vibrating sample magnetometer (VSM) at 30, 50 and 77 K. The critical current densities (J c) for Y0 and Y40 samples were determined to be 5.1×103 and 3.7×103 A/cm2 at 77 K in 0 T, respectively. The normalized pinning force density versus the reduced field was examined at different temperatures to determine the pinning mechanism.

  7. Quantitative Determination of L-DOPA in Seeds of Mucuna Pruriens Germplasm by High Performance Thin Layer Chromatography.

    PubMed

    Raina, Archana P; Khatri, Renu

    2011-07-01

    Mucuna pruriens Linn. is an important medicinal plant used for treatment of Parkinson's disease and many others in ancient Indian medical system. L-DOPA extracted from seeds of Mucuna is a constituent of more than 200 indigenous drug formulations and is more effective as drug than the synthetic counterpart. A densitometric high performance thin-layer chromatographic (HPTLC) method was developed for quantification of L-DOPA content present in the seeds extract. The method involves separation of L-DOPA on precoated silica gel 60 GF(254) HPTLC plates using a solvent system of n-butanol-acetic-acid-water (4:1:1, v/v) as the mobile phase. Quantification was done at 280 nm using absorbance reflectance mode. Linearity was found in the concentration range of 100 to 1000 ng/spot with the correlation coefficient value of 0.9980. The method was validated for accuracy, precision and repeatability. Mean recovery was 100.89%. The LOD and LOQ for L-DOPA determination were found to be 3.41 ng/spot and 10.35 ng/spot respectively. The proposed HPTLC method was found to be precise, specific and accurate for quantitative determination of L-DOPA. It can be used for rapid screening of large germplasm collections of Mucuna pruriens for L-DOPA content. The method was used to study variation in fifteen accessions of Mucuna germplasm collected from different geographical regions. PMID:22707835

  8. The Role of Nanoscale Seed Layers on the Enhanced Performance of Niobium doped TiO2 Thin Films on Glass

    NASA Astrophysics Data System (ADS)

    Nikodemski, Stefan; Dameron, Arrelaine A.; Perkins, John D.; O’Hayre, Ryan P.; Ginley, David S.; Berry, Joseph J.

    2016-09-01

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.

  9. The Role of Nanoscale Seed Layers on the Enhanced Performance of Niobium doped TiO2 Thin Films on Glass.

    PubMed

    Nikodemski, Stefan; Dameron, Arrelaine A; Perkins, John D; O'Hayre, Ryan P; Ginley, David S; Berry, Joseph J

    2016-01-01

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity. PMID:27610922

  10. The Role of Nanoscale Seed Layers on the Enhanced Performance of Niobium doped TiO2 Thin Films on Glass

    PubMed Central

    Nikodemski, Stefan; Dameron, Arrelaine A.; Perkins, John D.; O’Hayre, Ryan P.; Ginley, David S.; Berry, Joseph J.

    2016-01-01

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity. PMID:27610922

  11. The Role of Nanoscale Seed Layers on the Enhanced Performance of Niobium doped TiO2 Thin Films on Glass.

    PubMed

    Nikodemski, Stefan; Dameron, Arrelaine A; Perkins, John D; O'Hayre, Ryan P; Ginley, David S; Berry, Joseph J

    2016-09-09

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.

  12. Role of layer packing for the electronic properties of the organic superconductor (BEDT-TTF ) 2Ag (CF3)4(TCE )

    NASA Astrophysics Data System (ADS)

    Altmeyer, Michaela; Valentí, Roser; Jeschke, Harald O.

    2015-06-01

    The charge-transfer compound (BEDT-TTF ) 2Ag (CF3)4(TCE ) crystallizes in three polymorphs with different alternating layers: While a phase with a κ packing motif has a low superconducting transition temperature of Tc=2.6 K , two phases with higher Tc of 9.5 and 11 K are multilayered structures consisting of α' and κ layers. We investigate these three systems within density functional theory and find that the α' layer shows different degrees of charge order for the two κ -α' systems and directly influences the electronic behavior of the conducting κ layer. We discuss the origin of the distinct behavior of the three polymorphs and propose a minimal tight-binding Hamiltonian for the description of these systems based on projective molecular Wannier functions.

  13. 7 CFR 52.1842 - Product description of Layer or (Cluster) raisins with seeds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Processed Raisins 1 § 52.1842 Product description of Layer or (Cluster) raisins...

  14. 7 CFR 52.1842 - Product description of Layer or (Cluster) raisins with seeds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Processed Raisins 1 § 52.1842 Product description of Layer or (Cluster) raisins...

  15. High-performance flexible Ag nanowire electrode with low-temperature atomic-layer-deposition fabrication of conductive-bridging ZnO film.

    PubMed

    Duan, Ya-Hui; Duan, Yu; Chen, Ping; Tao, Ye; Yang, Yong-Qiang; Zhao, Yi

    2015-01-01

    As material for flexible transparent electrodes for organic photoelectric devices, the silver nanowires (AgNWs) have been widely studied. In this work, we propose a hybrid flexible anode with photopolymer substrate, which is composed of spin-coating-processed AgNW meshes and of zinc oxide (ZnO) prepared by low-temperature (60°C) atomic layer deposition. ZnO effectively fills in the voids of the AgNW mesh electrode, which is thus able to contact to the device all over the active area, to allow for efficient charge extraction/injection. Furthermore, ZnO grown by low temperature mainly relies on hole conduction to make the anode play a better role. Hole-only devices are fabricated to certify the functionality of the low-temperature ZnO film. Finally, we confirm that the ZnO film grown at a low temperature bring a significant contribution to the performance of the modified AgNW anode.

  16. High-performance flexible Ag nanowire electrode with low-temperature atomic-layer-deposition fabrication of conductive-bridging ZnO film

    NASA Astrophysics Data System (ADS)

    Duan, Ya-Hui; Duan, Yu; Chen, Ping; Tao, Ye; Yang, Yong-Qiang; Zhao, Yi

    2015-02-01

    As material for flexible transparent electrodes for organic photoelectric devices, the silver nanowires (AgNWs) have been widely studied. In this work, we propose a hybrid flexible anode with photopolymer substrate, which is composed of spin-coating-processed AgNW meshes and of zinc oxide (ZnO) prepared by low-temperature (60°C) atomic layer deposition. ZnO effectively fills in the voids of the AgNW mesh electrode, which is thus able to contact to the device all over the active area, to allow for efficient charge extraction/injection. Furthermore, ZnO grown by low temperature mainly relies on hole conduction to make the anode play a better role. Hole-only devices are fabricated to certify the functionality of the low-temperature ZnO film. Finally, we confirm that the ZnO film grown at a low temperature bring a significant contribution to the performance of the modified AgNW anode.

  17. Enhanced Thermochromic Properties and Solar-Heat Shielding Ability of W(x)V(1-x)O2 Thin Films with Ag Nanowires Capping Layers.

    PubMed

    Zhao, Li Li; Miao, Lei; Liu, Cheng Yan; Wang, Hai Long; Tanemura, Sakae; Sun, Li Xian; Gao, Xiang; Zhou, Jian Hua

    2015-11-01

    Considerable efforts have been made to shift the phase transition temperature of metal-doped vanadium dioxide (VO2) films nearer the ambient temperature while maintain the excellent thermochromic properties simultaneously. Here, we describe a facile and economic solution-based method to fabricate W-doped VO2 (V(1-x)W(x)O2) thin films with excellent thermochromic properties for the application of smart windows. The substitutional doping of tungsten atoms notably reduces the phase transition temperature to the ambient temperature and retains the excellent thermochromic property. Furthermore, Ag nanowires (NWs) are employed as capping layers to effectively decrease the thermal emissivity from 0.833 to 0.603, while the original near infrared region (NIR) modulation ability is not severely affected. Besides, the Ag NWs layers further depress the phase transition temperature as well as the hysteresis loop width, which is important to the fenestration application. These solution-grown Ag NWs/V(1-x)W(x)O2 thin films exhibit excellent solar modulation ability, narrowed hysteresis loop width as well as low thermal emissivity, which provide a promising perspective into the practical application of VO2-based smart windows.

  18. Fluorometric sensing of ultralow As(III) concentrations using Ag doped hollow CdS/ZnS bi-layer nanoparticles.

    PubMed

    Boxi, Siddhartha Sankar; Paria, Santanu

    2015-12-21

    Arsenic poisoning from drinking water has been an important global issue in recent years. Because of the high level toxicity of arsenic to human health, an easy, inexpensive, low level and highly selective detection technique is of great importance to take any early precautions. This study reports the synthesis of Ag doped hollow CdS/ZnS bi-layer (Ag-h-CdS/ZnS) nanoparticles for the easy fluorometric determination of As(iii) ions in the aqueous phase. The hollow bi-layer structures were synthesized by a sacrificial core method using AgBr as the sacrificial core and the core was removed by dissolution in an ammonium hydroxide solution. The synthesized nanoparticles were characterized using different instrumental techniques. A good linear relationship was obtained between fluorescence quenching intensity and As(iii) concentration in the range of 0.75-22.5 μg L(-1) at neutral pH with a limit of detection as low as 0.226 μg L(-1). PMID:26541652

  19. Enhanced Thermochromic Properties and Solar-Heat Shielding Ability of W(x)V(1-x)O2 Thin Films with Ag Nanowires Capping Layers.

    PubMed

    Zhao, Li Li; Miao, Lei; Liu, Cheng Yan; Wang, Hai Long; Tanemura, Sakae; Sun, Li Xian; Gao, Xiang; Zhou, Jian Hua

    2015-11-01

    Considerable efforts have been made to shift the phase transition temperature of metal-doped vanadium dioxide (VO2) films nearer the ambient temperature while maintain the excellent thermochromic properties simultaneously. Here, we describe a facile and economic solution-based method to fabricate W-doped VO2 (V(1-x)W(x)O2) thin films with excellent thermochromic properties for the application of smart windows. The substitutional doping of tungsten atoms notably reduces the phase transition temperature to the ambient temperature and retains the excellent thermochromic property. Furthermore, Ag nanowires (NWs) are employed as capping layers to effectively decrease the thermal emissivity from 0.833 to 0.603, while the original near infrared region (NIR) modulation ability is not severely affected. Besides, the Ag NWs layers further depress the phase transition temperature as well as the hysteresis loop width, which is important to the fenestration application. These solution-grown Ag NWs/V(1-x)W(x)O2 thin films exhibit excellent solar modulation ability, narrowed hysteresis loop width as well as low thermal emissivity, which provide a promising perspective into the practical application of VO2-based smart windows. PMID:26726666

  20. Process for preparation of a seed layer for selective metal deposition

    DOEpatents

    Bernhardt, Anthony F.

    1992-01-01

    Disclosed is a process for selective metal deposition comprising of the steps of: a. formation of an initial surface on a substrate, said initial surface being comprised of at least two layers of which the uppermost is inert, b. exposing the surface to a source of heat in pre-determined places wherein surface activation is desired, and c. deposition of metal on activated portions of said surface.

  1. Fabrication of Cu-Ni mixed phase layer using DC electroplating and suppression of Kirkendall voids in Sn-Ag-Cu solder joints

    NASA Astrophysics Data System (ADS)

    Chee, Sang-Soo; Lee, Jong-Hyun

    2014-05-01

    A solderable layer concurrently containing Cu-rich and Ni-rich phases (mixed-phase layer, MPL) was fabricated by direct current electroplating under varying process conditions. Current density was considered as the main parameter to adjust the microstructure and composition of MPL during the electroplating process, and deposit thickness were evaluated as functions of plating time. As a result, it was observed that the coral-like structure that consisted of Cu-rich and Ni-rich phases grew in the thickness direction. The most desirable microstructure was obtained at a relatively low current density of 0.4 mA/cm2. In other words, the surface was the smoothest and defect-free at this current density. The electroplating rate was slightly enhanced with an increase in current density. Investigations of its solid-state reaction properties, including the formation of Kirkendall voids, were also carried out after reflow soldering with Sn-3.0 Ag-0.5 Cu solder balls. In the solid-state aging experiment at 125°C, Kirkendall voids at the normal Sn-3.0 Ag-0.5 Cu solder/Cu interface were easily formed after just 240 h. Meanwhile, the presence of an intermetallic compound (IMC) layer created in the solder/MPL interface indicated a slightly lower growth rate, and no Kirkendall voids were observed in the IMC layer even after 720 h.

  2. Airborne Bacteria in the Atmospheric Surface Layer: Temporal Distribution above a Grass Seed Field

    PubMed Central

    Lighthart, B.; Shaffer, B. T.

    1995-01-01

    Temporal airborne bacterial concentrations and meteorological conditions were measured above a grass seed field in the Willamette River Valley, near Corvallis, Oreg., in the summer of 1993. The concentration of airborne bacteria had a maximum of 1,368.5 CFU/m(sup3), with a coefficient of variation of 90.5% and a mean of 121.3 CFU/m(sup3). The lowest concentration of bacteria occurred during the predawn hours, with an average of 32.2 CFU/m(sup3), while sunrise and early evening hours had the highest averages (164.7 and 158.1 CFU/m(sup3), respectively). The concentrations of bacteria in the atmosphere varied greatly, with a maximum difference between two 2-min samples of 1,995 CFU/m(sup3). The concentrations of bacteria in the atmosphere could be divided into five time periods during the day that were thought to be related to the local diurnal sea breeze and Pacific Coast monsoon weather conditions as follows: (i) the nighttime minimum concentration, i.e., 2300 to 0600 h; (ii) the sunrise peak concentration, i.e., 0600 to 0800 h; (iii) the midday accumulating concentration, i.e., 0800 to 1515 h; (iv) the late-afternoon sea breeze trough concentration, i.e., 1515 to 1700 h; and (v) the evening decrease to the nighttime minimum concentration, i.e., 1700 to 2300 h. The sunrise peak concentration (period ii) is thought to be a relatively general phenomenon dependent on ground heating by the sun, while the afternoon trough concentration is thought to be a relatively local phenomenon dependent on the afternoon sea breeze. Meteorological conditions are thought to be an important regulating influence on airborne bacterial concentrations in the outdoor atmosphere in the Willamette River Valley. PMID:16534998

  3. Micro/Nano hierarchical peony-like Al doped ZnO superhydrophobic film: The guiding effect of (100) preferred seed layer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Wang, Jingfeng; Kong, Yi; Zhou, Jia; Wu, Jinzhu; Wang, Gang; Bi, Hai; Wu, Xiaohong; Qin, Wei; Li, Qingkun

    2016-01-01

    In this communication, we present a versatile and controllable strategy for formation of superhydrophobic micro/nano hierarchical Al doped ZnO (AZO) films with a water contact angle (CA) of 170 ± 4°. This strategy involves a two-step layer-by-layer process employing an atomic layer deposition (ALD) technique followed by a hydrothermal method, and the resulting novel AZO surface layer consists of (100) dominant nano-rice-like AZO seed layer (the water CA of 110 ± 4°) covered with micro-peony-like AZO top. The growth mechanisms and superhydrophobic properties of the hierarchical AZO layer are discussed. It is believed that the present route holds promise for future success in the design and development of practical superhydrophobic materials.

  4. Micro/Nano hierarchical peony-like Al doped ZnO superhydrophobic film: The guiding effect of (100) preferred seed layer.

    PubMed

    Li, Yang; Wang, Jingfeng; Kong, Yi; Zhou, Jia; Wu, Jinzhu; Wang, Gang; Bi, Hai; Wu, Xiaohong; Qin, Wei; Li, Qingkun

    2016-01-12

    In this communication, we present a versatile and controllable strategy for formation of superhydrophobic micro/nano hierarchical Al doped ZnO (AZO) films with a water contact angle (CA) of 170 ± 4°. This strategy involves a two-step layer-by-layer process employing an atomic layer deposition (ALD) technique followed by a hydrothermal method, and the resulting novel AZO surface layer consists of (100) dominant nano-rice-like AZO seed layer (the water CA of 110 ± 4°) covered with micro-peony-like AZO top. The growth mechanisms and superhydrophobic properties of the hierarchical AZO layer are discussed. It is believed that the present route holds promise for future success in the design and development of practical superhydrophobic materials.

  5. Micro/Nano hierarchical peony-like Al doped ZnO superhydrophobic film: The guiding effect of (100) preferred seed layer

    PubMed Central

    Li, Yang; Wang, Jingfeng; Kong, Yi; Zhou, Jia; Wu, Jinzhu; Wang, Gang; Bi, Hai; Wu, Xiaohong; Qin, Wei; Li, Qingkun

    2016-01-01

    In this communication, we present a versatile and controllable strategy for formation of superhydrophobic micro/nano hierarchical Al doped ZnO (AZO) films with a water contact angle (CA) of 170 ± 4°. This strategy involves a two-step layer-by-layer process employing an atomic layer deposition (ALD) technique followed by a hydrothermal method, and the resulting novel AZO surface layer consists of (100) dominant nano-rice-like AZO seed layer (the water CA of 110 ± 4°) covered with micro-peony-like AZO top. The growth mechanisms and superhydrophobic properties of the hierarchical AZO layer are discussed. It is believed that the present route holds promise for future success in the design and development of practical superhydrophobic materials. PMID:26753877

  6. Selective area growth of high-density GaN nanowire arrays on Si(111) using thin AlN seeding layers

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Lee, P. Y.; Chen, K. Y.; Tseng, Y. T.; Wang, Y. L.; Cheng, K. Y.

    2016-11-01

    Selective area growth (SAG) of high-density (2.5×109 cm-2) GaN nanowires (NWs) on Si(111) substrate by plasma-assisted molecular beam epitaxy is presented. The effects of morphology and thickness of the AlN seeding layer on the quality of SAG GaN NWs are investigated. A thin AlN seeding layer of 30 nm thick with a surface roughness of less than 0.5 nm is suitable for high quality SAG GaN NWs growth. High-density AlN nanopedestal arrays used as seeds for SAG GaN NWs are fabricated from thin AlN seeding layers using soft nanoimprint lithography. By adjusting the growth temperature and Ga/N flux ratio, hexagonal shaped SAG GaN NWs are realized. The quality of SAG GaN NWs is evaluated by low temperature photoluminescence (PL) measurements. Three major groups of PL peaks at 3.47, 3.45, and 3.41 eV are identified. The peak at 3.471 eV is related to the neutral donor-bound exciton emission, and the 3.41 eV broadband emission is attributed to stacking faults or structural defects. The 3.45 eV peak is identified as the emission due to exciton recombination at polar inversion domain boundaries of NWs.

  7. The role of nanoscale seed layers on the enhanced performance of niobium doped TiO2 thin films on glass

    DOE PAGES

    Nikodemski, Stefan; Dameron, Arrelaine A.; Perkins, John D.; O’Hayre, Ryan P.; Ginley, David S.; Berry, Joseph J.

    2016-09-09

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seedmore » layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Here, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.« less

  8. Digital signal processing for a thermal neutron detector using ZnS(Ag):6LiF scintillating layers read out with WLS fibers and SiPMs

    NASA Astrophysics Data System (ADS)

    Mosset, J.-B.; Stoykov, A.; Greuter, U.; Hildebrandt, M.; Schlumpf, N.

    2016-07-01

    We present a digital signal processing system based on a photon counting approach which we developed for a thermal neutron detector consisting of ZnS(Ag):6LiF scintillating layers read out with WLS fibers and SiPMs. Three digital filters have been evaluated: a moving sum, a moving sum after differentiation and a digital CR-RC4 filter. The performances of the detector with these filters are presented. A full analog signal processing using a CR-RC4 filter has been emulated digitally. The detector performance obtained with this analog approach is compared with the one obtained with the best performing digital approach.

  9. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoye; Meng, Guowen; Huang, Qing; Xu, Wei; Han, Fangming; Sun, Kexi; Xu, Qiaoling; Wang, Zhaoming

    2012-09-01

    We present a surface-enhanced Raman scattering (SERS) substrate featured by large-scale homogeneously distributed Ag nanoparticles (Ag-NPs) with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film. The two-layered honeycomb-like TiO2 film was achieved by a two-step anodization of pure Ti foil, with its upper layer consisting of hexagonally arranged shallow nano-bowls of 160 nm in diameter, and the lower layer consisting of arrays of about fifty vertically aligned sub-20 nm diameter nanopores. The shallow nano-bowls in the upper layer divide the whole TiO2 film into regularly arranged arrays of uniform hexagonal nano-cells, leading to a similar distribution pattern for the ion-sputtered Ag-NPs in each nano-cell. The lower layer with sub-20 nm diameter nanopores prevents the aggregation of the sputtered Ag-NPs, so that the Ag-NPs can get much closer with gaps in the sub-10 nm range. Therefore, large-scale high-density and quasi-ordered sub-10 nm gaps between the adjacent Ag-NPs were achieved, which ensures homogeneously distributed ‘hot spots’ over a large area for the SERS effect. Moreover, the honeycomb-like structure can also facilitate the capture of target analyte molecules. As expected, the SERS substrate exhibits an excellent SERS effect with high sensitivity and reproducibility. As an example, the SERS substrate was utilized to detect polychlorinated biphenyls (PCBs, a kind of persistent organic pollutants as global environmental hazard) such as 3,3‧,4,4‧-pentachlorobiphenyl (PCB-77) with concentrations down to 10-9 M. Therefore the large-scale Ag-NPs with sub-10 nm gaps assembled on the two-layered honeycomb-like TiO 2 film have potentials in SERS-based rapid trace detection of PCBs.

  10. Impedance studies of the cell Ag/AgI/Ag beta alumina/AgI/Ag. Technical report No. 15, August 1987-August 1988

    SciTech Connect

    Breiter, M.W.; Drstak, H.; Maly-Schreiber, M.

    1988-07-01

    The construction of the cell Ag/AgI/Ag beta alumina/AgI/Ag is described. The impedance of this cell was measured between .001 and 10000 Hz at temperatures between 20 and 550 C. At temperatures below 100 C the cell impedance is determined to a large extent by the bulk resistance of the AgI layer and to a smaller extent by the impedance of the interface Ag/Agi. At temperatures between 160 and 350 C the impedance is controlled by the bulk resistance of the Ag beta alumina and an impedance due to contact problems between Ag and AgI. The bulk resistance of the beta' alumina becomes predominant between 350 and 550 C. A hindrance due to the transfer of silver ions from AgI to Ag beta' alumina was not observable in the whole temperature range.

  11. Molecular layer-by-layer engineering of superconducting and superionic materials in the (AgI)Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} system

    SciTech Connect

    Choy, J.H.; Park, N.G.; Kim, Y.I.; Hwang, S.H.; Lee, J.S.; Yoo, H.I.

    1995-05-18

    We have developed a new interstratified system consisting of a superconducting layer alternating with a superionic conducting one, which is the AgI intercalated Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} with well-defined 2-dimensional heterostructure. Before and after the intercalation of AgI, the superconducting properties remained unchanged with the T{sub c}`s of 76 K for the pristine and 63 K for the intercalate. From the extended X-ray absorption fine structure spectroscopic analysis, it is found that the intercalated AgI is formed as the {beta}-like intracrystalline structure in the 2-dimensional interlayer space of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y}. According to the ac impedance and dc relaxation measurements, the ionic transference number (t{sub i} = {sigma}{sub i}/{sigma}{sub r}) has been estimated to be 0.27 (at 167{degree}C), indicating that the substantial ionic conductivity ({sigma}{sub 1}) contributes to the total electrical one ({sigma}{sub T}). In comparison of the ionic conductivity for (AgI)Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} ({sigma}{sub i} = 10{sup -3}-10{sup -23} {Omega}{sup -1} cm{sup -1}) with those for the well-known superionic conductors of cation-substituted {beta}-aluminas, the ionic transport in (AgI)Bi{sub 2}Sr{sub 2}-CaCu{sub 2}O{sub y} turned out to be significant, even comparable with the superionic conductors. 15 refs., 4 figs., 1 tab.

  12. Seed layer-free electrodeposition of well-aligned ZnO submicron rod arrays via a simple aqueous electrolyte

    SciTech Connect

    Xu Feng; Lu Yinong; Xia Lili; Xie Yan; Dai Min; Liu Yunfei

    2009-08-05

    A potentiostatic electrodeposition technique was used to directly fabricate large-scale, well-aligned, and single-crystalline submicron ZnO rod arrays on tin doped indium oxide glass substrate without a pre-prepared seed layer of ZnO from an aqueous solution only containing zinc nitrate. The effects of electrochemical parameters, such as electrodeposition potential, electrodeposition duration, solution temperature, and precursor concentration, on the orientation, morphology, aspect ratio, and growth rate of ZnO rod arrays were systematically investigated. Results show that submicron ZnO rod arrays with (0 0 0 2) preferred orientation and perfect crystallization were obtained when electrodeposition potential was in the range from -0.6 to -1.1 V and solution temperature was controlled above 60 deg. C. Both high solution temperature and low precursor concentration resulted in the decrease in rod diameters. Photoluminescence measures showed that small diameter and nanotips of ZnO rod arrays should be responsible for strong and sharp ultraviolet emission in the room temperature photoluminescence spectra.

  13. Growth and characterization of seed layer-free ZnO thin films deposited on porous silicon by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Kim, Min Su; Yim, Kwang Gug; Kim, Do Yeob; Kim, Soaram; Nam, Giwoong; Lee, Dong-Yul; Kim, Sung-O.; Kim, Jin Soo; Kim, Jong Su; Son, Jeong-Sik; Leem, Jae-Young

    2012-02-01

    Catalyst- and seed layer-free zinc oxide (ZnO) thin films were grown on porous silicon (PS) by a hydrothermal method. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and photoluminescence (PL) were carried out to investigate the structural and optical properties of the PS and the ZnO thin films. The ZnO thin films have an extraordinary tendency to grow along the a-axis with a hexagonal wurtzite structure. The growth rate of the ZnO thin films was increased with the increase in the precursor concentration. The crystal quality of the ZnO thin films was improved, and the residual stress was decreased as their thickness increased. Monochromatic indigo and red light emission peaks were observed from the ZnO thin films and the PS, respectively. At an excessively high precursor concentration, a green light emission peak was also observed in the ZnO thin films. The luminescent efficiency of the indigo light emission peak was enhanced with the increase in the precursor concentration.

  14. Changes in the structure and tribological property of Ag film by LEO space environment exposure

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Hu, Ming; Sun, Jiayi; Fu, Yanlong; Yang, Jun; Weng, Lijun; Liu, Weimin

    2014-11-01

    Ag films, deposited by arc ion plating, had been exposed for 43.5 h in real low earth orbit (LEO) space environment by a space environment exposure device (SEED) aboard the China Shenzhou-7 manned spaceship. The structure, morphology, composition and tribological property of the Ag films after the space environment exposure (SEE) were investigated using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscope (XPS) and ball-on-disk tribometer, respectively. Depth XPS and XRD analysis revealed that after the SEE, the surface layer of Ag films was partially oxidized to Ag2O, the cracking and flaking phenomena could be observed from the film surface by FESEM, and so the Ag films lose its metallic shine and became gray. As a result, the tribological performance was deteriorated and the high/unstable friction was obtained.

  15. Study on single-domain growth of Y1.8Ba2.4Cu3.4Oy/Ag system by using Nd123/MgO thin film as seed

    NASA Astrophysics Data System (ADS)

    Cai, C.; Tachibana, K.; Fujimoto, H.

    2000-06-01

    Instead of NdBa2Cu3Oy (Nd123) bulk crystal, a (001) Nd123/MgO thin film is used as the seed to study single-domain growth in the isothermal solidification of the YBaCuO/Ag system. Various maximum processing temperatures (Tmax), down to 1000 °C, are used to fabricate the textured domain. The dependences of nucleation and single-domain growth on undercooling and Tmax are studied, respectively. For the lower Tmax processed sample, non-steady growth takes place after a time interval, which is attributed to random nucleation.

  16. Controlled Synthesis of Au@AgAu Yolk-Shell Cuboctahedra with Well-Defined Facets.

    PubMed

    Londono-Calderon, Alejandra; Bahena, Daniel; Yacaman, Miguel J

    2016-08-01

    The synthesis of Au@AgAu yolk-shell cuboctahedra nanoparticles formed by galvanic replacement in a seed-mediated method is described. Initially, single-crystal Au seeds are used for the formation of Au@Ag core-shell nanocubes, which serve as the template material for the deposition of an external Au layer. The well-controlled synthesis yields the formation of cuboctahedra nanoparticles with smooth inner and outer Au/Ag surfaces. The deposition/oxidation process is described to understand the formation of cuboctahedra and octahedra nanoparticles. The Au core maintains the initial morphology of the seed and remains static at the center of the yolk-shell because of residual Ag. Structural analysis of the shell indicates intrinsic stacking faults (SFs) near the surface. Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) compositional analysis show an Au-Ag nonordered alloy forming the shell. The three-dimensional structure of the nanoparticles presented open facets on the [111] as observed by electron tomography SIRT reconstruction over a stack of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. The geometrical model was validated by analyzing the direction of streaks in coherent nanobeam diffraction (NBD). The catalytic activity was evaluated using a model reaction based on the reduction of 4-nitrophenol (4-NTP) by NaBH4 in the presence of Au@AgAu yolk-shell nanoparticles. PMID:27385583

  17. Green tide deactivation with layered-structure cuboids of Ag/CaTiO3 under UV light.

    PubMed

    Lee, Soo-Wohn; Lozano-Sánchez, L M; Rodríguez-González, V

    2013-12-15

    In this work, an alternative to deactivate noxious green tide Tetraselmis suecica in the short-term is proposed by employing Perovskite-like cube-shaped, crystalline CaTiO3 semiconductors functionalized with atomic silver nanoparticles. CaTiO3 was prepared by a microwave-assisted hydrothermal method and then Ag(0)NPs (1 wt% of CaTiO3), were added by the photoreduction method. The XRD results show that crystalline CaTiO3 has an orthorhombic unit cell with a Perovskite-like structure. Images obtained by FESEM and HRTEM microscopies show well-faceted CaTiO3 rectangular prismatic morphology functionalizated with silver nanoparticles ≈ 13.5 nm. XPS and EDS-FESEM has confirmed the composition of CaTiO3 and silver occurring mainly as reduced metal. The UV inactivation of noxious T. suecica with Ag/CaTiO3 nanocomposites formed on bare materials results in complete deactivation of the algae in 12 min. The direct contact between harmful algae and Ag/CaTiO3 nanocomposite is necessary to deactivate the algae and inhibits algae viability.

  18. A new seeding technique for the reliable fabrication of large, SmBCO single grains containing silver using top seeded melt growth

    NASA Astrophysics Data System (ADS)

    Shi, Y.-H.; Dennis, A. R.; Cardwell, D. A.

    2015-03-01

    Silver (Ag) is an established additive for improving the mechanical properties of single grain, (RE)Ba2Cu3O7-δ [(RE)BCO, RE = Sm, Gd and Y] bulk superconductors. The presence of Ag in the (RE)BCO bulk composition, however, typically reduces the melting temperature of the single crystal seed in the top seeded melt growth (TSMG) process, which complicates significantly the controlled nucleation and subsequent epitaxial growth of a single grain, which is essential for high field engineering applications. The reduced reliability of the seeding process in the presence of Ag is particularly acute for the SmBCO system, since the melting temperature of SmBCO is very close to that of the generic NdBCO(MgO) seed. SmBCO has a high superconducting transition temperature, Tc, and exhibits the most pronounced ‘peak’ effect at higher magnetic field of all materials in the family of (RE)BCO bulk superconductors and, therefore, has the greatest potential for use in practical applications (compared to GdBCO and YBCO, in particular). Development of an effective seeding process, therefore, is one of the major challenges of the TSMG process for the growth of large, high quantity single grain superconductors. In this paper, we report a novel technique that involves introducing a buffer layer between the seed crystal and the precursor pellet, primarily to inhibit the diffusion of Ag from the green body to the seed during melt processing in order to prevent the melting of the seed. The success rate of the seeding process using this technique is 100% for relatively small batches of samples. The superconducting properties, critical temperature, Tc, critical current density, Jc and trapped fields, of the single grains fabricated using the buffers are reported and the microstructures in the vicinity of the buffer of single grains fabricated by the modified technique are analysed to understand further the effects of buffers on the growth process of these technologically important

  19. Optoelectronic characterization of wide-bandgap (AgCu)(InGa)Se 2 thin-film polycrystalline solar cells including the role of the intrinsic zinc oxide layer

    NASA Astrophysics Data System (ADS)

    Obahiagbon, Uwadiae

    Experiments and simulations were conducted to vary the thickness and the sheet resistance of the high resistance (HR) ZnO layer in polycrystalline thin film (AgCu)(GaIn)Se2 (ACIGS) solar cells. The effect of varying these parameters on the electric field distribution, depletion width and hence capacitance were studied by SCAPS simulation. Devices were then fabricated and characterized by a number of optoelectronic techniques. Thin film CIGS has received a lot of attention, for its use as an absorber layer for thin film solar cells. However, the addition of Silver (Ag) to the CIGS alloy system increases the band gap as indicated from optical transmission measurements and thus higher open circuit voltage (Voc) could be obtained. Furthermore, addition of Ag lowers the melting temperature of the alloy and it is expected that this lowers the defect densities in the absorber and thus leads to higher performance. Transient photocapacitance analysis on ACIGS devices shows sharper band edge indicating lower disorder than CIGS. Presently there is a lack of fundamental knowledge relating film characteristics to device properties and performance. This is due to the fact that some features in the present solar cell structure have been optimized empirically. The goal of this research effort was to develop a fundamental and detailed understanding of the device operation as well as the loss mechanism(s) limiting these devices. Recombination mechanisms in finished ACIGS solar cell devices was studied using advanced admittance techniques (AS, DLCP, CV) to identify electronically active defect state(s) and to study their impact on electronic properties and device performance. Analysis of various optoelectronic measurements of ACIGS solar cells provided useful feedback regarding the impact on device performance of the HR ZnO layer. It was found that thickness between 10-100 nm had negligible impact on performance but reducing the thickness to 0 nm resulted in huge variability in all

  20. Ag-doped ZnO nanorods synthesized by two-step method

    NASA Astrophysics Data System (ADS)

    Chen, Xian-Mei; Ji, Yong; Gao, Xiao-Yong; Zhao, Xian-Wei

    2012-11-01

    A two-step method is adopted to synthesize Ag-doped ZnO nanorods. A ZnO seed layer is first prepared on a glass substrate by thermal decomposition of zinc acetate. Ag-doped ZnO nanorods are then assembled on the ZnO seed layer using the hydrothermal method. The influences of the molar percentage of Ag ions to Zn ions (RAg/Zn) on the structural and optical properties of the ZnO nanorods obtained are carefully studied using X-ray diffractometry, scanning electron microscopy and spectrophotometry. Results indicate that Ag ions enter into the crystal lattice through the substitution of Zn ions. The (002) c-axis-preferred orientation of the ZnO nanorods decreases as RAg/Zn increases. At RAg/Zn > 1.0%, ZnO nanorods lose their c-axis-preferred orientation and generate Ag precipitates from the ZnO crystal lattice. The average transmissivity in the visible region first increases and then decreases as RAg/Zn increases. The absorption edge is first blue shifted and then red shifted. The influence of Ag doping on the average head face, and axial dimensions of the ZnO nanorods may be optimized to improve the average transmissivity at RAg/Zn < 1.0%.

  1. Effect of Pb content and solution concentration of Pb{sub x}TiO{sub 3} seed layer on (100)-texture and ferroelectric/dielectric behavior of PZT (52/48) thin films

    SciTech Connect

    Zhong, Jian; Batra, Vaishali; Han, Hui; Kotru, Sushma; Pandey, Raghvendar K.

    2015-09-15

    The effect of Pb content and solution concentration of lead titanate (Pb{sub x}TiO{sub 3}) seed layer on the texture and electric properties of Pb{sub 1.1}(Zr{sub 0.52},Ti{sub 0.48})O{sub 3} (PZT) thin films was investigated. A variety of seed layers (y Pb{sub x}TiO{sub 3}) with varying solution concentration (y = 0.02, 0.05, 0.1, and 0.2 M) and Pb content (x = 1.0, 1.05, 1.1, and 1.2) was deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates using chemical-solution deposition method. PZT films were then deposited on these seed layers using the same process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy investigations of the seed layers confirm change in crystal structure with variation in the solution properties. XRD studies of PZT films deposited on seed layers demonstrate that the seed layer helps in enhancing (100)-texture and suppressing (111)-texture. It was observed that PZT films prepared on seed layers with lower solution concentrations results in highly (100)-textured films, which further helps to improve the electric properties. The polarization and dielectric constant of the PZT films were seen to increase while the coercive field decreased with increase in (100)-texture. Irrespective of the seed layer solution concentration, higher Pb content in the seed layer deteriorates the PZT film properties. Ninety-five percent to ninety-six percent (100)-texture was obtained from thin PZT films deposited on seed layers of 0.02 M solution concentration with 1.05 and 1.10 Pb contents, which is higher than the values reported for thick PZT films. Optimization of both Pb content and solution concentration of the seed layer is a promising route to achieve highly (100)-textured PZT films with improved electric properties.

  2. Apatite layer growth on glassy Zr48Cu36Al8Ag8 sputtered titanium for potential biomedical applications

    NASA Astrophysics Data System (ADS)

    Thanka Rajan, S.; Karthika, M.; Bendavid, Avi; Subramanian, B.

    2016-04-01

    The bioactivity of magnetron sputtered thin film metallic glasses (TFMGs) of Zr48Cu36Al8Ag8 (at.%) on titanium substrates was tested for bio implant applications. The structural and elemental compositions of TFMGs were analyzed by XRD, XPS and EDAX. X-ray diffraction analysis displayed a broad hump around the incident angle of 30-50°, suggesting that the coatings possess a glassy structure. An in situ crystal growth of hydroxyapatite was observed by soaking the sputtered specimen in simulated body fluid (SBF). The nucleation and growth of a calcium phosphate (Ca-P) bone-like hydroxyapatite on Zr48Cu36Al8Ag8 (at.%) TFMG from SBF was investigated by using XRD, AFM and SEM. The presence of calcium and phosphorus elements was confirmed by EDAX and XPS. In vitro electrochemical corrosion studies indicated that the Zr-based TFMG coating sustain in the stimulated body-fluid (SBF), exhibiting superior corrosion resistance with a lower corrosion penetration rate and electrochemical stability than the bare crystalline titanium substrate.

  3. High-Performance Fully Nanostructured Photodetector with Single-Crystalline CdS Nanotubes as Active Layer and Very Long Ag Nanowires as Transparent Electrodes.

    PubMed

    An, Qinwei; Meng, Xianquan; Sun, Pan

    2015-10-21

    Long and single-crystalline CdS nanotubes (NTs) have been prepared via a physical evaporation process. A metal-semiconductor-metal full-nanostructured photodetector with CdS NTs as active layer and Ag nanowires (NWs) of low resistivity and high transmissivity as electrodes has been fabricated and characterized. The CdS NTs-based photodetectors exhibit high performance, such as lowest dark currents (0.19 nA) and high photoresponse ratio (Ilight/Idark ≈ 4016) (among CdS nanostructure network photodetectors and NTs netwok photodetectors reported so far) and very low operation voltages (0.5 V). The photoconduction mechanism, including the formation of a Schottky barrier at the interface of Ag NW and CdS NTs and the effect of oxygen adsorption process on the Schottky barrier has also been provided in detail based on the studies of CdS NTs photodetector in air and vacuum. Furthermore, CdS NTs photodetector exhibits an enhanced photosensitivity as compared with CdS NWs photodetector. The enhancement in performance is dependent on the larger surface area of NTs adsorbing more oxygen in air and the microcavity structure of NTs with higher light absorption efficiency and external quantum efficiency. It is believed that CdS NTs can potentially be useful in the designs of 1D CdS-based optoelectronic devices and solar cells.

  4. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au-Ag-Au nanostructure for lead(II) ion detection

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.; Yaacob, Mohd Hanif; Mahdi, Mohd Adzir; Zan, Mohd Saiful Dzulkefly; Shaari, Sahbudin

    2016-01-01

    We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au-Ag-Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1-1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10-5 change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  5. High-Density Read-Only Memory Disc with Ag11In12Sb51Te26 Super-Resolution Mask Layer

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Wang, Yang; Xu, Wen-Dong; Shi, Hong-Ren; Wei, Jing-Song; Gan, Fu-Xi

    2004-10-01

    A novel read-only memory (ROM) disc with an Ag11In12Sb51Te26 super-resolution mask layer is proposed and investigated for the first time to our knowledge. The carrier-to-noise ratio of more than 40 dB could be obtained from small pits (380 nm), which are below the readout resolution limit (400 nm), in our dynamic setup with a wavelength of 632.8 nm and numerical aperture of 0.40. Dependences of carrier-to-noise ratio on readout power, readout velocity and film thickness are studied. The results show that the optimum film thickness is 20-50 nm and the corresponding carrier-to-noise ratio is more than 40 dB at readout power of 4 mW and readout velocity of 2 m/s in our experiment. The super-resolution readout mechanism for this ROM disc is also discussed.

