Science.gov

Sample records for ag sn sb

  1. Effects of Cu and Ag as ternary and quaternary additions on some physical properties of SnSb7 bearing alloy

    NASA Astrophysics Data System (ADS)

    El-Bediwi, A. B.

    2004-02-01

    The structure, electrical resistivity, and elastic modulus of SnSb7 and SnSb7X (X = Cu , Ag, or Cu and Ag) rapidly solidified alloys have been investigated using X-ray diffractometer, double bridge, and dynamic resonance techniques. Copper and silver additions to SnSb result in the formation of a eutectic matrix containing embedded crystals (intermetallic phases) of SnCu, SnAg, and SnSb. The hard crystals SnCu, SnAg, and SnSb increase the overall hardness and wear resistance of SnSb bearing alloys. Addition of copper and silver improves internal friction, electrical conductivity, and elastic modulus values of SnSb rapidly solidified bearing alloys. The internal friction, elastic modulus, and electrical resistivity values are relatively sensitive to the composition of the intermediate phases in the matrix. The SbSb(7)Cu(2)g(2) has better properties (lowest internal friction, cost, adequate elastic modulus, and electrical resistivity) for bearing alloys as compared to cast iron and bronzes.

  2. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys

    SciTech Connect

    Jang, Jai-young; Chun, Su-jin; Kim, Nam-suk; Cho, Jeung-won; Kim, Jae-hyun; Yeom, Jong-taek; Kim, Jae-il; Nam, Tae-hyun

    2013-12-15

    Graphical abstract: - Highlights: • Ag, In and Sn were soluble in TiNi matrix, while Sb, Te, Tl, Pb and Bi were not. • The B2-R-B19′transformation occurred in Ti-Ni-(Ag, In, Sn) alloys. • Solid solution hardening was essential for inducing the B2-R transformation. - Abstract: The microstructures and transformation behaviors of Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys were investigated using electron probe micro-analysis (EPMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Micro Vickers hardness tests. All specimens consisted of Ti–Ni matrices and second phase particles. Ag, In and Sn were soluble in Ti–Ni matrices with a limited solubility (≤1.0 at%), while Sb, Te, Tl, Pb and Bi were not soluble. Two-stage B2-R-B19′ transformation occurred in Ti–48.8Ni–1.2Ag, Ti–49.0Ni–1.0In and Ti–49.0Ni–1.0Sn alloys, while one-stage B2-B19′ transformation occurred in Ti–49.0Ni–1.0Ag, Ti–49.0Ni–1.0Sb, Ti–49.0Ni–1.0Te, Ti–49.0Ni–1.0Pb and Ti–49.0Ni–1.0Bi alloys. Micro Vickers hardness of the alloys displaying the B2-R-B19′ transformation (Hv 250–368) was much larger than that (

  3. Effect of Zn and Sb Additions on the Impression Creep Behavior of Lead-Free Sn-3.5Ag Solder Alloy

    NASA Astrophysics Data System (ADS)

    Pourmajidian, M.; Mahmudi, R.; Geranmayeh, A. R.; Hashemizadeh, S.; Gorgannejad, S.

    2016-01-01

    The effect of separate additions of 1.5 wt.% Zn and 1.5 wt.% Sb on the creep behavior of Sn-3.5 wt.% Ag lead-free solder alloy was investigated by impression testing. The tests were carried out under constant punching stresses in the range of 60-120 MPa and at temperatures in the range of 298-370 K. Both of the ternary alloys showed creep resistances higher than that of the eutectic binary Sn-3.5Ag alloy. The superior creep resistance of the ternary Sn-3.5Ag-1.5Sb alloy is attributed to the strong solid solutioning effect of antimony in the tin matrix, while the formation of AgZn particles and refinement of the Ag3Sn precipitates account for the higher creep resistance of the Sn-3.5Ag-1.5Zn alloy. The average stress exponents of 8.2, 8.5, and 8.6 and activation energies of 47.4 kJ mol-1, 45.3 kJ mol-1, , and 43.3 kJ mol-1 were obtained for Sn-3.5Ag, Sn-3.5Ag-1.5Zn, and Sn-3.5Ag-1.5Sb, respectively. These activation energies are close to 46 kJ mol-1 for dislocation pipe diffusion of tin. This, together with the stress exponents of 8.2-8.6, suggests that dislocation climb controlled by dislocation pipe diffusion is the predominant creep mechanism in these alloys.

  4. Data on metal contents (As, Ag, Sr, Sn, Sb, and Mo) in sediments and shells of Trachycardium lacunosum in the northern part of the Persian Gulf.

    PubMed

    Karbasdehi, Vahid Noroozi; Dobaradaran, Sina; Nabipour, Iraj; Arfaeinia, Hossein; Mirahmadi, Roghayeh; Keshtkar, Mozhgan

    2016-09-01

    In this data article, by using inductively coupled plasma optical spectrometry (ICP-OES), we aimed to (1) determine the concentration levels of As, Ag, Sr, Sn, Sb, and Mo in the sediments and the shells of Trachycardium lacunosum simultaneously in two separated areas (unpolluted and polluted areas) (2) comparison between the metal contents of sediments in the unpolluted and polluted areas as well as shells. Analysis of data showed that sediment as well as shell samples in polluted area contained significantly higher concentration levels of all measured metals compared with unpolluted area. PMID:27508251

  5. Effects of annealing and additions on dynamic mechanical properties of SnSb quenched alloy

    NASA Astrophysics Data System (ADS)

    El-Bediwi, A. B.

    2004-08-01

    The elastic modulus, internal friction and stiffness values of quenched SnSb bearing alloy have been evaluated using the dynamic resonance technique. Annealing for 2 and 4 h at 120, 140 and 160degreesC caused variations in the elastic modulus. internal friction and stiffness values. This is due to structural changes in the SnSb matrix during isothermal annealing such as coarsening in the phases (Sn, Sb or intermetallic compounds), recrystallization and stress relief. In addition, adding a small amount (1 wt.%) of Cu or Ag improved the bearing mechanical properties of the SnSb bearing alloy. The SnSbCu1 alloy has the best bearing mechanical properties with thermo-mechanical stability for long time at high temperature.

  6. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2015-08-01

    In order to assess the role of sulfide in controlling the ore metal budgets and fractionation during magmatic genesis and differentiation, the partition coefficients (D) of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide liquid (SL), monosulfide solid solution (MSS), and basaltic to rhyolitic melts (SM) were determined at 900-1200 °C, 0.5-1.5 GPa, and oxygen fugacity (fO2) ranging from ∼FMQ-2 to FMQ+3, in a piston-cylinder apparatus. The DSL/SM values range from 0.4 to 2 for V, 0.5 to 3 for Mn, 80 to 580 for Co, 2300 to 18,000 for Ni, 800 to 4600 for Cu, 1 to 11 for Zn, 20 to 180 for As, 4 to 230 for Mo, 450 to 1600 for Ag, 5 to 24 for Sn, 10 to 80 for Sb, 0.03 to 0.16 for W, 2000 to 29,000 for Au, 24 to 170 for Pb, and 830 to 11,000 for Bi; whereas the DMSS/SM values range from 0.04 to 10 for V, 0.5 to 10 for Mn, 70 to 2500 for Co, 650 to 18,000 for Ni, 280 to 42,000 for Cu, 0.1 to 80 for Zn, 0.2 to 30 for As, 1 to 820 for Mo, 20 to 500 for Ag, 0.2 to 220 for Sn, 0.1 to 40 for Sb, 0.01 to 24 for W, 10 to 2000 for Au, 0.03 to 6 for Pb, and 1 to 350 for Bi. Both DMSS/SM and DSL/SM values generally increase with decreasing temperature or decreasing FeOtot content in silicate melt, except for Mo, DMSS/SM and DSL/SM of which show a clear decrease with decreasing temperature. At given temperature and FeOtot content, high oxygen fugacity appears to lead to a significant decrease in DMSS/SM of Au, Bi, Mo, and potentially As. The partitioning data obtained experimentally in this study and previous studies were fitted to an empirical equation that expresses the DMSS/SM and/or DSL/SM of a given element as a function of temperature, oxygen fugacity, and FeOtot content of the silicate melt: log (DSL/SMorDMSS/SM = d + a · 10, 000 / T + b · (ΔFMQ) + c · log (FeOmelt) in which T is temperature in K, FeOmelt denotes wt% FeOtot in silicate melt, and ΔFMQ denotes log fO2 relative to the fayalite-magnetite-quartz (FMQ) oxygen buffer. The

  7. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2012-11-01

    The partitioning of 15 major to trace metals between monosulfide solid solution (MSS), sulfide liquid (SL) and mafic silicate melt (SM) was determined in piston-cylinder experiments performed at 1175-1300 °C, 1.5-3.0 GPa and oxygen fugacities ranging from 3.1 log units below to 1.0 log units above the quartz-fayalite-magnetite fO2 buffer, which conditions are representative of partial melting in the upper mantle in different tectonic settings. The silicate melt was produced by partial melting of a natural, amphibole-rich mantle source rock, resulting in hydrous (˜5 wt% H2O) basanitic melts similar to low-degree partial melts of metasomatized mantle, whereas the major element composition of the starting sulfide (˜52 wt% Fe; 39 wt% S; 7 wt% Ni; 2 wt% Cu) was similar to the average composition of sulfides in this environment. SL/SM partition coefficients are high (≥100) for Au, Ni, Cu, Ag, Bi, intermediate (1-100) for Co, Pb, Sn, Sb (±As, Mo), and low (≤1) for the remaining elements. MSS/SM partition coefficients are generally lower than SL/SM partition coefficients and are high (≥100) for Ni, Cu, Au, intermediate (1-100) for Co, Ag (±Bi, Mo), and low (≤1) for the remaining elements. Most sulfide-silicate melt partition coefficients vary as a function of fO2, with Mo, Bi, As (±W) varying by a factor >10 over the investigated fO2 range, Sb, Ag, Sn (±V) varying by a factor of 3-10, and Pb, Cu, Ni, Co, Au, Zn, Mn varying by a factor of 3-10. The partitioning data were used to model the behavior of Cu, Au, Ag, and Bi during partial melting of upper mantle and during fractional crystallization of primitive MORB and arc magmas. Sulfide phase relationships and comparison of the modeling results with reported Cu, Au, Ag, and Bi concentrations from MORB and arc magmas suggest that: (i) MSS is the dominant sulfide in the source region of arc magmas, and thus that Au/Cu ratios in the silicate melt and residual sulfides may decrease with increasing degree of

  8. Pirquitasite, Ag2ZnSnS4

    PubMed Central

    Schumer, Benjamin N.; Downs, Robert T.; Domanik, Kenneth J.; Andrade, Marcelo B; Origlieri, Marcus J.

    2013-01-01

    Pirquitasite, ideally Ag2ZnSnS4 (disilver zinc tin tetra­sulfide), exhibits tetra­gonal symmetry and is a member of the stannite group that has the general formula A2BCX 4, with A = Ag, Cu; B = Zn, Cd, Fe, Cu, Hg; C = Sn, Ge, Sb, As; and X = S, Se. In this study, single-crystal X-ray diffraction data are used to determine the structure of pirquitasite from a twinned crystal from the type locality, the Pirquitas deposit, Jujuy Province, Argentina, with anisotropic displacement parameters for all atoms, and a measured composition of (Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4. One Ag atom is located on Wyckoff site Wyckoff 2a (symmetry -4..), the other Ag atom is statistically disordered with minor amounts of Cu and is located on 2c (-4..), the (Zn, Fe, Cd) site on 2d (-4..), Sn on 2b (-4..), and S on general site 8g. This is the first determination of the crystal structure of pirquitasite, and our data indicate that the space group of pirquitasite is I-4, rather than I-42m as previously suggested. The structure was refined under consideration of twinning by inversion [twin ratio of the components 0.91 (6):0.09 (6)]. PMID:23424398

  9. Thermodynamic Description of the Ternary Sb-Sn-Zn System

    NASA Astrophysics Data System (ADS)

    Gierlotka, Wojciech

    2016-04-01

    The ternary Sb-Sn-Zn system is important for two reasons: the first one is that antimony-tin-zinc alloys are promising lead-free solders, the second one is, that zinc antimonides show thermoelectric properties. Based on available literature information, the Sb-Sn-Zn system was thermodynamically described using the Calphad approach. A good agreement between calculation and experimental information was found.

  10. New CuM 2/3Sb 1/3O 2 and AgM 2/3Sb 1/3O 2 compounds with the delafossite structure

    NASA Astrophysics Data System (ADS)

    Nagarajan, R.; Uma, S.; Jayaraj, M. K.; Tate, J.; Sleight, A. W.

    2002-05-01

    Several new compounds have been prepared with the delafossite structure: CuMn 2/3Sb 1/3O 2, CuCo 2/3Sb 1/3O 2, CuNi 2/3Sb 1/3O 2, CuZn 2/3Sb 1/3O 2, CuMg 2/3Sb 1/3O 2, AgNi 2/3Sb 1/3O 2, and AgZn 2/3Sb 1/3O 2. The structures of the CuM 2/3Sb 1/3O 2 compounds are generally based on 2H stacking along the c axis, and the M 2+ and Sb 5+ cations can be ordered or disordered. The structures of the AgM 2/3Sb 1/3O 2 compounds are based on 3R stacking along c with the M 2+ and Sb 5+ cations disordered. The structures of CuMn 2/3Sb 1/3O 2 (disordered) and CuMg 2/3Sb 1/3O 2 (ordered) were refined from single crystal X-ray diffraction data. Pellets and transparent thin films of CuNi 2/3Sb 1/3O 2 with 10% Sn doping for Sb showed p-type electronic conduction.

  11. Lanthanum Gallium Tin Antimonides LaGa xSn ySb 2

    NASA Astrophysics Data System (ADS)

    Morgan, Mark G.; Wang, Meitian; Mills, Allison M.; Mar, Arthur

    2002-08-01

    A series of quaternary lanthanum gallium tin antimonides LaGa xSn ySb 2 was elaborated to trace the structural evolution between the known end members LaGaSb 2 (SmGaSb 2-type) and LaSn ySb 2 (LaSn 0.75Sb 2-type). Five members of this series were characterized by single-crystal X-ray diffraction. For low Sn content, the Sn atoms disorder with Ga atoms in zigzag chains to form solid solutions LaGa 1- ySn ySb 2 (0≤y≤0.2) adopting the SmGaSb 2-type structure, as exemplified by LaGa 0.92(3)Sn 0.08Sb 2 and LaGa 0.80(3)Sn 0.20Sb 2 (orthorhombic, space group D52- C222 1, Z=4). For higher Sn and lower Ga content, there is a segregation in which the Sn atoms appear in chains of closely spaced partially occupied sites as in the parent LaSn 0.75Sb 2-type structure whereas the Ga atoms remain in zigzag chains as in the parent SmGaSb 2-type structure. This feature is observed in the structures of LaGa 0.68(4)Sn 0.31(3)Sb 2, LaGa 0.62(3)Sn 0.32(3)Sb 2, and LaGa 0.43(3)Sn 0.39(3)Sb 2 (orthorhombic, space group D172 h- Cmcm, Z=4). The last example illustrates that the combined Ga/Sn content can be substoichiometric ( x+ y<1). These compounds have a layered nature, with the chains of Ga or Sn atoms residing between 2∞[LaSb 2] slabs.

  12. Laser ablation of AgSbS(2) and cluster analysis by time-of-flight mass spectrometry.

    PubMed

    Houska, Jan; Peña-Méndez, Eladia Maria; Kolár, Jakub; Frumar, Miloslav; Wágner, Tomás; Havel, Josef

    2009-06-01

    Thin films of AgSbS(2) are important for phase-change memory applications. This solid is deposited by various techniques, such as metal organic chemical vapour deposition or laser ablation deposition, and the structure of AgSbS(2)(s), as either amorphous or crystalline, is already well characterized. The pulsed laser ablation deposition (PLD) of solid AgSbS(2) is also used as a manufacturing process. However, the processes in plasma have not been well studied. We have studied the laser ablation of synthesized AgSbS(2)(s) using a nitrogen laser of 337 nm and the clusters formed in the laser plume were identified. The ablation leads to the formation of various single charged ternary Ag(p)Sb(q)S(r) clusters. Negatively charged AgSbS(4) (-), AgSb(2)S(3) (-), AgSb(2)S(4) (-), AgSb(2)S(5) (-) and positively charged ternary AgSbS(+), AgSb(2)S(+), AgSb(2)S(2) (+), AgSb(2)S(3) (+) clusters were identified. The formation of several singly charged Ag(+), Ag(2) (-), Ag(3) (-), Sb(3) (+), Sb(3) (-), S(8) (+) ions and binary Ag(p)S(r) clusters such as AgSb(2) (-), Ag(3)S(-), SbS(r) (-) (r = 1-5), Sb(2)S(-), Sb(2)S(2) (-), Sb(3)S(r) (-) (r = 1-4) and AgS(2) (+), SbS(+), SbS(2) (+), Sb(2)S(+), Sb(2)S(2) (+), Sb(3)S(r) (+) (r = 1-4), AgSb(2) (+) was also observed. The stoichiometry of the clusters was determined via isotopic envelope analysis and computer modeling. The relation of the composition of the clusters to the crystal structure of AgSbS(2) is discussed. PMID:19434598

  13. 119Sn CEMS study of Sb doped SnO2 film

    NASA Astrophysics Data System (ADS)

    Nomura, K.; Kuzmann, E.; Garg, V. K.; de Oliveira, A. C.; Stichleutner, S.; Homonnay, Z.

    2016-12-01

    Sb doped SnO2 films prepared by DC sputtering and heating were characterized by 119Sn conversion electron Mössbauer spectrometry (CEMS). An asymmetric doublet was observed in the Mössbauer spectra of 1 %, 3 %, and 10 % Sb doped SnO2 films. The peak ratios of doublets are considered to be due to the columnar crystal growth on the substrate. With the doping level of Sb, both the isomer shift ( δ) and the quadrupole splitting (Δ) increased. After annealing, δ increased and Δ decreased for each sample. These results suggest the followings. The electron doping of the SnO2 lattice by pentavalent Sb induces the increase of the electron density at the SnIV nucleus. The annealing process leads to more complete accommodation of the Sb dopant that results in more effective electron doping and therefore increasing isomer shift for tin. Simultaneously, the distortion of the lattice caused by Sb is relaxed and the quadrupole splitting decreases.

  14. Predicting the optimized thermoelectric performance of MgAgSb

    NASA Astrophysics Data System (ADS)

    Sheng, C. Y.; Liu, H. J.; Fan, D. D.; Cheng, L.; Zhang, J.; Wei, J.; Liang, J. H.; Jiang, P. H.; Shi, J.

    2016-05-01

    Using first-principles method and Boltzmann theory, we provide an accurate prediction of the electronic band structure and thermoelectric transport properties of α-MgAgSb. Our calculations demonstrate that only when an appropriate exchange-correlation functional is chosen can we correctly reproduce the semiconducting nature of this compound. By fine tuning the carrier concentration, the thermoelectric performance of α-MgAgSb can be significantly optimized, which exhibits a strong temperature dependence and gives a maximum ZT value of 1.7 at 550 K. We also provide a simple map by which one can efficiently find the best doping atoms and optimal doping content.

  15. Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti-Ni-Sn and Ti-Ni-Sb ternary systems

    SciTech Connect

    Romaka, V.V.; Rogl, P.; Romaka, L.; Stadnyk, Yu.; Melnychenko, N.; Grytsiv, A.; Falmbigl, M.; Skryabina, N.

    2013-01-15

    The phase equilibria of the Ti-Ni-Sn and Ti-Ni-Sb ternary systems have been studied in the whole concentration range by means of X-ray and EPM analyses at 1073 K and 873 K, respectively. Four ternary intermetallic compounds TiNiSn (MgAgAs-type), TiNi{sub 2-x}Sn (MnCu{sub 2}Al-type), Ti{sub 2}Ni{sub 2}Sn (U{sub 2}Pt{sub 2}Sn-type), and Ti{sub 5}NiSn{sub 3} (Hf{sub 5}CuSn{sub 3}-type) are formed in Ti-Ni-Sn system at 1073 K. The TiNi{sub 2}Sn stannide is characterized by homogeneity in the range of 50-47 at% of Ni. The Ti-Ni-Sb ternary system at 873 K is characterized by formation of three ternary intermetallic compounds, Ti{sub 0.8}NiSb (MgAgAs-type), Ti{sub 5}Ni{sub 0.45}Sb{sub 2.55} (W{sub 5}Si{sub 3}-type), and Ti{sub 5}NiSb{sub 3} (Hf{sub 5}CuSn{sub 3}-type). The solubility of Ni in Ti{sub 0.8}NiSb decreases number of vacancies in Ti site up to Ti{sub 0.91}Ni{sub 1.1}Sb composition. - Graphical abstract: Isothermal section of the Ti-Ni-Sn phase diagram and DOS distribution in hypothetical TiNi{sub 1+x}Sn solid solution. Highlights: Black-Right-Pointing-Pointer Ti-Ni-Sn phase diagram was constructed at 1073 K. Black-Right-Pointing-Pointer Four ternary compounds are formed: TiNiSn, TiNi{sub 2-x}Sn, Ti{sub 2}Ni{sub 2}Sn, and Ti{sub 5}NiSn{sub 3}. Black-Right-Pointing-Pointer Three ternary compounds exist in Ti-Ni-Sb system at 873 K. Black-Right-Pointing-Pointer The TiNi{sub 2}Sb compound is absent.

  16. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies

    DOE PAGESBeta

    Baggetto, Loïc; Hah, Hien-Yoong; Jumas, Jean-Claude; Johnson, Charles E.; Johnson, Jacqueline A.; Keum, Jong K.; Bridges, Craig A.; Veith, Gabriel M.

    2014-06-01

    The electrochemical reaction of Sb and SnSb anode materials with Na results in the formation of amorphous materials. To understand the resulting phases and electrochemical capacities we studied the reaction products local order using 119Sn and 121Sb Mössbauer spectroscopies in conjunction with measurements performed on model powder compounds of Na-Sn and Na-Sb to further clarify the reactions steps. For pure Sb the discharge (sodiation) starts with the formation of an amorphous phase composed of atomic environments similar to those found in NaSb, and proceeds further by the formation of environments similar to that present in Na3Sb. The reversible reaction takesmore » place during a large portion of the charge process. At full charge the anode material still contains a substantial fraction of Na, which explains the lack of recrystallization into crystalline Sb. The reaction of SnSb yields Na3Sb crystalline phase at full discharge at higher temperatures (65 and 95°C) while the room temperature reaction yields amorphous compounds. The electrochemically-driven, solid-state amorphization reaction occurring at room temperature is governed by the simultaneous formation of Na-coordinated Sn and Sb environments, as monitored by the decrease (increase) of the 119Sn (121Sb) Mössbauer isomer shifts. Overall, the monitoring of the hyperfine parameters enables to correlate the changes in Na content to the individual Sn and Sb local chemical environments.« less

  17. Enhanced separation efficiency of photoinduced charges for antimony-doped tin oxide (Sb-SnO2)/TiO2 heterojunction semiconductors with varied Sb doping concentration

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Long; Ma, Wen-Hai; Mao, Yan-Li

    2014-09-01

    In this paper, antimony-doped tin oxide (Sb-SnO2) nanoparticles were synthesized with varied Sb doping concentration, and the Sb-SnO2/TiO2 heterojunction semiconductors were prepared with Sb-SnO2 and TiO2. The separation efficiency of photoinduced charges was characterized with surface photovoltage (SPV) technique. Compared with Sb-SnO2 and TiO2, Sb-SnO2/TiO2 presents an enhanced separation efficiency of photoinduced charges, and the SPV enhancements were estimated to be 1.40, 1.43, and 1.99 for Sb-SnO2/TiO2 composed of Sb-SnO2 with the Sb doping concentration of 5%, 10%, and 15%, respectively. To understand the enhancement, the band structure of Sb-SnO2 and TiO2 in the heterojunction semiconductor was determined, and the conduction band offsets (CBO) between Sb-SnO2 and TiO2 were estimated to be 0.56, 0.64, and 0.98 eV for Sb-SnO2/TiO2 composed of Sb-SnO2 with the Sb doping concentration of 5%, 10%, and 15%, respectively. These results indicate that the separation efficiency enhancement is resulting from the energy level matching, and the increase of enhancement is due to the rising of CBO.

  18. Laser soldering of Sn-Ag solder

    SciTech Connect

    Felipe, T.S. de; O`Laughlin, D.

    1994-12-31

    In recent years, there has been pressure from federal and state environmental agencies to find substitutes for Pb-containing solders. Our research team has been studying SnAg solder as a possible alternative. in comparison to Sn-Pb solder, SnAg poses less of an environmental threat and can be used for higher temperature applications such as in avionics or under the hood in automobiles. Our study also compares the processes of laser and IR reflow soldering and their effects on microstructure, microstructure stability, and mechanical and thermomechanical properties of joints. Several laser soldered joints were produced by varying beam power and scan rate. Microhardness was measured and joint microstructure analyzed in order to find the optimum parameters. Laser soldered joints with optimum parameters were then exposed to temperatures between 40{degrees}C and 190{degrees}C for times up to 300 days along with conventional IR reflowed joints. The purpose was to determine the long term microstructural stability and mechanical reliability of the joints for the two processes. The results obtained show that there is a processing window where good quality laser solder joints can be produced. Our study also revealed that, initially, laser-produced joints differed significantly in microstructural details and were superior to IR reflowed joints in both microhardness and microstructure. As the samples were aged, it was observed that the microstructures and microhardnesses became increasingly similar. Finally, after significant aging, voids were found at the intermetallic layers formed at Cu or Cu alloy substrates and the joints began to fail.

  19. Electrochemical studies of CNT/Si–SnSb nanoparticles for lithium ion batteries

    SciTech Connect

    Nithyadharseni, P.; Reddy, M.V.; Nalini, B.; Ravindran, T.R.; Pillai, B.C.; Kalpana, M.; Chowdari, B.V.R.

    2015-10-15

    Highlights: • Si added SnSb and CNT exhibits very low particle size of below 30 nm • A strong PL quenching due to the addition of Si to SnSb. • Electrochemical studies show CNT added SnSb shows good capacity retention. - Abstract: Nano-structured SnSb, SnSb–CNT, Si–SnSb and Si–SnSb–CNT alloys were synthesized from metal chlorides of Sn, Sb and Si via reductive co-precipitation technique using NaBH{sub 4} as reducing agent. The as prepared compounds were characterized by various techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, Fourier transform infra-red (FTIR) and photoluminescence (PL) spectroscopy. The electrochemical performances of the compounds were characterized by galvanostatic cycling (GC) and cyclic voltammetry (CV). The Si–SnSb–CNT compound shows a high reversible capacity of 1200 mAh g{sup −1}. However, the rapid capacity fading was observed during cycling. In contrast, SnSb–CNT compound showed a high reversible capacity of 568 mAh g{sup −1} at 30th cycles with good cycling stability. The improved reversible capacity and cyclic performance of the SnSb–CNT compound could be attributed to the nanosacle dimension of SnSb particles and the structural advantage of CNTs.

  20. Fabrication of Sn-3.5Ag Eutectic Alloy Powder by Annealing Sub-Micrometer Sn@Ag Powder Prepared by Citric Acid-Assisted Ag Immersion Plating.

    PubMed

    Chee, Sang-Soo; Choi, Eun Byeol; Lee, Jong-Hyun

    2015-11-01

    A Sn-3.5Ag eutectic alloy powder has been developed by chemically synthesizing sub-micrometer Sn@Ag powder at room temperature. This synthesis was achieved by first obtaining a sub-micrometer Sn powder for the core using a modified variant of the polyol method, and then coating this with a uniformly thin and continuous Ag layer through immersion plating in 5.20 mM citric acid. The citric acid was found to play multiple roles in the Ag coating process, acting as a chelating agent, a reducing agent and a stabilizer to ensure coating uniformity; and as such, the amount used has an immense influence on the coating quality of the Ag shells. It was later verified by transmission electron microscopy and X-ray diffraction analysis that the coated Ag layer transfers to the Sn core via diffusion to form an Ag3Sn phase at room temperature. Differential scanning calorimetry also revealed that the synthesized Sn@Ag powder is nearly transformed into Sn-3.5Ag eutectic alloy powder upon annealing three times at a temperature of up to 250 degrees C, as evidenced by a single melting peak at 220.5 degrees C. It was inferred from this that Sn-3.5Ag eutectic alloy powder can be successfully prepared through the synthesis of core Sn powders by a modified polyol method, immersion plating using citric acid, and annealing, in that order. PMID:26726525

  1. Formation mechanism of primary phases and eutectic structures within undercooled Pb-Sb-Sn ternary alloys

    NASA Astrophysics Data System (ADS)

    Wang, Weili; Dai, Fuping; Wei, Bingbo

    2007-08-01

    The solidification characteristics of three types of Pb-Sb-Sn ternary alloys with different primary phases were studied under substantial undercooling conditions. The experimental results show that primary (Pb) and SbSn phases grow in the dendritic mode, whereas primary (Sb) phase exhibits faceted growth in the form of polygonal blocks and long strips. (Pb) solid solution phase displays strong affinity with SbSn intermetallic compound so that they produce various morphologies of pseudobinary eutectics, but it can only grow in the divorced eutectic mode together with (Sb) phase. Although (Sb) solid solution phase and SbSn intermetallic compound may grow cooperatively within ternary eutectic microstructures, they seldom form pseudobinary eutectics independently. The (Pb)+(Sb)+SbSn ternary eutectic structure usually shows lamellar morphology, but appears as anomalous eutectic when its volume fraction becomes small. EDS analyses reveal that all of the three primary (Pb), (Sb) and SbSn phases exhibit conspicuous solute trapping effect during rapid solidification, which results in the remarkable extension of solute solubility.

  2. Structure and properties of YbZnSn, YbAgSn, and Yb{sub 2}Pt{sub 2}Pb

    SciTech Connect

    Poettgen, R.; Arpe, P.E.; Kussmann, D.; Kuennen, B.; Kotzyba, G.; Muellmann, R.; Mosel, B.D.; Felser, C.

    1999-07-01

    YbZnSn, YbAgSn, and Yb{sub 2}Pt{sub 2}Pb were synthesized by reacting the elements in sealed tantalum tubes in a high-frequency furnace. The structures of YbAgSn and Yb{sub 2}Pt{sub 2}Pb were refined from single crystal X-ray data: YbAgPb type, P{bar 6}m2, a = 479.2(2) pm, c = 1087.3(3) pm, wR2 = 0.050, BASF = 0.34(8), 509 F{sup 2} values, 18 variables for Yb{sub 2}Pt{sub 2}Pb. The lattice constants of YbZnSn are confirmed: NdPtSb type, P6{sub 3}mc, a = 464.7(1) pm, c = 747.7(2) pm. The stannides YbZnSn and YbAgSn crystallize with superstructures of the AlB{sub 2} type. The zinc (silver) and tin atoms form ordered Zn{sub 3}Sn{sub 3} and Ag{sub 3}Sn{sub 3} hexagons, respectively. Magnetic susceptibility measurements on YbZnSn and YbAgSn show Pauli paramagnetism with room temperature susceptibilities of 2.5(1) {times} 10{sup {minus}9} and 4.6(1) {times} 10{sup {minus}9} m{sup 3}/mol. Electrical resistivity measurements indicate metallic conductivity with specific resistivities of 440 {+-} 40 {mu}{Omega}cm (YbZnSn) and 490 {+-} 40 {mu}{Omega}cm (YbAgSn) at 300 K. {sup 119}Sn Moessbauer spectra of YbZnSn show a single signal at room temperature with an isomer shift of {delta} = 1.85(1) mm/s. YbAgSn shows two superimposed signals at 78 K: a singlet at {delta} = 1.94(1) mm/s and a second signal at {delta} = 1.99(1) mm/s subjected to quadrupole splitting of {Delta}E{sub Q} = 1.35(1) mm/s, in agreement with the two crystallographically different tin sites.

  3. Electrical and magnetic effect of transition metals in SnSb nanoalloy

    NASA Astrophysics Data System (ADS)

    Nithyadharseni, P.; Nalini, B.; Saravanan, P.

    2014-08-01

    Influence of incorporating transition metal impurities such as Fe, Co and Ni on the magnetic and electrical properties of SnSb alloy nanopowders synthesized by reductive co-precipitation is reported. Structural elucidation of all the samples by X-ray diffraction (XRD) confirms hexagonal structure and the morphological observations through scanning electron microscope (SEM) show a minimal particle size of 20 nm for the Co substituted SnSb sample, among all the other impurity incorporated samples. Compositional confirmation of Sn, Sb, Fe, Co, and Ni was made using EDAX. The X-ray photoelectron spectroscopy (XPS) is used to investigate the surface of SnSb and the change in surface activity due to the addition of transition metal impurities. The magnetic hysteresis studies indicate that SnSb and SnSb:Ni exhibit diamagnetic behaviour; while the Fe and Co incorporation resulted in ferromagnetic nature. The conductivity of SnSb:Fe, SnSb:Ni shows a semiconducting nature with negative temperature coefficient of resistance; whereas pure and Co substitution exhibit metallic behaviour with positive temperature coefficient of resistance. The switching of metallic to semiconducting regime is explained in this paper. Also an attempt has been made to correlate electrical and magnetic properties with the surface oxidation effect through XPS data.

  4. Nb3Sn multifilamentary superconductors fabricated through a diffusion reaction between Nb and Ag-Sn alloys

    NASA Astrophysics Data System (ADS)

    Matsumoto, G.; Inoue, K.; Kikuchi, A.; Takeuchi, T.; Kiyoshi, T.

    2006-06-01

    Ag-Sn alloy is very attractive for fabricating Nb3Sn wires through diffusion reaction, because Ag-based alloy including a large amount of Sn is ductile. Therefore we investigated the Nb3Sn formation through the diffusion reaction between Nb and Ag-Sn alloys. With using Ag-9 at% Sn fcc phase, Ag-12 at% Sn ζ phase, and Ag-24at% Sn epsilon phase alloys, we fabricated single-core, 200-core, and 40000-core composite wires with Nb matrix and Ag-Sn alloy cores. With increase of Sn content in Ag-Sn alloys, the obtained superconducting properties of heat treated composite wires were improved. Tc and Bc2(4.2 K) for the Nb/Ag-Sn are similar to those for the Nb/Cu-Sn. However, the Ic values are relatively small, due to the formed very thin Nb3Sn layers. Ag is apparently not so effective to increase the formation rate of Nb3Sn layer as Cu. We obtained very interesting results by making the 200-core and 40000-core wires, which show the improved Tc and Bc2(4.2 K) by 0.5-1 K and 2-5 T, respectively. From 10 to 500 times larger Ic(4.2 K) were also obtained for the multifilamentary wires.

  5. Microstructure in gold-containing Ag3Sn-amalgam.

    PubMed

    Malhotra, M L

    1976-01-01

    The present study was conducted in order to understand the microstructural characteristics in dental amalgam which consists of both spherical and irregular Ag3Sn alloy particles with gold substituted in varying amounts for silver (0, 9, and 15%). Spherical alloy particles were used as obtained from Western Gold and Platinum and irregular alloy particles were prepared in the laboratory and then employed in the present study. The amalgam was prepared from the alloy particles by the trituration and condensation method. The polished and etched samples were studied using the techniques of X-ray diffraction, optical metallography, scanning electron microscopy, and X-ray energy dispersive spectroscopy. The microstructure in both types amalgam studied after two weeks of preparation contains gamma (unreacted Ag3Sn particles), gamma1 (Ag2Hg3), and gamma2 (Sn7-8Hg) phases in pure Ag3Sn-amalgam and gamma, gamma1, and (Au-Sn) phases in gold-containing amalgam. The The (Au-Sn) phase existed in the form of rings surrounding the gamma grains and acted as a barrier for mercury diffusion in Ag3Sn particles. PMID:1249092

  6. On possibility of superconductivity in SnSb: A first principle study

    NASA Astrophysics Data System (ADS)

    Dabhi, Shweta D.; Shrivastava, Deepika; Jha, Prafulla K.; Sanyal, Sankar P.

    2016-09-01

    The electronic, phonon structure and superconducting properties of tin antimonide (SnSb) in rock-salt (RS) structure are calculated using first-principles density functional theory. The electronic band structure and density of states show metallic behavior. The phonon frequencies are positive throughout the Brillouin zone in rock-salt structure indicating its stability in that phase. Superconductivity of SnSb in RS phase is discussed in detail by calculating phonon linewidths, Eliashberg spectral function, electron-phonon coupling constant and superconducting transition temperature. SnSb is found to have a slightly lower TC (3.1 K), as compared to SnAs.

  7. Viscoelastic behavior over a wide range of time and frequency in tin alloys: SnCd and SnSb

    SciTech Connect

    Quackenbush, J.; Brodt, M.; Lakes, R.S.

    1996-08-01

    All materials exhibit some viscoelastic response, which can manifest itself as creep, relaxation, or, if the load is sinusoidal in time, a phase angle {delta} between stress and strain. Recently, a study of pure elements with low melting points, Cd, In, Pb, and Sn disclosed that cadmium exhibited a substantial loss tangent of 0.03 to 0.04 over much of the audio range of frequencies, combined with a moderate stiffness G = 20.7 GPa. Lead, by contrast, exhibited tan {delta} of 0.005 to 0.016 in the audio range. Indium exhibited a high loss tangent exceeding 0.1 at very low frequency. A eutectic alloy of indium and tin was found to exhibit substantial damping exceeding 0.1 below 0.1 Hz, and this alloy was used to make a composite exhibiting high stiffness and high damping. It is the purpose of this communication to present viscoelastic properties of two additional low melting point alloys, SnCd and SnSb. Both InSn and SnSb are used as solders. Although the melting point of Sb is 630.74 C, T{sub H} > 0.55 at ambient temperature for the alloy of SnSb (95 wt% Sn/5 wt% Sb) which melts near 240 C. Eutectic SnCd melts at 177 C so T{sub H} {approx} 0.65 at room temperature.

  8. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies

    SciTech Connect

    Baggetto, Loïc; Hah, Hien-Yoong; Jumas, Jean-Claude; Johnson, Charles E.; Johnson, Jacqueline A.; Keum, Jong K.; Bridges, Craig A.; Veith, Gabriel M.

    2014-06-01

    The electrochemical reaction of Sb and SnSb anode materials with Na results in the formation of amorphous materials. To understand the resulting phases and electrochemical capacities we studied the reaction products local order using 119Sn and 121Sb Mössbauer spectroscopies in conjunction with measurements performed on model powder compounds of Na-Sn and Na-Sb to further clarify the reactions steps. For pure Sb the discharge (sodiation) starts with the formation of an amorphous phase composed of atomic environments similar to those found in NaSb, and proceeds further by the formation of environments similar to that present in Na3Sb. The reversible reaction takes place during a large portion of the charge process. At full charge the anode material still contains a substantial fraction of Na, which explains the lack of recrystallization into crystalline Sb. The reaction of SnSb yields Na3Sb crystalline phase at full discharge at higher temperatures (65 and 95°C) while the room temperature reaction yields amorphous compounds. The electrochemically-driven, solid-state amorphization reaction occurring at room temperature is governed by the simultaneous formation of Na-coordinated Sn and Sb environments, as monitored by the decrease (increase) of the 119Sn (121Sb) Mössbauer isomer shifts. Overall, the monitoring of the hyperfine parameters enables to correlate the changes in Na content to the individual Sn and Sb local chemical environments.

  9. First-principles study of Sb adsorption on Ag (110)(2×2)

    SciTech Connect

    Nie, JL; Xiao, H Y.; Zu, Xiaotao; Gao, Fei

    2006-08-01

    The adsorption of antimony atom on the Ag(110) surface has been studied within the density functional theory framework. It was turned out that Sb-Ag surface alloy was formed in which Sb atoms substitute Ag atom in the outermost layer and subsurface site absorption was not preferred, suggesting that Sb is well segregated to the surface. Geometric analysis showed that rumpling between substitutional Sb and Ag in the alloy surface is negligible. These results are found to agree well with the experimental finding of Nascimento et al. [Surf. Sci. 572 (2004) 337]. In addition, investigation of the diffusion of Ag atom on bare and Sb-covered Ag(110) surface showed that Ag adatoms will jump along the so call in-channel direction and Sb substitution has little effect on the diffusion of Ag adatoms on Ag(110) surface. Such diffusion behavior was found to be different from that of Ag adatoms on Ag(111) surface, where the diffusion energy barrier was reported to be significantly increased upon Sb substitution [Phys. Rev. Lett. 73 (1993) 2437].

  10. Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb

    NASA Astrophysics Data System (ADS)

    He, Meng; Walter, Marc; Kravchyk, Kostiantyn V.; Erni, Rolf; Widmer, Roland; Kovalenko, Maksym V.

    2014-12-01

    We report a facile chemical synthesis of monodisperse colloidal SnSb nanocrystals (NCs) via reaction between Sn NCs and SbCl3 in oleylamine under reducing conditions. In comparison with individual Sn and Sb NCs and their mixtures, we show that through the creation of SnSb alloyed NCs the Li-ion storage properties are enhanced due to combination of high cycling stability of Sb with higher specific Li-ion storage capacity of Sn. In particular, stable capacities of above 700 and 600 mA h g-1 were obtained after 100 cycles of charging/discharging at 0.5C and 4C rates, respectively (1C corresponding to a current density of 660 mA g-1). Furthermore, Na-ion storage capacities of >350 mA h g-1 and >200 mA h g-1 were obtained at 1C and 20C rates, respectively. This study highlights the differences between Li- and Na-ion (electro)chemistries and the great utility of monodisperse NCs as model systems for understanding size and compositional effects on the performance of conversion-type electrode materials.We report a facile chemical synthesis of monodisperse colloidal SnSb nanocrystals (NCs) via reaction between Sn NCs and SbCl3 in oleylamine under reducing conditions. In comparison with individual Sn and Sb NCs and their mixtures, we show that through the creation of SnSb alloyed NCs the Li-ion storage properties are enhanced due to combination of high cycling stability of Sb with higher specific Li-ion storage capacity of Sn. In particular, stable capacities of above 700 and 600 mA h g-1 were obtained after 100 cycles of charging/discharging at 0.5C and 4C rates, respectively (1C corresponding to a current density of 660 mA g-1). Furthermore, Na-ion storage capacities of >350 mA h g-1 and >200 mA h g-1 were obtained at 1C and 20C rates, respectively. This study highlights the differences between Li- and Na-ion (electro)chemistries and the great utility of monodisperse NCs as model systems for understanding size and compositional effects on the performance of conversion

  11. Role of Ag in the formation of interfacial intermetallic phases in Sn-Zn soldering

    NASA Astrophysics Data System (ADS)

    Song, Jenn-Ming; Liu, Pei-Chi; Shih, Chia-Ling; Lin, Kwang-Lung

    2005-09-01

    This study explored the effect of Ag as the substrate or alloying element of solders on the interfacial reaction in Sn-Zn soldering. Results show that instead of Ag-Sn compounds, ζ-AgZn and γ-Ag5Zn8 form at the Sn-Zn/Ag interface. The addition of Ag in Sn-Zn solders leads to the precipitation of ɛ-AgZn3 from the liquid solder on preformed interfacial intermetallics. The morphology of this additional AgZn3 is closely related to the solidification process of Ag-Zn intermetallics and the under intermetallic layer.

  12. Electrical Transport Properties of Liquid Sn-Sb Binary Alloys

    NASA Astrophysics Data System (ADS)

    Thakore, B. Y.; Suthar, P. H.; Khambholja, S. G.; Jani, A. R.

    2010-06-01

    The study of electrical transport properties viz. electrical resistivity, thermo electrical power and thermal conductivity of liquid Sn-Sb binary alloys have been made by our well recognized single parametric model potential. In the present work, screening functions due to Hartree, Taylor, Ichimaru et al.. Farid et al.. and Sarkar et al.. have been employed to incorporate the exchange and correlation effects. The liquid alloy is studied as a function of its composition at temperature 823 K according to the Faber-Ziman model. Further, thermoelectric power and thermal conductivity have been predicted. The values of electrical resistivity of binary alloys computed with Ichimaru et al. and Farid et al.. screening function are in good agreement with the experimental data.

  13. Demonstration of Sn-seeded GaSb homo- and GaAs-GaSb heterostructural nanowires

    NASA Astrophysics Data System (ADS)

    Tornberg, Marcus; Mårtensson, Erik K.; Zamani, Reza R.; Lehmann, Sebastian; Dick, Kimberly A.; Gorji Ghalamestani, Sepideh

    2016-04-01

    The particle-assisted epitaxial growth of antimonide-based nanowires has mainly been realized using gold as the seed material. However, the Au-seeded epitaxial growth of antimonide-based nanowires such as GaSb nanowires presents several challenges such as for example direct nucleation issues and crystal structure tuning. Therefore, it is of great importance to understand the role of seed material choice and properties in the growth behavior of antimonide-based nanowires to obtain a deeper understanding and a better control on their formation processes. In this report, we have investigated the epitaxial growth of GaSb and GaAs-GaSb nanowires using in situ-formed tin seeds by means of metalorganic vapor phase epitaxy technique. This comprehensive report covers the growth of in situ-formed tin seeds and Sn-seeded GaSb nanowires on both GaAs and GaSb (111)B substrates, as well as GaAs-GaSb nanowires on GaAs (111)B substrates. The growth behavior and structural properties of the obtained GaSb nanowires are further investigated and compared with the Au-seeded counterparts. The results provided by this study demonstrate that Sn is a promising seed material for the growth of GaSb nanowires.

  14. Identification of Au-Sn phase in Ag3Sn alloys containing gold.

    PubMed

    Malhotra, M L; Lawless, K R

    1975-03-01

    Substitution of gold in part for silver in Ag3Sn alloys is found to result in two separate phases: gamma (Ag3Sn particles) grains with a uniform distribution of gold within the grain and an Au-Sn phase in a form of ring surrounding the gamma grain. The thickness of this ring increases with increasing gold concentration. The phases were identified by using the techniques of x-ray diffraction, optical metallography, scanning electron microscopy, and x-ray energy dispersive spectroscopy. PMID:1176478

  15. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  16. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  17. Interfacial Microstructure Evolution Between Sn-Zn Solders and Ag Substrate During Solid-State Annealing

    NASA Astrophysics Data System (ADS)

    Wang, Chao-hong; Li, Po-yi; Li, Kuan-ting

    2014-12-01

    In this study, solid-state interfacial reactions between Ag and Sn-Zn alloys with varying Zn content (0.1 wt.% to 9 wt.%) were investigated at 170°C. The reaction couples were prepared by electroplating Ag on the Sn-Zn alloy to avoid dissolution of Ag into the molten solder during soldering. The Zn content greatly influenced the reaction products and the interfacial microstructures. When the Zn content was less than 4 wt.%, Ag3Sn and AgZn layers were simultaneously formed. Notably, Zn could actively diffuse through the Ag3Sn layer and react with Ag to form the AgZn phase. With the proceeding reaction, small α-Ag particulates were produced within the AgZn phase. With 9 wt.% Zn, the dominant reactions formed Ag5Zn8 and AgZn layers. The interfacial microstructure evolved significantly with reaction time. Interface instability due to Zn depletion in the solder resulted in massive spalling of the Ag5Zn8 layer. The Ag3Sn phase was then produced next to the AgZn layer. Moreover, another reaction couple, Sn-9 wt.%Zn/Sn(15 μm)/Ag, was prepared, in which fast interdiffusion between Zn and Ag across the Sn layer was demonstrated due to the strong chemical affinity of Zn.

  18. Thermoelectric Generators from AgBiTe and AgSbTe Thin Films Modified by High-Energy Beam

    NASA Astrophysics Data System (ADS)

    Budak, S.; Guner, S.; Muntele, C.; Ila, D.

    2015-06-01

    The ternary chalcogenides AgBiTe2 and AgSbTe2 belong to the family of semiconductors with disordered NaCl cubic structure in which Ag and Sb occupy metal sublattices. Both compounds are very interesting due to their thermoelectric properties. We have grown single-layer AgBiTe and AgSbTe thin films on silicon (Si) and fused silica (Suprasil) substrates using electron beam deposition. High-energy (MeV) Si-ion bombardment was performed on the thin-film samples at five different fluences between 5 × 1013 ions/cm2 and 7 × 1015 ions/cm2. We have measured the thermoelectric efficiency (figure of merit, ZT) of the fabricated thermoelectric devices by measuring the cross-plane thermal conductivity using the third-harmonic (3 ω) method, the cross-plane Seebeck coefficient, and the in-plane electrical conductivity using the van der Pauw method before and after MeV Si-ion bombardment. Rutherford backscattering spectrometry and the Rutherford Universal Manipulation Program (RUMP) simulation package were used to analyze the elemental composition and thickness of the deposited materials on the substrates. The RUMP simulation gave thicknesses for the AgBiTe and AgSbTe thin films of 270 nm and 188 nm, respectively. The figure of merit for AgBiTe started to decrease from the value of 0.37 for the virgin sample after bombardment. We saw similar decreasing behavior for the AgSbTe thin-film system. The figure of merit for AgSbTe started to decrease from the value of 0.88 for the virgin sample after bombardment. MeV Si-ion bombardment caused changes in the thermoelectric properties of the thin films.