  6. Distribution of Pd, Ag & U in the SiC Layer of an Irradiated TRISO Fuel Particle

    SciTech Connect

    Thomas M. Lillo; Isabella J. van Rooyen

    2014-08-01

    The distribution of silver, uranium and palladium in the silicon carbide (SiC) layer of an irradiated TRISO fuel particle was studied using samples extracted from the SiC layer using focused ion beam (FIB) techniques. Transmission electron microscopy in conjunction with energy dispersive x-ray spectroscopy was used to identify the presence of the specific elements of interest at grain boundaries, triple junctions and precipitates in the interior of SiC grains. Details on sample fabrication, errors associated with measurements of elemental migration distances and the distances migrated by silver, palladium and uranium in the SiC layer of an irradiated TRISO particle from the AGR-1 program are reported.

  7. Investigation of the structure of a Ag/Pd/Ag( 1 1 1 ) trilayer by means of electronic spectroscopies

    NASA Astrophysics Data System (ADS)

    Dumont, J.; Ghijsen, J.; Sporken, R.

    2002-06-01

    The growth of the Ag/Pd/Ag system has been studied by X-ray photoelectron spectroscopy and low energy electron diffraction. No chemical reaction or interdiffusion was observed between the Pd and Ag layers. The growth of the Pd interlayer follows the Frank Van der Merwe mode but is not pseudomorphic on the Ag(1 1 1) substrate. The growth of the top Ag layer on the Pd interlayer is pseudomorphic and layer by layer but contains around 12% of voids.

  8. Deposition of SiOx layer by plasma-enhanced chemical vapor deposition for the protection of silver (Ag) surfaces

    NASA Astrophysics Data System (ADS)

    Tarazi, Saad Al; Volpe, Luca; Antonelli, Luca; Jafer, Rashida; Batani, Dimitri; d'Esposito, Antonio; Vitobello, Marialuisa

    2014-03-01

    Silver surfaces have been treated with plasma-enhanced chemical vapor deposition to produce SiO2-like coatings for possible applications in the jewelry industry. Different experimental conditions have been tested in order to optimize the protective effectiveness of the deposited layers. Samples were analyzed with optical and scanning electron microscopy and energy-dispersive spectrometry.

  9. Influence of layered precursor pellets on the growth and properties of Y-Ba-Cu-O bulk superconductors by top-seeded melt-textured growth

    NASA Astrophysics Data System (ADS)

    Tang, Tian-wei; Wu, Dong-jie; Xu, Ke-Xi

    2016-03-01

    It is well known that a fine and homogeneous distribution of Y2BaCuO5 (Y211) phase particles in single-grain Y-Ba-Cu-O (YBCO) bulk superconductors is essential for improving field-trapping ability. However, the size and concentration of Y211 phase particles in the fully melt-processed superconducting bulk increase significantly with the distance from the seed, which results in the accumulation of Y211 phase particles and the degradation of superconducting properties. In this paper, we report a new method of fabricating single-grain YBCO using layered precursor pellets. Using the top-seeded melt-textured growth process, single-grain YBCO bulk superconductors of about 22 mm in diameter and 9 mm in thickness were fabricated from layered precursor pellets and standard precursor pellets, respectively. The layered precursor pellets consist of precursor powders with 40 mol% Y211 at the top, 30 mol% Y211 in the middle and 20 mol% Y211 at the bottom of the whole pellets, while standard precursor pellets are prepared from precursor powders with only 40 mol% Y211. The growth morphology, microstructure and magnetic flux properties of the layered samples and standard samples were comparatively studied. The results proved that the layered precursor pellets allow a sufficient growth in the c-growth sector and a more uniform distribution of the Y211 phase in the matrix. The distribution of Y211 phase particles is qualitatively explained by the prevalent trapping/pushing theory. The trapped field at 77 K reaches 0.8 T, nearly 29% higher than the standard sample. The present results are very valuable for further improving the properties of YBCO bulk superconductors.

  10. Low-cost and high-power-density resistive fault-current limiting elements using YBCO thin films and Au-Ag alloy shunt layers

    NASA Astrophysics Data System (ADS)

    Yamasaki, H.; Arai, K.; Furuse, M.; Kaiho, K.; Nakagawa, Y.

    2006-06-01

    We propose a new design for the high-temperature superconducting thin-film faultcurrent limiter (FCL), which uses high-resistivity Au-Ag alloy shunt layers instead of the pure gold (or silver) shunt layers conventionally used. An FCL element (5 mm wide and 40 mm long) with a YBCO thin film (THEVA) and a parallel inductively-wound shunt resistor successfully withstood very high electric field (> 44 Vpeak/cm) for 5 cycles (0.1 sec) after switching, and achieved a very high switching power density, ~2.0 kVA/cm2. We confirmed similar maximum tolerable electric field (>40 Vpeak/cm, limited by power supply) in a larger sample (1 cm × 6 cm). The composition of our FCL element is very simple, and the achieved power density is more than five times higher than conventional devices, which leads to a dramatic reduction in the amount of expensive superconducting thin films. We made a conceptual design and cost estimation of our FCL elements used in a typical 6.6 kV FCL.

  11. Clarification and mitigation of marked J c decrease at low magnetic fields of BaHfO3-doped SmBaCuO3 thin films deposited on seed layer

    NASA Astrophysics Data System (ADS)

    Watanabe, Yutaro; Ichino, Yusuke; Yoshida, Yutaka; Ichinose, Ataru

    2016-07-01

    In accordance with the results of our previous research, a low-temperature growth (LTG) technique is effective for expanding the lower growth temperature region of c-axis-orientated SmBa2Cu3O y (SmBCO) thin films. However, BaHfO3 (BHO)-doped LTG films show a marked decrease in J c at low magnetic fields compared with conventional PLD films. In this study, we aimed to clarify the mechanism of J c decrease and investigated the thickness dependence of the seed layer on the (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) (100) single crystal. The obtained results indicate that J c decreased at low magnetic fields as the thickness of the seed layer increased. It is suggested that flux line kinks produced by flux motion in the seed layer would lead to the depinning of flux lines from BHO nanorods in the upper layer. Thus, we added Y2O3 into the seed layer to trap flux lines in the seed layer. Consequently, we improved J c in the low magnetic field region even in the films prepared by using the LTG technique.

  12. Improved light extraction of InGaN/GaN blue LEDs by GaOOH NRAs using a thin ATO seed layer

    PubMed Central

    2012-01-01

    We investigated the effect of gallium oxide hydroxide (GaOOH) nanorod arrays (NRAs) on the light extraction of InGaN/GaN multiple quantum well blue light-emitting diodes (LEDs). GaOOH NRAs were prepared on an indium tin oxide electrode (ITO) layer of LEDs by electrochemical deposition method. The GaOOH NRAs with preferred orientations were grown on the ITO surface by sputtering a thin antimony-doped tin oxide seed layer, which enhances heterogeneous reactions. Surface density and coverage were also efficiently controlled by the different growth voltages. For LEDs with GaOOH NRAs grown at −2 V, the light output power was increased by 22% without suffering from any serious electrical degradation and wavelength shift as compared with conventional LEDs. PMID:22898006

  13. Growth of red InP/GaInP quantum dots on a low density InAs/GaAs island seed layer by MOVPE

    NASA Astrophysics Data System (ADS)

    Roßbach, R.; Schulz, W.-M.; Reischle, M.; Beirne, G. J.; Hermannstädter, C.; Jetter, M.; Michler, P.

    2008-11-01

    We demonstrate the growth of InP/GaInP quantum dots on a low density InAs/GaAs island seed layer ( 107 cm-2) by metal-organic vapor phase epitaxy. The strain produced by the underlying InAs islands results in a distinct bimodal size distribution of the InP/GaInP quantum dot layer where large dome shaped structures and small quantum dots could be observed using atomic force microscopy. Using μ-photoluminescence only luminescence from the small high energetic InP-QDs could be recorded with emission linewidths of around 140 μeV. Autocorrelation measurements confirmed the zero dimensionality of the InP quantum dots.

  14. Airborne measurements of the impact of ground-based glaciogenic cloud seeding on orographic precipitation

    NASA Astrophysics Data System (ADS)

    Miao, Qun; Geerts, Bart

    2013-07-01

    Data from in situ probes and a vertically-pointing mm-wave Doppler radar aboard a research aircraft are used to study the cloud microphysical effect of glaciogenic seeding of cold-season orographic clouds. A previous study (Geerts et al., 2010) has shown that radar reflectivity tends to be higher during seeding periods in a shallow layer above the ground downwind of ground-based silver iodide (AgI) nuclei generators. This finding is based on seven flights, conducted over a mountain in Wyoming (the Unites States), each with a no-seeding period followed by a seeding period. In order to assess this impact, geographically fixed flight tracks were flown over a target mountain, both upwind and downwind of the AgI generators. This paper examines data from the same flights for further evidence of the cloud seeding impact. Composite radar data show that the low-level reflectivity increase is best defined upwind of the mountain crest and downwind of the point where the cloud base intersects the terrain. The main argument that this increase can be attributed to AgI seeding is that it is confined to a shallow layer near the ground where the flow is turbulent. Yet during two flights when clouds were cumuliform and coherent updrafts to flight level were recorded by the radar, the seeding impact was evident in the flight-level updrafts (about 610 m above the mountain peak) as a significant increase in the ice crystal concentration in all size bins. The seeding effect appears short-lived as it is not apparent just downwind of the crest.

  15. Controlled Ti seed layer assisted growth and field emission properties of Pb(Zr0.52Ti0.48)O3 nanowire arrays.

    PubMed

    Datta, Anuja; Mukherjee, Devajyoti; Hordagoda, Mahesh; Witanachchi, Sarath; Mukherjee, Pritish; Kashid, Ranjit V; More, Mahendra A; Joag, Dilip S; Chavan, Padmakar G

    2013-07-10

    We report on the directed upright growth of ferroelectric (FE) Pb(Zr0.52Ti0.48)O3 (PZT) nanowire (NW) arrays with large aspect ratios of >60 using a Ti seed layer assisted hydrothermal process over large surface areas on ITO/glass substrates. In a two-step growth process, Ti seed layer of low surface roughness with a thickness of ~500 nm and grain size of ~100 nm was first deposited by radio frequency (RF) sputtering which was subsequently used as substrates for the growth of highly dense, single crystalline PZT NWs by controlled nucleation. The electron emission properties of the PZT NWs were investigated using the as-grown NWs as FE cathodes. A low turn-on field of ~3.4 V/μm was obtained from the NW arrays, which is impressively lower than that from other reported values. The results reported in this work give direction to the development of a facile growth technique for PZT NWs over large surfaces and also are of interest to the generation of high current electron beam from FE NW based cathodes for field emitter applications.

  16. Effects of surface morphology of ZnO seed layers on growth of ZnO nanostructures prepared by hydrothermal method and annealing.

    PubMed

    Yim, Kwang Gug; Kim, Min Su; Leem, Jae-Young

    2013-05-01

    ZnO nanostructures were grown on Si (111) substrates by a hydrothermal method. Prior to growing the ZnO nanostructures, ZnO seed layers with different post-heat temperatures were prepared by a spin-coating process. Then, the ZnO nanostructures were annealed at 500 degrees C for 20 min under an Ar atmosphere. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out at room temperature (RT) to investigate the structural and optical properties of the as-grown and annealed ZnO nanostructures. The surface morphologies of the seed layers changed from a smooth surface to a mountain chain-like structure as the post-heating temperatures increased. The as-grown and annealed ZnO nanostructures exhibited a strong (002) diffraction peak. Compared to the as-grown ZnO nanostructures, the annealed ZnO nanostructures exhibited significantly strong enhancement in the PL intensity ratio by almost a factor of 2.

  17. Self-reduction and size controlled synthesis of silver nanoparticles on carbon nanospheres by grafting triazine-based molecular layer for conductivity improvement

    NASA Astrophysics Data System (ADS)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-02-01

    A facile, self-reduction and size controlled synthesis method has been explored to fabricate silver nanoparticles (Ag NPs) on carbon nanosphere (CNs) under mild conditions. Without using predeposition of seed metals and reducing agent, a uniform and complete layer of Ag NPs was formed through grafting a molecular layer on CNs surfaces under UV irradiation. The size and thickness of Ag NPs were effectively tuned by adjusting the UV irradiation time. This direct formation of Ag NPs was attributed to self seed in aqueous Ag(NH3)2+ complex solution through a triazine-based silane coupling agent molecular layer, even at 25 °C. Scanning electron microscopy (SEM), Transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) were employed to characterize the Ag NPs' properties. A substantial conductivity improvement of prepared Ag NPs on carbon nanosphere was demonstrated. The presented method is simple and environmentally friendly and thus should be of significant value for the industrial fabrication of Ag NPs on carbon nanosphere in conduct electricity paint and coating applications.

  18. Thermal stability of partially ordered Fe{sub 16}N{sub 2} film on non-magnetic Ag under layer

    SciTech Connect

    Zhang, Xiaowei; Wang, Jian-Ping; Yang, Meiyin; Jiang, Yanfeng; Allard, Lawrence F.

    2014-05-07

    Partially ordered Fe{sub 16}N{sub 2} thin film with (001) texture is successfully grown on a Ag under layer using a facing target sputtering system. Fe{sub 16}N{sub 2} phase is formed after post-annealing, which is detected by X-ray diffraction (XRD). High saturation magnetization (M{sub s}) of Fe{sub 16}N{sub 2} thin films is observed by vibrating sample magnetometry. It is found that Fe{sub 16}N{sub 2} phase can be stable up to 225 °C, which is demonstrated by the Fe{sub 16}N{sub 2} finger print peak (002) in XRD. After heating to 250 °C, the Fe{sub 16}N{sub 2} phase decomposes, which leads to low M{sub s} and soft magnetic behavior. To further study Fe{sub 16}N{sub 2} decomposition, X-ray photoelectron spectroscopy is performed to detect the binding energy of nitrogen atoms. Differences of binding energy corresponding to before and after heat treatment show the variation of nitrogen atom in electronic state with surrounding Fe atoms, indicating nitrogen atomic migration during heat treatment.

  19. 500 V/200 A fault current limiter modules made of large-area MOD-YBa2Cu3O7 thin films with high-resistivity Au-Ag alloy shunt layers

    NASA Astrophysics Data System (ADS)

    Yamasaki, H.; Arai, K.; Kaiho, K.; Nakagawa, Y.; Sohma, M.; Kondo, W.; Yamaguchi, I.; Matsui, H.; Kumagai, T.; Natori, N.; Higuchi, N.

    2009-12-01

    We developed 500 Vrms/ 200 Arms superconducting thin-film fault current limiter (FCL) modules that can withstand high electric fields (E>30 Vrms cm-1) by using large-area YBa2Cu3O7 (YBCO) thin films with high-resistivity Au-Ag alloy shunt layers. Au-Ag alloy films about 60 nm thick were sputter-deposited on YBCO/CeO2/sapphire films (2.7 cm × 20 cm) prepared using a fluorine-free MOD method. Each 20 cm long Au-Ag/YBCO film was then divided into three segments (each ~5.7 cm long) by four Ag electrodes deposited on the Au-Ag layer, resulting in an effective length of 17 cm. The 500 V/200 A FCL modules were then fabricated by first connecting two of the segmented films in parallel using Ag-sheathed Bi-2223 superconducting tapes and then connecting in parallel an external resistor and a capacitor for each segment to protect the Au-Ag/YBCO film from hot spots. Switching tests using a short-circuit generator revealed that all the modules carried a superconducting ac current of >=237 Arms and that modules prepared with YBCO films having a relatively homogeneous critical current Ic distribution successfully withstood >=515 Vrms for five cycles without any damage. These results demonstrate that (a) the FCL modules fabricated here successfully achieved the rated current of 200 Arms and rated voltage of 500 Vrms and (b) total area of the YBCO films on sapphire substrates required for the 500 V/200 A (100 kV A) module was less than one-third that for conventional thin-film FCL modules that use gold shunt layers, leading to the significantly reduced cost of thin-film FCLs. Film damage due to hot spots depended on the difference in Ic between the two parallel-connected films and on the inhomogeneity of the Ic distribution in the film, and is most probably due to nonlinear current flows at the moment of quenching that cause local overheating.

  20. Surface Segregated AgAu Tadpole-Shaped Nanoparticles Synthesized Via a Single Step Combined Galvanic and Citrate Reduction Reaction.

    PubMed

    da Silva, Anderson G M; Lewis, Edward A; Rodrigues, Thenner S; Slater, Thomas J A; Alves, Rafael S; Haigh, Sarah J; Camargo, Pedro H C

    2015-08-24

    New AgAu tadpole nanocrystals were synthesized in a one-step reaction involving simultaneous galvanic replacement between Ag nanospheres and AuCl4(-)(aq.) and AuCl4(-)(aq.) reduction to Au in the presence of citrate. The AgAu tadpoles display nodular polycrystalline hollow heads, while their undulating tails are single crystals. The unusual morphology suggests an oriented attachment growth mechanism. Remarkably, a 1 nm thick Ag layer was found to segregate so as to cover the entire surface of the tadpoles. By varying the nature of the seeds (Au NPs), double-headed Au tadpoles could also be obtained. The effect of a number of reaction parameters on product morphology were explored, leading to new insights into the growth mechanisms and surface segregation behavior involved in the synthesis of bimetallic and anisotropic nanomaterials.

  1. Structural, optical, and electrical properties of Cu2O nanocubes grown on indium-tin-oxide-coated glass substrates by using seed-layer-free electrochemical deposition method

    NASA Astrophysics Data System (ADS)

    No, Young Soo; Oh, Do Hyon; Kim, Su Yeon; Yoo, Keon-Ho; Kim, Tae Whan

    2012-07-01

    Electrochemical deposition was employed to fabricate Cu2O nanocubes on indium-tin-oxide (ITO)-coated glass substrates at 75 °C without using any template, catalyst, or seed layer. Scanning electron microscopy images showed that the Cu2O nanocubes with a nanoscale size were uniformly formed on ITO-coated glass substrates. X-ray patterns of the Cu2O nanocubes exhibited the dominant peaks corresponding to the Cu2O cubic structures. The current-voltage curves of an Au/n-type Al-doped ZnO/p-type Cu2O nanocube/ITO device clearly showed current rectifying behavior with a turn-on voltage of 3.6 V.

  2. The AgroEcoSystem (AgES) response-function model simulates layered soil water dynamics in semi-arid Colorado: sensitivity and calibration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simulation of vertical soil hydrology is a critical component of simulating even more complex soil water dynamics in space and time, including land-atmosphere and subsurface interactions. The AgroEcoSystem (AgES) model is defined here as a single land unit implementation of the full AgES-W (Watershe...

  3. Layers

    NASA Astrophysics Data System (ADS)

    Hong, K. J.; Jeong, T. S.; Youn, C. J.

    2014-09-01

    The temperature-dependent photoresponse characteristics of MnAl2S4 layers have been investigated, for the first time, by use of photocurrent (PC) spectroscopy. Three peaks were observed at all temperatures. The electronic origin of these peaks was associated with band-to-band transitions from the valence-band states Γ4( z), Γ5( x), and Γ5( y) to the conduction-band state Γ1( s). On the basis of the relationship between PC-peak energy and temperature, the optical band gap could be well expressed by the expression E g( T) = E g(0) - 2.80 × 10-4 T 2/(287 + T), where E g(0) was estimated to be 3.7920 eV, 3.7955 eV, and 3.8354 eV for the valence-band states Γ4( z), Γ5( x), and Γ5( y), respectively. Results from PC spectroscopy revealed the crystal-field and spin-orbit splitting were 3.5 meV and 39.9 meV. The gradual decrease of PC intensity with decreasing temperature can be explained on the basis of trapping centers associated with native defects in the MnAl2S4 layers. Plots of log J ph, the PC current density, against 1/ T, revealed a dominant trap level in the high-temperature region. By comparing PC and the Hall effect results, we confirmed that this trap level is a shallow donor 18.9 meV below the conduction band.

  4. Tribological properties of ag-based amphiphiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most ag-based materials are amphiphilic because they comprise polar and non-polar groups within the same molecule. One of the major categories of amphiphilic ag-based materials are seed oils, which are actively investigated as substitutes for petroleum in a wide variety of consumer and industrial a...

  5. Facile synthesis of S-Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S-Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70-160 nm and lengths of 200-360 nm. X-ray diffraction of the S-Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S-Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S-Ag nanocomposites with diameters of 10-40 nm were obtained. The formation mechanism of the S-Ag nanocomposites was studied by designing a series of experiments using ultraviolet-visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S-Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S-Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  6. Facile synthesis of S–Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S–Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70–160 nm and lengths of 200–360 nm. X-ray diffraction of the S–Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S–Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S–Ag nanocomposites with diameters of 10–40 nm were obtained. The formation mechanism of the S–Ag nanocomposites was studied by designing a series of experiments using ultraviolet–visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S–Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S–Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  7. Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer

    PubMed Central

    2012-01-01

    In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the p-n junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it. PMID:22222067

  8. Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer.

    PubMed

    Baek, Seong-Ho; Noh, Bum-Young; Park, Il-Kyu; Kim, Jae Hyun

    2012-01-05

    In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the p-n junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it.

  9. DEFECT SELECTIVE ETCHING OF THICK ALN LAYERS GROWN ON 6H-SIC SEEDS - A TRANSMISSION ELECTRON MICROSCOPY STUDY

    SciTech Connect

    Nyakiti, Luke; Chaudhari, Jharna; Kenik, Edward A; Lu, Peng; Edgar, J H

    2008-01-01

    In the present study, the type and densities of defects in AlN crystals grown on 6H-SiC seeds by the sublimation-recombination method were assessed. The positions of the defects in AlN were first identified by defect selective etching (DSE) in molten NaOH-KOH at 400 C for 2 minutes. Etching produced pits of three different sizes: 1.77 m, 2.35 m , and 2.86 m. The etch pits were either aligned together forming a sub-grain boundary or randomly distributed. The smaller etch pits were either isolated or associated with larger etch pits. After preparing crosssections of the pits by the focused ion beam (FIB) technique, transmission electron microscopy (TEM) was performed to determine which dislocation type (edge, mixed or screw) produced a specific etch pit sizes. Preliminary TEM bright field and dark field study using different zone axes and diffraction vectors indicates an edge dislocation with a Burgers vector 1/3[1120] is associated with the smallest etch pit size.

  10. Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Alnoor, Hatim; Pozina, Galia; Khranovskyy, Volodymyr; Liu, Xianjie; Iandolo, Donata; Willander, Magnus; Nur, Omer

    2016-04-01

    Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealed by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5 M exhibit stronger yellow emission (˜575 nm) compared to those based on 1:1 and 1:3 M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination.

  11. Breakthrough of the p-type doping bottleneck in ZnO by inserting an ultrathin ZnX (X  =  S, Se and Te) layer doped with NX or AgZn

    NASA Astrophysics Data System (ADS)

    Jiang, Xin-he; Shi, Jun-jie; Zhang, Min; Zhong, Hong-xia; Huang, Pu; Ding, Yi-min; Cao, Xiong; Wu, Meng; Liao, Zhi-min

    2016-03-01

    The worldwide problem of p-type doping in ZnO is investigated based on first-principles calculations by combining the standard density functional theory and hybrid functional methods. We find that p-type doping can be realized by inserting an ultrathin ZnX (X  =  S, Se and Te) layer, doped with NX or AgZn, into ZnO to form short-period (ZnO) m /(ZnX) n (m  >  n) superlattices. The formation energy is the lowest for NX or AgZn in the ZnX layer. The Zn-rich (Zn-poor) condition is favourable for the formation of the NX (AgZn) defect. Compensation by the native defects can be avoided for the Ag-doped (ZnO) m /(ZnX) n under the Zn-poor condition. The N (Ag) acceptor activation energy can be reduced from 0.45 (0.43) eV in ZnO to 0.33 (0.32) eV in (ZnO)5/(ZnS)1, 0.20 (0.24) eV in (ZnO)5/(ZnSe)1 and 0.12 (0.13) eV in (ZnO)5/(ZnTe)1, which is caused by the ZnX-monolayer modulation to the local structure around the NX or AgZn defect and the high-lying p-derived valence bands. Moreover, the band gaps can be tuned from 3.40 eV of ZnO to 3.21 eV of (ZnO)5/(ZnS)1, 2.41 eV of (ZnO)5/(ZnSe)1 and 2.26 eV of (ZnO)5/(ZnTe)1, which is promising for the integration of ZnO-based white light-emitting diodes.

  12. Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates.

    PubMed

    Wang, Zhiwei; Meng, Guowen; Huang, Zhulin; Li, Zhongbo; Zhou, Qitao

    2014-12-21

    We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS "hot spots" are generated from the electromagnetic coupling of the densely distributed Ag-NPs, and the semiconducting ZnO-mesoporous-NSs also have chemical supporting enhancement and distinct molecule adsorbing abilities, the composite SERS-substrates demonstrate high SERS-sensitivity with good signal reproducibility. As a trial for potential applications, the composite SERS-substrates were used to identify pesticides and highly toxic polychlorinated biphenyls (PCBs), and low concentrations down to 10(-7) M for methyl parathion and 5 × 10(-6) M for PCB-77 were reached, respectively, showing promising potential for the SERS-based rapid detection of toxic organic pollutants in the environment.

  13. Manganese containing layer for magnetic recording media

    DOEpatents

    Lambeth, David N.; Lee, Li-Lien; Laughlin, David E.

    1999-01-01

    The present invention provides for a magnetic recording media incorporating Mn-containing layers between a substrate and a magnetic layer to provide media having increased coercivity and lower noise. The Mn-containing layer can be incorporated in a rotating, translating or stationary recording media to operate in conjunction with magnetic transducing heads for recording and reading of magnetic data, as well as other applications. The magnetic recording medium of the invention preferably includes a Co or Co alloy film magnetic layer, and Mn-containing layer, preferably comprised of VMn, TiMn, MnZn, CrMnMo, CrMnW, CrMnV, and CrMnTi, and most preferably a CrMn alloy, disposed between the substrate and the magnetic layer to promote an epitaxial crystalline structure in the magnetic layer. The medium can further include seed layers, preferably polycrystalline MgO for longitudinal media, underlayers, and intermediate layers. Underlayers and intermediate layers are comprised of materials having either an A2 structure or a B2-ordered crystalline structure disposed between the seed layer and the magnetic layer. Materials having an A2 structure are preferably Cr or Cr alloys, such as CrV, CrMo, CrW and CrTi. Materials having a B2-ordered structure having a lattice constant that is substantially comparable to that of Cr, such as those preferably selected from the group consisting of NiAl, AILCo, FeAl, FeTi, CoFe, CoTi, CoHf, CoZr, NiTi, CuBe, CuZn, A-LMn, AlRe, AgMg, and Al.sub.2 FeMn.sub.2, and is most preferably FeAl or NiAl.

  14. Influence of deposition temperature on the growth of rutile TiO2 nanostructures by CBD method on seed layer prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Selman, Abbas M.; Hassan, Z.

    2013-12-01

    Rutile titanium dioxide (TiO2) nanostructures were successfully fabricated using the simple chemical bath deposition method at various deposition temperatures. These nanostructures were fabricated on (100 ± 10 nm) TiO2 seed layer coated glass, which was prepared via radio frequency (RF) magnetron sputtering at a substrate temperature of 350 °C. The synthesized TiO2 nanostructures were annealed at 550 °C for 2 h and examined via X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence (PL), and Raman spectroscopy. The XRD patterns showed the presence of the peaks characteristic of rutile phase. The band gap of the TiO2 nanostructures was calculated using the UV-vis absorption spectrum and was determined to be between 3.15 and 3.24 eV. The Raman spectra contained three characteristic bands at 232, 446 and 612 cm-1, which correspond to the tetragonal TiO2 rutile. The results showed good quality of nanocrystalline TiO2 rutile phase.

  15. Ag-Air Service

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Econ, Inc.'s agricultural aerial application, "ag-air," involves more than 10,000 aircraft spreading insecticides, herbicides, fertilizer, seed and other materials over millions of acres of farmland. Difficult for an operator to estimate costs accurately and decide what to charge or which airplane can handle which assignment most efficiently. Computerized service was designed to improve business efficiency in choice of aircraft and determination of charge rates based on realistic operating cost data. Each subscriber fills out a detailed form which pertains to his needs and then receives a custom-tailored computer printout best suited to his particular business mix.

  16. Effects of Oxide Seeding Layers on Electrical Properties of Chemical Solution Deposition-Derived Pb(Mg1/3Nb2/3)O3-PbTiO3 Relaxor Thin Films

    NASA Astrophysics Data System (ADS)

    Arai, Takashi; Goto, Yasuyuki; Yanagida, Hiroshi; Sakamoto, Naonori; Ohno, Tomoya; Matsuda, Takeshi; Wakiya, Naoki; Suzuki, Hisao

    2013-09-01

    Relaxor ferroelectrics Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have attracted considerable attention because of their excellent electrical properties, such as high dielectricity and piezoelectricity, for application to super capacitors, piezoelectric actuators, and so on. It is well known that the electrical properties of ferroelectric thin films depend on several parameters, such as crystal orientation, composition, and residual stress. In this study, the effects of the lead titanate and lanthanum nickel oxide seeding layers on the film orientation, electrical properties, and low-temperature crystallization behavior were investigated for Chemical Solution Deposition (CSD)-derived PMN-PT thin films. As a result, PMN-PT thin films with (001)C- and (111)C-preferred orientations were successfully obtained by designing the seeding layers. Both thin films exhibited very good ferroelectricity because of their good crystallinity and preferred orientation.

  17. Chemically-inactive interfaces in thin film Ag/AgI systems for resistive switching memories

    PubMed Central

    Cho, Deok-Yong; Tappertzhofen, Stefan; Waser, Rainer; Valov, Ilia

    2013-01-01

    AgI nanoionics-based resistive switching memories were studied in respect to chemical stability of the Ag/AgI interface using x-ray absorption spectroscopy. The apparent dissolution of Ag films of thickness below some tens of nanometers and the loss of electrode/electrolyte contact was critically addressed. The results evidently show that there are no chemical interactions at the interface despite the high ionic mobility of Ag ions. Simulation results further show that Ag metal clusters can form in the AgI layer with intermediate-range order at least up to next-next nearest neighbors, suggesting that Ag can permeate into the AgI only in an aggregated form of metal crystallite. PMID:23378904

  18. Development and validation of high-performance liquid chromatography and high-performance thin-layer chromatography methods for the quantification of khellin in Ammi visnaga seed

    PubMed Central

    Kamal, Abid; Khan, Washim; Ahmad, Sayeed; Ahmad, F. J.; Saleem, Kishwar

    2015-01-01

    Objective: The present study was used to design simple, accurate and sensitive reversed phase-high-performance liquid chromatography RP-HPLC and high-performance thin-layer chromatography (HPTLC) methods for the development of quantification of khellin present in the seeds of Ammi visnaga. Materials and Methods: RP-HPLC analysis was performed on a C18 column with methanol: Water (75: 25, v/v) as a mobile phase. The HPTLC method involved densitometric evaluation of khellin after resolving it on silica gel plate using ethyl acetate: Toluene: Formic acid (5.5:4.0:0.5, v/v/v) as a mobile phase. Results: The developed HPLC and HPTLC methods were validated for precision (interday, intraday and intersystem), robustness and accuracy, limit of detection and limit of quantification. The relationship between the concentration of standard solutions and the peak response was linear in both HPLC and HPTLC methods with the concentration range of 10–80 μg/mL in HPLC and 25–1,000 ng/spot in HPTLC for khellin. The % relative standard deviation values for method precision was found to be 0.63–1.97%, 0.62–2.05% in HPLC and HPTLC for khellin respectively. Accuracy of the method was checked by recovery studies conducted at three different concentration levels and the average percentage recovery was found to be 100.53% in HPLC and 100.08% in HPTLC for khellin. Conclusions: The developed HPLC and HPTLC methods for the quantification of khellin were found simple, precise, specific, sensitive and accurate which can be used for routine analysis and quality control of A. visnaga and several formulations containing it as an ingredient. PMID:26681890

  19. Correlation of the structural properties of a Pt seed layer with the perpendicular magnetic anisotropy features of full Heusler-based Co2FeAl/MgO/Co2Fe6B2 junctions via a 12-inch scale Si wafer process

    NASA Astrophysics Data System (ADS)

    Chae, Kyo-Suk; Lee, Du-Yeong; Shim, Tae-Hun; Hong, Jin-Pyo; Park, Jea-Gun

    2013-10-01

    We elucidated the interfacial-perpendicular magnetic anisotropy (i-PMA) features of full Heusler-based Co2FeAl/MgO/Co2Fe6B2 magnetic-tunnel-junctions as functions of the structural properties of the Pt seed layer including its thickness and ex situ annealing temperature. All of the samples were prepared in a 12-inch silicon wafer process for real industry applications. The observations of the M-H loops emphasize that a thinner Pt seed layer and a high ex situ annealing temperature enhance the surface roughness of the seed layer, providing better i-PMA characteristics. HR-TEM images of the samples were evaluated to understand the structural effects of thin and thick Pt seed layers.

  20. Well aligned ZnO nanorods growth on the gold coated glass substrate by aqueous chemical growth method using seed layer of Fe3O4 and Co3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ibupoto, Z. H.; Khun, K.; Lu, Jun; Liu, Xianjie; AlSalhi, M. S.; Atif, M.; Ansari, Anees A.; Willander, M.

    2013-04-01

    In this study, Fe3O4 and Co3O4 nanoparticles were prepared by co-precipitation method and sol-gel method respectively. The synthesised nanoparticles were characterised by X-ray diffraction [XRD] and Raman spectroscopy techniques. The obtained results have shown the nanocrystalline phase of obtained Fe3O4 and Co3O4 nanoparticles. Furthermore, the Fe3O4 and Co3O4 nanoparticles were used as seed layer for the fabrication of well-aligned ZnO nanorods on the gold coated glass substrate by aqueous chemical growth method. Scanning electron microscopy (SEM), high resolution transmission electron microscopy [HRTEM], as well as XRD and energy dispersive X-ray techniques were used for the structural characterisation of synthesised ZnO nanorods. This study has explored highly dense, uniform, well-aligned growth pattern along 0001 direction and good crystal quality of the prepared ZnO nanorods. ZnO nanorods are only composed of Zn and O atoms. Moreover, X-ray photoelectron spectroscopy was used for the chemical analysis of fabricated ZnO nanorods. In addition, the structural characterisation and the chemical composition study and the optical investigation were carried out for the fabricated ZnO nanorods and the photoluminescence [PL] spectrum have shown strong ultraviolet (UV) peak at 381 nm for Fe3O4 nanoparticles seeded ZnO nanorods and the PL spectrum for ZnO nanorods grown with the seed layer of Co3O4 nanoparticles has shown a UV peak at 382 nm. The green emission and orange/red peaks were also observed for ZnO nanorods grown with both the seed layers. This study has indicated the fabrication of well aligned ZnO nanorods using the one inorganic nanomaterial on other inorganic nanomaterial due to their similar chemistry.

  1. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al.

    PubMed

    Estrin, Y; Rich, D H; Rozenfeld, N; Arad-Vosk, N; Ron, A; Sa'ar, A

    2015-10-30

    The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ∼2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ω(sp), and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals. PMID:26436289

  2. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al

    NASA Astrophysics Data System (ADS)

    Estrin, Y.; Rich, D. H.; Rozenfeld, N.; Arad-Vosk, N.; Ron, A.; Sa'ar, A.

    2015-10-01

    The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ˜2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ωsp, and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals.

  3. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al.

    PubMed

    Estrin, Y; Rich, D H; Rozenfeld, N; Arad-Vosk, N; Ron, A; Sa'ar, A

    2015-10-30

    The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ∼2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ω(sp), and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals.

  4. Layer by layer growth of silver chloride nanoparticle within the pore channels of SBA-15/SO3H mesoporous silica (AgClNP/SBA-15/SO3K): Synthesis, characterization and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Rostamnia, Sadegh; Doustkhah, Esmail; Estakhri, Saba; Karimi, Ziba

    2016-02-01

    The growth of silver chloride nanoparticles within the pore channels of functionalized SBA-15 mesoporous was achieved by sequential dipping steps in alternating bath of potassium chloride and silver nitrate under ultrasound irradiation at pH=9. The effects of sequential dipping steps in growth of the AgCl nanoparticles have been studied. The growth and formation of AgCl nanoparticles inside the sulfonated SBA-15 were characterized by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Antibacterial activity of the synthesized materials was investigated against Escherichia coli (E.coli) using the conventional diffusion-disc method. The materials showed high antibacterial activity.

  5. Thermal durability of AZO/Ag(Al)/AZO transparent conductive films

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yukiko; Igarashi, Kanae; Shirasaki, Shinya; Kikuchi, Akihiko

    2016-04-01

    Effects of Al doping on surface morphology, sheet resistance, optical transmission spectra, and thermal durability of a thin Ag layer and AZO/Ag/AZO dielectric/metal/dielectric (DMD) transparent conductive films (TCFs) were investigated. The 1.7 at. % Al doping suppressed the initial island growth of a thin Ag layer and the plasmon resonant absorption dip in the optical transmission spectra. The threshold thickness of percolation conductivity was reduced from 9-10 (pure Al layer) to 5-6 nm (1.7 at. % Al-doped Ag layer). Al doping in the Ag layer improved the thermal durability of AZO/Ag/AZO-DMD TCFs. The threshold temperature for Ag void formation increased from 400 °C (DMD with pure Ag layer) to 600 °C (DMD with a 10.5 at. % Al-doped Ag layer). The optimum annealing temperature increased from 300 °C (DMD with a pure Ag layer) to 500 °C (DMD with a 10.5 at. % Al-doped Ag layer). Maximum figures of merit (FOM) were 0.5 × 10-2 and 1.1 × 10-2 Ω-1 for the DMD with a pure Ag layer and that with a 10.5 at. % Al-doped Ag layer, respectively.

  6. Accumulation and degradation of thiamin-binding protein and level of thiamin in wheat seeds during seed maturation and germination.

    PubMed

    Watanabe, Katsumi; Nishida, Naoko; Adachi, Takashi; Ueda, Motoko; Mitsunaga, Toshio; Kawamura, Yukio

    2004-06-01

    Changes in the levels of thiamin-binding globulin and thiamin in wheat seeds during maturation and germination were studied. The thiamin-binding activity of the seed proteins increased with seed development after flowering. The thiamin content of the seeds also increased with development. Thiamin-binding activity decreased during seed germination. On the other hand, immunological analysis using an antibody directed against the thiamin-binding protein isolated from wheat seeds showed that the thiamin-binding globulin accumulated in the aleurone layer of the seeds during maturation, and then the protein was degraded and disappeared during seed germination. These results suggested that the thiamin-binding globulin of wheat seeds was synthesized and accumulated in the aleurone layer of the seeds with seed development, similar to the thiamin-binding albumin in sesame seeds, and that thiamin bound to the thiamin-binding globulin in the dormant wheat seeds for germ growth during germination.

  7. The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A multi-sensor case study of shallow precipitating orographic cumuli

    NASA Astrophysics Data System (ADS)

    Pokharel, Binod; Geerts, Bart; Jing, Xiaoqin; Friedrich, Katja; Aikins, Joshua; Breed, Daniel; Rasmussen, Roy; Huggins, Arlen

    2014-10-01

    This paper examines reflectivity data from three different radar systems, as well as airborne and ground-based in situ particle imaging data, to study the impact of ground-based glaciogenic seeding on shallow, lightly precipitating orographic cumuli, observed on 13 February 2012, as part of the AgI Seeding Cloud Impact Investigation (ASCII) experiment in Wyoming. Three silver iodide (AgI) generators were used, located on the windward slopes of the target mountain. This case was chosen for several reasons: the AgI generators were near the lifting condensation level, where the temperature was about - 6 °C; cloud droplets were present in the cumulus clouds, which were rooted in the boundary layer; and the airflow, although weak, ascended over the mountain. The target mountain pass site was almost certainly impacted by seeding, according to a trace element analysis of the falling snow. Data from three radar systems were used in the analysis of the impact of seeding on precipitation: the airborne W-band (3 mm wavelength) profiling Wyoming Cloud Radar (WCR), two Ka-band (1.2 cm) profiling Micro-Rain Radars (MRR), and a X-band (3 cm) scanning Doppler-on-Wheels (DOW) radar. The WCR was onboard a research aircraft flying geographically fixed tracks, the DOW and one MRR were located at the target mountain pass, and another MRR was upstream of the AgI generators. Composite data from the three radar systems, each with their own target and upwind control regions, indicate that the observed changes in reflectivity profiles can be explained largely by the natural emergence of shallow cumuli. A comparison with lateral control regions (i.e., over the mountain, but to the side of the AgI plumes) suggests that seeding may have further enhanced snowfall, but the signal is weak. Particle probes at flight level and at the mountain pass site show that the concentration of small ice crystals (< 1 mm) was significantly larger downwind of the AgI generators during seeding. This too is

  8. Enhancement of magnetoresistance by inserting thin NiAl layers at the interfaces in Co2FeGa0.5Ge0.5/Ag/Co2FeGa0.5Ge0.5 current-perpendicular-to-plane pseudo spin valves

    NASA Astrophysics Data System (ADS)

    Jung, J. W.; Sakuraba, Y.; Sasaki, T. T.; Miura, Y.; Hono, K.