  19. Ba-filled Ni-Sb-Sn based skutterudites with anomalously high lattice thermal conductivity.

    PubMed

    Paschinger, W; Rogl, G; Grytsiv, A; Michor, H; Heinrich, P R; Müller, H; Puchegger, S; Klobes, B; Hermann, R P; Reinecker, M; Eisenmenger-Sitter, Ch; Broz, P; Bauer, E; Giester, G; Zehetbauer, M; Rogl, P F

    2016-07-01

    Novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450 °C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni-Sn-Sb and in the quaternary Ba-Ni-Sb-Sn systems. Phase equilibria in the Ni-Sn-Sb system at 450 °C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba-Ni-Sn-Sb skutterudite system is perfectly suited to study the influence of filler atoms on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the "rattling behaviour" consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10(-6) K(-1) for Ni4Sb8.2Sn3.8 and 13.8 × 10(-6) K(-1) for Ba0.92Ni4Sb6.7Sn5.3. The room temperature Vickers

  20. Ba-filled Ni Sb Sn based skutterudites with anomalously high lattice thermal conductivity

    DOE PAGESBeta

    Paschinger, W; Rogl, Gerda; Grytsiv, A; Michor, H.; Heinrich, P. R.; Mueller, H; Puchegger, S; Klobes, B.; Hermann, Raphael P; Reinecker, M; et al

    2016-01-01

    Novel filled skutterudites BayNi4Sb12 xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450 C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni Sn Sb and in the quaternary Ba Ni Sb Sn systems. Phase equilibria in the Ni Sn Sb system at 450 C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba Ni Sn Sb skutterudite system ismore » perfectly suited to study the influence of filler atoms on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and M ssbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the rattling behaviour consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 10 6 K 1 for Ni4Sb8.2Sn3.8 and 13.8 10 6 K 1 for Ba0.92Ni4Sb6.7Sn5.3. The room temperature Vickers hardness values

  1. Sn-Ag-Cu and Sn-Cu solders: Interfacial reactions with platinum

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Kim, Young-Ho

    2004-06-01

    The interfacial reaction and intermetallic formation at the interface between tin solders containing a small amount of copper with platinum were investigated in this study. Sn-0.7Cu and Sn-1.7Cu solders were reacted with platinum by dipping Pt/Ti/Si specimens into the molten solder at 260°C. Sn-3.8Ag-0.7Cu solder was reacted with platinum by reflowing solder paste on a Pt/Ti/Si substrate at 250°C. PtSn4 intermetallic formed in all specimens while Cu6Sn5 interfacial intermetallic was not observed at the solder/platinum interfaces in any specimens. A parabolic relationship existed between the thickness of the Pt-Sn intermetallic and reaction time, which indicates the intermetallic formation in the solder/platinum interface is diffusion controlled.

  2. Preparation and thermoelectric properties of sintered iodine-containing clathrate compounds Ge38Sb8I8 and Sn38Sb8I8

    NASA Astrophysics Data System (ADS)

    Kishimoto, Kengo; Arimura, Shuntaro; Koyanagi, Tsuyoshi

    2006-05-01

    The iodine-containing cationic type-I clathrates Ge38Sb8I8 and Sn38Sb8I8 were prepared and their thermodynamic properties as well as their thermoelectric properties were investigated. Their atomic displacement parameters were as large as those of anionic clathrates such as Ba8Ga16Ge30 and Cs8Cd4Sn42. The room temperature thermal conductivities of Ge38Sb8I8 and Sn38Sb8I8 were 7 and 12mWcm-1K-1, respectively; these values were as low as that of the above anionic clathrates. Both cationic clathrates had negative Seebeck coefficients; the band gap energies of Ge38Sb8I8 and Sn38Sb8I8 were 1.16 and 0.80eV, respectively.

  3. Preparation and Characterization of SnO2/Ag Hollow Microsphere via a Convenient Hydrothermal Route.

    PubMed

    Qiao, Xiuqing; Hu, Fuchao; Hou, Dongfang; Li, Dongsheng

    2016-04-01

    SnO2/Ag hollow microsphere, assembled form SnO2 and Ag nanoparticles, was synthesized via a facile one-step hydrothermal synthesis method using Na2SnO3.3H2O, CO(NH2)2 and AgNO3 as raw materials. XRD, SEM, and TEM results revealed that the obtained SnO2/Ag hollow microsphere with diameters of ca.3-5 µm was built from uniformly distributed rutile SnO2 and cubic Ag nanoparticles. Moreover, XPS results indicate the existence of strong interaction between Ag and SnO2 nanoparticles, rather than simply physical contact, endowing the SnO2/Ag hollow microspheres with excellent photocatalytic performance in the degradation of RhB solution under visible light irradiation. PMID:27451773

  4. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol.

    PubMed

    Kong, Jiang-tao; Shi, Shao-yuan; Zhu, Xiu-ping; Ni, Jin-ren

    2007-01-01

    Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively. PMID:18232235

  5. Thermoelectric properties of Co(x)Ni(4-x)Sb(12-y)Sn(y) ternary skutterudites

    NASA Technical Reports Server (NTRS)

    Mackey, Jon A.; Dynys, Frederick W.; Sehirlioglu, Alp

    2014-01-01

    Thermoelectric materials based on the skutterudite crystal structure have demonstrated enhanced performance (ZT greater than 1), along with good thermal stability and favorable mechanical properties. Binary skutterudites, with single and multiple fillers, have been intensively studied in recent years. Compared to binary skutterudites, the ternary systems have received less attention, e.g. Ni4Sb8Sn4. Ternary skutterudites are isoelectronic variants of binary skutterudites; cation substitutions appear to be isostructural to their binary analogues. In general, ternary skutterudites exhibit lower thermal conductivity. Ternary systems of Ni4Bi8Ge4, Ni4Sb8Ge4, and Ni4Sb8Sn4 were investigated using combined solidification and sintering steps. Skutterudite formation was not achieved in the Ni4Bi8Ge4 and Ni4Sb8Ge4 systems; skutterudite formation occurred in Ni4Sb8Sn4 system. P-type material was achieved by Co substitution for Ni. Thermoelectric properties were measured from 298 K to 673 K for Ni4Sb8Sn4, Ni4 Sb7Sn5 and Co2Ni2Sb7Sn5. N-type Ni4Sb8Sn4 exhibit the highest figure of merit of 0.1 at 523 K.

  6. Mechanical Properties and Electrochemical Corrosion Behavior of Al/Sn-9Zn- xAg/Cu Joints

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Huang, Y. Z.; Ma, H. T.; Zhao, J.

    2011-03-01

    The effect of Ag content on the wetting behavior of Sn-9Zn- xAg on aluminum and copper substrates during soldering, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn- xAg/Cu solder joints, were investigated in the present work. Tiny Zn and coarsened dendritic AgZn3 regions were distributed in the Sn matrix in the bulk Sn-9Zn- xAg solders, and the amount of Zn decreased while that of AgZn3 increased with increasing Ag content. The wettability of Sn-9Zn-1.5Ag solder on Cu substrate was better than those of the other Sn-9Zn- xAg solders but worse than that of Sn-9Zn solder. The wettability of Sn-9Zn-1.5Ag on the Al substrate was also better than those of the other Sn-9Zn- xAg solders, and even better than that of Sn-9Zn solder. The Al/Sn-9Zn/Cu joint had the highest shear strength, and the shear strength of the Al/Sn-9Zn- xAg/Cu ( x = 0 wt.% to 3 wt.%) joints gradually decreased with increasing Ag content. The corrosion resistance of the Sn-9Zn- xAg solders in Al/Sn-9Zn- xAg/Cu joints in 5% NaCl solution was improved compared with that of Sn-9Zn. The corrosion potential of Sn-9Zn- xAg solders continuously increased with increasing Ag content from 0 wt.% to 2 wt.% but then decreased for Sn-9Zn-3Ag. The addition of Ag resulted in the formation of the AgZn3 phase and in a reduction of the amount of the eutectic Zn phase in the solder matrix; therefore, the corrosion resistance of the Al/Sn-9Zn- xAg/Cu joints was improved.

  7. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    SciTech Connect

    Specht, Eliot D; Ma, Jie; Delaire, Olivier A; Budai, John D; May, Andrew F; Karapetrova, Evguenia A.

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  8. Thermomechanical fatigue behavior of Sn-Ag solder joints

    NASA Astrophysics Data System (ADS)

    Choi, S.; Subramanian, K. N.; Lucas, J. P.; Bieler, T. R.

    2000-10-01

    Microstructural studies of thermomechanically fatigued actual electronic components consisting of metallized alumina substrate and tinned copper lead, soldered with Sn-Ag or 95.5Ag/4Ag/0.5Cu solder were carried out with an optical microscope and environmental scanning electron microscope (ESEM). Damage characterization was made on samples that underwent 250 and 1000 thermal shock cycles between -40°C and 125°C, with a 20 min hold time at each extreme. Surface roughening and grain boundary cracking were evident even in samples thermally cycled for 250 times. The cracks were found to originate on the free surface of the solder joint. With increased thermal cycles these cracks grew by grain boundary decohesion. The crack that will affect the integrity of the solder joint was found to originate from the free surface of the solder very near the alumina substrate and progress towards and continue along the solder region adjacent to the Ag3Sn intermetallic layer formed with the metallized alumina substrate. Re-examination of these thermally fatigued samples that were stored at room temperature after ten months revealed the effects of significant residual stress due to such thermal cycles. Such observations include enhanced surface relief effects delineating the grain boundaries and crack growth in regions inside the joint.

  9. Channel formation in Pb-Sn, Pb-Sb, and Pb-Sn-Sb alloy ingots and comparison with the system NH4Cl-H2O

    NASA Technical Reports Server (NTRS)

    Hellawell, A.; Sarazin, J. R.

    1988-01-01

    The formation of segregation channels during the unidirectional solidification of base chilled ingots has been studied as a function of composition in binary Pb-Sn and Pb-Sb and ternary Pb-Sn-Sb alloys. The patterns of channel distribution were characterized in the binary and ternary systems and are described as functions of temperature gradients, growth rates, dendrite spacings, and interdendritic permeabilities. Channels appear to nucleate at random across a dendritic front and subsequently to interact as they propagate, decreasing in density across the front. Assuming that the interdendritic spacing is the characteristic distance for a liquid perturbation, yields critical effective Rayleigh numbers which lie within a factor of x 40 for both metallic and aqueous systems. This correlation is close, considering the sensitivity to any assumed dimension and the range of material properties involved, and is taken to support a model for channel nucleation occurring close to the dendritic growth front.

  10. Investigation of Sn Whisker Growth in Electroplated Sn and Sn-Ag as a Function of Plating Variables and Storage Conditions

    NASA Astrophysics Data System (ADS)

    Chang, Jaewon; Kang, Sung K.; Lee, Jae-Ho; Kim, Keun-Soo; Lee, Hyuck Mo

    2014-01-01

    Sn whiskers are becoming a serious reliability issue in Pb-free electronic packaging applications. Among the numerous Sn whisker mitigation strategies, minor alloying additions to Sn have been proven effective. In this study, several commercial Sn and Sn-Ag baths of low-whisker formulations are evaluated to develop optimum mitigation strategies for electroplated Sn and Sn-Ag. The effects of plating variables and storage conditions, including plating thickness and current density, on Sn whisker growth are investigated for matte Sn, matte Sn-Ag, and bright Sn-Ag electroplated on a Si substrate. Two different storage conditions are applied: an ambient condition (30°C, dry air) and a high-temperature/high-humidity condition (55°C, 85% relative humidity). Scanning electron microscopy is employed to record the Sn whisker growth history of each sample up to 4000 h. Transmission electron microscopy, x-ray diffraction, and focused ion beam techniques are used to understand the microstructure, the formation of intermetallic compounds (IMCs), oxidation, the Sn whisker growth mechanism, and other features. In this study, it is found that whiskers are observed only under ambient conditions for both thin and thick samples regardless of the current density variations for matte Sn. However, whiskers are not observed on Sn-Ag-plated surfaces due to the equiaxed grains and fine Ag3Sn IMCs located at grain boundaries. In addition, Sn whiskers can be suppressed under the high-temperature/high-humidity conditions due to the random growth of IMCs and the formation of thick oxide layers.

  11. Indications of strong neutral impurity scattering in Ba(Sn,Sb)O3 single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Joon; Kim, Jiyeon; Kim, Tai Hoon; Lee, Woong-Jhae; Jeon, Byung-Gu; Park, Ju-Young; Choi, Woo Seok; Jeong, Da Woon; Lee, Suk Ho; Yu, Jaejun; Noh, Tae Won; Kim, Kee Hoon

    2013-09-01

    It was recently discovered that a transparent n-type (Ba,La)SnO3 system has electrical mobility as high as 320 cm2 V-1 s-1 at room temperature and superior thermal stability up to ˜500 °C. To understand comparatively the carrier-scattering mechanism in the doped BaSnO3, we investigate the physical properties of the single crystals of BaSn1-xSbxO3 (x = 0.03, 0.05, and 0.10), which also show the n-type characters via the Sn site doping by Sb. Transmittance of the grown single crystals in the visible spectral region turn out to be similar to that of the (Ba,La)SnO3 system, maintaining optical transparency. Temperature-dependent Hall effect measurements reveal that the electrical mobility at room temperature reaches as high as 79.4 cm2 V-1 s-1 at a carrier density of 1.02×1020 cm-3, and upon increasing carrier density further, it systematically decreases nearly proportional to the inverse of the carrier density. The overall reduced mobility of the Ba(Sn,Sb)O3 system as compared to the (Ba,La)SnO3 system is attributed to the enhanced scattering caused by the Sb ions located in the direct conduction path. Based on the inverse proportionality between the carrier density and the electrical mobility, we suggest that the neutral impurity scattering becomes particularly strong in the Ba(Sn,Sb)O3.

  12. Vacancy complexes in Sb-doped SnO{sub 2}

    SciTech Connect

    Korhonen, E.; Tuomisto, F.; Bierwagen, O.; Speck, J. S.; White, M. E.; Galazka, Z.

    2014-02-21

    MBE-grown Sb-doped epitaxial SnO{sub 2} thin-film samples with varying doping concentrations have been measured using positron Doppler spectroscopy. Vacancies were found in varying amounts, the general trend points to a decrease in vacancy concentration as dopant concentration increases. The exact identity of the vacancy defects is not known, but results suggest complexes of Sn and O vacancies.

  13. Effect on properties of 42Sn58Bi solder joint by adding the 96.5Sn3.5Ag

    NASA Astrophysics Data System (ADS)

    Tang, Qinghua; Pan, Xiaoguang; Wu, C. M. L.; Chan, Y. C.

    2000-05-01

    The different composition in 42Sn58Bi and 96.5Sn3.5Ag system has been studied. The reflow conditions of various composition pastes were studied, and a suitable adding of Sn-Ag paste could raise the soldering temperature of paste. It was found that the shear tensile strength of solder joint could be improved after adding suitable Sn-Ag to Sn-Bi paste by testing the solder joint tension. The thermal fatigue properties were studied through performed thermal annealing and thermal shocking. The shear tensile strength of solder joints for adding suitable Sn-Ag is higher than the pure Sn- Bi after thermal shocking. The solder property, mechanical and fatigue failure properties of solder joint for adding suitable Sn-Ag could be improved. It was found that suitable Sn-Ag could decrease the porosity in Sn-Bi solder joint thought X-ray and SEM analysis.

  14. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A.

    2013-07-01

    Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur-Ag-SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV-visible diffuse reflectance spectra (UV-vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag-SnO2 and Cur-Ag-SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur-Ag-SnO2 shows better photocatalytic activity than that of Ag-SnO2 and SnO2. The superior photocatalytic activity of Cur-Ag-SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur-Ag-SnO2 were tested.

  15. Local atomic structure inheritance in Ag{sub 50}Sn{sub 50} melt

    SciTech Connect

    Bai, Yanwen; Bian, Xiufang Qin, Jingyu; Hu, Lina; Yang, Jianfei; Zhang, Kai; Zhao, Xiaolin; Yang, Chuncheng; Zhang, Shuo; Huang, Yuying

    2014-01-28

    Local structure inheritance signatures were observed during the alloying process of the Ag{sub 50}Sn{sub 50} melt, using high-temperature X-ray diffraction and ab initio molecular dynamics simulations. The coordination number N{sub m} around Ag atom is similar in the alloy and in pure Ag melts (N{sub m} ∼ 10), while, during the alloying process, the local structure around Sn atoms rearranges. Sn-Sn covalent bonds were substituted by Ag-Sn chemical bonds, and the total coordination number around Sn increases by about 70% as compared with those in the pure Sn melt. Changes in the electronic structure of the alloy have been studied by Ag and Sn K-edge X-ray absorption spectroscopy, as well as by calculations of the partial density of states. We propose that a leading mechanism for local structure inheritance in Ag{sub 50}Sn{sub 50} is due to s-p dehybridization of Sn and to the interplay between Sn-s and Ag-d electrons.

  16. Facile synthesis of hybrid nanorods with the Sb2Se3/AgSbSe2 heterojunction structure for high performance photodetectors.

    PubMed

    Chen, Shuo; Qiao, Xvsheng; Wang, Fengxia; Luo, Qun; Zhang, Xianghua; Wan, Xia; Xu, Yang; Fan, Xianping

    2016-01-28

    An effective colloidal process involving the hot-injection method is developed to synthesize uniform single-crystalline Sb2Se3 nanorods in high yields. The photoconductive characteristics of the as-synthesized Sb2Se3 nanorods are investigated by developing a film-based photodetector and this device displays a remarkable response to visible light with an "ON/OFF" ratio as high as 50 (with an incident light density of 12.05 mW cm(-2)), short response/recovery times and long-term durability. To overcome the challenge of the intrinsic low electrical conductivity of Sb2Se3, hybrid nanorods with the Sb2Se3/AgSbSe2 heterojunction structure having a type-II band alignment are firstly prepared. The electric current of the photodetector based on the Sb2Se3/AgSbSe2 hybrid nanorod film has been significantly increased both in the dark and under light illumination. The responsivity of the photodetector based on the Sb2Se3/AgSbSe2 hybrid nanorod film is about 4.2 times as much as that of the photodetector based on the Sb2Se3 nanorod film. This improvement can be considered as an important step to promote Sb2Se3 based semiconductors for applications in high performance photodetectors. PMID:26743461

  17. Theoretical investigation of Sn-doped Ge2Sb2Te5 alloy in crystalline phase

    NASA Astrophysics Data System (ADS)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2015-06-01

    Ge2Sb2Te5 (GST) is technologically important for phase-change random access memory applications. It has been shown that the 2.2 atomic % doping of Sn weakens the Ge-Te bond strength while maintaining the symmetry of stable phase of GST. The influence of Sn doping upon the phase change characteristics of the crystalline GST alloy has been investigated by ab initio calculations. The lattice parameter, average interface distances between two adjacent (111) layers, equilibrium volume, metallic character and electrical resistance has been calculated for the stable phase of GST and Sn-doped GST.

  18. Particulate contacts to Si and CdTe: Al, Ag, Hg-Cu-Te, and Sb-Te

    NASA Astrophysics Data System (ADS)

    Schulz, Douglas L.; Ribelin, Rosine; Curtis, Calvin J.; Ginley, David S.

    1999-03-01

    Our team has been investigating the use of particle-based contacts in both Si and CdTe solar cell technologies. First, in the area of contacts to Si, powders of Al and Ag prepared by an electroexplosion process have been characterized by transmission electron microscopy (TEM), TEM elemental determination X-ray spectroscopy (TEM-EDS), and TEM electron diffraction (TEM-ED). These Al and Ag particles were slurried and tested as contacts to p- and n-type silicon wafers, respectively. Linear current-voltage (I-V) was observed for Ag on n-type Si, indicative of an ohmic contact, whereas the Al on p-type Si sample was non-ideal. A wet-chemical surface treatment was performed on one Al sample and TEM-EDS indicated a substantial decrease in the O contaminant level. The treated Al on p-type Si films exhibited linear I-V after annealing. Second, in the area of contacts to CdTe, particles of Hg-Cu-Te and Sb-Te have been applied as contacts to CdTe/CdS/SnO2 heterostructures prepared by the standard NREL protocol. First, Hg-Cu-Te and Sb-Te were prepared by a metathesis reaction. After CdCl2 treatment and NP etch of the CdTe layer, particle contacts were applied. The Hg-Cu-Te contacted cells exhibited good electrical characteristics, with Voc>810 mV and efficiencies > 11.5% for most cells. Although Voc>800 mV were observed for the Sb-Te contacted cells, efficiencies in these devices were limited to 9.1% presumably by a large series resistance (>20 Ω) observed in all samples.

  19. The antimony-group 11 chemical bond: Dissociation energies of the diatomic molecules CuSb, AgSb, and AuSb

    SciTech Connect

    Carta, V.; Ciccioli, A. E-mail: andrea.ciccioli@uniroma1.it; Gigli, G. E-mail: andrea.ciccioli@uniroma1.it

    2014-02-14

    The intermetallic molecules CuSb, AgSb, and AuSb were identified in the effusive molecular beam produced at high temperature under equilibrium conditions in a double-cell-like Knudsen source. Several gaseous equilibria involving these species were studied by mass spectrometry as a function of temperature in the overall range 1349–1822 K, and the strength of the chemical bond formed between antimony and the group 11 metals was for the first time measured deriving the following thermochemical dissociation energies (D{sub 0}{sup ∘}, kJ/mol): 186.7 ± 5.1 (CuSb), 156.3 ± 4.9 (AgSb), 241.3 ± 5.8 (AuSb). The three species were also investigated computationally at the coupled cluster level with single, double, and noniterative quasiperturbative triple excitations (CCSD(T)). The spectroscopic parameters were calculated from the potential energy curves and the dissociation energies were evaluated at the Complete Basis Set limit, resulting in an overall good agreement with experimental values. An approximate evaluation of the spin-orbit effect was also performed. CCSD(T) calculations were further extended to the corresponding group 11 arsenide species which are here studied for the first time and the following dissociation energies (D{sub 0}{sup ∘}, kJ/mol): 190 ± 10 (CuAs), 151 ± 10 (AgAs), 240 ± 15 (AuAs) are proposed. Taking advantage of the new experimental and computational information here presented, the bond energy trends along group 11 and 4th and 5th periods of the periodic table were analyzed and the bond energies of the diatomic species CuBi and AuBi, yet experimentally unobserved, were predicted on an empirical basis.

  20. Sn-Ag-Cu Nanosolders: Solder Joints Integrity and Strength

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Khatibi, Golta; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2016-08-01

    Although considerable research has been dedicated to the synthesis and characterization of lead-free nanoparticle solder alloys, only very little has been reported on the reliability of the respective joints. In fact, the merit of nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature has always been challenged when compared with conventional solder joints, especially in terms of inferior solderability due to the oxide shell commonly present on the nanoparticles, as well as due to compatibility problems with common fluxing agents. Correspondingly, in the current study, Sn-Ag-Cu (SAC) nanoparticle alloys were combined with a proper fluxing vehicle to produce prototype nanosolder pastes. The reliability of the solder joints was successively investigated by means of electron microscopy and mechanical tests. As a result, the optimized condition for employing nanoparticles as a competent nanopaste and a novel procedure for surface treatment of the SAC nanoparticles to diminish the oxide shell prior to soldering are being proposed.

  1. Sn-Ag-Cu Nanosolders: Solder Joints Integrity and Strength

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Khatibi, Golta; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2016-05-01

    Although considerable research has been dedicated to the synthesis and characterization of lead-free nanoparticle solder alloys, only very little has been reported on the reliability of the respective joints. In fact, the merit of nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature has always been challenged when compared with conventional solder joints, especially in terms of inferior solderability due to the oxide shell commonly present on the nanoparticles, as well as due to compatibility problems with common fluxing agents. Correspondingly, in the current study, Sn-Ag-Cu (SAC) nanoparticle alloys were combined with a proper fluxing vehicle to produce prototype nanosolder pastes. The reliability of the solder joints was successively investigated by means of electron microscopy and mechanical tests. As a result, the optimized condition for employing nanoparticles as a competent nanopaste and a novel procedure for surface treatment of the SAC nanoparticles to diminish the oxide shell prior to soldering are being proposed.

  2. Pressure and field tuning in the heavy fermion ferromagnet CeAgSb2

    NASA Astrophysics Data System (ADS)

    Logg, Peter; Feng, Zhuo; Ebihara, Takao; Goh, Swee K.; Alireza, Patricia; Grosche, F. Malte

    2012-12-01

    The intermetallic compound CeAgSb2 is an unusual example of a ferromagnetically ordered heavy fermion system. Ferromagnetism sets in below the Curie temperature Tc=9.6 K at ambient pressure. We have investigated the magnetisation of CeAgSb2 under applied hydrostatic pressure of up to 45 kbar. Tc is suppressed rapidly, and at pressures > 35 kbar it is replaced by an unidentified ordered phase, possibly antiferromagnetism. The ordered magnetic moment in CeAgSb2 is aligned along the c-axis. We investigate the effect of transverse field tuning on Tc, and show that magnetic order at low temperature is suppressed by in-plane fields exceeding about 3 T.

  3. Efficient photocatalytic degradation of phenol in aqueous solution by SnO2:Sb nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika; Bora, Tanujjal; Dutta, Joydeep

    2016-05-01

    Photodegradation of phenol in the presence of tin dioxide (SnO2) nanoparticles under UV light irradiation is known to be an effective photocatalytic process. However, phenol degradation under solar light is less effective due to the large band gap of SnO2. In this study antimony (Sb) doped tin dioxide (SnO2) nanoparticles were prepared at a low temperature (80 °C) by a sol-gel method and studied for its photocatalytic activity with phenol as a test contaminant. The catalytic degradation of phenol in aqueous media was studied using high performance liquid chromatography and total organic carbon measurements. The change in the concentration of phenol affects the pH of the solution due to the by-products formed during the photo-oxidation of phenol. The photoactivity of SnO2:Sb was found to be a maximum for 0.6 wt.% Sb doped SnO2 nanoparticles with 10 mg L-1 phenol in water. Within 2 h of photodegradation, more than 95% of phenol could be removed under solar light irradiation.

  4. Room-Temperature Indentation Creep and the Mechanical Properties of Rapidly Solidified Sn-Sb-Pb-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Kamal, Mustafa; El-Bediwi, A.; Lashin, A. R.; El-Zarka, A. H.

    2016-05-01

    In this paper, we study the room-temperature indentation creep and the mechanical properties of Sn-Sb-Pb-Cu alloys. Rapid solidification from melt using the melt-spinning technique is applied to prepare all the alloys. The experimental results show that the magnitude of the creep displacement increases with the increase in both time and applied load, and the stress exponent increases with the increase in the copper content in the alloys which happens primarily due to the existence of the intermetallic compounds SbSn and Cu6Sn5. The calculated values of the stress exponent are in the range of 2.82 to 5.16, which are in good agreement with the values reported for the Sn-Sb-Pb-Cu alloys. We have also studied and analyzed the structure, elastic modulus, and internal friction of the Sn-Sb-Pb-Cu alloys.

  5. High temperature magnetic order in Zn1-x Mn x SnSb2+MnSb nanocomposite ferromagnetic semiconductors.

    PubMed

    Kilanski, L; Górska, M; Ślawska-Waniewska, A; Lewińska, S; Szymczak, R; Dynowska, E; Podgórni, A; Dobrowolski, W; Ralević, U; Gajić, R; Romčević, N; Fedorchenko, I V; Marenkin, S F

    2016-08-24

    We present studies of structural, magnetic, and electrical properties of Zn1-x Mn x SnSb2+MnSb nanocomposite ferromagnetic semiconductors with the average Mn-content, [Formula: see text], changing from 0.027 up to 0.138. The magnetic force microscope imaging done at room temperature shows the presence of a strong signal coming from MnSb clusters. Magnetic properties show the paramagnet-ferromagnet transition with the Curie temperature, T C, equal to about 522 K and the cluster-glass behavior with the transition temperature, T CG, equal to about 465 K, both related to MnSb clusters. The magnetotransport studies show that all investigated samples are p-type semiconductors with high hole concentration, p, changing from 10(21) to 10(22) cm(-3). A large increase in the resistivity as a function of the magnetic field is observed at T  <  10 K and small magnetic fields, [Formula: see text] mT, for all the studied samples with a maximum amplitude of the magnetoresistance about 460% at T  =  1.4 K. The large increase in the resistivity is most probably caused by the appearance of the superconducting state in the samples at T  <  4.3 K. PMID:27351672

  6. Atomistic Structure and Nucleation of Nanoprecipitates in Thermoelectric PbTe- AgSbTe Composite

    SciTech Connect

    Ke, Xuezhi; Chen, Changfeng; Yang, Jihui; Wu, Lijun; Zhou, Juan; Li, Qiang; Zhu, Yimei; Kent, Paul R

    2009-01-01

    Many recent advances in thermoelectric (TE) materials are attributed to their nanoscale constituents. Determination of the nanocomposite structures has represented a major experimental and computational challenge and eluded previous attempts. Here we present the first atomically resolved structures of high performance TE material PbTe-AgSbTe2 by transmission electron microscopy imaging and density functional theory calculations. The results establish an accurate structural characterization for PbTe-AgSbTe2 and identify the interplay of electric dipolar interactions and strain fields as the driving mechanism for nanoprecipitate nucleation and aggregation.

  7. Interfacial Reactions and Joint Strengths of Sn- xZn Solders with Immersion Ag UBM

    NASA Astrophysics Data System (ADS)

    Jee, Y. K.; Yu, Jin

    2010-10-01

    The solder joint microstructures of immersion Ag with Sn- xZn ( x = 0 wt.%, 1 wt.%, 5 wt.%, and 9 wt.%) solders were analyzed and correlated with their drop impact reliability. Addition of 1 wt.% Zn to Sn did not change the interface microstructure and was only marginally effective. In comparison, the addition of 5 wt.% or 9 wt.% Zn formed layers of AgZn3/Ag5Zn8 at the solder joint interface, which increased drop reliability significantly. Under extensive aging, Ag-Zn intermetallic compounds (IMCs) transformed into Cu5Zn8 and Ag3Sn, and the drop impact resistance at the solder joints deteriorated up to a point. The beneficial role of Zn on immersion Ag pads was ascribed to the formation of Ag-Zn IMC layers, which were fairly resistant to the drop impact, and to the suppression of the brittle Cu6Sn5 phase at the joint interface.

  8. The feasibility of Sn, In, or Al doped ZnSb thin film as candidates for phase change material

    NASA Astrophysics Data System (ADS)

    Chen, Yimin; Shen, Xiang; Wang, Guoxiang; Xu, Tiefeng; Wang, Rongping; Dai, Shixun; Nie, Qiuhua

    2016-07-01

    The potentials of Sn, In, or Al doped ZnSb thin film as candidates for phase change materials have been studied in this paper. It was found that the Zn-Sb bonds were broken by the addition of the dopants and homopolar Zn-Zn bonds and other heteropolar bonds, such as Sn-Sb, In-Sb, and Al-Sb, were subsequently formed. The existence of homopolar Sn-Sn and In-In bonds in Zn50Sb36Sn14 and Zn41Sb36In23 films, but no any Al-Al bonds in Zn35Sb30Al35 film, was confirmed. All these three amorphous films crystallize with the appearance of crystalline rhombohedral Sb phase, and Zn35Sb30Al35 film even exhibits a second crystallization process where the crystalline AlSb phase is separated out. The Zn35Sb30Al35 film exhibits a reversible phase change behavior with a larger Ea (˜4.7 eV), higher Tc (˜245 °C), better 10-yr data retention (˜182 °C), less incubation time (20 ns at 70 mW), and faster complete crystallization speed (45 ns at 70 mW). Moreover, Zn35Sb30Al35 film shows the smaller root-mean-square (1.654 nm) and less change of the thickness between amorphous and crystalline state (7.5%), which are in favor of improving the reliability of phase change memory.

  9. Improving the oxidation potential of Sb-doped SnO2 electrode by Zn/Sb co-doping

    NASA Astrophysics Data System (ADS)

    Chen, Aqing; Bin Li, Bin; Miljkovic, Bojan; Souza, Christina; Zhu, Kaigui; Ruda, Harry E.

    2014-07-01

    Inorganic oxides are recognized as attractive materials for developing anodes for wastewater treatment, potentially offering a cost effective solution for electro-oxidation. A key parameter in measuring the effectiveness of different anode materials is the oxygen over potential. In this paper, we study the role of Zn and Sb co-doping of SnO2 thin films to achieve enhanced oxidation potentials, suitable for use in wastewater treatment. The morphology, chemical, and electrochemical properties of the films were characterized, and as a result of an optimization study, suitable anode materials for wastewater treatment are identified.

  10. Hydrothermal crystal growth and structure determination of double hydroxides LiSb(OH)₆, BaSn(OH)₆, and SrSn(OH)₆.

    PubMed

    Mizoguchi, Hiroshi; Bhuvanesh, Nattamai S P; Kim, Young-Il; Ohara, Satoshi; Woodward, Patrick M

    2014-10-01

    Colorless single crystals of LiSb(OH)6, SrSn(OH)6, and BaSn(OH)6, which are useful as precursors for the synthesis of LiSbO3, SrSnO3, and BaSnO3, were synthesized by a low-temperature hydrothermal method using a Teflon-lined autoclave at 380 K. The crystal structures were determined by single-crystal X-ray diffraction measurements. LiSb(OH)6 crystallizes in the trigonal space group P3̅1m with a = 5.3812(3)A, c = 9.8195(7)A, V = 246.25(3)A(3), Z = 2. In this layered structure, [Li2Sb(OH)6](+) and [Sb(OH)6](-) layers are alternately stacked along the c-direction. The [Li2Sb(OH)6](+) layer can be regarded as a cation-ordered CdCl2 layer. The [Sb(OH)6)](-) layer is built up from isolated [Sb(OH)6](-) octahedra, which are linked to each other via hydrogen bonding within the layer. BaSn(OH)6 and SrSn(OH)6 crystallize with monoclinic P21/n space group symmetry. The monoclinic structure possesses a CsCl-type packing of Ba(2+)/Sr(2+) cations and [Sn(OH)6](2-) anions. The [Sn(OH)6](2-) polyhedra are connected to each other through hydrogen bonding to form a three-dimensional framework. The factors that favor these hitherto unknown crystal structures are discussed using a structure map that compares various M(OH)3 and M'M″(OH)6 compounds. PMID:25208245

  11. {[CuSn5 Sb3 ](2-) }2 : A Dimer of Inhomogeneous Superatoms.

    PubMed

    Wilson, Robert J; Broeckaert, Lies; Spitzer, Fabian; Weigend, Florian; Dehnen, Stefanie

    2016-09-19

    Reaction of the binary Zintl anion (Sn2 Sb2 )(2-) with the β-diketiminato complex [LCu(NCMe)] (L=nacnac=[(N(C6 H3 (i) Pr2 -2,6)C(Me))2 CH](-) ) in ethylenediamine or DMF affords the ternary cluster dimer {[CuSn5 Sb3 ](2-) }2 (1) as its [K(crypt-222)](+) salt. The chemical formulation of 1 is supported by energy-dispersive X-ray spectroscopy (EDX) and quantum chemical calculations. Each monomeric part of the dimer represents a trimetallic "[CuSn5 Sb3 ](2-) " cluster, with an architecture in between a tricapped trigonal prism and a capped square antiprism. As shown by quantum chemical investigations, the presence of Sb atoms and, in particular, of Cu atoms in the cluster skeleton makes the monomeric unit behave like an inhomogeneous superatom, which clearly prefers to dimerize, thereby producing a relatively short, yet virtually non-bonding Cu⋅⋅⋅Cu distance. PMID:27558912

  12. Ge2Sb2Te5/SnSe2 nanocomposite multilayer thin films for phase change memory application

    NASA Astrophysics Data System (ADS)

    Feng, Xiaoyi; Wen, Ting; Zhai, Jiwei; Lai, Tianshu; Wang, Changzhou; Song, Sannian; Song, Zhitang

    2014-10-01

    By nanocompositing Ge2Sb2Te5 and SnSe2, the electrical and thermal proprieties of Ge2Sb2Te5/SnSe2 multilayer films for phase change random access memory (PCRAM) are better than those of Ge2Sb2Te5 films. The crystallization temperature rises and can be controlled. The resistance gap can reach approximately five orders of magnitude to ensure high data reliability. The activity energy (Ea) is more than 2.60 eV and the temperature for 10 year data retention reach 110 °C. The analysis of both XRD patterns and TEM images confirmed the reversible phase change transition between amorphous and crystalline state in Ge2Sb2Te5/SnSe2 nanocomposite multilayer films. According to transient photoreflectance traces, the speed of crystallization process was about 33 ns. Among different Ge2Sb2Te5/SnSe2 multilayer films, the film constitute of [Ge2Sb2Te5 (4 nm)/SnSe2(10 nm)]7 showed better properties and was manufactured by CMOS technology to phase change memory (PCM) cells. This result revealed that the Ge2Sb2Te5/SnSe2 nanocomposite multilayer film is a promising phase change material.

  13. Fluxless eutectic bonding of GaAs-on-Si by using Ag/Sn solder

    NASA Astrophysics Data System (ADS)

    Eo, Sung-Hwa; Kim, Dae-Seon; Jeong, Ho-Jung; Jang, Jae-Hyung

    2013-11-01

    Fluxless GaAs-on-Si wafer bonding using Ag/Sn solder was investigated to realize uniform and void-free heterogeneous material integration. The effects of the diffusion barrier, Ag/Sn thickness, and Ar plasma treatment were studied to achieve the optimal fluxless bonding process. Pt on a GaAs wafer and Mo on a Si wafer act as diffusion barriers by preventing the flow of Ag/Sn solder into both the wafers. The bonding strength is closely related to the Ag/Sn thickness and Ar plasma treatment. A shear strength test was carried out to investigate the bonding strength. Under identical bonding conditions, the Ag/Sn thickness was optimized to achieve higher bonding strength and to avoid the formation of voids due to thermal stress. An Ar plasma pretreatment process improved the bonding strength because the Ar plasma removed carbon contaminants and metal-oxide bonds from the metal surface.

  14. Thermoelectric properties of n-type Nb-doped Ag8SnSe6

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Zhang, Cheng-Long; Lin, Siqi; Lu, Hong; Pei, Yanzhong; Jia, Shuang

    2016-04-01

    Electrical and thermoelectric (TE) properties for n-type Ag8SnSe6 and ( Ag1- x Nb x ) 8 SnSe 6 are investigated. Ag8SnSe6 has the thermoelectric figure of merit (ZT) close to 1.1 at 803 K due to its intrinsic ultralow thermal conductivity ˜ 0.3 Wm - 1 K - 1 , relatively low resistivity ˜0.01 Ω cm, and high Seebeck coefficient ˜-200 μV/K. The ZT for pure Ag8SnSe6 drops to 0.02 at room temperature due to its large resistivity. Niobium doping increases the carrier concentration nearly 10 times and thus enhances its ZT to 0.11 at room temperature. Ag8SnSe6 is a promising n-type candidate of TE materials which needs further elaborations.

  15. Synthesis and high temperature thermoelectric properties of Yb0.25Co4Sb12-(Ag2Te)x(Sb2Te3)1-x nanocomposites

    NASA Astrophysics Data System (ADS)

    Zheng, Jin; Peng, Jiangying; Zheng, Zhexin; Zhou, Menghan; Thompson, Emily; Yang, Junyou; Xiao, Wanli

    2015-09-01

    Nanocomposites are becoming a new paradigm in thermoelectric study: by incorporating nanophase(s) into a bulk matrix, a nanocomposite often exhibits unusual thermoelectric properties beyond its constituent phases. To date most nanophases are binary, while reports on ternary nanoinclusions are scarce. In this work, we conducted an exploratory study of introducing ternary (Ag2Te)x(Sb2Te3)1-x inclusions in the host matrix of Yb0.25Co4Sb12. Yb0.25Co4Sb12 - 4wt% (Ag2Te)x(Sb2Te3)1-x nanocomposites were prepared by a melting-milling-hot-pressing process. Microstructural analysis showed that poly-dispersed nanosized Ag-Sb-Te inclusions are distributed on the grain boundaries of Yb0.25Co4Sb12 coarse grains. Compared to the pristine nanoinclusion-free sample, the electrical conductivity, Seebeck coefficient, and thermal conductivity were optimized simultaneously upon nanocompositing, while the carrier mobility was largely remained. A maximum ZT of 1.3 was obtained in Yb0.25Co4Sb12-4wt% (Ag2Te)0.42(Sb2Te3)0.58 at 773 K, a ~ 40% increase compared to the pristine sample. The electron and phonon mean-free-path were estimated to help quantify the observed changes in the carrier mobility and lattice thermal conductivity.

  16. Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient liquid-phase Joints Used for Power Die Attachment

    NASA Astrophysics Data System (ADS)

    Li, J. F.; Agyakwa, P. A.; Johnson, C. M.

    2014-04-01

    Real Si insulated gate bipolar transistors with conventional Ni/Ag metallization and dummy Si chips with thickened Ni/Ag metallization have both been bonded, at 250°C for 0 min, 40 min, and 640 min, to Ag foil electroplated with 2.7 µm and 6.8 µm thick Sn as an interlayer. On the basis of characterization of the microstructure of the resulting joints, suitable thicknesses are suggested for the Ag base metal and the Sn interlayer for Ag/Sn/Ag transient liquid-phase (TLP) joints used for power die attachment. The diffusivities of Ag and Sn in the ξAg phase were also obtained. In combination with the kinetic constants of Ag3Sn growth and diffusivities of Ag and Sn in Ag reported in the literature, the diffusivities of Ag and Sn in the ξAg phase were also used to simulate and predict diffusion-controlled growth and evolution of the phases in Ag/Sn/Ag TLP joints during extended bonding and in service.

  17. Inherent instability by antibonding coupling in AgSbTe2

    NASA Astrophysics Data System (ADS)

    Shinya, Hikari; Masago, Akira; Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi

    2016-04-01

    In the present paper, an inherent instability in the ternary chalcogenide compound AgSbTe2 is described from the electronic structure viewpoint. Our calculations, which are based on the cluster expansion method, suggest nine stable crystal structures involving the most stable structure with Fd\\bar{3}m symmetry. The effective pair interactions calculated by the generalized perturbation method point out that the stability of these structures originates from the number of linear arrangements of the Ag-Te-Sb atomic bonds. Moreover, it is found that AgSbTe2 has a special electronic structure, where the dominant components of the top of the valence band are the Te-5p antibonding states. Such an antibonding contribution leads to an inherent instability, such that the system spontaneously forms various mutation phases caused by charge-compensated defect complexes. We propose that these mutation phases play an important role in the thermal conductivity and thermoelectric efficiency in AgSbTe2.

  18. Thermoelectric properties of AgSbTe₂ from first-principles calculations

    SciTech Connect

    Rezaei, Nafiseh; Akbarzadeh, Hadi; Hashemifar, S. Javad

    2014-09-14

    The structural, electronic, and transport properties of AgSbTe₂ are studied by using full-relativistic first-principles electronic structure calculation and semiclassical description of transport parameters. The results indicate that, within various exchange-correlation functionals, the cubic Fd3⁻m and trigonal R3⁻m structures of AgSbTe₂ are more stable than two other considered structures. The computed Seebeck coefficients at different values of the band gap and carrier concentration are accurately compared with the available experimental data to speculate a band gap of about 0.1–0.35 eV for AgSbTe₂ compound, in agreement with our calculated electronic structure within the hybrid HSE (Heyd-Scuseria-Ernzerhof) functional. By calculating the semiclassical Seebeck coefficient, electrical conductivity, and electronic part of thermal conductivity, we present the theoretical upper limit of the thermoelectric figure of merit of AgSbTe₂ as a function of temperature and carrier concentration.

  19. Thermoelectric properties of AgSbTe2 from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Rezaei, Nafiseh; Hashemifar, S. Javad; Akbarzadeh, Hadi

    2014-09-01

    The structural, electronic, and transport properties of AgSbTe2 are studied by using full-relativistic first-principles electronic structure calculation and semiclassical description of transport parameters. The results indicate that, within various exchange-correlation functionals, the cubic F d 3 ¯ m and trigonal R 3 ¯ m structures of AgSbTe2 are more stable than two other considered structures. The computed Seebeck coefficients at different values of the band gap and carrier concentration are accurately compared with the available experimental data to speculate a band gap of about 0.1-0.35 eV for AgSbTe2 compound, in agreement with our calculated electronic structure within the hybrid HSE (Heyd-Scuseria-Ernzerhof) functional. By calculating the semiclassical Seebeck coefficient, electrical conductivity, and electronic part of thermal conductivity, we present the theoretical upper limit of the thermoelectric figure of merit of AgSbTe2 as a function of temperature and carrier concentration.

  20. Enhanced separation efficiency of photoinduced charges for antimony-doped tin oxide (Sb-SnO{sub 2})/TiO{sub 2} heterojunction semiconductors with varied Sb doping concentration

    SciTech Connect

    Zhang, Zhen-Long; Ma, Wen-Hai; Mao, Yan-Li

    2014-09-07

    In this paper, antimony-doped tin oxide (Sb-SnO{sub 2}) nanoparticles were synthesized with varied Sb doping concentration, and the Sb-SnO{sub 2}/TiO{sub 2} heterojunction semiconductors were prepared with Sb-SnO{sub 2} and TiO{sub 2}. The separation efficiency of photoinduced charges was characterized with surface photovoltage (SPV) technique. Compared with Sb-SnO{sub 2} and TiO{sub 2}, Sb-SnO{sub 2}/TiO{sub 2} presents an enhanced separation efficiency of photoinduced charges, and the SPV enhancements were estimated to be 1.40, 1.43, and 1.99 for Sb-SnO{sub 2}/TiO{sub 2} composed of Sb-SnO{sub 2} with the Sb doping concentration of 5%, 10%, and 15%, respectively. To understand the enhancement, the band structure of Sb-SnO{sub 2} and TiO{sub 2} in the heterojunction semiconductor was determined, and the conduction band offsets (CBO) between Sb-SnO{sub 2} and TiO{sub 2} were estimated to be 0.56, 0.64, and 0.98 eV for Sb-SnO{sub 2}/TiO{sub 2} composed of Sb-SnO{sub 2} with the Sb doping concentration of 5%, 10%, and 15%, respectively. These results indicate that the separation efficiency enhancement is resulting from the energy level matching, and the increase of enhancement is due to the rising of CBO.

  1. Preparation of the Wire of ZChSnSb11-6 Used for Remanufacturing Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Yang, Z. Y.; Fu, D. X.; Li, X. F.; Chen, W.

    Tin base Babbitt alloy widely used in bearing bush production and repair, the performance of ZChSnSb11-6 is better than ZChSnSb8-4.But as a result of as-cast structure of ZChSnSb11-6 is rich in big hard phase, its processing performance is bad, in this paper, through the optimization of smelting, casting, extrusion, drawing and other processes we have been successfully prepared ZChSnSb11-6 wire suitable for thermal spraying. Through metallographic examination, micro hardness, bond strength and porosity testing, it was proved that the wire meet the requirements of bearing manufacturing thermal spraying.

  2. Natural nanostructure and superlattice nanodomains in AgSbTe{sub 2}

    SciTech Connect

    Carlton, Christopher E.; De Armas, Ricardo; Shao-Horn, Yang E-mail: shaohorn@mit.edu; Ma, Jie; May, Andrew F.; Delaire, Olivier E-mail: shaohorn@mit.edu

    2014-04-14

    AgSbTe{sub 2} has long been of interest for thermoelectric applications because of its favorable electronic properties and its low lattice thermal conductivity of ∼0.7 W/mK. In this work, we report new findings from a high-resolution transmission electron microscopy study revealing two nanostructures in single crystal Ag{sub 1−x}Sb{sub 1+x}Sb{sub 2+x} (with x = 0, 0.1, 0.2); (i) a rippled natural nanostructure with a period of ∼2.5–5 nm and (ii) superlattice ordered nanodomains consistent with cation ordering predicted in previous density functional theory studies. These nanostructures, combined with point-defects, probably serve as sources of scattering for phonons, thereby yielding a low lattice thermal conductivity over a wide temperature range.

  3. Metal-nonmetal transition in the sphalerite-type solid solution [ZnSnSb{sub 2}]{sub 1-x}[2(InSb)]{sub x}

    SciTech Connect

    Tenga, Andreas; Javier Garcia-Garcia, F.; Wu, Yang; Newman, N.; Haeussermann, Ulrich

    2009-06-15

    Samples of the solid solution [ZnSnSb{sub 2}]{sub 1-x}[2(InSb)]{sub x} have been prepared over the whole range of composition by tin flux synthesis. The lattice parameter of the sphalerite-type average structure varies linearly between that of the end members ZnSnSb{sub 2} and InSb, a=6.2849(2) and 6.4776(15), respectively. Electron diffraction shows different kinds of structured diffuse scattering for Zn and In rich samples, respectively. The former is attributed to compositional short range ordering, the latter to thermally excited phonon modes. A metal-nonmetal transition takes place between the compositions x=0.8 and x=0.9. - Graphical abstract: Alloys of the sphalerite-type solid solution [ZnSnSb{sub 2}]{sub 1-x}[2(InSb)]{sub x} can be prepared over the whole range of composition by Sn flux synthesis. A metal-nonmetal transition takes place between the compositions x=0.8 and x=0.9.

  4. Preparation and Sintering Properties of Ag27Cu2Sn Nanopaste as Die Attach Material

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojian; Liu, Wei; Wang, Chunqing; Zheng, Zhen; Kong, Lingchao

    2016-06-01

    Ag27Cu2Sn nanopaste has been prepared by mixing Ag, Cu, and Sn nanoparticles with an organic solvent system. Sintering and mechanical properties of this nanopaste were characterized and investigated. Effects of sintering temperature and time on the sintered microstructure of the nanopaste and shear strength of Cu/Ag27Cu2Sn/Cu structure were analyzed. The results showed that the organic shells coated on the outside of metal nanoparticles could effectively prevent metal nanoparticles from being oxidized below 480°C. When the paste was sintered at 480°C without pressure, few voids or large particles formed within the sintered layer and distributions of Ag, Cu, and Sn were quite uniform. This sintering temperature was much lower than the eutectic temperature (779°C) of Ag-Cu bulk material. Moreover, mutual solid solubilities of Ag and Cu were increased remarkably, which may be caused by high surface activity of Ag and Cu nanoparticles and the important role of the Sn addition. Shear strength of samples with Cu/Ag27Cu2Sn/Cu structure could reach 21 MPa, which could compare with that of Ag nanopaste or conductive adhesives.

  5. Vibration DOS of 57Fe and Zn doped rutile Sn(Sb) oxides

    NASA Astrophysics Data System (ADS)

    Nomura, Kiyoshi; Rykov, Alexandre; Németh, Zoltán; Yoda, Yoshitaka

    2012-03-01

    Sn oxides co-doped with Zn, Sb and 57Fe were prepared by sol-gel method, and especially the doping effect of non-magnetic Zn ions was studied. The bulk saturation magnetization is in accordance with the intensity of the magnetic component in Mössbauer spectra. The nuclear inelastic scattering (NIS) spectra of these compounds were measured in SPring 8. The vibration density of states (VDOS) of 57Fe doped Sn(Sb) oxides showed that the softening peaks around 15-20 meV appeared by doping less than 10% Zn ions. The clusters of non-magnetic ZnFe2O4 may be most probably formed under the limit of XRD detections. The results suggest that the strengthening of ferromagnetism, which appears in the dilute Zn doping, may occur due to the spin arrangement of dilute Fe3 + through magnetic defects rather than the formation of magnetic iron oxides.

  6. Structural, optical and electrical properties of porous silicon impregnated with SnO2:Sb

    NASA Astrophysics Data System (ADS)

    Elhouichet, H.; Moadhen, A.; Oueslati, M.; Romdhane, S.; Roger, J. A.; Bouchriha, H.

    2005-06-01

    The incorporation of antimony doped tin oxide (SnO2:Sb), prepared from the sol gel method, into luminescent porous silicon (PS) layers is investigated. Characterisation of the resulting structures by photoluminescence (PL) is presented. It shows that the recuperated PL signal is important and the solid phase does not degrade the skeleton of PS layer with porosity less than 70%. However, for highly porous layers (80%), it was found that the recuperated PL signal is low and the PS skeleton is strongly degraded.Preliminary characterizations of the electrical properties of the resulting nanocomposite structure are presented. The current - voltage characteristic of the SnO2:Sb/PS structure is well fitted at low voltage using the Richardson-Schottky diode equation and taking into account of a series resistance Rs. For voltage above 1 V, we show that traps control transport. Electroluminescence (EL) is observed with a threshold at 6 V. All the parameters of the diode are determined and discussed. A diagram of band energy of SnO2:Sb/PS/c-Si is proposed.

  7. Zintl-phase compounds with SnSb4 tetrahedral anions: electronic structure and thermoelectric properties

    SciTech Connect

    Zhang, Lijun; Du, Mao-Hua; Singh, David J

    2010-01-01

    We report the investigation of Zintl-phase Na(K){sub 8}SnSb{sub 4} and related compounds that contain SnSb{sub 4} tetrahedral anions using first principles electronic structure, Boltzmann transport, and density functional phonon calculations. We find that these compounds are narrow-gap semiconductors and there is a combination of heavy and light bands at valence band edge, which may lead to a combination of high thermopower and reasonable conductivity. High values of the thermopower are found for p-type doping within the Boltzmann transport theory. Furthermore, these materials are expected to have low thermal conductivity due to their structures that consist of a network of weakly coupled SnSb{sub 4} clusters, which leads to low phonon frequencies. In particular, we find low-frequency optical phonons that should effectively scatter the heat-carrying acoustic phonons. These results are discussed in terms of the structure, which consists of anionic clusters. Based on the results, it is suggested that such compounds may represent a useful paradigm for finding new thermoelectric materials.

  8. Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode.

    PubMed

    Li, Duo; Tang, Jingyan; Zhou, Xiezhen; Li, Jiansheng; Sun, Xiuyun; Shen, Jinyou; Wang, Lianjun; Han, Weiqing

    2016-04-01

    Diffusion in electrochemistry is a critical issue for water purification. Electrocatalytic reactor system in improving water quality is a useful way to induce convection to enhance diffusion. This study focuses on the preparation and the characterization of Ti/SnO2-Sb tubular porous electrode for degrading pyridine wastewater. The electrode as an anode in reactor system is prepared by coating SnO2-Sb as an electro-catalyst via Pechini method on the tubular porous Ti. Scanning Electron Microscopy, Energy Dispersive Spectrum, X-ray Diffraction and Pore Distribution are employed to evaluate the structure and morphology of the electrodes coatings, and Linear Sweep Voltammetry and Cyclic Voltammetry are used to illustrate the electrochemical properties of the electrodes coatings. Furthermore, the electrochemical oxidation performance of Ti/SnO2-Sb tubular porous electrode is characterized by degrading pyridine wastewater. The effects of flow and static pattern, initial pyridine concentration, supporting electrolyte concentration, current density and pH on the performance of the reactor were investigated in the electrocatalytic reactor system. The results indicated that the removal ratio of pyridine reaches maximum which is 98% under the optimal operation conditions, that are 100 mg L(-1) initial pyridine concentration, 10 g L(-1) supporting electrolyte concentration, 30 mA cm(-2) current density and pH 3. Transition state calculation based on the density function theory was combined with High Performance Liquid Chromatography, Gas Chromatography and Ionic Chromatography results to describe the pathway of pyridine degradation. PMID:26849194

  9. Pt- and Ru-doped SnO₂-Sb anodes with high stability in alkaline medium.

    PubMed

    Berenguer, Raúl; Sieben, Juan Manuel; Quijada, César; Morallón, Emilia

    2014-12-24

    Different Pt- and Ru-doped Ti/SnO2-Sb electrodes were synthesized by thermal decomposition. The effect of the gradual substitution of Sb by Ru in the nominal composition on the physicochemical and electrochemical properties were evaluated. The electrochemical stability of the electrodes was estimated from accelerated tests at 0.5 A cm(-2) in 1 M NaOH. Both as-synthesized and deactivated electrodes were thoroughly characterized by scanning electron microscopy (SEM), energy-dispersive X-ray microanalysis (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction analysis (XRD). The incorporation of a small amount (about 3 at. %) of both Pt and Ru into the SnO2-Sb electrodes produced a 400-times increase in their service life in alkaline medium, with no remarkable change in the electrocatalysis of the oxygen evolution reaction (OER). It is concluded that the deactivation of the electrodes is promoted by alkaline dissolution of metal species and coating detachment at high potentials. The introduction of Pt has a coating compacting effect, and Ru(IV), at low amounts until 9.75 at. %, replaces the Sn(IV) cations in the rutile-like SnO2 structure to form a solid solution that strongly increases the stability of the electrodes. The observed Ru segregation and decreased stability for larger Ru contents (x > 9.75 at. %), together with the selective dissolution of Ru after deactivation, suggest that the formation of a homogeneous (RuδSn1-δ)O2 single-phase is crucial for the stabilization of these electrodes. PMID:25453898

  10. Disruption of crystalline structure of Sn3.5Ag induced by electric current

    NASA Astrophysics Data System (ADS)

    Huang, Han-Chie; Lin, Kwang-Lung; Wu, Albert T.

    2016-03-01

    This study presented the disruption of the Sn and Ag3Sn lattice structures of Sn3.5Ag solder induced by electric current at 5-7 × 103 A/cm2 with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag3Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density of up to 1017/m2. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.

  11. Preparation and photocatalytic properties of AgI–SnO{sub 2} nano-composites

    SciTech Connect

    Wen, Biao; Wang, Xiao-Hui; Lu, Juan; Cao, Jia-Lei; Wang, Zuo-Shan

    2013-05-15

    Highlights: ► AgI–SnO{sub 2} nano-composites have been successfully synthesized. ► As-prepared AgI–SnO{sub 2} nano-composites own the excellent visible light photocatalytic activity. ► As-prepared AgI–SnO{sub 2} nano-composites own the excellent stability. - Abstract: AgI doped SnO{sub 2} nano-composites were prepared by the chemical coprecipitation method and were characterized by the X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Results showed that main of the I{sup −} ions remained in the AgI lattice which is highly dispersed in the system. The photo-catalytic experiments performed under visible light irradiation using methylene blue as the pollutant revealed that not only the photo-catalytic activity but also the stability of SnO{sub 2} based photocatalyst could be improved by introduction of an appropriate amount of AgI, and the result was further supported by the UV–Vis diffuse reflection spectra and the electron spin-resonance spectra. Among all of the samples, AgI–SnO{sub 2} nano-composite with 2At% AgI exhibited the best catalytic efficiency and stability.

  12. Spin pumping and inverse Rashba-Edelstein effect in NiFe/Ag/Bi and NiFe/Ag/Sb

    SciTech Connect

    Zhang, Wei Jungfleisch, Matthias B.; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel

    2015-05-07

    The Rashba effect is an interaction between the spin and the momentum of electrons induced by the spin-orbit coupling in surface or interface states. We measured the inverse Rashba-Edelstein effect via spin pumping in Ag/Bi and Ag/Sb interfaces. The spin current is injected from the ferromagnetic resonance of a NiFe layer towards the Rashba interfaces, where it is further converted into a charge current. Using spin pumping theory, we quantify the conversion parameter of spin to charge current to be 0.11 ± 0.02 nm for Ag/Bi and a factor of ten smaller for Ag/Sb. The relative strength of the effect is in agreement with spectroscopic measurements and first principles calculations. We also vary the interlayer materials to study the voltage output in relation to the change of the effective spin mixing conductance. The spin pumping experiment offers a straight-forward approach of using spin current as an efficient probe for detecting interface Rashba splitting.

  13. Lead-free solder alloys: Thermodynamic properties of the (Au + Sb + Sn) and the (Au + Sb) system

    PubMed Central

    Hindler, Michael; Guo, Zhongnan; Mikula, Adolf

    2012-01-01

    The thermodynamic properties of liquid (Au–Sb–Sn) alloys were studied with an electromotive force (EMF) method using the eutectic mixture of KCl/LiCl with addition of SnCl2 as a liquid electrolyte. Activities of Sn in the liquid alloys were measured at three cross-sections with constant molar ratios of Au:Sb = 2:1, 1:1, and 1:2 with tin in the concentration range between 5 at.% and 90 at.% from the liquidus of the samples up to 1073 K. The integral Gibbs excess energies and the integral enthalpies at 873 K were calculated by Gibbs–Duhem integration. Additionally liquid Au–Sb alloys have been measured at 913 K with the EMF method as no reliable data for the Gibbs excess energies have been found in literature. The eutectic mixture of KCl/LiCl with addition of SbCl3 has been used as an electrolyte for the measurements. The Gibbs excess energies from the (Au + Sb) system were necessary for the integration of the thermodynamic properties of the ternary (Au + Sb + Sn) system. PMID:24926101

  14. Unusual magnetic hysteresis and the weakened transition behavior induced by Sn substitution in Mn{sub 3}SbN

    SciTech Connect

    Sun, Ying; Guo, Yanfeng; Li, Jun; Wang, Xia; Tsujimoto, Yoshihiro; Wang, Cong; Feng, Hai L.; Sathish, Clastin I.; Yamaura, Kazunari; Matsushita, Yoshitaka

    2014-01-28

    Substitution of Sb with Sn was achieved in ferrimagnetic antiperovskite Mn{sub 3}SbN. The experimental results indicate that with an increase in Sn concentration, the magnetization continuously decreases and the crystal structure of Mn{sub 3}Sb{sub 1-x}Sn{sub x}N changes from tetragonal to cubic phase at around x of 0.8. In the doping series, step-like anomaly in the isothermal magnetization was found and this behavior was highlighted at x = 0.4. The anomaly could be attributed to the magnetic frustration, resulting from competition between the multiple spin configurations in the antiperovskite lattice. Meantime, H{sub c} of 18 kOe was observed at x = 0.3, which is probably the highest among those of manganese antiperovskite materials reported so far. With increasing Sn content, the abrupt change of resistivity and the sharp peak of heat capacity in Mn{sub 3}SbN were gradually weakened. The crystal structure refinements indicate the weakened change at the magnetic transition is close related to the change of c/a ratio variation from tetragonal to cubic with Sn content. The results derived from this study indicate that the behavior of Mn{sub 3}Sb{sub 1-x}Sn{sub x}N could potentially enhance its scientific and technical applications, such as spin torque transfer and hard magnets.

  15. Enhancing electrocatalytic performance of Sb-doped SnO ₂ electrode by compositing nitrogen-doped graphene nanosheets.

    PubMed

    Duan, Tigang; Wen, Qing; Chen, Ye; Zhou, Yiding; Duan, Ying

    2014-09-15

    An efficient Ti/Sb-SnO2 electrode modified with nitrogen-doped graphene nanosheets (NGNS) was successfully fabricated by the sol-gel and dip coating method. Compared with Ti/Sb-SnO2 electrode, the NGNS-modified electrode possesses smaller unite crystalline volume (71.11Å(3) vs. 71.32Å(3)), smaller electrical resistivity (13Ωm vs. 34Ωm), and lower charge transfer resistance (10.91Ω vs. 21.01Ω). The accelerated lifetime of Ti/Sb-SnO2-NGNS electrode is prolonged significantly, which is 4.45 times as long as that of Ti/Sb-SnO2 electrode. The results of X-ray photoelectron spectroscopy measurement and voltammetric charge analysis indicate that introducing NGNS into the active coating can increase more reaction active sites to enhance the electrocatalytic efficiency. The electrochemical dye decolorization analysis demonstrates that Ti/Sb-SnO2-NGNS presents efficient electrocatalytic performance for methylene blue and orange II decolorization. And its pseudo-first order kinetic rate constants for methylene blue and orange II decolorization are 36.6 and 44.0 min(-1), respectively, which are 6.0 and 7.1 times as efficient as those of Ti/Sb-SnO2, respectively. Considering the significant electrocatalytic activity and low resistivity of Ti/Sb-SnO2-NGNS electrode, the cost of wastewater treatment can be expected to be reduced obviously and the application prospect is broad. PMID:25179102

  16. Structural, elastic, electronic, and thermodynamic properties of MgAgSb investigated by density functional theory

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Fei; Fu, Xiao-Nan; Zhang, Xiao-Dong; Wang, Jun-Tao; Li, Xiao-Dong; Jiang, Zhen-Yi

    2016-08-01

    The structural, elastic, electronic, and thermodynamic properties of thermoelectric material MgAgSb in γ,β,α phases are studied with first-principles calculations based on density functional theory. The optimized lattice constants accord well with the experimental data. According to the calculated total energy of the three phases, the phase transition order is determined from α to γ phase with cooling, which is in agreement with the experimental result. The physical properties such as elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, and anisotropy factor are also discussed and analyzed, which indicates that the three structures are mechanically stable and each has a ductile feature. The Debye temperature is deduced from the elastic properties. The total density of states (TDOS) and partial density of states (PDOS) of the three phases are investigated. The TDOS results show that the γ phase is most stable with a pseudogap near the Fermi level, and the PDOS analysis indicates that the conduction band of the three phases is composed mostly of Mg-3s, Ag-4d, and Sb-5p. In addition, the changes of the free energy, entropy, specific heat, thermal expansion of γ-MgAgSb with temperature are obtained successfully. The obtained results above are important parameters for further experimental and theoretical tuning of doped MgAgSb as a thermoelectric material at high temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11504088), the Fund from Henan University of Technology, China (Grant Nos. 2014YWQN08 and 2013JCYJ12), the Natural Science Fund from the Henan Provincial Education Department, China (Grant No. 16A140027), the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2013JQ1018 and 15JK1759), and the Science Foundation of Northwest University of China (Grant No. 14NW23).

  17. Current-perpendicular-to-the-plane giant magnetoresistance in spin-valves with AgSn alloy spacers

    SciTech Connect

    Read, J. C.; Nakatani, T. M.; Smith, Neil; Choi, Y.-S.; York, B. R.; Brinkman, E.; Childress, J. R.

    2015-07-28

    We investigate the use of AgSn alloys as the spacer layer in current-perpendicular-to-the-plane magnetoresistance devices. Alloying with Sn increases resistivity but results in a reasonably long (>10 nm) spin-diffusion length, so large magnetoresistance can be achieved with thin AgSn spacers. Compared to Ag thin films, AgSn forms smaller grain sizes, reduced roughness, and exhibits less interdiffusion upon annealing, resulting in decreased interlayer magnetic coupling in exchange biased spin-valves. AgSn also shows improved corrosion resistance compared to Ag, which is advantageous for nanofabrication, including magnetic recording head sensors. Combining a AgSn spacer with Co-based Heusler alloy ferromagnet in an exchange biased, polycrystalline trilayer thinner than 12 nm results in magnetoresistance values up to 15% at room temperature.

  18. Current-perpendicular-to-the-plane giant magnetoresistance in spin-valves with AgSn alloy spacers

    NASA Astrophysics Data System (ADS)

    Read, J. C.; Nakatani, T. M.; Smith, Neil; Choi, Y.-S.; York, B. R.; Brinkman, E.; Childress, J. R.

    2015-07-01

    We investigate the use of AgSn alloys as the spacer layer in current-perpendicular-to-the-plane magnetoresistance devices. Alloying with Sn increases resistivity but results in a reasonably long (>10 nm) spin-diffusion length, so large magnetoresistance can be achieved with thin AgSn spacers. Compared to Ag thin films, AgSn forms smaller grain sizes, reduced roughness, and exhibits less interdiffusion upon annealing, resulting in decreased interlayer magnetic coupling in exchange biased spin-valves. AgSn also shows improved corrosion resistance compared to Ag, which is advantageous for nanofabrication, including magnetic recording head sensors. Combining a AgSn spacer with Co-based Heusler alloy ferromagnet in an exchange biased, polycrystalline trilayer thinner than 12 nm results in magnetoresistance values up to 15% at room temperature.

  19. Nucleation of AgInSbTe films employed in phase-change media

    SciTech Connect

    Ziegler, Stefan; Wuttig, Matthias

    2006-03-15

    In phase-change technology small volumes of a chalcogenide material are switched between amorphous and crystalline states by local heating with a short laser or current pulses. AgInSbTe is an alloy frequently used in optical data storage, which could also be applied in electronic data storage. For those applications it is crucial to understand the reliability and reproducibility of the switching process. In this work the first crystallization of an AgInSbTe alloy has been studied on a microsecond time scale using a focused laser beam. The experiments show that nucleation is a process governed by statistics. A correlation between the success of a nucleation event with the probability of nucleation is established. By measuring the nucleation probability as a function of laser pulse duration, the incubation time is determined to 11 {mu}s. The results are compared to measurements of the growth velocity of this material. The analysis of the temperature dependence of the growth velocity explains why AgInSbTe shows growth-dominated recrystallization. The implications of these findings to the application of such growth-dominated materials in electronic data storage are discussed.

  20. Temperature-dependent thermal expansion of cast and hot-pressed LAST (Pb-Sb-Ag-Te) thermoelectric materials

    SciTech Connect

    Ren, Fei; Hall, Bradley D.; Case, Eldon D; Timm, Edward J; Trejo, Rosa M; Meisner, Roberta Ann; Lara-Curzio, Edgar

    2009-01-01

    The thermal expansion for two compositions of cast and hot-pressed LAST (Pb Sb Ag Te) n-type thermoelectric materials has been measured between room temperature and 673K via thermomechanical analysis (TMA). In addition, using high-temperature X-ray diffraction (HT-XRD), the thermal expansion for both cast and hot-pressed LAST materials was determined from the temperature-dependent lattice parameters measured between room temperature and 623 K. The TMA and HT-XRD determined values of the coefficient of thermal expansion (CTE) for the LAST compositions ranged between 20106K1 and 24106K1, which is comparable to the CTE values for other thermoelectric materials including PbTe and Bi2Te3. The CTE of the LAST specimens with a higher Ag content (Ag0.86Pb19Sb1.0Te20) exhibited a higher CTE value than that of the LAST material with a lower Ag content (Ag0.43Pb18Sb1.2Te20). In addition, a peak in the temperature-dependent CTE was observed between room temperature and approximately 450K for both the cast and hot-pressed LAST with the Ag0.86Pb19Sb1.0Te20 composition, whereas the CTE of the Ag0.43Pb18Sb1.2Te20 specimen increased monotonically with temperature.

  1. Asymmetrical Precipitation of Ag3Sn Intermetallic Compounds Induced by Thermomigration of Ag in Pb-Free Microbumps During Solid-State Aging

    NASA Astrophysics Data System (ADS)

    Su, Yu-Ping; Wu, Chun-Sen; Ouyang, Fan-Yi

    2016-01-01

    Three-dimensional integrated circuit technology has become a major trend in electronics packaging in the microelectronics industry. To effectively remove heat from stacked integrated circuitry, a temperature gradient must be established across the chips. Furthermore, because of the trend toward higher device current density, Joule heating is more serious and temperature gradients across soldered joints are expected to increase. In this study we used heat-sink and heat-source devices to establish a temperature gradient across SnAg microbumps to investigate the thermomigration behavior of Ag in SnAg solder. Compared with isothermal conditions, small Ag3Sn particles near the hot end were dissolved and redistributed toward the cold end under a temperature gradient. The results indicated that temperature gradient-induced movement of Ag atoms occurred from the hot side toward the cold side, and asymmetrical precipitation of Ag3Sn resulted. The mechanism of growth of the intermetallic compound (IMC) Ag3Sn, caused by thermomigration of Ag, is discussed. The rate of growth Ag3Sn IMC at the cold side was found to increase linearly with solid-aging time under a temperature gradient. To understand the force driving Ag diffusion under the temperature gradient, the molar heat of transport ( Q*) of Ag in Sn was calculated as +13.34 kJ/mole.

  2. Controlling SEI Formation on SnSb-Porous Carbon Nanofibers for Improved Na Ion Storage

    SciTech Connect

    Ji, Liwen; Gu, Meng; Shao, Yuyan; Li, Xiaolin; Engelhard, Mark H.; Arey, Bruce W.; Wang, Wei; Nie, Zimin; Xiao, Jie; Wang, Chong M.; Zhang, Jiguang; Liu, Jun

    2014-05-14

    Porous carbon nanofiber (CNF)-supported tin-antimony (SnSb) alloys is synthesized and applied as sodium ion battery anode. The chemistry and morphology of the solid electrolyte interphase (SEI) film and its correlation with the electrode performance are studied. The addition of fluoroethylene carbonate (FEC) in electrolyte significantly reduces electrolyte decomposition and creates a very thin and uniform SEI layer on the cycled electrode surface which could promote the kinetics of Na-ion migration/transportation, leading to excellent electrochemical performance.

  3. Effect of in situ Sb doping on crystalline and electrical characteristics of n-type Ge1- x Sn x epitaxial layer

    NASA Astrophysics Data System (ADS)

    Jeon, Jihee; Asano, Takanori; Shimura, Yosuke; Takeuchi, Wakana; Kurosawa, Masashi; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki

    2016-04-01

    We examined the molecular beam epitaxy of Ge1- x Sn x with in situ Sb doping on Ge substrates. The effects of Sb doping on the crystalline and electrical characteristics of Ge1- x Sn x epitaxial layer were investigated in detail. We found that Sb doping with a concentration of 1020 cm-3 remarkably improves the crystallinity, and surface uniformity of the Ge1- x Sn x epitaxial layer by changing the growth mode by the surfactant effect of Sb atoms. Low-temperature Ge1- x Sn x growth with in situ Sb doping realizes a very high electron concentration of 1020 cm-3, which is above the thermal equilibrium solid solubility, as a result of suppressing Sb segregation and precipitation.

  4. Superlattice-like SnSb4/Ga3Sb7 thin films for ultrafast switching phase-change memory application

    NASA Astrophysics Data System (ADS)

    Hu, Yifeng; He, Zifang; Zhai, Jiwei; Wu, Pengzhi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2015-11-01

    The carrier concentration of Sb-rich phase SnSb4, Ga3Sb7 and superlattice-like [SnSb4(3.5 nm)/Ga3Sb7(4 nm)]7 (SLL-7) thin films as a function of annealing temperature was investigated to explain the reason of resistance change. The activation energy for crystallization was calculated with a Kissinger equation to estimate the thermal stability. In order to illuminate the transition mechanisms, the crystallization kinetics of SLL-7 were explored by using Johnson-Mehl-Avrami theory. The obtained values of Avrami indexes indicate that a one-dimensional growth-dominated mechanism is responsible for the set transition of SLL-7 thin film. X-ray diffractometer and Raman scattering spectra were recorded to investigate the change of crystalline structure. The measurement of atomic force microscopy indicated that SLL-7 thin film has a good smooth surface. A picosecond laser pump-probe system was used to test and verify phase-change speed of the SLL-7 thin film.

  5. Electronic structure of InTe, SnAs and PbSb: Valence-skip compound or not?

    NASA Astrophysics Data System (ADS)

    Hase, Izumi; Yasutomi, Kouki; Yanagisawa, Takashi; Odagiri, Kousuke; Nishio, Taichiro

    2016-08-01

    InTe, SnAs and PbSb formally have unusual valence states, In2+, Sn3+ and Pb3+. All of them have B1 crystal structure at some pressure range. They are candidates of the valence-skip compound, which may have negative effective Coulomb interaction Ueff < 0. Negative-U Hubbard model is known to show charge-density wave or superconductivity in some parameter region. In fact, SnAs becomes superconducting at ambient pressure. InTe has a kind of charge-density wave at ambient pressure, and it becomes superconducting at high pressure. We investigated their electronic structures by ab-initio calculations, and calculated the number of s-electrons at the cation site. We found that InTe is favorable to emerge valence skip, while PbSb is not favorable for valence skip. SnAs is between these two. These findings well agree with the experimental results.

  6. The Reliability of Microalloyed Sn-Ag-Cu Solder Interconnections Under Cyclic Thermal and Mechanical Shock Loading

    NASA Astrophysics Data System (ADS)

    Mattila, Toni T.; Hokka, Jussi; Paulasto-Kröckel, Mervi

    2014-11-01

    In this study, the performance of three microalloyed Sn-Ag-Cu solder interconnection compositions (Sn-3.1Ag-0.52Cu, Sn-3.0Ag-0.52Cu-0.24Bi, and Sn-1.1Ag-0.52Cu-0.1Ni) was compared under mechanical shock loading (JESD22-B111 standard) and cyclic thermal loading (40 ± 125°C, 42 min cycle) conditions. In the drop tests, the component boards with the low-silver nickel-containing composition (Sn-Ag-Cu-Ni) showed the highest average number of drops-to-failure, while those with the bismuth-containing alloy (Sn-Ag-Cu-Bi) showed the lowest. Results of the thermal cycling tests showed that boards with Sn-Ag-Cu-Bi interconnections performed the best, while those with Sn-Ag-Cu-Ni performed the worst. Sn-Ag-Cu was placed in the middle in both tests. In this paper, we demonstrate that solder strength is an essential reliability factor and that higher strength can be beneficial for thermal cycling reliability but detrimental to drop reliability. We discuss these findings from the perspective of the microstructures and mechanical properties of the three solder interconnection compositions and, based on a comprehensive literature review, investigate how the differences in the solder compositions influence the mechanical properties of the interconnections and discuss how the differences are reflected in the failure mechanisms under both loading conditions.

  7. Improvement of reliability and power consumption for SnSb4 phase change film composited with Ga3Sb7 by superlattice-like method

    NASA Astrophysics Data System (ADS)

    Hu, Yifeng; Zhai, Jiwei; Zeng, Huarong; Song, Sannian; Song, Zhitang

    2015-05-01

    Superlattice-like (SLL) SnSb4/Ga3Sb7 (SS/GS) thin films were investigated through in-situ film resistance measurement. The optical band gap was derived from the transmittance spectra by using a UV-visible-NIR (ultraviolet-visible-near infrared) spectrophotometer. Transmission electron microscopy was used to observe the micro-structure before and after annealing. Phase change memory cells based on the SLL [SS(3 nm)/GS(4.5 nm)]7 thin films were fabricated to test and verify the operation consumption and switching endurance. The scanning thermal microscopy was used to probe the nanoscale thermal property.

  8. Nanodopant-Induced Band Modulation in AgPbmSbTe2+m-Type Nanocomposites

    SciTech Connect

    Zhang, Yi; Ke, Xuezhi; Chen, Changfeng; Yang, Jihui; Kent, Paul R

    2011-01-01

    We elucidate the fundamental physics of nanoscale dopants in narrow band-gap thermoelectric nanocomposites XPbmYTe2+m (X=Ag,Na; Y=Sb,Bi) using first-principles calculations. Our re- sults unveil distinct band-structure modulations, most notably a sizable band-gap widening driven by nanodopant-induced lattice strain and a band split-off at the conduction band minimum caused by the spin-orbit interaction of the dopant Sb or Bi atoms. Boltzmann transport calculations demon- strate that these band modulations have significant but competing effects on high-temperature elec- tron transport behavior. These results offer insights for understanding recent experimental findings and suggest principles for optimizing thermoelectric properties of narrow band-gap semiconductors.

  9. Electrical and photoconductivity studies on AgSbSe2 thin films

    NASA Astrophysics Data System (ADS)

    Namitha Asokan, T.; Urmila, K. S.; Pradeep, B.

    2015-02-01

    Silver antimony selenide thin films have been deposited on ultrasonically cleaned glass substrate at a vacuum of 10-5 torr using reactive evaporation technique. The preparative parameters like substrate temperature and incident fluxes have been properly controlled in order to get highly reproducible compound films. The polycrystalline nature of the sample is confirmed using XRD. The dependence of the electrical conductivity on the temperature has also been studied. The prepared AgSbSe2 samples show p-type conductivity. The samples show a little photoresponse.

  10. Comparative modular analysis of two complex sulfosalt structures: sterryite, Cu(Ag,Cu)3Pb19(Sb,As)22(As-As)S56, and parasterryite, Ag4Pb20(Sb,As)24S58.

    PubMed

    Moëlo, Yves; Guillot-Deudon, Catherine; Evain, Michel; Orlandi, Paolo; Biagioni, Cristian

    2012-10-01

    The crystal structures of two very close, but distinct complex minerals of the lead sulfosalt group have been solved: sterryite, Cu(Ag,Cu)(3)Pb(19)(Sb,As)(22)(As-As)S(56), and parasterryite, Ag(4)Pb(20)(Sb,As)(24)S(58). They are analyzed and compared according to modular analysis. The fundamental building block is a complex column centred on a Pb(6)S(12) triangular prismatic core, with two additional long and short arms. The main chemical and topological differences relate to the short arm, which induces a relative a/4 shift (~2 Å along the elongation parameter) of the constitutive rod layers, as illustrated by distinct cell settings within the same space group (P2(1)/n and P2(1)/c, respectively). Selection of the shortest (i.e. strongest) (Sb,As)-S bonds permitted to enhance the polymeric organization of (Sb,As) atoms with triangular pyramidal coordination. These two quasi-homeotypic structures are expanded derivatives of owyheeite, Ag(3)Pb(10)Sb(11)S(28). The hierarchy of organization levels from zero- to three-dimensional entities is subordinated to building operators, which appear as the driving force for the construction of such complex structures. Minor cations (Ag, Cu) or the As-As pair in sterryite secure the final locking, which favours the formation of one or the other compound. PMID:22992793

  11. A systematic study of superconductivity in BiPb(Sn)-Sb Sr-Ca-Cu-O systems

    NASA Technical Reports Server (NTRS)

    Akbar, Sheikh A.; Botelho, M. J.; Wong, M. S.; Alauddin, M.

    1990-01-01

    Superconducting transition above 160 K has been reported in the Bi-Pb-Sb-Sr-Ca-Cu-O system. Results of a systematic study emphasizing the correlations between the type and amount of dopant, and superconducting transition is presented. The effect of Sn (instead of Pb) substitution is also highlighted.

  12. Nanosized sensor materials based on CeO2/SnO2-Sb2O5

    NASA Astrophysics Data System (ADS)

    Oleksenko, L. P.; Maksymovych, N. P.; Matushko, I. P.; Chubaevskaya, N. V.

    2015-03-01

    Semiconductor nanosized SnO2-Sb2O5 materials with additives of cerium are synthesized by solgel method and the sensitivity to hydrogen of adsorption-semiconductor sensors, created on their basis, was investigated. It is shown that introducing cerium into the gas-sensitive layer of a sensor increases its sensitivity to microconcentrations of H2.

  13. Crystal structures of the La 3AgSnSe 7 and R3Ag 1-δSnS 7 ( R=La, Ce; δ=0.18-0.19) compounds

    NASA Astrophysics Data System (ADS)

    Daszkiewicz, M.; Gulay, L. D.; Pietraszko, A.; Shemet, V. Ya.

    2007-07-01

    The crystal structures of new quaternary compounds La 3AgSnSe 7 (space group P6 3, Pearson symbol hP24, a=1.0805(4) nm, c=0.6245(1) nm, R1=0.0315), La 3Ag 0.82SnS 7 (space group P6 3, Pearson symbol hP23.64, a=1.0399(1) nm, c=0.6016(1) nm, R1=0.0149) and Ce 3Ag 0.81SnS 7 (space group P6 3, Pearson symbol hP23.62, a=1.0300(1) nm, c=0.6002(1) nm, R1=0.0151) were determined by means of X-ray single crystal diffraction. Structural investigations of the R3Ag 1-δSnS 7 ( R=La, Ce; δ=0.18-0.19(1)) compounds at 450 and 530 K were performed. Low temperature data (12 K) for Ce 3Ag 0.81SnS 7 were also collected. The nearest neighbours of the La(Ce), Ag and Sn atoms are exclusively Se(S) atoms. The latter form distorted trigonal prisms around the La(Ce) atoms, and distorted tetrahedrons around the Sn atoms. The Ag (Ag1) atoms have triangular surroundings: they are located very close to the planes built of three Se(S) atoms. The Ag2 atoms in the structures of the La 3Ag 0.82SnS 7, Ce 3Ag 0.81SnS 7 compounds are located practically in the centres of trigonal antiprisms. The pseudo-potentials determined through the Ag atoms show relatively low barrier between two nearest positions which decreases when temperature rises.

  14. Thickness-Induced Metal-Insulator Transition in Sb-doped SnO2 Ultrathin Films: The Role of Quantum Confinement

    NASA Astrophysics Data System (ADS)

    Ke, Chang; Zhu, Weiguang; Zhang, Zheng; Soon Tok, Eng; Ling, Bo; Pan, Jisheng

    2015-11-01

    A thickness induced metal-insulator transition (MIT) was firstly observed in Sb-doped SnO2 (SnO2:Sb) epitaxial ultrathin films deposited on sapphire substrates by pulsed laser deposition. Both electrical and spectroscopic studies provide clear evidence of a critical thickness for the metallic conductivity in SnO2:Sb thin films and the oxidation state transition of the impurity element Sb. With the shrinkage of film thickness, the broadening of the energy band gap as well as the enhancement of the impurity activation energy was studied and attributed to the quantum confinement effect. Based on the scenario of impurity level pinning and band gap broadening in quantum confined nanostructures, we proposed a generalized energy diagram to understand the thickness induced MIT in the SnO2:Sb system.

  15. Thickness-Induced Metal-Insulator Transition in Sb-doped SnO2 Ultrathin Films: The Role of Quantum Confinement

    PubMed Central

    Ke, Chang; Zhu, Weiguang; Zhang, Zheng; Soon Tok, Eng; Ling, Bo; Pan, Jisheng

    2015-01-01

    A thickness induced metal-insulator transition (MIT) was firstly observed in Sb-doped SnO2 (SnO2:Sb) epitaxial ultrathin films deposited on sapphire substrates by pulsed laser deposition. Both electrical and spectroscopic studies provide clear evidence of a critical thickness for the metallic conductivity in SnO2:Sb thin films and the oxidation state transition of the impurity element Sb. With the shrinkage of film thickness, the broadening of the energy band gap as well as the enhancement of the impurity activation energy was studied and attributed to the quantum confinement effect. Based on the scenario of impurity level pinning and band gap broadening in quantum confined nanostructures, we proposed a generalized energy diagram to understand the thickness induced MIT in the SnO2:Sb system. PMID:26616286

  16. Thickness-Induced Metal-Insulator Transition in Sb-doped SnO2 Ultrathin Films: The Role of Quantum Confinement.

    PubMed

    Ke, Chang; Zhu, Weiguang; Zhang, Zheng; Tok, Eng Soon; Ling, Bo; Pan, Jisheng

    2015-01-01

    A thickness induced metal-insulator transition (MIT) was firstly observed in Sb-doped SnO2 (SnO2:Sb) epitaxial ultrathin films deposited on sapphire substrates by pulsed laser deposition. Both electrical and spectroscopic studies provide clear evidence of a critical thickness for the metallic conductivity in SnO2:Sb thin films and the oxidation state transition of the impurity element Sb. With the shrinkage of film thickness, the broadening of the energy band gap as well as the enhancement of the impurity activation energy was studied and attributed to the quantum confinement effect. Based on the scenario of impurity level pinning and band gap broadening in quantum confined nanostructures, we proposed a generalized energy diagram to understand the thickness induced MIT in the SnO2:Sb system. PMID:26616286

  17. Properties of ternary Sn-Ag-Bi solder alloys. Part 2: Wettability and mechanical properties analyses

    SciTech Connect

    Vianco, P.T.; Rejent, J.A.

    1999-10-01

    Bismuth additions of 1% to 10% were made to the 96.5Sn-3.5Ag (wt.%) alloy in a study to develop a Sn-Ag-Bi ternary composition. Thermal properties and microstructural analyses of selected alloy compositions were reported in Part 1. Wettability and mechanical properties are described in this paper. Contact angle measurements demonstrated that Bi additions improved wetting/spreading performance on Cu; a minimum contact angle of 31 {+-} 4{degree} was observed with 4.83 wt.% Bi addition. Increasing the Bi content of the ternary alloy raised the Cu/solder/Cu solder joint shear strength to 81 MPa as determined by the ring-and-plug tests. TEM analysis of the 91.84Sn-3.33Ag-4.83Bi composition presented in Part 1 indicated that the strength improvement was attributed to solid-solution and precipitation strengthening effects by the Bi addition residing in the Sn-rich phase. Microhardness measurements of the Sn-Ag-Bi alloy, as a function of Bi content, reached maximum values of 30 (Knoop, 50 g) and 110 (Knoop, 5g) for Bi contents greater than approximately 4--5 wt.%.

  18. Nanoscale characterization of 1D Sn-3.5Ag nanosolders and their application into nanowelding at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zhang, Junwei; Lan, Qianqian; Ma, Hongbin; Qu, Ke; Inkson, Beverley J.; Mellors, Nigel J.; Xue, Desheng; Peng, Yong

    2014-10-01

    One-dimensional Sn-3.5Ag alloy nanosolders have been successfully fabricated by a dc electrodeposition technique into nanoporous templates, and their soldering quality has been demonstrated in nanoscale electrical welding for the first time, which indicates that they can easily form remarkably reliable conductive joints. The electrical measurement shows that individual 1D Sn-3.5Ag nanosolders have a resistivity of 28.9 μΩ·cm. The morphology, crystal structure and chemistry of these nanosolders have been characterized at the nanoscale. It is found that individual 1D Sn-3.5Ag alloy nanosolders have a continuous morphology and smooth surface. XPS confirms the presence of tin and silver with a mass ratio of 96.54:3.46, and EDX elemental mappings clearly reveal that the Sn and Ag elements have a uniform distribution. Coveragent beam electron diffractions verify that the crystal phases of individual 1D Sn-3.5Ag alloy nanosolders consist of matrix β-Sn and the intermetallic compound Ag3Sn. The reflow experiments reveal that the eutectic composition of the 1D Sn-Ag alloy nanowire is shifted to the Sn rich corner. This work may contribute one of the most important tin-based alloy nanosolders for future nanoscale welding techniques, which are believed to have broad applications in nanotechnology and the future nano-industry.

  19. Formation of medical radioisotopes 111In, 117 m Sn, 124Sb, and 177Lu in photonuclear reactions

    NASA Astrophysics Data System (ADS)

    Danagulyan, A. S.; Hovhannisyan, G. H.; Bakhshiyan, T. M.; Avagyan, R. H.; Avetisyan, A. E.; Kerobyan, I. A.; Dallakyan, R. K.

    2015-06-01

    The possibility of the photonuclear production of radioisotopes 111In, 117 m Sn, 124Sb, and 177Lu is discussed. Reaction yields were measured by the gamma-activation method. The enriched tin isotopes 112, 118Sn and Te and HfO2 of natural isotopic composition were used as targets. The targets were irradiated at the linear electron accelerator of Alikhanian National Science Laboratory (Yerevan) at the energy of 40 MeV. The experimental results obtained in this way reveal that the yield and purity of radioisotopes 111In and 117 mSn are acceptable for their production via photonuclear reactions. Reactions proceeding on targets from Te and HfO2 of natural isotopic composition and leading to the formation of 124Sb and 177Lu have small yields and are hardly appropriate for the photoproduction of these radioisotopes even in the case of enriched targets.

  20. Ultra-fast dry microwave preparation of SnSb used as negative electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Antitomaso, P.; Fraisse, B.; Sougrati, M. T.; Morato-Lallemand, F.; Biscaglia, S.; Aymé-Perrot, D.; Girard, P.; Monconduit, L.

    2016-09-01

    Tin antimonide alloy was obtained for the first time using a very simple dry microwave route. Up to 1 g of well crystallized SnSb can be easily prepared in 90 s under air in an open crucible. A full characterization by X-ray diffraction and 119Sn Mössbauer spectroscopy demonstrated the benefit of carbon as susceptor, which avoid any oxide contamination. The microwave-prepared SnSb was tested as negative electrode material in Li batteries. Interesting results in terms of capacity and rate capability were obtained with up to 700 mAh/g sustained after 50 cycles at variable current. These results pave the way for the introduction of microwave synthesis as realistic route for a rapid, low cost and up-scalable production of electrode material for Li batteries or other large scale application types.

  1. Effect of Pressure and Chemical Substitutions on the Charge-Density-Wave in LaAgSb2

    SciTech Connect

    Budko,S.; Weiner, T.; Ribeiro, R.; Canfield, P.; Lee, Y.; Vogt, T.; Lacerda

    2006-01-01

    We present data on the crystal structure and evolution of the electrical resistivity in lightly doped La{sub 1-x}R{sub x}AgSb{sub 2} (R=Gd, Y, Ce, and Nd) at ambient pressure and in LaAgSb{sub 2} under hydrostatic pressure. The upper charge density wave transition is suppressed by both doping and pressure with substitution-related disorder being the dominant mechanism for this suppression in the former case and the anisotropic pressure dependence of the unit cell dimensions (as seen in the c/a ratio) prevailing in the latter case.

  2. Structural studies of GeTe-AgSbTe2 alloys

    SciTech Connect

    Thompson, A. J.; Sharp, Jeff; Rawn, Claudia J; Chakoumakos, Bryan C

    2008-01-01

    GeTe, a small bandgap semiconductor that has native p-type defects due to Ge vacancies, is an important constituent in the thermoelectric material known as 'TAGS' [1]. TAGS is an acronym for alloys of GeTe with AgSbTe2, and compositions are normally designated as TAGS-x, where x is the fraction of GeTe. TAGS-85 is the most important with regard to applications, and there also is commercial interest in TAGS-80. The crystal structure of GeTe1+d has a composition-dependent phase transformation at a temperature ranging from 430 C (d = 0) to {approx} 400 C (d = 0.02) [2]. The high temperature form is cubic. The low temperature form is rhombohedral for d < 0.01, as is the case for good thermoelectric performance. Addition of AgSbTe2 shifts the phase transformation to lower temperatures, and one of the goals of this work is a systematic study of the dependence of transformation temperature on the parameter x. We present results on phase transformations and associated instabilities in TAGS compositions in the range of 70-85 at.% GeTe.

  3. Measurements of the energy band gap and valence band structure of AgSbTe2

    NASA Astrophysics Data System (ADS)

    Jovovic, V.; Heremans, J. P.

    2008-06-01

    The de Haas-van Alphen effect, galvanomagnetic and thermomagnetic properties of high-quality crystals of AgSbTe2 are measured and analyzed. The transport properties reveal the material studied here to be a very narrow-gap semiconductor (Eg≈7.6±3meV) with ˜5×1019cm-3 holes in a valence band with a high density of states and thermally excited ˜1017cm-3 high-mobility (2200cm2/Vs) electrons at 300 K. The quantum oscillations are measured with the magnetic field oriented along the ⟨111⟩ axis. Taken together with the Fermi energy derived from the transport properties, the oscillations confirm the calculated valence band structure composed of 12 half-pockets located at the X -points of the Brillouin zone, six with a density-of-states effective mass mda∗≫0.21me and six with mdb∗≫0.55me , giving a total density-of-states effective mass, including Fermi pocket degeneracy, of md∗≈1.7±0.2me ( me is the free electron mass). The lattice term dominates the thermal conductivity, and the electronic contribution in samples with both electrons and holes present is in turn dominated by the ambipolar term. The low thermal conductivity and very large hole mass of AgSbTe2 make it a most promising p -type thermoelectric material.

  4. Infrared Polarizer Fabrication by Imprinting on Sb-Ge-Sn-S Chalcogenide Glass

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-01-01

    We fabricated infrared wire-grid polarizers consisting of a 500-nm pitch Al grating on a low toxic chalcogenide glass (Sb-Ge-Sn-S system) using the direct imprinting of subwavelength grating followed by a deposition of Al metal by thermal evaporation. To fabricate the subwavelength grating on a chalcogenide glass more easily, the sharp grating was formed on the mold surface. The fabricated polarizer with Al thickness of 130 nm exhibited a polarization function with a transverse magnetic transmittance greater than 60% in the 5-9 µm wavelength range, and an extinction ratio greater than 20 dB in 3.5-11 µm wavelength range. The extinction ratio of the element with Al wires of 180-nm thickness reached 27 dB at 5.4-µm wavelength. The polarizer can be fabricated at lower costs and simpler fabrication processes compared to conventional infrared polarizers.

  5. Measurement of the thermodynamic properties of saturated solid solutions of compounds in the Ag-Sn-Se system by the EMF method

    NASA Astrophysics Data System (ADS)

    Moroz, M. V.; Prokhorenko, M. V.

    2015-08-01

    The dependence of the EMF ( E) of galvanic cells Ag|AgI|Ag2GeS3 glass| D on temperature (where Ag, D denotes the electrodes of an electrochemical cell; D represents equilibrium two- and three-phase alloys of the Ag-Sn-Se system; and AgI|Ag2GeS3 glass is a bilayer membrane with purely ionic (Ag+) conductivity) is studied in the range of 480-580 K. Analytical equations of E( T) are used to calculate the values of the thermodynamic functions of saturated solid solutions of the SnSe, β-Ag2Se, AgSnSe2, and Ag8SnSe6 phases of the Ag-Sn-Se system in the standard state.