    2016-03-01

    We have investigated the effects of insertion of a thin NiAl layer (≤0.63 nm) into a Co2FeGa0.5Ge0.5 (CFGG)/Ag interface on the magnetoresistive properties in CFGG/Ag/CFGG current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin valves (PSVs). First-principles calculations of ballistic transmittance clarified that the interfacial band matching at the (001)-oriented NiAl/CFGG interface is better than that at the (001)-Ag/CFGG interface. The insertion of 0.21-nm-thick NiAl layers at the Co2FeGa0.5Ge0.5/Ag interfaces effectively improved the magnetoresistance (MR) output; the observed average and the highest MR ratio (ΔRA) are 62% (25 mΩ μm2) and 77% (31 mΩ μm2) at room temperature, respectively, which are much higher than those without NiAl insertion. Microstructural analysis using scanning transmission electron microscopy confirmed the existence of thin NiAl layers at the Ag interfaces with only modest interdiffusion even after annealing at 550 °C. The improvement of the interfacial spin-dependent scattering by very thin NiAl insertion can be a predominant reason for the enhancement of the MR output.

  9. Crop protection by seed coating.

    PubMed

    Ehsanfar, S; Modarres-Sanavy, S A M

    2005-01-01

    Providence of sufficient and healthy food for increasing human population clears the importance of notice to increasing crop production in company with environmental loss reduction. Growth and yield of every plant with sexual reproduction, depends on germination & emergence of sown seeds. Seed is a small alive plant that its biological function is protection and nutrition of embryo. Biological, chemical and physiological characteristics of seed, affect on plant performance & its resistance to undesirable environmental conditions, and even on its total yield. So attention to seed and try to increase its performance is so important. One of the factors that cause reduction in germination percentage and seedling establishment, is seed disease. It's possible to control these diseases by treating the seed before planting it. Coating the seed with pesticides, is one of the ways to gain this goal. Seed coating is a technique in which several material as fertilizers, nutritional elements, moisture attractive or repulsive agents, plant growth regulators, rhizobium inocolum, chemical & pesticide etc, add to seed by adhesive agents and cause to increase seed performance and germination. Seed coating, leads to increase benefits in seed industry, because seeds can use all of their genetic vigor. This technique is used for seeds of many garden plants, valuable crops (such as corn, sunflower, canola, alfalfa,...) and some of the grasses. In this technique that was first used in coating cereal seeds in 1930, a thin and permeable layer of pesticide is stuck on seed surface and prevent damage of seedborn pathogens. This layer is melted or splited after absorption of moisture and suitable temperature by seed, and let the radical to exit the seed. In this approach materials are used accurately with seed, evaporation & leakage of pesticide and also adverse effects of some pesticides on seeds are diminished, and these factors cause to increase the accuracy and performance of pesticide

  10. Maternal control of seed size in plants.

    PubMed

    Li, Na; Li, Yunhai

    2015-02-01

    Seed size is a key determinant of evolutionary fitness, and is also one of the most important components of seed yield. In angiosperms, seed development begins with double fertilization, which leads to the formation of a diploid embryo and a triploid endosperm. The outermost layer of the seed is the seed coat, which differentiates from maternal integuments. Therefore, the size of a seed is determined by the co-ordinated growth of the embryo, endosperm, and maternal tissue. Recent studies have identified several factors that act maternally or zygotically to regulate seed size, and revealed possible mechanisms that underlie seed size control in Arabidopsis and rice. In this review, we summarize current research progress in maternal control of seed size and discuss the roles of several newly identified regulators in maternal regulation of seed growth.

  11. Seed odor mediates an obligate ant-plant mutualism in Amazonian rainforests.

    PubMed

    Youngsteadt, Elsa; Nojima, Satoshi; Häberlein, Christopher; Schulz, Stefan; Schal, Coby

    2008-03-25

    Seed dispersal mutualisms are essential for the survival of diverse plant species and communities worldwide. Among invertebrates, only ants have a major role in seed dispersal, and thousands of plant species produce seeds specialized for ant dispersal in "diffuse" multispecies interactions. An outstanding but poorly understood ant-seed mutualism occurs in the Amazonian rainforest, where arboreal ants collect seeds of several epiphyte species and cultivate them in nutrient-rich nests, forming abundant and conspicuous hanging gardens known as ant-gardens (AGs). AG ants and plants are dominant members of lowland Amazonian ecosystems, and their interaction is both specific and obligate, but the means by which ants locate, recognize, and accept their mutualist seeds while rejecting other seeds is unknown. Here we address the chemical and behavioral basis of the AG interaction. We show that workers of the AG ant Camponotus femoratus are attracted to odorants emanating from seeds of the AG plant Peperomia macrostachya, and that chemical cues also elicit seed-carrying behavior. We identify five compounds from P. macrostachya seeds that, as a blend, attract C. femoratus workers. This report of attractive odorants from ant-dispersed seeds illustrates the intimacy and complexity of the AG mutualism and begins to illuminate the chemical basis of this important and enigmatic interaction. PMID:18212122

  12. Seed odor mediates an obligate ant–plant mutualism in Amazonian rainforests

    PubMed Central

    Youngsteadt, Elsa; Nojima, Satoshi; Häberlein, Christopher; Schulz, Stefan; Schal, Coby

    2008-01-01

    Seed dispersal mutualisms are essential for the survival of diverse plant species and communities worldwide. Among invertebrates, only ants have a major role in seed dispersal, and thousands of plant species produce seeds specialized for ant dispersal in “diffuse” multispecies interactions. An outstanding but poorly understood ant–seed mutualism occurs in the Amazonian rainforest, where arboreal ants collect seeds of several epiphyte species and cultivate them in nutrient-rich nests, forming abundant and conspicuous hanging gardens known as ant-gardens (AGs). AG ants and plants are dominant members of lowland Amazonian ecosystems, and their interaction is both specific and obligate, but the means by which ants locate, recognize, and accept their mutualist seeds while rejecting other seeds is unknown. Here we address the chemical and behavioral basis of the AG interaction. We show that workers of the AG ant Camponotus femoratus are attracted to odorants emanating from seeds of the AG plant Peperomia macrostachya, and that chemical cues also elicit seed-carrying behavior. We identify five compounds from P. macrostachya seeds that, as a blend, attract C. femoratus workers. This report of attractive odorants from ant-dispersed seeds illustrates the intimacy and complexity of the AG mutualism and begins to illuminate the chemical basis of this important and enigmatic interaction. PMID:18212122

  13. AGS II

    SciTech Connect

    Palmer, R.B.

    1984-01-01

    Interest in rare K decays, neutrino oscillations and other fields have generated an increasing demand for running, and improved intensity and duty cycle, at the AGS. Current projects include acceleration of polarized protons and light ions (up to mass 32). Future plans are for a booster to increase intensity and allow heavy ions (up to mass 200), and a stretcher to give 100% duty cycle. A later upgrade could yield an average current of 32 ..mu.. amps. 6 figures, 2 tables.

  14. Expanding the plasmonic response of bimetallic nanoparticles by laser seeding

    NASA Astrophysics Data System (ADS)

    Peláez, R. J.; Rodríguez, C. E.; Afonso, C. N.

    2016-03-01

    This work explores a cost-effective route to enhance the tuning range of the optical response of metal nanostructures on substrates beyond the ranges that are achievable through the nanostructure dimensions, composition or dewetting processes. The new route (laser seeding) uses single nanosecond laser pulses to induce dewetting in regions of a metal layer deposited on a glass substrate followed by the deposition of a second metal layer, both layers being deposited by pulsed laser deposition. In order to show the possibilities of this new route, we have chosen that the two metals were different, namely Ag and Au. The comparison of the optical response of these regions to those that were laser irradiated after deposition of the second metal layer shows that while nanoalloyed nanoparticles (NPs) are formed in the latter case, the NPs produced in the former case have a heterogeneous structure. The interface between the two metals is either sharp or a narrow region where they have mixed depending on the laser fluence used. While the nanoalloyed NPs exhibit a single, narrow surface plasmon resonance (SPR), the heterogeneous NPs show broader SPRs that peak in the near infrared and depending on conditions exhibit even two clear SPRs. The laser seeding approach in the conditions used in this work allows for the expansion of the tuning range of the color to the blue-green region, i.e. beyond the region that can be achieved through nanoalloyed NPs (yellow-red region). In addition, the results presented foresee the laser seeding route as a means to produce round and almost isolated NPs in an enhanced range of diameters.

  15. Ag diffusion in cubic silicon carbide

    NASA Astrophysics Data System (ADS)

    Shrader, David; Khalil, Sarah M.; Gerczak, Tyler; Allen, Todd R.; Heim, Andrew J.; Szlufarska, Izabela; Morgan, Dane

    2011-01-01

    The diffusion of Ag impurities in bulk 3C-SiC is studied using ab initio methods based on density functional theory. This work is motivated by the desire to reduce transport of radioactive Ag isotopes through the SiC boundary layer in the Tristructural-Isotropic (TRISO) fuel pellet, which is a significant concern for the Very High Temperature Reactor (VHTR) nuclear reactor concept. The structure and stability of charged Ag and Ag-vacancy clusters in SiC are calculated. Relevant intrinsic SiC defect energies are also determined. The most stable state for the Ag impurity in SiC is found to be a Ag atom substituting on the Si sub-lattice and bound to a C vacancy. Bulk diffusion coefficients are estimated for different impurity states and values are all found to have very high activation energy. The impurity state with the lowest activation energy for diffusion is found to be the Ag interstitial, with an activation energy of approximately 7.9 eV. The high activation energies for Ag diffusion in bulk 3C-SiC cause Ag transport to be very slow in the bulk and suggests that observed Ag transport in this material is due to an alternative mechanism (e.g., grain boundary diffusion).

  16. Divergent Chemical Cues Elicit Seed Collecting by Ants in an Obligate Multi-Species Mutualism in Lowland Amazonia

    PubMed Central

    Youngsteadt, Elsa; Guerra Bustios, Patricia; Schal, Coby

    2010-01-01

    In lowland Amazonian rainforests, specific ants collect seeds of several plant species and cultivate them in arboreal carton nests, forming species-specific symbioses called ant-gardens (AGs). In this obligate mutualism, ants depend on the plants for nest stability and the plants depend on ant nests for substrate and nutrients. AG ants and plants are abundant, dominant members of lowland Amazonian ecosystems, but the cues ants use to recognize the seeds are poorly understood. To address the chemical basis of the ant-seed interaction, we surveyed seed chemistry in nine AG species and eight non-AG congeners. We detected seven phenolic and terpenoid volatiles common to seeds of all or most of the AG species, but a blend of the shared compounds was not attractive to the AG ant Camponotus femoratus. We also analyzed seeds of three AG species (Anthurium gracile, Codonanthe uleana, and Peperomia macrostachya) using behavior-guided fractionation. At least one chromatographic fraction of each seed extract elicited retrieval behavior in C. femoratus, but the active fractions of the three plant species differed in polarity and chemical composition, indicating that shared compounds alone did not explain seed-carrying behavior. We suggest that the various AG seed species must elicit seed-carrying with different chemical cues. PMID:21209898

  17. Divergent chemical cues elicit seed collecting by ants in an obligate multi-species mutualism in lowland Amazonia.

    PubMed

    Youngsteadt, Elsa; Guerra Bustios, Patricia; Schal, Coby

    2010-12-30

    In lowland Amazonian rainforests, specific ants collect seeds of several plant species and cultivate them in arboreal carton nests, forming species-specific symbioses called ant-gardens (AGs). In this obligate mutualism, ants depend on the plants for nest stability and the plants depend on ant nests for substrate and nutrients. AG ants and plants are abundant, dominant members of lowland Amazonian ecosystems, but the cues ants use to recognize the seeds are poorly understood. To address the chemical basis of the ant-seed interaction, we surveyed seed chemistry in nine AG species and eight non-AG congeners. We detected seven phenolic and terpenoid volatiles common to seeds of all or most of the AG species, but a blend of the shared compounds was not attractive to the AG ant Camponotus femoratus. We also analyzed seeds of three AG species (Anthurium gracile, Codonanthe uleana, and Peperomia macrostachya) using behavior-guided fractionation. At least one chromatographic fraction of each seed extract elicited retrieval behavior in C. femoratus, but the active fractions of the three plant species differed in polarity and chemical composition, indicating that shared compounds alone did not explain seed-carrying behavior. We suggest that the various AG seed species must elicit seed-carrying with different chemical cues.

  18. Species-Specific Seed Dispersal in an Obligate Ant-Plant Mutualism

    PubMed Central

    Youngsteadt, Elsa; Baca, Jeniffer Alvarez; Osborne, Jason; Schal, Coby

    2009-01-01

    Throughout lowland Amazonia, arboreal ants collect seeds of specific plants and cultivate them in nutrient-rich nests, forming diverse yet obligate and species-specific symbioses called Neotropical ant-gardens (AGs). The ants depend on their symbiotic plants for nest stability, and the plants depend on AGs for substrate and nutrients. Although the AGs are limited to specific participants, it is unknown at what stage specificity arises, and seed fate pathways in AG epiphytes are undocumented. Here we examine the specificity of the ant-seed interaction by comparing the ant community observed at general food baits to ants attracted to and removing seeds of the AG plant Peperomia macrostachya. We also compare seed removal rates under treatments that excluded vertebrates, arthropods, or both. In the bait study, only three of 70 ant species collected P. macrostachya seeds, and 84% of observed seed removal by ants was attributed to the AG ant Camponotus femoratus. In the exclusion experiment, arthropod exclusion significantly reduced seed removal rates, but vertebrate exclusion did not. We provide the most extensive empirical evidence of species specificity in the AG mutualism and begin to quantify factors that affect seed fate in order to understand conditions that favor its departure from the typical diffuse model of plant-animal mutualism. PMID:19194502

  19. Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwei; Meng, Guowen; Huang, Zhulin; Li, Zhongbo; Zhou, Qitao

    2014-11-01

    We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS ``hot spots'' are generated from the electromagnetic coupling of the densely distributed Ag-NPs, and the semiconducting ZnO-mesoporous-NSs also have chemical supporting enhancement and distinct molecule adsorbing abilities, the composite SERS-substrates demonstrate high SERS-sensitivity with good signal reproducibility. As a trial for potential applications, the composite SERS-substrates were used to identify pesticides and highly toxic polychlorinated biphenyls (PCBs), and low concentrations down to 10-7 M for methyl parathion and 5 × 10-6 M for PCB-77 were reached, respectively, showing promising potential for the SERS-based rapid detection of toxic organic pollutants in the environment.We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS ``hot spots'' are generated from the electromagnetic coupling of the densely

  20. Anomalous evolution of interfaces in Fe/Ag magnetic multilayer

    NASA Astrophysics Data System (ADS)

    Sharma, Gagan; Gupta, Ranjeeta; Kumar, Dileep; Gupta, Ajay

    2013-12-01

    Interfaces greatly influence the magnetic properties of multilayer nanostructures. In the present work, the x-ray standing wave (XSW) technique along with conversion electron Mössbauer spectroscopy have been used to study the evolution of interfaces in Fe/Ag system as a function of thermal annealing. The XSW technique has sufficient depth resolution so as to determine the concentration profiles of Fe across the two interfaces, namely Fe-on-Ag and Ag-on-Fe independently. In as-deposited Ag/Fe/Ag trilayer, Fe-on-Ag interface has a substantially higher roughness of 1.3 nm as compared to 0.9 nm of Ag-on-Fe interface. It is shown that the observed difference in the roughness of the two interfaces is due to a substantial intermixing between Fe and Ag occurring preferentially at Fe-on-Ag interface. With thermal annealing, the two interfaces exhibit opposite behaviour; while Fe-on-Ag interface exhibits an initial sharpening, Ag-on-Fe interface exhibits a monotonous broadening. Two competing processes occur at the interfaces, (i) interface sharpening as a result of de-mixing, driven by a large positive heat of mixing between Fe and Ag and (ii) increase in topological roughness due to increased thermal agitation. This results in a non-monotonous variation in the roughness of Fe-on-Ag interface. At sufficiently high temperature the layered structure is completely destroyed, leading to formation of Fe and Ag nanoparticles.

  1. The role of cesium suboxides in low-work-function surface layers studied by X-ray photoelectron spectroscopy - Ag-O-Cs

    NASA Technical Reports Server (NTRS)

    Yang, S.-J.; Bates, C. W., Jr.

    1980-01-01

    The oxidation of cesium on silver substrates has been studied using photoyield measurements and X-ray photoelectron spectroscopy. The occurrence of two O1s peaks in the core-level spectrum at 527.5 and 531.5-eV binding energy for cesium and oxygen exposures giving the optimum photoyield proves that two oxides of cesium exist in high-photoyield surfaces, and not Cs2O alone as previously thought. From the shape and position of the cesium peaks and the Auger parameter, the assignment of the O1s peaks at 527.5- and 531.5-eV binding energies to oxygen in Cs2O and Cs11O3, respectively, can be made. Hence the total cesium-oxygen layer is a mixed phase consisting of Cs2O + Cs11O3, approximately 20-40 A thick.

  2. Synthesis of multimetallic nanoparticles by seeded methods

    NASA Astrophysics Data System (ADS)

    Weiner, Rebecca Gayle

    This dissertation focuses on the synthesis of metal nanocrystals (NCs) by seeded methods, in which preformed seeds serve as platforms for growth. Metal NCs are of interest due to their tunable optical and catalytic properties, which arise from their composition and crystallite size and shape. Moreover, multimetallic NCs are potentially multifunctional due to the integration of the properties of each metal within one structure. However, such structures are difficult to synthesize with structural definition due to differences in precursor reduction rates and the size-dependent solubility of bimetallic phases. Seed-mediated co-reduction (SMCR) is a method developed in the Skrabalak Laboratory that couples the advantages of a seeded method with co-reduction methods to achieve multimetallic nanomaterials with defined shape and architecture. This approach was originally demonstrated in a model Au-Pd system in which Au and Pd precursors were simultaneously reduced to deposit metal onto shape-controlled Au or Pd NC seeds. Using SMCR, uniformly branched core shell Au Au-Pd and Pd Au-Pd NCs were synthesized, with the shape of the seeds directing the symmetry of the final structures. By varying the seed shape and the temperature at which metal deposition occurs, the roles of adatom diffusion and seed shape on final NC morphology were decoupled. Moreover, by selecting seeds of a composition (Ag) different than the depositing metals (Au and Pd), trimetallic nanostructures are possible, including shape-controlled Ag Au-Pd NCs and hollow Au-Pd-Ag nanoparticles (NPs). The latter architecture arises through galvanic replacement. Shape-controlled core shell NCs with trimetallic shells are also possible by co-reducing three metal precursors (Ag, Au, and Pd) with shape-controlled Au seeds; for example, convex octopods, concave cubes, and truncated octahedra were achieved in this initial demonstration and was enabled by varying the ratio of Ag to Au/Pd in the overgrowth step as well as

  3. Ag nanotubes and Ag/AgCl electrodes in nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Davenport, Matthew; Healy, Ken; Siwy, Zuzanna S.

    2011-04-01

    Miniaturization of the entire experimental setup is a key requirement for widespread application of nanodevices. For nanopore biosensing, integrating electrodes onto the nanopore membrane and controlling the pore length is important for reducing the complexity and improving the sensitivity of the system. Here we present a method to achieve these goals, which relies on electroless plating to produce Ag nanotubes in track-etched polymer nanopore templates. By plating from one side only, we create a conductive nanotube that does not span the full length of the pore, and thus can act as a nanoelectrode located inside the nanopore. To give optimal electrochemical behavior for sensing, we coat the Ag nanotube with a layer of AgCl. We characterize the behavior of this nanoelectrode by measuring its current-voltage response and find that, in most cases, the response is asymmetric. The plated nanopores have initial diameters between 100 and 300 nm, thus a range suitable for detection of viruses.

  4. Photoreduction of Ag+ in Ag/Ag2S/Au memristor

    NASA Astrophysics Data System (ADS)

    Mou, N. I.; Tabib-Azar, M.

    2015-06-01

    Silver halides and chalcogenides are excellent memristor materials that have been extensively used in the past as photosensitive layers in photography. Here we examine the effect of illumination on the operating voltages and switching speed of Ag/Ag2S/Au memristors using a green laser (473-523 nm). Our results indicate that illumination decreases the average switching time from high to low resistance states by ∼19% and decreases the turn-off voltages dramatically from -0.8 V to -0.25 V that we attribute to the change in sulfur valency and a photo-induced change in its oxidation/reduction potential. Photo-induced reduction of silver in Ag2S may be used in three dimensional optical memories that can be electronically read and reset.

  5. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films.

    PubMed

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates. PMID:25483981

  6. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films

    NASA Astrophysics Data System (ADS)

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  7. Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses.

    PubMed

    Amooaghaie, Rayhaneh; Tabatabaei, Fatemeh; Ahadi, Ali-Mohammad

    2015-03-01

    Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials, although the mechanisms of AgNP toxicity in terrestrial plants is still unclear. We compared the toxic effects of AgNPs and AgNO3 on Brassica nigra seed germination at physiological and molecular levels. Both AgNPs and AgNO3 inhibited seed germination, lipase activity, soluble and reducing sugar contents in germinating seeds and seedlings. These reductions were more pronounced in AgNP treatments than AgNO3 treatments. Application of 200-400mg/L both AgNPs and AgNO3 increased transcription of heme oxygenase-1. However, at 800, 1600 mg/L, AgNPs or AgNO3 suppressed HO-1 expression. At 400mg/L, AgNPs or AgNO3-induced inhibitory effects on seed germination and were ameliorated by the HO-1 inducer, hematin, or NO donor, sodium nitroprusside (SNP). Additionally, 4 μM hematin and 400 μM SNP were able to markedly boost the HO/NO system. However, the addition of the HO-1 inhibitor (ZnPPIX) or the specific scavenger of NO (cPTIO) not only reversed the protective effects conferred by hematin, but also blocked the up-regulation of HO activity. In addition, hematin-drived NO production in B. niger seeds under AgNPs was confirmed. Our results at physiological and molecular levels suggested that AgNPs were more toxic than AgNO3. Based on these results, for the first time, we suggest that endogenous HO is needed to alleviate AgNPs-induced germination inhibition, which might have a possible interaction with NO.

  8. Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses.

    PubMed

    Amooaghaie, Rayhaneh; Tabatabaei, Fatemeh; Ahadi, Ali-Mohammad

    2015-03-01

    Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials, although the mechanisms of AgNP toxicity in terrestrial plants is still unclear. We compared the toxic effects of AgNPs and AgNO3 on Brassica nigra seed germination at physiological and molecular levels. Both AgNPs and AgNO3 inhibited seed germination, lipase activity, soluble and reducing sugar contents in germinating seeds and seedlings. These reductions were more pronounced in AgNP treatments than AgNO3 treatments. Application of 200-400mg/L both AgNPs and AgNO3 increased transcription of heme oxygenase-1. However, at 800, 1600 mg/L, AgNPs or AgNO3 suppressed HO-1 expression. At 400mg/L, AgNPs or AgNO3-induced inhibitory effects on seed germination and were ameliorated by the HO-1 inducer, hematin, or NO donor, sodium nitroprusside (SNP). Additionally, 4 μM hematin and 400 μM SNP were able to markedly boost the HO/NO system. However, the addition of the HO-1 inhibitor (ZnPPIX) or the specific scavenger of NO (cPTIO) not only reversed the protective effects conferred by hematin, but also blocked the up-regulation of HO activity. In addition, hematin-drived NO production in B. niger seeds under AgNPs was confirmed. Our results at physiological and molecular levels suggested that AgNPs were more toxic than AgNO3. Based on these results, for the first time, we suggest that endogenous HO is needed to alleviate AgNPs-induced germination inhibition, which might have a possible interaction with NO. PMID:25528376

  9. Determination of Four Major Saponins in Skin and Endosperm of Seeds of Horse Chestnut (Aesculus Hippocastanum L.) Using High Performance Liquid Chromatography with Positive Confirmation by Thin Layer Chromatography

    PubMed Central

    Abudayeh, Zead Helmi Mahmoud; Al Azzam, Khaldun Mohammad; Naddaf, Ahmad; Karpiuk, Uliana Vladimirovna; Kislichenko, Viktoria Sergeevna

    2015-01-01

    Purpose: To separate and quantify four major saponins in the extracts of the skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum L.) using ultrasonic solvent extraction followed by a high performance liquid chromatography-diode array detector (HPLC-DAD) with positive confirmation by thin layer chromatography (TLC). Methods: The saponins: escin Ia, escin Ib, isoescin Ia and isoescin Ib were extracted using ultrasonic extraction method. The optimized extraction conditions were: 70% methanol as extraction solvent, 80 °C as extraction temperature, and the extraction time was achieved in 4 hours. The HPLC conditions used: Zorbax SB-ODS-(150 mm × 2.1 mm, 3 μm) column, acetonitrile and 0.10% phosphoric acid solution (39:61 v/v) as mobile phase, flow rate was 0.5 mL min−1 at 210 nm and 230 nm detection. The injection volume was 10 μL, and the separation was carried out isothermally at 30 °C in a heated chamber. Results: The results indicated that the developed HPLC method is simple, sensitive and reliable. Moreover, the content of escins in seeds decreased by more than 30% in endosperm and by more than 40% in skin upon storage for two years. Conclusion: This assay can be readily utilized as a quality control method for horse chestnut and other related medicinal plants. PMID:26819933

  10. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  11. Enhanced thermal stability of Ag nanorods through capping

    SciTech Connect

    Bachenheimer, Lou; Elliott, Paul; Stagon, Stephen; Huang, Hanchen

    2014-11-24

    Ag nanorods may serve as sensors in the detection of trace amounts of chemical agents, even single molecules, through surface enhanced Raman spectroscopy (SERS). However, thermal coarsening of Ag nanorods near room temperature limits their applications. This letter proposes the use of a thin oxide capping layer to enhance the thermal stability of Ag nanorods beyond 100 °C. Using electron microscopy characterization and SERS tests, the authors show that the proposed method is effective in stabilizing both morphology and sensitivity of Ag nanorods. The results of this work extend the applicability of Ag nanorods as chemical sensors to higher temperatures.

  12. An In situ all-laser process for deposition of Y sub 1 Ba sub 2 Cu sub 3 O sub 7 minus. delta. film on stainless steel involving use of Y-ZrO sub 2 -Ag composite as a barrier layer

    SciTech Connect

    Ogale, S.B.; Koinkar, V.N.; Viswanathan, R.; Roy, S.D.; Kanetkar, S.M. )

    1991-10-07

    Highly {ital c}-axis oriented good-quality ({ital T}{sub {ital c}} of 88 K and {ital J}{sub {ital c}} of 10{sup 5} A/cm{sup 2} at 20 K) thin films of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} have been deposited on stainless-steel substrates by an {ital in} {ital situ} all-laser process involving use of laser-deposited Y-ZrO{sub 2}-Ag composite film as a barrier layer. These results are compared with those obtained for the case of the use of a bilayer configuration of Ag and Y-ZrO{sub 2} to emphasize the importance of employing a composite film as a barrier layer.

  13. Preparation, characterization, and photocatalytic activity of porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Tian, Baozhu; Zhang, Jinlong; Xiong, Tianqing; Wang, Tingting

    2014-02-01

    Porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts were synthesized by a multistep route, including a dealloying method to prepare porous Ag, a transformation from Ag to AgBr and AgBrI, and a photo-reduction process to form Ag nanoparticles on the surface of AgBr and AgBrI. It was found that the porous structure kept unchanged during Ag was transferred into AgBr, AgBrI, AgBr@Ag, and AgBrI@Ag. Both porous AgBr@Ag and porous AgBrI@Ag showed much higher visible-light photocatalytic activity than cubic AgBr@Ag for the degradation of methyl orange, which is because the interconnected pore channels not only provide more reactive sites but also favor the transportation of photo-generated electrons and holes. For AgBrI@Ag, AgBrI solid solution formed at the interface of AgBr and AgI, and the phase junction can effectively separate the photo-generated electrons and holes, favorable to the improvement of photocatalytic activity. The optimal I content for obtaining the highest activity is ∼10 at.%.

  14. Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition

    SciTech Connect

    Leng Jian; Yu Zhinong; Xue Wei; Zhang Ting; Jiang Yurong; Zhang Jie; Zhang Dongpu

    2010-10-15

    The structural, optical, and electrical characteristics of zinc sulfide (ZnS)/Ag/ZnS (ZAZ) multilayer films prepared by ion beam assisted deposition on k9 glass have been investigated as a function of Ag layer thickness. The characteristics of ZAZ multilayer are significantly improved up insertion of optimal Ag thickness between ZnS layers. The results show that due to bombardment of Ar ion beam, distinct Ag islands evolve into continuous Ag films at a thin Ag thickness of about 4 nm. The thinner Ag film as a thickness of 2 nm leads to high sheet resistance and low transmittance for the interface scattering induced by the Ag islands or noncontinuous films; and when the Ag thickness is over 4 nm, the ZAZ multilayer exhibits a remarkably reduced sheet resistance between 7-80 {Omega}/sq for the increase in carrier concentration and mobility of Ag layer, and a high transmittance over 90% for the interference phenomena of multilayers and low absorption and surface scattering of Ag layer. The ZAZ multilayer with 14 nm Ag film has a figure of merit up to 6.32x10{sup -2} {Omega}{sup -1}, an average transmittance over 92% and a sheet resistance of 7.1 {Omega}/sq. The results suggest that ZAZ film has better optoelectrical properties than conditional indium tin oxide single layer.

  15. Component conversion from pure Au nanorods to multiblock Ag-Au-Ag nanorods assisted by Pt nanoframe templates

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Kim, Seong Kyu; Park, Sungho

    2016-06-01

    We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications.We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03484e

  16. Effects of Bi2O3, TiO2, and Bi4Ti3O12 Seeding Layers on the Structural and Electrical Properties of Bi3.25La0.75Ti3O12 Thin Films Grown by a Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Pei, Ling; Hu, Ni; Deng, Gang; Bie, Yeguang; Chen, Yiwan; Li, Meiya

    2015-07-01

    Ferroelectric Bi3.25La0.75Ti3O12 (BLT) thin films with Bi2O3, TiO2, and Bi4 Ti3O12 (BTO) seeding layers were prepared on Pt/TiO2/SiO2/Si (100) substrate by a sol-gel technique. The effects of the different seeding layers on the structural and electrical properties of the BLT films were investigated. X-ray diffraction indicated that the predominant orientation of the BLT thin film on the BTO seeding layer was (117). Growth of films with the Pt/BLT/Bi2O3/Pt structure was oriented differently from that of films with the Pt/BLT/TiO2/Pt and Pt/BLT/Pt structures. In addition, in comparison with the BLT film deposited directly on Pt, the TiO2 layer substantially enhanced the leakage current resistance of the BLT film. The ferroelectric nature of the BLT thin film was substantially improved by use of a BTO seeding layer. In an applied field of 750 kV/cm, the remnant polarization (2 P r) of the Pt/BLT/BTO/Pt capacitor was 61.5 μC/cm2. After 1010 switching cycles, 2 P r of the BLT, BLT/Bi2O3, BLT/TiO2, and BLT/BTO films was degraded by approximately 13, 11, 1, and 2%, respectively, indicating that all the capacitors with the different seeding layers had good polarization fatigue characteristics.

  17. Fabrication of Sn-3.5Ag Eutectic Alloy Powder by Annealing Sub-Micrometer Sn@Ag Powder Prepared by Citric Acid-Assisted Ag Immersion Plating.

    PubMed

    Chee, Sang-Soo; Choi, Eun Byeol; Lee, Jong-Hyun

    2015-11-01

    A Sn-3.5Ag eutectic alloy powder has been developed by chemically synthesizing sub-micrometer Sn@Ag powder at room temperature. This synthesis was achieved by first obtaining a sub-micrometer Sn powder for the core using a modified variant of the polyol method, and then coating this with a uniformly thin and continuous Ag layer through immersion plating in 5.20 mM citric acid. The citric acid was found to play multiple roles in the Ag coating process, acting as a chelating agent, a reducing agent and a stabilizer to ensure coating uniformity; and as such, the amount used has an immense influence on the coating quality of the Ag shells. It was later verified by transmission electron microscopy and X-ray diffraction analysis that the coated Ag layer transfers to the Sn core via diffusion to form an Ag3Sn phase at room temperature. Differential scanning calorimetry also revealed that the synthesized Sn@Ag powder is nearly transformed into Sn-3.5Ag eutectic alloy powder upon annealing three times at a temperature of up to 250 degrees C, as evidenced by a single melting peak at 220.5 degrees C. It was inferred from this that Sn-3.5Ag eutectic alloy powder can be successfully prepared through the synthesis of core Sn powders by a modified polyol method, immersion plating using citric acid, and annealing, in that order.

  18. Dissociation energies of Ag-RG (RG = Ar, Kr, Xe) and AgO molecules from velocity map imaging studies.

    PubMed

    Cooper, Graham A; Kartouzian, Aras; Gentleman, Alexander S; Iskra, Andreas; van Wijk, Robert; Mackenzie, Stuart R

    2015-09-28

    The near ultraviolet photodissociation dynamics of silver atom-rare gas dimers have been studied by velocity map imaging. Ag-RG (RG = Ar, Kr, Xe) species generated by laser ablation are excited in the region of the C ((2)Σ(+))←X ((2)Σ(+)) continuum leading to direct, near-threshold dissociation generating Ag* ((2)P3/2) + RG ((1)S0) products. Images recorded at excitation wavelengths throughout the C ((2)Σ(+))←X ((2)Σ(+)) continuum, coupled with known atomic energy levels, permit determination of the ground X ((2)Σ(+)) state dissociation energies of 85.9 ± 23.4 cm(-1) (Ag-Ar), 149.3 ± 22.4 cm(-1) (Ag-Kr), and 256.3 ± 16.0 cm(-1) (Ag-Xe). Three additional photolysis processes, each yielding Ag atom photoproducts, are observed in the same spectral region. Two of these are markedly enhanced in intensity upon seeding the molecular beam with nitrous oxide, and are assigned to photodissociation of AgO at the two-photon level. These features yield an improved ground state dissociation energy for AgO of 15 965 ± 81 cm(-1), which is in good agreement with high level calculations. The third process results in Ag atom fragments whose kinetic energy shows anomalously weak photon energy dependence and is assigned tentatively to dissociative ionization of the silver dimer Ag2.

  19. Nucleation and Growth of Bubbles in He Ion Implanted V/Ag Multilayers

    SciTech Connect

    Wei, Q. M.; Wang, Y. Q.; Nastasi, Michael; Misra, A.

    2011-11-18

    Microstructures of He ion-implanted pure Ag, pure V and polycrystalline V/Ag multilayers with individual layer thickness ranging from 1 nm to 50 nm were investigated by transmission electron microscopy (TEM). The bubbles in the Ag layer were faceted and larger than the non-faceted bubbles in the V layer under the same implantation conditions for both pure metals and multilayers. The substantially higher single defects surviving the spike phase and lower mobility of trapped He in bcc than those in fcc could account for this difference. For multilayers, the bubbles nucleate at interfaces but grow preferentially in Ag layers due to high mobility of trapped He in fcc Ag. In addition, the He concentration above which bubbles can be detected in defocused TEM images increases with decreasing layer thickness, from 0 for pure Ag to 4–5 at. % for 1 nm V/1 nm Ag multilayers. In contrast, the bubble size decreases with decreasing layer thickness, from approximately 4 nm in diameter in pure Ag to 1 nm in the 1 nm V/1 nm Ag multilayers. Elongated bubbles confined in the Ag layer by the V–Ag interfaces were observed in 1 nm multilayers. These observations show that bubble nucleation and growth can be suppressed to high He concentrations in nanoscale composites with interfaces that have high He solubility.

  20. Synthesis, Study, and Discrete Dipole Approximation Simulation of Ag-Au Bimetallic Nanostructures

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Zhang, An-Qi; Li, Hui-Jun; Qian, Dong-Jin; Chen, Meng

    2016-04-01

    Water-soluble Ag-Au bimetallic nanostructures were prepared via co-reduction and seed-mediated growth routes employing poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as both a reductant and a stabilizer. Ag-Au alloy nanoparticles were obtained by the co-reduction of AgNO3 and HAuCl4, while Ag-Au core-shell nanostructures were prepared through seed-mediated growth using PSSMA-Au nanoparticle seeds in a heated AgNO3 solution. The optical properties of the Ag-Au alloy and core-shell nanostructures were studied, and the growth mechanism of the bimetallic nanoparticles was investigated. Plasmon resonance bands in the range 422 to 517 nm were observed for Ag-Au alloy nanoparticles, while two plasmon resonances were found in the Ag-Au core-shell nanostructures. Furthermore, discrete dipole approximation theoretical simulation was used to assess the optical property differences between the Ag-Au alloy and core-shell nanostructures. Composition and morphology studies confirmed that the synthesized materials were Ag-Au bimetallic nanostructures.

  1. Synthesis, Study, and Discrete Dipole Approximation Simulation of Ag-Au Bimetallic Nanostructures.

    PubMed

    Hu, Yang; Zhang, An-Qi; Li, Hui-Jun; Qian, Dong-Jin; Chen, Meng

    2016-12-01

    Water-soluble Ag-Au bimetallic nanostructures were prepared via co-reduction and seed-mediated growth routes employing poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as both a reductant and a stabilizer. Ag-Au alloy nanoparticles were obtained by the co-reduction of AgNO3 and HAuCl4, while Ag-Au core-shell nanostructures were prepared through seed-mediated growth using PSSMA-Au nanoparticle seeds in a heated AgNO3 solution. The optical properties of the Ag-Au alloy and core-shell nanostructures were studied, and the growth mechanism of the bimetallic nanoparticles was investigated. Plasmon resonance bands in the range 422 to 517 nm were observed for Ag-Au alloy nanoparticles, while two plasmon resonances were found in the Ag-Au core-shell nanostructures. Furthermore, discrete dipole approximation theoretical simulation was used to assess the optical property differences between the Ag-Au alloy and core-shell nanostructures. Composition and morphology studies confirmed that the synthesized materials were Ag-Au bimetallic nanostructures. PMID:27094823

  2. The instability of silicene on Ag(111)

    SciTech Connect

    Acun, A.; Poelsema, B.; Zandvliet, H. J. W.; Gastel, R. van

    2013-12-23

    We have used low energy electron microscopy to directly visualize the formation and stability of silicene layers on a Ag(111) substrate. Theoretical calculations call into question the stability of this graphene-like analog of silicon. We find that silicene layers are intrinsically unstable against the formation of an “sp{sup 3}-like” hybridized, bulk-like silicon structure. The irreversible formation of this bulk-like structure is triggered by thermal Si adatoms that are created by the silicene layer itself. To add injury to insult, this same instability prevents the formation of a fully closed silicene layer or a thicker bilayer, rendering the future large-scale fabrication of silicene layers on Ag substrates unlikely.

  3. [Dynamics of Quercus variabilis seed rain and soil seed bank in different habitats on the north slope of Qinling Mountains].

    PubMed

    Wu, Min; Zhang, Wen-Hui; Zhou, Jian-Yun; Ma, Chuang; Ma, Li-Wei

    2011-11-01

    In order to explore the dynamics of Quercus variabilis seed rain and soil seed bank in different habitats on the north slope of Qinling Mountains, three kinds of micro-habitats (understory, forest gap, and forest edge) were selected, with the seed rain quantity and quality of Q. variabilis, seed amount and viability in soil seed bank, as well as the seedling development of Q. variabilis studied. The seed rain of Q. variabilis started from mid August, reached the peak in mid September-early October, and ended at the beginning of November, and there existed differences in the dissemination process, occurrence time, and composition of the seed rain among the three micro-habitats. The seed rain had the maximum intensity (39.55 +/- 5.56 seeds x m(-2)) in understory, the seeds had the earliest landing time, the longest lasting duration, and the highest viability in forest gap, and the mature seeds had the largest proportion in forest edge, accounting for 58.7% of the total. From the ending time of seed rain to next August, the total reserve of soil seed bank was the largest in understory and the smallest in forest edge. In the three habitats, the amount of mature and immature seeds, that of seeds eaten by animals, and the seed viability in soil seed bank all decreased with time. In contrast, the number of moldy seeds increased. The seeds were mainly concentrated in litter layer, a few of them were in 0-2 cm soil layer, and few were in 2-5 cm soil layer. The density of the seedlings varied with habitats, being the largest in forest gap, followed by in forest edge, and the least in understory, which suggested that forest gap was more suitable for the seed germination and seedling growth of Q. variabilis, and thus, appropriate thinning should be taken to increase forest gap to provide favorable conditions for the natural regeneration of Q. variabilis forest.