  6. Effects of the crystallographic orientation of Sn on the electromigration of Cu/Sn-Ag-Cu/Cu ball joints

    SciTech Connect

    Lee, Kiju; Kim, Keun-Soo; Tsukada, Yutaka; Suganuma, Katsuaki; Yamanaka, Kimihiro; Kuritani, Soichi; Ueshima, Minoru

    2011-11-17

    Electromigration behavior and fast circuit failure with respect to crystallographic orientation of Sn grains were examined. The test vehicle was Cu/Sn-3.0 wt% Ag-0.5 wt% Cu/Cu ball joints, and the applied current density was 15 kA/cm2 at 160 °C. The experimental results indicate that most of the solder bumps show different microstructural changes with respect to the crystallographic orientation of Sn grains. Fast failure of the bump occurred due to the dissolution of the Cu circuit on the cathode side caused by the fast interstitial diffusion of Cu atoms along the c-axis of the Sn grains when the c-axis was parallel to the electron flow. Slight microstructural changes were observed when the c-axis was perpendicular to the electron flow. In addition, Cu6Sn5 intermetallic compound (IMC) was formed along the direction of the c-axis of the Sn grains instead of the direction of electron flow in all solder ball joints.

  7. Ag{sub 1.75}InSb{sub 5.75}Se{sub 11}: A new noncentrosymmetric compound with congruent-melting behavior

    SciTech Connect

    Hao, Wenyu; Han, Yemao; Huang, Rongjin; Feng, Kai; Yin, Wenlong; Yao, Jiyong; Wu, Yicheng

    2014-10-15

    A new type of quaternary selenide Ag{sub 1.75}InSb{sub 5.75}Se{sub 11} has been synthesized. It crystallizes in the non-centrosymmetric space group Cm of monoclinic system, with a=13.419 (1) Å, b=4.084 (1) Å, and c=19.165 (2) Å, Z=2. The compound has a new three-dimensional layer structure which consists of infinite {sup 2}{sub ∞}[AgSb{sub 2}Se{sub 4}] layers and {sup 2}{sub ∞}[Ag1(Sb6)Ag3InSb{sub 3}Se{sub 8}] layers. The band gap of Ag{sub 1.75}InSb{sub 5.75}Se{sub 11} is 0.94(2) eV, which agrees with its dark gray color. Moreover, the compound exhibits congruent-melting behavior. - Graphical abstract: Ag{sub 1.75}InSb{sub 5.75}Se{sub 11} has a new three-dimensional layer structure which consists of infinite {sup 2}{sub ∞}[AgSb{sub 2}Se{sub 4}] layers and {sup 2}{sub ∞}[Ag1(Sb6)Ag3InSb{sub 3}Se{sub 8}] layers. - Highlights: • The new quaternary selenide Ag{sub 1.75}InSb{sub 5.75}Se{sub 11} has been synthesized. • It crystallizes in non-centrosymmetric space group Cm and has a new layer structure. • The structure consists of {sup 2}{sub ∞}[AgSb{sub 2}Se{sub 4}] layers and {sup 2}{sub ∞}[Ag1(Sb6)Ag3InSb{sub 3}Se{sub 8}] layers. • The band gap of Ag{sub 1.75}InSb{sub 5.75}Se{sub 11} is 0.94(2) eV. • The compound exhibits congruent-melting behavior.

  8. First-principles study of homologous series of layered Bi-Sb-Te-Se and Sn-O structures

    NASA Astrophysics Data System (ADS)

    Govaerts, Kirsten

    In the first part of the thesis, we present a systematic study of the stable layered structures at T = 0 K for the Bi-Sb-Te-Se system by means of a combination of the Cluster Expansion (CE) method and first-principles electronic structure calculations. In order to account for the existence of long-periodic layered structures and the strong structural relaxations we have developed a one-dimensional CE with occupation variables explicitly accounting for the fact that Bi or Sb atoms are part of an even or odd number of layers. For the binary systems A1-xQx (A = Sb, Bi; Q = Te, Se) the resulting (meta)stable structures are the homologous series (A2) n(A2Q3)m built up from successive bilayers A 2 and quintuple units A2Q3. The Bi1-xSb x system is found to be an almost ideal solution. The CE for the ternary Bi-Sb-Te system not only reproduces the binary stable structures but also finds stable ternary layered compounds with an arbitrary stacking of Sb 2Te3, Bi2Te3 and Te-Bi-Te-Sb-Te quintuple units, optionally separated by mixed Bi/Sb bilayers. We also investigate the electronic properties of the newly found ground state structures, and in particular the effect of Bi bilayers on the electronic structure of the topological insulator Bi2Se3. Due to the charge transfer from the Bi bilayers to the quintuple layers, the top- and bottom-surface Dirac cones shift down in energy. Also the Rashba-split conduction band states shift down, resulting in a new Dirac cone. The bands of the additional Bi bilayer are just ordinary Rashba-split states originating from the dipole built up by the charge transfer. These results offer new insight in experimental results, where cones are not always correctly identified. In a second part of the thesis, we investigate the Sn-O system. First we show that a combination of current van der Waals-corrected functionals and many-body calculations within the GW approximation provide accurate values for both structural and electronic properties of Sn

  9. Observation of amorphous to crystalline phase transformation in Te substituted Sn-Sb-Se thin films

    SciTech Connect

    Chander, Ravi

    2015-05-15

    Thin films of Sn-Sb-Se-Te (8 ≤ x ≤ 14) chalcogenide system were prepared by thermal evaporation technique using melt quenched bulk samples. The as-prepared thin films were found amorphous as evidenced from X-ray diffraction studies. Resistivity measurement showed an exponential decrease with temperature upto critical temperature (transition temperature) beyond which a sharp decrease was observed and with further increase in temperature showed an exponential decrease in resistivity with different activation energy. The transition temperature showed a decreasing trend with tellurium content in the sample. The resistivity measurement during cooling run showed no abrupt change in resistivity. The resistivity measurements of annealed films did not show any abrupt change revealing the structural transformation occurring in the material. The transition width showed an increase with tellurium content in the sample. The resistivity ratio showed two order of magnitude improvements for sample with higher tellurium content. The observed transition temperature in this system was found quite less than already commercialized Ge-Sb-Te system for optical and electronic memories.

  10. Observation of amorphous to crystalline phase transformation in Te substituted Sn-Sb-Se thin films

    NASA Astrophysics Data System (ADS)

    Chander, Ravi

    2015-05-01

    Thin films of Sn-Sb-Se-Te (8 ≤ x ≤ 14) chalcogenide system were prepared by thermal evaporation technique using melt quenched bulk samples. The as-prepared thin films were found amorphous as evidenced from X-ray diffraction studies. Resistivity measurement showed an exponential decrease with temperature upto critical temperature (transition temperature) beyond which a sharp decrease was observed and with further increase in temperature showed an exponential decrease in resistivity with different activation energy. The transition temperature showed a decreasing trend with tellurium content in the sample. The resistivity measurement during cooling run showed no abrupt change in resistivity. The resistivity measurements of annealed films did not show any abrupt change revealing the structural transformation occurring in the material. The transition width showed an increase with tellurium content in the sample. The resistivity ratio showed two order of magnitude improvements for sample with higher tellurium content. The observed transition temperature in this system was found quite less than already commercialized Ge-Sb-Te system for optical and electronic memories.

  11. Optical properties of amorphous and crystalline Sb-doped SnO{sub 2} thin films studied with spectroscopic ellipsometry: Optical gap energy and effective mass

    SciTech Connect

    So, Hyeon Seob; Park, Jun-Woo; Jung, Dae Ho; Ko, Kun Hee; Lee, Hosun

    2015-08-28

    We investigated the optical properties of amorphous and crystalline antimony (Sb)-doped tin dioxide (SnO{sub 2}) thin films grown using the co-sputtering deposition method at room temperature. We used undoped and Sb-doped (8 wt. %) SnO{sub 2} targets. Varying the relative power ratio of the two targets, we controlled the Sb-composition of the SnO{sub 2}:Sb thin films up to 2.3 at. % of Sb contents. Through annealing, the as-grown amorphous SnO{sub 2}:Sb thin films were transformed to crystalline thin films. Dielectric functions were obtained from the measured ellipsometry angles, Ψ and Δ, using the Drude and parametric optical constant models. We determined the absorption coefficients and optical gap energies of the SnO{sub 2}:Sb thin films from the dielectric functions. We found increasing optical gap energy with increasing Sb composition. Increases in the Drude tail amplitudes, a signature of free carrier concentrations, were found in annealed, crystalline thin films with increasing Sb composition. The increase in the optical gap energy with increasing Sb composition was mainly attributed to the Burstein-Moss effect. Using Hall effect measurements, we obtained Hall carrier concentrations (N{sub Hall}) and electron Hall mobilities (μ{sub Hall}). The carrier concentrations and mobilities increased from 2.6 × 10{sup 19 }cm{sup −3} and 1.0 cm{sup 2}/(V s) to 2.0 × 10{sup 20 }cm{sup −1} and 7.2 cm{sup 2}/(V s), respectively, with increasing Sb contents. This result suggests that the nominally undoped SnO{sub 2} films are unintentionally n-type doped. Assuming that the N{sub Hall} and optical carrier concentrations (N{sub opt}) were the same, we obtained the effective masses of the SnO{sub 2}:Sb thin films with increasing Sb compositions. The effective masses of the SnO{sub 2}:Sb thin films increased from 0.245 m{sub 0} to 0.4 m{sub 0} with increasing Sb doping contents, and the nonparabolicity of the conduction band was estimated. We

  12. Spreading of Sn-Ag solders on FeNi alloys

    SciTech Connect

    Saiz, Eduardo; Hwang, C-W.; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-02-28

    The spreading of Sn-3Ag-xBi solders on Fe-42Ni has been studied using a drop transfer setup. Initial spreading velocities as fast as {approx}0.5 m/s have been recorded. The results are consistent with a liquid front moving on a metastable, flat, unreacted substrate and can be described by using a modified molecular-kinetic model for which the rate controlling step is the movement of one atom from the liquid to the surface of the solid substrate. Although the phase diagram predicts the formation of two Fe-Sn intermetallics at the solder/substrate interface in samples heated at temperatures lower than 513 C, after spreading at 250 C only a thin FeSn reaction layer could be observed. Two interfacial layers (FeSn and FeSn2) were found after spreading at 450 C.

  13. {sup 117}In and {sup 118}Sn Homologous State Identification via the {sup 120}Sn(p-vector,alpha){sup 117}In and {sup 121}Sb(p-vector,alpha){sup 118}Sn Reactions

    SciTech Connect

    Zetta, L.; Guazzoni, P.; Cavallaro, M.; Faestermann, T.; Graw, G.; Hertenberger, R.; Wirth, H.-F.; Jaskola, M.

    2009-08-04

    To investigate the spectator role of the 1g{sub 5/2} unpaired proton outside the Z = 50 closed shell, the {sup 120}Sn(p-vector,alpha){sup 117}In and {sup 121}Sb(p-vector,alpha){sup 118}Sn reactions have been measured in high resolution experiments at 23 MeV incident proton energy of the Munich MP Tandem accelerator, using the Stern-Gerlach type polarized hydrogen ion source and the Q3D magnetic spectrograph.

  14. Tunable solar-heat shielding property of transparent films based on mesoporous Sb-doped SnO₂ microspheres.

    PubMed

    Li, Yusheng; Liu, Jie; Liang, Jie; Yu, Xibin; Li, Dongjia

    2015-04-01

    In this paper, mesoporous antimony doped tin oxide (ATO) microspheres are synthesized via a solvothermal method from a methanol system with the surfactant followed by a thermal treatment process. Morphology studies reveal that the spherical products obtained by polyvinylpyrrolidone (PVP) templating result in a higher uniformity in size. Such obtained ATO microspheres with a secondary particle size ranging between 200 and 800 nm consist of packed tiny nanocrystals and have high specific surface area (∼98 m(2) g(-1)). The effect of Sb doping on the structural and electrical properties of SnO2 microspheres is studied. Because of the substitution of Sn(4+) with Sb(5+) accompanied by forming a shallow donor level close to the conduction band of SnO2, a lower resistivity of powder pellet can be achieved, which corresponds to the spectrally selective property of films. The application of ATO microspheres provides an example of transparent coatings; depending on Sb concentration in SnO2 and solid content of coatings, transparent films with tunable solar-heat shielding property are obtained. PMID:25774799

  15. The Influence of Sn Additions on the Thermoelectric and Transport Properties of FeSb2Te-based Ternary Skutterudites

    NASA Astrophysics Data System (ADS)

    Navrátil, J.; Plecháček, T.; Drašar, Č.; Kucek, V.; Laufek, F.; Černošková, E.; Beneš, L.; Vlček, M.

    2016-06-01

    The influence of Sn additions was studied in a series of samples of a nominal composition FeSb2Te1- x Sn x ( x = 0, 0.05, 0.1, 0.15, 0.2). SnTe compound was primarily identified in the matrix compound of the ternary skutterudite structure in the multiphase composite samples. It was determined that Sn atoms preferentially react with Te atoms which are present in order to form SnTe compound instead of entering the skutterudite structure. A detailed analysis of the composition of the ternary skutterudite matrix compound evoked by the striking similarities of the observed changes between the samples and another two published systems (FeSb2Te1- x Ge x and FeSb2+ x Te1- x ) revealed the crucial role of the Sb/Te ratio as the dominant factor driving the observed changes of the measured properties. The anomalous changes of the measured transport properties values were explained in terms of an effective medium theory for two-phase FeSb2Te-SnTe composites. A maximum value of thermoelectric figure-of-merit, ZT = 0.47 at 673 K, was attained for the sample of a nominal composition FeSb2Te0.85Sn0.15.

  16. Influence of root temperature on phytoaccumulation of As, Ag, Cr, and Sb in potato plants (Solanum tuberosum L. var. Spunta).

    PubMed

    Baghour, M; Moreno, D A; Hernández, J; Castilla, N; Romero, L

    2001-01-01

    Three consecutive years of field experiments were carried out to investigate the effect of root temperatures induced by the application of mulches for phytoextraction of As, Ag, Cr and Sb using potato plants (roots, tubers, stems and leaflets). Four different plastic covers were used (T1: transparent polyethylene; T2: white polyethylene; T3: white and black coextruded polyethylene; and T4: black polyethylene), taking uncovered plants as control (T0). The different treatments had a significant effect on mean root temperatures (T0 = 16 degrees C, T1 = 20 degrees C, T2 = 23 degrees C, T3 = 27 degrees C and T4 = 30 degrees C) and induced a significantly different response in the As, Ag, Cr and Sb phytoaccumulation. The T3 treatment gave rise to the greatest phytoaccumulation of As, Ag, Cr and Sb in the roots, leaflets and tubers. In terms of the relative distribution of the phytoaccumulated metals (with respect to the total of the plant), As accumulated mainly in the roots and leaflets whereas Ag, Cr and Sb accumulated primarily in the tubers, establishing a close relationship between biomass development of each organ and phytoaccumulation capacity of elements in response to temperature in the root zone. With regard to phytoremediation using the potato plant, it is necessary to ascertain the influence and include the control of the thermal regime of the soil to optimize the phytoextraction of pollutants. PMID:11545361

  17. Thermoelectric device including an alloy of GeTe and AgSbTe as the P-type element

    DOEpatents

    Skrabek, Emanuel Andrew; Trimmer, Donald Smith

    1976-01-01

    Improved alloys suitable for thermoelectric applications and having the general formula: (AgSbTe.sub.2).sub.1.sub.-x + (GeTe).sub.x wherein x has a value of about 0.80 and 0.85, have been found to possess unexpectedly high thermoelectric properties such as efficiency index, as well as other improved physical properties.

  18. Reliability Investigations on SnAg Bumps on Substrate Pads with Different Pad Finish

    SciTech Connect

    Bauer, R.; Ebersberger, B.; Kupfer, C.; Alexa, L.

    2006-02-07

    SnAg solder bump is one bump type which is used to replace eutectic SnPb bumps. In this work tests have been done to characterize the reliability properties of this bump type. Electromigration (EM) tests, which were accelerated by high current and high temperature and high temperature storage (HTS) tests were performed. It was found that the reliability properties are sensitive to the material combinations in the interconnect stack. The interconnect stack includes substrate pad, pad finish, bump, underbump metallization (UBM) and the chip pad. Therefore separate test groups for SnAg bumps on Cu substrate pads with organic solderability preservative (OSP) finish and the identical bumps on pads with Ni/Au finish were used. In this paper the reliability test results and the corresponding failure analysis are presented. Some explanations about the differences in formation of intermetallic compounds (IMCs) are given.

  19. High-Pressure Synthesis and Superconductivity of Ag-Doped Topological Crystalline Insulator SnTe (Sn1-xAgxTe with x = 0-0.5)

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Yoshikazu; Miura, Osuke

    2016-05-01

    We have synthesized single-phase polycrystalline samples of Sn1-xAgxTe, i.e., the Ag-doped topological crystalline insulator SnTe, with a range of x ≤ 0.5 by a high-pressure synthesis method. The crystal structure of Sn1-xAgxTe at room temperature is a cubic NaCl type structure, which does not vary upon Ag substitution. Bulk superconductivity with a transition temperature of 2.4 K was observed for x = 0.15-0.25, and the optimal Ag content was x = 0.2. The Sn1-xAgxTe superconducting phase will be useful for understanding the superconductive nature and mechanisms of the carrier-doped SnTe system.

  20. Significantly Improved Mechanical Properties of Bi- Sn Solder Alloys by Ag- Doping

    NASA Astrophysics Data System (ADS)

    McCormack, M.; Chen, H. S.; Kammlott, G. W.; Jin, S.

    1997-08-01

    The addition of small amounts of Ag (less than ~;0.5 wt. %) is found to significantly improve the ductility of the binary Bi-Sn eutectic solder. The ductility improvement, more than a threefold increase in tensile elongation, is observed even at a relatively high strain rate (0.01 s-1). As the Bi-Sn binary eutectic alloy tends to fail catastrophically by brittle fracture at high strain rates, the reduced strain-rate sensitivity in the Ag-containing alloy is beneficial for improving solder reliability on sudden impacting as might be encountered during device assembly, shipping, or thermal shock/cycling. The observed increase in alloy ductility by Ag additions is attributed to a substantial refinement of the solidification microstructure.

  1. Phase equilibria in systems Ce-M-Sb (M=Si, Ge, Sn) and superstructure Ce{sub 12}Ge{sub 9-x}Sb{sub 23+x} (x=3.8+-0.1)

    SciTech Connect

    Nasir, Navida; Grytsiv, Andriy; Rogl, Peter; Saccone, Adriana; Giester, Gerald

    2009-04-15

    Phase relations in the ternary systems Ce-M-Sb (M=Si, Ge, Sn) in composition regions CeSb{sub 2}-Sb-M were studied by optical and electron microscopy, X-ray diffraction, and electron probe microanalysis on arc-melted alloys and specimens annealed in the temperature region from 850 to 200 deg. C. The results, in combination with an assessment of all literature data available, were used to construct solidus surfaces and a series of isothermal sections. No ternary compounds were found to form in the Ce-Si-Sb system whilst Ce{sub 12}Ge{sub 9-x}Sb{sub 23+x} (3.3Sn{sub x}Sb{sub 2} (0.1Sb{sub 23+x} (x=3.8+-0.1) were determined from X-ray single crystal and powder diffraction. For the binary system Ge-Sb a eutectic was defined Lreversible(Ge)+(Sb) at 591.6 deg. C and 22.5 at%. Ge EPMA revealed a maximal solubility of 6.3 at% Ge in (Sb) at the eutectic temperature. - Graphical abstract: Phase relations in the ternary systems Ce-M-Sb (M=Si, Ge, Sn) in composition regions CeSb{sub 2}-Sb-M have been studied by optical and electron microscopy, XRD and EPMA on as cast alloys and specimens annealed in the temperature region 200-850 deg. C.

  2. Internally consistent database for sulfides and sulfosalts in the system Ag 2S-Cu 2S-ZnS-Sb 2S 3-As 2S 3

    NASA Astrophysics Data System (ADS)

    Sack, Richard O.

    2000-11-01

    An updated thermodynamic database for Ag 2S-Cu 2S-ZnS-Sb 2S 3-As 2S 3 sulfides and sulfosalts applicable to temperatures above 119°C is developed to calculate phase relations for polybasite-pearceite- and fahlore-bearing assemblages. It is based on pre-existing and new constraints on activity-composition, Ag-Cu and As-Sb partitioning, and other relations, and on experiments (200-300°C, evacuated silica tubes) conducted to define the stability of the polybasite-pearceite [(Ag 1- x,Cu x) 16(Sb 1- y,As y) 2S 11] + ZnS sphalerite assemblage with respect to assemblages containing (Ag,Cu) 2S sulfides coexisting with (Cu, Ag) 10Zn 2(Sb,As) 4S 13 fahlore sulfosalts. It was found that the thermodynamics of mixing of bcc- and hcp-(Ag,Cu) 2S solutions, which are fast-ion conductors, may be described by using site multiplicities of metals α Ag,Cu > 2 and temperature-dependent regular solution parameters. We obtained estimates for the Gibbs energies of formation for Ag 16Sb 2S 11 and Cu 16Sb 2S 11 polybasite endmembers from the simple sulfides (Ag 2S, Cu 2S, and Sb 2S 3) of -30.79 and -4.07 kJ/gfw at 200°C, and -32.04 and -0.59 kJ/gfw at 400°C, respectively, that are about one half kJ/gfw more positive and about 6 kJ/gfw more negative than those estimated by Harlov and Sack (1995b). The corresponding estimates for formation energies of Ag 10Zn 2Sb 4S 13 and Cu 10Zn 2Sb 4S 13 fahlores (-20.29 and -105.29 kJ/gfw at 200°C and -23.72 and -105.76 kJ/gfw at 400°C) are comparable to, and roughly 110 kJ/gfw more positive than, the corresponding estimates of Ebel and Sack (1994). We also determined that the Gibbs energies of the As-Sb exchange reactions: 1/4Ag 10Zn2Sb4S13+1/2Ag 16As2S11=1/2Ag 16Sb2S11+1/4Ag 10Zn2As4S13Sb-fahlorepearceitepolybasiteAs-fahlore and Ag3SbS3+1/2Ag 16As2S11=1/2Ag 16Sb2S11+Ag3AsS3pyrargyritepearceitepolybasiteproustite are, respectively, 8.75 and 0.40 kJ/gfw in the range 150-350°C, and these predictions are consistent with As-Sb partitioning relations

  3. High temperature magnetic order in Zn1‑x Mn x SnSb2+MnSb nanocomposite ferromagnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Kilanski, L.; Górska, M.; Ślawska-Waniewska, A.; Lewińska, S.; Szymczak, R.; Dynowska, E.; Podgórni, A.; Dobrowolski, W.; Ralević, U.; Gajić, R.; Romčević, N.; Fedorchenko, I. V.; Marenkin, S. F.

    2016-08-01

    We present studies of structural, magnetic, and electrical properties of Zn1‑x Mn x SnSb2+MnSb nanocomposite ferromagnetic semiconductors with the average Mn-content, \\bar{x} , changing from 0.027 up to 0.138. The magnetic force microscope imaging done at room temperature shows the presence of a strong signal coming from MnSb clusters. Magnetic properties show the paramagnet-ferromagnet transition with the Curie temperature, T C, equal to about 522 K and the cluster-glass behavior with the transition temperature, T CG, equal to about 465 K, both related to MnSb clusters. The magnetotransport studies show that all investigated samples are p-type semiconductors with high hole concentration, p, changing from 1021 to 1022 cm‑3. A large increase in the resistivity as a function of the magnetic field is observed at T  <  10 K and small magnetic fields, |B|<100 mT, for all the studied samples with a maximum amplitude of the magnetoresistance about 460% at T  =  1.4 K. The large increase in the resistivity is most probably caused by the appearance of the superconducting state in the samples at T  <  4.3 K.

  4. Ternary eutectic growth of Ag-Cu-Sb alloy within ultrasonic field

    NASA Astrophysics Data System (ADS)

    Zhai, Wei; Hong, Zhenyu; Wei, Bingbo

    2007-08-01

    The liquid to solid transformation of ternary Ag42.4Cu21.6Sb36 eutectic alloy was accomplished in an ultrasonic field with a frequency of 35 kHz, and the growth mechanism of this ternary eutectic was examined. Theoretical calculations predict that the sound intensity in the liquid phase at the solidification interface increases gradually as the interface moves up from the sample bottom to its top. The growth mode of ( ɛ + θ + Sb) ternary eutectic exhibits a transition of “divorced eutectic—mixture of anomalous and regular structures—regular eutectic” along the sample axis due to the inhomogeneity of sound field distribution. In the top zone with the highest sound intensity, the cavitation effect promotes the three eutectic phases to nucleate independently, while the acoustic streaming efficiently suppresses the coupled growth of eutectic phases. In the meantime, the ultrasonic field accelerates the solute transportation at the solid-liquid interface, which reduces the solute solubility of eutectic phases.

  5. Viscosity of liquid Ag-In-Sb-Te: Evidence of a fragile-to-strong crossover.

    PubMed

    Orava, J; Weber, H; Kaban, I; Greer, A L

    2016-05-21

    The temperature-dependent viscosity η(T) is measured for the equilibrium liquid of the chalcogenide Ag-In-Sb-Te (AIST), the first time this has been reported for a material of actual interest for phase-change memory. The measurements, in the range 829-1254 K, are made using an oscillating-crucible viscometer, and show a liquid with high fragility and low viscosity, similar to liquid pure metals. Combining the high-temperature viscosity measurements with values inferred from crystal growth rates in the supercooled liquid allows the form of η(T) to be estimated over the entire temperature range from above the melting point down to the glass transition. It is then clear that η(T) for liquid AIST cannot be described with a single fragility value, unlike other phase-change chalcogenides such as liquid Ge-Sb-Te. There is clear evidence for a fragile-to-strong crossover on cooling liquid AIST, similar to that analyzed in Te85Ge15. The change in fragility associated with the crossover in both these cases is rather weak, giving a broad temperature range over which η(T) is near-Arrhenius. We discuss how such behavior may be beneficial for the performance of phase-change memory. Consideration of the fragile-to-strong crossover in liquid chalcogenides may be important in tuning compositions to optimize the device performance. PMID:27208954

  6. Viscosity of liquid Ag-In-Sb-Te: Evidence of a fragile-to-strong crossover

    NASA Astrophysics Data System (ADS)

    Orava, J.; Weber, H.; Kaban, I.; Greer, A. L.

    2016-05-01

    The temperature-dependent viscosity η(T) is measured for the equilibrium liquid of the chalcogenide Ag-In-Sb-Te (AIST), the first time this has been reported for a material of actual interest for phase-change memory. The measurements, in the range 829-1254 K, are made using an oscillating-crucible viscometer, and show a liquid with high fragility and low viscosity, similar to liquid pure metals. Combining the high-temperature viscosity measurements with values inferred from crystal growth rates in the supercooled liquid allows the form of η(T) to be estimated over the entire temperature range from above the melting point down to the glass transition. It is then clear that η(T) for liquid AIST cannot be described with a single fragility value, unlike other phase-change chalcogenides such as liquid Ge-Sb-Te. There is clear evidence for a fragile-to-strong crossover on cooling liquid AIST, similar to that analyzed in Te85Ge15. The change in fragility associated with the crossover in both these cases is rather weak, giving a broad temperature range over which η(T) is near-Arrhenius. We discuss how such behavior may be beneficial for the performance of phase-change memory. Consideration of the fragile-to-strong crossover in liquid chalcogenides may be important in tuning compositions to optimize the device performance.

  7. Electrical properties of Sb-doped epitaxial SnO2 thin films prepared using excimer-laser-assisted metal-organic deposition

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Tetsuo; Nakajima, Tomohiko; Shinoda, Kentaro

    2013-12-01

    Excimer-laser-assisted metal-organic deposition (ELAMOD) was used to prepare Sb-doped epitaxial (001) SnO2 thin films on (001) TiO2 substrates at room temperature. The effects of laser fluence, the number of shots with the laser, and Sb content on the electrical properties such as resistivity, carrier concentration, and carrier mobility of the films were investigated. The resistivity of the Sb-doped epitaxial (001) SnO2 thin film prepared using an ArF laser was lower than that of the film prepared using a KrF laser. The van der Pauw method was used to measure the resistivity, carrier concentration, and carrier mobility of the Sb-doped epitaxial (001) SnO2 thin films in order to determine the effect of Sb content on the electrical resistivity of the films. The lowest resistivity obtained for the Sb-doped epitaxial (001) SnO2 thin films prepared using ELAMOD with the ArF laser and 2 % Sb content was 2.5 × 10-3 Ω cm. The difference between the optimal Sb concentrations and resistivities of the films produced using either ELAMOD or conventional thermal MOD was discussed.

  8. Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode.

    PubMed

    Chen, Yong; Li, Hongyi; Liu, Weijing; Tu, Yong; Zhang, Yaohui; Han, Weiqing; Wang, Lianjun

    2014-10-01

    The interlayer of Sb-doped SnO2 (SnO2-Sb) and TiO2 nanotubes (TiO2-NTs) on Ti has been introduced into the PbO2 electrode system with the aim to reveal the mechanism of enhanced electrochemical performance of TiO2-NTs/SnO2-Sb/PbO2 electrode. In contrast with the traditional Ti/SnO2-Sb/PbO2 electrode, the constructed PbO2 electrode has a more regular and compact morphology with better oriented crystals of lower size. The TiO2-NTs/SnO2-Sb interlayer prepared by electrodeposition process improves PbO2 coating structure effectively, and enhances the electrochemical performance of PbO2 electrode. Kinetic analyses indicated that the electrochemical oxidation of nitrobenzene on the PbO2 electrodes followed pseudo-first-order reaction, and mass transport was enhanced at the constructed electrode. The accumulation of nitrocompounds of degradation intermediates on constructed electrode was lower, and almost all of the nitro groups were eliminated from aromatic rings after 6h of electrolysis. Higher combustion efficiency was obtained on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode. The intermediates of nitrobenzene oxidation were confirmed by IC and GC/MS. PMID:25065789

  9. Effects of Cooling Rate on the Microstructure and Morphology of Sn-3.0Ag-0.5Cu Solder

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Teng; Huang, Kuo-Chen

    2016-01-01

    This study explored the effect of the cooling rate on the microstructure and morphology of Sn-3.0Ag-0.5Cu (SAC305) lead-free solder. In the experiments, rapid cooling (P1: 63.17°C/s) of SAC305 solder resulted in high tensile strength (60.8 MPa) with no significant loss in ductility (strain >40%) due to the formation of fine-grained primary β-Sn (average size ˜14 μm) surrounded by a network-like fine eutectic structure consisting of β-Sn and particle-like Ag3Sn compound. As the cooling rate was reduced, the morphology of the Ag3Sn compound evolved progressively from a particle- to a needle-like form and finally to a leaf- or plate-like form. The cooling rate significantly affected the β-Sn grain size and the morphology of the Ag3Sn compound. Water cooling (at the fastest cooling rate of 100°C/s) of a solder sample resulted in a microstructure consisting of the finest structure of Ag3Sn and β-Sn with no Cu6Sn5, consequently exhibiting the highest hardness of the various specimens. By contrast, after cooling at the slowest rate of 0.008°C/s, the sample exhibited a coarse eutectic structure consisting of large plate-like Ag3Sn compound and isolated long rod-like Cu6Sn5 precipitates. This coarse structure resulted in both lower hardness and poorer tensile strength.

  10. Effect of SnO, MgO and Ag2O Mix-doping on the Formation and Superconducting Properties of Bi-2223 Ag/tapes

    NASA Astrophysics Data System (ADS)

    Lu, X. Y.; Yi, D.; Chen, H.; Nagata, A.

    The Ag/tapes with the composition Bi1.8Pb0.4Sr1.9Ca2.1Cu3.5Oy + x wt% SnO + y wt% MgO + z wt% Ag2O (x = 0, 0.2, 0.4; y = 0, 0.2; z = 0, 0.2) were prepared by sintering at 835°C for 120 h after partial-melting at 845°C for 1 h. The individual SnO doping, SnO and Ag2O mix-doping, and SnO and MgO mix-doping all decrease the conversion of Bi-2212 phase to Bi-2223 phase. The tape with individual 0.4 wt% SnO doping shows the lowest conversion and the lowest critical current density. However, the SnO, MgO and Ag2O mix-doping increase the conversion of Bi-2212 phase to Bi-2223 phase. The tape with 0.2 wt% SnO, 0.2 wt% MgO and 0.2 wt%Ag2O mix-doping shows the highest proportion of Bi-2223 phase and the highest critical current density.

  11. Electrodeposition of SnSbCu Alloy on Copper from an Electrolyte with Varied Content of Antimony Chloride

    NASA Astrophysics Data System (ADS)

    Valeeva, A. Kh.; Valeev, I. Sh.

    2015-10-01

    The microstructure and chemical composition of electrodeposited alloys of the SnSbCu system with varied concentration of antimony chloride in the electrolyte have been investigated. It is shown that during electrodeposition mechanical-mixture alloys are not formed, but rather intermetallic compounds. It is found that increasing the concentration of antimony chloride in the electrolyte leads to a decrease in the tin content and cracking of the coating.

  12. Intermetallic compounds formed at the interface between Cu substrate and an Sn-9Zn-0.5Ag lead-free solder

    SciTech Connect

    Chang, T.-C.; Hon, M.-H.; Wang, M.-C

    2003-04-30

    The intermetallic compounds (IMCs) formed at the interface between Cu substrate and an Sn-9Zn-0.5Ag lead-free solder alloy have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron diffraction (ED). The XRD patterns show that the main IMCs formed at the interface of Sn-9Zn-0.5Ag/Cu are {gamma}-Cu{sub 5}Zn{sub 8} and {eta}'-Cu{sub 6}Sn{sub 5}. The Ag{sub 3}Sn IMC with orthorhombic structure was also observed at the Sn-9Zn-0.5Ag/Cu interface by TEM and ED analyses. The interfacial adhesion strength between the Cu substrate and Sn-9Zn-0.5Ag lead-free solder alloy is higher than that of the Sn-9Zn alloy due to the formation of Ag{sub 3}Sn IMC at the interface.

  13. Co(x)Ni(4-x)Sb(12-y)Sn(y) Ternary Skutterudites: Processing and Thermoelectric Properties

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Skutterudites have proven to be a useful thermoelectric system as a result of their high figure of merit, favorable mechanical properties, and good thermal stability. Binary skutterudites have received the majority of interest in recent years, as a result of successful double and triple filling schemes. Ternary skutterudites, such as Ni4Sb7Sn5, also demonstrate good thermoelectric performance, with high power factor and low thermal conductivity. Ternary skutterudites, as contrasted to binary systems, provide more possibility for tuning electronic structure as substitutions can be studied on three elements. The Co(x)Ni(4-x)Sb(12-y)Sn(y) system has been investigated as both a p- and n-type thermoelectric material, stable up to 200 C. The system is processed through a combination of solidification, mechanical alloying, and hot pressing steps. Rietveld structure refinement has revealed an interesting occupancy of Sn on both the 24g Wyckoff position with Sb as well as the 2a position as a rattler. In addition to thermoelectric properties, detailed processing routes have been investigated on the system.

  14. Zintl-phase compounds with SnSb4 tetrahedral anions. Electronic structure and thermoelectric properties

    SciTech Connect

    Zhang, Lijun; Du, Mao-Hua; Singh, David J.

    2010-02-22

    We report the investigation of Zintl-phase Na(K){sub 8}SnSb{sub 4} and related compounds that contain SnSb{sub 4} tetrahedral anions using first principles electronic structure, Boltzmann transport, and density functional phonon calculations. We find that these compounds are narrow-gap semiconductors and there is a combination of heavy and light bands at valence band edge, which may lead to a combination of high thermopower and reasonable conductivity. High values of the thermopower are found for p-type doping within the Boltzmann transport theory. Furthermore, these materials are expected to have low thermal conductivity due to their structures that consist of a network of weakly coupled SnSb{sub 4} clusters, which leads to low phonon frequencies. In particular, we find low-frequency optical phonons that should effectively scatter the heat-carrying acoustic phonons. These results are discussed in terms of the structure, which consists of anionic clusters. Based on the results, it is suggested that such compounds may represent a useful paradigm for finding new thermoelectric materials.

  15. Microstructural, optical and electrical investigations of Sb-SnO{sub 2} thin films deposited by spray pyrolysis

    SciTech Connect

    Gupta, Sushant; Yadav, B.C.; Dwivedi, Prabhat K.; Das, B.

    2013-09-01

    Highlights: • We controlled structural, morphological, electrical, optical and physical (such as band gap energy) properties by altering the Sb doping concentration. • Variation in bandgap with Sb concentration is in agreement with the Burstein–Moss hypothesis and this hypothesis was further confirmed by plotting E{sub g} vs n{sup 2/3}. • The resistivity and mobility are in the range of 1.512–6.624 × 10{sup −3} Ω cm and 9.75–22.96 cm{sup 2} V{sup −1} s{sup −1}. The e-density lies between 4.11 × 10{sup 19} and 4.24 × 10{sup 20} cm{sup −3}. • We observed that Sb substitution in SnO{sub 2} lattice decreases the crystallite size and the possible reason for this is the creation of Sb monolayer on the surface of SnO{sub 2} crystallite. - Abstract: The structural, optical and electrical properties of spray deposited antimony (Sb) doped tin oxide (SnO{sub 2}) thin films, prepared from SnCl{sub 4} precursor, have been studied as a function of antimony doping concentration. The doping concentration was varied from 0 to 1.5 wt.% of Sb. The analysis of X-ray diffraction patterns revealed that the as deposited doped and undoped tin oxide thin films are pure crystalline tetragonal rutile phase of tin oxide which belongs to the space group P4{sub 2}/mnm (number 136). The surface morphological examination with field emission scanning electron microscopy (FESEM) revealed the fact that the grains are closely packed and pores/voids between the grains are very few. The resistivity (ρ) and mobility (μ) are in the range of 1.512 × 10{sup −3}–6.624 × 10{sup −3} Ω cm and 9.75–22.96 cm{sup 2} V{sup −1} s{sup −1}. The electron density lies between 4.11 × 10{sup 19} and 4.24 × 10{sup 20} cm{sup −3}. A thorough electrical investigation reveals that the film's resistivity depends on carrier concentration. It is found that ionized impurity scattering is the dominant mechanism, which limits the mobility of the carriers. The transmittance spectra for

  16. Synthesis and high temperature thermoelectric properties of Yb0.25Co4Sb12-(Ag2Te)x(Sb2Te3)1−x nanocomposites

    PubMed Central

    Zheng, Jin; Peng, Jiangying; Zheng, Zhexin; Zhou, Menghan; Thompson, Emily; Yang, Junyou; Xiao, Wanli

    2015-01-01

    Nanocomposites are becoming a new paradigm in thermoelectric study: by incorporating nanophase(s) into a bulk matrix, a nanocomposite often exhibits unusual thermoelectric properties beyond its constituent phases. To date most nanophases are binary, while reports on ternary nanoinclusions are scarce. In this work, we conducted an exploratory study of introducing ternary (Ag2Te)x(Sb2Te3)1−x inclusions in the host matrix of Yb0.25Co4Sb12. Yb0.25Co4Sb12-4wt% (Ag2Te)x(Sb2Te3)1−x nanocomposites were prepared by a melting-milling-hot-pressing process. Microstructural analysis showed that poly-dispersed nanosized Ag-Sb-Te inclusions are distributed on the grain boundaries of Yb0.25Co4Sb12 coarse grains. Compared to the pristine nanoinclusion-free sample, the electrical conductivity, Seebeck coefficient, and thermal conductivity were optimized simultaneously upon nanocompositing, while the carrier mobility was largely remained. A maximum ZT of 1.3 was obtained in Yb0.25Co4Sb12-4wt% (Ag2Te)0.42(Sb2Te3)0.58 at 773 K, a ~ 40% increase compared to the pristine sample. The electron and phonon mean-free-path were estimated to help quantify the observed changes in the carrier mobility and lattice thermal conductivity. PMID:26389111

  17. Engineering study on TiSnSb-based composite negative electrode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wilhelm, H. A.; Marino, C.; Darwiche, A.; Soudan, P.; Morcrette, M.; Monconduit, L.; Lestriez, B.

    2015-01-01

    Micrometric TiSnSb is a promising negative electrode material for Li-ion batteries when formulated with carboxymethyl cellulose (CMC) binder and a mixture of carbon black and carbon nanofibers, and cycled in a fluoroethylene carbonate (FEC)-containing electrolyte. Here, other binder systems were evaluated, polyacrylic acid (PAAH) mixed with CMC, CMC in buffered solution at pH 3 and amylopectin. However CMC showed the better performance in terms of cycle life of the electrode. Whatever the binder, cycle life decreases with increasing the active mass loading, which is attributed to both the precipitation of liquid electrolyte degradation products and to the loss of electrical contacts within the composite electrode and with the current collector as a consequence of the active particles volume variations. Furthermore, calendaring the electrode unfortunately decreases the cycle life. The rate performance was studied as a function of the active mass loading and was shown to be determined by the electrode polarization resistance. Finally, full cells cycling tests with Li1Ni1/3Co1/3Mn1/3O2 at the positive electrode were done. 60% of the capacity is retained after 200 cycles at the surface capacity of 2.7 mAh cm-2.

  18. Tensile, creep, and ABI tests on sn5%sb solder for mechanical property evaluation

    NASA Astrophysics Data System (ADS)

    Murty, K. Linga; Haggag, Fahmy M.; Mahidhara, Rao K.

    1997-07-01

    Sn5%Sb is one of the materials considered for replacing lead containing alloys for soldering in electronic packaging. We evaluated the tensile properties of the bulk material at varied strain-rates and temperatures (to 473K) to determine the underlying deformation mechanisms. Stress exponents of about three and seven were observed at low and high stresses, respectively, and very low activation energies for creep (about 16.7 and 37.7 kJ/mole) were noted. A maximum ductility of about 350% was noted at ambient temperature. Creep tests performed in the same temperature regime also showed two distinct regions, albeit with slightly different exponents (three and five) and activation energy (about 54.4 kJ/mole). Ball indentation tests were performed on the shoulder portions of the creep samples (prior to creep tests) using a Stress-Strain Microprobe@ (Advanced Technology Corporation) at varied indentation rates (strain-rates). The automated ball indentation (ABI) data were at relatively high strain-rates; however, they were in excellent agreement with creep data, while both these results deviated from the tensile test data. Work is planned to perform creep at high stresses at ambient and extend ABI tests to elevated temperatures.

  19. Application of Molecular Interaction Volume Model for Phase Equilibrium of Sn-Based Binary System in Vacuum Distillation

    NASA Astrophysics Data System (ADS)

    Kong, Lingxin; Yang, Bin; Xu, Baoqiang; Li, Yifu

    2014-09-01

    Based on the molecular interaction volume model (MIVM), the activities of components of Sn-Sb, Sb-Bi, Sn-Zn, Sn-Cu, and Sn-Ag alloys were predicted. The predicted values are in good agreement with the experimental data, which indicate that the MIVM is of better stability and reliability due to its good physical basis. A significant advantage of the MIVM lies in its ability to predict the thermodynamic properties of liquid alloys using only two parameters. The phase equilibria of Sn-Sb and Sn-Bi alloys were calculated based on the properties of pure components and the activity coefficients, which indicates that Sn-Sb and Sn-Bi alloys can be separated thoroughly by vacuum distillation. This study extends previous investigations and provides an effective and convenient model on which to base refining simulations for Sn-based alloys.

  20. Effects of Ag and Al Additions on the Structure and Creep Properties of Sn-9Zn Solder Alloy

    NASA Astrophysics Data System (ADS)

    Mahmudi, R.; Geranmayeh, A. R.; Noori, H.; Taghaddosi, M.

    2009-02-01

    Creep behavior of the eutectic Sn-9Zn, Sn-9Zn-0.5Ag, and Sn-9Zn-0.5Al solder alloys was studied by impression testing under constant punching stress in the range of 60 MPa to 130 MPa and at temperatures in the range of 298 K to 370 K. Analysis of the data showed that, for all loads and temperatures, Sn-9Zn-0.5Al had the lowest creep rates and thus the highest creep resistance among all materials tested. The creep resistance of Sn-9Zn-0.5Ag was slightly lower than that of the Al-containing alloy. The enhanced creep behaviors of the ternary alloys are attributed to the presence of AgZn3 and very fine Zn particles, which act as the main strengthening agents in the Sn-9Zn-0.5Ag and Sn-9Zn-0.5Al alloys, respectively. Assuming a power-law relationship between the impression rate and stress, average stress exponents of 6.9, 7.1, and 7.2 and activation energies of 42.1 kJ mol-1, 42.9 kJ mol-1, and 43.0 kJ mol-1 were obtained for Sn-9Zn, Sn-9Zn-0.5Ag and Sn-9Zn-0.5Al, respectively. These activation energies are close to 46 kJ mol-1 for dislocation climb, assisted by vacancy diffusion through dislocation cores in the Sn. This, together with the stress exponents of about 7, suggests that the operative creep mechanism is dislocation climb controlled by dislocation pipe diffusion.

  1. Amperometric biosensor of SnO2 thin film modified by Pd, In and Ag nanostructure synthesized by CSP method

    NASA Astrophysics Data System (ADS)

    Hassan, Marwa Abdul Muhsien; Hateef, Areej Adnan; Majeed, Aseel Mustafa Abdul; Al-Jabiry, Ali Jasim Mohammed; Jameel, Sabah; Hussian, Haidar Abdul Razaq Abdul

    2013-10-01

    Palladium, Indium and Silver-doped SnO2 thin film was deposited by chemical spray pyrolysis on ITO and porous silicon substrates to be a fast MgSO4·7H2O amperometric biosensor. The prepared SnO2 films were doped by dipping in palladium chloride PdCl2, indium chloride, InCl3 and silver nitrides AgNO3 dissolved in ethanol C2H5OH. The structural and optical properties of the prepared films were studied. The sensitivity behaviors of SnO2, SnO2: Pd, SnO2: In and SnO2: Ag based on the amperometric biosensor to MgSO4·7H2O salts were investigated at room temperature with different doping.

  2. Reliability of Sn-3.5Ag Solder Joints in High Temperature Packaging Applications

    SciTech Connect

    Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth; Kercher, Andrew K; Leslie, Dr Scott

    2010-01-01

    There is a significant need for next generation, high performance power electronic packages and systems with wide band gap devices to operate at high temperatures in automotive and electricity transmission applications. Sn-3.5Ag solder is a candidate for use in such packages with potential operating temperatures up to 200oC. However, there is a need to understand thermal cycling reliability of Sn-3.5Ag solders subject to such operating conditions. The results of a study on the damage evolution occurring in large area Sn-3.5Ag solders joints between silicon dies and DBC substrates subject to thermal cycling between 200oC and 5oC is presented in this paper. Damage accumulation was followed using high resolution X-ray radiography techniques while nonlinear finite element models were developed based on the mechanical property data available in literature to understand the relationship between the stress state within the solder joint and the damage evolution occurring under thermal cycling conditions. It was observed that regions of damage observed in the experiments do not correspond to the finite element predictions of the location of regions of maximum plastic work.

  3. Development of a new Pb-free solder: Sn-Ag-Cu

    SciTech Connect

    Miller, C.M.

    1995-02-10

    With the ever increasing awareness of the toxicity of Pb, significant pressure has been put on the electronics industry to get the Pb out of solder. This work pertains to the development and characterization of an alloy which is Pb-free, yet retains the proven positive qualities of current Sn-Pb solders while enhancing the shortcomings of Sn-Pb solder. The solder studied is the Sn-4.7Ag-1.7Cu wt% alloy. By utilizing a variety of experimental techniques the alloy was characterized. The alloy has a melting temperature of 217{degrees}C and exhibits eutectic melting behavior. The solder was examined by subjecting to different annealing schedules and examining the microstructural stability. The effect of cooling rate on the microstructure of the solder was also examined. Overall, this solder alloy shows great promise as a viable alternative to Pb-bearing solders and, as such, an application for a patent has been filed.

  4. Soft chemical synthesis of Ag{sub 3}SbS{sub 3} with efficient and recyclable visible light photocatalytic properties

    SciTech Connect

    Gusain, Meenakshi; Rawat, Pooja; Nagarajan, Rajamani

    2014-12-15

    Highlights: • Highly crystalline Ag{sub 3}SbS{sub 3} synthesized using soft chemical approach. • First time report of photocatalytic activity of Ag{sub 3}SbS{sub 3}. • Ag{sub 3}SbS{sub 3} degraded the harmful organic dyes rapidly under visible radiation. • Pseudo first order kinetics have been followed in these sets of reactions. • Up to 90% of Methylene Blue degraded even after 4th cycle of catalyst reuse. • Structure of catalyst is intact after reuse. • As the catalyst is heavy, its separation after use is quite simple. - Abstract: Application of Ag{sub 3}SbS{sub 3}, obtained by soft chemical approach involving rapid reaction of air stable metal–thiourea complexes in ethylene glycol medium, as visible light photocatalyst for the degradation of dye solutions was investigated. Ag{sub 3}SbS{sub 3} was confirmed by high resolution powder X-ray diffraction pattern and its no defined morphology was present in SEM images. From UV–vis spectroscopy measurements, optical band gap of 1.77 eV was deduced for Ag{sub 3}SbS{sub 3}. Rapid degradation kinetics and recyclability was exhibited by Ag{sub 3}SbS{sub 3} towards Methylene Blue, Methyl Orange, Malachite Green, and Rhodamine 6G dye solutions under visible radiation. All these processes followed pseudo first order kinetics. High surface area (6.39 m{sup 2}/g), with mesopores (3.81 nm), arising from solvent mediated synthesis of Ag{sub 3}SbS{sub 3} has been correlated to its catalytic activity.

  5. Facile control of C₂H₅OH sensing characteristics by decorating discrete Ag nanoclusters on SnO₂ nanowire networks.

    PubMed

    Hwang, In-Sung; Choi, Joong-Ki; Woo, Hyung-Sik; Kim, Sun-Jung; Jung, Se-Yeon; Seong, Tae-Yeon; Kim, Il-Doo; Lee, Jong-Heun

    2011-08-01

    The effect of Ag decoration on the gas sensing characteristics of SnO(2) nanowire (NW) networks was investigated. The Ag layers with thicknesses of 5-50 nm were uniformly coated on the surface of SnO(2) NWs via e-beam evaporation, which were converted into isolated or continuous configurations of Ag islands by heat treatment at 450 °C for 2 h. The SnO(2) NWs decorated by isolated Ag nano-islands displayed a 3.7-fold enhancement in gas response to 100 ppm C(2)H(5)OH at 450 °C compared to pristine SnO(2) NWs. In contrast, as the Ag decoration layers became continuous, the response to C(2)H(5)OH decreased significantly. The enhancement and deterioration of the C(2)H(5)OH sensing characteristics by the introduction of the Ag decoration layer were strongly governed by the morphological configurations of the Ag catalysts on SnO(2) NWs and their sensitization mechanism. PMID:21744869

  6. Filled Co (sub X) Ni (sub 4-x) Sb (sub 12-y) Sn (sub Y) Skutterudites: Processing and Thermoelectric Properties

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    Skutterudites have proven to be a useful thermoelectric system as a result of their enhanced figure of merit (ZT1), cheap material cost, favorable mechanical properties, and good thermal stability. The majority of skutterudite interest in recent years has been focused on binary skutterudites like CoSb3 or CoAs3. Binary skutterudites are often double and triple filled, with a range of elements from the lanthanide series, in order to reduce the lattice component of thermal conductivity. Ternary and quaternary skutterudites, such as Co4Ge6Se6 or Ni4Sb8Sn4, provide additional paths to tune the electronic structure. The thermal conductivity can further be improved in these complex skutterudites by the introduction of fillers. The Co (sub X) Ni (sub 4-x) Sb (sub 12-y) Sn (sub Y) system has been investigated as both a p- and n-type thermoelectric material, and is stable up to 200 degrees Centigrade. Yb, Ce, and Dy fillers have been introduced into the skutterudite to study the influence of both the type and the quantity of fillers on processing conditions and thermoelectric properties. The system was processed through a multi-step technique that includes solidification, mechano-chemical alloying, and hot pressing which will be discussed along with thermoelectric transport properties.

  7. Thermoelectric Inhomogeneities in (Ag(sub 1-y)SbTe2)(sub x)(PbTe)(sub 1-x)

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Chen, Nancy; Gascoin, Franck; Mueller, Eckhard; Karpinski, Gabriele; Stiewe, Christian

    2006-01-01

    A document presents a study of why materials of composition (Ag1 ySbTe2)0.05 (PbTe)0.95 [0< or = y < or = 1] were previously reported to have values of the thermoelectric figure of merit [ZT (where Z = alpha(sup 2)/rk, alpha is the Seebeck coefficient, r is electrical resistivity, k is thermal conductivity, and T is absolute temperature)] ranging from <1 to >2. In the study, samples of (AgSbTe2)0.05(PbTe)0.95, (Ag0.67SbTe2)0.05 (PbTe)0.95, and (Ag0.55SbTe2)0.05(PbTe)0.95 were prepared by melting followed, variously, by slow or rapid cooling. Analyses of these samples by x-ray diffraction, electron microscopy, and scanning-microprobe measurements of the Seebeck coefficient led to the conclusion that these materials have a multiphase character on a scale of the order of millimeters, even though they appear homogeneous in x-ray diffraction and electron microscopy. The Seebeck measurements showed significant variations, including both n-type and p-type behavior in the same sample. These variations were found to be consistent with observed variations of ZT. The rapidly quenched samples were found to be less inhomogeneous than were the furnace-cooled ones; hence, rapid quenching was suggested as a basis of research on synthesizing more nearly uniform high-ZT samples.

  8. Enhanced thermoelectric performance and novel nanopores in AgSbTe{sub 2} prepared by melt spinning

    SciTech Connect

    Du, Baoli; Li, Han; Xu, Jingjing; Tang, Xinfeng; Uher, Ctirad

    2011-01-15

    We report a melt-spinning spark-plasma-sintering synthesis process of the polycrystalline p-type material composed of AgSbTe{sub 2} coarse grains and evenly formed 5-10 nm pores that occur primarily on the surface of matrix grains. The formation mechanism of nanopores and their influences on the thermoelectric properties have been studied and correlated. Microstructure analysis shows that the as-prepared sample can be regarded as a nanocomposite of matrix and in situ generated nanopores evenly coated on matrix grains. For the single-phase component and the possible energy-filter effect caused by the nanopores, the electrical transport properties are improved. Moreover, the thermal conductivity is significantly reduced by strong phonon scattering effect resulted from the nanopores. The thermoelectric performance of the as prepared sample enhances greatly and a ZT of 1.65 at 570 K is achieved, increasing{approx}200% compared with the sample prepared by traditional melt and slow-cooling method. -- Graphical abstract: Representative nanostructure of AgSbTe{sub 2} sample (a) ribbons obtained after melt spinning (b) bulk AgSbTe{sub 2} material obtained after spark plasma sintering. Display Omitted

  9. Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2-Sb electrodes.

    PubMed

    Niu, Junfeng; Bao, Yueping; Li, Yang; Chai, Zhen

    2013-09-01

    Electrochemical degradation of pentachlorophenol (PCP) in aqueous solution was investigated over Ti/SnO2-Sb electrodes prepared by sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements were used to characterize the physicochemical properties of the electrodes. The electrochemical degradation of PCP followed pseudo-first-order kinetics. The main influencing factors, including the types of supporting electrolyte (i.e., NaClO4, Na2SO4, Na2SO3, NaNO3, and NaNO2), initial concentrations of PCP (5-1000mgL(-1)), pH values (3.0-11.0), and current densities (5-40mAcm(-2)) were evaluated. The degradation and mineralization ratios of 100mgL(-1) of PCP achieved >99.8% and 83.0% after 30min electrolysis with a 10mmolL(-1) Na2SO4 at a current density of 10mAcm(-2), respectively. The corresponding half-life time (t1/2) was 3.94min. The degradation pathways that were involved in dechlorination, protons generation, and mineralization processes were proposed based on the determination of total organic carbon, chloride, and intermediate products (i.e., low chlorinated phenol and some organic acids). The toxicity of PCP and its intermediates could be reduced effectively by electrolysis. These results showed that electrochemical technique could achieve a significant mineralization rate in a short time (<30min), which provided an efficient way for PCP elimination from wastewater. PMID:23689100

  10. High-Tc Ferromagnetism and Electron Transport in p-Type Fe(1-x)Sn(x)Sb2Se4 Semiconductors.

    PubMed

    Djieutedjeu, Honore; Olvera, Alan; Page, Alexander; Uher, Ctirad; Poudeu, Pierre F P

    2015-11-01

    Single-phase polycrystalline powders of Fe(1-x)Sn(x)Sb2Se4 (x = 0 and 0.13) were synthesized by a solid-state reaction of the elements at 773 K. X-ray diffraction on Fe0.87Sn0.13Sb2Se4 single-crystal and powder samples indicates that the compound is isostructural to FeSb2Se4 in the temperature range from 80 to 500 K, crystallizing in the monoclinic space group C2/m (No. 12). Electron-transport data reveal a marginal alteration in the resistivity, whereas the thermopower drops by ∼60%. This suggests a decrease in the activation energy upon isoelectronic substitution of 13% Fe by Sn. Magnetic susceptibility and magnetization measurements from 2 to 500 K reveal that the Fe(1-x)Sb2Sn(x)Se4 phases exhibit ferromagnetic behavior up to ∼450 K (x = 0) and 325 K (x = 0.13). Magnetotransport data for FeSb2Se4 reveal large negative magnetoresistance, suggesting spin polarization of free carriers in the sample. The high-Tc ferromagnetism in Fe(1-x)Sn(x)Sb2Se4 phases and the decrease in Tc of the Fe0.87Sn0.13Sb2Se4 sample are rationalized by taking into account (1) the separation between neighboring magnetic centers in the crystal structures and (2) the formation of bound magnetic polarons, which overlap to induce long-range ferromagnetic ordering. PMID:26485196

  11. Transparent conductive ZnInSnO-Ag-ZnInSnO multilayer films for polymer dispersed liquid-crystal based smart windows

    NASA Astrophysics Data System (ADS)

    Kim, Eun Mi; Choi, In-Seok; Oh, Jeong-Pyo; Kim, Young-Baek; Lee, Jong-Ho; Choi, Yong-Sung; Cho, Jung-Dae; Kim, Yang-Bae; Heo, Gi-Seok

    2014-09-01

    Multilayer transparent films with electrical resistances lower than those in conventionally used transparent conductive electrodes were prepared at room temperature on glass substrates in an RF/DC magnetron sputtering system. The multilayer structure of the films consisted of three layers, ZnInSnO (ZITO)-Ag-ZITO. The optical and electrical properties of the multilayer structures were investigated with respect to the thickness of each ZITO-Ag-ZITO layer. Transparent conductive films with a sheet resistance of 9.4 Ω/square and an average transmittance of 92% at 550 nm were obtained at the following thicknesses of the glass substrate: ZITO (100 nm)-Ag (8 nm)-ZITO (42 nm). The surface roughness (RRMS) of the obtained ZITO-Ag-ZITO multilayer films was below 0.8 nm. Overall, the properties of the ZITO-Ag-ZITO multilayer films were comparable or superior to those of other multilayers such as InSnO (ITO)-Ag-ITO and InZnO (IZO)-Ag-IZO. The deposited ZITO single layer and ZITO-Ag-ZITO multilayer films were used in the fabrication of polymer-dispersed liquid-crystal (PDLC)-based smart windows. The ZITO-Ag-ZITO multilayer-based smart windows exhibited a lower operating voltage (16 V) and a higher cutoff rate of infrared light than ITO or ZITO-based smart windows 20-26 V. However, they showed a lower PDLC-ON transmittance than ITO-based smart windows.

  12. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials

    NASA Astrophysics Data System (ADS)

    Matsunaga, Toshiyuki; Akola, Jaakko; Kohara, Shinji; Honma, Tetsuo; Kobayashi, Keisuke; Ikenaga, Eiji; Jones, Robert O.; Yamada, Noboru; Takata, Masaki; Kojima, Rie

    2011-02-01

    Phase-change optical memories are based on the astonishingly rapid nanosecond-scale crystallization of nanosized amorphous ‘marks’ in a polycrystalline layer. Models of crystallization exist for the commercially used phase-change alloy Ge2Sb2Te5 (GST), but not for the equally important class of Sb-Te-based alloys. We have combined X-ray diffraction, extended X-ray absorption fine structure and hard X-ray photoelectron spectroscopy experiments with density functional simulations to determine the crystalline and amorphous structures of Ag3.5In3.8Sb75.0Te17.7 (AIST) and how they differ from GST. The structure of amorphous (a-) AIST shows a range of atomic ring sizes, whereas a-GST shows mainly small rings and cavities. The local environment of Sb in both forms of AIST is a distorted 3+3 octahedron. These structures suggest a bond-interchange model, where a sequence of small displacements of Sb atoms accompanied by interchanges of short and long bonds is the origin of the rapid crystallization of a-AIST. It differs profoundly from crystallization in a-GST.

  13. Effects of Ge replacement in GeTe by Ag or Sb on the Seebeck coefficient and carrier concentration modified by local electron imbalance

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Howard, A.; Straszheim, W. E.

    2015-03-01

    XRD, SEM, EDS, 125Te NMR, Seebeck coefficient, and electrical resistivity of AgxGe50-xTe50 and SbxGe50-xTe50 alloys have been studied. Replacement of Ge in GeTe by Sb significantly increases the Seebeck coefficient, while replacement by Ag decreases it. These effects can be attributed to a change in carrier concentration observed via 125Te NMR spin-lattice relaxation measurements and NMR signal position, which mostly depends on the Knight shift. Variation in carrier concentration in AgxGe50-xTe50 and SbxGe50-xTe50 can be attributed to different electron configurations of valence electrons of Ag (4d105s1) and Sb (5s25p3) compared to that of Ge (4s24p2) resulting in local electron imbalances and changing the concentration of charge carrier (holes) generated by Ge vacancies. In contrast, our 125Te NMR and Seebeck coefficient data for Ag2Sb2Ge46Te50 are similar to those observed for GeTe. This shows that effects from Ag and Sb compensate each other and indicates the existence of [Ag +Sb] pairs. The effects of Ge replacement in GeTe by Ag, Sb, or [Ag +Sb] on rhombohedral lattice distortion also have been analyzed. Interplay between the Seebeck coefficient and electrical resistivity in these alloys results in variation of power factor; the value of 45 mW/cm K2, the highest among known tellurides, was found for Sb2Ge48Te50.

  14. Electromigration induced Kirkendall void growth in Sn-3.5Ag/Cu solder joints

    SciTech Connect

    Jung, Yong; Yu, Jin

    2014-02-28

    Effects of electric current flow on the Kirkendall void formation at solder joints were investigated using Sn-3.5Ag/Cu joints specially designed to have localized nucleation of Kirkendall voids at the Cu{sub 3}Sn/Cu interface. Under the current density of 1 × 10{sup 4} A/cm{sup 2}, kinetics of Kirkendall void growth and intermetallic compound thickening were affected by the electromigration (EM), and both showed the polarity effect. Cu{sub 6}Sn{sub 5} showed a strong susceptibility to the polarity effect, while Cu{sub 3}Sn did not. The electromigration force induced additional tensile (or compressive) stress at the cathode (or anode), which accelerated (or decelerated) the void growth. From the measurements of the fraction of void at the Cu{sub 3}Sn/Cu interface on SEM micrographs and analysis of the kinetics of void growth, the magnitude of the local stress induced by EM was estimated to be 9 MPa at the anode and −7 MPa at the cathode.

  15. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles.

    PubMed

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-19

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO₂.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles. PMID:25757694

  16. Photo-enhanced salt-water splitting using orthorhombic Ag8SnS6 photoelectrodes in photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Cheng, Kong-Wei; Tsai, Wei-Tseng; Wu, Yu-Hsuan

    2016-06-01

    Orthorhombic Ag8SnS6 photoelectrodes are prepared on various substrates via reactive sulfurization using the radio-frequency magnetron sputtering of silver-tin metal precursors. Evaluations of the photoelectrochemical performances of Ag8SnS6 photoelectrodes with various levels of silver content are carried out in various aqueous solutions. X-ray diffraction patterns and Hall measurements of samples after a three-stage sulfurization process show that all samples are the pure orthorhombic Ag8SnS6 phase with n-type conductivity. The energy band gaps, carrier concentrations, and mobilities of samples on glass substrates are 1.31-1.33 eV, 7.07 × 1011-8.52 × 1012 cm-3, and 74.9-368 cm2 V-1 s-1, respectively, depending on the [Ag]/[Ag+Sn] molar ratio in samples. The highest photoelectrochemical performances of orthorhombic Ag8SnS6 photoelectrodes in aqueous 0.35 M Na2S + 0.25 M K2SO3 and 0.5 M NaCl solutions are respectively 2.09 and 2.5 mA cm-2 at an applied voltages of 0.9 and 1.23 V vs. a reversible hydrogen electrode under light irradiation with a light intensity of 100 mW cm-2 from a 300-W Xe lamp.

  17. Soil-Soil Solution Distribution Coefficients for Se, Sr, Sn, Sb, And Cs in Japanese Agricultural Soils

    SciTech Connect

    Ishikawa, N.K.; Uchida, S.; Tagami, K.

    2008-07-01

    In this study, soil-soil solution distribution coefficients (K{sub d}s) for five radionuclides (Se-75, Sr-85, Sn-113, Sb-124, and Cs-137) were determined by batch sorption tests in 142 Japanese agricultural soil samples (63 paddy soil and 79 upland soil samples). The results showed that Se- and Sb-K{sub d} data did not have a normal or a log-normal distribution, but Sr-, Sn-, and Cs-K{sub d} data did have a log-normal distribution. Further, Se-, Sr-, and Cs-K{sub d} values differed between paddy and upland soil samples in t-test (p < 0.05). Spearman's rank correlation test was carried out to investigate correlations between K{sub d} values for each radionuclide and soil properties. The combination of the K{sub d} value and the soil property having the highest correlation coefficient (Rs) for each radionuclide was as follows: Se-K{sub d} - concentration of water soluble P (R{sub s} = -0.51); Sr-K{sub d} - concentration of water soluble Ca (R{sub s} = -0.57); Sn-K{sub d} - concentration of water soluble Sr (R{sub s} = 0.57); and Sb-K{sub d} - concentration of water soluble P (R{sub s} = -0.67). Although there were no soil properties which had a good correlation with Cs-K{sub d} values for all soil samples, the best correlated soil property with Cs-K{sub d} values was concentration of water soluble ammonium ion (R{sub s} = -0.48) for upland soil samples. (authors)

  18. Effect of the Sn dopant on the crystallization of amorphous Ge2Sb2Te5 films induced by an excimer laser

    NASA Astrophysics Data System (ADS)

    Bai, N.; Liu, F. R.; Han, X. X.; Zhu, Z.; Liu, F.; Lin, X.; Sun, N. X.

    2015-11-01

    In this paper, the influence of Sn doping (0%, 8%, and 14%) on the crystallization of Ge2Sb2Te5 (GST) was studied with the aid of an ultraviolet laser. It was found that the addition of Sn element not only expanded the lattice parameter but also decreased the crystallization temperature and activation energy as compared to the GST. As compared to the Ge2Sb2Te5, a more complete crystallization of the Sn doping Ge2Sb2Te5 is mainly due to the lower binding energy of Sn-Te (359.8 kJ/mol), which could be more easily taken part in the bond breakage and formation than Ge-Te (456 kJ/mol) in such a short time as 30 ns. The equiaxial grains were obtained for the Sn8Ge15Sb23Te54 films when crystallization was induced by the laser fluence of 20 mJ/cm2 but the grains elongated when the laser fluence was increased to 60 mJ/cm2. The reason may be the incorporation of Sn elements changed the crystal nucleation mode.

  19. Microstructure analyses and thermoelectric properties of Ag{sub 1-x}Pb{sub 18}Sb{sub 1+y}Te{sub 20}

    SciTech Connect

    Perlt, S.; Hoeche, Th.; Dadda, J.; Mueller, E.; Bauer Pereira, P.; Hermann, R.; Sarahan, M.; Pippel, E.; Brydson, R.

    2012-09-15

    This study reports microstructural investigations of long-term annealed Ag{sub 1-x}Pb{sub m}Sb{sub 1+y}Te{sub 2+m} (m=18, x=y=0, hereinafter referred to as AgPb{sub 18}SbTe{sub 20}) (Lead-Antimony-Silver-Tellurium, LAST-18) as well as of Ag{sub 1-x}Pb{sub 18}Sb{sub 1+y}Te{sub 20}, i.e. Ag-deficient and Sb-excess LAST-18 (x{ne}0,y{ne}0), respectively. Two different length scales are explored. The micrometer scale was evaluated by SEM to analyze the volume fraction and the number of secondary phases as well as the impact of processing parameters on the homogeneity of bulk samples. For AgPb{sub 18}SbTe{sub 20}, site-specific FIB liftout of TEM lamellae from thermoelectrically characterized samples was accomplished to investigate the structure on the nanometer scale. High-resolution TEM and energy-filtered TEM were performed to reveal shape and size distribution of nanoprecipitates, respectively. A hypothesis concerning the structure-property relationship is set out within the frame of a gradient annealing experiment. This study is completed by results dealing with inhomogeneities on the micrometer scale of Ag{sub 1-x}Pb{sub 18}Sb{sub 1+y}Te{sub 20} and its electronic properties. Highlights: Black-Right-Pointing-Pointer SEM and TEM microstructure investigation of long-term annealed AgPb{sub 18}SbTe{sub 20}. Black-Right-Pointing-Pointer SEM and thermoelectric studies on Ag{sub 1-x}Pb{sub 18}Sb{sub 1+y}Te{sub 20}. Black-Right-Pointing-Pointer Discussion concerning structure-property relationship in long-term annealed AgPb{sub 18}SbTe{sub 20}. Black-Right-Pointing-Pointer Correlation between Ag{sub 1-x}Pb{sub 18}Sb{sub 1+y}Te{sub 20} microscale structure and electronic properties.

  20. Effect of Process and Service Conditions on TLP-Bonded Components with (Ag,Ni-)Sn Interlayer Combinations

    NASA Astrophysics Data System (ADS)

    Lis, Adrian; Leinenbach, Christian

    2015-11-01

    Transient liquid phase (TLP) bonding of Cu substrates was conducted with interlayer systems with the stacking sequences Ag-Sn-Ag (samples A), Ni-Sn-Ni (samples B), and combined Ag-Sn-Ni (samples C). Because of the low mismatch of the coefficients of thermal expansion, characteristics of the TLP process and mechanical and thermal behavior of TLP-bonded samples could be investigated without interference from thermally induced residual stresses. An ideal process temperature of 300°C, at which the number of pores was lowest, was identified for all three layer systems. It was verified experimentally that formation of pores resulted from volume contraction during isothermal solidification of liquid Sn into intermetallic compounds (IMC). Temperature and interlayer-dependent growth characteristics of IMC accounted for the increasing size and number of defects with increasing process temperature and for different defect positions. The shear strength was measured to be 60.4 MPa, 27.4 MPa, and 40.7 MPa for samples A, B, and C, respectively, and ductile fracture features were observed for Ag3Sn IMC compared with the purely brittle behavior of Ni3Sn4 IMC. Excellent thermal stability for all three layer systems was confirmed during long-term annealing at 200°C for up to 1200 h, whereas at 300°C the microstructure was driven toward Ag-Sn solid solution, accompanied by Cu diffusion from the substrate along grain boundaries and Cu3Sn IMC formation (A), and toward Ni-rich IMC phases (B). Combined IMC interlayers (C) tended to be transformed into Ni-based IMC when held at 300°C; intermixing into (Ni,Cu)3Sn was accompanied by pore formation.

  1. Solid-state growth kinetics of Ni{sub 3}Sn{sub 4} at the Sn-3.5Ag solder/Ni interface

    SciTech Connect

    Alam, M.O.; Chan, Y.C.

    2005-12-15

    Systematic experimental work was carried out to understand the growth kinetics of Ni{sub 3}Sn{sub 4} at the Sn-3.5Ag solder/Ni interface. Sn-3.5%Ag solder was reflowed over Ni metallization at 240 deg. C for 0.5 min and solid-state aging was carried out at 150-200 deg. C, for different times ranging from 0 to 400 h. Cross-sectional studies of interfaces have been conducted by scanning electron microscopy and energy dispersive x ray. The growth exponent n for Ni{sub 3}Sn{sub 4} was found to be about 0.5, which indicates that it grows by a diffusion-controlled process even at a very high temperature near to the melting point of the SnAg solder. The activation energy for the growth of Ni{sub 3}Sn{sub 4} was determined to be 16 kJ/mol.

  2. Investigation of resistive switching behavior of Ag/SnOx/ITO device

    NASA Astrophysics Data System (ADS)

    Chen, Da; Huang, Shi-Hua

    2015-04-01

    SnOx thin film was deposited by reactive magnetron sputtering and the resistance switching behavior of Ag/SnOx/ITO was investigated. The endurance testing indicates that HRS resistance decreases with an increase in the number of cycles. After annealing, the memory performance is enhanced, and the ratio of the device resistance of HRS and LRS increases greatly. The abnormal transformation sequence from HRS to LRS was observed for the annealed device and can be explained by electron trapping and detrapping based on the analysis of x-ray diffraction and the Raman spectrum. The temperature-dependent I-V measurement indicates that the thermal activation process is responsible for the temperature range of 300 to 200 K however, the carrier transport can be ascribed to the nearest-neighbor hopping conduction mechanism for the temperature range of 200 to 100 K. The general conduction mechanism of Ag/SnOx/ITO device can be elucidated by the trap-controlled space charge limited conduction model, and the conductive schematic in the SET and RESET processes has been given.

  3. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    SciTech Connect

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  4. Growth Behavior of Intermetallic Compounds in Cu/Sn3.0Ag0.5Cu Solder Joints with Different Rates of Cooling

    NASA Astrophysics Data System (ADS)

    Yang, Linmei; Zhang, Z. F.

    2015-01-01

    The growth behavior of intermetallic compounds (IMC) in Cu/Sn3.0Ag0.5Cu solder joints, including the interfacial Cu6Sn5 layer and Ag3Sn, and Cu6Sn5 in the solder, were investigated when different cooling methods—quenched water, cooling in air, and cooling in a furnace after reflow—were used. For the solder joint quenched in water, no obvious Cu6Sn5 or Ag3Sn was detected in the solder, and the thickness of interfacial Cu6Sn5 layer was slightly thinner than that of the joint cooled in air. On the basis of results from scanning electron microscopy and energy-dispersive spectrometry, a mechanism is proposed for growth of IMC in Sn3.0Ag0.5Cu solder during solidification. The rate of cooling has a substantial effect on the morphology and size of Ag3Sn, which evolved into large plate-like shapes when the joint was cooled slowly in a furnace. However, the morphology of Ag3Sn was branch-like or particle-like when the joint was cooled in air. This is attributed to re-growth of Ag3Sn grains via substantial atomic diffusion during the high-temperature stage of furnace cooling.

  5. Knudsen effusion mass spectrometric determination of mixing thermodynamic data of liquid Ag-In-Sn alloy

    NASA Astrophysics Data System (ADS)

    Bencze, L.; Popovic, A.

    2008-03-01

    The vaporisation of a liquid Ag-In-Sn system has been investigated at 1273-1473 K by Knudsen effusion mass spectrometry (KEMS) and the data fitted to a Redlich-Kister-Muggianu (RKM) sub-regular solution model. Nineteen different compositions have been examined at six fixed indium mole fractions, XIn = 0.10, 0.117, 0.20, 0.30, 0.40 and 0.50. The ternary L-parameters, the thermodynamic activities and the thermodynamic properties of mixing have been evaluated using standard KEMS procedures and from the measured ion intensity ratios of Ag+ to In+ and Ag+ to Sn+, using a mathematical regression technique described by us for the first time. The intermediate data obtained directly from the regression technique are the RKM ternary L-parameters. From the obtained ternary L-parameters the integral molar excess Gibbs free energy, the excess chemical potentials, the activity coefficients and the activities have been evaluated. Using the temperature dependence of the activities, the integral and partial molar excess enthalpies and entropies were determined. In addition, for comparison, for some compositions, also the Knudsen effusion isothermal evaporation method (IEM) and the Gibbs-Duhem ion intensity ratio method (GD-IIR) were used to determine activities and good agreement was obtained with the data obtained from fitting to the RKM model.

  6. Structural analysis of quaternary Se{sub 85−x}Sb{sub 10}In{sub 5}Ag{sub x} bulk glassy alloys

    SciTech Connect

    Sharma, Rita Sharma, Shaveta; Kumar, Praveen; Chander, Ravi; Thangaraj, R.; Mian, M.

    2015-08-28

    The physical properties of chalcogenide semiconductor have attracted much attention recently due to their applications in optical recording media and inorganic resist due to photo induced structural transformations observed in these materials. The bulk samples of Se{sub 85-x}Sb{sub 10}In{sub 5}Ag{sub x} system are prepared by melt-quenching technique. X-ray diffraction technique and RAMAN spectroscopy have been used to study the role of Ag additive on the amorphous/crystalline nature and molecular structure of Se{sub 85}Sb{sub 10}In{sub 5} glassy alloys. The phases Sb{sub 2}Se{sub 3}, In-Sb and In{sub 2}Se{sub 3} has been observed by X-ray diffraction. The formation of AgInSe{sub 2} phase along with the enhancement in intensity has been observed with the Ag addition.Three bands observed by raman spectroscopy for Se85Sb10In5 are at 70 cm-1, 212cm-1 and 252cm-1. The formation of small bands up to wavenumber 188cm{sup -1} and shifting in second band along with the increase in intensity up to sample x=5 has been observed with the Ag addition. The enhancement in intensity in third band with Ag content has been observed.

  7. In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn-3Ag-0.5Cu flip chip solder joints

    NASA Astrophysics Data System (ADS)

    Ouyang, Fan-Yi; Kao, C.-L.

    2011-12-01

    In this study, we investigated the phenomenon of thermomigration in 96.5Sn-3Ag-0.5Cu flip chip solder joints at an ambient temperature of 150 °C. We observed mass protrusion on the chip side (hot end), indicating that Sn atoms moved to the hot end, and void formation on the substrate side (cold end). The diffusion markers also moved to the substrate side, in the same direction of the vacancy flux, indicating that the latter played a dominant role during the thermomigration process. The molar heat of transport (Q*) of the Sn atoms was 3.38 kJ/mol.

  8. A new silver ion conducting SbI3-Ag4P2O7 nanocomposite solid electrolyte

    NASA Astrophysics Data System (ADS)

    Suthanthiraraj, S. Austin; Sarumathi, R.

    2013-12-01

    This paper presents an investigation on a new series of silver ion conducting nanocomposite materials of silver pyrophosphate-based solid electrolytes with various amounts of antimony iodide. The detailed electrical conductivity studies carried out by impedance spectroscopic analysis in the frequency range from 20 Hz to 1 MHz have shown that silver ionic conductivity attains a maximum value of 4.1 × 10-4 S cm-1 at room temperature for the typical composition having 60 mol% of SbI3. Powder samples characterized by X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetric analysis and silver ionic transport studies were identified to indicate the existence of AgI, in addition to certain new phases in all the different compositions of the system. The conduction channel for Ag+ ions across phosphate network was found to get expanded by the presence of iodide ion. The formation of P-O-M (M=Sb3+) within the crystal structure is also favoured, where Sb3+ ions may serve as ionic cross-links between non-bridging oxygen of different phosphate groups. The field emission scanning electron microscopic investigations of their microstructures have suggested the presence of nanocomposites, leading to the observed electrical conductivity data coupled with many interesting features closely related to the particle size and practical application as solid electrolyte for the fabrication of solid-state battery at ambient conditions.

  9. Sol-Gel derived Sb-doped SnO II/SiO II nano-composite thin films for gas sensors

    NASA Astrophysics Data System (ADS)

    Gu, Zhengtian; Liang, Peihui; Zhang, Weiqing

    2006-05-01

    Sb-doped SnO II/SiO II nano-composite thin films prepared by sol-gel dip-coating method have been studied. By using X-ray diffraction (XRD), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy, detailed investigation on the structure and morphology of the films has shown the crystalline grain size of Sb-doped SnO II/SiO II thin films is about 34nm, with larger specific surface area and duty porosity, which is fit for gas-sensing materials. The adulteration of SiO II particles leads to the condensation of Sn-OH and the strengthening of gel network, and improve the adhesion of the films. In addition, the optical properties of the thin films were studied by UV-Vis spectra and p-polarized light reflectance angular spectrum. The results showthat the optical transmissivity of Sb-doped SnO II/SiO II thin films is higher, near 95% in visible spectrum range, the measured optical gap is found equal to 3.67eV, also the films take on smaller refractive index and extinction coefficient compared with those of the SnO II and Sb:SnO II films, which is compatible with the semiconductor substrate in the solar cell. Further, the gas-sensing test was made to three kinds of gas C 3H 8, C IIH 5OH and NH 3 in our novel high sensitive scheme for optical film sensors. The results indicate that Sb doping to SnO II films greatly improves the gas sensitivity to C IIH 5OH, and the gas sensitivity of Sb:SnO II/SiO II nano-composite thin films are higher than that of Sb:SnO II thin films. The detection sensitivity of this optical film sensor is available to 10 -1ppm provided that the resolution of reflectance ratio is 10 -2.

  10. High-performance Ti/Sb-SnO(2)/Pb(3)O(4) electrodes for chlorine evolution: preparation and characteristics.

    PubMed

    Shao, Dan; Yan, Wei; Cao, Lu; Li, Xiaoliang; Xu, Hao

    2014-02-28

    Chlorine evolution via electrochemical approach has wide application prospects in drinking water disinfection and wastewater treatment fields. Dimensional stable anodes used for chlorine evolution should have high stability and adequate chlorine evolution efficiency. Thus a novel and cost-effective Ti/Sb-SnO(2)/Pb(3)O(4)electrode was developed. The physicochemical and electrochemical properties as well as the chlorine evolution performances of the electrodes were investigated. The electrocatalytic activity and deactivation course of the electrodes were also explored. Results showed that this novel electrode had strong chlorine evolution ability with high current efficiency ranging from 87.3% to 93.4% depending on the operational conditions. The accelerated service life of Ti/Sb-SnO(2)/Pb(3)O(4) electrode could reach 180 h at a current density of 10,000 A m(-2) in 0.5 molL(-1) H(2)SO(4). During the electrolysis process, it was found that the conversion of Pb(3)O(4) into β-PbO(2) happened gradually on the electrode surface, which not only inhibited the leakage of hazardous Pb(2+) ion but also increased the anti-corrosion capacity of the electrode effectively. PMID:24462893

  11. Electronic and Optical Properties of Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) Antiperovskite Compounds

    NASA Astrophysics Data System (ADS)

    Iqbal, Samad; Murtaza, G.; Khenata, R.; Mahmood, Asif; Yar, Abdullah; Muzammil, M.; Khan, Matiullah

    2016-08-01

    The electronic and optical properties of cubic antiperovskites Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) were investigated by applying the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) scheme based on density functional theory. Different exchange correlation potentials were adopted for the calculations. The results of band structure and density of states show that, by changing the central anion of Ca3MN, the nature of the materials change from metallic (Ca3GeN, Ca3SnN, Ca3PbN) to semiconducting with small band gaps (Ca3SbN and Ca3BiN) to insulating (Ca3PN and Ca3AsN). The optical properties such as dielectric function, absorption coefficient, optical conductivity, reflectivity and refractive indices have also been calculated. The results reveal that all the studied compounds are optically active in the visible and ultraviolet energy regions, and therefore can be effectively utilized for optoelectronic devices.

  12. Limits of carrier mobility in Sb-doped SnO{sub 2} conducting films deposited by reactive sputtering

    SciTech Connect

    Bissig, B. Jäger, T.; Tiwari, A. N.; Romanyuk, Y. E.; Ding, L.

    2015-06-01

    Electron transport in Sb-doped SnO{sub 2} (ATO) films is studied to unveil the limited carrier mobility observed in sputtered films as compared to other deposition methods. Transparent and conductive ATO layers are deposited from metallic tin targets alloyed with antimony in oxygen atmosphere optimized for reactive sputtering. The carrier mobility decreases from 24 cm{sup 2} V{sup −1} s{sup −1} to 6 cm{sup 2} V{sup −1} s{sup −1} when increasing the doping level from 0 to 7 at. %, and the lowest resistivity of 1.8 × 10{sup −3} Ω cm corresponding to the mobility of 12 cm{sup 2} V{sup −1} s{sup −1} which is obtained for the 3 at. % Sb-doped ATO. Temperature-dependent Hall effect measurements and near-infrared reflectance measurements reveal that the carrier mobility in sputtered ATO is limited by ingrain scattering. In contrast, the mobility of unintentionally doped SnO{sub 2} films is determined mostly by the grain boundary scattering. Both limitations should arise from the sputtering process itself, which suffers from the high-energy-ion bombardment and yields polycrystalline films with small grain size.

  13. Rapid Microwave Preparation of Thermoelectric TiNiSn and TiCoSb Half-Heusler Compounds

    SciTech Connect

    Birkel, Christina S.; Zeier, Wolfgang G.; Douglas, Jason E.; Lettiere, Bethany R.; Mills, Carolyn E.; Seward, Gareth; Birkel, Alexander; Snedaker, Matthew L.; Zhang, Yichi; Snyder, G. Jeffrey; Pollock, Tresa M.; Seshadri, Ram; Stucky, Galen D.

    2012-10-25

    The 18-electron ternary intermetallic systems TiNiSn and TiCoSb are promising for applications as high-temperature thermoelectrics and comprise earth-abundant, and relatively nontoxic elements. Heusler and half-Heusler compounds are usually prepared by conventional solid state methods involving arc-melting and annealing at high temperatures for an extended period of time. Here, we report an energy-saving preparation route using a domestic microwave oven, reducing the reaction time significantly from more than a week to one minute. A microwave susceptor material rapidly heats the elemental starting materials inside an evacuated quartz tube resulting in near single phase compounds. The initial preparation is followed by a densification step involving hot-pressing, which reduces the amount of secondary phases, as verified by synchrotron X-ray diffraction, leading to the desired half-Heusler compounds, demonstrating that hot-pressing should be treated as part of the preparative process. For TiNiSn, high thermoelectric power factors of 2 mW/mK{sup 2} at temperatures in the 700 to 800 K range, and zT values of around 0.4 are found, with the microwave-prepared sample displaying somewhat superior properties to conventionally prepared half-Heuslers due to lower thermal conductivity. The TiCoSb sample shows a lower thermoelectric figure of merit when prepared using microwave methods because of a metallic second phase.

  14. Electronic and Optical Properties of Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) Antiperovskite Compounds

    NASA Astrophysics Data System (ADS)

    Iqbal, Samad; Murtaza, G.; Khenata, R.; Mahmood, Asif; Yar, Abdullah; Muzammil, M.; Khan, Matiullah

    2016-05-01

    The electronic and optical properties of cubic antiperovskites Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) were investigated by applying the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) scheme based on density functional theory. Different exchange correlation potentials were adopted for the calculations. The results of band structure and density of states show that, by changing the central anion of Ca3MN, the nature of the materials change from metallic (Ca3GeN, Ca3SnN, Ca3PbN) to semiconducting with small band gaps (Ca3SbN and Ca3BiN) to insulating (Ca3PN and Ca3AsN). The optical properties such as dielectric function, absorption coefficient, optical conductivity, reflectivity and refractive indices have also been calculated. The results reveal that all the studied compounds are optically active in the visible and ultraviolet energy regions, and therefore can be effectively utilized for optoelectronic devices.

  15. First principle study of structural, electronic and magnetic properties of half-Heusler IrCrZ (Z=Ge, As, sn and sb) compounds

    NASA Astrophysics Data System (ADS)

    Allaf Behbahani, Marzieh; Moradi, Mahmood; Rostami, Mohammad; Davatolhagh, Saeed

    2016-05-01

    First-principle calculations based on the density functional theory for new half-Heusler IrCrZ (Z=Ge, As, Sn and Sb) alloys are performed. It is found that the half-Heusler IrCrGe and IrCrSn compounds have an antiferromagnetic ground state while the ferromagnetic state is more stable than the antiferromagnetic and non-magnetic states for both IrCrAs and IrCrSb compounds. IrCrAs and IrCrSb exhibit half-metallic property with integer magnetic moments of 2.00 μB per formula unit and half-metallic gaps of 0.28 and 0.27 eV at their equilibrium volume, respectively. In addition, the density of states (DOSs) and band structures of IrCrAs and IrCrSb compounds are studied and the origin of their half-metallic gaps are discussed in detail. The estimation of Curie temperatures of IrCrAs and IrCrSb compounds is performed within the mean field approximation (MFA). The Curie temperatures of IrCrAs and IrCrSb are estimated to be 1083 and 1470 K, respectively. The stability of the half-metallicity in IrCrAs and IrCrSb compounds with the variation of lattice constant are also investigated.

  16. Solid Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Lee, K. T.; Hwang, J. D.; Chu, H. S.; Hsu, C. C.; Chen, S. C.; Chuang, T. H.

    2016-06-01

    The ZnSb intermetallic compound may have thermoelectric applications because it is low in cost and environmentally friendly. In this study, a Zn4Sb3 thermoelectric element coated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode using a Ag/Sn/Ag solid-liquid interdiffusion bonding process. The results indicated that a Ni5Zn21 intermetallic phase formed easily at the Zn4Sb3/Ni interface, leading to sound adhesion. In addition, Sn film was found to react completely with the Ag layer to form a Ag3Sn intermetallic layer having a melting point of 480°C. The resulting Zn4Sb3 thermoelectric module can be applied at the optimized operation temperature (400°C) of Zn4Sb3 material as a thermoelectric element. The bonding strengths ranged from 14.9 MPa to 25.0 MPa, and shear tests revealed that the Zn4Sb3/Cu-joints fractured through the interior of the thermoelectric elements.

  17. Microstructure and Sn Crystal Orientation Evolution in Sn-3.5Ag Lead-Free Solders in High-Temperature Packaging Applications

    NASA Astrophysics Data System (ADS)

    Zhou, Bite; Muralidharan, Govindarajan; Kurumadalli, Kanth; Parish, Chad M.; Leslie, Scott; Bieler, Thomas R.

    2014-01-01

    Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high-temperature packaging applications is of significant interest in power electronics for the next-generation electric grid. Large-area (2.5 mm × 2.5 mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5°C and 200°C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction in the scanning electron microscope. Comparisons were made between the observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution observed due to thermal cycling suggested a continuous recrystallization mechanism. Recrystallization behavior was correlated with dislocation slip activities.

  18. Microstructure and Sn crystal orientation evolution in Sn-3.5Ag lead-free solders in high temperature packaging applications

    SciTech Connect

    Zhou, Bite; Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth; Parish, Chad M; Leslie, Dr Scott; Bieler, T. R.

    2014-01-01

    Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high temperature packaging applications is of significant interest in power electronics for the next generation electric grid. Large area (2.5mm 2.5mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5 C and 200 C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Comparisons are made between observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution suggested the continuous recrystallization mechanism. Recrystallization behavior was correlated with dislocation slip activities.

  19. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-01

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles.The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For

  20. Magnetic properties of RE5Ir2X (RE = Y, Gd-Ho, X = Sn, Sb, Pb, Bi) and magnetocaloric characterization of Gd5Ir2X

    NASA Astrophysics Data System (ADS)

    Schäfer, Konrad; Schwickert, Christian; Niehaus, Oliver; Winter, Florian; Pöttgen, Rainer

    2014-09-01

    Systematic phase analytical studies of the systems RE-Ir-X (X = Sn, Pb, Sb, Bi) led to 15 new stannides, plumbides, antimonides and bismuthides with the composition RE5Ir2X. The compounds have been synthesized and characterized by X-ray powder diffraction. The structures of Gd5Ir2Sb and Dy5Ir2Bi have been refined from single crystal X-ray diffractometer data: Mo5SiB2 type, I4/mcm, a = 775.2(2), c = 1361.3(5) pm, wR2 = 0.0933, 404 F2 values, 16 variables for Gd5Ir2Sb and a = 767.5(1), c = 1368.9(3) pm, wR2 = 0.0694, 571 F2 values, 16 variables for Dy5Ir2Bi. Magnetic measurements of Gd5Ir2X (X = Sn, Pb, Sb, Bi), Tb5Ir2X (X = Sn, Pb, Sb, Bi), Dy5Ir2Pb, Dy5Ir2Bi and Ho5Ir2Pb indicate ferromagnetic transitions at TC = 154.3, 159.3, 124.4, 119.3, 99.2, 98.2, 65.5, 68.6, 45.1, 35.6 and 23.5 K, respectively. Gd5Ir2Bi and Gd5Ir2Sb show an additional antiferromagnetic transition at TN = 118.5 and 91.0 K. The magnetocaloric effect of Gd5Ir2X (X = Sn, Pb, Sb, Bi) in terms of the isothermal entropy change ΔSm is -7.3(3), -6.5(3), -8.7(3) and -9.0(3) J kg-1 K-1 at temperatures of 153, 157, 120 and 126 K for a 5 T field change. 119Sn Mössbauer spectra of Gd5Ir2Sn at 78 K show a huge transferred hyperfine field of 21.9(1) T and an isomer shift of 1.94(1) mm s-1, typical for stannides. 121Sb Mössbauer spectra of Gd5Ir2Sb at 78 K show a transferred hyperfine field of 14.2(3) T and an isomer shift of -7.45(8) mm s-1 reflecting the antimonide character.

  1. A study on the crystallization behavior of Sn-doped amorphous Ge2Sb2Te5 by ultraviolet laser radiation

    NASA Astrophysics Data System (ADS)

    Bai, N.; Liu, F. R.; Han, X. X.; Zhu, Z.; Liu, F.; Lin, X.; Sun, N. X.

    2014-10-01

    In this paper, the influence of Sn doping (0%, 8% and 14%) on the crystallization of Ge2Sb2Te5 was studied with the aid of an ultraviolet laser. The XRD analyses revealed that the addition of Sn maintained the NaCl-type structure of Ge2Sb2Te5 after crystallization but expanded the lattice parameter due to the smaller atomic radii of Ge replaced by Sn. Raman peaks (123, 150 and 110 cm-1) moved towards lower wavenumbers (118, 137 and 104 cm-1), which can be explained by the remarkable decrease of the binding energy from Ge-Te to Sn-Te. A remarkable increase in optical contrast from 15% to 40% was observed in the Sn-doped Ge2Sb2Te5 film after crystallization with both the isothermal annealing and laser radiance. While the optical contrast changed little for a fixed volume fraction of Sn-doped sample with the variation of laser fluence which is attributed to the crystallization mechanism induced by laser under different fluences is the same.

  2. A Study on the Physical Properties and Interfacial Reactions with Cu Substrate of Rapidly Solidified Sn-3.5Ag Lead-Free Solder

    NASA Astrophysics Data System (ADS)

    Ma, Hai-Tao; Wang, Jie; Qu, Lin; Zhao, Ning; Kunwar, A.

    2013-08-01

    A rapidly solidified Sn-3.5Ag eutectic alloy produced by the melt-spinning technique was used as a sample in this research to investigate the microstructure, thermal properties, solder wettability, and inhibitory effect of Ag3Sn on Cu6Sn5 intermetallic compound (IMC). In addition, an as-cast Sn-3.5Ag solder was prepared as a reference. Rapidly solidified and as-cast Sn-3.5Ag alloys of the same size were soldered at 250°C for 1 s to observe their instant melting characteristics and for 3 s with different cooling methods to study the inhibitory effect of Ag3Sn on Cu6Sn5 IMC. Experimental techniques such as scanning electron microscopy, differential scanning calorimetry, and energy-dispersive spectrometry were used to observe and analyze the results of the study. It was found that rapidly solidified Sn-3.5Ag solder has more uniform microstructure, better wettability, and higher melting rate as compared with the as-cast material; Ag3Sn nanoparticles that formed in the rapidly solidified Sn-3.5Ag solder inhibited the growth of Cu6Sn5 IMC during aging significantly much strongly than in the as-cast material because their number in the rapidly solidified Sn-3.5Ag solder was greater than in the as-cast material with the same soldering process before aging. Among the various alternative lead-free solders, this study focused on comparison between rapidly solidified and as-cast solder alloys, with the former being observed to have better properties.

  3. Ag2ZnSn(S,Se)4: A highly promising absorber for thin film photovoltaics.

    PubMed

    Chagarov, Evgueni; Sardashti, Kasra; Kummel, Andrew C; Lee, Yun Seog; Haight, Richard; Gershon, Talia S

    2016-03-14

    The growth in efficiency of earth-abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has slowed, due in part to the intrinsic limitations imposed by the band tailing attributed primarily to I-II antisite exchange. In this study, density functional theory simulations show that when Ag is substituted for Cu to form kesterite Ag2ZnSnSe4 (AZTSe), the I-II isolated antisite formation energy becomes 3.7 times greater than in CZTSSe, resulting in at least an order of magnitude reduction in I-II antisite density. Experimental evidence of an optoelectronically improved material is also provided. Comparison of the low-temperature photoluminescence (PL) structure of Cu(In,Ga)Se2 (CIGSe), CZTSSe, and AZTSe shows that AZTSe has a shallow defect structure with emission significantly closer to the band edge than CZTSe. Existence of suppressed band tailing is found in the proximity of the room-temperature PL peak of AZTSe to its measured band gap. The results are consistent with AZTSe being a promising alternative to CZTSSe and CIGSe for thin film photovoltaics. PMID:26979701

  4. Ag2ZnSn(S,Se)4: A highly promising absorber for thin film photovoltaics

    NASA Astrophysics Data System (ADS)

    Chagarov, Evgueni; Sardashti, Kasra; Kummel, Andrew C.; Lee, Yun Seog; Haight, Richard; Gershon, Talia S.