  4. Seed Anatomy and Water Uptake in Relation to Seed Dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae)

    PubMed Central

    Orozco-Segovia, A.; Márquez-Guzmán, J.; Sánchez-Coronado, M. E.; Gamboa de Buen, A.; Baskin, J. M.; Baskin, C. C.

    2007-01-01

    Background and Aims There is considerable confusion in the literature concerning impermeability of seeds with ‘hard’ seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. Methods The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. Key Results A germination valve and a water channel are formed in the hilum–micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. Conclusions Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae. PMID:17298989

  5. S-SEED Simulator

    2008-11-21

    This code simulates the transient response of two self-electrooptic-effect devices (SEEDs) connected in series to form an S-SEED pair as used in all-optical high-speed switching. Both optical beam propagation and carrier motion is assumed to be normal to the epi plane, so the code is inherently 1D in nature. For each SEED, an optical input in W/cm**2 is specified as a function of time (usually a step function input). The signal is absorbed during amore » double pass through the intrinsic region, with a spatially-dependent absorption coefficient that is dependent on the transient local electric field. This absorption generates electron-hole pairs that then contribute to the device current, and a transient optical output is predicted. Carriers in the semiconductor layers are generated through thermal excitation or optical absorption, move under the action of diffusion and self-consistent electric fields updated at each time step by a 1D Poisson solver, and recombine at density-dependent rates. The different epi layers are independently specified by position, thickness, doping type and density, and thus space charge effects and junction capacitance are included automatically.« less

  6. Quasi four-level Tm:LuAG laser

    NASA Technical Reports Server (NTRS)

    Jani, Mahendra G. (Inventor); Barnes, Norman P. (Inventor); Hutcheson, Ralph L. (Inventor); Rodriguez, Waldo J. (Inventor)

    1997-01-01

    A quasi four-level solid-state laser is provided. A laser crystal is disposed in a laser cavity. The laser crystal has a LuAG-based host material doped to a final concentration between about 2% and about 7% thulium (Tm) ions. For the more heavily doped final concentrations, the LuAG-based host material is a LuAG seed crystal doped with a small concentration of Tm ions. Laser diode arrays are disposed transversely to the laser crystal for energizing the Tm ions.

  7. Desorption of Ag from Grain Boundaries in Ag Film on Br and H-Passivated Si(111) Surfaces

    SciTech Connect

    Roy, Anupam; Batabyal, R.; Mahato, J. C.; Dev, B. N.; Sundaravel, B.

    2011-07-15

    Growth of Ag film on Br- and H-passivated Si(111) surfaces was examined by Rutherford backscattering spectrometry (RBS), scanning electron microscopy (SEM) and photoemission electron microscopy (PEEM) techniques. The phenomenon of thermal grooving was observed after annealing at higher temperatures. Hierarchical desorption of Ag from the grain boundaries produce a fractal structure of Ag-depleted regions. Hierarchical desorption may be used for nanopatterning of the layer.

  8. The Persistence of Seeding Effects in a Winter Orographic Cloud Seeded with Silver Iodide Burned in Acetone.

    NASA Astrophysics Data System (ADS)

    Deshler, Terry; Reynolds, David W.

    1990-06-01

    A single case-study of a winter orographic cloud over the central Sierra Nevada is presented in which the effects of aerial seeding with silver iodide, an AgI NH4C1O4 mixture burned in acetone, were observed to persist for over 90 min after seeding and 100 km downwind of the seedline. A research aircraft was able to locate and track the line source of AgI using an ice nucleus counter. High ice crystal concentrations due to seeding were not apparent until more than one hour after seeding. This may have been partially due to the high natural concentrations of ice, but post-mission analysis revealed that most sampling passes during the first hour following seeding were made below the AgI seeded volume. Ice nucleus measurements confirmed sampling of the seedline from 1-1.5 h after seeding, with associated increases in ice crystal concentrations. The effectiveness of the seeding material in the field was higher than laboratory measurements would suggest.

  9. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth.

    PubMed

    Thuesombat, Pakvirun; Hannongbua, Supot; Akasit, Sanong; Chadchawan, Supachitra

    2014-06-01

    With the advances in nanotechnology, silver nanoparticles (AgNPs) have been applied in many industries, increasing their potential exposure level in the environment, yet their environmental safety remains poorly evaluated. The possible effects of different sized AgNPs (20, 30-60, 70-120 and 150nm diameter) on jasmine rice, Oryza sativa L. cv. KDML 105, were investigated at different concentrations (0.1, 1, 10, 100 and 1000mg/L) upon seed germination and seedling growth. The results revealed that the level of seed germination and subsequent growth of those seedlings that germinated were both decreased with increasing sizes and concentrations of AgNPs. Based on the analysis of AgNPs accumulation in plant tissues, it implied that the higher uptake was found when the seeds were treated with the smaller AgNPs, 20nm diameter AgNPs, but it was trapped in the roots rather than transported to the leaves. These resulted in the less negative effects on seedling growth, when compared to the seed soaking with the larger AgNPs with 150nm diameter. The negative effects of AgNPs were supported by leaf cell deformation when rice seeds were treated with 150-nm-diameter AgNP at the concentration of 10 or 100mg/L during seed germination. These results further strengthen our understanding of environmental safety information with respect to nanomaterials.

  10. Direct coating for layered double hydroxide/4,4'-diaminostilbene-2,2'-disulfonic acid nanocomposite with silica by seeded polymerization technique

    NASA Astrophysics Data System (ADS)

    El-Toni, Ahmed Mohamed; Yin, Shu; Sato, Tsugio

    2004-09-01

    Organic ultraviolet (UV) ray absorbents have been used as sunscreen materials, but may pose a safety problem when used at high concentration. In order to prevent direct contact of organic UV rays absorbent by the human skin, an organic UV absorbent such as 4,4'-diaminostilbene-2,2'-disulfonic acid (DASDSA) was intercalated into Zn 2Al-layered double hydroxide (Zn 2Al-LDHs) by coprecipiation reaction. The problem of deintercalation of organic molecules from LDHs by the anion exchange reaction with carbonate ion could be greatly depressed by forming a protection film of silica on the surface. Zn 2Al-LDH/DASDSA was directly coated with silica by means of a polymerization technique based on the Stöber method. The deintercalation behavior as well as UV-shielding properties were investigated for coated particles.

  11. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods

    NASA Astrophysics Data System (ADS)

    Choudhury, Rupasree; Majumder, Manna; Roy, Dijendra Nath; Basumallick, Srijita; Misra, Tarun Kumar

    2016-06-01

    Silver nanoparticles (Ag NPs) are now widely used as antibacterial and antifungal materials in different consumer products. We report here the preparation of Ag NPs by neem leaves extract ( Azadirachta) reduction and trisodium citrate-sodium borohydride reduction methods, and study of their phytotoxicity. The nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and atomic force microscopy (AFM) techniques. Both neem-coated and citrate-coated Ag NPs exhibit surface plasmon around 400 nm, and their average sizes measured by AFM are about 100 and 20 nm, respectively. Antibacterial and antifungal activities of these nanomaterials have been studied by simple pea seed germination and disk diffusion methods. It has been observed from the growth of root and shoot, citrate-coated Ag NPs significantly affect seedling growth, but neem-coated Ag NPs exhibit somehow mild toxicity toward germination process due to the nutrient supplements from neem. On the other hand, antifungal activity of neem-coated Ag NPs has been found much higher than that of citrate-coated Ag NPs due to the combined effects of antifungal activity of neem and Ag NPs. Present research primarily indicates a possible application of neem-coated Ag NPs as a potential fungicide.

  12. Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wang, Qingyao; Qiao, Jianlei; Jin, Rencheng; Xu, Xiaohui; Gao, Shanmin

    2015-03-01

    Plasmonic photosensitizer AgBr/Ag nanospheres supported on TiO2 nanotube arrays (TiO2 NTs) are prepared by successive ionic layer adsorption and reaction (SILAR) technique followed by photoreduction methods. The structural and surface morphological properties of AgBr/Ag nanoparticles sensitized TiO2 NTs and their photoelectrochemical performance are investigated and discussed. A detailed formation mechanism of the TiO2 NTs/AgBr/Ag is proposed. The TiO2 NTs/AgBr/Ag exhibit excellent photocurrent and photoelectrocatalytic activities under visible light irradiation. Efficient utilization of solar energy to create electron-hole pairs is attributed to the significant visible light response and surface plasmon resonance of Ag nanoparticles. This finding indicates that the high photosensitivity of the TiO2 NTs-based surface plasmon resonance materials could be applied toward the development of new plasmonic visible-light-sensitive photovoltaic fuel cells and photocatalysts.

  13. Herringbone and triangular patterns of dislocations in Ag, Au, and AgAu alloy films on Ru(0001).

    SciTech Connect

    Thayer, Gayle Echo; de la Figuera, Juan; Bartelt, Norman Charles; Carter, C. Barrington; Hwang, R. Q.; Thurmer, Konrad; Ling, W. L.; Hamilton, John C.; McCarty, Kevin F.

    2008-10-01

    We have studied the dislocation structures that occur in films of Ag, Au, and Ag{sub 0.5}Au{sub 0.5} alloy on a Ru(0001) substrate. Monolayer (ML) films form herringbone phases while films two or more layers thick contain triangular patterns of dislocations. We use scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) to determine how the film composition affects the structure and periodicity of these ordered structures. One layer of Ag forms two different herringbone phases depending on the exact Ag coverage and temperature. Low-energy electron microscopy (LEEM) establishes that a reversible, first-order phase transition occurs between these two phases at a certain temperature. We critically compare our 1 ML Ag structures to conflicting results from an X-ray scattering study [H. Zajonz et al., Phys. Rev. B 67 (2003) 155417]. Unlike Ag, the herringbone phases of Au and AgAu alloy are independent of the exact film coverage. For two layer films in all three systems, none of the dislocations in the triangular networks thread into the second film layer. In all three systems, the in-plane atomic spacing of the second film layer is nearly the same as in the bulk. Film composition does, however, affect the details of the two layer structures. Ag and Au films form interconnected networks of dislocations, which we refer to as 'trigons.' In 2 ML AgAu alloy, the dislocations form a different triangular network that shares features of both trigon and moire structures. Yet another well-ordered structure, with square symmetry, forms at the boundaries of translational trigon domains in 2 ML Ag films but not in Au films.

  14. Comparative rice seed toxicity tests using filter paper, growth pouch-tm, and seed tray methods

    USGS Publications Warehouse

    Wang, W.

    1993-01-01

    Paper substrate, especially circular filter paper placed inside a Petri dish, has long been used for the plant seed toxicity test (PSTT). Although this method is simple and inexpensive, recent evidence indicates that it gives results that are significantly different from those obtained using a method that does not involve paper, especially when testing metal cations. The study compared PSTT using three methods: filter paper, Growth Pouch-TM, and seed tray. The Growth Pouch-TM is a commercially available device. The seed tray is a newly designed plastic receptacle placed inside a Petri dish. The results of the Growth Pouch-TM method showed no toxic effects on rice for Ag up to 40 mg L-1 and Cd up to 20 mg L-1. Using the seed tray method, IC50 (50% inhibitory effect concentration) values were 0.55 and 1.4 mg L-1 for Ag and Cd, respectively. Although results of filter paper and seed tray methods were nearly identical for NaF, Cr(VI), and phenol, the toxicities of cations Ag and Cd were reduced by using the filter paper method; IC50 values were 22 and 18 mg L-1, respectively. The results clearly indicate that paper substrate is not advisable for PSTT.

  15. AGS experiments - 1994, 1995, 1996

    SciTech Connect

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  16. Thermally stable dielectric responses in uniaxially (001)-oriented CaBi4Ti4O15 nanofilms grown on a Ca2Nb3O10- nanosheet seed layer.

    PubMed

    Kimura, Junichi; Takuwa, Itaru; Matsushima, Masaaki; Shimizu, Takao; Uchida, Hiroshi; Kiguchi, Takanori; Shiraishi, Takahisa; Konno, Toyohiko J; Shibata, Tatsuo; Osada, Minoru; Sasaki, Takayoshi; Funakubo, Hiroshi

    2016-01-01

    To realize a high-temperature capacitor, uniaxially (001)-oriented CaBi4Ti4O15 films with various film thicknesses were prepared on (100)cSrRuO3/Ca2Nb3O10(-) nanosheet/glass substrates. As the film thickness decreases to 50 nm, the out-of-plane lattice parameters decrease while the in-plane lattice ones increase due to the in-plane tensile strain. However, the relative dielectric constant (εr) at room temperature exhibits a negligible degradation as the film thickness decreases to 50 nm, suggesting that εr of (001)-oriented CaBi4Ti4O15 is less sensitive to the residual strain. The capacitance density increases monotonously with decreasing film thickness, reaching a value of 4.5 μF/cm(2) for a 50-nm-thick nanofilm, and is stable against temperature changes from room temperature to 400 °C irrespective of film thickness. This behaviour differs from that of the widely investigated perovskite-structured dielectrics. These results show that (001)-oriented CaBi4Ti4O15 films derived using Ca2Nb3O10(-) nanosheets as seed layers can be made candidates for high-temperature capacitor applications by a small change in the dielectric properties against film thickness and temperature variations.

  17. Thermally stable dielectric responses in uniaxially (001)-oriented CaBi4Ti4O15 nanofilms grown on a Ca2Nb3O10− nanosheet seed layer

    PubMed Central

    Kimura, Junichi; Takuwa, Itaru; Matsushima, Masaaki; Shimizu, Takao; Uchida, Hiroshi; Kiguchi, Takanori; Shiraishi, Takahisa; Konno, Toyohiko J.; Shibata, Tatsuo; Osada, Minoru; Sasaki, Takayoshi; Funakubo, Hiroshi

    2016-01-01

    To realize a high-temperature capacitor, uniaxially (001)-oriented CaBi4Ti4O15 films with various film thicknesses were prepared on (100)cSrRuO3/Ca2Nb3O10− nanosheet/glass substrates. As the film thickness decreases to 50 nm, the out-of-plane lattice parameters decrease while the in-plane lattice ones increase due to the in-plane tensile strain. However, the relative dielectric constant (εr) at room temperature exhibits a negligible degradation as the film thickness decreases to 50 nm, suggesting that εr of (001)-oriented CaBi4Ti4O15 is less sensitive to the residual strain. The capacitance density increases monotonously with decreasing film thickness, reaching a value of 4.5 μF/cm2 for a 50-nm-thick nanofilm, and is stable against temperature changes from room temperature to 400 °C irrespective of film thickness. This behaviour differs from that of the widely investigated perovskite-structured dielectrics. These results show that (001)-oriented CaBi4Ti4O15 films derived using Ca2Nb3O10− nanosheets as seed layers can be made candidates for high-temperature capacitor applications by a small change in the dielectric properties against film thickness and temperature variations. PMID:26875929

  18. The role of Mott-Schottky heterojunctions in Ag-Ag8SnS6 as counter electrodes in dye-sensitized solar cells.

    PubMed

    He, Qingquan; Huang, Shoushuang; Wang, Cheng; Qiao, Qiquan; Liang, Na; Xu, Miao; Chen, Wenlong; Zai, Jiantao; Qian, Xuefeng

    2015-03-01

    Well-defined uniform pyramidal Ag-Ag8SnS6 heterodimers are prepared via a one-pot method. A plausible formation mechanism for the unique structures based on a seed-growth process and an etching effect due to oleylamine is proposed. The formed metal-semiconductor Mott-Schottky heterojunction promotes electron transfer from semiconducting Ag8 SnS6 to metallic Ag, which catalyzes the reduction of I3 (-) to I(-). When used as counter electrode in dye-sensitized solar cells, the heterodimers show comparable performance to platinum.

  19. Synthesis of KCa₂Nb₃O₁₀ Crystals with Varying Grain Sizes and Their Nanosheet Monolayer Films As Seed Layers for PiezoMEMS Applications.

    PubMed

    Yuan, Huiyu; Nguyen, Minh; Hammer, Tom; Koster, Gertjan; Rijnders, Guus; ten Elshof, Johan E

    2015-12-16

    The layered perovskite-type niobate KCa2Nb3O10 and its derivatives show advantages in several fields, such as templated film growth and (photo)catalysis. Conventional synthesis routes generally yield crystal size smaller than 2 μm. We report a flux synthesis method to obtain KCa2Nb3O10 crystals with significantly larger sizes. By using different flux materials (K2SO4 and K2MoO4), crystals with average sizes of 8 and 20 μm, respectively, were obtained. The KCa2Nb3O10 crystals from K2SO4 and K2MoO4 assisted synthesis were protonated and exfoliated into monolayer nanosheets, and the optimal exfoliation conditions were determined. Using pulsed laser deposition, highly (001)-oriented piezoelectric stacks (SrRuO3/PbZr0.52Ti0.48O3/SrRuO3, SRO/PZT/SRO) were deposited onto Langmuir-Blodgett films of Ca2Nb3O10(-) (CNO) nanosheets with varying lateral nanosheet sizes on Si substrates. The resulting PZT thin films showed high crystallinity irrespective of nanosheet size. The small sized nanosheets yielded a high longitudinal piezoelectric coefficient d33 of 100 pm/V, while the larger sized sheets had a d33 of 72 pm/V. An enhanced transverse piezoelectric coefficient d31 of -107 pm/V, an important input parameter for the actuation of active structures in microelectromechanical systems (MEMS) devices, was obtained for PZT films grown on CNO nanosheets with large lateral size, while the corresponding value on small sized sheets was -96 pm/V. PMID:26583282

  20. A two-oxide nanodiode system made of double-layered p-type Ag2O@n-type TiO2 for rapid reduction of 4-nitrophenol.

    PubMed

    Ahmed Zelekew, Osman; Kuo, Dong-Hau

    2016-02-14

    The n-type TiO2 semiconductor nanoparticles were coated on the p-type Ag2O nanoparticles deposited on SiO2 spherical particles through a simple sol-gel method for catalytic reduction of 4-nitrophenol. The as-prepared spherical composite abbreviated as SiO2/Ag2O@TiO2 was characterized by different techniques and tested as a catalyst towards 4-nitrophenol (4-NP) reduction into 4-aminophenol (4-AP) with NaBH4 as a reducing agent at room temperature. This work combines an interesting design with the n-type TiO2 rich in electrons outward and the p-type Ag2O rich in electronic holes inward to form the p/n junction for the purpose of efficiently separating the charge carrier to have a longer lifetime of outward electrons for catalytic reduction reactions. The SiO2/Ag2O@TiO2 composite catalyst showed the best performance in the reduction of 4-NP to 4-AP within 30 seconds. Our results reveal that the p-n junction combined composite sphere was superior and efficient in reduction of 4-nitrophenol without using the light source. The conversion mechanism is proposed here. Overall, the SiO2/Ag2O@TiO2 composite can be used as a cost-effective reduction catalyst for converting the toxic 4-NP into useful 4-AP, an industrial organic intermediate compound.

  1. The system AgI-AgBr: Energetic consequences of defect equilibria in single-phase and two-phase regions

    SciTech Connect

    Khandkar, A.; Navrotsky, A.; Tare, V.B.; Wagner, J.B.

    1984-11-01

    The enthalpy of solution of various single- and two-phase AgI-AgBr compositions in AgNO/sub 3/ at 518 K has been determined using a Calvet-type twin microcalorimeter. The enthalpy (H/sub 518/ - H/sub 298/) of melted and unmelted mixtures of AgI and AgBr of various compositions within two-phase regions of the phase diagram has also been obtained using the same calorimeter. The effect of AgBr on the temperature and enthalpy of transformation of ..beta..-AgI to ..cap alpha..AgI has been investigated using a Perkin Elmer Differential Scanning Calorimeter. The terminal compositions at 518 K of the two-phase region of AgI-AgBr system has been found to be AgI /SUB 0.85/ Br /SUB 0.15/ and AgI /SUB 0.3/ Br /SUB 0.7/ . The excess enthalpy, the difference in (H/sub 518/ - H/sub 298/) values of the unmelted and melted mixtures in the two-phase region of the AgI-AgBr system, has been found to be maximum at the equivolume concentration of the two terminal phases and is suggested to be due to the generation of silver ion vacancies at the interfaces due to a space-charge layer.

  2. Seed-mediated biomineralizaton toward the high yield production of gold nanoprisms.

    PubMed

    Geng, Xi; Roth, Kristina L; Freyman, Megan C; Liu, Jianzhao; Grove, Tijana Z

    2016-07-28

    Gold nanotriangles (Au NTs) with tunable edge length were synthesized via a green chemical route in the presence of the designed consensus sequence tetratricopeptide repeat (CTPR) protein, halide anions (Br(-)) and CTPR-stabilized Ag seeds. The well-defined morphologies, tailored plasmonic absorbance from visible-light to the near infrared (NIR) region, colloidal stability and biocompatibility are attributed to the synergistic action of CTPR, halide ions, and CTPR-stabilized Ag seeds. PMID:27424736

  3. [Preparation Polyacrylonitrile/Ag Nanoparticle Composite Nanofibers Via an Elelctrospinning Technique and Their Surface Enhanced Raman Scattering Study].

    PubMed

    Song, Wei; Li, Ting-ting; Wang, Xu; Zhao, Bing

    2015-07-01

    In this paper, we have prepared polyacrylonitrile (PAN) /Ag nanoparticle composite nanofibers as a surface enhanced Raman scattering (SERS) substrate via an electrospinning technique. First, the PAN and AgNO3 were dissolved in N, N'-dimethylformamide solvent to get PAN/Ag seed solution; then the PAN/Ag seed solution was electrospun for the preparation of PAN/Ag seed composite nanofibers; Finally, the PAN/Ag seed composite nanofibers were treated by hydrazine hydrate to syn- thesize PAN/Ag nanoparticle composite nanofibers. The as-prepared PAN/Ag nanoparticle composite nanofibers were mixed with the probes for the SERS detection to get the SERS spectrum of the probes. The PAN/Ag nanoparticle composite nanofibers substate showed a good SERS signal when the concentration of PATP is as low as 10(-6) mol x L(-1). Furthermore, this kind of SERS substrate could be large-scale prepared, which showed a high commercial value. PMID:26717748

  4. Local evolution of seed flotation in Arabidopsis.

    PubMed

    Saez-Aguayo, Susana; Rondeau-Mouro, Corinne; Macquet, Audrey; Kronholm, Ilkka; Ralet, Marie-Christine; Berger, Adeline; Sallé, Christine; Poulain, Damien; Granier, Fabienne; Botran, Lucy; Loudet, Olivier; de Meaux, Juliette; Marion-Poll, Annie; North, Helen M

    2014-03-01

    Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was modified in the variants by ten independent causal mutations in four different loci. Seven distinct mutations affected one locus, coding the MUM2 β-D-galactosidase, and represent a striking example of allelic heterogeneity. The modification of mucilage release has thus evolved a number of times independently in two restricted geographical zones. All the natural mutants identified still accumulated mucilage polysaccharides in seed coat epidermal cells. Using nuclear magnetic resonance (NMR) relaxometry their production and retention was shown to reduce water mobility into internal seed tissues during imbibition, which would help to maintain seed buoyancy. Surprisingly, despite released mucilage being an excellent hydrogel it did not increase the rate of water uptake by internal seed tissues and is more likely to play a role in retaining water around the seed. PMID:24625826

  5. Local Evolution of Seed Flotation in Arabidopsis

    PubMed Central

    Saez-Aguayo, Susana; Rondeau-Mouro, Corinne; Macquet, Audrey; Kronholm, Ilkka; Ralet, Marie-Christine; Berger, Adeline; Sallé, Christine; Poulain, Damien; Granier, Fabienne; Botran, Lucy; Loudet, Olivier; de Meaux, Juliette; Marion-Poll, Annie; North, Helen M.

    2014-01-01

    Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was modified in the variants by ten independent causal mutations in four different loci. Seven distinct mutations affected one locus, coding the MUM2 β-D-galactosidase, and represent a striking example of allelic heterogeneity. The modification of mucilage release has thus evolved a number of times independently in two restricted geographical zones. All the natural mutants identified still accumulated mucilage polysaccharides in seed coat epidermal cells. Using nuclear magnetic resonance (NMR) relaxometry their production and retention was shown to reduce water mobility into internal seed tissues during imbibition, which would help to maintain seed buoyancy. Surprisingly, despite released mucilage being an excellent hydrogel it did not increase the rate of water uptake by internal seed tissues and is more likely to play a role in retaining water around the seed. PMID:24625826

  6. Contact Resistance of Ti-Si-C-Ag and Ti-Si-C-Ag-Pd Nanocomposite Coatings

    NASA Astrophysics Data System (ADS)

    Sarius, N. G.; Lauridsen, J.; Lewin, E.; Jansson, U.; Högberg, H.; Öberg, Å.; Sarova, G.; Staperfeld, G.; Leisner, P.; Eklund, P.; Hultman, L.

    2012-03-01

    Ti-Si-C-Ag-Pd and Ti-Si-C-Ag nanocomposite coatings were deposited by direct-current magnetron sputtering on Cu substrates with an electroplated Ni layer. Analytical electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy show that the nanocomposites consist of TiC, Ag:Pd, and amorphous SiC. The contact resistance of these coatings against a spherical Au-Co surface was measured for applied contact forces up to 5 N. Ti-Si-C-Ag-Pd coatings with Ag:Pd top coating had ~10 times lower contact resistance at contact forces below 1 N (~10 mΩ at ~0.1 N), and 2 to 3 times lower for contact forces around 5 N (<1 mΩ at 5 N), compared with the Ti-Si-C-Ag coating.

  7. Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode

    PubMed Central

    2014-01-01

    We report a new semitransparent inverted polymer solar cell (PSC) with a structure of glass/FTO/nc-TiO2/P3HT:PCBM/MoO3/Ag/MoO3. Because high-temperature annealing which decreased the conductivity of indium tin oxide (ITO) must be handled in the process of preparation of nanocrystalline titanium oxide (nc-TiO2), we replace glass/ITO with a glass/fluorine-doped tin oxide (FTO) substrate to improve the device performance. The experimental results show that the replacing FTO substrate enhances light transmittance between 400 and 600 nm and does not change sheet resistance after annealing treatment. The dependence of device performances on resistivity, light transmittance, and thickness of the MoO3/Ag/MoO3 film was investigated. High power conversion efficiency (PCE) was achieved for FTO substrate inverted PSCs, which showed about 75% increase compared to our previously reported ITO substrate device at different thicknesses of the MoO3/Ag/MoO3 transparent electrode films illuminated from the FTO side (bottom side) and about 150% increase illuminated from the MoO3/Ag/MoO3 side (top side). PMID:25332693

  8. Sesquiterpene coumarins from seeds of Ferula sinkiangensis.

    PubMed

    Li, Guangzhi; Li, Xiaojin; Cao, Li; Zhang, Lijing; Shen, Liangang; Zhu, Jun; Wang, Junchi; Si, Jianyong

    2015-06-01

    A new sesquiterpene coumarin with a novel sesquiterpene carbon framework, Sinkiangenorin D, and ten known sesquiterpene coumarins were isolated from the seeds of Ferula sinkiangensis. The structures of these compounds, including the relative stereochemistry, were elucidated on the basis of spectroscopic data. All of the isolated compounds were tested against the AGS, HeLa, and K562 human cancer cell lines and showed cytotoxic activities with 50% inhibitory concentration values between 12.7 and 226.6 μM.

  9. A two-oxide nanodiode system made of double-layered p-type Ag2O@n-type TiO2 for rapid reduction of 4-nitrophenol.

    PubMed

    Ahmed Zelekew, Osman; Kuo, Dong-Hau

    2016-02-14

    The n-type TiO2 semiconductor nanoparticles were coated on the p-type Ag2O nanoparticles deposited on SiO2 spherical particles through a simple sol-gel method for catalytic reduction of 4-nitrophenol. The as-prepared spherical composite abbreviated as SiO2/Ag2O@TiO2 was characterized by different techniques and tested as a catalyst towards 4-nitrophenol (4-NP) reduction into 4-aminophenol (4-AP) with NaBH4 as a reducing agent at room temperature. This work combines an interesting design with the n-type TiO2 rich in electrons outward and the p-type Ag2O rich in electronic holes inward to form the p/n junction for the purpose of efficiently separating the charge carrier to have a longer lifetime of outward electrons for catalytic reduction reactions. The SiO2/Ag2O@TiO2 composite catalyst showed the best performance in the reduction of 4-NP to 4-AP within 30 seconds. Our results reveal that the p-n junction combined composite sphere was superior and efficient in reduction of 4-nitrophenol without using the light source. The conversion mechanism is proposed here. Overall, the SiO2/Ag2O@TiO2 composite can be used as a cost-effective reduction catalyst for converting the toxic 4-NP into useful 4-AP, an industrial organic intermediate compound. PMID:26790613

  10. Seed Treatment. Bulletin 760.

    ERIC Educational Resources Information Center

    Lowery, Harvey C.

    This manual gives a definition of seed treatment, the types of seeds normally treated, diseases and insects commonly associated with seeds, fungicides and insecticides used, types of equipment used for seed treatment, and information on labeling and coloring of treated seed, pesticide carriers, binders, stickers, and safety precautions. (BB)

  11. MgO buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2001-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  12. Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2002-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  13. What Are Chia Seeds?

    MedlinePlus

    ... Men For Women For Seniors What Are Chia Seeds? Published February 05, 2014 Print Email When you ... number of research participants. How to Eat Chia Seeds Chia seeds can be eaten raw or prepared ...

  14. AgRISTARS

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An introduction to the overall AgRISTARS program, a general statement on progress, and separate summaries of the activities of each project, with emphasis on the technical highlights are presented. Organizational and management information on AgRISTARS is included in the appendices, as is a complete bibliography of publication and reports.

  15. Bean Seed Imbibition.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1998-01-01

    Enables students to examine the time course for seed imbibition and the pressure generated by imbibing seeds. Provides background information, detailed procedures, and ideas for further investigation. (DDR)

  16. AGS experiments: 1993 - 1994 - 1995

    SciTech Connect

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  17. The IP6 micelle-stabilized small Ag cluster for synthesizing Ag-Au alloy nanoparticles and the tunable surface plasmon resonance effect

    NASA Astrophysics Data System (ADS)

    Wang, Na; Wen, Ying; Wang, Yao; Zhang, Rui; Chen, Xiyao; Ling, Bo; Huan, Shuangyan; Yang, Haifeng

    2012-04-01

    The stable small Ag seeds (size in diameter < 10 nm) were obtained in the presence of inositol hexakisphosphoric (IP6) micelles. Then Ag-Au bimetallic nanoparticles were synthesized through a replacement reaction with the rapid interdiffusion process between such small Ag seeds in nanoclusters and HAuCl4. Adjusting the dosage of HAuCl4 resulted in different products, which possessed unique surface plasmon resonances (SPR). The morphologies of the as-made nanoparticles were observed using transmission electron microscopy and field emission scanning electron microscopy and their compositions were determined by energy-dispersive x-ray spectroscopy. Among them, the Ag-Au alloy nanoparticles with the cauliflower-like structure had a suitable SPR for highly sensitive Raman detection application as a surface-enhanced Raman scattering (SERS) substrate with a long-term stability of six months.

  18. Interfacial Reactions and Joint Strengths of Sn- xZn Solders with Immersion Ag UBM

    NASA Astrophysics Data System (ADS)

    Jee, Y. K.; Yu, Jin

    2010-10-01

    The solder joint microstructures of immersion Ag with Sn- xZn ( x = 0 wt.%, 1 wt.%, 5 wt.%, and 9 wt.%) solders were analyzed and correlated with their drop impact reliability. Addition of 1 wt.% Zn to Sn did not change the interface microstructure and was only marginally effective. In comparison, the addition of 5 wt.% or 9 wt.% Zn formed layers of AgZn3/Ag5Zn8 at the solder joint interface, which increased drop reliability significantly. Under extensive aging, Ag-Zn intermetallic compounds (IMCs) transformed into Cu5Zn8 and Ag3Sn, and the drop impact resistance at the solder joints deteriorated up to a point. The beneficial role of Zn on immersion Ag pads was ascribed to the formation of Ag-Zn IMC layers, which were fairly resistant to the drop impact, and to the suppression of the brittle Cu6Sn5 phase at the joint interface.

  19. [Isothiocyanate and vinyl thio-oxazolidone contents of rape seeds and rape seed oil].

    PubMed

    Franzke, C; Göbel, R; Noack, G; Seiffert, I

    1975-01-01

    Comparative studies on the isothiocyanate content of rape-seeds and rape-seed oil show that, apart from nearly 300 mg/100 g of vinyl thio-oxazolidone, rape-seeds contain almost 200--300 mg/100 g of isothiocyanates of which 3-butenyl isothiocyanate and 4-pentenyl isothiocyanate (ratio of 4:1) are the main components as evidenced thin-layer and gaschromatographically. Only about 1 mg/100 g of isothiocyanates are found in pressed rape-seed oil; and but circa 10 mg/100 g, in extracted rape-seed oil. 3-Butenyl isothiocyanate and 4-pentenyl isothiocyanate (ratio of 4:1) are once more the main components. Thioglycerides are not detected in the oil. Vinyl thio-oxazolidone is found only in extracted rape-seed oil (about 2 mg/100 g). PMID:1152977

  20. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Zanjanchi, M. A.; Razavi, M.

    2014-09-01

    Metal-semiconductor compounds, such as Ag/AgX (X = Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that rad O2- and rad OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed.

  1. Monitoring Si growth on Ag(111) with scanning tunneling microscopy reveals that silicene structure involves silver atoms

    SciTech Connect

    Prévot, G.; Bernard, R.; Cruguel, H.; Borensztein, Y.

    2014-11-24

    Using scanning tunneling microscopy (STM), the elaboration of the so-called silicene layer on Ag(111) is monitored in real time during Si evaporation at different temperatures. It is shown that the growth of silicene is accompanied by the release of about 65% of the surface Ag atoms from the Si covered areas. We observe that Si islands develop on the Ag terraces and Si strips at the Ag step edges, progressively forming ordered (4×4), (√(13)×√(13)) R13.9°, and dotted phases. Meanwhile, displaced Ag atoms group to develop additional bare Ag terraces growing round the Si islands from the pristine Ag step edges. This indicates a strong interaction between Si and Ag atoms, with an important modification of the Ag substrate beneath the surface layer. This observation is in contradiction with the picture of a silicene layer weakly interacting with the unreconstructed Ag substrate, and strongly indicates that the structure of silicene on Ag(111) corresponds either to a Si-Ag surface alloy or to a Si plane covered with Ag atoms.

  2. A comparative study about electronic structures at rubrene/Ag and Ag/rubrene interfaces

    SciTech Connect

    Sinha, Sumona Mukherjee, M.

    2015-10-15

    The contact between the electrode and the organic semiconductor is one of the most crucial factors in determining the organic device performance. The development and production technology of different organic devices require the understanding of different types of metal/organic semiconducting thin film interfaces. Comparisons about the electronic structures at Rubrene/Ag and Ag/Rubrene interfaces have been studied using photoemission spectroscopy. The Ag on rubrene interfaces is found to show more interesting and complex natures than its counterpart. The vacuum level (VL) was shifted about 0.51 eV from push back effect for deposition of 5 Å rubrene onto Ag film whereas the electronic features of silver was only suppressed and no energy shift was resulted. While the deposition of 5 Å Ag onto rubrene film leads to the diffusion of the Ag atoms, as a cluster with quantum size effect, inside the film. Angle dependent XPS measurement indicates that diffused metal clusters were present at entire probed depth of the film. Moreover these clusters dope the uppermost surface of the rubrene film which consequences a shift of the electronic states of thick organic film towards higher binding energy. The VL was found to shift about 0.31 eV toward higher binding energy whereas the shift was around 0.21 eV for the electronic states of rubrene layer.

  3. A comparative study about electronic structures at rubrene/Ag and Ag/rubrene interfaces

    NASA Astrophysics Data System (ADS)

    Sinha, Sumona; Mukherjee, M.

    2015-10-01

    The contact between the electrode and the organic semiconductor is one of the most crucial factors in determining the organic device performance. The development and production technology of different organic devices require the understanding of different types of metal/organic semiconducting thin film interfaces. Comparisons about the electronic structures at Rubrene/Ag and Ag/Rubrene interfaces have been studied using photoemission spectroscopy. The Ag on rubrene interfaces is found to show more interesting and complex natures than its counterpart. The vacuum level (VL) was shifted about 0.51 eV from push back effect for deposition of 5 Å rubrene onto Ag film whereas the electronic features of silver was only suppressed and no energy shift was resulted. While the deposition of 5 Å Ag onto rubrene film leads to the diffusion of the Ag atoms, as a cluster with quantum size effect, inside the film. Angle dependent XPS measurement indicates that diffused metal clusters were present at entire probed depth of the film. Moreover these clusters dope the uppermost surface of the rubrene film which consequences a shift of the electronic states of thick organic film towards higher binding energy. The VL was found to shift about 0.31 eV toward higher binding energy whereas the shift was around 0.21 eV for the electronic states of rubrene layer.

  4. Synthesis of Ag nanoplates on GaAs wafers : evidence for growth mechanism.

    SciTech Connect

    Sun, Y.; Center for Nanoscale Materials

    2010-01-21

    Direct synthesis of Ag nanoplates on GaAs wafers has been developed in our group through a simple solution/solid interfacial reaction (SSIR) strategy, in which aqueous solutions of pure AgNO{sub 3} react with the GaAs wafers at room temperature [J. Phys. Chem. C 2009, 113, 6061; 2008, 112, 8928; Chem. Mater. 2007, 19, 5845]. However, a number of questions are still not clear yet regarding the roles of different possible pathways for reducing Ag{sup +} ions in the growth of Ag nanoplates. In this article, we try to answer these remaining questions by specifically designing experiments and extracting direct evidence from systematic characterizations of different samples. It is conclusive that growth of high-quality Ag nanoplates on GaAs wafers is ascribed to the good separation between nucleation and growth steps, which are driven by two different reduction pathways. At the nucleation step, fast reduction of Ag{sup +} ions with a high concentration of surface electrons is crucial for the formation of Ag nuclei with multiple (111) twin planes parallel to each other, and remaining the environment of a high concentration of surface electrons for a period long enough is also important to develop the Ag nuclei into stable seeds. At the growth step, a hole injection process is mainly responsible for reduction of Ag{sup +} ions to enlarge the stable seeds into Ag nanoplates with controlled sizes by tuning the growth time. The paralleled multiple (111) twin planes provide a crystalline confinement to guide the growth of the seeds into nanoplates.

  5. Preparation, characterization, and photocatalytic performance of pear-shaped ZnO/Ag core-shell submicrospheres

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-Hua; Ma, Jian-Qi; Ge, Hong-Guang

    2013-05-01

    Pear-shaped ZnO/Ag core-shell submicrospheres with good monodispersity were prepared via a seed-mediated particle growth procedure, where metal Ag (by reducing Ag+ with Sn2+) deposited on the as-prepared ZnO submicrospheres served as seeds (nucleation sites) for further growth of Ag nanoparticles. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, ultraviolet-visible and photoluminescence spectra. Structure characterization demonstrates that the ZnO/Ag composites are composed of pear-shaped wurtzite ZnO submicrosphere core and Ag nanoparticles (nanoshell). Photoluminescence indicates that Ag nanoshell can effectively inhibit the recombination of the photoinduced electrons and holes of ZnO. This is responsible for the higher photocatalytic activity of the ZnO/Ag core-shell composites. The photocatalytic performance of the prepared ZnO/Ag samples for degradation of Rhodamine B was evaluated with a comparative study. The relationship between the structure of the samples and their photocatalytic performance shows that Ag deposits can significantly enhance the photocatalytic efficiency of ZnO submicrospheres.

  6. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit.

    PubMed

    Yu, Shihui; Li, Lingxia; Lyu, Xiaosong; Zhang, Weifeng

    2016-01-01

    In order to improve the conductivity of the single-layered nano-thick F doped SnO2 (FTO) thin films, an Ag mid-layer is embedded between the FTO layers. In our work, the effects of mid-layer Ag and top FTO layer on the structural, electrical and optical properties of FTO/Ag/FTO multilayered composite structures deposited on quartz glass substrates by magnetron sputtering at 100 °C have been investigated. As the thickness of Ag mid-layer increases, the resistivity decreases. As the top FTO layer thickness increases, the resistivity increases. The highest value of figure of merit φTC is 7.8 × 10(-2 ) Ω(-1) for the FTO (20 nm)/Ag (7 nm)/FTO (30 nm) multilayers, while the average optical transmittance is 95.5% in the visible range of wavelengths and the resistivity is 8.8 × 10(-5 ) Ω·cm. In addition, we also describe the influence of Ag and top FTO layer thickness on structural, electrical and optical properties of the nano-thick FTO (20 nm)/Ag/FTO multilayers and the mechanism of the changes of electrical and optical properties at different Ag and top FTO layer thicknesses.