    2016-03-01

    The growth in efficiency of earth-abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has slowed, due in part to the intrinsic limitations imposed by the band tailing attributed primarily to I-II antisite exchange. In this study, density functional theory simulations show that when Ag is substituted for Cu to form kesterite Ag2ZnSnSe4 (AZTSe), the I-II isolated antisite formation energy becomes 3.7 times greater than in CZTSSe, resulting in at least an order of magnitude reduction in I-II antisite density. Experimental evidence of an optoelectronically improved material is also provided. Comparison of the low-temperature photoluminescence (PL) structure of Cu(In,Ga)Se2 (CIGSe), CZTSSe, and AZTSe shows that AZTSe has a shallow defect structure with emission significantly closer to the band edge than CZTSe. Existence of suppressed band tailing is found in the proximity of the room-temperature PL peak of AZTSe to its measured band gap. The results are consistent with AZTSe being a promising alternative to CZTSSe and CIGSe for thin film photovoltaics.

  5. Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries

    SciTech Connect

    Wang Zhong; Tian Wenhuai; Liu Xiaohe; Yang Rong; Li Xingguo

    2007-12-15

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles.

  6. Theoretical investigation of Sn-doped Ge{sub 2}Sb{sub 2}Te{sub 5} alloy in crystalline phase

    SciTech Connect

    Singh, Janpreet; Tripathi, S. K.; Singh, Gurinder; Kaura, Aman

    2015-06-24

    Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) is technologically important for phase-change random access memory applications. It has been shown that the 2.2 atomic % doping of Sn weakens the Ge–Te bond strength while maintaining the symmetry of stable phase of GST. The influence of Sn doping upon the phase change characteristics of the crystalline GST alloy has been investigated by ab initio calculations. The lattice parameter, average interface distances between two adjacent (111) layers, equilibrium volume, metallic character and electrical resistance has been calculated for the stable phase of GST and Sn-doped GST.

  7. Thermal stability and electrical transport properties of β-Zn4Sb3 single crystal prepared by Sn-flux method

    NASA Astrophysics Data System (ADS)

    Shai, Xuxia; Deng, Shukang; Meng, Daiyi; Shen, Lanxian; Li, Decong

    2014-11-01

    In this work, β-Zn4Sb3 single crystals with space group R3barc were prepared by Sn-flux method according to the stoichiometric ratios of Zn4+x(0-0.8)Sb3Sn3. thermogravimetric-differential thermal analysis (TG-DTA) shows that there has no weight loss untill temperature reaches to melting point of 821 K. All crystals behave characteristic of p-type conduction and the carrier densities are independent on the initial composition. Comparing with β-Zn4Sb3 polycrystalline sample, the carrier mobility of the present single crystals are increased. The crystals with X>0 possess higher electrical conductivity, and the highest power factor of 1.18×10-3 Wm-1 K-2 is obtained at 585 K for the sample with X=0.8.

  8. Relationship between the Porco, Bolivia, Ag-Zn-Pb-Sn deposit and the Porco Caldera

    USGS Publications Warehouse

    Cunningham, C.G.

    1994-01-01

    The Porco Ag-Zn-Pb-Sn deposit, a major Ag producer in the 16th century and currently the major Zn producer in Bolivia, consists of a swarm of fissure-filling veins in the newly recognized Porco caldera. The caldera measures 5 km by 3 km and formed in response to the eruption of the 12 Ma crystal-rich dacitic Porco Tuff. The mineralization is associated with, and is probably genetically related to, the 8.6 Ma Huayna Porco stock. The Porco deposit consists of steeply dipping irregular and curvilinear veins that cut the intracaldera Porco Tuff about 1 km east of the Huayna Porco stock. Most of the veins are aligned along the structural margin (ring fracture) of the caldera. The ore deposit is zoned around the Huayna Porco stock. The primary Ag minerals are most abundant in the upper parts of the viens. Fluid inclusions in sphalerite stalactites have homogenization temperatures of about 225??C and salinities of about 8 wt% NaCl equiv. The stalactites and the presence of sparse vapor-rich inclusions suggest deposition of sphalerite under boiling conditions. -from Authors

  9. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    NASA Astrophysics Data System (ADS)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  10. Phase and valence transitions in Ba 2LnSn xSb 1-xO 6-δ ( Ln=Pr and Tb)

    NASA Astrophysics Data System (ADS)

    Saines, Paul J.; Kennedy, Brendan J.; Elcombe, Margaret M.; Harris, Hugh H.; Jang, Ling-Yun; Zhang, Zhaoming

    2008-11-01

    Compounds in the double perovskites series Ba 2LnSn xSb 1-xO 6-δ ( Ln=Pr and Tb) have been synthesised and structurally characterised using synchrotron X-ray and neutron powder diffraction. It was found that the two end-members of the Ba 2PrSn xSb 1-xO 6-δ series both adopt rhombohedral symmetry but the antimonate is a fully ordered double perovskite while the stannate has no B-site cation ordering. X-ray absorption near-edge structure (XANES) and near-infrared spectroscopy indicate that the Pr cations gradually change oxidation state from Pr 3+ to Pr 4+ with increasing x and that this is likely to be the cause of the loss of B-site ordering. Similarly, both Ba 2TbSbO 6 and Ba 2TbSnO 6-δ are cubic with B-site ordering present in the former but absent in the latter due to the oxidation state change of the Tb from Tb 3+ to Tb 4+. Multiple linear regression analysis of the Pr and Tb LIII-edge XANES indicates that the rate of Ln3+ transforming to Ln4+ is such that there are no oxygen vacancies in Ba 2PrSn xSb 1-xO 6-δ but in Ba 2TbSn xSb 1-xO 6-δ there is a small amount of oxygen vacancies, with a maximum of δ≈0.05 present.

  11. Structure and Thermoelectric Properties of Te-Ag-Ge-Sb (TAGS) Materials Obtained by Reduction of Melted Oxide Substrates

    NASA Astrophysics Data System (ADS)

    Kusz, B.; Miruszewski, T.; Bochentyn, B.; Łapiński, M.; Karczewski, J.

    2016-02-01

    Ge0.77Ag0.1Sb0.13Te1 alloy was fabricated by a novel two-step route. Firstly, oxide reagents were melted at high temperature and quenched into pellets. The pellets were milled to powder and then reduced in hydrogen at various temperatures for various periods of time. Energy-dispersive x-ray analysis indicated the possibility of successful fabrication of stoichiometric thermoelectric materials from the Te-Ag-Ge-Sb system. The electrical conductivity and Seebeck coefficient have been determined over the temperature range from 20°C to 340°C in argon atmosphere. It was also shown that, for most of the fabricated samples, the crystallite size as well as electrical parameters such as the electrical conductivity, Seebeck coefficient, and figure of merit ( ZT) increased with increasing reduction time. The highest value of ZT (˜1.0 at 340°C) was obtained for samples reduced in hydrogen atmosphere at 400°C for 20 h and 40 h.

  12. Anomalous temperature-dependent Young's modulus of a cast LAST (Pb-Sb-Ag-Te) thermoelectric material

    SciTech Connect

    Ren, Fei; Case, Eldon D; Timm, Edward J; Lara-Curzio, Edgar; Trejo, Rosa M

    2010-01-01

    Thermomechanical characterization is important to material evaluation and device design in the development of thermoelectric technology. In this study, we utilize the resonant ultrasound spectroscopy (RUS) technique to examine the elastic behavior of a cast LAST (Pb Sb Ag Te) material with a composition of Ag0.86Pb19Sb1.0Te20 between room temperature and 823 K. The temperature-dependent Young s modulus exhibits a monotonically decreasing trend with increasing temperature. However, an abnormal slope change in the Young s modulus temperature curve around 500 K is observed. In addition, hysteresis between heating and cooling data in the temperature range of 450 550 K is observed, which appears to be dependent on the heating/cooling rate during the RUS experiments such that the hysteresis disappears when the heating/cooling rate was decreased from 5 to 2 K min 1. In this study we propose an order disorder transition model for the anomalous temperature-dependent Young s modulus behavior observed in this study.

  13. Variations of thermoelectric properties of Mg{sub 2.2}Si{sub 1−y}Sn{sub y−0.013}Sb{sub 0.013} materials with different Si/Sn ratios

    SciTech Connect

    Gao, Hongli; Zhu, Tiejun; Zhao, Xinbing; Deng, Yuan

    2014-12-15

    Mg{sub 2}Si–Mg{sub 2}Sn solid solutions are a promising class of thermoelectric materials. Mg{sub 2.2}Si{sub 1−y}Sn{sub y−0.013}Sb{sub 0.013} compounds with different Si/Sn ratios were prepared by B{sub 2}O{sub 3} “flux” method followed by hot-pressing. The effect of Si/Sn ratio on the thermoelectric properties of the Mg{sub 2}Si–Mg{sub 2}Sn solid solutions at a fixed Sb doping level were measured in the temperature range 300–760 K. With the increase of Sn content (0.3≤y≤0.7), power factors are improved and lattice thermal conductivity decreased. Band convergence induced by Si/Sn ratio leads to enhanced effective mass and the materials parameter β which qualifies a kind of thermoelectric material is improved evidently. A maximum ZT of ∼1.1 at ∼760 K was achieved for the Mg{sub 2.2}Si{sub 0.3}Sn{sub 0.7–0.013}Sb{sub 0.013} sample arising from a high power factor of ∼4×10{sup -3} W m{sup −1} K{sup −2} and a low lattice thermal conductivity of ∼1.6 W m{sup −1} K{sup −1} at ∼760 K. - Graphical abstract: (a)Temperature dependence of power factor of Mg{sub 2.2}Si{sub 1−y}Sn{sub y−0.13}Sb{sub 0.013} samples. (b)Temperature dependence of lattice thermal conductivity of Mg{sub 2.2}Si{sub 1−y}Sn{sub y−0.13}Sb{sub 0.013} samples. (c)Temperature dependence of dimensionless figure of merit ZT of Mg{sub 2.2}Si{sub 1−y}Sn{sub y−0.13}Sb{sub 0.013} samples. - Highlights: • Mg{sub 2.2}Si{sub 1−y}Sn{sub y−0.013}Sb{sub 0.013} was prepared by B{sub 2}O{sub 3} ''flux'' method followed by hot-pressing. • Band convergence leads to enhanced m{sup ⁎} and improved materials parameter β. • ZT{sub max} of ∼1.1 at ∼760 K was achieved for the Mg{sub 2.2}Si{sub 0.3}Sn{sub 0.7−0.013}Sb{sub 0.013} sample.

  14. Effect of Indium Content on the Melting Point, Dross, and Oxidation Characteristics of Sn-2Ag-3Bi-xIn Solders.

    PubMed

    Jeon, Ae-Jeong; Kim, Seong-Jun; Lee, Sang-Hoon; Kang, Chung-Yun

    2013-06-01

    This paper presents the effect of indium (In) content on the melting temperature, wettabililty, dross formation, and oxidation characteristics of the Sn-2Ag-3Bi-xIn alloy. The melting temperature of the Sn-2Ag-3Bi-xIn alloy (2 ≤ x ≤ 6) was lower than 473 K. The melting range between the solidus and liquidus temperatures was approximately 20 K, irrespective of the indium content. As the indium content increased, the wetting time increased slightly and the maximum wetting force remained to be mostly constant. The dross formation decreased to approximately 50% when adding 1In to Sn-2Ag-3Bi, and no dross formation was observed in the case of Sn-2Ag-3Bi-xIn alloy (x ≥ 1.5) at 523 K for 180 min. Upon approaching the inside of the oxidized solder of the Sn-2Ag-3Bi-1.5In alloy from the surface, the O and In contents decreased and the Sn content increased based on depth profiling analysis using Auger electron spectroscopy (AES). The mechanism for restraining dross (Sn oxidation) of Sn-2Ag-3Bi alloy with addition of indium may be due to surface segregation of indium. This is due to the lower formation energy of indium oxide than those of Sn oxidation. PMID:24891810

  15. Reducing Lattice Thermal Conductivity of the Thermoelectric Compound AgSbTe2 (P4/mmm) by Lanthanum Substitution: Computational and Experimental Approaches

    NASA Astrophysics Data System (ADS)

    Amouyal, Yaron

    2014-10-01

    In this study we performed lattice dynamics first-principles calculations for the promising thermoelectric (TE) compound AgSbTe2, and estimated the stability of its three polymorphs over a wide temperature range from 0 to 600 K. We calculated the vibrational density of states of the AgSbTe2 (P4/mmm) phase. The results suggested that formation of substitutional defects at Ag-sublattice sites impedes lattice vibrations, thereby reducing lattice thermal conductivity. We focused on calculations based on the Debye approximation for the compound La0.125Ag0.875SbTe2, and predicted reduction of the average sound velocity from 1684 to 1563 m s-1 as a result of La doping. This is manifested as a ca. 14% reduction in thermal conductivity. To confirm the results from computation we produced two Ag-Sb-Te-based alloys, a ternary alloy without La addition and a quaternary alloy containing La. We measured the thermal conductivity of both alloys by use of the laser flash analysis method, and, as a result of La alloying, observed a reduction in thermal conductivity from 0.92 to 0.71 W m-1 K-1 at 573 K, as calculated from first principles.

  16. Structural, Morphological and Optical Properties of Sn3Sb2S6 Thin Films Synthesized by Oblique Angle Deposition

    NASA Astrophysics Data System (ADS)

    Larbi, A.; Chaffar Akkari, F.; Dahman, H.; Demaille, D.; Gallas, B.; Kanzari, M.

    2016-06-01

    The oblique angle deposition technique has attracted a lot attention in many different applications due to its unique advantage of programmable nanocolumns. In this work we use this technique to investigate the physical properties of obliquely thermal evaporated Sn3Sb2S6 thin films deposited onto unheated glass and silicon substrates, inclined from the flux vapor source at the deposition angles 0°, 40°, 60°, 75° and 85°. X-ray diffraction (XRD) and UV-Visible and near infrared (UV-Vis-IFR) analysis were used respectively to characterize the structural and optical properties of the layers. The influence of flux angle on the surface morphology and the microstructure was investigated by using scanning electron microscopy. The optical constants were obtained from analysis of the experimental recorded transmission and reflectance spectral data over the wavelength range 300 nm to 1800 nm. The band gaps of the synthesized thin films were found to be direct allowed transitions and increased from 1.44 eV to 1.66 eV with increasing γ from 0° to 85°, respectively. The absorption coefficients of the films are in the range of 105 cm-1 to 106 cm-1. The refractive indexes were evaluated in the transparent region in terms of the envelope method suggested by the Swanepoel model. It has been found that the refractive index decreases from 2.66 to 2.06 with increasing deposition angle from 0° to 85°, respectively. The relationship between the flux incident angles γ and the column angle β was also explored. The oblique angle deposition films showed an inclined columnar structure, with columns tilting in the direction of the incident flux. The effective packing densities of the synthesized Sn3Sb2S6 thin films were calculated using Bruggeman effective medium approximation.

  17. Compound characterization of laser brazed SiC-steel joints using tungsten reinforced SnAgTi-alloys

    NASA Astrophysics Data System (ADS)

    Südmeyer, I.; Rohde, M.; Fürst, T.

    2010-02-01

    With the help of a CO2-laser (λ = 10.64 μm) Silicon carbide (Trade name: Ekasic-F, Comp: ESK Ceramics) has been brazed to commercial steel (C45E, Matnr. 1.1191) using SnAgTi-filler alloys. The braze pellets were dry pressed based on commercially available powders and polished to a thickness of 300 μm. The SnAgTi-fractions were varied with the objective of improving the compound strength. Furthermore, tungsten reinforced SnAgTi-fillers were examined with regard to the shear strength of the ceramic/steel joints. Polished microsections of SnAgTi-pellets were investigated before brazing in order to evaluate the particle distribution and to detect potential porosities using optical microscopy. The brazing temperature and the influence of the reinforcing particles on the active braze filler were determined by measurements with a differential scanning calorimeter (DSC). After brazing. the ceramic-steel joints were characterized by scanning electron micrographs and EDX-analysis. Finally the mechanical strength of the braze-joints was determined by shear tests.

  18. Comparison of Extensive Thermal Cycling Effects on Microstructure Development in Micro-alloyed Sn-Ag-Cu Solder Joints

    SciTech Connect

    Anderson, Iver E.; Boesenberg, Adam; Harringa, Joel; Riegner, David; Steinmetz, Andrew; Hillman, David

    2011-09-28

    Pb-free solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic have promise for widespread adoption across assembly conditions and operating environments, but enhanced microstructural control is needed. Micro-alloying with elements such as Zn was demonstrated for promoting a preferred solidification path and joint microstructure earlier in simple (Cu/Cu) solder joints studies for different cooling rates. This beneficial behavior now has been verified in reworked ball grid array (BGA) joints, using dissimilar SAC305 (Sn-3.0Ag-0.5Cu, wt.%) solder paste. After industrial assembly, BGA components joined with Sn-3.5Ag-0.74Cu-0.21Zn solder were tested in thermal cycling (-55 C/+125 C) along with baseline SAC305 BGA joints beyond 3000 cycles with continuous failure monitoring. Weibull analysis of the results demonstrated that BGA components joined with SAC + Zn/SAC305 have less joint integrity than SAC305 joints, but their lifetime is sufficient for severe applications in consumer, defense, and avionics electronic product field environments. Failure analysis of the BGA joints revealed that cracking did not deviate from the typical top area (BGA component side) of each joint, in spite of different Ag3Sn blade content. Thus, SAC + Zn solder has not shown any advantage over SAC305 solder in these thermal cycling trials, but other characteristics of SAC + Zn solder may make it more attractive for use across the full range of harsh conditions of avionics or defense applications.

  19. Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2011-09-01

    Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.

  20. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Yang, F.

    2014-11-01

    The downsizing of solder balls results in larger interfacial intermetallic compound (IMC) grains and less Cu substrate consumption in lead-free soldering on Cu substrates. This size effect on the interfacial reaction is experimentally demonstrated and theoretically analyzed using Sn-3.0Ag-0.5Cu and Sn-3.5Ag solder balls. The interfacial reaction between the Sn-xAg-yCu solders and Cu substrates is a dynamic response to a combination of effects of interfacial IMC growth, Cu substrate consumption and composition variation in the interface zone. A concentration gradient controlled (CGC) kinetics model is proposed to explain the combined effects. The concentration gradient of Cu at the interface, which is a function of solder volume, initial Cu concentration and reaction time, is the root cause of the size effect. We found that a larger Cu concentration gradient results in smaller Cu6Sn5 grains and more consumption of Cu substrate. According to our model, the growth kinetics of interfacial Cu6Sn5 obeys a t1/3 law when the molten solder has approached the solution saturation, and will be slower otherwise due to the interfering dissolution mechanism. The size effect introduced in this model is supported by a good agreement between theoretical and experimental results. Finally, the scope of application of this model is discussed.

  1. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate

    PubMed Central

    Huang, M. L.; Yang, F.

    2014-01-01

    The downsizing of solder balls results in larger interfacial intermetallic compound (IMC) grains and less Cu substrate consumption in lead-free soldering on Cu substrates. This size effect on the interfacial reaction is experimentally demonstrated and theoretically analyzed using Sn-3.0Ag-0.5Cu and Sn-3.5Ag solder balls. The interfacial reaction between the Sn-xAg-yCu solders and Cu substrates is a dynamic response to a combination of effects of interfacial IMC growth, Cu substrate consumption and composition variation in the interface zone. A concentration gradient controlled (CGC) kinetics model is proposed to explain the combined effects. The concentration gradient of Cu at the interface, which is a function of solder volume, initial Cu concentration and reaction time, is the root cause of the size effect. We found that a larger Cu concentration gradient results in smaller Cu6Sn5 grains and more consumption of Cu substrate. According to our model, the growth kinetics of interfacial Cu6Sn5 obeys a t1/3 law when the molten solder has approached the solution saturation, and will be slower otherwise due to the interfering dissolution mechanism. The size effect introduced in this model is supported by a good agreement between theoretical and experimental results. Finally, the scope of application of this model is discussed. PMID:25408359

  2. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate.

    PubMed

    Huang, M L; Yang, F

    2014-01-01

    The downsizing of solder balls results in larger interfacial intermetallic compound (IMC) grains and less Cu substrate consumption in lead-free soldering on Cu substrates. This size effect on the interfacial reaction is experimentally demonstrated and theoretically analyzed using Sn-3.0Ag-0.5Cu and Sn-3.5Ag solder balls. The interfacial reaction between the Sn-xAg-yCu solders and Cu substrates is a dynamic response to a combination of effects of interfacial IMC growth, Cu substrate consumption and composition variation in the interface zone. A concentration gradient controlled (CGC) kinetics model is proposed to explain the combined effects. The concentration gradient of Cu at the interface, which is a function of solder volume, initial Cu concentration and reaction time, is the root cause of the size effect. We found that a larger Cu concentration gradient results in smaller Cu(6)Sn(5) grains and more consumption of Cu substrate. According to our model, the growth kinetics of interfacial Cu(6)Sn(5) obeys a t(1/3) law when the molten solder has approached the solution saturation, and will be slower otherwise due to the interfering dissolution mechanism. The size effect introduced in this model is supported by a good agreement between theoretical and experimental results. Finally, the scope of application of this model is discussed. PMID:25408359

  3. A study of the microstructure, thermal properties and wetting kinetics of Sn-3Ag- xZn lead-free solders

    NASA Astrophysics Data System (ADS)

    Li, Yulong; Yu, Xiao; Sekulic, Dusan P.; Hu, Xiaowu; Yan, Ming; Hu, Ronghua

    2016-06-01

    Microstructure, thermal properties and wetting kinetics of Sn-3Ag- xZn solders ( x = 0.4, 0.6, 0.8, 1, 2 and 4 wt%) were systematically investigated. The results indicate that a small amount of Zn (Zn wt% ≤ 1 wt%) has a rather moderate effect on the microstructure morphology of the Sn-3Ag- xZn solders. The microstructures are composed of a β-Sn phase and the mixture of Ag3Sn and ζ-AgZn particles. However, the β-Sn phase reduces its volume fraction in the entire microstructure and the intermetallic compounds population increases with the increasing of Zn content. The microstructure is dramatically changed with a further increase in the Zn content. The γ-AgZn phase is formed in a Sn-3Ag-2Zn solder. The ɛ-AgZn phase is formed in a Sn-3Ag-4Zn solder. The melting temperature and the undercooling of the Sn-3Ag- xZn solder alloys decrease with the increase in Zn content, reach to a minimum value when the content of Zn is 1 wt%, and then increase with further increase in Zn content. The Sn-3Ag-1Zn demonstrates the minimum value of 228.13 °C in the melting temperature and 13.87 °C in undercooling. The wetting kinetics of the main spreading stage features the power law of R n ~ t ( n = 1), which is controlled by chemical reactions at the triple line.

  4. Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Ye, Chen; Polavarapu, Lakshminarayana; Xu, Qing-Hua

    2015-05-01

    A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ~442 nm RIU-1. The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ~7.5 × 10-7 M. This photochemical method allows the controlled preparation of various Au/Ag/SnO2 nanoparticles to adjust their LSPR to suit various applications.A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ~442 nm RIU-1. The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ~7.5 × 10-7 M. This photochemical method allows

  5. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-04-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  6. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-07-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  7. Atomic Mobilities in the Ag-Cu-Sn Face-Centered Cubic Lattice

    NASA Astrophysics Data System (ADS)

    Gierlotka, W.; Chen, Y. H.; Haque, M. A.; Rahman, M. A.

    2012-12-01

    Knowledge of atomic mobilities is necessary to predict the evolution of microstructure. The theoretical description of atomic mobilities is connected to the chemical potentials of the components in a given phase. A new thermodynamic description of the quaternary Ag-Cu-In-Sn system was recently published, and it is clear that a new description of the mobilities is also necessary. Based on the available literature and using Dictra software, optimization of the mobility parameters of silver, copper, and tin in the face-centered cubic phase was carried out. The results were compared with relevant data from literature as well as with our own experimental results. Good agreement between calculations and experiment was obtained.

  8. Electronic and Thermodynamic Properties of Sn and SbI3 Doped Single Crystals p - Bi2Te3

    NASA Astrophysics Data System (ADS)

    Tahar, M. Z.; Popov, D. I.; Nemov, S. A.

    2014-12-01

    Bi2Te3 - Sb2Te3 solid solutions, the most commonly used thermoelectrics (~300K), are characterized by inhomogeneities and defects of various types, and doping contributes to spatial inhomogeneity. These impurity energy states fall into the band gap with small high-field SdH oscillations. However, it is known that Sn impurity pins the Fermi level and tremendously improves the spatial homogeneity, leading to observation of high amplitude SdH oscillations in lower magnetic field. The iodine (I) impurity was chosen to shift the Fermi level and affect the filling factor of impurity states. Numerous experimental results on magnetoresistivity, specific heat and magnetic susceptibility indicate that the most probable model for one-electron states in Bi2Te3 solid solutions doped with Sn is the presence of two impurity bands one filled and one empty- with the Fermi level pinned in-between. Earlier we reported on SdH oscillations at T = 4.2K and in magnetic Field up to 10T. Here, we report on investigations of the magnetoresistivity (2 < T < 295K) and its oscillations (T < 12K). We deduce the carriers mobility and concentration and their temperature dependence along with that of the dampening of SdH amplitude. We also report on specific heat measurements in the range (2 < T < 295K), with a low T power law of exponent p=3.5 behavior.

  9. Effects of composition and cooling rate on the microstructure of Sn-3.7Ag-0.9Zn-Bi solders

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, Y. C.; Wei, C.; Yu, L. M.; Gao, Z. M.; Dong, Z. Z.

    2009-09-01

    The effects of Bi addition, of less than 3 wt.%, and applied cooling rate on the solidified microstructure of the eutectic Sn-3.7Ag-0.9Zn (weight percent, hereafter) solder were investigated. As observed by microstructural analysis, the increase of Bi content favors the separation of the β-Sn and AgZn intermetallic compounds (IMCs) in the eutectic Sn-Ag-Zn solder. And there are some Bi precipitates formed along with the primary β-Sn dendrites as the concentration of Bi exceeds 2%. As the applied cooling rate increases, the microstructure of the Sn-3.7Ag-0.9Zn-Bi solder is refined, and the segregation of Bi is restrained. By increasing the amount of Bi, the microhardness of the solder increases.

  10. Indium tin oxide-free transparent and conductive electrode based on SnO{sub x} | Ag | SnO{sub x} for organic solar cells

    SciTech Connect

    Bou, A.; Torchio, Ph. Barakel, D.; Thierry, F.; Sangar, A.; Thoulon, P.-Y.; Ricci, M.

    2014-07-14

    A SnO{sub x} | Ag | SnO{sub x} multilayer deposited by E-beam evaporation is proposed as transparent anode for a (poly-3-hexylthiophene):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction based Organic Solar Cell (OSC). Such multilayers are studied and manufactured with the objective to give to the electrode its best conductivity and transparency in the visible spectral range. A transfer matrix method numerical optimization of the thicknesses of each layer of the electrode is developed to limit the number of test samples which would have been manufactured whether an empirical method was chosen. Optical characterization of the deposited SnO{sub x} and Ag thin films is performed to determine the dispersion of the complex refractive indices which are used as input parameters in the model. A satisfying agreement between numerical and experimental optical properties is found. The bare tri-layer electrodes show low sheet resistance (as low as 6.7 Ω/□) and the whole Glass | SnO{sub x} | Ag | SnO{sub x} structure presents a mean transparency on 400–700 nm spectral band as high as 67%. The multilayer is then numerically studied as anode for a P3HT:PCBM bulk heterojunction based OSC. Intrinsic absorption inside the sole active layer is calculated giving the possibility to perform optical optimization on the intrinsic absorption efficiency inside the active area by considering the media embedding the electrodes. An additional study using the morphology of the silver inserted between both oxide layers as input data is performed with a finite difference time domain 3D-method to improve the accordance between optical measurements and numerical results.

  11. A study on 100 MeV O7+ irradiated SnO2/Ag/SnO2 multilayer as transparent electrode for flat panel display application

    NASA Astrophysics Data System (ADS)

    Sharma, Vikas; Singh, Satyavir; Asokan, K.; Sachdev, Kanupriya

    2016-07-01

    The multilayer thin films of SnO2/Ag/SnO2 were deposited using electron-beam and thermal evaporation for flat panel display application. The as-prepared SnO2/Ag/SnO2 specimen was irradiated with 100 MeV O7+ ions by varying the fluences 1 × 1012 and 5 × 1012 ions/cm2. The pristine and irradiated films were investigated using XRD, SEM, AFM and Raman to find out modification in the structure and surface morphology of the films. UV-Vis and Hall measurement techniques were used to investigate the optical and electrical properties respectively. It was observed that the roughness of the film after irradiation (for the fluence of 1 × 1012 ions/cm2) ​ decreased to 0.68 nm from 1.6 nm and showed an increase in roughness to 1.35 nm on increasing the fluence to 5 × 1012 ions/cm2. This oxide/metal/oxide structure fulfills the basic requirements of a TCE, like high-transmittance >75% for pristine and >80% for the fluence of 1 × 1012 ions/cm2 over a broad spectrum of visible light for practical applications. The multilayer structure shows change in the electrical resistivity from 1.6 × 10-3 Ω cm to 6.3 × 10-3 Ω cm after irradiation.

  12. Understanding nanostructures in thermoelectric materials: an electron microscopy study of AgPb{sub 18}SbSe{sub 20} crystals.

    SciTech Connect

    Lioutas, C. B.; Frangis, N.; Todorov, I.; Chung, D. Y.; Kanatzidis, M. G.; Materials Science Division; Aristotle Univ. Thessaloniki; Northwestern Univ.

    2010-01-01

    The characterization and understanding of the presence of nanostructuring in bulk thermoelectric materials requires real space atomic level information. We report electron diffraction and high-resolution transmission electron microscopy studies of crystals of the system AgPb{sub 18}SbSe{sub 20} (=18PbSe + AgSbSe{sub 2}) which reveal that this system is nanostructured rather than a solid solution. Nanocrystals of varying sizes are found, endotaxially grown in the matrix of PbSe (phase A), and consist of two phases, a cubic one (phase B) and a tetragonal one (phase C). Well-defined coherent interfaces between the phases in the same nanocrystals are observed. On the basis of the results of combined electron crystallography techniques, we propose reasonable structural models for the phases B and C. There are significant differences in the nanostructuring chemistry between AgPb{sub 18}SbSe{sub 20} and the telluride analog AgPb{sub 18}SbTe{sub 20} (LAST-18).

  13. Nanoscale nuclei in phase change materials: Origin of different crystallization mechanisms of Ge{sub 2}Sb{sub 2}Te{sub 5} and AgInSbTe

    SciTech Connect

    Lee, Bong-Sub Bogle, Stephanie N.; Darmawikarta, Kristof; Abelson, John R.; Shelby, Robert M.; Retter, Charles T.; Burr, Geoffrey W.; Raoux, Simone

    2014-02-14

    Phase change memory devices are based on the rapid and reversible amorphous-to-crystalline transformations of phase change materials, such as Ge{sub 2}Sb{sub 2}Te{sub 5} and AgInSbTe. Since the maximum switching speed of these devices is typically limited by crystallization speed, understanding the crystallization process is of crucial importance. While Ge{sub 2}Sb{sub 2}Te{sub 5} and AgInSbTe show very different crystallization mechanisms from their melt-quenched states, the nanostructural origin of this difference has not been clearly demonstrated. Here, we show that an amorphous state includes different sizes and number of nanoscale nuclei, after thermal treatment such as melt-quenching or furnace annealing is performed. We employ fluctuation transmission electron microscopy to detect nanoscale nuclei embedded in amorphous materials, and use a pump-probe laser technique and atomic force microscopy to study the kinetics of nucleation and growth. We confirm that melt-quenched amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} includes considerably larger and more quenched-in nuclei than its as-deposited state, while melt-quenched AgInSbTe does not, and explain this contrast by the different ratio between quenching time and nucleation time in these materials. In addition to providing insights to the crystallization process in these technologically important devices, this study presents experimental illustrations of temperature-dependence of nucleation rate and growth speed, which was predicted by theory of phase transformation but rarely demonstrated.

  14. Influence of High- G Mechanical Shock and Thermal Cycling on Localized Recrystallization in Sn-Ag-Cu Solder Interconnects

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Kim, Choong-Un; Bieler, Thomas R.

    2014-01-01

    The impact of isothermal aging and recrystallized grain structure distribution on mechanical shock and thermal cycling performance of solder joints with 1% and 3% silver content Sn-Ag-Cu interconnects were investigated. Localized recrystallized grain structure distributions were analyzed to identify correlations between the microstructure evolution and shock performance. The results reveal that the shock tolerance depends on the amount of shock energy that can be absorbed during each shock cycle, which depends on microstructural features. Based on the recrystallized grain distribution, additional isothermal aging in 1% silver Sn-Ag-Cu interconnects shows improved shock performance, whereas degraded shock performance was observed in 3% Sn-Ag-Cu interconnects. Using the same grain boundary distribution analysis on thermally cycled samples, relationships between the particle size distribution, localized recrystallized grain structure development, shock, and thermomechanical performance were identified: finer particle spacing is beneficial for thermal cycling as it resists grain boundary generation, while conversely, wider particle spacing facilitates recrystallization and grain boundary mobility that allows Sn to absorb shock energy.

  15. Contrasting the Role of Mg and Ba Doping on the Microstructure and Thermoelectric Properties of p-Type AgSbSe2.

    PubMed

    Liu, Zihang; Shuai, Jing; Geng, Huiyuan; Mao, Jun; Feng, Yan; Zhao, Xu; Meng, Xianfu; He, Ran; Cai, Wei; Sui, Jiehe

    2015-10-21

    Microstructure has a critical influence on the mechanical and functional properties. For thermoelectric materials, deep understanding of the relationship of microstructure and thermoelectric properties will enable the rational optimization of the ZT value and efficiency. Herein, taking AgSbSe2 as an example, we first report a different role of alkaline-earth metal ions (Mg(2+) and Ba(2+)) doping in the microstructure and thermoelectric properties of p-type AgSbSe2. For Mg doping, it monotonously increases the carrier concentration and then reduces the electrical resistivity, leading to a substantially enhanced power factor in comparison to those of other dopant elements (Bi(3+), Pb(2+), Zn(2+), Na(+), and Cd(2+)) in the AgSbSe2 system. Meanwhile, the lattice thermal conductivity is gradually suppressed by point defects scattering. In contrast, the electrical resistivity first decreases and then slightly rises with the increased Ba-doping concentrations due to the presence of BaSe3 nanoprecipitates, exhibiting a different variation tendency compared with the corresponding Mg-doped samples. More significantly, the total thermal conductivity is obviously reduced with the increased Ba-doping concentrations partially because of the strong scattering of medium and long wavelength phonons via the nanoprecipitates, consistent with the theoretical calculation and analysis. Collectively, ZT value ∼1 at 673 K and calculated leg efficiency ∼8.5% with Tc = 300 K and Th = 673 K are obtained for both AgSb0.98Mg0.02Se2 and AgSb0.98Ba0.02Se2 samples. PMID:26434693

  16. Microstructural behavior of iron and bismuth added Sn-1Ag-Cu solder under elevated temperature aging

    NASA Astrophysics Data System (ADS)

    Ali, Bakhtiar; Sabri, Mohd Faizul Mohd; Jauhari, Iswadi

    2016-07-01

    An extensive study was done to investigate the microstructural behavior of iron (Fe) and bismuth (Bi) added Sn-1Ag-0.5Cu (SAC105) under severe thermal aging conditions. The isothermal aging was done at 200 °C for 100 h, 200 h, and 300 h. Optical microscopy with cross-polarized light revealed that the grain size significantly reduces with Fe/Bi addition to the base alloy SAC105 and remains literally the same after thermal aging. The micrographs of field emission scanning electron microscopy (FESEM) with backscattered electron detector and their further analysis via imageJ software indicated that Fe/Bi added SAC105 showed a significant reduction in the IMCs size (Ag3Sn and Cu6Sn5), especially the Cu6Sn5 IMCs, as well as β-Sn matrix and a refinement in the microstructure, which is due to the presence of Bi in the alloys. Moreover, their microstructure remains much more stable under severe thermal aging conditions, which is because of the presence of both Fe and Bi in the alloy. The microstructural behavior suggests that Fe/Bi modified SAC105 would have much improved reliability under severe thermal environments. These modified alloys also have relatively low melting temperature and low cost.

  17. Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn-xAg-0.7Cu

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Teng; Huang, Kuo-Chen

    2016-07-01

    Low-cycle fatigue tests of Sn-Ag-Cu (SAC) Pb-free solder joints under fixed displacement were performed to evaluate the influence of Ag content (0-3 wt.%) and solder-joint geometry (barrel and hourglass types) on solder-joint fatigue behavior and reliability. The solder joints were composed of fine particles of Ag3Sn and Cu6Sn5, which aggregated as an eutectic constituent at grain boundaries of the primary β-Sn phase and formed a dense network structure. A decrease in the Ag content resulted in coarsening of the β-Sn and eutectic phases, which, in turn, decreased the strength of the joint and caused earlier failure. Solder joints in the hourglass form exhibited better fatigue performance with longer life than barrel-type joints. The sharp contact angle formed between the solder and the Cu substrate by the barrel-type joints concentrated stress, which compromised fatigue reliability. The addition of Ag to the solder, however, enhanced fatigue performance because of strengthening caused by Ag3Sn formation. The cracks of the barrel-type SAC solder joints originated mostly at the contact corner and propagated along the interfacial layer between the interfacial intermetallic compound (IMC) and solder matrix. Hourglass-type solder joints, however, demonstrated both crack initiation and propagation in the solder matrix (solder mode). The addition of 1.5-2.0 wt.% Ag to SAC solder appears to enhance the fatigue performance of solder joints while maintaining sufficient strength.

  18. XPS, TDS, and AFM studies of surface chemistry and morphology of Ag-covered L-CVD SnO2 nanolayers.

    PubMed

    Kwoka, Monika; Ottaviano, Luca; Koscielniak, Piotr; Szuber, Jacek

    2014-01-01

    This is well known that the selectivity and sensitivity of tin dioxide (SnO2) thin film sensors for the detection of low concentration of volatile sulfides such as H2S in air can be improved by small amount of Ag additives. In this paper we present the results of comparative X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy (TDS), and atomic force microscopy (AFM) studies of the surface chemistry and morphology of SnO2 nanolayers obtained by laser-enhanced chemical vapor deposition (L-CVD) additionally covered with 1 monolayer (ML) of Ag. For as deposited SnO2 nanolayers, a mixture of tin oxide (SnO) and tin dioxide (SnO2) with the [C]/[Sn] ratio of approximately 1.3 was observed. After dry air exposure, the [O]/[Sn] ratio slightly increased to approximately 1.55. Moreover, an evident increasing of C contamination was observed with [C]/[Sn] ratio of approximately 3.5. After TDS experiment, the [O]/[Sn] ratio goes back to 1.3, whereas C contamination evidently decreases (by factor of 3). Simultaneously, the Ag concentration after air exposure and TDS experiment subsequently decreased (finally by factor of approximately 2), which was caused by the diffusion of Ag atoms into the subsurface layers related to the grain-type surface morphology of Ag-covered L-CVD SnO2 nanolayers, as confirmed by XPS ion depth profiling studies. The variation of surface chemistry of the Ag-covered L-CVD SnO2 after air exposure observed by XPS was in a good correlation with the desorption of residual gases from these nanolayers observed in TDS experiments. PMID:24936162

  19. Acid blue 29 decolorization and mineralization by anodic oxidation with a cold gas spray synthesized Sn-Cu-Sb alloy anode.

    PubMed

    do Vale-Júnior, Edilson; Dosta, Sergi; Cano, Irene Garcia; Guilemany, Josep Maria; Garcia-Segura, Sergi; Martínez-Huitle, Carlos Alberto

    2016-04-01

    The elevated cost of anodic materials used in the anodic oxidation for water treatment of effluents undermines the real application of these technologies. The study of novel alternative materials more affordable is required. In this work, we report the application of Sn-Cu-Sb alloys as cheap anodic material to decolorize azo dye Acid Blue 29 solutions. These anodes have been synthesized by cold gas spray technologies. Almost complete decolorization and COD abatement were attained after 300 and 600 min of electrochemical treatment, respectively. The influence of several variables such as supporting electrolyte, pH, current density and initial pollutant concentration has been investigated. Furthermore, the release and evolution of by-products was followed by HPLC to better understand the oxidative power of Sn-Cu-Sb electrodes. PMID:26802262

  20. Effect of Sn and Sb element on the magnetism and functional properties of Ni-Mn-Al ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Agarwal, Sandeep; Mukhopadhyay, P. K.

    2016-03-01

    We have replaced Al partially with Sb and Sn in Ni-Mn-Al systems and investigated its effect on magnetism, entropy change and magnetoresistance in the vicinity of martensitic transformation. Both the samples had identical lattice parameters and Mn contents, which are mostly responsible for magnetism in these systems, yet there were marked changes in magnetic and functional properties of these systems. It was found that the magnetization increased in Sb alloy, while entropy change and magnetoresistance decreased as compared to Sn alloy. These changes are attributed to the change in antiferromagnetic interaction as a result of variation in the Ni d-Mn d hybridization arising due to presence of different sp elements.

  1. Phase diagram of CeRhSb 1-xSn x in full concentration ( 0⩽x⩽1) range

    NASA Astrophysics Data System (ADS)

    Ślebarski, Andrzej; Spałek, Jozef

    The series CeRhSb 1-xSn x with variable x exhibits a complicated behavior. Previously, we have determined a quantum critical point at the border of Kondo insulator (KI) and the non-Fermi liquid (NFL), located at x=x≈0.12, i.e., in the Sb-rich regime. In this work, we combine those earlier results with these in the Sn-rich regime, x⩾0.78, where a nonuniversal ( x-dependent) NFL state is observed. In the latter state, singular quantum fluctuations due to 4f electrons of Ce coexist with the spin fluctuations due to 4d electrons of Rh. A nonuniversal character of the NFL state arises from a complicated disorder effects associated with magnetism of the 4f electrons.

  2. Experimental and Theoretical Evidence of a Highly Ordered Two-Dimensional Sn/Ag Alloy on Si(111)

    NASA Astrophysics Data System (ADS)

    Osiecki, Jacek R.; Sohail, H. M.; Eriksson, P. E. J.; Uhrberg, R. I. G.

    2012-08-01

    The existence of a highly ordered, two-dimensional, Sn/Ag alloy on Si(111) is reported in this study. We present detailed atomic and electronic structures of the one atomic layer thick alloy, exhibiting a 2×2 periodicity. The electronic structure is metallic due to a free-electron-like surface band dispersing across the Fermi level. By electron doping, the electronic structure can be converted into a semiconducting state. A rotated Sn trimer constitutes the key structural element that could be identified by a detailed analysis of constant energy contours derived from the free-electron-like band.

  3. Effect of p–d hybridization, structural distortion and cation electronegativity on electronic properties of ZnSnX{sub 2} (X=P, As, Sb) chalcopyrite semiconductors

    SciTech Connect

    Mishra, S.; Ganguli, B.

    2013-04-15

    Significant effects of p–d hybridization, structural distortion and cation-electro-negativity are found on band gap in ZnSnX{sub 2} (X=P, As, Sb). Our study suggests these compounds to be direct band gap semiconductors with band gaps of 1.23, 0.68 and 0.19 eV respectively. Lattice constants, tetragonal distortion (η), anion displacement, bond lengths and bulk moduli are calculated by Density Functional Theory based on Tight binding Linear Muffin-Tin orbital method. Our result of structural properties is in good agreement with the available experimental and other theoretical results. Calculated band gaps also agree well with the experimental works within LDA limitation. Unlike other semiconductors in the group II–IV–V{sub 2}, there is a reduction in the band gap of 0.22, 0.20 and 0.24 eV respectively in ZnSnX{sub 2} (X=P, As, Sb) due to p–d hybridization. Structural distortion decreases band gap by 0.20, 0.12 and 0.10 eV respectively. We find that cation electronegativity effect is responsible for increasing the band gap relative to their binary analogs GaInP{sub 2}, InGaAs{sub 2} and GaInSb{sub 2} respectively and increment are 0.13, 0.04 and 0.13 eV respectively. - Graphical abstract: One unit cell of ZnSnX{sub 2} (X=P, As, Sb) chalcopyrite semiconductor. Semiconductors ZnSnX{sub 2} (X=P, As, Sb) are found to be direct band gap semiconductors with band gaps 1.23, 0.68 and 0.19 eV respectively. The quantitative estimate of effects of p–d hybridization, structural distortion and cation electronegativity shows band gaps change significantly due to these effects. Highlights: ► ZnSnX{sub 2} (X=P, As, Sb) are direct band gap semiconductors. ► These have band gaps of 1.23 eV, 0.68 eV and 0.19 eV respectively. ► The band gap reduction due to p–d hybridization is 13.41%, 18.51% and 40% respectively. ► Band gap reduction due to structural distortion is 12.12%, 11.11% and 16.66% respectively. ► Band gap increases 8.38%, 3.70% and 21.31% respectively

  4. Synthesis, Structure, Band Gap, and Near-Infrared Photosensitivity of a New Chalcogenide Crystal, (NH4)4Ag12Sn7Se22.

    PubMed

    Du, Ke-Zhao; Qi, Xing-Hui; Feng, Mei-Ling; Li, Jian-Rong; Wang, Xing-Zhi; Du, Cheng-Feng; Zou, Guo-Dong; Wang, Meng; Huang, Xiao-Ying

    2016-06-01

    A new chalcogenide crystal, (NH4)4Ag12Sn7Se22 (FJSM-STS), has been solvothermally synthesized. The crystal structure, which is composed of arrays of [Sn3Se9]n(6n-) chains interconnecting [SnAg6Se10]n(10n-) and [Ag3Se4]n(5n-) layers, is unprecedented among the reported A/Ag/Sn/Q (A = cation; Q = S, Se, and Te) compounds. Optical absorption together with theoretical calculations of the band structure indicate a direct band gap of 1.21 eV for FJSM-STS, which is close to the ideal band gap to maximize the photoconversion efficiency proposed by Shockley and Queisser. The toxic-metal-free crystal of FJSM-STS exhibits obvious photosensitivity in the near-infrared range. The variates of power and temperature on the photosensitivity have been studied. PMID:27228165

  5. Effect of Ag on the Microstructure of Sn-8.5Zn- xAg-0.01Al-0.1Ga Solders Under High-Temperature and High-Humidity Conditions

    NASA Astrophysics Data System (ADS)

    Yeh, T. K.; Lin, K. L.; Mohanty, U. S.

    2013-04-01

    The effect of Ag on the microstructure and thermal behavior of Sn-Zn and Sn-8.5Zn- xAg-0.01Al-0.1Ga solders ( x from 0.1 wt.% to 1 wt.%) under high-temperature/relative humidity conditions (85°C/85% RH) for various exposure times was investigated. Scanning electron microscopy (SEM) studies revealed that, in all the investigated solders, the primary α-Zn phases were surrounded by eutectic β-Sn/α-Zn phases, in which fine Zn platelets were dispersed in the β-Sn matrix. SEM micrographs revealed that increase of the Ag content to 1 wt.% resulted in coarsening of the dendritic plates and diminished the Sn-9Zn eutectic phase in the microstructure. Differential scanning calorimetry (DSC) studies revealed that the melting temperature of Sn-8.5Zn- xAg-0.01Al-0.1Ga solder decreased from 199.6°C to 199.2°C with increase of the Ag content in the solder alloy. Both ZnO and SnO2 along with Ag-Zn intermetallic compound (IMC) were formed on the surface when Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga solder was exposed to high-temperature/high-humidity conditions (85°C/85% RH) for 100 h. The thickness of the ZnO phase increased as the Ag content and exposure time were increased. Sn whiskers of various shapes and lengths varying from 2 μm to 5 μm were extruded from the surface when the investigated five-element solder with Ag content varying from 0.5 wt.% to 1 wt.% was exposed to similar temperature/humidity conditions for 250 h. The length and density of the whiskers increased with further increase of the exposure time to 500 h and the Ag content in the solder to 1 wt.%. The Sn whisker growth was driven by the compressive stress in the solder, which was generated due to the volume expansion caused by ZnO and Ag-Zn intermetallic compound formation at the grain boundaries of Sn.

  6. Effect of Yttrium on the Fracture Strength of the Sn-1.0Ag-0.5Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Choi, Hyelim; Kaplan, Wayne D.; Choe, Heeman

    2016-04-01

    This is a preliminary investigation on the mechanical properties of Pb-free Sn-1.0Ag-0.5Cu solder joints containing 0.02 wt.% to 0.1 wt.% Y under a range of thermal aging and reflow conditions. Despite the significantly thicker intermetallic compound (IMC) formed at the solder joint, the 0.1 wt.% Y-doped joint exhibited a higher fracture strength than its baseline Sn-1.0Ag-0.5Cu counterpart under most aging and reflow conditions. This may be associated with the formation of Y-Cu IMCs formed at the interface between the solder and the Cu substrate, because the Y-Cu IMCs have recently been referred to as relatively `ductile' IMCs.

  7. Effect of Yttrium on the Fracture Strength of the Sn-1.0Ag-0.5Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Choi, Hyelim; Kaplan, Wayne D.; Choe, Heeman

    2016-07-01

    This is a preliminary investigation on the mechanical properties of Pb-free Sn-1.0Ag-0.5Cu solder joints containing 0.02 wt.% to 0.1 wt.% Y under a range of thermal aging and reflow conditions. Despite the significantly thicker intermetallic compound (IMC) formed at the solder joint, the 0.1 wt.% Y-doped joint exhibited a higher fracture strength than its baseline Sn-1.0Ag-0.5Cu counterpart under most aging and reflow conditions. This may be associated with the formation of Y-Cu IMCs formed at the interface between the solder and the Cu substrate, because the Y-Cu IMCs have recently been referred to as relatively `ductile' IMCs.

  8. Forming-free, bi-directional polarity conductive-bridge memory devices with Ge2Sb2Te5 solid-state electrolyte and Ag active electrode

    NASA Astrophysics Data System (ADS)

    Huang, Yin-Hsien; Chen, Hsuan-An; Wu, Hsin-Han; Hsieh, Tsung-Eong

    2015-01-01

    Preparation and characteristics of conductive-bridge random access memory devices containing Ge2Sb2Te5 (GST) chalcogenide as the solid-state electrolyte, Ag as the active electrode, and W-Ti as the counter electrode are presented. As revealed by the electrical measurement, only the samples containing crystalline GST exhibited the resistive switching behaviors. With an insertion of ZnS-SiO2 dielectric layer at the Ag/GST interface and a postannealing at 100 °C for 1 min, the sample exhibited the best electrical performance with satisfactory cycleability and retention properties. Moreover, the forming-free and bi-directional polarity features were observed in such a sample type. Microstructure and composition analyses found the finely dispersed nano-scale Ag clusters in GST and, when electrical bias is applied, the migrating Ag ions may build up the connections in between neighboring Ag clusters. Moreover, grain boundaries in polycrystalline GST might be the main paths for Ag migration. The thread-like conduction channels in GST hence form, leading to the low resistance state of sample. On the contrary, the depletion of Ag in GST broke the connections in between Ag clusters when the electrical bias is reversed. This led to the rupture of conduction channels and, hence, the high resistance state of sample. The low operational voltage, forming-free, and bi-directional polarity features observed in (AZGW)T sample might also originated from the fine dispersion of Ag clusters in GST electrolyte.

  9. Effect of Sb Segregation on Conductance and Catalytic Activity at Pt/Sb-Doped SnO2 Interface: A Synergetic Computational and Experimental Study.

    PubMed

    Fu, Qiang; Colmenares Rausseo, Luis César; Martinez, Umberto; Dahl, Paul Inge; García Lastra, Juan Maria; Vullum, Per Erik; Svenum, Ingeborg-Helene; Vegge, Tejs

    2015-12-23

    Antimony-doped tin dioxide (ATO) is considered a promising support material for Pt-based fuel cell cathodes, displaying enhanced stability over carbon-based supports. In this work, the effect of Sb segregation on the conductance and catalytic activity at Pt/ATO interface was investigated through a combined computational and experimental study. It was found that Sb-dopant atoms prefer to segregate toward the ATO/Pt interface. The deposited Pt catalysts, interestingly, not only promote Sb segregation, but also suppress the occurrence of Sb(3+) species, a charge carrier neutralizer at the interface. The conductivity of ATO was found to increase, to a magnitude close to that of activated carbon, with an increment of Sb concentration before reaching a saturation point around 10%, and then decrease, indicating that Sb enrichment at the ATO surface may not always favor an increment of the electric current. In addition, the calculation results show that the presence of Sb dopants in ATO has little effect on the catalytic activity of deposited three-layer Pt toward the oxygen reduction reaction, although subsequent alloying of Pt and Sb could lower the corresponding catalytic activity. These findings help to support future applications of ATO/Pt-based materials as possible cathodes for proton exchange membrane fuel cell applications with enhanced durability under practical applications. PMID:26615834

  10. Syntheses and characterization of one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs)

    SciTech Connect

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru

    2015-01-15

    Three new isostructural quaternary antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) have been synthesized by using alkali metal thiosulfate flux and structurally characterized by X-ray diffraction. Their structures contain A{sup +} ions around the [Sb{sub 2}Sn{sub 3}S{sub 10}]{sup 2−} chains, which are built from SbS{sub 3} pyramids, SnS{sub 6} octahedra and SnS{sub 4} tetrahedra. Raman and Mössbauer spectroscopic measurements corroborate the oxidation states and coordination environments of Sb(III) and Sn(IV). All three compounds are wide band gap semiconductors. Potassium compound undergoes partial exchange with strontium, cadmium and lead ions. - Graphical abstract: Syntheses, crystal structure, spectroscopic and partial ion-exchange studies of new one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) are described. - Highlights: • Syntheses of new alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs). • Wide band gap semiconductors with one-dimensional structure. • Topotactic partial exchange of K{sup +} ions of K{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} with Sr{sup 2+}, Cd{sup 2+} and Pb{sup 2+} ions.

  11. Effect of Graphene Nanoplatelets on Wetting, Microstructure, and Tensile Characteristics of Sn-3.0Ag-0.5Cu (SAC) Alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Sohn, Heung-Rak; Jung, Jae Pil

    2016-01-01

    The effect of graphene nanoplatelets (GNPs) on the wettability, microstructure, and tensile properties of Sn-3.0Ag-0.5Cu (SAC 305) was studied using melting and casting route. The microstructure of the bulk solder is observed with a scanning electron microscope and transmission electron microscope, and the intermetallic compound (IMC) phases are identified by electron probe micro-analyzer. The solderability of the samples is assessed by spreading and wetting tests on a Cu substrate. The experimental results indicate that an addition of 0.05 wt pct GNPs in Sn-3Ag-0.5Cu solder improves the spreading and wettability significantly compared to monolithic SAC. It is also revealed that the thickness of the Ag3Sn IMCs is reduced as compared to the monolithic SAC alloy. Tensile results show that the composite solder exhibits the 13.9 pct elongation and 17 pct increase in the ultimate tensile strength when 0.05 wt pct GNPs in Sn-3Ag-0.5Cu alloy are added. This may be due to the refinement of the IMCs in composite solders compared to the same in Sn-3Ag-0.5Cu alloy brought about by the uniform dispersion of graphene nanoplatelets. It is suggested in this study that the amount of GNPs in Sn-3Ag-0.5Cu alloy should not exceed 0.05 wt pct as it may degrade the desired properties due to the agglomeration of GNPs.

  12. Characteristics of SnO2:Sb Films as Transparent Conductive Electrodes of Flexible Inverted Organic Solar Cells.

    PubMed

    Lee, Jaehyeong; Kim, Nam-Hoon; Park, Yong Seob

    2016-05-01

    Antimony-doped tin oxide (ATO) films were deposited on polyethersulfone (PES) substrates by means of a radio frequency (RF) magnetron sputtering method, using a SnO2 target mixed with 6 wt% Sb at room temperature and using various RF powers; these films were used as transparent electrodes in inverted organic solar cells (IOSC). We investigated the structural, optical, and electrical properties of the resulting films by means of various analyses, including X-ray diffraction (XRD), UV-visible spectroscopy, and Hall effect measurements. The crystallinity and conductivity of the ATO films were increased by increasing the RF power used. Based on the experimental data acquired, we fabricated IOSCs based on ATO electrodes deposited by using various conditions. Each IOSC device was composed of an ATO electrode, a ZnO buffer layer, a photoactive layer (P3HT:PCBM), and an Al cathode. The IOSC based on an ATO electrode fabricated at the RF power of 160 W exhibited good device performance due to the electrode's high conductivity and crystallinity. PMID:27483854

  13. Microstructural evolution of a lead-free solder alloy Sn-Bi-Ag-Cu prepared by mechanical alloying during thermal shock and aging

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Wu, C. M. L.; Lai, J. K. L.; Chan, Y. C.

    2000-08-01

    In a previous study, a lead-free solder, Sn-6Bi-2Ag-0.5Cu, was developed by mechanical alloying. The alloy shows great potential as a lead-free solder system. In the present work, the microstructural evolution during thermal shock and aging was examined. In the as-soldered joints small bismuth (1 µm to 2 µm) and Ag3Sn (1 µm) particles were finely dispersed in a nearly pure tin matrix with a small amount of η-Cu6Sn5 phase in the bulk of solder. During thermal shock and aging microstructural evolution occurred with Cu-Sn intermetallic compound (IMC) layer growth at interface, bismuth phase coarsening and Ag3Sn phase coarsening. The microstructure of the solder appeared to be stable at high temperature. The shear strength of the present solder joint is higher than that of Sn-37Pb and Sn-3.5Ag solders. Shear failure occurred Cu-Sn IMC layer-solder interface and in the bulk of solder.

  14. Encapsulating Sn(x)Sb Nanoparticles in Multichannel Graphene-Carbon Fibers As Flexible Anodes to Store Lithium Ions with High Capacities.

    PubMed

    Tang, Xuan; Yan, Feilong; Wei, Yuehua; Zhang, Ming; Wang, Taihong; Zhang, Tianfang

    2015-10-01

    SnxSb intermetallic composites as high theoretical capacities anodes for lithium ion batteries (LIBs) suffer from the quick capacity fading owing to their huge volume change. In this study, flexible mats made up of SnxSb-graphene-carbon porous multichannel nanofibers are fabricated by an electrospinning method and succedent annealing treatment at 700 °C. The flexible mats as binder-free anodes show a specific capacity of 729 mA h/g in the 500th cycle at a current density of 0.1 A/g, which is much higher than those of graphene-carbon nanofibers, pure carbon nanofibers, and SnxSb-graphene-carbon nanofibers at the same cycle. The flexible mats could provide a reversible capacity of 381 mA h/g at 2 A/g, also higher than those of nanofibers, graphene-carbon nanofibers, and SnxSb-carbon nanofibers. It is found that the suitable nanochannels could accommodate the volume expansion to achieve a high specific capacity. Besides, the graphene serves as both conductive and mechanical-property additives to enhance the rate capacity and flexibility of the mats. The electrospinning technique combined with graphene modification may be an effective method to produce flexible electrodes for fuel cells, lithium ion batteries, and super capacitors. PMID:26371535

  15. Creep deformation behavior of Sn-3.5Ag solder/Cu couple at small length scales

    SciTech Connect

    Kerr, M.; Chawla, N

    2004-09-06

    In order to adequately characterize the behavior of solder balls in electronic devices, the mechanical behavior of solder joints needs to be studied at small length scales. The creep behavior of single solder ball Sn-Ag/Cu solder joints was studied in shear, at 25, 60, 95, and 130 deg. C, using a microforce testing system. A change in the creep stress exponent with increasing stress was observed and explained in terms of a threshold stress for bypass of Ag{sub 3}Sn particles by dislocations. The stress exponent was also temperature dependent, exhibiting an increase in exponent of two from lower to higher temperature. The activation energy for creep was found to be temperature dependant, correlating with self-diffusion of pure Sn at high temperatures, and dislocation core diffusion of pure Sn at lower temperatures. Normalizing the creep rate for activation energy and the temperature-dependence of shear modulus allowed for unification of the creep data. Microstructure characterization, including preliminary TEM analysis, and fractographic analysis were conducted in order to fully describe the creep behavior of the material.

  16. The Role of Annealing Process in Ag-Based BaSnO3 Multilayer Thin Films.

    PubMed

    Wu, Muying; Yu, Shihui; He, Lin; Yang, Lei; Zhang, Weifeng

    2016-12-01

    The BaSnO3/Ag/BaSnO3 multilayer structure was designed and fabricated on a quartz glass by magnetron sputtering, followed by an annealing process at a temperature from 150 to 750 °C in air. In this paper, we investigated the influence of the annealing temperature on the structural, optical, and electrical properties of the multilayers and proposed the mechanisms of conduction and transmittance. The maximum value of the figure of merit of 31.8 × 10(-3) Ω(-1) was achieved for the BaSnO3/Ag/BaSnO3 multilayer thin films annealed at 150 °C, while the average optical transmittance in the visible ranges was >84 %, the resistivity was 5.71 × 10(-5) Ω cm, and the sheet resistance was 5.57 Ω/sq. When annealed at below 600 °C, the values of resistivity and transmittance of the multilayers were within an acceptable range (resistivity <5.0 × 10(-4) Ω cm, transmittance >80 %). The observed property of the multilayer film is suitable for the application of transparent conductive electrodes. PMID:27544775

  17. An Evaluation of Prototype Circuit Boards Assembled with a Sn-Ag Bi Solder

    SciTech Connect

    ARTAKI,I.; RAY,U.; REJENT,JEROME A.; VIANCO,PAUL T.

    1999-09-01

    An evaluation was performed which examined the aging of surface mount solder joints assembled with 91.84Sn-3.33Ag-4.83Bi solder. Defect analysis of the as-fabricated test vehicles revealed excellent solderability, good package alignment, and a minimum number of voids. Continuous DC electrical monitoring of the solder joints did not reveal opens during as many as 10,000 thermal cycles (0 C, 100 C). The solder joints exhibited no significant degradation through 2500 cycles, based upon an absence of microstructural damage and sustained shear and pull strengths of chip capacitors and J-leaded solder joints, respectively. Thermal cycles of 5000 and 10,000 resulted in some surface cracking of the solder fillets and coatings. In a few cases, deeper cracks were observed in the thinner reaches of several solder fillets. There was no deformation or cracking in the solder located in the gap between the package I/O and the circuit board pad nor in the interior of the fillets, both locations that would raise concerns of joint mechanical integrity. A drop in the chip capacitor shear strength was attributed to crack growth near the top of the fillet.

  18. Effect of Board Thickness on Sn-Ag-Cu Joint Interconnect Mechanical Shock Performance

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Xie, Weidong

    2014-12-01

    The mechanical stability of solder joints with Sn-Ag-Cu alloy joints on various board thicknesses was investigated with a high G level shock environment. A test vehicle with three different board thicknesses was used for board drop shock performance tests. These vehicles have three different strain and shock level condition couples per board, and are used to identify the joint stability and failure modes based on the board responses. The results revealed that joint stability is sensitive to board thickness. The board drop shock test showed that the first failure location shifts from the corner location near the standoff to the center with increased board thickness due to the shock wave response. From analysis of the thickness variation and failure cycle number, the strain rate during the pulse strain cycle is the dominant factor, which defines the life cycle number per board thickness, and not the maximum strain value. The failure location shift and the shock performance differentiation are discussed from the perspective of maximum principal strain, cycle frequency and strain rate per cycle.

  19. Thermal Cycling Reliability of Sn-Ag-Cu Solder Interconnections. Part 1: Effects of Test Parameters

    NASA Astrophysics Data System (ADS)

    Hokka, Jussi; Mattila, Toni. T.; Xu, Hongbo; Paulasto-Kröckel, Mervi

    2013-06-01

    The work presented in part 1 of this study focuses on identifying the effects of thermal cycling test parameters on the lifetime of ball grid array (BGA) component boards. Detailed understanding about the effects of the thermal cycling parameters is essential because it provides means to develop more efficient and meaningful methods of reliability assessment for electronic products. The study was carried out with a single package type (BGA with 144 solder balls), printed wiring board (eight-layer build-up FR4 structure), and solder interconnection composition (Sn-3.1Ag-0.5Cu) to ensure that individual test results would be comparable with each other. The effects of (i) temperature difference (Δ T), (ii) lower dwell temperature and lower dwell time, (iii) mean temperature, (iv) dwell time, and (v) ramp rate were evaluated. Based on the characteristic lifetimes, the thermal cycling profiles were categorized into three lifetime groups: (i) highly accelerated conditions, (ii) moderately accelerated conditions, and (iii) mildly/nonaccelerated conditions. Thus, one might be tempted to use the highly accelerated conditions to produce lifetime statistics as quickly as possible. However, to do this one needs to know that the failure mechanisms do not change from one lifetime group to another and that the failure mechanisms correlate with real-use failures. Therefore, in part 2 the observed differences in component board lifetimes will be explained by studying the failure mechanisms that take place in the three lifetime groups.

  20. Relationship between morphologies and orientations of Cu{sub 6}Sn{sub 5} grains in Sn3.0Ag0.5Cu solder joints on different Cu pads

    SciTech Connect

    Tian, Yanhong Zhang, Rui; Hang, Chunjin; Niu, Lina; Wang, Chunqing

    2014-02-15

    The morphologies and orientations of Cu{sub 6}Sn{sub 5} intermetallic compounds in the Sn3.0Ag0.5Cu solder joints both on polycrystalline and single crystal Cu pads under different peak reflow temperatures and times above liquids were investigated. The relationship between Cu{sub 6}Sn{sub 5} grain orientations and morphologies was clarified. At the interface of Sn3.0Ag0.5Cu/polycrystalline Cu pad, scalloped Cu{sub 6}Sn{sub 5} intermetallic compounds formed at 250 °C and roof shape Cu{sub 6}Sn{sub 5} formed at 300 °C. Both scalloped Cu{sub 6}Sn{sub 5} and roof shape Cu{sub 6}Sn{sub 5} had a preferred orientation of (0001) plane being parallel to polycrystalline Cu pad surface. Besides, the percentage of large angle grain boundaries increased as the peak reflow temperature rose. At the interface of Sn3.0Ag0.5Cu/(111) single crystal Cu pad, the Cu{sub 6}Sn{sub 5} intermetallic compounds were mainly scallop-type at 250 °C and were prism type at 300 °C. The prismatic Cu{sub 6}Sn{sub 5} grains grew along the three preferred directions with the inter-angles of 60° on (111) single crystal Cu pad while along two perpendicular directions on (100) single crystal Cu pad. The orientation relationship between Cu{sub 6}Sn{sub 5} grains and the single crystal Cu pads was investigated by electron backscatter diffraction technology. In addition, two types of hollowed Cu{sub 6}Sn{sub 5} intermetallic compounds were found inside the joints of polycrystalline Cu pads. The long hexagonal Cu{sub 6}Sn{sub 5} strips were observed in the joints reflowing at 250 °C while the hollowed Cu{sub 6}Sn{sub 5} strips with the ‘▪’ shape cross-sections appeared at 300 °C, which was attributed to the different grain growth rates of different Cu{sub 6}Sn{sub 5} crystal faces. - Highlights: • The orientation of interfacial Cu{sub 6}Sn{sub 5} grains was obtained by EBSD technology. • Two types of hollowed Cu{sub 6}Sn{sub 5} strips were found at different temperatures. • The formation

  1. Electronic and Thermoelectric Properties of Layered Sn- and Pb-Doped Ge2Sb2Te5 Alloys Using First Principle Calculations

    NASA Astrophysics Data System (ADS)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2016-06-01

    A computational study on stable hexagonal phase of undoped, and Sn- and Pb-doped Ge2Sb2Te5 (GST) phase change materials has been carried out. The electronic structure, lattice dynamics and thermoelectric properties of doped GST have been extensively investigated using ab initio methods with virtual crystal approximation. The hexagonal symmetry of the GST is maintained with the addition of Sn and Pb dopants. The lattice parameters and atomic volume of the Sn-doped GST structure is larger than that of the undoped GST. Electronic band structure calculations show that there is an increase in band gap with the increase in the concentration of Sn (≤4.4 at.%). However, with the addition of a very small amount of Pb, there is a continuous decrease in lattice parameters and band gap values. The calculated energy band structure is then used in combination with the Boltzmann transport equation to calculate the thermoelectric parameters of GST and Sn- and Pb-doped materials. Seebeck coefficient ( S), electronic thermal conductivity ( κ e) and the thermoelectric figure-of-merit ( ZT) have been calculated with the help of BoltzTraP code. It was found that the thermoelectric properties of GST are enhanced with the addition of Sn.

  2. Effect of annealing on the structural and UV photoluminescence properties of Sb-doped SnO2 films deposited on Al2O3 (0001) substrates by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Feng, Xianjin; Luo, Yi; Luan, Caina

    2014-11-01

    The antimony-doped tin oxide (SnO2∶Sb) films have been deposited on the Al2O3 (0001) substrates by RF magnetron sputtering. The influence of annealing on the structural and photoluminescence (PL) properties of the SnO2∶Sb films was investigated. The prepared samples were polycrystalline films having a rutile structure of pure SnO2 and a preferred orientation along the (110) direction, with an improvement in the film crystallinity observed after annealing. An ultraviolet PL peak near 334 nm was observed at room temperature both before and after annealing. The corresponding PL mechanism was discussed in detail.

  3. Surface plasmon resonance enhancement of the magneto-optical Kerr effect in Cu/Co/Ag/SnO2 structure

    NASA Astrophysics Data System (ADS)

    Ghanaatshoar, Majid; Moradi, Mehrdad; Tohidi, Parsis

    2014-10-01

    In this paper, an Ag ultra thin layer was deposited on the Cu/Co film by thermal evaporation technique in the vacuum. The atomic force microscopy confirms that nanoparticles of Ag were formed on the Co magnetic layer, and subsequently, the longitudinal Kerr signal of Cu/Co/Ag was amplified more than 2 times. This enhancement is resulting from the overlap of the surface plasmon resonance in the silver with the electronic transition in the Co layer. Furthermore, we investigated the effect of transparent semiconductor SnO2 as a cap layer on the magnitude of longitudinal Kerr signal. To obtain the optimal thickness of cap layer, a numerical analysis was carried out using a 4 × 4 characteristic matrix, which takes into account multiple reflections from interfaces within the medium and light transmission through the layers.

  4. High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-Doped SnO2/BiVO4 Core/Shell Nanorod-Array Photoanodes.

    PubMed

    Zhou, Lite; Zhao, Chenqi; Giri, Binod; Allen, Patrick; Xu, Xiaowei; Joshi, Hrushikesh; Fan, Yangyang; Titova, Lyubov V; Rao, Pratap M

    2016-06-01

    BiVO4 has become the top-performing semiconductor among photoanodes for photoelectrochemical water oxidation. However, BiVO4 photoanodes are still limited to a fraction of the theoretically possible photocurrent at low applied voltages because of modest charge transport properties and a trade-off between light absorption and charge separation efficiencies. Here, we investigate photoanodes composed of thin layers of BiVO4 coated onto Sb-doped SnO2 (Sb:SnO2) nanorod-arrays (Sb:SnO2/BiVO4 NRAs) and demonstrate a high value for the product of light absorption and charge separation efficiencies (ηabs × ηsep) of ∼51% at an applied voltage of 0.6 V versus the reversible hydrogen electrode, as determined by integration of the quantum efficiency over the standard AM 1.5G spectrum. To the best of our knowledge, this is one of the highest ηabs × ηsep efficiencies achieved to date at this voltage for nanowire-core/BiVO4-shell photoanodes. Moreover, although WO3 has recently been extensively studied as a core nanowire material for core/shell BiVO4 photoanodes, the Sb:SnO2/BiVO4 NRAs generate larger photocurrents, especially at low applied voltages. In addition, we present control experiments on planar Sb:SnO2/BiVO4 and WO3/BiVO4 heterojunctions, which indicate that Sb:SnO2 is more favorable as a core material. These results indicate that integration of Sb:SnO2 nanorod cores with other successful strategies such as doping and coating with oxygen evolution catalysts can move the performance of BiVO4 and related semiconductors closer to their theoretical potential. PMID:27203779

  5. Improvement of reliability and power consumption for SnSb{sub 4} phase change film composited with Ga{sub 3}Sb{sub 7} by superlattice-like method

    SciTech Connect

    Hu, Yifeng; Zhai, Jiwei; Zeng, Huarong; Song, Sannian; Song, Zhitang

    2015-05-07

    Superlattice-like (SLL) SnSb{sub 4}/Ga{sub 3}Sb{sub 7} (SS/GS) thin films were investigated through in-situ film resistance measurement. The optical band gap was derived from the transmittance spectra by using a UV-visible-NIR (ultraviolet-visible-near infrared) spectrophotometer. Transmission electron microscopy was used to observe the micro-structure before and after annealing. Phase change memory cells based on the SLL [SS(3 nm)/GS(4.5 nm)]{sub 7} thin films were fabricated to test and verify the operation consumption and switching endurance. The scanning thermal microscopy was used to probe the nanoscale thermal property.

  6. Synthesis of Structurally Diverse 2,3-Fused Indoles via Microwave-Assisted AgSbF6-Catalysed Intramolecular Difunctionalization of o-Alkynylanilines

    PubMed Central

    Huang, Yuanqiong; Yang, Yan; Song, Hongjian; Liu, Yuxiu; Wang, Qingmin

    2015-01-01

    2,3-Fused indoles are found in numerous natural products and drug molecules. Although several elegant methods for the synthesis of this structural motif have been reported, long reaction times and harsh conditions are sometimes required, and the yields tend to be low. Herein, we report a microwave method for straightforward access to various types of 2,3-fused indoles via AgSbF6-catalysed intramolecular difunctionalization of o-alkynylanilines. AgSbF6 played a role in both the hydroamination step and the imine-formation step. This method, which exhibited excellent chemoselectivity (no ring-fused 1,2-dihydroquinolines were formed), was used for formal syntheses of the natural products conolidine and ervaticine and the antihistamine drug latrepirdine. PMID:26310858

  7. Measurements of L-shell X-ray production cross-sections of Ag and Sb by low-energy electron impact

    NASA Astrophysics Data System (ADS)

    Zhao, J. L.; An, Z.; Zhu, J. J.; Tan, W. J.; Liu, M. T.

    2016-05-01

    The total L-shell X-ray production cross-sections of Ag and Sb elements were measured by detecting the characteristic X-rays induced by the electron impact in the energy range of 6-28 keV. In this experiment, the thin films with thick aluminum substrates were used as the targets, and the experimental setup was improved. The influence of multiple scattering of electrons penetrating the targets films, electrons reflected from the thick aluminum substrates and bremsstrahlung photons produced when incident electrons impacted the targets were corrected by using the Monte Carlo method. The experimental results determined in this paper were compared with some theoretical models and other available experimental data in the literature. It was shown that the L-shell X-ray production cross-sections of Ag and Sb elements measured in this paper were in good agreement with the theoretical predictions within the uncertainties.

  8. Synthesis of Structurally Diverse 2,3-Fused Indoles via Microwave-Assisted AgSbF6-Catalysed Intramolecular Difunctionalization of o-Alkynylanilines

    NASA Astrophysics Data System (ADS)

    Huang, Yuanqiong; Yang, Yan; Song, Hongjian; Liu, Yuxiu; Wang, Qingmin

    2015-08-01

    2,3-Fused indoles are found in numerous natural products and drug molecules. Although several elegant methods for the synthesis of this structural motif have been reported, long reaction times and harsh conditions are sometimes required, and the yields tend to be low. Herein, we report a microwave method for straightforward access to various types of 2,3-fused indoles via AgSbF6-catalysed intramolecular difunctionalization of o-alkynylanilines. AgSbF6 played a role in both the hydroamination step and the imine-formation step. This method, which exhibited excellent chemoselectivity (no ring-fused 1,2-dihydroquinolines were formed), was used for formal syntheses of the natural products conolidine and ervaticine and the antihistamine drug latrepirdine.

  9. Development of Sn-Ag-Cu-X Solders for Electronic Assembly by Micro-Alloying with Al

    SciTech Connect

    Boesenberg, Adam; Anderson, Iver; Harringa, Joel

    2012-03-10

    Of Pb-free solder choices, an array of solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic (T eut = 217°C) composition have emerged with potential for broad use, including ball grid array (BGA) joints that cool slowly. This work investigated minor substitutional additions of Al (<0.25 wt.%) to Sn-3.5Ag-0.95Cu (SAC3595) solders to promote more consistent solder joint microstructures and to avoid deleterious product phases, e.g., Ag3Sn “blades,” for BGA cooling rates, since such Al additions to SAC had already demonstrated excellent thermal aging stability. Consistent with past work, blade formation was suppressed for increased Al content (>0.05Al), but the suppression effect faded for >0.20Al. Undercooling suppression did not correlate specifically with blade suppression since it became significant at 0.10Al and increased continuously with greater Al to 0.25Al. Surprisingly, an intermediate range of Al content (0.10 wt.% to 0.20 wt.% Al) promoted formation of significant populations of 2-μm to 5-μm faceted Cu-Al particles, identified as Cu33Al17, that clustered at the top of the solder joint matrix and exhibited extraordinary hardness. Clustering of Cu33Al17 was attributed to its buoyancy, from a lower density than Sn liquid, and its early position in the nucleation sequence within the solder matrix, permitting unrestricted migration to the top interface. Joint microstructures and implications for the full nucleation sequence for these SAC + Al solder joints are discussed, along with possible benefits from the clustered particles for improved thermal cycling resistance.

  10. Effects of Ge substitution in GeTe by Ag or Sb on the Seebeck coefficient and carrier concentration derived from 125Te NMR

    NASA Astrophysics Data System (ADS)

    Levin, E. M.

    2016-01-01

    GeTe, a self-doping p -type semiconductor where the high free hole concentration is determined by Ge vacancies is a well-known base for high-efficiency A gxS bxG e50 -2 xT e50 (a tellurium-antimony-germanium-silver series) thermoelectric materials. Here it is shown that the replacement of Ge by Ag in GeTe (a A gxG e50 -xT e50 system) significantly decreases the Seebeck coefficient, whereas the replacement by Sb (S bxG e50 -xT e50 ) increases it. These effects can be attributed to a change in carrier concentration and consistent with 125Te NMR spin-lattice relaxation measurements and NMR signal position, which is mostly dependent on the Knight shift. Opposite changes in carrier concentration in A gxG e50 -xT e50 and S bxG e50 -xT e50 can be explained by different valence electron configurations of Ag and Sb compared to that of Ge, which results in a different local electron imbalance and/or in a change in Ge vacancy formation energy and affects the total carrier concentration. Comparison of our data for GeTe, A g2G e48T e50 , and S b2G e48T e50 with those for A g2S b2G e46T e50 shows that the effects from Ag and Sb compensate for each other and supports the formation of [Ag +Sb ] atomic pairs suggested earlier based on theoretical calculations.

  11. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    NASA Astrophysics Data System (ADS)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  12. Physicochemical properties of SnO{sub 2}-Sb{sub 2}O{sub 5} films prepared by the spray pyrolysis technique

    SciTech Connect

    Correa-Lozano, B.; Comninellis, C.; Battisti, A. De

    1996-01-01

    Tin dioxide films doped with Sb(V) of F{sup {minus}} have interesting electrochemical properties in different electrode processes, like low temperature electrochemical combustion of organic pollutants, ozone production, and organic electrosynthesis. The properties of SnO{sub 2}-Sb{sub 2}O{sub 5} mixed-oxide films prepared by the spray pyrolysis method were studied under different synthesis conditions. The film density, measured by profilometry and by a spectrophotometric method, was close to that reported in the literature for crystalline tin dioxide. Analysis by energy dispersive spectrometry and X-ray photoelectron spectroscopy showed that the Sb/Sn atom ratio int eh films was in all cases about 2.5 times larger with respect to that in the precursor solution. Microstructural characterization by wide-angle X-ray scattering indicates that the deposits consist of large sized crystallites. The influence of the substrate temperature (T) on the average crystallite size (l) has shown that l decreases linearly with T. Scanning electron microscopy showed that the surface of films thinner than 0.5--0.8 {micro}m is flat with only a limited number of emerging particles.

  13. Effect of the Silver Content of SnAgCu Solder on the Interfacial Reaction and on the Reliability of Angle Joints Fabricated by Laser-Jet Soldering

    NASA Astrophysics Data System (ADS)

    Ji, Hongjun; Ma, Yuyou; Li, Mingyu; Wang, Chunqing

    2015-02-01

    The silver content of lead-free solders affects their microstructure, the interfacial reaction, and the performance of the joints in reliability tests. In this study, Sn3.0Ag0.5Cu (wt.%, SAC305) and Sn1.0Ag0.5Cu (wt.%, SAC105) solder balls of diameter 55 μm were reflowed on gold surface pads by laser-jet soldering. It was found that four types of layered intermetallic compound (IMC) were formed at the interfaces; these were Au5Sn/AuSn, AuSn, AuSn2, and AuSn4 from the pad side to the solder matrix. The Au5Sn/AuSn eutectic region, thickness 400 nm, formed because of the high cooling rate induced by the laser-jet soldering. During high-temperature storage tests, the silver became segregated at the interfaces between the Au-Sn IMC and the solder matrix, resulting in inhibition of IMC growth in SAC305 joints, the shear strengths of which were higher than those of SAC105 joints. In mechanical drop tests, however, percentage failure of the SAC305 joints was twice that of the SAC105 joints.

  14. Effects of PCB Pad Metal Finishes on the Cu-Pillar/Sn-Ag Micro Bump Joint Reliability of Chip-on-Board (COB) Assembly

    NASA Astrophysics Data System (ADS)

    Kim, Youngsoon; Lee, Seyong; Shin, Ji-won; Paik, Kyung-Wook

    2016-06-01

    While solder bumps have been used as the bump structure to form the interconnection during the last few decades, the continuing scaling down of devices has led to a change in the bump structure to Cu-pillar/Sn-Ag micro-bumps. Cu-pillar/Sn-Ag micro-bump interconnections differ from conventional solder bump interconnections in terms of their assembly processing and reliability. A thermo-compression bonding method with pre-applied b-stage non-conductive films has been adopted to form solder joints between Cu pillar/Sn-Ag micro bumps and printed circuit board vehicles, using various pad metal finishes. As a result, various interfacial inter-metallic compounds (IMCs) reactions and stress concentrations occur at the Cu pillar/Sn-Ag micro bumps joints. Therefore, it is necessary to investigate the influence of pad metal finishes on the structural reliability of fine pitch Cu pillar/Sn-Ag micro bumps flip chip packaging. In this study, four different pad surface finishes (Thin Ni ENEPIG, OSP, ENEPIG, ENIG) were evaluated in terms of their interconnection reliability by thermal cycle (T/C) test up to 2000 cycles at temperatures ranging from -55°C to 125°C and high-temperature storage test up to 1000 h at 150°C. The contact resistances of the Cu pillar/Sn-Ag micro bump showed significant differences after the T/C reliability test in the following order: thin Ni ENEPIG > OSP > ENEPIG where the thin Ni ENEPIG pad metal finish provided the best Cu pillar/Sn-Ag micro bump interconnection in terms of bump joint reliability. Various IMCs formed between the bump joint areas can account for the main failure mechanism.

  15. Effects of PCB Pad Metal Finishes on the Cu-Pillar/Sn-Ag Micro Bump Joint Reliability of Chip-on-Board (COB) Assembly

    NASA Astrophysics Data System (ADS)

    Kim, Youngsoon; Lee, Seyong; Shin, Ji-won; Paik, Kyung-Wook

    2016-03-01

    While solder bumps have been used as the bump structure to form the interconnection during the last few decades, the continuing scaling down of devices has led to a change in the bump structure to Cu-pillar/Sn-Ag micro-bumps. Cu-pillar/Sn-Ag micro-bump interconnections differ from conventional solder bump interconnections in terms of their assembly processing and reliability. A thermo-compression bonding method with pre-applied b-stage non-conductive films has been adopted to form solder joints between Cu pillar/Sn-Ag micro bumps and printed circuit board vehicles, using various pad metal finishes. As a result, various interfacial inter-metallic compounds (IMCs) reactions and stress concentrations occur at the Cu pillar/Sn-Ag micro bumps joints. Therefore, it is necessary to investigate the influence of pad metal finishes on the structural reliability of fine pitch Cu pillar/Sn-Ag micro bumps flip chip packaging. In this study, four different pad surface finishes (Thin Ni ENEPIG, OSP, ENEPIG, ENIG) were evaluated in terms of their interconnection reliability by thermal cycle (T/C) test up to 2000 cycles at temperatures ranging from -55°C to 125°C and high-temperature storage test up to 1000 h at 150°C. The contact resistances of the Cu pillar/Sn-Ag micro bump showed significant differences after the T/C reliability test in the following order: thin Ni ENEPIG > OSP > ENEPIG where the thin Ni ENEPIG pad metal finish provided the best Cu pillar/Sn-Ag micro bump interconnection in terms of bump joint reliability. Various IMCs formed between the bump joint areas can account for the main failure mechanism.

  16. The effect of intermetallic compound evolution on the fracture behavior of Au stud bumps joined with Sn-3.5Ag solder

    NASA Astrophysics Data System (ADS)

    Lee, Young-Kyu; Ko, Yong-Ho; Kim, Jun-Ki; Lee, Chang-Woo; Yoo, Sehoon

    2013-01-01

    The microstructure and joint properties of Au stud bumps joined with Sn-3.5Ag solder were investigated as functions of flip chip bonding temperature and aging time. Au stud bumps were bonded on solder-onpad (SOP) at bonding temperature of 260°C and 300°C for 10 s, respectively. Aging treatment was carried out at 150°C for 100 h, 300 h, and 500 h, respectively. After flip chip bonding, intermetallic compounds (IMCs) of AuSn, AuSn2, and AuSn4 were formed at the interface between the Au stud bump and Sn-3.5Ag solder. At a bonding temperature of 300°C, AuSn2 IMC clusters, which were surrounded by AuSn4 IMCs, were observed in the Sn-3.5Ag solder bump. After flip chip bonding, bonding strength was approximately 220.5mN/bump. As aging time increased, the bonding strength decreased. After 100 h of aging treatment, the bonding strength of the joint bonded at 300°C was lower than that bonded at 260°C due to the fast growth rate of the AuSn2 IMCs. The main failure modes were interface fractures between the AuSn2 IMCs and AuSn4 IMCs, fractures through the AuSn2 IMCs and pad lift. Initial joint microstructures after flip chip bonding strongly affected the bonding strengths of aged samples.

  17. IMC Growth at the Interface of Sn-2.0Ag-2.5Zn Solder Joints with Cu, Ni, and Ni-W Substrates

    NASA Astrophysics Data System (ADS)

    Liang, Jiaxing; Wang, Haozhe; Hu, Anmin; Li, Ming

    2014-11-01

    Growth of intermetallic compounds (IMC) at the interface of Sn-2.0Ag-2.5Zn solder joints with Cu, Ni, and Ni-W substrates have been investigated. For the Cu substrate, a Cu5Zn8 IMC layer with Ag3Sn particles on top was observed at the interface; this acted as a barrier layer preventing further growth of Cu-Sn IMC. For the Ni substrate, a thin Ni3Sn4 film was observed between the solder and the Ni layer; the thickness of the film increased slowly and steadily with aging. For the Ni-W substrate, a thin Ni3Sn4 film was observed between the solder and Ni-W layer. During the aging process a thin layer of the Ni-W substrate was transformed into a bright layer, and the thickness of bright layer increased with aging.

  18. Formation of medical radioisotopes {sup 111}In, {sup 117m}Sn, {sup 124}Sb, and {sup 177}Lu in photonuclear reactions

    SciTech Connect

    Danagulyan, A. S.; Hovhannisyan, G. H. Bakhshiyan, T. M.; Avagyan, R. H.; Avetisyan, A. E.; Kerobyan, I. A.; Dallakyan, R. K.

    2015-06-15

    The possibility of the photonuclear production of radioisotopes {sup 111}In, {sup 117m}Sn, {sup 124}Sb, and {sup 177}Lu is discussed. Reaction yields were measured by the gamma-activation method. The enriched tin isotopes {sup 112,} {sup 118}Sn and Te and HfO{sub 2} of natural isotopic composition were used as targets. The targets were irradiated at the linear electron accelerator of Alikhanian National Science Laboratory (Yerevan) at the energy of 40 MeV. The experimental results obtained in this way reveal that the yield and purity of radioisotopes {sup 111}In and {sup 117}mSn are acceptable for their production via photonuclear reactions. Reactions proceeding on targets from Te and HfO{sub 2} of natural isotopic composition and leading to the formation of {sup 124}Sb and {sup 177}Lu have small yields and are hardly appropriate for the photoproduction of these radioisotopes even in the case of enriched targets.

  19. Pressure-induced semimetal-semiconductor transition and enhancement of thermoelectric performance in α-MgAgSb

    NASA Astrophysics Data System (ADS)

    Miao, Naihua; Zhou, Jian; Sa, Baisheng; Xu, Bin; Sun, Zhimei

    2016-05-01

    Comparable to bismuth telluride, α-MgAgSb-based materials (α-MAS) have been investigated recently as promising candidates for room-temperature thermoelectric energy harvesting and thus various efforts have been devoted to the enhancement of their thermoelectric performance. By utilizing first-principles density functional calculations and Boltzmann transport theory, we report that the thermoelectric properties of α-MAS can be dramatically improved with the application of hydrostatic pressure. This is attributed to a pressure-induced semimetal to semiconductor transition in α-MAS. With the benefit of this pressure-tunable behaviour, the Seebeck coefficient of α-MAS can be manipulated flexibly. Furthermore, we found that, through the combination of applying pressure and p-type doping, the optimal thermoelectric power factor and figure of merit of α-MAS can be enhanced remarkably by 110% at 550 K compared with the intrinsic case. Our results provide an interesting insight and a feasible guideline for the improvement of the thermoelectric properties of α-MAS related materials.

  20. Size Control and Characterization of Sn-Ag-Cu Lead-Free Nanosolders by a Chemical Reduction Process

    NASA Astrophysics Data System (ADS)

    Yung, K. C.; Law, C. M. T.; Lee, C. P.; Cheung, B.; Yue, T. M.

    2012-02-01

    Sn-3.0Ag-0.5Cu nanosolders were synthesized via a chemical reduction method. Polyvinyl pyrrolidone (PVP) and sodium borohydride (NaBH4) were employed as surfactant and reducing agent, respectively. Ultraviolet-visible (UV-visible) absorption and x-ray diffraction patterns revealed that alloying had successfully taken place during the reduction process. Different amounts of PVP and NaBH4 additions influenced the nanosolder particle size. Under varying reaction temperatures and pH values, various ranges of nanosolder size were obtained. Optimized nanosolders were studied by differential scanning calorimetry to investigate the depression of the melting temperature, and were analyzed by transmission electron microscopy to measure actual particle sizes. The dependence of the particle size on the melting temperature was observed. The melting point was depressed to 204.4°C when the average diameter of the nanosolders was 20 nm. Although SnO2 was formed on the nanosolders, it could be cleaned by citric acid. These low-melting-temperature Sn-Ag-Cu nanosolders are candidates for use in lead-free interconnect applications.

  1. Electronic structure and thermoelectric properties of p-type Ag-doped Mg₂Sn and Mg₂Sn{sub 1-x}Si{sub x} (x=0.05, 0.1)

    SciTech Connect

    Kim, Sunphil; Jin, Hyungyu; Wiendlocha, Bartlomiej; Tobola, Janusz; Heremans, Joseph P.

    2014-10-21

    An experimental and theoretical study of p-type Ag-doped Mg₂Sn and Mg₂Sn{sub 1-x}Si{sub x} (x=0.05, 0.1) is presented. Band structure calculations show that behavior of Ag in Mg₂Sn depends on the site it occupies. Based on Bloch spectral functions and density of states calculations, we show that if Ag substitutes for Sn, it is likely to form a resonant level; if it substitutes for Mg, a rigid-band-like behavior is observed. In both cases, the doped system should exhibit p-type conductivity. Experimentally, thermoelectric, thermomagnetic, and galvanomagnetic properties are investigated of p-type Mg₂Sn{sub 1–x}Si{sub x} (x=0, 0.05, 0.1) samples synthesized by a co-melting method in sealed crucibles. Ag effectively dopes the samples p-type, and thermoelectric power factors in excess of 20μW cm⁻¹K⁻² are observed in optimally doped samples. From the measured Seebeck coefficient, Nernst coefficient, and mobility, we find that the combination of acoustic phonon scattering, optical phonon scattering and defect scattering results in an energy-independent scattering rate. No resonant-like increase in thermopower is observed, which correlates well with electronic structure calculations assuming the location of Ag on Mg site.

  2. Microstructures and Mechanical Properties of Sn-0.1Ag-0.7Cu-(Co, Ni, and Nd) Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Zhou, Jian; Xue, Feng; Bai, Jing; Yao, Yao

    2015-02-01

    The influences of minor alloying elements Co, Ni, and Nd on the microstructures and mechanical properties of Sn-0.1Ag-0.7Cu (SAC0107) solder were investigated. The results show that the microstructures of SAC0107 alloy mainly consisted of primary Sn-rich phases and eutectic phases composed of Ag3Sn and Cu6Sn5 phases dispersed in a Sn matrix. With Co or Ni additions, the amount of primary Sn-rich phase reduced and IMCs dispersed more uniformly in the Sn matrix. The elements of Co and Ni were concentrated in (Co x Cu1- x )6Sn5 and (Ni x Cu1- x )6Sn5 intermetallic compounds (IMCs), respectively, and they also entered the IMC layer between solder alloys and Cu substrate during soldering. Shear strength of the joints all increased by adding Co, Ni, and Nd elements. Different from the Co and Nd additions, the addition of the Ni element also markedly improved the tensile strength and elongation of SAC0107 alloys.

  3. Characterization of Cu3P phase in Sn3.0Ag0.5Cu0.5P/Cu solder joints

    NASA Astrophysics Data System (ADS)

    Chen, Jian-xun; Zhao, Xing-ke; Zou, Xu-chen; Huang, Ji-hua; Hu, Hai-chun; Luo, Hai-lian

    2014-01-01

    This article reports the effects of phosphorus addition on the melting behavior, microstructure, and mechanical properties of Sn3.0Ag0.5Cu solder. The melting behavior of the solder alloys was determined by differential scanning calorimetry. The interfacial microstructure and phase composition of solder/Cu joints were studied by scanning electron microscopy and energy dispersive spectrometry. Thermodynamics of Cu-P phase formation at the interface between Sn3.0Ag0.5Cu0.5P solder and the Cu substrate was characterized. The results indicate that P addition into Sn3.0Ag0.5Cu solder can change the microstructure and cause the appearance of rod-like Cu3P phase which is distributed randomly in the solder bulk. The Sn3.0Ag0.5Cu0.5P joint shows a mixture of ductile and brittle fracture after shear testing. Meanwhile, the solidus temperature of Sn3.0Ag0.5Cu solder is slightly enhanced with P addition.

  4. A first-principles study of the electronic and structural properties of Sb and F doped SnO{sub 2} nanocrystals

    SciTech Connect

    Kim, Minjung; Scott Bobbitt, N.; Marom, Noa; Chelikowsky, James R.

    2015-01-28

    We examine the electronic properties of Sb and F doped SnO{sub 2} nanocrystals up to 2.4 nm in diameter. A real-space pseudopotential implementation of density functional theory is employed within the local density approximation. We calculate electron binding energies and dopant formation energies as function of nanocrystal size, dopant concentration, and dopant species. Structural changes for different dopant species are also investigated. Our study should provide useful information for the design of transparent conducting oxides at the nanoscale.

  5. Thermoelectric performance of nanostructured p-type Zr₀.₅Hf₀.₅Co₀.₄Rh₀.₆Sb1–xSnxhalf-Heusler alloys

    SciTech Connect

    Maji, Pramathesh; Makongo, Julien P.A.; Zhou, Xiaoyuan; Chi, Hang; Uher, Ctirad; Poudeu, Pierre F.P.