  7. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit

    PubMed Central

    Yu, Shihui; Li, Lingxia; Lyu, Xiaosong; Zhang, Weifeng

    2016-01-01

    In order to improve the conductivity of the single–layered nano-thick F doped SnO2 (FTO) thin films, an Ag mid–layer is embedded between the FTO layers. In our work, the effects of mid–layer Ag and top FTO layer on the structural, electrical and optical properties of FTO/Ag/FTO multilayered composite structures deposited on quartz glass substrates by magnetron sputtering at 100 °C have been investigated. As the thickness of Ag mid–layer increases, the resistivity decreases. As the top FTO layer thickness increases, the resistivity increases. The highest value of figure of merit φTC is 7.8 × 10−2 Ω−1 for the FTO (20 nm)/Ag (7 nm)/FTO (30 nm) multilayers, while the average optical transmittance is 95.5% in the visible range of wavelengths and the resistivity is 8.8 × 10−5 Ω·cm. In addition, we also describe the influence of Ag and top FTO layer thickness on structural, electrical and optical properties of the nano-thick FTO (20 nm)/Ag/FTO multilayers and the mechanism of the changes of electrical and optical properties at different Ag and top FTO layer thicknesses. PMID:26833398

  8. Simultaneous tunable structure and composition of PtAg alloyed nanocrystals as superior catalysts.

    PubMed

    Fang, Caihong; Zhao, Jun; Zhao, Guili; Kuai, Long; Geng, Baoyou

    2016-08-11

    PtAg alloyed nanostructural catalysts were firstly prepared by co-reduction of AgNO3 and H2PtCl6 precursors in growth solution using a seed-mediated method. By simply changing the molar ratio of the metal precursors, the morphologies of the porous alloyed nanocrystals can be tuned from multipetals to multioctahedra. Simultaneously, the alloy composition can be varied from Pt76Ag24 to Pt66Ag34. The catalytic properties of the prepared PtAg alloyed nanocrystals with a tunable structure and composition were tentatively examined by choosing the reduction of 4-nitrophenol with NaBH4. The reaction rate normalized to the concentration of catalysts was calculated to be 318.9 s(-1) mol(-1) L and 277.4 s(-1) mol(-1) L for Pt70Ag30 and Pt66Ag34 porous catalysts, which is much higher than the pure Pt catalysts. Moreover, PtAg nanostructures can also serve as efficient electrocatalysts toward the methanol oxidation reaction, especially for Pt70Ag30 and Pt66Ag34 porous nanocrystals. The electrocatalytic activity and the durability were both highly enhanced compared to the commercial Pt/C catalyst. In addition, we also investigated the enhancement mechanism.

  9. Cladding technique for development of Ag In Cd decoupler

    NASA Astrophysics Data System (ADS)

    Teshigawara, M.; Harada, M.; Saito, S.; Kikuchi, K.; Kogawa, H.; Ikeda, Y.; Kawai, M.; Kurishita, H.; Konashi, K.

    2005-08-01

    To develop a Ag (silver)-In (indium)-Cd (cadmium) alloy decoupler, a method is needed to bond the decoupler between two plates of the Al alloy (A6061-T6). We found that a better HIP condition was temperature, pressure and holding time at 803 K, 100 MPa and 1 h, respectively, for small test pieces ( ϕ 22 mm in diam. × 5 mm in height). Especially, a sandwich case (a Ag-In plate with thickness of 0.5 mm between two Ag-Cd plates with thickness of 1.25 mm) gave easier (or better) bonding results. Though a hardened layer is found in the bonding layer, the rupture strength of the bonding layer is more than 30 MPa, which is higher than the design stress in our application.

  10. Physical, metabolic and developmental functions of the seed coat

    PubMed Central

    Radchuk, Volodymyr; Borisjuk, Ljudmilla

    2014-01-01

    The conventional understanding of the role of the seed coat is that it provides a protective layer for the developing zygote. Recent data show that the picture is more nuanced. The seed coat certainly represents a first line of defense against adverse external factors, but it also acts as channel for transmitting environmental cues to the interior of the seed. The latter function primes the seed to adjust its metabolism in response to changes in its external environment. The purpose of this review is to provide the reader with a comprehensive view of the structure and functionality of the seed coat, and to expose its hidden interaction with both the endosperm and embryo. Any breeding and/or biotechnology intervention seeking to increase seed size or modify seed features will have to consider the implications on this tripartite interaction. PMID:25346737

  11. Electrically conductive nanostructured silver doped zinc oxide (Ag:ZnO) prepared by solution-immersion technique

    NASA Astrophysics Data System (ADS)

    Afaah, A. N.; Asib, N. A. M.; Aadila, A.; Mohamed, R.; Rusop, M.; Khusaimi, Z.

    2016-07-01

    p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO3 as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films were characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.

  12. Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents.

    PubMed

    Li, Jing; Wang, Wenjing; Zhao, Liang; Rong, Li; Lan, Shijie; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2015-06-01

    Despite the success of galvanic replacement in preparing hollow nanostructures with diversified morphologies via the replacement reaction between sacrificial metal nanoparticles (NPs) seeds and less active metal ions, limited advances are made for producing branched alloy nanostructures. In this paper, we report an extended galvanic replacement for preparing branched Au-Ag NPs with Au-rich core and Ag branches using hydroquinone (HQ) as the reductant. In the presence of HQ, the preformed Ag seeds are replaceable by Au and, in turn, supply the growth of Ag branches. By altering the feed ratio of Ag seeds, HAuCl4, and HQ, the size and morphology of the NPs are tunable. Accordingly, the surface plasmon resonance absorption is tuned to near-infrared (NIR) region, making the branched NPs as potential materials in photothermal therapy. The branched NPs are further coated with polydopamine (PDA) shell via dopamine polymerization at room temperature. In comparison with bare NPs, PDA-coated branched Au-Ag (Au-Ag@PDA) NPs exhibit improved stability, biocompatibility, and photothermal performance. In vitro experiments indicate that the branched Au-Ag@PDA NPs are competitive agents for photothermal ablation of cancer cells. PMID:25969998

  13. Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents.

    PubMed

    Li, Jing; Wang, Wenjing; Zhao, Liang; Rong, Li; Lan, Shijie; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2015-06-01

    Despite the success of galvanic replacement in preparing hollow nanostructures with diversified morphologies via the replacement reaction between sacrificial metal nanoparticles (NPs) seeds and less active metal ions, limited advances are made for producing branched alloy nanostructures. In this paper, we report an extended galvanic replacement for preparing branched Au-Ag NPs with Au-rich core and Ag branches using hydroquinone (HQ) as the reductant. In the presence of HQ, the preformed Ag seeds are replaceable by Au and, in turn, supply the growth of Ag branches. By altering the feed ratio of Ag seeds, HAuCl4, and HQ, the size and morphology of the NPs are tunable. Accordingly, the surface plasmon resonance absorption is tuned to near-infrared (NIR) region, making the branched NPs as potential materials in photothermal therapy. The branched NPs are further coated with polydopamine (PDA) shell via dopamine polymerization at room temperature. In comparison with bare NPs, PDA-coated branched Au-Ag (Au-Ag@PDA) NPs exhibit improved stability, biocompatibility, and photothermal performance. In vitro experiments indicate that the branched Au-Ag@PDA NPs are competitive agents for photothermal ablation of cancer cells.

  14. Role of Seed Coat in Imbibing Soybean Seeds Observed by Micro-magnetic Resonance Imaging

    PubMed Central

    Koizumi, Mika; Kikuchi, Kaori; Isobe, Seiichiro; Ishida, Nobuaki; Naito, Shigehiro; Kano, Hiromi

    2008-01-01

    Background and Aims Imbibition of Japanese soybean (Glycine max) cultivars was studied using micro-magnetic resonance imaging (MRI) in order to elucidate the mechanism of soaking injury and the protective role of the seed coat. Methods Time-lapse images during water uptake were acquired by the single-point imaging (SPI) method at 15-min intervals, for 20 h in the dry seed with seed coat, and for 2 h in seeds with the seed coat removed. The technique visualized water migration within the testa and demonstrated the distortion associated with cotyledon swelling during the very early stages of water uptake. Key Results Water soon appeared in the testa and went around the dorsal surface of the seed from near the raphe, then migrated to the hilum region. An obvious protrusion was noted when water reached the hypocotyl and the radicle, followed by swelling of the cotyledons. A convex area was observed around the raphe with the enlargement of the seed. Water was always incorporated into the cotyledons from the abaxial surfaces, leading to swelling and generating a large air space between the adaxial surfaces. Water uptake greatly slowed, and the internal structures, veins and oil-accumulating tissues in the cotyledons developed after the seed stopped expanding. When the testa was removed from the dry seeds before imbibition, the cotyledons were severely damaged within 1·5 h of water uptake. Conclusions The activation of the water channel seemed unnecessary for water entry into soybean seeds, and the testa rapidly swelled with steeping in water. However, the testa did not regulate the water incorporation in itself, but rather the rate at which water encountered the hypocotyl, the radicle, and the cotyledons through the inner layer of the seed coat, and thus prevented the destruction of the seed tissues at the beginning of imbibition. PMID:18565982

  15. Fabrication of Ag nanowire and Al-doped ZnO hybrid transparent electrodes

    NASA Astrophysics Data System (ADS)

    You, Sslimsearom; Park, Yong Seo; Choi, Hyung Wook; Kim, Kyung Hwan

    2016-01-01

    Among the materials used as transparent electrodes, silver nanowires (AgNWs) have attracted attention because of their high transmittance and excellent conductivity. However, AgNWs have shortcomings, including their poor adhesion, oxidation by atmospheric oxygen, and unstable characteristics at high temperature. To overcome these shortcomings, multi-layer thin films with an aluminum-doped zinc oxide (AZO)/AgNW/AZO structure were fabricated using facing targets sputtering. The samples heated to 350 °C exhibited stable electrical characteristics. In addition, the adhesion to the substrate was improved compared with AgNWs layer. The AZO/AgNW/AZO thin films with multilayer structure overcame the shortcomings of AgNWs, and we propose their use as transparent electrodes with excellent properties for optoelectronic applications.

  16. Annealing effect of ultrathin Ag films on Ni/Pt(111)

    SciTech Connect

    Su, C.W.; Yo, H.Y.; Chen, Y.J.; Shern, C.S.

    2005-06-15

    The epitaxial growth and alloy formation of Ag-capped layer on Ni/Pt(111) surface were investigated using Auger electron spectroscopy, ultraviolet photoelectron spectroscopy, and low-energy electron diffraction. The growth of Ag on one ML Ni/Pt(111) transforms from layer-by-layer mode into three-dimensional island mode after the growth of one atomic monolayer of Ag. The starting temperature for the alloy formation of Ni-Pt is dependent of the thickness of Ni films. The interface compositions after the high-temperature annealing were studied with the depth-profile analysis of Ar ion sputtering.

  17. Morpho-anatomy, imbibition, viability and germination of the seed of Anadenanthera colubrina var. cebil (Fabaceae).

    PubMed

    Varela, Rodolfo Omar; Albornoz, Patricia Liliana

    2013-09-01

    Seed biology is a relevant aspect of tropical forests because it is central to the understanding of processes of plant establishment, succession and natural regeneration. Anadenanthera colubrina var. cebil is a timber tree from South America that produces large seeds with thin weak teguments, which is uncommon among legumes. This study describes the morphology and anatomy of the seed coat, the viability, imbibition, and germination in this species. Seeds used during the essays came from 10 trees that grow naturally in Horco Molle, province of Tucumán, Argentina. Seed morphology was described from a sample of 20 units. The seed coat surface was examined with a scanning electron microscope. Transverse sections of hydrated and non-hydrated seeds were employed to describe the histological structure of the seed coat. Hydration, viability and germination experiments were performed under laboratory controlled conditions; and the experimental design consisted of 10 replicas of 10 seeds each. Viability and germination tests were conducted using freshly fallen seeds and seeds stored for five months. Morphologically the seeds of A. colubrina var. cebil are circular to subcircular, laterally compressed, smooth, bright brown and have a horseshoe fissure line (= pleurogram) on both sides. The seed coat comprises five tissue layers and a double (external and internal) cuticle. The outer cuticle (on the epidermis) is smooth and interrupted by microcracks and pores of variable depth. The epidermis consists of macroesclereids with non-lignified secondary walls. This layer is separated from the underlying ones during seed hydration. The other layers of internal tissues are comprised of osteosclereids, parenchyma, osteosclereids, and macrosclereids. The percentage of viable seeds was 93%, decreasing to 75% in seeds with five months old. Seed mass increased 76% after the first eight hours of hydration. Germination percentage was 75% after 76 hours. Germination of seeds stored for five

  18. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  19. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  20. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  1. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  2. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  3. Seed Treatment. Sale Publication 4076.

    ERIC Educational Resources Information Center

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide gives information about types of seeds that may require chemical protection against pests, seed treatment pesticide formulations, seed treatment methods, labeling treated seed, and safety and environmental precautions. (Author/BB)

  4. Healthy food trends -- chia seeds

    MedlinePlus

    ... Healthy food trends - salvia; Healthy snacks - Chia seeds; Weight loss - Chia seeds; Healthy diet - Chia seeds; Wellness - Chia ... fiber. Some think chia seeds may help with weight loss and other risk factors, but this has not ...

  5. Localized surface plasmon resonance effect in organic light-emitting devices with Ag islands

    NASA Astrophysics Data System (ADS)

    Shimazaki, Noritaka; Naka, Shigeki; Okada, Hiroyuki

    2014-04-01

    We report on luminescence enhancement of organic light-emitting devices (OLEDs) with silver islands (i-Ag) by a localized surface plasmon resonance (LSPR) effect. The devices were fabricated using tetraphenylporphyrin (TPP) as the red emission material, bis[N-(1-naphthyl)-N-phenyl] benzidine (α-NPD) as the blue emission and hole transport material, and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as the electron transport material. To clarify the position of emission enhancement by energy transfer from i-Ag, an ultrathin TPP layer located within the α-NPD layer. In the device with i-Ag and the TPP layer located over 10 nm from i-Ag, TPP emission was enhanced in comparison with the device without i-Ag. The enhancement of TPP emission was suggested to be the effect of the enhanced electric field resulting from LSPR excited by α-NPD emission.

  6. Crystallinity-induced shape evolution of Pt-Ag nanosheets from branched nanocrystals.

    PubMed

    Mahmood, Azhar; Saleem, Faisal; Lin, Haifeng; Ni, Bing; Wang, Xun

    2016-08-18

    Crystallinity offers countless opportunities for the controlled synthesis of multimetallic 2D and 3D nanomaterials. Herein we have successfully synthesized 2D Pt-Ag ultrathin nanosheets through the oxidative etching of twin seeds and 3D Pt-Ag-Cu tetrapods via altering the crystallinity through the incorporation of copper into the Pt-Ag alloy. A better electrocatalytic activity is obtained for the oxidation of formic acid which is 3.8 times higher than that of a commercial platinum catalyst as the stepped surface atom densities are higher on the nanosheets. PMID:27494004

  7. Seed Proteomics"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomic analysis of seeds encounters some specific problems that do not impinge on analyses of other plant cells, tissues, or organs. There are anatomic considerations. Seeds comprise the seed coat, the storage organ(s), and the embryonic axis. Are these to be studied individually or as a compo...

  8. Going to Seed.

    ERIC Educational Resources Information Center

    Powell, Richard R.

    1984-01-01

    Describes a unit on seeds designed to introduce students to their scientific and nutritional uses. Unit activities are easily done, employ a variety of process skills, and can be used at various grade levels. Suggests field trips to gather seeds, seed sprouting, and making cookies out of various whole grains. (JM)

  9. Needs of Seeds

    ERIC Educational Resources Information Center

    Keeley, Page

    2011-01-01

    The "Needs of Seeds" formative assessment probe can be used to find out whether students recognize that seeds have needs both similar to and different from plants and other living organisms (Keeley, Eberle, and Tugel 2007). The probe reveals whether students overgeneralize the needs of seeds by assuming they have the same needs as the adult plants…

  10. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    PubMed Central

    2013-01-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs. PMID:24148227

  11. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro Jose; Goicoechea, Javier; Urrutia, Aitor; Matias, Ignacio Raul; Arregui, Francisco Javier

    2013-10-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs.

  12. Critical interparticle distance for the remarkably enhanced dielectric constant of BaTiO3-Ag hybrids filled polyvinylidene fluoride composites

    NASA Astrophysics Data System (ADS)

    Luo, Suibin; Yu, Shuhui; Fang, Fang; Lai, Maobai; Sun, Rong; Wong, Ching-Ping

    2014-06-01

    Discrete nano Ag-deposited BaTiO3 (BT-Ag) hybrids with varied Ag content were synthesized, and the hybrids filled polyvinylidene fluoride (PVDF) composites were prepared. The effect of Ag content on the dielectric properties of the composites were analyzed based on the diffused electrical double layer theory. Results showed that with a higher Ag content in BT-Ag hybrids, the dielectric constant of BT-Ag/PVDF composites increases fast with the filler loading, while the dielectric loss and conductivity showed a suppressed and moderate increase. The dielectric constant of BT-0.61Ag/PVDF (61 wt. % of Ag in BT-Ag hybrid) composites reached 613, with the dielectric loss of 0.29 at 1 kHz. It was deduced that remarkably enhanced dielectric constant appeared when the interparticle distance decreased to a critical value of about 20 nm.

  13. Polymer-templated electrodeposition of Ag nanosheets assemblies array as reproducible surface-enhanced Raman scattering substrate.

    PubMed

    Liu, Sisi; Xu, Zhimou; Sun, Tangyou; Zhao, Wenning; Wu, Xinghui; Ma, Zhichao; Zhang, Xueming; He, Jian; Chen, Cunhua

    2014-06-01

    Position-configurable, reproducible, vertically aligned nanosheets assemblies (ANAs) arrays are fabricated by polymer-templated electrodeposition method at room temperature. Here, nanoimprint lithography is utilized to fabricate polymer template on the fluorine-doped tin oxide substrate for the purpose of evenly tuning the location of Ag nanostructures. Subsequently, vertically aligned ANAs can be achieved at the bottom of each hole via electrodeposition in a mixed aqueous solution of AgNO3 and citric acid. To obtain uniform ANAs array, we have systematically investigated the factors that influenced the electrodeposition. It was found that the formation of uniform ANAs arrays is strongly depended on the seeding layer, citric acid concentration, electrodeposition potential and time. The as-synthesized ANAs array exhibited a remarkable SERS activity and Raman signal reproducibility to rhodamine 6G, a concentration down to 10(-13) M can be identified. Our results revealed that the ANAs array is a highly desirable candidate as the reliable enhancer for high performance SERS analysis.

  14. The oxygen requirement of germinating flax seeds

    NASA Astrophysics Data System (ADS)

    Kuznetsov, O.; Hasenstein, K.

    Experiments for earth orbit are typically prepared on the ground and often germinated in orbit in order to study gravity effects on developing seedlings. Germination requires the breakdown of storage compounds and respiration. In orbit the formation of a water layer around the seed may further limit oxygen availability. Therefore, the oxygen content of the available gas volume is one of the limiting factors for seed germination. In preparation for an upcoming shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware. We tested per seed chamber (gas volume = 14 mL, O2 = 2.9 mL) between 4 to 32 seeds glued to germination paper by 1% (w/v) gum guar. A lexan cover and a gasket hermetically sealed each of the eight chambers. For imbibition of the seeds a previously optimized amount of distilled water was dispensed through sealed inlets. The seedlings were allowed to grow for either 32 to 48 h on a clinostat or without microgravity simulation. Then their root length was measured. With 32 seeds per chamber, four times the intended number of seeds for the flight, the germination rate decreased from 94 to 69%, and the root length was reduced by 20%. Experiments on the germination and root length in controlled atmospheres (5, 10, 15 and 21% O2 ) suggest that germination and growth for two days requires about 200 :l of O (1 mL air) per seed. Our2 experiments correlate oxygen dependency from seed mass and germination temperature, and analyze accumulation of gaseous metabolites (supported by NASA grant NAG10-0190).

  15. Spin relaxation characteristics in Ag nanowire covered with various oxides

    SciTech Connect

    Karube, S.; Idzuchi, H.; Otani, Y.; Kondou, K.; Fukuma, Y.

    2015-09-21

    We have studied spin relaxation characteristics in a Ag nanowire covered with various oxide layers of Bi{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, HfO{sub 2}, MgO, or AgO{sub x} by using non-local spin valve structures. The spin-flip probability, a ratio of momentum relaxation time to spin relaxation time at 10 K, exhibits a gradual increase with an atomic number of the oxide constituent elements, Mg, Al, Ag, and Hf. Surprisingly, the Bi{sub 2}O{sub 3} capping was found to increase the probability by an order of magnitude compared with other oxide layers. This finding suggests the presence of an additional spin relaxation mechanism such as Rashba effect at the Ag/Bi{sub 2}O{sub 3} interface, which cannot be explained by the simple Elliott-Yafet mechanism via phonon, impurity, and surface scatterings. The Ag/Bi{sub 2}O{sub 3} interface may provide functionality as a spin to charge interconversion layer.

  16. Au@Ag Core-Shell Nanocubes with Finely Tuned and Well-Controlled Sizes, Shell Thicknesses, and Optical Properties

    PubMed Central

    Ma, Yanyun; Li, Weiyang; Cho, Eun Chul; Li, Zhiyuan; Yu, Taekyung; Zeng, Jie; Xie, Zhaoxiong; Xia, Younan

    2010-01-01

    This paper describes a facile method for generating Au@Ag core-shell nanocubes with edge lengths controllable in the range of 13.4 to 50 nm. The synthesis involved the use of single-crystal, spherical Au nanocrystals of 11 nm in size as the seeds in an aqueous system, with ascorbic acid serving as the reductant and cetyltrimethylammonium chloride (CTAC) as the capping agent. The thickness of the Ag shells could be finely tuned from 1.2 to 20 nm by varying the ratio of AgNO3 precursor to Au seeds. We also investigated the growth mechanism by examining the effects of seeds (capped by CTAC or CTAB) and capping agent (CTAC vs. CTAB) on both size and shape of the resultant core-shell nanocrystals. Our results clearly indicate that CTAC worked much better than CTAB as a capping agent in both the syntheses of Au seeds and Au@Ag core-shell nanocubes. We further studied the localized surface plasmon resonance properties of the Au@Ag nanocubes as a function of the Ag shell thickness. By comparing with the extinction spectra obtained from theoretical calculations, we derived a critical value around 3 nm for the shell thickness at which the plasmon excitation of the Au cores would be completely screened by the Ag shells. Moreover, these Au@Ag core-shell nanocubes could be converted into Au-based hollow nanostructures containing the original Au seeds in the interiors through a galvanic replacement reaction. PMID:20964400

  17. Ag Division States Philosophy

    ERIC Educational Resources Information Center

    American Vocational Journal, 1976

    1976-01-01

    The discussion which took place during the American Vocational Association's (AVA) Agriculture Division meeting at the 1975 AVA Convention is summarized, and the statement of vo-ag education philosophy (including 13 key concepts), which was passed during the convention, is presented. (AJ)

  18. The seed nuclear proteome

    PubMed Central

    Repetto, Ombretta; Rogniaux, Hélène; Larré, Colette; Thompson, Richard; Gallardo, Karine

    2012-01-01

    Understanding the regulatory networks coordinating seed development will help to manipulate seed traits, such as protein content and seed weight, in order to increase yield and seed nutritional value of important food crops, such as legumes. Because of the cardinal role of the nucleus in gene expression, sub-proteome analyses of nuclei from developing seeds were conducted, taking advantage of the sequences available for model species. In this review, we discuss the strategies used to separate and identify the nuclear proteins at a stage when the seed is preparing for reserve accumulation. We present how these data provide an insight into the complexity and distinctive features of the seed nuclear proteome. We discuss the presence of chromatin-modifying enzymes and proteins that have roles in RNA-directed DNA methylation and which may be involved in modifying genome architecture in preparation for seed filling. Specific features of the seed nuclei at the transition between the stage of cell divisions and that of cell expansion and reserve deposition are described here which may help to manipulate seed quality traits, such as seed weight. PMID:23267364

  19. Highly quasi-monodisperse ag nanoparticles on titania nanotubes by impregnative aqueous ion exchange.

    PubMed

    Toledo-Antonio, J A; Cortes-Jácome, M A; Angeles-Chavez, C; López-Salinas, E; Quintana, P

    2009-09-01

    Silver nanoparticles were homogenously dispersed on titania nanotubes (NT), which were prepared by alkali hydrothermal methodology and dried at 373 K. Ag(+) incorporation was done by impregnative ion exchange of aqueous silver nitrate onto NT. First, Ag(+) ions incorporate into the layers of nanotube walls, and then, upon heat treatment under N(2) at 573 and 673 K, they migrate and change into Ag(2)O and Ag(0) nanoparticles, respectively. In both cases, Ag nanoparticles are highly dispersed, decorating the nanotubes in a polka-dot pattern. The Ag particle size distribution is very narrow, being ca. 4 +/- 2 nm without any observable agglomeration. The reduction of Ag(2)O into Ag(0) octahedral nanoparticles occurs spontaneously and topotactically when annealing, without the aid of any reducing agent. The population of Ag(0) nanoparticles can be controlled by adjusting the annealing temperature. An electron charge transfer from NT support to Ag(0) nanoparticles, because of a strong interaction, is responsible for considerable visible light absorption in Ag(0) nanoparticles supported on NT.

  20. Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract

    NASA Astrophysics Data System (ADS)

    Zia, Faria; Ghafoor, Nida; Iqbal, Mudassir; Mehboob, Saliha

    2016-01-01

    The green synthesis of nanoparticles has emerged as a cost-effective and environmentally benign technique. The present study describes the synthesis of silver nanoparticles (Ag-NPs) using a seed extract of Cydonia oblonga. The conditions were optimized by adjusting pH, temperature, time and amount of seed extract. The nanoparticles produced were characterized by different techniques, namely UV-visible spectroscopy, Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy. The formation of Ag-NPs was confirmed by UV-visible spectroscopic analysis. FTIR analysis was performed to identify the biomolecules, which played a key role in the reduction of Ag+ ions. XRD confirmed that the silver nanoparticles possessed face-centered cubic structure. The green chemistry approach has proven that Ag-NPs can be synthesized by using plant extract in which biomolecules effectively act as capping and reducing agent.

  1. Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract

    NASA Astrophysics Data System (ADS)

    Zia, Faria; Ghafoor, Nida; Iqbal, Mudassir; Mehboob, Saliha

    2016-10-01

    The green synthesis of nanoparticles has emerged as a cost-effective and environmentally benign technique. The present study describes the synthesis of silver nanoparticles (Ag-NPs) using a seed extract of Cydonia oblonga. The conditions were optimized by adjusting pH, temperature, time and amount of seed extract. The nanoparticles produced were characterized by different techniques, namely UV-visible spectroscopy, Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy. The formation of Ag-NPs was confirmed by UV-visible spectroscopic analysis. FTIR analysis was performed to identify the biomolecules, which played a key role in the reduction of Ag+ ions. XRD confirmed that the silver nanoparticles possessed face-centered cubic structure. The green chemistry approach has proven that Ag-NPs can be synthesized by using plant extract in which biomolecules effectively act as capping and reducing agent.

  2. Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani.

    PubMed

    Khatami, Mehrdad; Nejad, Meysam Soltani; Salari, Samira; Almani, Pooya Ghasemi Nejad

    2016-08-01

    In recent years, biosynthesis and the utilisation of silver nanoparticles (AgNPs) has become an interesting subject. In this study, the authors investigated the biosynthesis of AgNPs using Trifolium resupinatum (Persian clover) seed exudates. The characterisation of AgNPs were analysed using ultraviolet-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infra-red spectroscopy. Also, antifungal efficacy of biogenic AgNPs against two important plant-pathogenic fungi (Rhizoctonia solani and Neofusicoccum Parvum) in vitro condition was evaluated. The XRD analysis showed that the AgNPs are crystalline in nature and have face-centred cubic geometry. TEM images revealed the spherical shape of the AgNPs with an average size of 17 nm. The synthesised AgNPs were formed at room temperature and kept stable for 4 months. The maximum distributions of the synthesised AgNPs were seen to range in size from 5 to 10 nm. The highest inhibition effect was observed against R. solani at 40 ppm concentration of AgNPs (94.1%) followed by N. parvum (84%). The results showed that the antifungal activity of AgNPs was dependent on the amounts of AgNPs. In conclusion, the AgNPs obtained from T. resupinatum seed exudate exhibit good antifungal activity against the pathogenic fungi R. solani and N. Parvum. PMID:27463795

  3. Freeze-dried PVP-Ag+ precursors to novel AgBr/AgCl-Ag hybrid nanocrystals for visible-light-driven photodegradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Chen, Qianqian; Zhang, Wenjie; Ge, Lianfang; Shao, Gang; Fan, Bingbing; Lu, Hongxia; Zhang, Rui; Yang, Daoyuan; Shao, Guosheng

    2015-04-01

    AgBr/AgCl-Ag nanocrystals with various molar Br-to-Ag ratios (RBr/Ag = 0, 1/3, 1/2, 2/3, 1) and different photoreduction times (0-20 min) were synthesized via stepwise liquid-solid reactions using the freeze-dried PVP-Ag+ hybrid as the Ag source, followed by a photoreduction reaction. The AgBr/AgCl-Ag7.5(1:2) nanocrystals obtained take on a spherical morphology with a particle-size range of 58 ± 15 nm. The photocatalytic performance of AgBr/AgCl-Ag nanocrystals was evaluated by photodegrading organic dyes, 4-chlorophenol and isopropanol under artificial visible light (λ ⩾ 420 nm, 100 mW cm-2). For the decomposition of rhodamine B, the AgBr/AgCl-Ag7.5(1:2) nanocrystals has a photodegradation rate of ∼0.87 min-1, ∼159 times higher than that (∼0.0054 min-1) of TiO2 (P25), whereas the AgCl-Ag and AgBr-Ag nanocrystals have photodegradation rates of 0.35 min-1 and 0.45 min-1, respectively. The efficient separation of photogenerated electron-hole pairs in the ternary system consisting of AgBr, AgCl and Ag species plays a key role in the enhancement of photocatalytic performance.

  4. TCO/Ag/TCO transparent electrodes for solar cells application

    NASA Astrophysics Data System (ADS)

    Boscarino, S.; Crupi, I.; Mirabella, S.; Simone, F.; Terrasi, A.

    2014-09-01

    Among transparent electrodes, transparent conductive oxides (TCO)/metal/TCO structures can achieve optical and electrical performances comparable to, or better than, single TCO layers and very thin metallic films. In this work, we report on thin multilayers based on aluminum zinc oxide (AZO), indium tin oxide (ITO) and Ag deposited by RF magnetron sputtering on soda lime glass at room temperature. The TCO/Ag/TCO structures with thicknesses of about 50/10/50 nm were deposited with all combinations of AZO and ITO as top and bottom layers. While the electrical conductivity is dominated by the Ag intralayer irrespective of the TCO nature, the optical transmissions show a dependence on the nature of the top and bottom TCOs, mainly due to the change in the reflectivity of the multilayers. Structural, electrical and optical properties are studied to optimize the structure for very thin transparent electrodes suitable for photovoltaic applications.

  5. Ice nucleation efficiency of AgI: review and new insights

    NASA Astrophysics Data System (ADS)

    Marcolli, Claudia; Nagare, Baban; Welti, André; Lohmann, Ulrike

    2016-07-01

    AgI is one of the best-investigated ice-nucleating substances. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last 60 years provide a complex picture of silver iodide as an ice-nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyze the factors that influence the ice nucleation ability of AgI. The following picture emerges from this analysis: the ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. The ice nucleation by particles with surfaces exposed to air depends on water adsorption. AgI surfaces seem to be most efficient at nucleating ice when they are exposed to relative humidity at or even above water saturation. For AgI particles that are completely immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperatures seem to correlate with improved lattice matches as can be seen for AgI-AgCl solid solutions and 3AgI·NH4I·6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence for ice nucleation in cloud chambers with short residence times.

  6. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bharti, Amardeep; Singh, Suman; Singla, M. L.; Goyal, Navdeep

    2015-08-01

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM).

  7. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    SciTech Connect

    Bharti, Amardeep Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-08-28

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  8. Litter effects on seedling establishment interact with seed position and earthworm activity.

    PubMed

    Donath, T W; Eckstein, R L

    2012-01-01

    Seedling establishment is influenced by litter cover and by seed predators, but little is known about interactions between these two factors. We tested their effects on emergence of five typical grassland species in a microcosm experiment. We manipulated the amounts of grass litter, seed sowing position and earthworm activity to determine whether: (i) the protective effect of litter against seed predation depends on cover amount and seed sowing position, i.e., on top or beneath litter; (ii) seed transport by earthworms changes the effect of seed sowing position on seedling emergence; and (iii) seeds transported into deeper soil layers by earthworms are still germinable. Litter cover and presence of earthworms lowered seedling emergence. The impact of seed position increased with seed size. Emergence of large-seeded species was reduced when sown on the surface. Additionally, we found an important seed position × earthworm interaction related to seed size. Emergence of large-seeded species sown on top of the litter was up to three times higher when earthworms were present than without earthworms. Earthworms also significantly altered the depth distribution of seeds in the soil and across treatments: on average 6% of seeds germinated after burial. In contrast to the seed position effect, we found no size effect on mobility and germinability of seeds after burial in the soil. Nevertheless, the fate of different-sized seeds may differ. While burial will remove large seeds from the regeneration pool, it may enhance seed bank build up in small-seeded species. Consequently, changes in the amount of litter cover and the invertebrate community play a significant role in plant community composition. PMID:21972886

  9. AGS experiments -- 1995, 1996 and 1997

    SciTech Connect

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  10. AGS experiments -- 1991, 1992, 1993. Tenth edition

    SciTech Connect

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  11. [Possible mechanisms of aftereffects of GSM electromagnetic radiation on air-dry seeds].

    PubMed

    Veselova, T V; Veselovskiĭ, V A

    2012-01-01

    Some physical treatments, such as microwave- and gamma-radiation and magnetic field, induce long-term transition of air-dry seeds from the fraction of strong seeds into the weak seed fraction, due to non-enzymatic hydrolysis ofbiomacromolecules. These physical factors make water molecules more active, which is followed by the release of water molecules from the hydration layer, disturbance of this layer structure, further activation of water molecules by means of the "domino effect," and accumulation of hydrolysis products.

  12. Destabilization of Ag nanoislands on Ag(100) by adsorbed sulfur

    SciTech Connect

    Shen, Mingmin; Russell, Selena M.; Liu, Da-Jiang; Thiel, Patricia A.

    2011-10-17

    Sulfur accelerates coarsening of Ag nanoislands on Ag(100) at 300 K, and this effect is enhanced with increasing sulfur coverage over a range spanning a few hundredths of a monolayer, to nearly 0.25 monolayers. We propose that acceleration of coarsening in this system is tied to the formation of AgS{sub 2} clusters primarily at step edges. These clusters can transport Ag more efficiently than can Ag adatoms (due to a lower diffusion barrier and comparable formation energy). The mobility of isolated sulfur on Ag(100) is very low so that formation of the complex is kinetically limited at low sulfur coverages, and thus enhancement is minimal. However, higher sulfur coverages force the population of sites adjacent to step edges, so that formation of the cluster is no longer limited by diffusion of sulfur across terraces. Sulfur exerts a much weaker effect on the rate of coarsening on Ag(100) than it does on Ag(111). This is consistent with theory, which shows that the difference between the total energy barrier for coarsening with and without sulfur is also much smaller on Ag(100) than on Ag(111).

  13. Thin bacteria/Layered Double Hydroxide films using a layer-by-layer approach.

    PubMed

    Halma, Matilte; Khenifi, Aicha; Sancelme, Martine; Besse-Hoggan, Pascale; Bussière, Pierre-Olivier; Prévot, Vanessa; Mousty, Christine

    2016-07-15

    This paper reports the design of thin bacteria/Layered Double Hydroxides (LDH) films in which bacterial cells of Pseudomonas sp. strain ADP were assembled alternatively with Mg2Al-NO3 LDH nanosheets by a layer-by-layer deposition method. The UV-Vis spectroscopy was used to monitor the assembly process, showing a progressive increase in immobilized bacteria amount upon deposited cycles. The {ADP/LDH}n film was characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy and atomic force microscopy. The metabolic activity of immobilized bacteria was determined using chronoamperometry by measuring the biochemical oxygen demand in presence of glucose using an artificial electron acceptor (Fe(CN)6(3-)) at 0.5V/Ag-AgCl. A steady current of 0.250μAcm(-2) was reached in about 30s after the addition of 5mM glucose. PMID:27124809

  14. Functionalization of Ag nanoparticles using local hydrophilic pool segment designed on their particle surface

    NASA Astrophysics Data System (ADS)

    Iijima, Motoyuki; Kurumiya, Aki; Esashi, Junki; Miyazaki, Hayato; Kamiya, Hidehiro

    2014-10-01

    The preparation of SiO2-coated Ag nanoparticles dispersible in various organic solvents has been achieved using a solgel reaction of tetraethylorthosilicate (TEOS), in the localized hydrophilic pool segments designed on Ag nanoparticle surfaces. First, oleylamine-capped core Ag nanoparticles were synthesized, followed by ligand exchange with polyethyleneimine (PEI) and further adsorption of an anionic surfactant comprising hydrophilic polyethylene glycol (PEG) chains and hydrophobic alkyl chains, which has previously been reported to improve the stability of nanoparticles in various solvents. Then, a reaction of TEOS with the localized hydrophilic PEI layer on the Ag nanoparticles' surface was conducted by stirring a toluene/TEOS solution of surface-modified Ag nanoparticles at various temperatures. It was found that a SiO2 layer was successfully formed on Ag nanoparticles when the reaction temperature was increased to 60 °C. It was also found, however, that at this elevated temperature, the primary particle size of Ag nanoparticles increased to several tens of nm, attributable to the dissolution and re-reduction of Ag+. Because the surface modifier, PEI and anionic surfactant all remained on the nanoparticle surface during the SiO2 coating process, the prepared SiO2-coated Ag nanoparticles were found to be dispersible in various organic solvents near to their primary particle size.

  15. Silica Cladding of Ag Nanoparticles for High Stability and Surface-Enhanced Raman Spectroscopy Performance

    NASA Astrophysics Data System (ADS)

    Zhao, Miaomiao; Guo, Hao; Liu, Wenyao; Tang, Jun; Wang, Lei; Zhang, Binzhen; Xue, Chenyang; Liu, Jun; Zhang, Wendong

    2016-09-01

    For high-precision biochemical sensing, surface-enhanced Raman spectroscopy (SERS) has been demonstrated to be a highly sensitive spectroscopic analytical method and Ag is considered to be the best material for SERS performance. Due to the high surface activity of Ag nanoparticles, the high stability of Ag nanostructures, especially in moist environments, is one of the key issues that need to be solved. A method for silica (SiO2) cladding of Ag nanoparticles (NPs) is demonstrated here for high sensitivity and long-term stability when putted in aqueous solution. The chemically inert, transparent, hydrophilic, and bio-compatible SiO2 surface acts as the protection layer for the Ag nanoparticles, which can also enhance the Raman intensity to a certain extent. In our study, the Ag@SiO2 core-shell substrate can detect crystal violet solutions with molar concentrations down to 10-12 M. After 24 h of immersion, the reduction in Raman scattering intensity is about 85 % for sole Ag NP films, compared to 12 % for the Ag coated with a 10-nm SiO2 layer. This thickness was found to be optimum for Ag@SiO2 core-shell substrates with long-term stability and high SERS activity.

  16. Silica Cladding of Ag Nanoparticles for High Stability and Surface-Enhanced Raman Spectroscopy Performance.

    PubMed

    Zhao, Miaomiao; Guo, Hao; Liu, Wenyao; Tang, Jun; Wang, Lei; Zhang, Binzhen; Xue, Chenyang; Liu, Jun; Zhang, Wendong

    2016-12-01

    For high-precision biochemical sensing, surface-enhanced Raman spectroscopy (SERS) has been demonstrated to be a highly sensitive spectroscopic analytical method and Ag is considered to be the best material for SERS performance. Due to the high surface activity of Ag nanoparticles, the high stability of Ag nanostructures, especially in moist environments, is one of the key issues that need to be solved. A method for silica (SiO2) cladding of Ag nanoparticles (NPs) is demonstrated here for high sensitivity and long-term stability when putted in aqueous solution. The chemically inert, transparent, hydrophilic, and bio-compatible SiO2 surface acts as the protection layer for the Ag nanoparticles, which can also enhance the Raman intensity to a certain extent. In our study, the Ag@SiO2 core-shell substrate can detect crystal violet solutions with molar concentrations down to 10(-12) M. After 24 h of immersion, the reduction in Raman scattering intensity is about 85 % for sole Ag NP films, compared to 12 % for the Ag coated with a 10-nm SiO2 layer. This thickness was found to be optimum for Ag@SiO2 core-shell substrates with long-term stability and high SERS activity. PMID:27637895

  17. Surface Degradation of Ag/W Circuit Breaker Contacts During Standardized UL Testing

    NASA Astrophysics Data System (ADS)

    Yu, Haibo; Sun, Yu; Kesim, M. Tumerkan; Harmon, Jason; Potter, Jonathan; Alpay, S. Pamir; Aindow, Mark

    2015-09-01

    The near-surface microstructure of Ag/W contacts from 120 V, 30 A commercial circuit breakers in the as-manufactured condition and after standardized UL overload/temperature-rise, endurance, and short-circuit testing have been investigated using a combination of x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy, focused ion beam milling, and transmission electron microscopy. The as-manufactured contacts comprised three constituents: sintered Ag/W composite particles with fine-grained Ag and coarse-grained W, coarse-grained pockets of Ag infiltrate, and a nano-crystalline surface Ag layer. There are also WO3 and Ag2O phases at the surface. After UL overload/temperature-rise testing, there is Ag loss giving a porous W-rich layer at the contact surface. In addition to binary oxides, we observe the formation of Ag2WO4. After UL endurance testing, material is swept across the surface by the breaker action giving a W-rich eroded porous surface on one side and a build-up of mixed oxides on the other. After UL short-circuit testing, a W crust forms due to melting and re-solidification of W and vaporization of Ag, and mid-plane cracks form due to the severe thermal gradients. There is a strong correlation between the observed microstructural features and the contact resistance measurements obtained from these samples.

  18. Highly transparent Au-coated Ag nanowire transparent electrode with reduction in haze.

    PubMed

    Kim, Taegeon; Canlier, Ali; Cho, Changsoon; Rozyyev, Vepa; Lee, Jung-Yong; Han, Seung Min

    2014-08-27

    Ag nanowire transparent electrode has excellent transmittance and sheet resistance, yet its optical haze still needs to be improved in order for it to be suitable for display applications. Ag nanowires are known to have high haze because of the geometry of the nanowire and the high light scattering characteristic of the Ag. In this study, a Au-coated Ag nanowire structure was proposed to reduce the haze, where a thin layer of Au was coated on the surface of the Ag nanowires using a mild [Au(en)2]Cl3 galvanic displacement reaction. The mild galvanic exchange allowed for a thin layer of Au coating on the Ag nanowires with minimal truncation of the nanowire, where the average length and the diameter were 13.0 μm and 60 nm, respectively. The Au-coated Ag nanowires were suspended in methanol and then electrostatically sprayed on a flexible polycarbonate substrate that revealed a clear reduction in haze with a 2-4% increase in total transmittance, sheet resistance ranges of 80-90%, and 8.8-36.8 Ohm/sq. Finite difference time domain simulations were conducted for Au-coated Ag nanowires that indicated a significant reduction in the average scattering from 1 to 0.69 for Au layer thicknesses of 0-10 nm.

  19. AGS preinjector improvement

    SciTech Connect

    Alessi, J.G.; Brennan, J.M.; Brown, H.N.; Brodowski, J.; Gough, R.; Kponou, A.; Prelec, K.; Staples, J.; Tanabe, J.; Witkover, R.

    1987-01-01

    In 1984, a polarized H/sup -/ source was installed to permit the acceleration of polarized protons in the AGS, using a low current, 750 keV RFQ Linear Accelerator as the preinjector. This RFQ was designed by LANL and has proved to be quite satisfactory and reliable. In order to improve the reliability and simplify maintenance of the overall AGS operations, it has been decided to replace one of the two 750 keV Cockcroft-Waltons (C-W) with an RFQ. The design of a new high current RFQ has been carried out by LBL and is also being constructed there. This paper describes the preinjector improvement project, centered around that RFQ, which is underway at BNL.

  20. Effective electrocatalysis based on Ag2O nanowire arrays supported on a copper substrate.

    PubMed

    Ji, Rong; Wang, Lingling; Yu, Liutao; Geng, Baoyou; Wang, Guangfeng; Zhang, Xiaojun

    2013-11-13

    Silver oxide nanowire arrays (Ag2O NWAs) were first synthesized on a copper (Cu) rod by a simple and facile wet-chemistry approach without using any surfactants. The as-synthesized Ag2O NWA/Cu rod not only can be used as an integrated electrode (called a Ag2O NWA/CRIE) to detect hydrazine (HZ) but also can serve as the catalyst layer for a direct HZ fuel cell. The current density of HZ oxidation on Ag2O NWA (94.4 mA cm(-2)) is much bigger than that on a bare Cu rod (3.9 mA cm(-2)) at -0.6 V, and other Ag2O NWAs have the lowest onset potential (-0.85 V). This suggests that a Ag2O NWA integrated electrode has potential application in catalytic fields that contain the HZ fuel cell. PMID:23978111

  1. A Mechanistic Study on the Formation of Silver Nanoplates in the Presence of Silver Seeds and Citric Acid or Citrate Ions

    SciTech Connect

    Zhang, J.; Tao, J.; Li, W.; Grant, J.; Wang, P.; Zhu, Y.; Xia, Y.

    2011-02-01

    The world on a plate: In addition to their role as a capping agent that selectively binds to the {l_brace}111{r_brace} faces of silver, the carboxylate group can coordinate with Ag+ ions to form complexes and thus substantially reduce the reduction rate of Ag+ ions, leading to the formation of silver seeds with both twin planes and stacking faults.

  2. Physiology of Oil Seeds

    PubMed Central

    Ketring, D. L.; Morgan, P. W.

    1971-01-01

    Germination, ethylene production, and carbon dioxide production by dormant Virginia-type peanuts were determined during treatments with plant growth regulators. Kinetin, benzylaminopurine, and 2-chloroethylphosphonic acid induced extensive germination above the water controls. Benzylaminopurine and 2-chloroethylphosphonic acid increased the germination of the more dormant basal seeds to a larger extent above the controls than the less dormant apical seeds. Coumarin induced a slight stimulation of germination while abscisic acid, 2,4-dichlorophenoxyacetic acid, and succinic acid 2,2-dimethylhydrazide did not stimulate germination above the controls. In addition to stimulating germination, the cytokinins also stimulated ethylene production by the seeds. In the case of benzylaminopurine, where the more dormant basal seeds were stimulated to germinate above the control to a larger extent than the less dormant apical seeds, correspondingly more ethylene production was induced in the basal seeds. However, the opposite was true of kinetin for both germination and ethylene production. When germination was extensively stimulated by the cytokinins, maximal ethylene and carbon dioxide evolution occurred at 24 and 72 hours, respectively. Abscisic acid inhibited ethylene production and germinaton of the seeds while carbon dioxide evolution was comparatively high. The crucial physiological event for germination of dormant peanut seeds was enhancement of ethylene production by the seeds. PMID:16657647

  3. A role for seed storage proteins in Arabidopsis seed longevity.

    PubMed

    Nguyen, Thu-Phuong; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie

    2015-10-01

    Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared. Aged dry seed proteomes were markedly different from the after-ripened and reflected the seed longevity level of the four genotypes, despite the fact that dry seeds are metabolically quiescent. Results confirmed the role of antioxidant systems, notably vitamin E, and indicated that protection and maintenance of the translation machinery and energy pathways are essential for seed longevity. Moreover, a new role for seed storage proteins (SSPs) was identified in dry seeds during ageing. Cruciferins (CRUs) are the most abundant SSPs in Arabidopsis and seeds of a triple mutant for three CRU isoforms (crua crub cruc) were more sensitive to artificial ageing and their seed proteins were highly oxidized compared with wild-type seeds. These results confirm that oxidation is involved in seed deterioration and that SSPs buffer the seed from oxidative stress, thus protecting important proteins required for seed germination and seedling formation.

  4. Inhibitory effects of Tyrphostin AG-related compounds on oxidative stress-sensitive transient receptor potential channel activation.

    PubMed

    Toda, Takahiro; Yamamoto, Shinichiro; Yonezawa, Ryo; Mori, Yasuo; Shimizu, Shunichi

    2016-09-01

    Some transient receptor potential (TRP) proteins including TRPA1, TPRM2 and TRPV1 are oxidative stress-sensitive Ca(2+)-permeable channels. Ca(2+) signaling via these TRP channels activated by oxidative stress has been implicated in the aggravation of various inflammatory diseases and pain sensation. We recently reported that Tyrphostin AG490 exerted inhibitory effects on H2O2-induced TRPM2 activation by scavenging the hydroxyl radical. In order to identify stronger inhibitors of oxidative stress-sensitive TRP channels than AG490, we examined the inhibitory effects of Tyrphostin AG-related compounds on H2O2-induced TRP channel activation in human embryonic kidney 293 cells expressing TRP channels. AG555 and AG556 blocked the activation of TRPM2 by H2O2 more strongly than AG490. Regarding TRPV1 and TRPA1, none of the three compounds tested affected H2O2-induced TRPV1 activation; however, AG555 and AG556 reduced H2O2-induced TRPA1 activation more than AG490. Thus, we herein identified AG555 and AG556 as new compounds that exert stronger inhibitory effects on H2O2-induced TRPM2 and TRPA1 activation than AG490. Edaravone, a hydroxyl radical scavenger used in the treatment of cerebral hemorrhage and cerebral infarction, did not affect H2O2-induced TRPM2 or TRPA1 activation. AG555 and AG556 may be useful seed compounds as therapeutic agents for several TRP-related diseases associated with oxidative stress. PMID:27238971

  5. Quantifying the origin of released Ag+ ions from nanosilver.

    PubMed

    Sotiriou, Georgios A; Meyer, Andreas; Knijnenburg, Jesper T N; Panke, Sven; Pratsinis, Sotiris E

    2012-11-13

    Nanosilver is most attractive for its bactericidal properties in modern textiles, food packaging, and biomedical applications. Concerns, however, about released Ag(+) ions during dispersion of nanosilver in liquids have limited its broad use. Here, nanosilver supported on nanostructured silica is made with closely controlled Ag size both by dry (flame aerosol) and by wet chemistry (impregnation) processes without any surface functionalization that could interfere with its ion release. It is characterized by electron microscopy, atomic absorption spectroscopy, and X-ray diffraction, and its Ag(+) ion release in deionized water is monitored electrochemically. The dispersion method of nanosilver in solutions affects its dissolution rate but not the final Ag(+) ion concentration. By systematically comparing nanosilver size distributions to their equilibrium Ag(+) ion concentrations, it is revealed that the latter correspond precisely to dissolution of one to two surface silver oxide monolayers, depending on particle diameter. When, however, the nanosilver is selectively conditioned by either washing or H(2) reduction, the oxide layers are removed, drastically minimizing Ag(+) ion leaching and its antibacterial activity against E. coli . That way the bactericidal activity of nanosilver is confined to contact with its surface rather than to rampant ions. This leads to silver nanoparticles with antibacterial properties that are essential for medical tools and hospital applications.

  6. Oxidation of Ag nanoparticles in aqueous media: Effect of particle size and capping

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yuri L.; Vishnyakova, Elena A.; Romanchenko, Alexander S.; Saikova, Svetlana V.; Likhatski, Maxim N.; Larichev, Yurii V.; Tuzikov, Fedor V.; Zaikovskii, Vladimir I.; Zharkov, Sergey M.

    2014-04-01

    Many applications and environmental impact of silver-bearing nanomaterials critically depend upon their specific reactivity, which is still poorly understood. Here, silver nanoparticles (Ag NPs) of about 3-5 nm and 10-12 nm in diameter, uncapped and capped with L-glucose or citrate, were prepared, characterized using UV-vis absorption spectroscopy, SAXS, TEM, and their (electro)chemical oxidation was examined in comparison with each other and bulk metal applying scanning tunneling microscopy and spectroscopy, cyclic voltammetry, and XPS. A resistive switching effect was found in the tunneling spectra measured in air at the smaller uncapped Ag NPs deposited on HOPG and was interpreted in terms of Ag transfer between the particle and the probe. The anodic oxidation of these Ag NPs in 1 M NaOH yielded 3D Ag2O, while only a layer of "primary" Ag(I) oxide emerged on larger uncapped nanoparticles during the potential sweep. The formation of AgO at higher potentials proceeded readily at the "primary" oxide but was retarded at the smaller NPs. The citrate- and glucose-capping substantially impeded the formation both of Ag2O and AgO. The findings highlighted, particularly, a non-trivial effect of particle size and transient mobilization of Ag species on the reactions of silver nanoparticles.

  7. A seed coat-specific promoter for canola.

    PubMed

    El-Mezawy, Aliaa; Wu, Limin; Shah, Saleh

    2009-12-01

    The canola industry generates more than $11 billion of yearly income to the Canadian economy. One problem of meal quality is the dark polyphenolic pigments that accumulate in the seed coat. Seed coat-specific promoters are a pre-requisite to regulate the genes involved in seed coat development and metabolism. The beta-glucuronidase (GUS) reporter gene was used to test an Arabidopsis promoter in developing and mature seeds of canola (Brassica napus). The promoter tested is the regulatory region of the laccase gene (AtLAC15) from Arabidopsis thaliana. The AtLAC15 promoter::GUS construct was inserted into canola double haploid line DH12075 using Agrobacterium-mediated transformation. Southern blot analysis using a 536 bp GUS probe showed variation among the transformed plants in the T-DNA copy numbers and the position of the insertion in their genomes. Histochemical assay of the GUS enzyme in different tissues (roots, leaves, stem, pollen grains, flowers, siliques, embryos and seed coats) showed ascending GUS activity only in the seed coat from 10 days after pollination (DAP) to the fully mature stage (35 DAP). GUS stain was observed in the mucilage cell layer, in the outer integument layer of the seed coat but not in the inner integument. The AtLAC15 promoter exhibited a specificity and expression level that is useful as a seed coat-specific promoter for canola. PMID:19690805

  8. Highly luminescent material based on Alq3:Ag nanoparticles.

    PubMed

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2013-09-01

    Tris (8-hydroxyquinoline) aluminum (Alq3) is an organic semiconductor molecule, widely used as an electron transport layer, light emitting layer in organic light-emitting diodes and a host for fluorescent and phosphorescent dyes. In this work thin films of pure and silver (Ag), cupper (Cu), terbium (Tb) doped Alq3 nanoparticles were synthesized using the physical vapor condensation method. They were fabricated on glass substrates and characterized by X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectroscopy, atomic force microscope (AFM), UV-visible absorption spectra and studied for their photoluminescence (PL) properties. SEM and AFM results show spherical nanoparticles with size around 70-80 nm. These nanoparticles have almost equal sizes and a homogeneous size distribution. The maximum absorption of Alq3 nanoparticles is observed at 300 nm, while the surface plasmon resonant band of Ag doped sample appears at 450 nm. The PL emission spectra of Tb, Cu and Ag doped Alq3 nanoparticles show a single broad band at around 515 nm, which is similar to that of the pure one, but with enhanced PL intensity. The sample doped with Ag at a concentration ratio of Alq3:Ag = 1:0.8 is found to have the highest PL intensity, which is around 2 times stronger than that of the pure one. This enhancement could be attributed to the surface plasmon resonance of Ag ions that might have increased the absorption and then the quantum yield. These remarkable result suggest that Alq3 nanoparticles incorporated with Ag ions might be quite useful for future nano-optoelectronic devices. PMID:23653126

  9. A quick SEED tutorial

    USGS Publications Warehouse

    Ringler, Adam; Evans, John R.

    2015-01-01

    A number of different government-funded seismic data centers offer free open-access data (e.g., U.S. Geological Survey, National Earthquake Information Center, the Incorporated Research Institutions for Seismology (IRIS), and Data Management System), which can be freely downloaded and shared among different members of the community (Lay, 2009). To efficiently share data, it is important that different data providers follow a common format. The Standard for the Exchange of Earthquake Data (SEED) provides one such format for storing seismic and other geophysical data. The SEED format is widely used in earthquake seismology; however, SEED and its structure can be difficult for many first-time users (ourselves included). Below is a quick tutorial that outlines the basic structure of SEED format. This write-up is in no way intended to replace the comprehensive SEED manual (Ahern et al., 2009), and instead of going into the details of any specific part of the SEED format we refer the reader to the manual for additional details. The goal of this write-up is to succinctly explain the basic structure of SEED format as well as the associated jargon, as most commonly used now, in a colloquial way so that novice users of SEED can become more familiar with the format and its application quickly. Our goal is to give the reader the necessary background so that when problems or questions about SEED format arise they will have some understanding of where they should look for more details or from where the problem might be stemming. As a secondary goal, we hope to help the reader become familiar with the SEED manual (Ahern et al., 2009), which contains detailed information about all aspects of the SEED format.

  10. Study of Ag transport in Cr2N0.61-7Ag nanocomposite thin film due to thermal exposition

    NASA Astrophysics Data System (ADS)

    Bílek, P.; Jurči, P.; Podgornik, B.; Jenko, D.; Hudáková, M.; Kusý, M.

    2015-12-01

    Cr2N0.61-7Ag nanocomposite coatings were deposited on substrates made of Cr-V ledeburitic tool steel Vanadis 6 using reactive magnetron sputtering at a deposition temperature of 500 °C. Investigations of as-deposited films and annealing experiments in closed-air atmosphere at temperatures of 300, 400 and 500 °C and the durations up to 24 h, followed by quantitative scanning electron microscopy, transmission electron microscopy, Auger electron spectroscopy and X-ray diffraction revealed that the films were composed of Cr2N0.61 matrix and individual silver agglomerates located along columnar crystals of the matrix. The maximal size of Ag-agglomerates was 80 nm. The surface population density of silver agglomerates increased with prolonging the annealing time up to 2 h and then decreased. The increase was more pronounced at lower annealing temperatures. This behaviour was referred to the competition between three phenomena, namely the transport of detached Ag atoms to the free surface, formation of oxide layer on the surface and sublimation of silver from the surface. At lower temperatures and/or shorter annealing times, the Ag-transport to the free surface was determined to be prevalent, thus, an increase in population density of silver agglomerates was determined. On the other hand, for higher temperatures and/or longer annealing times the population density of Ag-agglomerates rather decreased due to retarding effect of thicker oxide layer and sublimation of silver.

  11. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  12. Examining Children's Models of Seed.

    ERIC Educational Resources Information Center

    Jewell, Natalie

    2002-01-01

    Reports research that examines children's models of seed. Explores the conceptions held by children (N=75) of germination and seed formation. Concludes that children hold a restricted meaning for the term 'seed'. (DDR)

  13. Sputtered Ag thin films with modified morphologies: Influence on wetting property

    NASA Astrophysics Data System (ADS)

    Dutheil, P.; Thomann, A. L.; Lecas, T.; Brault, P.; Vayer, M.

    2015-08-01

    Silver thin films with thickness ranging from 3 nm to 33 nm were sputter deposited onto silicon wafers and tungsten layers. Those W layers were previously synthesized in the same DC magnetron sputter deposition system with various experimental conditions (argon pressure, target to substrate distance) in order to stabilize different surface morphologies. SEM observations and AFM images showed that the growth mode of Ag films is similar on Si substrates and on the smoothest W layers, whereas it is modified for rough W layers made of sharp grains. The effect of the W layer morphology on Ag film growth was clearly evidenced when the deposition took place at high temperature. It is seen that performing the deposition onto substrates of various morphologies allows tailoring the wetting property of the Ag deposit.

  14. Excitation of plasmons in Ag/Fe/W structure by spin-polarized electrons

    SciTech Connect

    Samarin, Sergey N.; Kostylev, Mikhail; Williams, J. F.; Artamonov, Oleg M.; Baraban, Alexander P.; Guagliardo, Paul

    2015-09-07

    Using Spin-polarized Electron-Energy Loss Spectroscopy (SPEELS), the plasmon excitations were probed in a few atomic layers thick Ag film deposited on an Fe layer or on a single crystal of W(110). The measurements were performed at two specular geometries with either a 25° or 72° angle of incidence. On a clean Fe layer (10 atomic layers thick), Stoner excitation asymmetry was observed, as expected. Deposition of a silver film on top of the Fe layer dramatically changed the asymmetry of the SPEELS spectra. The spin-effect depends on the kinematics of the scattering: angles of incidence and detection. The spin-dependence of the plasmon excitations in the silver film on the W(110) surface and on the ferromagnetic Fe film is suggested to arise from the spin-active Ag/W or Ag/Fe interfaces.

  15. Tomato Seed Coat Permeability to Selected Carbon Nanomaterials and Enhancement of Germination and Seedling Growth.

    PubMed

    Ratnikova, Tatsiana A; Podila, Ramakrishna; Rao, Apparao M; Taylor, Alan G

    2015-01-01

    Seed coat permeability was examined using a model that tested the effects of soaking tomato (Solanum lycopersicon) seeds in combination with carbon-based nanomaterials (CBNMs) and ultrasonic irradiation (US). Penetration of seed coats to the embryo by CBNMs, as well as CBNMs effects on seed germination and seedling growth, was examined. Two CBNMs, C60(OH)20 (fullerol) and multiwalled nanotubes (MWNTs), were applied at 50 mg/L, and treatment exposure ranged from 0 to 60 minutes. Bright field, fluorescence, and electron microscopy and micro-Raman spectroscopy provided corroborating evidence that neither CBNM was able to penetrate the seed coat. The restriction of nanomaterial (NM) uptake was attributed to the semipermeable layer located at the innermost layer of the seed coat adjacent to the endosperm. Seed treatments using US at 30 or 60 minutes in the presence of MWNTs physically disrupted the seed coat; however, the integrity of the semipermeable layer was not impaired. The germination percentage and seedling length and weight were enhanced in the presence of MWNTs but were not altered by C60(OH)20. The combined exposure of seeds to NMs and US provided insight into the nanoparticle-seed interaction and may serve as a delivery system for enhancing seed germination and early seedling growth.

  16. Tomato Seed Coat Permeability to Selected Carbon Nanomaterials and Enhancement of Germination and Seedling Growth

    PubMed Central

    Ratnikova, Tatsiana A.; Podila, Ramakrishna; Rao, Apparao M.; Taylor, Alan G.

    2015-01-01

    Seed coat permeability was examined using a model that tested the effects of soaking tomato (Solanum lycopersicon) seeds in combination with carbon-based nanomaterials (CBNMs) and ultrasonic irradiation (US). Penetration of seed coats to the embryo by CBNMs, as well as CBNMs effects on seed germination and seedling growth, was examined. Two CBNMs, C60(OH)20 (fullerol) and multiwalled nanotubes (MWNTs), were applied at 50 mg/L, and treatment exposure ranged from 0 to 60 minutes. Bright field, fluorescence, and electron microscopy and micro-Raman spectroscopy provided corroborating evidence that neither CBNM was able to penetrate the seed coat. The restriction of nanomaterial (NM) uptake was attributed to the semipermeable layer located at the innermost layer of the seed coat adjacent to the endosperm. Seed treatments using US at 30 or 60 minutes in the presence of MWNTs physically disrupted the seed coat; however, the integrity of the semipermeable layer was not impaired. The germination percentage and seedling length and weight were enhanced in the presence of MWNTs but were not altered by C60(OH)20. The combined exposure of seeds to NMs and US provided insight into the nanoparticle-seed interaction and may serve as a delivery system for enhancing seed germination and early seedling growth. PMID:26495423

  17. GROWING SEEDS, TEACHER'S GUIDE.

    ERIC Educational Resources Information Center

    Elementary Science Study, Newton, MA.

    THIS TEACHER'S GUIDE IS DESIGNED FOR USE WITH AN ELEMENTARY SCIENCE STUDY UNIT, "GROWING SEEDS," IN WHICH SUCH BASIC SCIENCE SKILLS AND PROCESSES AS MEASUREMENT, OBSERVATION, AND HYPOTHESIS FORMATION ARE INTRODUCED THROUGH STUDENT ACTIVITIES INVOLVING SEEDS, GERMINATION, AND SEEDLING GROWTH. THE MATERIALS WERE DEVELOPED FOR USE IN ELEMENTARY…

  18. Structural and magnetic characterization of Co partical coated with Ag

    NASA Astrophysics Data System (ADS)

    Rivas, J.; Sanchez, R. D.; Fondado, A.; Izco, C.; Garcia-Bastida, A. J.; Garcia-Otero, J.; Mira, J.; Baldomir, D.; Gonzalez, A.; Lado, I.

    1994-11-01

    Co fine particles coated with Ag have been synthesized through the microemulsion method in an inert atmosphere. The size of the particles is controlled by the water droplets of the microemulsions. Fine particles prepared by this method, consist of a magnetic core of Co covered by a layer of Ag. Samples containing from 3.3 to 40.5 vol % Co have been prepared. The average size of the particles obtained is in the nanometer range. The magnetic properties were studied by dc magnetization at 77 K and room temperature. The data show a strong dependence of the magnetic properties on the annealing temperature.

  19. [Quality classification criteria of Paeonia suffruticosa seeds].

    PubMed

    Cao, Ya-yue; Zhu, Zai-biao; Guo, Qiao-sheng; Liu, Li; Wang, Chang-lin

    2015-02-01

    In order to establish the quality classification criteria of Paeonia suffruticosa seeds, thirty-one batches of P. suffruticosa seeds from different provenances were selected. The seed rooting rate, seed germination rate, seed purity, seed viability, 1,000-seed weight and moisture content were determined and analyzed through SPSS 20.0 software. Seed rooting rate, seed germination rate and seed purity were selected as the main index for classification, while 1,000-seed weight, seed viability and moisture content could be used as important references. The seed quality grading of P. suffruticosa was set as three grades. The seed quality of each grade should meet following requirements: For the first grade seeds, seed rooting rate ≥ 80%, seed germination rate ≥ 80%, seed purity ≥ 90%, seed viability ≥ 80%, 1,000-seed weight ≥ 250 g, moisture content, ≤ 10. For the second grade seeds, seed rooting rate ≥ 50%, seed germination rate ≥ 60%, seed purity ≥ 70%, seed viability ≥ 75%, 1,000-seed weight ≥ 225 g, moisture content ≤ 10. For the third grade seeds, seed rooting rate ≥ 20%, seed germination rate ≥ 45%, seed purity ≥ 60%, seed viability ≥ 45%, 1,000-seed weight ≥ 205 g, moisture content ≤ 10. The quality classification criteria of P. suffruticosa seeds have been initially established.

  20. The earliest seeds

    USGS Publications Warehouse

    Gillespie, W.H.; Rothwell, G.W.; Scheckler, S.E.

    1981-01-01

    Lagenostomalean-type seeds in bifurcating cupule systems have been discovered in the late Devonian Hampshire Formation of Randolph County, West Virginia, USA (Fig. 1). The associated megaflora, plants from coal balls, and vertebrate and invertebrate faunas demonstrate that the material is Famennian; the microflora indicates a more specific Fa2c age. Consequently, these seeds predate Archaeosperma arnoldii1 from the Fa2d of northeastern Pennsylvania, the oldest previously reported seed. By applying precision fracture, transfer, de??gagement, and thin-section techniques to selected cupules from the more than 100 specimens on hand, we have determined the three-dimensional morphology and histology of the seeds (Fig. 2a-h, k) and cupule systems. A comparison with known late Devonian to early Carboniferous seeds reveals that ours are more primitively organized than all except Genomosperma2,3. ?? 1981 Nature Publishing Group.

  1. Silver photo-diffusion and photo-induced macroscopic surface deformation of Ge33S67/Ag/Si substrate

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Y.; Asaoka, H.; Uozumi, Y.; Kondo, K.; Yamazaki, D.; Soyama, K.; Ailavajhala, M.; Mitkova, M.

    2016-08-01

    Ge-chalcogenide films show various photo-induced changes, and silver photo-diffusion is one of them which attracts lots of interest. In this paper, we report how silver and Ge-chalcogenide layers in Ge33S67/Ag/Si substrate stacks change under light exposure in the depth by measuring time-resolved neutron reflectivity. It was found from the measurement that Ag ions diffuse all over the matrix Ge33S67 layer once Ag dissolves into the layer. We also found that the surface was macroscopically deformed by the extended light exposure. Its structural origin was investigated by a scanning electron microscopy.

  2. Photostability of gold nanoparticles with different shapes: the role of Ag clusters.

    PubMed

    Attia, Yasser A; Buceta, David; Requejo, Félix G; Giovanetti, Lisandro J; López-Quintela, M Arturo

    2015-07-14

    Anisotropic gold nanostructures prepared by the seed method in the presence of Ag ions have been used to study their photostability to low-power UV irradiation (254 nm) at room temperature. It has been observed that, whereas spheres are very stable to photoirradiation, rods and prisms suffer from photocorrosion and finally dissolve completely with the production of Au(III) ions. Interpretation of these differences is based on the presence of semiconductor-like Ag clusters, adsorbed onto rods and prisms, able to photocorrode the Au nanoparticles, which are absent in the case of Au spheres. We further show direct evidence of the presence of Ag clusters in Au nanorods by XANES. These results confirm a previous hypothesis (J. Am. Chem. Soc., 2014, 136, 1182-1185) about the major influence of very stable small Ag clusters, not only on the anisotropic formation of nanostructures but also on their photostability.

  3. ZnO/Ag composite nanorod arrays for surface-plasmon-enhanced emission study

    SciTech Connect

    Pal, Anil Kumar E-mail: d.bharathimohan@gmail.com; Mohan, D. Bharathi E-mail: d.bharathimohan@gmail.com

    2014-04-24

    The surface plasmon resonance enhanced emission through coupling of surface plasmons and exciton band energies is studied in hybrid ZnO/Ag nanostructure. The catalytic growth of ZnO nanorods is controlled in seed mediated growth by altering size distribution of Ag nanoislands. X-ray diffraction shows a predominant (002) crystal plane confirming the preferential growth of ZnO nanorods on as-deposited Ag. Increase of surface roughness in Ag film by post deposition annealing process enhances the light emission due to momentum matching between surface plasmons and excitons as well as a red shift of 32 meV occurs due to multi phonon and phonon-exciton interaction.

  4. Microstructural investigation of the oxidation behavior of Cu in Ag-coated Cu films using a focused ion beam transmission electron microscopy technique

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hwan; Lee, Jong-Hyun

    2016-06-01

    With the aim of elucidating a detailed mechanism for the oxidation behavior in submicron Cu particles coated with a thin Ag layer, the dewetting of Ag and the oxidation behavior of Cu in Ag-coated Cu films upon heating were investigated with a focused ion beam transmission electron microscopy technique. A slight dewetting of the Ag layer began at approximately 200 °C and aggregates of Cu2O particles were formed on the Ag layer, indicating that the initial Cu2O phase was formed on the thin Ag layer. Voids were formed in the Cu layer because of Cu atoms diffusing through the thin Ag layer to be oxidized in the upper Cu2O aggregates. After being heated to 250 °C, the Ag layer became more irregular, and in some regions, it disappeared because of intensive dewetting. The number and average size of the voids also increased. At 300 °C, a hollow structure with a Cu2O shell was formed. Pillar-like structures of unoxidized Cu and large voids were found under the Cu2O layer.

  5. Selective patterned growth of single-crystal organic nanowires of Ag-TCNQ with chemical raction method

    SciTech Connect

    Xiao, Kai; Tao, Jing; Puretzky, Alexander A; Ivanov, Ilia N; Retterer, Scott T; Pennycook, Stephen J; Geohegan, David B

    2008-01-01

    Abstract: We report for the selective-area chemical synthesis of semiconductor single-crystal organic nanowires of silver-tetracyanoquinodimethane (Ag-TCNQ). Straight and smooth Ag-TCNQ nanowires can be produced and patterned on micrometer and nanometer scale on silicon substrates covered with a thin layer of Ag film through the reaction of TCNQ and Ag in a simple gas-solid chemical reaction process. Ag-TCNQ nanowires are characterized by UV-vis, IR and Raman spectroscopy, respectively. The Ag-TCNQ nanowires grows preferentially along the [100] direction of strong - stacking of Ag-TCNQ molecules. Nanodevices based on these nanowires are fabricated using focus ion beam (FIB) technique. Electrical properties are characterized and I-V hysteresis is observed, which shows memory effect with electrical switching of three orders on-off ratio. These nanowires could be potential for use in optical storage, ultrahigh-density nanoscale memory and logic devices.

  6. Current-perpendicular-to-the-plane giant magnetoresistance in spin-valves with AgSn alloy spacers

    SciTech Connect

    Read, J. C.; Nakatani, T. M.; Smith, Neil; Choi, Y.-S.; York, B. R.; Brinkman, E.; Childress, J. R.

    2015-07-28

    We investigate the use of AgSn alloys as the spacer layer in current-perpendicular-to-the-plane magnetoresistance devices. Alloying with Sn increases resistivity but results in a reasonably long (>10 nm) spin-diffusion length, so large magnetoresistance can be achieved with thin AgSn spacers. Compared to Ag thin films, AgSn forms smaller grain sizes, reduced roughness, and exhibits less interdiffusion upon annealing, resulting in decreased interlayer magnetic coupling in exchange biased spin-valves. AgSn also shows improved corrosion resistance compared to Ag, which is advantageous for nanofabrication, including magnetic recording head sensors. Combining a AgSn spacer with Co-based Heusler alloy ferromagnet in an exchange biased, polycrystalline trilayer thinner than 12 nm results in magnetoresistance values up to 15% at room temperature.

  7. Current-perpendicular-to-the-plane giant magnetoresistance in spin-valves with AgSn alloy spacers

    NASA Astrophysics Data System (ADS)

    Read, J. C.; Nakatani, T. M.; Smith, Neil; Choi, Y.-S.; York, B. R.; Brinkman, E.; Childress, J. R.

    2015-07-01

    We investigate the use of AgSn alloys as the spacer layer in current-perpendicular-to-the-plane magnetoresistance devices. Alloying with Sn increases resistivity but results in a reasonably long (>10 nm) spin-diffusion length, so large magnetoresistance can be achieved with thin AgSn spacers. Compared to Ag thin films, AgSn forms smaller grain sizes, reduced roughness, and exhibits less interdiffusion upon annealing, resulting in decreased interlayer magnetic coupling in exchange biased spin-valves. AgSn also shows improved corrosion resistance compared to Ag, which is advantageous for nanofabrication, including magnetic recording head sensors. Combining a AgSn spacer with Co-based Heusler alloy ferromagnet in an exchange biased, polycrystalline trilayer thinner than 12 nm results in magnetoresistance values up to 15% at room temperature.

  8. Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell.

    PubMed

    Wang, Byung-Yong; Yoo, Tae-Hee; Lim, Ju Won; Sang, Byoung-In; Lim, Dae-Soon; Choi, Won Kook; Hwang, Do Kyung; Oh, Young-Jei

    2015-04-24

    Ag nanowire (NW) mesh is used as transparent conducting electrode for high efficient flexible organic solar cells (OSCs). The Ag NW mesh electrode facilitates light scattering and trapping, allowing enhancement of light absorption in the active layer. OSCs incorporating Ag NW mesh electrode exhibit maximum power conversion efficiency (PCE) of 4.47%, 25%, higher than that of OSCs with a conventional ITO electrode (3.63%).

  9. Winter time orographic cloud seeding effects in WRF simulations

    NASA Astrophysics Data System (ADS)

    Tessendorf, S. A.; Xue, L.; Rasmussen, R.

    2011-12-01

    The goal of this study is to use a numerical model to investigate the feasibility of orographic cloud seeding from existing ground-based generators and aircraft seeding tracks in the Payette, Eastern Idaho, and Western Wyoming regions operated by Idaho Power. The Weather Research and Forecast (WRF) model coupled with an AgI point-source module was run at 2km horizontal resolution for 10 seeding cases including both ground-based and airborne cases from the 2010-2011 winter season. In all of the WRF simulations, a positive increase in precipitation was simulated within the entire model domain. This simulated enhancement was positive within the targeted watershed basins for about two-thirds of the cases. Some enhancements were simulated downwind of the target regions, which could be due to the wind regime and meteorological conditions, or due to model parameter specifications that could affect the location of a simulated seeding effect. The WRF simulations indicated that airborne seeding generally produces a localized seeding effect within a targeted region.

  10. Mechanically reinforced {1 1 0} <1 1 0> textured Ag/Ni-alloys composite substrates for low-cost coated conductors

    NASA Astrophysics Data System (ADS)

    Suo, Hongli; Genoud, Jean-Yves; Caracino, Paola; Spreafico, Sergio; Schindl, Michael; Walker, Eric; Flükiger, René

    2002-08-01

    New, reinforced {1 1 0} <1 1 0> textured Ag/Ni-alloys composite ribbons were developed as possible substrates for coated conductors without any buffer layer. The texture quality and tensile strength were investigated. A new technique to bond the Ag and Ni or alloy layers through a Cu foil was presented. The Ag/Ni-alloys composite ribbons were fabricated by choosing proper sintering processing to bond the different layers followed by cold rolling and recrystallization. A thin Cu foil was intercalated between the initial Ag and Ni or alloy pieces to get a tough bond. A unique and stable {1 1 0} <1 1 0> annealing texture was obtained in 300 μm thick Ag/Ni composite ribbon after annealing. X-ray ODF analysis and EBSD measurements in the top Ag layer showed distribution of misorientation angles around 10-15°. A {1 1 0} <1 1 0> texture was also found in ribbons as thin as 50 μm, which cannot be obtained with pure Ag ribbons. A pronounced reduction of Ag amount was obtained in 60 μm thick Ag/NiCrV ribbons, with a textured Ag top layer being as thin as 7 μm. The amount of Ag was decreased by 75% compared to pure Ag ribbons of the same thickness. A strong enhancement of the mechanical properties was observed. The yield strength σ0.2 at 77 K was 220 MPa for Ag/NiCrV ribbons, i.e. considerably higher than the 30 MPa for pure Ag ribbons.

  11. Influence of size, shape and core–shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx

    PubMed Central

    Pinotti, Daniele; Spadaro, Maria Chiara; Paolicelli, Guido; Grillo, Vincenzo; Valeri, Sergio; Pasquali, Luca; Bergamini, Luca; Corni, Stefano

    2015-01-01

    Summary Ag and Ag@MgO core–shell nanoparticles (NPs) with a diameter of d = 3–10 nm were obtained by physical synthesis methods and deposited on Si with its native ultrathin oxide layer SiOx (Si/SiOx). Scanning electron microscopy and transmission electron microscopy (TEM) images of bare Ag NPs revealed the presence of small NP aggregates caused by diffusion on the surface and agglomeration. Atomic resolution TEM gave evidence of the presence of crystalline multidomains in the NPs, which were due to aggregation and multitwinning occurring during NP growth in the nanocluster source. Co-deposition of Ag NPs and Mg atoms in an oxygen atmosphere gave rise to formation of a MgO shell matrix surrounding the Ag NPs. The behaviour of the surface plasmon resonance (SPR) excitation in surface differential reflectivity (SDR) spectra with p-polarised light was investigated for bare Ag and Ag@MgO NPs. It was shown that the presence of MgO around the Ag NPs caused a red shift of the plasmon excitation, and served to preserve its existence after prolonged (five months) exposure to air, realizing the possibility of technological applications in plasmonic devices. The Ag NP and Ag@MgO NP film features in the SDR spectra could be reproduced by classical electrodynamics simulations by treating the NP-containing layer as an effective Maxwell Garnett medium. The simulations gave results in agreement with the experiments when accounting for the experimentally observed aggregation. PMID:25821680

  12. Seed shattering: from models to crops

    PubMed Central

    Dong, Yang; Wang, Yin-Zheng

    2015-01-01

    Seed shattering (or pod dehiscence, or fruit shedding) is essential for the propagation of their offspring in wild plants but is a major cause of yield loss in crops. In the dicot model species, Arabidopsis thaliana, pod dehiscence necessitates a development of the abscission zones along the pod valve margins. In monocots, such as cereals, an abscission layer in the pedicle is required for the seed shattering process. In the past decade, great advances have been made in characterizing the genetic contributors that are involved in the complex regulatory network in the establishment of abscission cell identity. We summarize the recent burgeoning progress in the field of genetic regulation of pod dehiscence and fruit shedding, focusing mainly on the model species A. thaliana with its close relatives and the fleshy fruit species tomato, as well as the genetic basis responsible for the parallel loss of seed shattering in domesticated crops. This review shows how these individual genes are co-opted in the developmental process of the tissues that guarantee seed shattering. Research into the genetic mechanism underlying seed shattering provides a premier prerequisite for the future breeding program for harvest in crops. PMID:26157453

  13. Communication: Structure, formation, and equilibration of ensembles of Ag-S complexes on an Ag surface

    SciTech Connect

    Russell, Selena M.; Kim, Yousoo; Liu, Da-Jiang; Evans, J. W.; Thiel, P. A.

    2013-02-15

    We have utilized conditions of very low temperature (4.7 K) and very low sulfur coverage to isolate and identify Ag-S complexes that exist on the Ag(111) surface. The experimental conditions are such that the complexes form at temperatures above the temperature of observation. These complexes can be regarded as polymeric chains of varying length, with an Ag4S pyramid at the core of each monomeric unit. Steps may catalyze the formation of the chains and this mechanism may be reflected in the chain length distribution.

  14. Morphology and grain structure evolution during epitaxial growth of Ag films on native-oxide-covered Si surface

    SciTech Connect

    Hur, Tae-Bong; Kim, Hong Koo; Perello, David; Yun, Minhee; Kulovits, Andreas; Wiezorek, Joerg

    2008-05-15

    Epitaxial nanocrystalline Ag films were grown on initially native-oxide-covered Si(001) substrates using radio-frequency magnetron sputtering. Mechanisms of grain growth and morphology evolution were investigated. An epitaxially oriented Ag layer ({approx}5 nm thick) formed on the oxide-desorbed Si surface during the initial growth phase. After a period of growth instability, characterized as kinetic roughening, grain growth stagnation, and increase of step-edge density, a layer of nanocrystalline Ag grains with a uniform size distribution appeared on the quasi-two-dimensional layer. This hierarchical process of film formation is attributed to the dynamic interplay between incoming energetic Ag particles and native oxide. The cyclic interaction (desorption and migration) of the oxide with the growing Ag film is found to play a crucial role in the characteristic evolution of grain growth and morphology change involving an interval of grain growth stagnation.

  15. Influence of size, shape and core-shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiO x.

    PubMed

    D'Addato, Sergio; Pinotti, Daniele; Spadaro, Maria Chiara; Paolicelli, Guido; Grillo, Vincenzo; Valeri, Sergio; Pasquali, Luca; Bergamini, Luca; Corni, Stefano

    2015-01-01

    Ag and Ag@MgO core-shell nanoparticles (NPs) with a diameter of d = 3-10 nm were obtained by physical synthesis methods and deposited on Si with its native ultrathin oxide layer SiO x (Si/SiO x ). Scanning electron microscopy and transmission electron microscopy (TEM) images of bare Ag NPs revealed the presence of small NP aggregates caused by diffusion on the surface and agglomeration. Atomic resolution TEM gave evidence of the presence of crystalline multidomains in the NPs, which were due to aggregation and multitwinning occurring during NP growth in the nanocluster source. Co-deposition of Ag NPs and Mg atoms in an oxygen atmosphere gave rise to formation of a MgO shell matrix surrounding the Ag NPs. The behaviour of the surface plasmon resonance (SPR) excitation in surface differential reflectivity (SDR) spectra with p-polarised light was investigated for bare Ag and Ag@MgO NPs. It was shown that the presence of MgO around the Ag NPs caused a red shift of the plasmon excitation, and served to preserve its existence after prolonged (five months) exposure to air, realizing the possibility of technological applications in plasmonic devices. The Ag NP and Ag@MgO NP film features in the SDR spectra could be reproduced by classical electrodynamics simulations by treating the NP-containing layer as an effective Maxwell Garnett medium. The simulations gave results in agreement with the experiments when accounting for the experimentally observed aggregation.

  16. Plasmonic Ag@oxide nanoprisms for enhanced performance of organic solar cells.

    PubMed

    Du, Peng; Jing, Pengtao; Li, Di; Cao, Yinghui; Liu, Zhenyu; Sun, Zaicheng

    2015-05-01

    Localized surface plasmon resonance (LSPR), light scattering, and lowering the series resistance of noble metal nanoparticles (NPs) provide positive effect on the performance of photovoltaic device. However, the exciton recombination on the noble metal NPs accompanying above influences will deteriorate the performance of device. In this report, surface-modified Ag@oxide (TiO2 or SiO2 ) nanoprisms with 1-2 nm shell thickness are developed. The thin film composed of P3HT/Ag@oxides and P3HT:PCBM/Ag@oxides is investigated by absorption, photoluminescence (PL), and transient absorption spectroscopy. The results show a significant absorption, PL enhancement, and long-lived photogenerated polaron in the P3HT/Ag@TiO2 film, indicating the increase of photogenerated exciton population by LSPR of Ag nanoprisms. In the case of P3HT/Ag nanoprisms, partial PL quench and relatively short-lived photogenerated polaron are observed. That indicates that the oxides layer can effectively avoid the exciton recombination. When the Ag@oxide nanoprisms are introduced into the active layer of P3HT:PCBM photovoltaic devices, about 31% of power conversion efficiency enhancement is obtained relative to the reference cell. All these results indicate that Ag@oxides can enhance the performance of the cell, at the same time the ultrathin oxide shell prevents from the exciton recombination.

  17. Mechanisms of Ag as a surfactant in giant magnetoresistance multilayer growth and thermal stability

    NASA Astrophysics Data System (ADS)

    An, Yukai; Zhang, Hongdi; Dai, Bo; Mai, Zhenhong; Cai, Jianwang; Wu, Zhonghua

    2006-07-01

    The mechanisms played by Ag as a surfactant in giant magnetoresistance multilayers were investigated using interface sensitive x-ray anomalous scattering techniques. Analysis on [Cu/Ni70Co30]20 and [Cu/Ag/Ni70Co30]20 multilayers revealed that 6Å thick NiCu and 6Å thick CuNi3Co intermixing regions are formed at the Ni70Co30-on-Cu interfaces of undoped and Ag-doped multilayers, respectively. The Cu-on-Ni70Co30 interfaces in both multilayers are sharp. Annealing causes severe diffusion across both types of interfaces in the undoped multilayer. But the interfaces in the Ag-doped multilayer do not change significantly upon annealing, except that Ag atoms diffuse into the whole Ni70Co30 layer and some parts of the Cu layer. The results suggest that addition of Ag during the deposition suppresses interfacial intermixing. X-ray diffuse scattering profiles show that the interfacial lateral correlation length of the Ag-doped multilayer is longer than that of the undoped multilayer and does not change significantly after annealing, suggesting that the addition of Ag gives rise to smoother interfaces and results in a good thermal stability.

  18. Magnetic stimulation of marigold seed

    NASA Astrophysics Data System (ADS)

    Afzal, I.; Mukhtar, K.; Qasim, M.; Basra, S. M. A.; Shahid, M.; Haq, Z.

    2012-10-01

    The effects of magnetic field treatments of French marigold seeds on germination, early seedling growth and biochemical changes of seedlings were studied under controlled conditions. For this purpose, seeds were exposed to five different magnetic seed treatments for 3 min each. Most of seed treatments resulted in improved germination speed and spread, root and shoot length, seed soluble sugars and a-amylase activity. Magnetic seed treatment with 100 mT maximally improved germination, seedling vigour and starch metabolism as compared to control and other seed treatments. In emergence experiment, higher emergence percentage (4-fold), emergence index (5-fold) and vigorous seedling growth were obtained in seeds treated with 100 mT. Overall, the enhancement of marigold seeds by magnetic seed treatment with 100 mT could be related to enhanced starch metabolism. The results suggest that magnetic field treatments of French marigold seeds have the potential to enhance germination, early growth and biochemical parameters of seedlings.

  19. Photocurrent enhancements of organic solar cells by altering dewetting of plasmonic Ag nanoparticles

    PubMed Central

    Fleetham, Tyler; Choi, Jea-Young; Choi, Hyung Woo; Alford, Terry; Jeong, Doo Seok; Lee, Taek Sung; Lee, Wook Seong; Lee, Kyeong-Seok; Li, Jian; Kim, Inho

    2015-01-01

    Incorporation of metal nanoparticles into active layers of organic solar cells is one of the promising light trapping approaches. The size of metal nanoparticles is one of key factors to strong light trapping, and the size of thermally evaporated metal nanoparticles can be tuned by either post heat treatment or surface modification of substrates. We deposited Ag nanoparticles on ITO by varying nominal thicknesses, and post annealing was carried out to increase their size in radius. PEDOT:PSS was employed onto the ITO substrates as a buffer layer to alter the dewetting behavior of Ag nanoparticles. The size of Ag nanoparticles on PEDOT:PSS were dramatically increased by more than three times compared to those on the ITO substrates. Organic solar cells were fabricated on the ITO and PEDOT:PSS coated ITO substrates with incorporation of those Ag nanoparticles, and their performances were compared. The photocurrents of the cells with the active layers on PEDOT:PSS with an optimal choice of the Ag nanoparticles were greatly enhanced whereas the Ag nanoparticles on the ITO substrates did not lead to the photocurrent enhancements. The origin of the photocurrent enhancements with introducing the Ag nanoparticles on PEDOT:PSS are discussed. PMID:26388104

  20. The boundary layer, the land surface, and orographic precipitation: the 2012 ASCII campaign in the Sierra Madre, Wyoming

    NASA Astrophysics Data System (ADS)

    Geerts, B.; Yang, Y.; Miao, Q.; Pokharel, B.; Breed, D. W.; Rasmussen, R.

    2011-12-01

    It remains a puzzle why even rather shallow orographic clouds hugging the terrain are remarkably efficient snowfall producers, at least under typical conditions in the Rocky Mountains in winter. We provide evidence for the importance of both boundary-layer turbulence and surface-induced ice crystal production in the explanation of the efficiency of orographic precipitation. This evidence will be examined more in a field campaign to be conducted in early 2012 in the Sierra Madre in Wyoming, a campaign which will deploy airborne profiling radar and lidar, dual-pol DOW radar, radiosondes, and ground-based snow observations, in the context of ongoing research into the effect of AgI seeding of orographic clouds to enhance snowfall.

  1. Growth and evaluation of AgGaS2 and AgGaSe2 for infrared nonlinear applications

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Feigelson, R. S.

    1983-01-01

    The crystal growth technology for the two chalcopyrite compounds AgGaS2 and AgGaSe2 was studied. These two materials demonstrated their promise as important nonlinear crystals for infrared applications ten years ago. However, at the time, a number of various growth related problems such as cracking, twinning and the occurrence of optical scattering centers made it difficult to obtain high quality specimens in sizes exceeding 1 cm. Using seeding and precision-tapered fused quartz growth ampoules, a Bridgman/Stockbarger growth technology was developed to grow crack and twin-free boules in increasingly larger dimensions with an ultimate goal of 4 cm crystals harvested obliquely from c-axis boules. The post-growth heat treatment procedures were studied to understand the solid state chemical reactions and to avoid crystal damage which frequently occurs during these annealing procedures.

  2. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  3. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ``as run``; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  4. Properties of a new type Al/Pb-0.3%Ag alloy composite anode for zinc electrowinning

    NASA Astrophysics Data System (ADS)

    Yang, Hai-tao; Liu, Huan-rong; Zhang, Yong-chun; Chen, Bu-ming; Guo, Zhong-cheng; Xu, Rui-dong

    2013-10-01

    An Al/Pb-0.3%Ag alloy composite anode was produced via composite casting. Its electrocatalytic activity for the oxygen evolution reaction and corrosion resistance was evaluated by anodic polarization curves and accelerated corrosion test, respectively. The microscopic morphologies of the anode section and anodic oxidation layer during accelerated corrosion test were obtained by scanning electron microscopy. It is found that the composite anode (hard anodizing) displays a more compact interfacial combination and a better adhesive strength than plating tin. Compared with industrial Pb-0.3%Ag anodes, the oxygen evolution overpotentials of Al/Pb-0.3%Ag alloy (hard anodizing) and Al/Pb-0.3%Ag alloy (plating tin) at 500 A·m-2 were lower by 57 and 14 mV, respectively. Furthermore, the corrosion rates of Pb-0.3%Ag alloy, Al/Pb-0.3%Ag alloy (hard anodizing), and Al/Pb-0.3%Ag alloy (plating tin) were 13.977, 9.487, and 11.824 g·m-2·h-1, respectively, in accelerated corrosion test for 8 h at 2000 A·m-2. The anodic oxidation layer of Al/Pb-0.3%Ag alloy (hard anodizing) is more compact than Pb-0.3%Ag alloy and Al/Pb-0.3%Ag alloy (plating tin) after the test.

  5. Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.

    PubMed

    Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin

    2015-03-01

    Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness. PMID:26413647

  6. Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.

    PubMed

    Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin

    2015-03-01

    Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.

  7. Preparation and Sintering Properties of Ag27Cu2Sn Nanopaste as Die Attach Material

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojian; Liu, Wei; Wang, Chunqing; Zheng, Zhen; Kong, Lingchao

    2016-10-01

    Ag27Cu2Sn nanopaste has been prepared by mixing Ag, Cu, and Sn nanoparticles with an organic solvent system. Sintering and mechanical properties of this nanopaste were characterized and investigated. Effects of sintering temperature and time on the sintered microstructure of the nanopaste and shear strength of Cu/Ag27Cu2Sn/Cu structure were analyzed. The results showed that the organic shells coated on the outside of metal nanoparticles could effectively prevent metal nanoparticles from being oxidized below 480°C. When the paste was sintered at 480°C without pressure, few voids or large particles formed within the sintered layer and distributions of Ag, Cu, and Sn were quite uniform. This sintering temperature was much lower than the eutectic temperature (779°C) of Ag-Cu bulk material. Moreover, mutual solid solubilities of Ag and Cu were increased remarkably, which may be caused by high surface activity of Ag and Cu nanoparticles and the important role of the Sn addition. Shear strength of samples with Cu/Ag27Cu2Sn/Cu structure could reach 21 MPa, which could compare with that of Ag nanopaste or conductive adhesives.

  8. Effects of UV-irradiation on seed germination.

    PubMed

    Noble, Rudolf E

    2002-11-01

    The advent of depletion of the ozone layer with the reported subsequent increase of UV-irradiation has led to heightened interest in the effects of UV light on cellular organisms. In this study, the effects of UV-irradiation was studied on the germination of kale, cabbage, radish and agave seeds. In all cases, UV light sped the germination of these seeds but the subsequent growth of the seedlings was markedly retarded. Pictures, taken at day 15, are presented to show this latter effect and the possible effects of UV-irradiation on seed germination are discussed.

  9. Mesoscale numerical simulation study of warm fog dissipation by salt particles seeding

    NASA Astrophysics Data System (ADS)

    He, Hui; Guo, Xueliang; Liu, Xiang'e.; Gao, Qian; Jia, Xingcan

    2016-05-01

    Based on the dynamic framework of WRF and Morrison 2-moment explicit cloud scheme, a salt-seeding scheme was developed and used to simulate the dissipation of a warm fog event during 6-7 November 2009 in the Beijing and Tianjin area. The seeding effect and its physical mechanism were studied. The results indicate that when seeding fog with salt particles sized 80 µm and at a quantity of 6 g m-2 at the fog top, the seeding effect near the ground surface layer is negative in the beginning period, and then a positive seeding effect begins to appear at 18 min, with the best effect appearing at 21 min after seeding operation. The positive effect can last about 35 min. The microphysical mechanism of the warm fog dissipation is because of the evaporation due to the water vapor condensation on the salt particles and coalescence with salt particles. The process of fog water coalescence with salt particles contributed mostly to this warm fog dissipation. Furthermore, two series of sensitivity experiments were performed to study the seeding effect under different seeding amounts and salt particles sizes. The results show that seeding fog with salt particles sized of 80 µm can have the best seeding effect, and the seeding effect is negative when the salt particle size is less than 10 µm. For salt particles sized 80 µm, the best seeding effect, with corresponding visibility of 380 m, can be achieved when the seeding amount is 30 g m-2.

  10. Seed output and the seed bank in Vallisneria americana (Hydrocharitaceae).

    PubMed

    Lokker, C; Lovett-Doust, L; Lovett-Doust, J

    1997-10-01

    Seed banks and sexual reproduction are known to be significant in colonization and re-establishment of some aquatic macrophyte communities. For highly clonal aquatic macrophytes, however, there is a lack of information on seed production and seed fate as compared with annual sexual species. The seed bank for three populations of Vallisneria americana in the Huron-Erie corridor of the Great Lakes was sampled and quantified in the spring of 1994, and related to seed production in the previous season at these sites. Seed deposition rates during 1994 were also assessed. Sites varied in the proportion of plants flowering and in their tertiary sex ratios, but did not differ in seed numbers produced per unit area. The size of the seed bank was not significantly related to the previous season's seed output, and estimates of seed deposition in the following year tended to be approximately tenfold greater than seed densities found in the seed bank. The stages between seed production and subsequent seed germination are generally very dynamic, with dispersal, mortality, and predation as likely regulating factors. The potential for seedling establishment in V. americana needs to be assessed more fully before the role of seeds in population processes can be determined. PMID:21708549

  11. Mobile Microwave Radiometer Observations: Spatial Characteristics of Supercooled Cloud Water and Cloud Seeding Implications.

    NASA Astrophysics Data System (ADS)

    Huggins, Arlen W.

    1995-02-01

    could at times be inhibited by stable conditions from reaching appropriate super-cooled liquid water regions and, as found by others, the region of cloud most likely to be encountered by an AgI seeding agent released from the ground was also relatively warm compared to the ice-forming capability of the particular agent used in these experiments. Also, one convective case study that exhibited relatively warm temperatures in the cloud layer indicated that, even in conditions that permit vertical transport to supercooled liquid zones, sufficient time for ice particle growth and fallout from seeded plumes on this plateau may be lacking.

  12. Fishing for Seeds.

    ERIC Educational Resources Information Center

    Science and Children, 2001

    2001-01-01

    Describes a method to collect seeds that are dispersed from weeds while avoiding some outdoor hazards such as rough terrain or animals. Describes a plan for creating a weed fishing pole and includes a materials list. (SAH)

  13. Seeds in Flight

    ERIC Educational Resources Information Center

    Martin, Willard K.

    1978-01-01

    Discussed are the seed dispersal mechanisms of six different plants: big-leaf maple, pincushion tree, tree of heaven, squirting cucumber, digger pine, and bull thistle. Elaborate color and black-and-white drawings illustrate the text. (MA)

  14. Tomato seeds for LDEF

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Tomato seeds are prepared for their launch aboard the Langley's Long Duration Exposure Facility. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 119), by James Schultz.

  15. Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis

    NASA Astrophysics Data System (ADS)

    Basu, Shibani; Maji, Priyankar; Ganguly, Jhuma

    2016-01-01

    The present study explores that the aqueous extract of the seeds of Nyctanthes arbor-tristis (aka night jasmine) is very efficient for the synthesis of stable AgNPs from aqueous solution of AgNO3. The extract acts as both reducing (from Ag+ to Ag0) and capping agent in the aqueous phase. The constituents in extract are mainly biomolecules like carbohydrates and phenolic compounds, which are responsible for the preparation of stable AgNPs within 20 min of reaction time at 25 °C using without any severe conditions. The synthesized silver nanoparticles were characterized with UV-Visible spectroscopy, FT-IR, XRD and SEM. UV-Vis spectroscopy analysis showed peak at 420 nm, which corresponds to the surface plasmon resonance of AgNPs. XRD results showed peaks at (111), (200), (220), which confirmed the presence of AgNPs with face-centered cubic structure. The uniform spherical nature of the AgNPs and size (between 50 and 80 nm) were further confirmed by SEM analysis.

  16. Seed dispersal in fens

    USGS Publications Warehouse

    Middleton, B.; Van Diggelen, R.; Jensen, K.

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.

  17. The AGS-Booster lattice

    SciTech Connect

    Lee, Y.Y.; Barton, D.S.; Claus, J.; Cottingham, J.G.; Courant, E.D.; Danby, G.T.; Dell, G.F.; Forsyth, E.B.; Gupta, R.C.; Kats, J.

    1987-01-01

    The AGS Booster has three objectives. They are to increase the space charge limit of the AGS, to increase the intensity of the polarized proton beam by accumulating many linac pulses (since the intensity is limited by the polarized ion source), and to reaccelerate heavy ions from the BNL Tandem Van de Graaff before injection into the AGS. The machine is capable of accelerating protons at 7.5 Hertz from 200 MeV to 1.5 GeV or to lower final energies at faster repetition rates. The machine will also be able to accelerate heavy ions from as low as 1 MeV/nucleon to a magnetic rigidity as high as 17.6 Tesla-meters with a one second repetition rate. As an accumulator for polarized protons, the Booster should be able to store the protons at 200 MeV for several seconds. We expect that the Booster will increase the AGS proton intensity by a factor of four, polarized proton intensity by a factor of twenty to thirty, and will also enable the AGS to accelerate all species of heavy ions (at present the AGS heavy ion program is limited to the elements lighter than sulfur because it can only accelerate fully stripped ions). The construction project started in FY 1985 and is expected to be completed in 1989. The purpose of this paper is to provide a future reference for the AGS Booster lattice.

  18. Green fabrication of quaternized chitosan/rectorite/Ag NP nanocomposites with antimicrobial activity.

    PubMed

    Luo, Jiwen; Xie, Meijia; Wang, Xiaoying

    2014-02-01

    Silver nanoparticles (Ag NPs) were synthesized rapidly in one pot via the Tollens reaction, in which quaternized chitosan (QCS) and rectorite (REC) acted as the reducing and stabilizing agent, while other chemical reducing and stabilizing agents and the surfactant were not included. X-ray diffraction, scanning electron microscopy and transmission electron microscopy results showed that spherical Ag NPs with uniform sizes were obtained, the layers of clay were peeled and thus exfoliated QCS/REC/Ag NP (QCRAg) nanocomposite was achieved. Moreover, Ag NPs dispersed well in the exfoliated nanocomposite matrix, some Ag NPs even entered into the interlayer of REC. QCRAg nanocomposites showed strong antimicrobial activity; the lowest minimum inhibitory concentration against Staphyloccocus aureus was only 0.0001% (w/v). The study reveals that the obtained QCRAg nanocomposites have great potential for biomedical applications. PMID:24457172

  19. Evaluation of bimetallic catalyst PtAg/C as a glucose-tolerant oxygen reduction cathode

    NASA Astrophysics Data System (ADS)

    Guerra-Balcázar, M.; Cuevas-Muñiz, F. M.; Álvarez-Contreras, L.; Arriaga, L. G.; Ledesma-García, J.

    2012-01-01

    PtAg/C nanoparticles were synthesized by chemical reduction and evaluated for the oxygen reduction reaction (ORR) in the absence and presence of glucose. PtAg/C catalyst formed onion-like layered structures, which are uniformly distributed on the support. PtAg/C showed activity comparable to that of Pt/C ETEK for ORR. Further, the catalyst exhibited high selectivity for ORR in the presence of glucose. PtAg/C was evaluated as cathode in a microfluidic fuel cell operated with high concentration of glucose (100 mM) as fuel. The results demonstrated that the use of PtAg/C as cathode electrode achieved higher selectivity and better performance compared with Pt/C catalyst.

  20. Low-temperature ferromagnetic properties in Co-doped Ag{sub 2}Se nanoparticles

    SciTech Connect

    Yang, Fengxia E-mail: xia9020@hust.edu.cn; Yu, Gen; Han, Chong; Liu, Tingting; Zhang, Duanming; Xia, Zhengcai E-mail: xia9020@hust.edu.cn

    2014-01-06

    β-Ag{sub 2}Se is a topologically nontrivial insulator. The magnetic properties of Co-doped Ag{sub 2}Se nanoparticles with Co concentrations up to 40% were investigated. The cusp of zero-field-cooling magnetization curves and the low-temperature hysteresis loops were observed. With increasing concentration of Co{sup 2+} ions mainly substituting Ag{sub I} sites in the Ag{sub 2}Se structure, the resistivity, Curie temperature T{sub c}, and magnetization increased. At 10 T, a sharp drop of resistance near T{sub c} was detected due to Co dopants. The ferromagnetic behavior in Co-doped Ag{sub 2}Se might result from the intra-layer ferromagnetic coupling and surface spin. This magnetic semiconductor is a promising candidate in electronics and spintronics.

  1. Synthesis and characterization of Au-core Ag-shell nanoparticles from unmodified apoferritin

    SciTech Connect

    Li, T.; Chattopadhyay, S.; Shibata, T.; Cook, R. E.; Miller, J. T.; Suthiwangcharoen, N.; Lee, S.; Winans, R. E.; Lee, B.

    2012-01-01

    Narrow-size distributed, water-soluble Au-core Ag-shell nanoparticles with a size range from 1 to 5 nm are synthesized using unmodified apoferritin as a template. Fast protein liquid chromatography reveals that the nanoparticles are formed inside the apoferritin cavity and are stable in aqueous solution. Electron microscopy shows that the particles are uniform in size and composed of both Au and Ag. In addition, extended X-ray absorption fine structure confirms that the particles have a core-shell structure with a Au core covered with a Ag shell. By varying the loading amounts of the silver precursor, the Ag shell thickness is controlled from one layer to several layers.

  2. Seed coat color and seed weight contribute differential responses of targeted metabolites in soybean seeds.

    PubMed

    Lee, Jinwook; Hwang, Young-Sun; Kim, Sun Tae; Yoon, Won-Byong; Han, Won Young; Kang, In-Kyu; Choung, Myoung-Gun

    2017-01-01

    The distribution and variation of targeted metabolites in soybean seeds are affected by genetic and environmental factors. In this study, we used 192 soybean germplasm accessions collected from two provinces of Korea to elucidate the effects of seed coat color and seeds dry weight on the metabolic variation and responses of targeted metabolites. The effects of seed coat color and seeds dry weight were present in sucrose, total oligosaccharides, total carbohydrates and all measured fatty acids. The targeted metabolites were clustered within three groups. These metabolites were not only differently related to seeds dry weight, but also responded differentially to seed coat color. The inter-relationship between the targeted metabolites was highly present in the result of correlation analysis. Overall, results revealed that the targeted metabolites were diverged in relation to seed coat color and seeds dry weight within locally collected soybean seed germplasm accessions. PMID:27507473

  3. Surface plasmon resonance enhancement of the magneto-optical Kerr effect in Cu/Co/Ag/SnO2 structure

    NASA Astrophysics Data System (ADS)

    Ghanaatshoar, Majid; Moradi, Mehrdad; Tohidi, Parsis

    2014-10-01

    In this paper, an Ag ultra thin layer was deposited on the Cu/Co film by thermal evaporation technique in the vacuum. The atomic force microscopy confirms that nanoparticles of Ag were formed on the Co magnetic layer, and subsequently, the longitudinal Kerr signal of Cu/Co/Ag was amplified more than 2 times. This enhancement is resulting from the overlap of the surface plasmon resonance in the silver with the electronic transition in the Co layer. Furthermore, we investigated the effect of transparent semiconductor SnO2 as a cap layer on the magnitude of longitudinal Kerr signal. To obtain the optimal thickness of cap layer, a numerical analysis was carried out using a 4 × 4 characteristic matrix, which takes into account multiple reflections from interfaces within the medium and light transmission through the layers.

  4. Low temperature vitrification of radioiodine using AgI-Ag{sub 2}O-P{sub 2}O{sub 5} glass system

    SciTech Connect

    Fujihara, H.; Murase, T.; Nishi, T.; Noshita, K. Yoshida, T.; Matsuda, M.

    1999-07-01

    A new vitrification process for radioiodine has been developed for safe disposal of the spent iodine adsorbent generated from reprocessing off-gas systems. The proposed process consists of the following two steps: (1) separation of radioiodine as AgI from spent iodine adsorbent and (2) vitrification of the separated AgI with silver phosphate. An AgI-Ag{sub 2}O-P{sub 2}O{sub 5} glass system can homogeneously contain up to 60 mol% AgI, which leads to high volume reduction efficiency (approximately 1/25). It also can vitrify the AgI without volatilization of iodine because of its low melting temperature (below 400 C). The leachabilities of iodine from simulated vitrified waste forms were evaluated by the MCC-1 static leach test in an anaerobically controlled glove box, which was purged by nitrogen gas with 3% hydrogen. The leaching behavior of the AgI-Ag{sub 2}O-P{sub 2}O{sub 5} glass system was influenced by the composition of the actual glass, type of leachant, and redox conditions. When the leach test was carried out using simulated ground water originating from rainfall, the leach rate of iodine from 3AgI-Ag{sub 4}P{sub 2}O{sub 7} glass was 6 x 10{sup {minus}8}g/cm{sup 2}/d in the early period of the leach test at 35 C under the reducing condition, after which it decreased to 3 x 10{sup {minus}9}g/cm{sup 2}/d. This glass showed a lower leach rate in the simulated ground water originating from sea water or cement saturated water, since a precipitation layer was formed on the surface.

  5. Ag Nanodots Emitters Embedded in a Nanocrystalline Thin Film Deposited on Crystalline Si Solar Cells.

    PubMed

    Park, Seungil; Ryu, Sel Gi; Ji, HyungYong; Kim, Myeong Jun; Peck, Jong Hyeon; Kim, Keunjoo

    2016-06-01

    We fabricated crystalline Si solar cells with the inclusion of various Ag nanodots into the additional emitters of nanocrystallite Si thin films. The fabricated process was carried out on the emitter surface of p-n junction for the textured p-type wafer. The Ag thin films were deposited on emitter surfaces and annealed at various temperatures. The amorphous Si layers were also deposited on the Ag annealed surfaces by hot-wire chemical vapor deposition and then the deposited layers were doped by the second n-type doping process to form an additional emitter. From the characterization, both the Ag nanodots and the deposited amorphous Si thin films strongly reduce photo-reflectances in a spectral region between 200-400 nm. After embedding Ag nanodots in nanocrystallite Si thin films, a conversion efficiency of the sample with added emitter was achieved to 15.1%, which is higher than the 14.1% of the reference sample and the 14.7% of the de-posited sample with a-Si:H thin film after the Ag annealing process. The additional nanocrystallite emitter on crystalline Si with Ag nanodots enhances cell properties. PMID:27427665

  6. Stable Ag@oxides nanoplates for surface-enhanced Raman spectroscopy of amino acids.

    PubMed

    Du, Peng; Ma, Lan; Cao, Yinghui; Li, Di; Liu, Zhenyu; Wang, Zhenxin; Sun, Zaicheng

    2014-06-11

    Surface enhancement Raman scattering (SERS) is a powerful technique for detecting low-concentration analytes (chemicals and biochemicals). Herein, a high-performance SERS biosensing system has been created by using highly stable Ag@oxides nanoplates as enhancers. The Ag nanoplates were stabilized by coating a uniform ultrathin layer of oxides (SiO2 or TiO2) on the Ag surface through a simple sol-gel route. The thin oxide layer allows the plasmonic property of the original Ag nanoplates to be retained while preventing their contact with external etchants. The oxides provide an excellent platform for binding all kinds of molecules that contain a COOH group in addition to a SH group. We demonstrate that Ag@oxides have high performance with respect to the typical SERS molecule 4-ATP, which contains a typical SH group. Ag@oxides also can be directly employed for the SERS detection of amino acids. The highly stable Ag@oxides nanoplates are believed to hold great promise for fabricating a wide range of biosensors for the detection of many other biomolecules and may also find many interesting opportunities in the fields of biological labeling and imaging.

  7. Role of Ag addition in L10 ordering of FePt-based nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    Crisan, A. D.; Vasiliu, F.; Mercioniu, I.; Crisan, O.

    2014-01-01

    The FePt system has important perspectives as high-temperature corrosion-resistant magnets. In the form of rapidly solidified melt-spun ribbons, FePt-based magnets may exhibit in certain cases a two-phase hard-soft magnetic behaviour. The present paper deals with a microstructural and magnetic study of FePtAgB alloys with increasing Ag content. The aim is to identify and confirm the effect of Ag addition in decreasing the temperature of the FePt disorder-order structural phase transformation. A detailed high-resolution transmission electron microscopy study is employed, and the alternative disposal of hard and soft regions within the two-phase microstructure is observed and interpreted with respect to the X-ray diffraction results. In the as-cast Ag-containing samples, it is shown that there is an optimum of the Ag content for which best magnetic properties are obtained. Ag addition creates a nonlinear behaviour of the coercive field and the ordering parameter, similar to the RKKY interaction-induced interlayer exchange coupling (IEC) observed in magnetic layers separated by non-magnetic spacer layers. Direct formation of the L10 phase from the as-cast state in the FePtAgB alloys is reported with magnetic parameters compatible to other exchange spring permanent nanomagnets. These findings open novel perspectives into utilization of such alloys in applications requiring magnets operating in high-temperature industrial environments.

  8. Seeds in space experiment results

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1991-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the space exposed experiment developed for students (SEEDS) tray in sealed canister number six and in two small vented canisters. The tray was in the F-2 position. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in Park Seed's seed storage facility. The initial results are presented. There was a better survival rate in the sealed canister in space than in the storage facility at Park Seed. At least some of the seeds in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low.

  9. Seed Transmission of Pseudoperonospora cubensis

    PubMed Central

    Cohen, Yigal; Rubin, Avia E.; Galperin, Mariana; Ploch, Sebastian; Runge, Fabian; Thines, Marco

    2014-01-01

    Pseudoperonospora cubensis, an obligate biotrophic oomycete causing devastating foliar disease in species of the Cucurbitaceae family, was never reported in seeds or transmitted by seeds. We now show that P. cubensis occurs in fruits and seeds of downy mildew-infected plants but not in fruits or seeds of healthy plants. About 6.7% of the fruits collected during 2012–2014 have developed downy mildew when homogenized and inoculated onto detached leaves and 0.9% of the seeds collected developed downy mildew when grown to the seedling stage. This is the first report showing that P. cubensis has become seed-transmitted in cucurbits. Species-specific PCR assays showed that P. cubensis occurs in ovaries, fruit seed cavity and seed embryos of cucurbits. We propose that international trade of fruits or seeds of cucurbits might be associated with the recent global change in the population structure of P. cubensis. PMID:25329308

  10. Spin dynamics simulations at AGS

    SciTech Connect

    Huang, H.; MacKay, W.W.; Meot, F.; Roser, T.

    2010-05-23

    To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.

  11. Automated seed manipulation and planting

    NASA Technical Reports Server (NTRS)

    Garcia, Ray; Herrera, Javier; Holcomb, Scott; Kelly, Paul; Myers, Scott; Rosendo, Manny; Sivitz, Herbert; Wolsefer, Dave

    1988-01-01

    The Mechanical Division fabricated three seed separators utilizing pressure gradients to move and separate wheat seeds. These separators are called minnow buckets and use air, water, or a combination of both to generate the pressure gradient. Electrostatic fields were employed in the seed separator constructed by the Electrical Division. This separator operates by forcing a temporary electric dipole on the wheat seeds and using charged electrodes to attract and move the seeds. Seed delivery to the hydroponic growth tray is accomplished by the seed cassette. The cassette is compatible with all the seed separators, and it consists of a plastic tube threaded with millipore filter paper. During planting operations, the seeds are placed in an empty cassette. The loaded cassette is then placed in the growth tray and nutrient solution provided. The solution wets the filter paper and capillary action draws the nutrients up to feed the seeds. These seeding systems were tested and showed encouraging results. Seeds were effectively separated and the cassette can support the growth of wheat plants. Problems remaining to be investigated include improving the success of delivering the seeds to the cassette and providing adequate spacing between seeds for the electric separator.

  12. Pilot study on the identification of silver in skin layers and urine after dermal exposure to a functionalized textile.

    PubMed

    Bianco, Carlotta; Kezic, Sanja; Visser, Maaike J; Pluut, Olivier; Adami, Gianpiero; Krystek, Petra

    2015-05-01

    Silver (Ag) is increasingly used in consumer products like functionalized textiles and medical devices owing to its strong antimicrobial activity which is largely assigned to Ag ions released after oxidation of metallic Ag. To increase generation of Ag ions, in various products Ag is often present as nanoparticles. Ideally, Ag ions would remain on the surface of the skin to combat the bacteria and the uptake of Ag into the body should be limited. However, the Ag ions might penetrate across the skin into the body leading to adverse health effects. Data on in vivo uptake of Ag due to dermal exposure are scarce partly caused by the lack of suitable analytical approaches for the determination of Ag in biological matrices, but strongly needed to enable risk assessment of skin exposure to (nano) Ag containing products. With the developed approach, the presence of Ag in a functionalized textile is confirmed by using scanning electron microscopy (SEM). After in vivo dermal exposure to Ag containing textile material under ׳׳in use׳׳ exposure scenarios, the outermost layers of the skin (Stratum Corneum, SC) were sampled by using adhesive tapes with a size of 3.8cm(2). Different leaching and dissolution procedures of Ag from biological samples prior analysis by inductively coupled plasma mass spectrometry (ICPMS) have been evaluated. The developed method results in a limit of detection (LOD) of 2ng Ag per removed SC layer. The method allows the measurement of the Ag concentrations at different depths of the SC enabling the deduction of the percutaneous penetration kinetics. Due to the possible bio distribution within the whole body, an indirect exposure matrix (urine) was studied too. The detection power of the method permits measuring the ultra-trace concentrations of Ag in urine before and after dermal exposure; LOD is 0.010µg Ag/L urine.

  13. Sun drying of seedless and seeded grapes.

    PubMed

    Doymaz, Ibrahim

    2012-04-01

    In this study, sun drying behaviour of seedless and seeded grapes was investigated. The drying study showed that the times taken for drying of seedless and seeded grapes of berry size of 1.72 cm and 2.20 cm thicknesses from the initial moisture contents of 78.2% and 79.5% (w.b.) to final moisture content of around 22% (w.b.) were 176 and 228 h in open sun drying, respectively. The drying data were fitted to 12 thin-layer drying models. The performance of these models were compared using the determination of coefficient (R(2)), mean relative percent error (P), reduced chi-square (χ (2)) and root mean square error (RMSE) between the observed and predicted moisture ratios. The results showed that Midilli et al. model was found to satisfactorily describe the sun drying curves of seedless and seeded grapes. The effective moisture diffusivity values were estimated from Fick's diffusion model by 1.02 × 10(-11) and 1.66 × 10(-11) m(2)/s for seeded and seedless grapes. PMID:23572844

  14. Numerical Modeling of Hailstorms and Hailstone Growth. Part III: Simulation of an Alberta Hailstorm--Natural and Seeded Cases.

    NASA Astrophysics Data System (ADS)

    Farley, Richard D.

    1987-07-01

    This paper reports on simulations of a multicellular hailstorm case observed during the 1983 Alberta Hail Project. The field operations on that day concentrated on two successive feeder cells which were subjected to controlled seeding experiments. The fist of these cells received the placebo treatment and the second was seeded with dry ice. The principal tool of this study is a modified version of the two-dimensional, time dependent hail category model described in Part I of this series of papers. It is with this model that hail growth processes are investigated, including the simulated effects of cloud seeding techniques as practiced in Alberta.The model simulation of the natural case produces a very good replication of the observed storm, particularly the placebo feeder cell. This is evidenced, in particular, by the high degree of fidelity of the observed and modeled radar reflectivity in terms of magnitudes, structure, and evolution. The character of the hailfall at the surface and the scale of the storm are captured nicely by the model, although cloud-top heights are generally too high, particularly for the mature storm system.Seeding experiments similar to those conducted in the field have also been simulated. These involve seeding the feeder cell early in its active development phase with dry ice (CO2) or silver iodide (AgI) introduced near cloud top. The model simulations of these seeded cases capture some of the observed seeding signatures detected by radar and aircraft. In these model experiments, CO2 seeding produced a stronger response than AgI seeding relative to inhibiting hail formation. For both seeded cases, production of precipitating ice was initially enhanced by the seeding, but retarded slightly in the later stages, the net result being modest increases in surface rainfall, with hail reduced slightly. In general, the model simulations support several subhypotheses of the operational strategy of the Alberta Research Council regarding the earlier

  15. Rice seed toxicity tests for organic and inorganic substances.

    PubMed

    Wang, W

    1994-01-01

    Plant seed toxicity tests can be used to evaluate hazardous waste sites and to assess toxicity of complex effluents and industrial chemicals. Conventional plant seed toxicity tests are performed using culture dishes containing filter paper. Some reports indicate that filter papers might interfere with the toxicity of inorganic substances. In this study, a plastic seed tray was used. Rice was used as the test species.A comparison of results in the literature and this study revealed that variation of test species, methods, exposure duration, and other factors may affect the test results. The results of this study showed that the order of decreasing toxicity of metal ions was Cu>Ag>Ni>Cd>Cr(VI)>Pb>Zn>Mn>NaF for rice. The test results were similar to those reported in the literature for lettuce Ag>Ni>Cd,Cu>Cr(VI)>Zn>Mn, millet Cu,Ni>Cd>Cr(VI)>Zn>Mn, and ryegrass Cu>Ni>Mn>Pb>Cd>Zn>Al>Hg>Cr>Fe. The order of decreasing toxicity of organic herbicides was paraquat, 2,4-D>glyphosate>bromacil. PMID:24221291

  16. Rice seed toxicity tests for organic and inorganic substances

    USGS Publications Warehouse

    Wang, W.

    1994-01-01

    Plant seed toxicity tests can be used to evaluate hazardous waste sites and to assess toxicity of complex effluents and industrial chemicals. Conventional plant seed toxicity tests are performed using culture dishes containing filter paper. Some reports indicate that filter papers might interfere with the toxicity of inorganic substances. In this study, a plastic seed tray was used. Rice was used as the test species. A comparison of results in the literature and this study revealed that variation of test species, methods, exposure duration, and other factors may affect the test results. The results of this study showed that the order of decreasing toxicity of metal ions was Cu>Ag>Ni>Cd>Cr(VI)>Pb>Zn>Mn>NaF for rice. The test results were similar to those reported in the literature for lettuce Ag>Ni>Cd,Cu>Cr (VI)>Zn>Mn, millet Cu,Ni>Cd>Cr(VI)>Zn>Mn, and ryegrass Cu>Ni>Mn>>Pb>Cd>Zn> Al>Hg>Cr>Fe. The order of decreasing toxicity of organic herbicides was paraquat, 2,4-D>>glyphosate>bromacil.

  17. Triple-Layer Plastic Bags Protect Dry Common Beans (Phaseolus vulgaris) Against Damage by Acanthoscelides obtectus (Coleoptera: Chrysomelidae) During Storage.

    PubMed

    Mutungi, C; Affognon, H D; Njoroge, A W; Manono, J; Baributsa, D; Murdock, L L

    2015-10-01

    Fumigated dry common beans (Phaseolus vulgaris L.) that were artificially infested with Acanthoscelides obtectus Say, and others that were not artificially infested, were stored in hermetic triple-layer PICS (Lela Agro, Kano, Nigeria) or woven polypropylene (PP) bags for 6 mo at ambient laboratory temperature conditions of 22.6 ± 1.9°C and 60.1 ± 4.3% relative humidity. In an additional trial, beans contained in PP bags were treated with Actellic Super dust before introducing A. obtectus. Moisture content, number of live adult A. obtectus, seed damage, weight loss, and seed germination were determined at monthly intervals. At 6 mo, beans stored in PICS bags retained higher moisture than those stored in PP bags, but in all treatments the moisture level remained below that recommended for safe storage of beans. In the PICS bags, proliferation of A. obtectus did not proceed and at 6 mo, beans stored in these bags did not have insect-inflicted seed damage or weight loss. In contrast, seed damage and weight loss in PP bags exceeded economic threshold after 1 mo in the absence of Actellic Super dust (Syngenta Crop protection AG, Basle, Switzerland), and after 2 mo in the presence of it. Germination of beans stored in PP bags decreased greatly whereas the beans stored in PICS bags did not show reduced germination. Chemical free storage of common beans in PICS bags protects them against damage by A. obtectus.

  18. Magnetic-seeding filtration

    SciTech Connect

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S.

    1997-10-01

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab.

  19. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF.

    PubMed

    Hammond, E C; Bridgers, K; Berry, F D

    1996-11-01

    The purpose of the experiment was to determine cosmic rays long-term effects on living tissue. A batch of tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for almost 6 y. During this time, the seeds received an abundant exposure to cosmic radiation. Upon the return of the LDEF to Earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. Our university analysis included germination and growth rates as well as scanning electron microscopy (SEM) and X-ray analysis of the control as well as space exposed tomato seeds. In analyzing the seeds under the electron microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the space exposed seeds than on Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results showed that the space-exposed seeds germinated sooner than Earth-based seeds. Also, the space-exposed seeds grew at a faster rate.) The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with argon/gold palladium plasma, they were viewed under the electron microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. As a result of the electron interaction and X-ray production within the open seeds, the traditional layers of the space-exposed seed gave peaks of Mg, P and S, while the Earth seed gave an iron peak, which was not detected in the space-exposed seed because of electron beam positioning difference. The space

  20. Microphysical Effects of Wintertime Cloud Seeding with Silver Iodide over the Rocky Mountains. Part III: Observations over the Grand Mesa, Colorado.

    NASA Astrophysics Data System (ADS)

    Super, Arlin B.; Boe, Bruce A.

    1988-10-01

    During March 1986, several airborne and ground-based silver iodide (AgI) seeding experiments were conducted over the Grand Mesa, Colorado, during a three-day period of northerly flow and shallow orographic cloud. While little natural snowfall was observed during these experiments, supercooled liquid water formed over the windward slopes and evaporated to the lee of the mesa of many hours. Seeding-induced microphysical changes coincident with the AgI plumes were found in all eight experiments, (including two that employed ground-based seeding) by aircraft sampling about 500 m above the mesa top. Precipitation rates estimated from ice particle images at light levels suggested increases within the seeded volumes in all but one experiment. Surface precipitation increases were observed in three aircraft seeding experiments and one ground-based seeding experiment that coincided with the passage of AgI plumes aloft. Surface observations were not possible during the other ground-based seeding experiment, but some increase in snowfall is thought probable. Three aircraft seeding experiments failed to show surface snowfall increases, and reasons for this are explored.

  1. Synthesis of Ag(2) S-Ag nanoprisms and their use as DNA hybridization probes.

    PubMed

    Liu, Bing; Ma, Zhanfang

    2011-06-01

    A simple synthetic route to prepare Ag(2) S-Ag nanoprisms consists of the facile addition of Na(2) S to a solution of triangular Ag nanoprisms. The resulting Ag(2) S-Ag nanoparticles are more stable in solution than the original Ag nanoprisms, and two surface plasmon resonance (SPR) bands of the original Ag nanoprisms still remain. In addition, the SPR bands of the Ag(2) S-Ag nanoprisms are tunable over a wide range. The Ag(2) S-Ag nanoprisms can be directly bioconjugated via well-established stable Ag(2) S surface chemistry with readily available sulfur coupling agents. The nanoprisms are used in the hybridization of functionalized oligonucleotides, and show promise as probes for future biosensing applications. PMID:21538868

  2. Molecular insights into seed dispersal mutualisms driving plant population recruitment

    NASA Astrophysics Data System (ADS)

    García, Cristina; Grivet, Delphine

    2011-11-01

    Most plant species require mutualistic interactions with animals to fulfil their demographic cycle. In this regard frugivory (i.e., the intake of fruits by animals) enhances natural regeneration by mobilizing a large amount of seeds from source trees to deposition sites across the landscape. By doing so, frugivores move propagules, and the genotypes they harbour creating the spatial, ecological, and genetic environment under which subsequent recruitment proceeds. Recruitment patterns can be envisioned as the result of two density- and distance-dependent processes: seed dispersal and seed/seedling survival (the Janzen-Connell model). Population genetic studies add another layer of complexity for understanding the fate of dispersed propagules: the genetic relatedness among neighbouring seeds within a seed clump, a major outcome of frugivore activity, modifies their chances of germinating and surviving. Yet, we virtually ignore how the spatial distribution of maternal progenies and recruitment patterns relate with each other in frugivore-generated seed rains. Here we focus on the critical role of frugivore-mediated seed dispersal in shaping the spatial distribution of maternal progenies in the seed rain. We first examine which genetic mechanisms underlying recruitment are influenced by the spatial distribution of maternal progenies. Next, we examine those studies depicting the spatial distribution of maternal progenies in a frugivore-generated seed rain. In doing so, we briefly review the most suitable analytical approaches applied to track the contribution of fruiting trees to the seed rain based on molecular data. Then we look more specifically at the role of distinct frugivore guilds in determining maternal genetic correlations and their expected consequences for recruitment patterns. Finally we posit some general conclusions and suggest future research directions that would provide a more comprehensive understanding of the ecological and evolutionary consequences

  3. Structural and giant magnetoresistance characterization of Ag sbnd Co multilayers

    NASA Astrophysics Data System (ADS)

    Angelakeris, M.; Poulopoulos, P.; Valassiades, O.; Stoemenos, J.; Kalogirou, O.; Niarchos, D.; Flevaris, N. K.

    1997-01-01

    Ag sbnd Co multilayers were prepared on various substrates (Si, polyimide and glass) by e-beam evaporation under ultra high vacuum. X-ray diffraction and high resolution electron microscopy studies showed a deterioration of multilayer structure upon reducing the individual Co-layer thickness to 0.5 nm. Furthermore, the saturation field in the parallel field geometry increases, as SQUID magnetometry revealed, while magnetoresistance reaches 16% at room temperature and exceeds 30% at 30 K. Magnetoresistance values were found to depend strongly on individual layer thicknesses as well as on the total film thickness.

  4. Numerical simulation of airborne cloud seeding over Greece, using a convective cloud model

    NASA Astrophysics Data System (ADS)

    Spiridonov, Vlado; Karacostas, Theodore; Bampzelis, Dimitrios; Pytharoulis, Ioannis

    2015-02-01

    An extensive work has been done by the Department of Meteorology and Climatology at Aristotle University of Thessaloniki and others using a three-dimensional cloud resolving model to simulate AgI seeding by aircraft of three distinct hailstorm cases occurred over Greece in period 2007-2009. The seeding criterion for silver iodide glaciogenic seeding from air is based on the beneficial competition mechanism. According to thermodynamic analysis and classification proposed by Marwitz (1972a, b, and c) and based on their structural and evolutionary properties we classified them in three groups as singlecell, multicell and supercell hailstorms. The seeding optimization for each selected case is conducted by analysis of the thermodynamic characteristics of the meteorological environment as well as radar reflectivity fields observed by the state of the art Thunderstorm Identification, Tracking, Analysis and Nowcasting (TITAN) software applied in the Greek National Hail Suppression Program (GNHSP). Results of this comprehensive study have shown positive effects with respect to hailfall decrease after successful seeding as our primarily objective. All three cases have illustrated 15-20% decrease in accumulated hailfall at the ground Seeded clouds have exhibited earlier development of precipitation and slight dynamical enhancement of the updraft and rainfall increase of ~10- 12.5%. The results have emphasized a strong interaction between cloud dynamics and microphysics, especially the subgrid scale processes that have impact on agent transport and diffusion in a complex environment. Comparisons between modelled and observed radar reflectivity also show a relatively good agreement. Simulated cloud seeding follows the operational aircraft seeding for hail suppression. The ability of silver-iodide particles to act as ice nuclei has been used to perform airborne cloud seeding, under controlled conditions of temperature and humidity. The seeding effects depend upon applying the

  5. Fire-through Ag contact formation for crystalline Si solar cells using single-step inkjet printing.

    PubMed

    Kim, Hyun-Gang; Cho, Sung-Bin; Chung, Bo-Mook; Huh, Joo-Youl; Yoon, Sam S

    2012-04-01

    Inkjet-printed Ag metallization is a promising method of forming front-side contacts on Si solar cells due to its non-contact printing nature and fine grid resolution. However, conventional Ag inks are unable to punch through the SiN(x) anti-reflection coating (ARC) layer on emitter Si surfaces. In this study, a novel formulation of Ag ink is examined for the formation of fire-through contacts on a SiN(x)-coated Si substrate using the single-step printing of Ag ink, followed by rapid thermal annealing at 800 degrees C. In order to formulate Ag inks with fire-through contact formation capabilities, a liquid etching agent was first formulated by dissolving metal nitrates in an organic solvent and then mixing the resulting solution with a commercial Ag nanoparticle ink at various volume ratios. During the firing process, the dissolved metal nitrates decomposed into metal oxides and acted in a similar manner to the glass frit contained in Ag pastes for screen-printed Ag metallization. The newly formulated ink with a 1 wt% loading ratio of metal oxides to Ag formed finely distributed Ag crystallites on the Si substrate after firing at 800 degrees C for 1 min.

  6. Growth mechanism, surface and optical properties of ZnO nanostructures deposited on various Au-seeded thickness obtained by mist-atomization

    NASA Astrophysics Data System (ADS)

    Afaah, A. N.; Aadila, A.; Asib, N. A. M.; Mohamed, R.; Rusop, M.; Khusaimi, Z.

    2016-07-01

    In this paper, growth mechanisms of ZnO nanostructures on non-seeded glass, 6 nm and 12 nm Au seed layer obtained by mist-atomization was proposed. ZnO films were successfully deposited on glass substrate with different thickness of Au seed layer i.e. 6 nm and 12 nm. The surface and optical properties of the prepared samples were investigated using Field emission scanning electron microscopy (FESEM) and photoluminescence (PL). FESEM micrograph show that ZnO nanostructure deposited on 6 nm Au seed layer has uniform formation and well distributed. From PL spectroscopy, the UV emission shows that ZnO deposited on 6 nm Au seed layer has the more intense UV intensity which proved that high crystal quality of nanostructured ZnO deposited on 6 nm Au seed layer.

  7. Magnetic-seeding filtration

    SciTech Connect

    Depaoli, D.

    1996-10-01

    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes.

  8. Seed Dormancy and Germination

    PubMed Central

    Bentsink, Leónie; Koornneef, Maarten

    2008-01-01

    Seed dormancy allows seeds to overcome periods that are unfavourable for seedling established and is therefore important for plant ecology and agriculture. Several processes are known to be involved in the induction of dormancy and in the switch from the dormant to the germinating state. The role of plant hormones, the different tissues and genes involved, including newly identified genes in dormancy and germination are described in this chapter, as well as the use transcriptome, proteome and metabolome analyses to study these mechanistically not well understood processes. PMID:22303244

  9. Study of the oxygen transport through Ag (110), Ag (poly), and Ag 2.0 Zr

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Wu, D.; Davidson, M. R.; Hoflund, Gar B.

    1992-01-01

    The transport of oxygen through high-purity membranes of Ag (110), Ag (poly), Ag (nano), and Ag 2.0 Zr has been studied by an ultrahigh vacuum permeation method over the temperature range of 400-800 C. The data show that there are substantial deviations from ordinary diffusion-controlled transport. A surface limitation has been confirmed by glow-discharge studies where the upstream O2 supply has been partially converted to atoms, which, for the same temperature and pressure, gave rise to over an order of magnitude increase in transport flux. Further, the addition of 2.0 wt percent Zr to the Ag has provided increased dissociative adsorption rates, which, in turn, increased the transport flux by a factor of 2. It was also observed that below a temperature of 630 C, the diffusivity exhibits an increase in activation energy of over 4 kcal/mol, which has been attributed to trapping of the atomic oxygen and/or kinetic barriers at the surface and subsurface of the vacuum interface. Above 630 C, the activation barrier decreases to the accepted value of about 11 kcal/mol for Ag (poly), consistent with zero concentration at the vacuum interface.

  10. Development of aluminum (Al5083)-clad ternary Ag In Cd alloy for JSNS decoupled moderator

    NASA Astrophysics Data System (ADS)

    Teshigawara, M.; Harada, M.; Saito, S.; Oikawa, K.; Maekawa, F.; Futakawa, M.; Kikuchi, K.; Kato, T.; Ikeda, Y.; Naoe, T.; Koyama, T.; Ooi, T.; Zherebtsov, S.; Kawai, M.; Kurishita, H.; Konashi, K.

    2006-09-01

    To develop Ag (silver)-In (indium)-Cd (cadmium) alloy decoupler, a method is needed to bond the decoupler between Al alloy (Al5083) and the ternary Ag-In-Cd alloy. We found that a better HIP condition was temperature, pressure and holding time at 803 K, 100 MPa and 10 min. for small test pieces ( ϕ22 mm in dia. × 6 mm in height). Hardened layer due to the formation of AlAg 2 was found in the bonding layer, however, the rupture strength of the bonding layer is more than 30 MPa, the calculated design stress. Bonding tests of a large size piece (200 × 200 × 30 mm 3), which simulated the real scale, were also performed according to the results of small size tests. The result also gave good bonding and enough required-mechanical-strength.

  11. Fiber and seed loss from seed cotton cleaning machinery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fiber and seed loss from seed cotton cleaning equipment in cotton gins occurs, but the quantity of material lost, factors affecting fiber and seed loss, and the mechanisms that cause material loss are not well understood. Two experiments were conducted to evaluate the effects of different factors on...

  12. Multiple seeds sensitivity using a single seed with threshold.

    PubMed

    Egidi, Lavinia; Manzini, Giovanni

    2015-08-01

    Spaced seeds are a fundamental tool for similarity search in biosequences. The best sensitivity/selectivity trade-offs are obtained using many seeds simultaneously: This is known as the multiple seed approach. Unfortunately, spaced seeds use a large amount of memory and the available RAM is a practical limit to the number of seeds one can use simultaneously. Inspired by some recent results on lossless seeds, we revisit the approach of using a single spaced seed and considering two regions homologous if the seed hits in at least t sufficiently close positions. We show that by choosing the locations of the don't care symbols in the seed using quadratic residues modulo a prime number, we derive single seeds that when used with a threshold t > 1 have competitive sensitivity/selectivity trade-offs, indeed close to the best multiple seeds known in the literature. In addition, the choice of the threshold t can be adjusted to modify sensitivity and selectivity a posteriori, thus enabling a more accurate search in the specific instance at issue. The seeds we propose also exhibit robustness and allow flexibility in usage. PMID:25747382

  13. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus.

    PubMed

    Wang, Fulin; He, Jiewang; Shi, Jianghua; Zheng, Tao; Xu, Fei; Wu, Guanting; Liu, Renhu; Liu, Shengyi

    2016-01-01

    Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects). In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1). Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP). It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the embryo. The pigment

  14. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus.

    PubMed

    Wang, Fulin; He, Jiewang; Shi, Jianghua; Zheng, Tao; Xu, Fei; Wu, Guanting; Liu, Renhu; Liu, Shengyi

    2016-01-01

    Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects). In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1). Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP). It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the embryo. The pigment

  15. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus

    PubMed Central

    Wang, Fulin; He, Jiewang; Shi, Jianghua; Zheng, Tao; Xu, Fei; Wu, Guanting; Liu, Renhu; Liu, Shengyi

    2016-01-01

    Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects). In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1). Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP). It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus. Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the embryo. The pigment

  16. Electronic structure and photoelectrical properties of Ag2In2SiSe6 and Ag2In2GeSe6

    NASA Astrophysics Data System (ADS)

    Khyzhun, O. Y.; Myronchuk, G. L.; Zamuruyeva, O. V.; Parasyuk, O. V.

    2014-12-01

    High-quality Ag2In2SiSe6 and Ag2In2GeSe6 single crystals have been successfully grown by the vertical Bridgman-Stockbarger method and the horizontal gradient freeze technique, respectively. For pristine and Ar+ ion-irradiated surfaces of the single crystals under study, X-ray photoelectron core-level and valence-band spectra have been measured. Results of these studies allow for concluding that the Ag2In2SiSe6 and Ag2In2GeSe6 single crystal surfaces are sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ ion-bombardment with energy of 3.0 keV during 5 min at an ion current density of 14 μA/cm2 has induced some modification in top surface layers leading to an increase of content of In atoms in the layers. Comparison on a common energy scale of the X-ray emission Se Kβ2 bands representing energy distribution of the Se 4p states and the X-ray photoelectron valence-band spectra reveal that the main contribution of the valence Se p states occur in the upper portion of the valence band, with also their significant contributions in other valence band regions of the Ag2In2SiSe6 and Ag2In2GeSe6 single crystals. In addition, for the single crystals under consideration, temperature dependences of specific dark conductivity and spectral distributions of photoconductivity have been explored. It has been established that the Ag2In2SiSe6 and Ag2In2GeSe6 single crystals are high-resistance semiconductors with value of the specific electrical conductivity σ ≈ 1.67 × 10-9 Ω-1 сm-1 (at Т = 300 K). The both compounds are materials with p-type conductivity.

  17. Maternal Gametophyte Effects on Seed Development in Maize

    PubMed Central

    Chettoor, Antony M.; Phillips, Allison R.; Coker, Clayton T.; Dilkes, Brian; Evans, Matthew M. S.

    2016-01-01

    Flowering plants, like placental mammals, have an extensive maternal contribution toward progeny development. Plants are distinguished from animals by a genetically active haploid phase of growth and development between meiosis and fertilization, called the gametophyte. Flowering plants are further distinguished by the process of double fertilization that produces sister progeny, the endosperm and the embryo, of the seed. Because of this, there is substantial gene expression in the female gametophyte that contributes to the regulation of growth and development of the seed. A primary function of the endosperm is to provide growth support to its sister embryo. Several mutations in Zea mays subsp. mays have been identified that affect the contribution of the mother gametophyte to the seed. The majority affect both the endosperm and the embryo, although some embryo-specific effects have been observed. Many alter the pattern of expression of a marker for the basal endosperm transfer layer, a tissue that transports nutrients from the mother plant to the developing seed. Many of them cause abnormal development of the female gametophyte prior to fertilization, revealing potential cellular mechanisms of maternal control of seed development. These effects include reduced central cell size, abnormal architecture of the central cell, abnormal numbers and morphology of the antipodal cells, and abnormal egg cell morphology. These mutants provide insight into the logic of seed development, including necessary features of the gametes and supporting cells prior to fertilization, and set up future studies on the mechanisms regulating maternal contributions to the seed. PMID:27466227

  18. Maternal Gametophyte Effects on Seed Development in Maize.

    PubMed

    Chettoor, Antony M; Phillips, Allison R; Coker, Clayton T; Dilkes, Brian; Evans, Matthew M S

    2016-09-01

    Flowering plants, like placental mammals, have an extensive maternal contribution toward progeny development. Plants are distinguished from animals by a genetically active haploid phase of growth and development between meiosis and fertilization, called the gametophyte. Flowering plants are further distinguished by the process of double fertilization that produces sister progeny, the endosperm and the embryo, of the seed. Because of this, there is substantial gene expression in the female gametophyte that contributes to the regulation of growth and development of the seed. A primary function of the endosperm is to provide growth support to its sister embryo. Several mutations in Zea mays subsp. mays have been identified that affect the contribution of the mother gametophyte to the seed. The majority affect both the endosperm and the embryo, although some embryo-specific effects have been observed. Many alter the pattern of expression of a marker for the basal endosperm transfer layer, a tissue that transports nutrients from the mother plant to the developing seed. Many of them cause abnormal development of the female gametophyte prior to fertilization, revealing potential cellular mechanisms of maternal control of seed development. These effects include reduced central cell size, abnormal architecture of the central cell, abnormal numbers and morphology of the antipodal cells, and abnormal egg cell morphology. These mutants provide insight into the logic of seed development, including necessary features of the gametes and supporting cells prior to fertilization, and set up future studies on the mechanisms regulating maternal contributions to the seed.

  19. Gradients of seed photosynthesis and its role for oxygen balancing.

    PubMed

    Tschiersch, Henning; Borisjuk, Ljudmilla; Rutten, Twan; Rolletschek, Hardy

    2011-02-01

    Seeds are generally viewed in the context of plant reproduction and the supply of food and feed, but only seldom as a site of photosynthesis. However, the seeds of many plant species are green, at least during their early development, which raises the issue of the significance of this greening for seed development. Here we describe the two contrasting modes of photosynthesis in the developing seed. The dicotyledonous pea seed has a green embryo, while the monocotyledonous barley caryopsis has a chlorenchymatic layer surrounding its non-green endosperm (storage organ). We have employed pulse-amplitude-modulated fluorescence and oxygen-sensitive microsensors to localize and describe gradient distributions of photosynthetic activity across the seed/caryopsis, and have discussed its role in maintaining the endogenous O₂ balance. We also report the lack of photosynthetic activity in the stay-green embryo axis of the sacred lotus (Nelumbo nucifera) seed following imbibition. The observations are discussed with respect to in vivo light supply and contrasted with the characteristics of leaf photosynthesis.

  20. Removal of chromium by mucilaginous seeds of Ocimum basilicum.

    PubMed

    Melo, J S; D'Souza, S F

    2004-04-01

    Polysaccharides bound to bacteria or in isolated form have been shown to bind heavy metals. A limitation of this technology can be overcome by immobilization. In view of this Ocimum basilicum seeds which swell upon wetting could serve as natural immobilized source of agriculturally-based polysaccharides. The seeds consist of an inner hard core and a pectinous fibrillar outer layer. Pretreating the seeds with acid, alkali, periodate or boiling in water was found to alter the metal binding capacity. Of the various treatments given, seeds boiled in water were found to be superior in terms of mechanical stability and exhibited fairly optimal Cr(VI) uptake kinetics. The maximum adsorption capacity as calculated from the Langmuir isotherm was 205 mg Cr/g dry seeds. Biosorption of Cr(VI) was found to be pH dependent with maximum uptake at pH 1.5 wherein sorption was not affected by the presence of other metal ions such as Cd(2+), Cu(2+), Ca(2+) and Na(+). Seeds were used in a packed bed reactor for the continuous removal of Cr(VI). Thus O. basilicum seeds may have application as a potential bioresource in tropical countries such as India where they are widely available.

  1. Ag{sub 1.75}InSb{sub 5.75}Se{sub 11}: A new noncentrosymmetric compound with congruent-melting behavior

    SciTech Connect

    Hao, Wenyu; Han, Yemao; Huang, Rongjin; Feng, Kai; Yin, Wenlong; Yao, Jiyong; Wu, Yicheng

    2014-10-15

    A new type of quaternary selenide Ag{sub 1.75}InSb{sub 5.75}Se{sub 11} has been synthesized. It crystallizes in the non-centrosymmetric space group Cm of monoclinic system, with a=13.419 (1) Å, b=4.084 (1) Å, and c=19.165 (2) Å, Z=2. The compound has a new three-dimensional layer structure which consists of infinite {sup 2}{sub ∞}[AgSb{sub 2}Se{sub 4}] layers and {sup 2}{sub ∞}[Ag1(Sb6)Ag3InSb{sub 3}Se{sub 8}] layers. The band gap of Ag{sub 1.75}InSb{sub 5.75}Se{sub 11} is 0.94(2) eV, which agrees with its dark gray color. Moreover, the compound exhibits congruent-melting behavior. - Graphical abstract: Ag{sub 1.75}InSb{sub 5.75}Se{sub 11} has a new three-dimensional layer structure which consists of infinite {sup 2}{sub ∞}[AgSb{sub 2}Se{sub 4}] layers and {sup 2}{sub ∞}[Ag1(Sb6)Ag3InSb{sub 3}Se{sub 8}] layers. - Highlights: • The new quaternary selenide Ag{sub 1.75}InSb{sub 5.75}Se{sub 11} has been synthesized. • It crystallizes in non-centrosymmetric space group Cm and has a new layer structure. • The structure consists of {sup 2}{sub ∞}[AgSb{sub 2}Se{sub 4}] layers and {sup 2}{sub ∞}[Ag1(Sb6)Ag3InSb{sub 3}Se{sub 8}] layers. • The band gap of Ag{sub 1.75}InSb{sub 5.75}Se{sub 11} is 0.94(2) eV. • The compound exhibits congruent-melting behavior.

  2. Effect of seed on ripening control components during avocado fruit development.

    PubMed

    Hershkovitz, Vera; Friedman, Haya; Goldschmidt, Eliezer E; Feygenberg, Oleg; Pesis, Edna

    2011-12-15

    Seedless avocado fruit are produced alongside seeded fruit in the cultivar Arad, and both reach maturity at the same time. Using this system, it was possible to show that avocado seed inhibits the ripening process: seedless fruits exhibited higher response to exogenous ethylene already at the fruitlet stage, and also at the immature and mature fruit stages. They produced higher CO₂ levels, and the ethylene peak was apparent at the fruitlet stage of seedless fruit, but not of seeded ones. The expression levels of PaETR, PaERS1 and PaCTR1 on the day of harvest at all developmental stages were very similar between seeded and seedless fruit, except that PaCTR1 was higher in seedless fruit only at very early stages. This expression pattern suggests that the seed does not have an effect on components of the ethylene response pathway when fruits are just picked. The expression of MADS-box genes, PaAG1 and PaAGL9, preceded the increase in ethylene production of mature seeded fruit, but not at earlier stages. However, only PaAGL9 was induced in seedless fruit at early stages of development. Taken together, these data suggest that these genes are perhaps involved in climacteric response in seeded fruit, and the seed is responsible for their induction at normal fruit ripening.

  3. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.

    PubMed

    De Giorgi, Julien; Piskurewicz, Urszula; Loubery, Sylvain; Utz-Pugin, Anne; Bailly, Christophe; Mène-Saffrané, Laurent; Lopez-Molina, Luis

    2015-12-01

    Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties. PMID:26681322

  4. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.

    PubMed

    De Giorgi, Julien; Piskurewicz, Urszula; Loubery, Sylvain; Utz-Pugin, Anne; Bailly, Christophe; Mène-Saffrané, Laurent; Lopez-Molina, Luis

    2015-12-01

    Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.

  5. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination

    PubMed Central

    Loubery, Sylvain; Utz-Pugin, Anne; Bailly, Christophe; Mène-Saffrané, Laurent; Lopez-Molina, Luis

    2015-01-01

    Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties. PMID:26681322

  6. Two-photon Photo-emission of Ultrathin Film PTCDA Morphologies on Ag(111)

    SciTech Connect

    Yang, Aram; Yang, Aram; Shipman, Steven T.; Garrett-Roe, Sean; Johns, James; Strader, Matt; Szymanski, Paul; Muller, Eric; Harris, Charles B.

    2007-11-29

    Morphology- and layer-dependent electronic structure and dynamics at the PTCDA/Ag(111) interface have been studied with angle-resolved two-photon photoemission. In Stranski-Krastanov growth modes, the exposed wetting layer inhibited the evolution of the vacuum level and valence band to bulk values. For layer-by-layer growth, we observed the transition of electron structure from monolayer to bulk values within eight monolayers. Effective masses and lifetimes of the conduction band and the n=1 image potential state were measured to be larger for disordered layers. The effective mass was interpreted in the context of charge mobility measurements.

  7. Systematic Surface Phase Transition of Ag Thin Films by Iodine Functionalization at Room Temperature: Evolution of Optoelectronic and Texture Properties.

    PubMed

    Bashouti, Muhammad Y; Talebi, Razieh; Kassar, Thaer; Nahal, Arashmid; Ristein, Jürgen; Unruh, Tobias; Christiansen, Silke H

    2016-01-01

    We show a simple room temperature surface functionalization approach using iodine vapour to control a surface phase transition from cubic silver (Ag) of thin films into wurtzite silver-iodid (β-AgI) films. A combination of surface characterization techniques (optical, electronical and structural characterization) reveal distinct physical properties of the new surface phase. We discuss the AgI thin film formation dynamics and related transformation of physical properties by determining the work-function, dielectric constant and pyroelectric behavior together with morphological and structural thin film properties such as layer thickness, grain structure and texture formation. Notable results are: (i) a remarkable increase of the work-function (by 0.9 eV) of the Ag thin layer after short a iodine exposure time (≤60 s), with simultaneous increase of the thin film transparency (by two orders of magnitude), (ii) pinning of the Fermi level at the valance band maximum upon iodine functionalization, (iii) 84% of all crystallites grain were aligned as a result of the evolution of an internal electric field. Realizing a nano-scale layer stack composed of a dielectric AgI layer on top of a metallic thin Ag layer with such a simple method has some technological implications e.g. to realize optical elements such as planar optical waveguides. PMID:26899434

  8. Systematic Surface Phase Transition of Ag Thin Films by Iodine Functionalization at Room Temperature: Evolution of Optoelectronic and Texture Properties

    PubMed Central

    Bashouti, Muhammad Y.; Talebi, Razieh; Kassar, Thaer; Nahal, Arashmid; Ristein, Jürgen; Unruh, Tobias; Christiansen, Silke H.

    2016-01-01

    We show a simple room temperature surface functionalization approach using iodine vapour to control a surface phase transition from cubic silver (Ag) of thin films into wurtzite silver-iodid (β-AgI) films. A combination of surface characterization techniques (optical, electronical and structural characterization) reveal distinct physical properties of the new surface phase. We discuss the AgI thin film formation dynamics and related transformation of physical properties by determining the work-function, dielectric constant and pyroelectric behavior together with morphological and structural thin film properties such as layer thickness, grain structure and texture formation. Notable results are: (i) a remarkable increase of the work-function (by 0.9 eV) of the Ag thin layer after short a iodine exposure time (≤60 s), with simultaneous increase of the thin film transparency (by two orders of magnitude), (ii) pinning of the Fermi level at the valance band maximum upon iodine functionalization, (iii) 84% of all crystallites grain were aligned as a result of the evolution of an internal electric field. Realizing a nano-scale layer stack composed of a dielectric AgI layer on top of a metallic thin Ag layer with such a simple method has some technological implications e.g. to realize optical elements such as planar optical waveguides. PMID:26899434

  9. Systematic Surface Phase Transition of Ag Thin Films by Iodine Functionalization at Room Temperature: Evolution of Optoelectronic and Texture Properties

    NASA Astrophysics Data System (ADS)

    Bashouti, Muhammad Y.; Talebi, Razieh; Kassar, Thaer; Nahal, Arashmid; Ristein, Jürgen; Unruh, Tobias; Christiansen, Silke H.

    2016-02-01

    We show a simple room temperature surface functionalization approach using iodine vapour to control a surface phase transition from cubic silver (Ag) of thin films into wurtzite silver-iodid (β-AgI) films. A combination of surface characterization techniques (optical, electronical and structural characterization) reveal distinct physical properties of the new surface phase. We discuss the AgI thin film formation dynamics and related transformation of physical properties by determining the work-function, dielectric constant and pyroelectric behavior together with morphological and structural thin film properties such as layer thickness, grain structure and texture formation. Notable results are: (i) a remarkable increase of the work-function (by 0.9 eV) of the Ag thin layer after short a iodine exposure time (≤60 s), with simultaneous increase of the thin film transparency (by two orders of magnitude), (ii) pinning of the Fermi level at the valance band maximum upon iodine functionalization, (iii) 84% of all crystallites grain were aligned as a result of the evolution of an internal electric field. Realizing a nano-scale layer stack composed of a dielectric AgI layer on top of a metallic thin Ag layer with such a simple method has some technological implications e.g. to realize optical elements such as planar optical waveguides.

  10. Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels.

    PubMed

    Erickson, Isaac E; Huang, Alice H; Chung, Cindy; Li, Ryan T; Burdick, Jason A; Mauck, Robert L

    2009-05-01

    Degenerative disease and damage to articular cartilage represents a growing concern in the aging population. New strategies for engineering cartilage have employed mesenchymal stem cells (MSCs) as a cell source. However, recent work has suggested that chondrocytes (CHs) produce extracellular matrix (ECM) with superior mechanical properties than MSCs do. Because MSC-biomaterial interactions are important for both initial cell viability and subsequent chondrogenesis, we compared the growth of MSC- and CH-based constructs in three distinct hydrogels-agarose (AG), photocrosslinkable hyaluronic acid (HA), and self-assembling peptide (Puramatrix, Pu). Bovine CHs and MSCs were isolated from the same group of donors and seeded in AG, Pu, and HA at 20 million cells/mL. Constructs were cultured for 8 weeks with biweekly analysis of construct physical properties, viability, ECM content, and mechanical properties. Correlation analysis was performed to determine quantitative relationships between formed matrix and mechanical properties for each cell type in each hydrogel. Results demonstrate that functional chondrogenesis, as evidenced by increasing mechanical properties, occurred in each MSC-seeded hydrogel. Interestingly, while CH-seeded constructs were strongly dependent on the 3D environment in which they were encapsulated, similar growth profiles were observed in each MSC-laden hydrogel. In every case, MSC-laden constructs possessed mechanical properties significantly lower than those of CH-seeded AG constructs. This finding suggests that methods for inducing MSC chondrogenesis have yet to be optimized to produce cells whose functional matrix-forming potential matches that of native CHs.

  11. The SEED Initiative

    ERIC Educational Resources Information Center

    Teich, Carolyn R.

    2011-01-01

    Committed to fulfilling the promise of the green economy, the American Association of Community Colleges (AACC) launched the Sustainability Education and Economic Development (SEED) initiative (www.theseedcenter.org) in October 2010. The project advances sustainability and clean energy workforce development practices at community colleges by…

  12. Magnetic-seeding filtration

    SciTech Connect

    DePaoli, D.W.; Tsouris, C.; Yiacoumi, Sotira

    1997-10-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process.

  13. Seeds: A Celebration of Science.

    ERIC Educational Resources Information Center

    Melton, Bob

    The Space Exposed Experiment Developed for Students (SEEDS) Project offered science classes at the 5-12 and college levels the opportunity to conduct experiments involving tomato seeds that had been space-exposed over long periods of time. SEEDS kits were complete packages obtained from the National Aeronautics and Space Administration (NASA) for…

  14. Corridors cause differential seed predation.

    SciTech Connect

    Orrock, John L.; Damschen, Ellen I.

    2005-06-01

    Orrock, John, L., and Ellen I. Damschen. 2005. Corridors cause differential seed predation. Ecol. Apps. 15(3):793-798. Abstract. Corridors that connect disjunct populations are heavily debated in conservation, largely because the effects of corridors have rarely been evaluated by replicated, large-scale studies. Using large-scale experimental landscapes, we found that, in addition to documented positive effects, corridors also have negative impacts on bird-dispersed plants by affecting seed predation, and that overall predation is a function of the seeds primary consumer (rodents or arthropods). Both large-seeded Prunus serotina and small-seeded Rubus allegheniensis experienced greater predation in connected patches. However, P. serotina experienced significantly less seed predation compared to R. allegheniensis in unconnected patches, due to decreased impacts of rodent seed predators on this large-seeded species. Viewed in light of previous evidence that corridors have beneficial impacts by increasing pollination and seed dispersal, this work demonstrates that corridors may have both positive and negative effects for the same plant species at different life stages. Moreover, these effects may differentially affect plant species within the same community: seeds primarily consumed by rodents suffer less predation in unconnected patches. By shifting the impact of rodent and arthropod seed predators, corridors constructed for plant conservation could lead to shifts in the seed bank.

  15. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts

    NASA Astrophysics Data System (ADS)

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-09-01

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields.Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se

  16. AGS slow extracted beam improvement

    SciTech Connect

    Marneris, I.; Danowski, G.; Sandberg, J.; Soukas, A.

    1997-07-01

    The Brookhaven AGS is a strong focusing accelerator which is used to accelerate protons and various heavy ion species to an equivalent proton energy of 29 GeV. Since the late 1960`s it has been serving high energy physics (HEP - proton beam) users of both slow and fast extracted beams. The AGS fixed target program presently uses primary proton and heavy ion beams (HIP) in slowly extracted fashion over spill lengths of 1.5 to 4.0 seconds. Extraction is accomplished by flattoping the main and extraction magnets and exciting a third integer resonance in the AGS. Over the long spill times, control of the subharmonic amplitude components up to a frequency of 1 kilohertz is very crucial. One of the most critical contributions to spill modulation is due to the AGS MMPS. An active filter was developed to reduce these frequencies and it`s operation is described in a previous paper. However there are still frequency components in the 60-720 Hz sub-harmonic ripple range, modulating the spill structure due to extraction power supplies and any remaining structures on the AGS MMPS. A recent scheme is being developed to use the existing tune-trim control horizontal quadrupole magnets and power supply to further reduce these troublesome noise sources. Feedback from an external beam sensor and overcoming the limitations of the quadrupole system by lead/lag compensation techniques will be described.

  17. Multi-Layer Inkjet Printed Contacts for Silicon Solar Cells

    SciTech Connect

    Curtis, C. J.; van Hest, M.; Miedaner, A.; Kaydanova, T.; Smith, L.; Ginley, D. S.

    2006-01-01

    Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, Au, etc. Thick highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and printed circuit board (PCB) have been printed at 100-200degC in air and N{sub 2} respectively. Ag grids were inkjet-printed on Si solar cells and fired through the silicon nitride AR layer at 850degC, resulting in 8% cells. Next generation inks, including an ink that etches silicon nitride, have now been developed. Multi-layer inkjet printing of the etching ink followed by Ag ink produced contacts under milder conditions and gave solar cells with efficiencies as high as 12%.

  18. Multi-Layer Inkjet Printed Contacts to Si

    SciTech Connect

    Curtis, C. J.; van Hest, M.; Miedaner, A.; Kaydanova, T.; Smith, L.; Ginley, D. S.

    2005-11-01

    Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, Au, etc. Thick highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and printed circuit board (PCB) have been printed at 100-200 deg C in air and N2 respectively. Ag grids were inkjet-printed on Si solar cells and fired through the silicon nitride AR layer at 850 deg C, resulting in 8% cells. Next generation inks, including an ink that etches silicon nitride, have now been developed. Multi-layer inkjet printing of the etching ink followed by Ag ink produced contacts under milder conditions and gave solar cells with efficiencies as high as 12%.

  19. 7 CFR 201.15 - Weed seeds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Weed seeds. 201.15 Section 201.15 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.15 Weed seeds. The percentage of weed seeds shall include seeds of plants considered weeds in the State into which the seed is offered for transportation...

  20. 7 CFR 201.15 - Weed seeds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Weed seeds. 201.15 Section 201.15 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.15 Weed seeds. The percentage of weed seeds shall include seeds of plants considered weeds in the State into which the seed is offered for transportation...