    2013-06-01

    Several compositions of the p-type half-Heusler alloys Zr₀.₅Hf₀.₅Co₀.₄Rh₀.₆Sb1–xSnx (0≤x≤0.4) were synthesized by mechanically alloying high purity elemental powders using hardened steel jars and balls on a high energy shaker mill. Powder X-ray diffraction (XRD) investigations of several aliquots taken after regularly spaced milling time suggested that single phase products with half-Heusler (HH) structure can be obtained after 10 h. However, XRD and transmission electron microscopy (TEM) studies of several specimens obtained from compacted polycrystalline powders of Z₀.₅Hf₀.₅Co₀.₄Rh₀.₆Sb1–xSnx alloys using a uniaxial hot press (HP) revealed the presence of CoSb inclusions with various sizes embedded inside the HH matrix. Hall effect, electrical conductivity, and thermopower data collected between 300 K and 775 K on several compositions suggested that electronic transport in the synthesized Zr₀.₅Hf₀.₅Co₀.₄Rh₀.₆Sb1–xSnx/CoSb composites strongly depends on the average size and/or mole fraction of the embedded CoSb inclusions rather than the fraction (x) of Sn substituting for Sb. Among the samples investigated, the nanocomposite with x=0.2, which contains nanometer-scale CoSb inclusions, showed the largest power factor (800 μW/K² m at 775 K) and the lowest lattice thermal conductivity (~2.2 W/m K at 775 K) leading to a six-fold enhancement in the figure of merit when compared to the Zr₀.₅Hf₀.₅Co₀.₄Rh₀.₆Sb₀.₉₉Sn₀.₀₁ bulk matrix. - Graphical abstract: CoSb nanoinclusions embedded into a p-type Zr₀.₅Hf₀.₅Co₀.₄Rh₀.₆Sb1–xSnx half-Heusler matrix simultaneously boost the thermopower and carrier mobility leading to a drastic enhancement of the power factor of the resulting bulk nanostructured materials. Highlights: • The phase composition of half-Heusler (HH) alloy is very sensitive

  6. An investigation of the microstructure and mechanical properties of electrochemically coated Ag(4)Sn dental alloy particles condensed in vitro

    NASA Astrophysics Data System (ADS)

    Marquez, Jose Antonio

    As part of the ongoing scientific effort to develop a new amalgam-like material without mercury, a team of metallurgists and electrochemists at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, announced in 1993 the development of a new Ag-Sn dental alloy system without mercury that sought to replace conventional dental amalgams. They used spherical Ag3Sn and Ag4Sn intermetallic dental alloy particles, commonly used in conventional dental alloys, and coated them with electrodeposited silver with newly-developed electrolytic and immersion techniques. The particles had relatively pure silver coatings that were closely adherent to the intermetalfic cores. These silver-coated particles, due to silver's plasticity at room temperature, were condensed into PlexiglasRTM molds with the aid of an acidic surface activating solution (HBF4) and a mechanical condensing device, producing a metal-matrix composite with Ag3,4Sn filler particles surrounded by a cold-welded silver matrix. Since silver strain hardens rather easily, the layers had to be condensed in less than 0.5 mm increments to obtain a dense structure. Mechanical testing at NIST produced compressive strength values equal to or greater than those of conventional dental amalgams. Because of its potential for eliminating mercury as a constituent in dental amalgam, this material created a stir in dental circles when first developed and conceivably could prove to be a major breakthrough in the field of dental restoratives. To date, the chief impediments to its approval for human clinical applications by the Food and Drug Administration are the potentially-toxic surface activating solution used for oxide reduction, and the high condensation pressures needed for cold welding because of the tendency for silver to strain harden. In this related study, the author, who has practiced general dentistry for 25 years, evaluates some of the mechanical and microstructural properties of these

  7. DFT study of the adsorption properties of single Pt, Pd, Ag, In and Sn on the γ-Al2O3 (1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Gao, Hongwei

    2016-07-01

    GGA/PW91 exchange-correlation functional within periodic density functional theory (DFT) has been used to investigate the adsorption properties of different metal atoms (Pt, Pd, Ag, Sn and In) on the O-terminated and Al-terminated γ-Al2O3 (1 1 0) surface. The predicted adsorption energies follow the order Sn > In > Ag > Pd > Pt. It is found that O-bridge position is the most favorable site for single Pt, Pd, Ag, Sn and In adsorption on the O-terminated γ-Al2O3 (1 1 0) surface. It is found that the most favorable site on the Al-terminated γ-Al2O3 (1 1 0) surface is O-top position.

  8. Antiferromagnetism in R u2Mn Z (Z =Sn ,Sb ,Ge ,Si ) full Heusler alloys: Effects of magnetic frustration and chemical disorder

    NASA Astrophysics Data System (ADS)

    Khmelevskyi, Sergii; Simon, Eszter; Szunyogh, László

    2015-03-01

    We present systematic theoretical investigations to explore the microscopic mechanisms leading to the formation of antiferromagnetism in R u2Mn Z (Z =Sn ,Sb ,Ge ,Si ) full Heusler alloys. Our study is based on first-principles calculations of interatomic Mn-Mn exchange interactions to set up a suitable Heisenberg spin model and on subsequent Monte Carlo simulations of the magnetic properties at finite temperature. The exchange interactions are derived from the paramagnetic state, while a realistic account of long-range chemical disorder is made in the framework of the coherent potential approximation. We find that in the case of the highly ordered alloys (Z =Sn and Sb), the exchange interactions derived from the perfectly ordered L 21 structure lead to Néel temperatures in excellent agreement with the experiments, whereas, in particular in the case of Si, the consideration of chemical disorder is essential to reproduce the experimental Néel temperatures. Our numerical results suggest that by improving a heat treatment of the samples to suppress the intermixing between the Mn and Si atoms, the Néel temperature of the Si-based alloys can potentially be increased by more than 30%. Based on calculated biquadratic exchange couplings, we evidence a lifting of degeneracy of the antiferromagnetic ground states on a frustrated face-centered-cubic lattice in the fully ordered compounds. Furthermore, we show that in strongly disordered R u2MnSi alloys, a distinct change in the antiferromagnetic ordering occurs.

  9. Magnetoresistance and exchange bias in high Mn content melt-spun Mn46Ni42Sn11Sb1 alloy ribbon

    NASA Astrophysics Data System (ADS)

    Qingxue, Huang; Fenghua, Chen; Mingang, Zhang; Xiaohong, Xu

    2016-05-01

    Highly textured Heusler alloy Mn46Ni42Sn11Sb1 ribbons were prepared by melt spinning. The annealed high Mn content Mn46Ni42Sn11Sb1 ribbon cross-section microstructure, crystal structure, martensitic transformation (MT), and magnetoresistance (MR) properties were investigated. The MR in the annealed ribbon was assessed by the magnetic field direction perpendicular to the ribbon surface with the magnetic field up to 30 kOe. The large negative value of 25% for MR was obtained at 244 K. The exchange bias (EB) effects of the as-spun and annealed ribbons were investigated. After annealing, the EB effects have been improved by about 25 Oe at the temperature of 50 K. The magnetizations have increased approximately by 10% more than the as-spun ribbon. Project supported by the National Basic Research Program of China (Grant No. 2012CB722801), the Postdoctoral Science Foundation of China (Grant No. 2015M571285), the National Natural Science Foundation of China (Grant No. 51401140), the Postdoctoral Research Station Foundation of Taiyuan University of Science and Technology, China (Grant Nos. 20142014, 20152041, and 20151082), the Natural Science Foundation of Shanxi Province, China (Grants Nos. 2015021019, 2015091011, and 2015081011), and the Key Team of Scientific and Technological Innovation of Shanxi Province, China (Grant No. 2013131009).

  10. Internally consistent database for sulfides and sulfosalts in the system Ag 2S-Cu 2S-ZnS-FeS-Sb 2S 3-As 2S 3: Update

    NASA Astrophysics Data System (ADS)

    Sack, Richard O.

    2005-03-01

    The thermodynamic database for Ag 2S-Cu 2S-ZnS-FeS-Sb 2S 3-As 2S 3 sulfides and sulfosalts applicable to temperatures above 119°C has been updated based on the results of recent petrologic, experimental, and theoretical studies. Solution and end-member properties of fahlore [˜(Ag,Cu) 10(Fe,Zn) 2(Sb,As) 4S 13] have been adjusted to allow for (1) revisions of the description of Fe-Zn partitioning with sphalerite that incorporate sphalerite activity-composition relations derived from the cluster variation method (CVM) model of a previous study, (2) the assumption that the miscibility gaps observed in high-Ag fahlores from the Husky Mine (Yukon, Canada) approximate a temperature of 170°C, and (3) an increase in the Ag-Cu partitioning between fahlore and polybasite (Ag,Cu) 16(Sb,As) 2S 11 required to reproduce compositions of fahlore in the polybasite + Sb-fahlore + ZnS sphalerite assemblage reported in previous experimental studies. The resulting minor parameter adjustments produce a database that demonstrably reproduces the composition data reported for a wide-range of sulfide ore deposits. They result in revised estimates for the Gibbs energies of formation of end-member fahlore components from the simple sulfides that, except for Cu 10Zn 2Sb 4S 13, are less temperature dependent than those previously inferred (at 200 and 400°C: -23.27 and -24.84 kJ/gfw for Ag 10Zn 2Sb 4S 13, -115.18 and -116.57 kJ/gfw for Cu 10Zn 2Sb 4S 13, -85.14 and -75.20 kJ/gfw for Cu 10Fe 2Sb 4S 13, and -3.81 and 9.10 kJ/gfw for Ag 10Fe 2Sb 4S 13). The database is extended to PbS-bearing supersystems containing the galena + fahlore + sphalerite assemblage. Predicted initial Ag-contents of galena calculated from this database agree with those inferred from petrological studies of Ag-Pb-Zn ores from the Coeur d'Alene district, Idaho, USA and Julcani, Peru.

  11. Effect of Pr Addition on Properties of Sn-0.5Ag-0.7Cu-0.5Ga Lead-Free Solder

    NASA Astrophysics Data System (ADS)

    Xujing, Nan; Songbai, Xue; Peizhuo, Zhai; Dongxue, Luo

    2016-07-01

    In this paper, the effect of Pr addition on the microstructure and properties of Sn-0.5Ag-0.7Cu-0.5Ga lead-free solder was investigated. It was found that the properties of Sn-0.5Ag-0.7Cu-0.5Ga-xPr solder, such as wettability and mechanical properties, could be obviously improved, and the optimal content of Pr was about 0.06 wt.%. The microstructure of Sn-0.5Ag-0.7Cu-0.5Ga-0.06Pr solder showed that the β-Sn matrix and intermetallic compound (IMC) grains were significantly refined, and refinement and homogenization of the microstructure achieved maximum efficiency, which played the role of fine grain strengthening and second phase strengthening. However, as the content of Pr exceeded 0.06 wt.%, some uneven distributed black phases of PrSn3 were found in the β-Sn matrix, which seriously worsened the microstructure and properties of the solders. As a surface-active element, the segregation of Pr at the molten solder interface could give rise to decreasing the interface tension. Consequently, adding a suitable amount of Pr could play a positive role in improving the properties of the solders.

  12. Highly efficient and mild electrochemical mineralization of long-chain perfluorocarboxylic acids (C9-C10) by Ti/SnO2-Sb-Ce, Ti/SnO2-Sb/Ce-PbO2, and Ti/BDD electrodes.

    PubMed

    Lin, Hui; Niu, Junfeng; Xu, Jiale; Huang, Haiou; Li, Duo; Yue, Zhihan; Feng, Chenghong

    2013-11-19

    The electrochemical mineralization of environmentally persistent long-chain perfluorinated carboxylic acids (PFCAs), i.e., perfluorononanoic acid (C8F17COOH, PFNA) and perfluorodecanoic acid (C9F19COOH, PFDA) was investigated in aqueous solutions (0.25 mmol L(-1)) over Ti/SnO2-Sb-Ce (SnO2), Ti/SnO2-Sb/Ce-PbO2 (PbO2), and Ti/BDD (BDD) anodes under galvanostatic control at room temperature. Based on PFCA decay rate, total organic carbon (TOC) reduction, defluorination ratio, safety, and energy consumption, the performance of PbO2 electrode was comparable with that of BDD electrode. After 180 min electrolysis, the PFNA removals on BDD and PbO2 electrodes were 98.7 ± 0.4% and 97.1 ± 1.0%, respectively, while the corresponding PFDA removals were 96.0 ± 1.4% and 92.2 ± 1.9%. SnO2 electrode yielded lower PFCA removals and led to notable secondary pollution by Sb ions. The primary mineralization product, F(-), as well as trace amounts of intermediate PFCAs with shortened chain lengths, were detected in aqueous solution after electrolysis. On the basis of these results, a degradation mechanism including three potential routes is proposed: via formation of short-chain PFCAs by stepwise removal of CF2; direct mineralization to CO2 and HF; conversion to volatile fluorinated organic compounds. The results presented here demonstrate that electrochemical technique exhibits high efficiency in mineralizing PFNA and PFDA under mild conditions, and is promising for the treatment of long-chain PFCAs in wastewater. PMID:24164589

  13. GaInSb and GaInAsSb thermophotovoltaic device fabrication and characterization

    SciTech Connect

    Hitchcock, C.; Gutmann, R.; Borrego, J.; Ehsani, H.; Bhat, I.; Freeman, M.; Charache, G.

    1997-05-01

    Thermophotovoltaic (TPV) devices have been fabricated using epitaxial ternary and quaternary layers grown on GaSb substrates. The GaInSb layers were grown by organometallic vapor phase epitaxy (OMVPE) and the InGaAsSb lattice-matched layers were grown by liquid phase epitaxy (LPE). Device fabrication steps include unannealed p-type ohmic contacts, annealed Sn/Au n-type ohmic contacts, and a thick Ag top-surface contact using a lift-off process. Devices are characterized primarily by dark I-V, photo I-V, and quantum efficiency measurements, which are correlated to microscopic and macroscopic material properties. Particular emphasis has been on material enhancements to increase quantum efficiency and decrease dark saturation current density. TPV device performance is presently limited by the base diffusion length, typically 1 to 2 microns.

  14. Oxidization-Induced Tin Whisker Growth on the Surface of Sn-3.8Ag-0.7Cu-1.0Er Alloy

    NASA Astrophysics Data System (ADS)

    Hao, Hu; Shi, Yaowu; Xia, Zhidong; Lei, Yongping; Guo, Fu

    2009-08-01

    Rapid tin whisker growth has been found in Sn-3.8Ag-0.7Cu1.0Er solder joints. The morphology of the tin whiskers changes from rodlike to threadlike when the storage temperature increases from 25 °C to 150 °C. The compressive stress induced by the lattice expansion of the oxidized ErSn3 phase provides the driving force and the tin atoms released from the oxidization of the ErSn3 phase provide the material source for the tin whisker growth.

  15. Shear and Pull Testing of Sn-3.0Ag-0.5Cu Solder with Ti/Ni(V)/Cu Underbump Metallization During Aging

    NASA Astrophysics Data System (ADS)

    Wang, Kai-Jheng; Duh, Jenq-Gong

    2009-12-01

    Ti/Ni(V)/Cu underbump metallization (UBM) is widely used in flip-chip technology today. The advantages of Ti/Ni(V)/Cu UBM are a low reaction rate with solder and the lack of a magnetic effect during sputtering. Sn atoms diffuse into the Ni(V) layer to form a Sn-rich phase, the so-called Sn-patch, during reflow and aging. In this study, the relationship between interfacial reaction and mechanical properties of the solder joints with Ti/Ni(V)/Cu UBM was evaluated. Sn-3.0Ag-0.5Cu solder was reflowed on sputtered Ti/Ni(V)/Cu UBM, and then the reflowed samples were aged at 125°C and 200°C, respectively. (Cu,Ni)6Sn5 was formed and grew gradually at the interface of the solder joints during aging at 125°C. The Sn-patch replaced the Ni(V) layer, and (Ni,Cu)3Sn4 was thus formed between (Cu,Ni)6Sn5 and the Sn-patch at 200°C. The Sn-patch, composed of Ni and V2Sn3 after reflow, was transformed to V2Sn3 and amorphous Sn during aging. Shear and pull tests were applied to evaluate the solder joints under various heat treatments. The shear force of the solder joints remained at 421 mN, yet the pull force decreased after aging at 125°C. Both the shear and pull forces of the solder joints decreased during aging at 200°C. The effects of aging temperature on the mechanical properties of solder joint were investigated and discussed.

  16. Multistage hydrothermal silicification and Fe-Tl-As-Sb-Ge-REE enrichment in the Red Dog Zn-Pb-Ag district, northern Alaska: Geochemistry, origin, and exploration applications

    USGS Publications Warehouse

    Slack, J.F.; Kelley, K.D.; Anderson, V.M.; Clark, J.L.; Ayuso, R.A.

    2004-01-01

    Geochemical analyses of major, trace, and rare earth elements (REE) in more than 200 samples of variably silicified and altered wall rocks, massive and banded sulfide, silica rock, and sulfide-rich and unmineralized barite were obtained from the Main, Aqqaluk, and Anarraaq deposits in the Red Dog Zn-Pb-Ag district of northern Alaska. Detailed lithogeochemical profiles for two drill cores at Aqqaluk display an antithetic relationship between SiO2/Al2O3 and TiO2/Zr which, together with textural information, suggest preferential silicification of carbonate-bearing sediments. Data for both drill cores also show generally high Tl, Sb, As, and Ge and uniformly positive Eu anomalies (Eu/Eu* > 1.0). Similar high Tl, Sb, As, Ge, and Eu/Eu* values are present in the footwall and shallow hanging wall of Zn-Pb-Ag sulfide intervals at Anarraaq but are not as widely dispersed. Net chemical changes for altered wall rocks in the district, on the basis of average Al-normalized data relative to unaltered black shales of the host Kuna Formation, include large enrichments (>50%) of Fe, Ba, Eu, V, S, Co, Zn, Pb, Tl, As, Sb, and Ge at both Red Dog and Anarraaq, Si at Red Dog, and Sr, U, and Se at Anarraaq. Large depletions (>50%) are evident for Ca at both Red Dog and Anarraaq, for Mg, P, and Y at Red Dog, and for Na at Anarraaq. At both Red Dog and Anarraaq, wall-rock alteration removed calcite and minor dolomite during hydrothermal decarbonation reactions and introduced Si, Eu, and Ge during silicification. Sulfidation reactions deposited Fe, S, Co, Zn, Pb, Tl, As, and Sb; barite mineralization introduced Ba, S, and Sr. Light REE and U were mobilized locally. This alteration and mineralization occurred during Mississippi an hydrothermal events that predated the Middle Jurassic-Cretaceous Brookian orogeny. Early hydrothermal silicification at Red Dog took place prior to or during massive sulfide mineralization, on the basis of the dominantly planar nature of Zn-Pb veins, which suggests

  17. Fully epitaxial C1b-type NiMnSb half-Heusler alloy films for current-perpendicular-to-plane giant magnetoresistance devices with a Ag spacer

    PubMed Central

    Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki

    2015-01-01

    Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics. PMID:26672482

  18. Fully epitaxial C1b-type NiMnSb half-Heusler alloy films for current-perpendicular-to-plane giant magnetoresistance devices with a Ag spacer

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki

    2015-12-01

    Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics.

  19. Fully epitaxial C1b-type NiMnSb half-Heusler alloy films for current-perpendicular-to-plane giant magnetoresistance devices with a Ag spacer.

    PubMed

    Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki

    2015-01-01

    Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics. PMID:26672482

  20. Toward a mechanistic understanding of the damage evolution of SnAgCu solder joints in accelerated thermal cycling test

    NASA Astrophysics Data System (ADS)

    Mahin Shirazi, Sam

    Accelerated thermal cycling (ATC) tests are the most commonly used tests for the thermo-mechanical performance assessment of microelectronics assemblies. Currently used reliability models have failed to incorporate the microstructural dependency of lead free solder joint behavior and its microstructure evolution during cycling. Thus, it is essential to have a mechanistic understanding of the effect of cycling parameters on damage evolution and failure of lead free solder joints in ATC. Recrystallization has been identified as the damage rate controlling mechanism in ATC. Usually it takes 1/3 of life for completion of recrystallization regardless of cycling parameters. Thus, the life of the solder joints can be predicted by estimating global recrystallization. The objective of the first part of the study was to examine whether the damage scenario applies in service is the same as the harsh thermal cycling tests (i.e. 0/100 °C and -40/125 °C) commonly used in industry. Microstructure analysis results on a variety of lead free solder SnAgCu assemblies subjected to the both harsh (0/100 °C) and mild (20/80 °C) ATC confirmed similar failure mechanism under the both testing conditions. Sn grain morphology (interlaced versus beach ball) has a significant effect on the thermo-mechanical performance (and thus the model) of the lead free solder joints. The longer thermal cycling lifetime observed in the interlaced solder joints subjected to the ATC compared to the beach ball structure was correlated to the different initial microstructure and the microstructure evolution during cycling. For the modeling proposes, the present study was focused on Sn-Ag-Cu solder joints with either a single Sn grain or beach ball structure. Microstructural analysis results of the simulated thermal cycling experiment revealed that, the life can be approximated as determined by the accumulation of a certain amount of work during the high temperature dwells. Finally the effect of precipitates

  1. Optical and electrical properties and phonon drag effect in low temperature TEP measurements of AgSbSe2 thin films

    NASA Astrophysics Data System (ADS)

    Namitha Asokan, T.; Urmila, K. S.; Jacob, Rajani; Reena Philip, Rachel; Okram, G. S.; Ganesan, V.; Pradeep, B.

    2014-05-01

    Polycrystalline thin films of silver antimony selenide have been deposited using a reactive evaporation technique onto an ultrasonically cleaned glass substrate at a vacuum of 10-5 torr. The preparative parameters, like substrate temperature and incident fluxes, have been properly controlled in order to get stoichiometric, good quality and reproducible thin film samples. The samples are characterized by XRD, SEM, AFM and a UV—vis—NIR spectrophotometer. The prepared sample is found to be polycrystalline in nature. From the XRD pattern, the average particle size and lattice constant are calculated. The dislocation density, strain and number of crystallites per unit area are evaluated using the average particle size. The dependence of the electrical conductivity on the temperature has also been studied and the prepared AgSbSe2 samples are semiconducting in nature. The AgSbSe2 thin films exhibited an indirect allowed optical transition with a band gap of 0.64 eV. The compound exhibits promising thermoelectric properties, a large Seebeck coefficient of 30 mV/K at 48 K due to strong phonon electron interaction. It shows a strong temperature dependence on thermoelectric properties, including the inversion of a dominant carrier type from p to n over a low temperature range 9-300 K, which is explained on the basis of a phonon drag effect.

  2. Design of Ag@C@SnO2@TiO2 yolk-shell nanospheres with enhanced photoelectric properties for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Peilu; Li, Dan; Yao, Shiting; Zhang, Yiqun; Liu, Fengmin; Sun, Peng; Chuai, Xiaohong; Gao, Yuan; Lu, Geyu

    2016-06-01

    The hierarchical Ag@C@SnO2@TiO2 nanospheres (ACSTS) have been successfully synthesized by deposition of SnO2 and TiO2 on the Ag@C templates layer by layer. The size of ACSTS is ca. 360 nm while the Ag@C cores have an average diameter of about 300 nm. The rough and porous shell structure consisting of SnO2 and TiO2 ensures a large specific surface area (115.5 m2 g-1). To demonstrate how such a unique structure might lead to more excellent photovoltaic property, several kinds of dye-sensitized solar cells (DSSCs) are also fabricated using different nanospheres based photoanodes. It is found that the ACSTS based DSSC exhibits an obvious improvement in cell performance. According to various technical characterization, the ACSTS can provide dual-functions of light absorption and charge transfer, hence resulting in an enhanced short-circuit photocurrent density of 18.68 mA cm-2 and a higher FF of 63% compared with other DSSCs. The ACSTS cell finally obtains a PCE of up to 8.62%, increasing by 70.4% and 10.2% than hollow TiO2 nanospheres and Ag@C@TiO2 nanospheres based cells, respectively. The improved photovoltaic properties of ACSTS cell can be mainly ascribed to the unique microstructure and the synergistic effect of the encapsulated Ag@C cores.

  3. Creep-constitutive behavior of Sn-3.8Ag-0.7Cu solder using an internal stress approach

    NASA Astrophysics Data System (ADS)

    Rist, Martin A.; Plumbridge, W. J.; Cooper, S.

    2006-05-01

    The experimental tensile creep deformation of bulk Sn-3.8Ag-0.7Cu solder at temperatures between 263 K and 398 K, covering lifetimes up to 3,500 h, has been rationalized using constitutive equations that incorporate structure-related internal state variables. Primary creep is accounted for using an evolving internal back stress, due to the interaction between the soft matrix phase and a more creep-resistant particle phase. Steady-state creep is incorporated using a conventional power law, modified to include the steady-state value of internal stress. It is demonstrated that the observed behavior is well-fitted using creep constants for pure tin in the modified creep power law. A preliminary analysis of damage-induced tertiary creep is also presented.

  4. Corrosion Behavior of Pb-Free Sn-1Ag-0.5Cu- XNi Solder Alloys in 3.5% NaCl Solution

    NASA Astrophysics Data System (ADS)

    Mohanty, Udit Surya; Lin, Kwang-Lung

    2013-04-01

    Potentiodynamic polarization techniques were employed in the present study to investigate the corrosion behavior of Pb-free Sn-1Ag-0.5Cu- XNi solder alloys in 3.5% NaCl solution. Polarization studies indicated that an increase in Ni content from 0.05 wt.% to 1 wt.% in the solder alloy shifted the corrosion potential ( E corr) towards more negative values and increased the linear polarization resistance. Increased addition of Ni to 1 wt.% resulted in significant increase in the concentration of both Sn and Ni oxides on the outer surface. Secondary-ion mass spectrometry and Auger depth profile analysis revealed that oxides of tin contributed primarily towards the formation of the passive film on the surface of the solder alloys containing 0.05 wt.% and 1 wt.% Ni. Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX) established the formation of a Sn whisker near the passive region of the solder alloy obtained from the polarization curves. The formation of Sn whiskers was due to the buildup of compressive stress generated by the increase in the volume of the oxides of Sn and Ni formed on the outer surface. The presence of Cl- was responsible for the breakdown of the passive film, and significant pitting corrosion in the form of distinct pits was noticed in Sn-1Ag-0.5Cu-0.5Ni solder alloy after the polarization experiment.

  5. Effect of palladium on gas sensing properties of Sn(Sb2O3)O2 nanoparticles synthesized by sonochemical processing at room temperature

    NASA Astrophysics Data System (ADS)

    Majumdar, Sanhita

    2016-07-01

    Palladium catalyzed Sn(Sb2O3)O2 nanoparticles prepared by the sonication assisted method exhibited a Pd dependent selectivity to butane as well as methane. Attempts have been made to correlate powder properties such as surface area, particle size, crystallite size and rate of agglomeration with sensor properties like resistance, percent sensitivity, response and recovery times. Sample with 3 wt% Pd exhibited the lowest rate of agglomeration amongst the prepared samples and around 70% sensitivity towards butane at 400 °C operating temperature. 5 wt% Pd loaded sample, on the other hand, exhibited about 98% methane sensitivity at 350 °C operating temperature. Results confirmed that either by varying the amount of palladium or by changing the operating temperature, it was possible to tune the selective sensitivity of the fabricated sensors towards either butane or methane.

  6. The study on SiO2 pattern fabrication using Ge1.5Sn0.5Sb2Te5 as resists.

    PubMed

    Xi, Hongzhu; Liu, Qian; Tian, Ye; Guo, Shengming; Cu, Maoyou; Zhang, Gengmin

    2013-02-01

    Ge1.5Sn0.5Sb2Te5 (GSST) can be easily induced to phase transition from amorphous state to crystalline state by a laser direct writing (LDW) system. The results show that the crystalline phase of GSST is more durable against acid solution corrosion than the amorphous phase. So nano-scale patterns and structures can be formed on the GSST film resists using laser-induced phase change and wet etching. Moreover, reactive ion etching (RIE) technology was applied to transfer these patterns onto the SiO2 substrate. The result shows to the extent that GSST material has thermal resist characteristics with high resolution and well etching selectivity to SiO2 when etched in the CHF3, which is compatibility with the future nanofabricate processing. PMID:23646524

  7. Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt-IrO2, Ti/SnO2-Sb and boron-doped diamond electrodes.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Rabaey, Korneel; Radjenovic, Jelena

    2013-01-01

    Reverse osmosis concentrate from wastewater reclamation contains biorefractory trace organic contaminants that may pose environmental or health hazard. Due to its high conductivity, electrochemical oxidation of brine requires low voltage which is energetically favourable. However, the presence of chloride ions may lead to the formation of chlorinated by-products, which are likely to exert an increased toxicity and persistence to further oxidation than their non-chlorinated analogues. Here, the performance of Ti/Pt-IrO(2), Ti/SnO(2)-Sb and Si/BDD anodes was evaluated for the electrochemical oxidation of ROC in the presence of chloride, nitrate or sulfate ions (0.05 M sodium salts). In order to investigate the electrooxidation of ROC with nitrate and sulfate ions as dominant ion mediators, chloride ion concentration was decreased 10 times by electrodialytic pretreatment. The highest Coulombic efficiency for chemical oxygen demand (COD) removal was observed in the presence of high chloride ions concentration for all anodes tested (8.3-15.9%). Electrooxidation of the electrodialysed concentrate at Ti/SnO(2)-Sb and Ti/Pt-IrO(2) electrodes exhibited low dissolved organic carbon (DOC) (i.e. 23 and 12%, respectively) and COD removal (i.e. 37-43 and 6-22%, respectively), indicating that for these electrodes chlorine-mediated oxidation was the main oxidation mechanism, particularly in the latter case. In contrast, DOC removal for the electrodialysed concentrate stream was enhanced at Si/BDD anode in the presence of SO(4)(2-) (i.e. 51%) compared to NO(3)(2-) electrolyte (i.e. 41%), likely due to the contribution of SO(4)(·-) and S(2)O(8)(2-) species to the oxidative degradation. Furthermore, decreased concentration of chloride ions lead to a lower formation of haloacetic acids and trihalomethanes at all three electrodes tested. PMID:23137830

  8. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties

    PubMed Central

    Kushwaha, S. K.; Pletikosić, I.; Liang, T.; Gyenis, A.; Lapidus, S. H.; Tian, Yao; Zhao, He; Burch, K. S.; Lin, Jingjing; Wang, Wudi; Ji, Huiwen; Fedorov, A. V.; Yazdani, Ali; Ong, N. P.; Valla, T.; Cava, R. J.

    2016-01-01

    A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high-quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons and be growable as large, high-quality bulk single crystals. Here we show that this material obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the vertical Bridgman method. We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunnelling microscopy, transport studies, X-ray diffraction and Raman scattering. We present this material as a high-quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states. PMID:27118032

  9. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties

    DOE PAGESBeta

    S. K. Kushwaha; Pletikosic, I.; Liang, T.; Gyenis, A.; Lapidus, S. H.; Tian, Y.; Zhao, H.; Burch, K. S.; Lin, Jingjing; Wang, Wudi; et al

    2016-04-27

    A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons, and be growable as large, high quality bulk single crystals. Here we show that this materials obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the Vertical Bridgeman method. We characterize Sn-BSTSmore » via angle-resolved photoemission spectroscopy, scanning tunneling microscopy, transport studies, X-ray diffraction, and Raman scattering. We present this material as a high quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.« less

  10. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties

    NASA Astrophysics Data System (ADS)

    Kushwaha, S. K.; Pletikosić, I.; Liang, T.; Gyenis, A.; Lapidus, S. H.; Tian, Yao; Zhao, He; Burch, K. S.; Lin, Jingjing; Wang, Wudi; Ji, Huiwen; Fedorov, A. V.; Yazdani, Ali; Ong, N. P.; Valla, T.; Cava, R. J.

    2016-04-01

    A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high-quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons and be growable as large, high-quality bulk single crystals. Here we show that this material obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the vertical Bridgman method. We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunnelling microscopy, transport studies, X-ray diffraction and Raman scattering. We present this material as a high-quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.

  11. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties.

    PubMed

    Kushwaha, S K; Pletikosić, I; Liang, T; Gyenis, A; Lapidus, S H; Tian, Yao; Zhao, He; Burch, K S; Lin, Jingjing; Wang, Wudi; Ji, Huiwen; Fedorov, A V; Yazdani, Ali; Ong, N P; Valla, T; Cava, R J

    2016-01-01

    A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high-quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons and be growable as large, high-quality bulk single crystals. Here we show that this material obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the vertical Bridgman method. We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunnelling microscopy, transport studies, X-ray diffraction and Raman scattering. We present this material as a high-quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states. PMID:27118032

  12. Effect of Ni layer thickness and soldering time on intermetallic compound formation at the interface between molten Sn-3.5Ag and Ni/Cu substrate

    SciTech Connect

    Choi, W.K.; Lee, H.M.

    1999-11-01

    The binary eutectic Sn-3.5wt.%Ag alloy was soldered on the Ni/Cu plate at 250 C, the thickness of the Ni layer changing from 0 through 2 and 4 {micro}m to infinity, and soldering time changing from 30 to 120 s at intervals of 30 s. The infinite thickness was equivalent to the bare Ni plate. The morphology, composition and phase identification of the intermetallic compound (IMC, hereafter) formed at the interface were examined. Depending on the initial Ni thickness, different IMC phases were observed at 30 s: Cu{sub 6}Sn{sub 5} on bare Cu, detestable NiSn{sub 3} + Ni{sub 3}Sn{sub 4} on Ni(2 {micro}m)/Cu, Ni{sub 3}Sn{sub 4} on Ni(4 {micro}m)/Cu, and Ni{sub 3}Sn + Ni{sub 3}Sn{sub 4} on bare Ni. With increased soldering time, a Cu-Sn-based {eta}-(Cu{sub 6}Sn{sub 5}){sub 1{minus}x}Ni{sub x} phase formed under the pre-formed Ni-Sn IMC layer both at 60s in the Ni(2 {micro}m)/Cu plate and at 90s in the Ni(4 {micro}m)/Cu plate. The two-layer IMC pattern remained thereafter. The wetting behavior of each joint was different and it may have resulted from the type of IMC formed on each plate. The thickness of the protective Ni layer over the Cu plate was found to be an important factor in determining the interfacial reaction and the wetting behavior.

  13. In situ heating transmission electron microscopy observation of nanoeutectic lamellar structure in Sn-Ag-Cu alloy on Au under-bump metallization.

    PubMed

    Seo, Jong-Hyun; Yoon, Sang-Won; Kim, Kyou-Hyun; Chang, Hye-Jung; Lee, Kon-Bae; Seong, Tae-Yeon; Fleury, Eric; Ahn, Jae-Pyoung

    2013-08-01

    We investigated the microstructural evolution of Sn(96.4)Ag(2.8)Cu(0.8) solder through in situ heating transmission electron microscopy observations. As-soldered bump consisted of seven layers, containing the nanoeutectic lamella structure of AuSn and Au₅Sn phases, and the polygonal grains of AuSn₂ and AuSn₄, on Au-plated Cu bond pads. Here, we found that there are two nanoeutectic lamellar layers with lamella spacing of 40 and 250 nm. By in situ heating above 140°C, the nanoeutectic lamella of AuSn and Au₅Sn was decomposed with structural degradation by sphering and coarsening processes of the lamellar interface. At the third layer neighboring to the lamella layer, on the other hand, Au₅Sn particles with a zig-zag shape in AuSn matrix became spherical and were finally dissipated in order to minimize the interface energy between two phases. In the other layers except both lamella layers, polycrystal grains of AuSn₂ and AuSn₄ grew by normal grain growth during in situ heating. The high interface energy of nanoeutectic lamella and polygonal nanograins, which are formed by rapid solidification, acted as a principal driving force on the microstructural change during the in situ heating. PMID:23920173

  14. Study of the effects of MeV Ag, Cu, Au, and Sn implantation on the optical properties of LiNbO3

    NASA Technical Reports Server (NTRS)

    Williams, E. K.; Ila, D.; Sarkisov, S.; Curley, M.; Poker, D. B.; Hensley, D. K.; Borel, C.

    1998-01-01

    The authors present the results of characterization of linear absorption and nonlinear refractive index of Au, Ag, Cu and Sn ion implantation into LiNbO3. Ag was implanted at 1.5 MeV to fluences of 2 to 17 x 17(exp 16)/sq cm at room temperature. Au and Cu were implanted to fluences of 5 to 20 x 10(exp 16)/sq cm at an energy of 2.0 MeV. Sn was implanted to a fluence of 1.6 x 10(exp 17)/sq cm at 160 kV. Optical absorption spectrometry indicated an absorption peak for the Au implanted samples after heat treatment at 1,000 C at approx. 620 nm. The Ag implanted samples absorption peaks shifted from approx. 450 nm before heat treatment to 550 nm after 500 C for 1h. Heat treatment at 800 C returned the Ag implanted crystals to a clear state. Cu nanocluster absorption peaks disappears at 500 C. No Sn clusters were observed by optical absorption or XRD. The size of the Ag and Au clusters as a function of heat treatment were determined from the absorption peaks. The Ag clusters did not change appreciably in size with heat treatment. The Au clusters increased from 3 to 9 nm diameter upon heat treatment at 1000 C. TEM analysis performed on a Au implanted crystal indicated the formation of Au nanocrystals with facets normal to the c-axis. Measurements of the nonlinear refractive indices were carried out using the Z-scan method with a tunable dye laser pumped by a frequency doubled mode-locked Nd:YAG laser. The dye laser had a 4.5 ps pulse duration time and 76 MHz pulse repetition rate (575 nm).

  15. Electronic and phonon transport in Sb-doped Ti(0.1)Zr(0.9)Ni(1+x)Sn(0.975)Sb(0.025) nanocomposites.

    PubMed

    Liu, Yuanfeng; Page, Alexander; Sahoo, Pranati; Chi, Hang; Uher, Ctirad; Poudeu, Pierre F P

    2014-06-01

    The thermoelectric behavior of n-type Sb-doped half-Heusler (HH)-full-Heusler (FH) nanocomposites with general composition Ti(0.1)Zr(0.9)Ni(1+x)Sn(0.975)Sb(0.025) (x = 0, 0.02, 0.04, 0.1) was investigated in the temperature range from 300 to 775 K. Samples used for structural characterization and transport measurements were obtained through the solid-state reaction of high purity elements at 950 °C and densification of the resulting polycrystalline powders using a uniaxial hot press. X-ray diffraction study of the powder samples suggested the formation of single-phase HH alloys regardless of the Ni concentration (x value). However, high resolution transmission electron microscopy investigation revealed the presence of spherical nanoprecipitates with a broad size distribution coherently embedded in the HH matrix. The size range and dispersion of the precipitates depend on the concentration of Ni in the starting mixture. Well dispersed nanoprecipitates with size ranging from 5 nm to 50 nm are observed in the nanocomposite with x = 0.04, while severe agglomeration of large precipitates (>50 nm) is observed in samples with x = 0.1. Hall effect measurements of various samples indicate that the carrier concentration within the Sb-doped HH matrix remains nearly constant (~7 × 10(20) cm(-3)) for samples with x = 0.02 and x = 0.04, whereas a significant increase of the carrier concentration to ~9 × 10(20) cm(-3) is observed for the sample with x = 0.1. Interestingly, only a marginal change in thermopower value is observed for various samples despite the large difference in the carrier density. In addition, the carrier mobility remains constant up to x = 0.04 suggesting that the small nanoprecipitates in these samples do not disrupt electronic transport within the matrix. Remarkably, a large reduction in the total thermal conductivity is observed for all nanocomposites, indicating the effectiveness of the embedded nanoprecipitates in scattering phonons while enabling

  16. Neutron Scattering Investigation of Phonon Scattering Rates in Ag1-xSb1+xTe2+x (x = 0, 0.1, and 0.2)

    SciTech Connect

    Abernathy, Douglas L; Budai, John D; Delaire, Olivier A; Ehlers, Georg; Hong, Tao; Karapetrova, Evguenia A.; Ma, Jie; May, Andrew F; McGuire, Michael A; Specht, Eliot D

    2014-01-01

    The phonon dispersions and scattering rates of the thermoelectric material AgSbTe$_{2}$ were measured as a function of temperature with inelastic neutron scattering. The results show that phonon scattering rates are large and weakly dependent on temperature. The lattice thermal conductivity was calculated from the measured phonon lifetimes and group velocities, providing good agreement with bulk transport measurements. The measured phonon scattering rates and their temperature dependence are compared with models of phonon scattering by anharmonicity and point defect. We find that these processes cannot account for the large total phonon scattering rates observed, and their lack of temperature dependence. Neutron and synchrotron diffraction measurements on single crystals revealed an extensive nanostructure from cation ordering, which is likely responsible for the strong phonon scattering.

  17. Pressure induced silver ion displacement in La{sub 3}Ag{sub 0.82}SnS{sub 7}

    SciTech Connect

    Daszkiewicz, Marek; Gulay, Lubomir D.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The silver ion shifts with increasing pressure in the direction of the central-point of sulphur trigonal antiprism. Black-Right-Pointing-Pointer Coordination number changes from CN = 3 to CN = 6 at {approx}3 GPa. Black-Right-Pointing-Pointer Zero-pressure bulk modulus is B{sub 0} = 61.74 GPa and the pressure derivative is B{sup Prime }{sub 0}=4.02. Black-Right-Pointing-Pointer No phase transition up to 4.5 GPa was detected. -- Abstract: The compounds with the general formula Ln{sub 3}MTX{sub 7} (space group P6{sub 3}) (Ln - rare-earth element, M - monovalent element (Cu, Ag), T - Si, Ge, Sn and X - S, Se) are interesting owing to the possible application in the field of ionic conductivity. In the crystal structure the face-sharing [Ag(S){sub 6}] triangular antiprisms form the channels where the Ag{sup +} ion can migrate along the crystallographic c axis. High-pressure X-ray diffraction shows that Ag{sup +} ion moves towards the central-point of [Ag(S){sub 6}] when pressure is risen. As a consequence, the coordination number of Ag{sup +} changes from CN = 3 to CN = 6 at {approx}3 GPa. The La{sub 3}Ag{sub 0.82}SnS{sub 7} has stiff structure; zero-pressure bulk modulus is B{sub 0} = 61.74 GPa and the pressure derivative is B{sup Prime }{sub 0}=4.02.

  18. Enhancement of spin polarization via Fermi level tuning in Co{sub 2}MnSn{sub 1−x}Sb{sub x} (x = 0, 0.25. 0.5, 0.75, 1) Heusler alloys

    SciTech Connect

    Singh, Mukhtiyar Thakur, Jyoti; Kashyap, Manish K.; Saini, Hardev S.

    2014-04-24

    Full potential approach has been employed to tune Fermi level in Co{sub 2}MnSn{sub 1−x}Sb{sub x} (x = 0, 0.25, 0.5, 0.75, 1) Heulser alloys for enhancement of spin polarization and finding signature of half metallicity. Present density functional theory (DFT) based calculation indicates that stoichoimetric Heusler alloy, Co{sub 2}MnSn is not a half-metallic ferromagnet but the doping of Sb in it results in the shifting of E{sup F} in well-defined energy gap which leads the 100% spin polarization in the resultant alloys. The magnetism in present alloys is governed by localized moment on Mn atom mainly. The tuning of half-metallicity using doping can be proved as an ideal technique to search the new materials which can accomplish the need of spintronics.

  19. Stability of molybdenum nanoparticles in Sn-3.8Ag-0.7Cu solder during multiple reflow and their influence on interfacial intermetallic compounds

    SciTech Connect

    Haseeb, A.S.M.A. Arafat, M.M. Johan, Mohd Rafie

    2012-02-15

    This work investigates the effects of molybdenum nanoparticles on the growth of interfacial intermetallic compound between Sn-3.8Ag-0.7Cu solder and copper substrate during multiple reflow. Molybdenum nanoparticles were mixed with Sn-3.8Ag-0.7Cu solder paste by manual mixing. Solder samples were reflowed on a copper substrate in a 250 Degree-Sign C reflow oven up to six times. The molybdenum content of the bulk solder was determined by inductive coupled plasma-optical emission spectrometry. It is found that upon the addition of molybdenum nanoparticles to Sn-3.8Ag-0.7Cu solder, the interfacial intermetallic compound thickness and scallop diameter decreases under all reflow conditions. Molybdenum nanoparticles do not appear to dissolve or react with the solder. They tend to adsorb preferentially at the interface between solder and the intermetallic compound scallops. It is suggested that molybdenum nanoparticles impart their influence on the interfacial intermetallic compound as discrete particles. The intact, discrete nanoparticles, by absorbing preferentially at the interface, hinder the diffusion flux of the substrate and thereby suppress the intermetallic compound growth. - Highlights: Black-Right-Pointing-Pointer Mo nanoparticles do not dissolve or react with the SAC solder during reflow. Black-Right-Pointing-Pointer Addition of Mo nanoparticles results smaller IMC thickness and scallop diameter. Black-Right-Pointing-Pointer Mo nanoparticles influence the interfacial IMC through discrete particle effect.

  20. A high-pressure route to thermoelectrics with low thermal conductivity: The solid solution series AgIn{sub x}Sb{sub 1−x}Te{sub 2} (x=0.1–0.6)

    SciTech Connect

    Schröder, Thorsten; Rosenthal, Tobias; Souchay, Daniel; Petermayer, Christian; Grott, Sebastian; Scheidt, Ernst-Wilhelm; Gold, Christian; Scherer, Wolfgang; Oeckler, Oliver

    2013-10-15

    Metastable rocksalt-type phases of the solid solution series AgIn{sub x}Sb{sub 1−x}Te{sub 2} (x=0.1, 0.2, 0.4, 0.5 and 0.6) were prepared by high-pressure synthesis at 2.5 GPa and 400 °C. In these structures, the coordination number of In{sup 3+} is six, in contrast to chalcopyrite ambient-pressure AgInTe{sub 2} with fourfold In{sup 3+} coordination. Transmission electron microscopy shows that real-structure phenomena and a certain degree of short-range order are present, yet not very pronounced. All three cations are statistically disordered. The high degree of disorder is probably the reason why AgIn{sub x}Sb{sub 1−x}Te{sub 2} samples with 0.4AgSbTe{sub 2} (κ ∼0.6 W/K m). The highest ZT value (0.15 at 300 K) is observed for AgIn{sub 0.5}Sb{sub 0.5}Te{sub 2}, mainly due to its high Seebeck coefficient of 160 µV/K. Temperature-dependent X-ray powder patterns indicate that the solid solutions are metastable at ambient pressure. At 150 °C, the quaternary compounds decompose into chalcopyrite-type AgInTe{sub 2} and rocksalt-type AgSbTe{sub 2}. - Graphical abstract: Reaction scheme, temperature characteristics of the ZT value and a selected-area electron diffraction pattern (background) of AgIn{sub 0.5}Sb{sub 0.5}Te{sub 2}, which crystallizes in a rocksalt-type structure with statistical cation disorder. Display Omitted - Highlights: • High-pressure synthesis yields the novel solid solution series AgIn{sub x}Sb{sub 1−x}Te{sub 2}. • In contrast to AgInTe{sub 2}, the compounds are inert at ambient pressure. • HRTEM shows no pronounced short-range order in the disordered NaCl-type structure. • The metastable phases exhibit very low total thermal conductivities <0.5 W/K m. • ZT values of 0

  1. Clathrates with Me = Mg, Pd, Ni, Au, Ag, Cu, Zn, Al, Sn

    NASA Astrophysics Data System (ADS)

    Wunderlich, Wilfried; Amano, Mao; Matsumura, Yoshihito

    2014-06-01

    Clathrate materials of AlSi, CuSi or NiSi type consisting of abundant elements have a realistic chance of becoming useful thermoelectrics in the near future, because the rattling effect due to their crystal cage structure provides a large figure of merit ZT even in experiments measured under large temperature gradients. In the search for better thermoelectrics, new element combinations in the clathrate type I structure with cubic space group Pm3n were calculated using VASP ab initio software. Predictions of the Seebeck coefficient were made by checking the electronic band structure and density of states for a large variety of input data. For x values around 4 to 6 in the structural formula Ba8Me x Si46- x the substituents Cu, Au, and Ag are best for good thermoelectric behavior, which is discussed in this paper as a result of the low electron-phonon interaction parameter.

  2. Measurement of the (112)Sn(p, gamma)(113)Sb, (119)Sn(p,gamma)(120)Sb, and (96)Zr(p,gamma)(97)Nb Cross Sections and Astrophysical S-Factors at Low Energies

    NASA Astrophysics Data System (ADS)

    Chloupek, Frank Ray

    1998-11-01

    One of the least well understood processes of nucleosynthesis is the p-process. The best site for this process are still undetermined and many likely contributing cross sections have both been measured directly. This work presents experimental results Measurements were made of the (p, γ ) reaction cross sections for three previously unmeasured (p, γ ) reactions in an attempt to extend experimental knowledge of these reactions to a higher mass section of the nuclear chart. for three target nuclei: 96Zr, 112Sn, and 119Sn at the 11 MV FN Tandem Van de Graaff Accelerator at the University Notre Dame in South Bend, Indiana. Incident proton energies ranged from 2.8 MeV to 8.5 MeV. The astrophysical S-factors are also calculated. The cross section measurements and S-factors are compared to Hauser-Feshbach theoretical calculations using the NON-SMOKER simulation to judge the applicability of the Hauser-Feshbach formalism to these reactions.

  3. Phase Structures and Piezoelectric Properties of (K,Na,Li)(Nb,Sb)O3-(Bi,Ag)ZrO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Li, ZhiPeng; Zhang, Yang; Li, LingYu; Li, JianKang; Zhai, JiWei

    2016-06-01

    Samples in the pseudoternary lead-free piezoelectric ceramic system 0.94KNN-(0.06 - x)LiSbO3- x(Bi0.5Ag0.5)ZrO3 were prepared using a solid-state reaction technique and their phase transition behavior and electrical properties studied. Results showed that BAZ diffuses into KNN-LS to form a new solid solution, and induces a phase transition from tetragonal to rhombohedral phase with increase of x. At 0.02 ≤ x ≤ 0.03, coexistence of tetragonal and rhombohedral phases is observed, and enhanced piezoelectric properties are achieved in this composition range due to the polymorphic phase transition near room temperature. Doping with (Bi0.5Ag0.5)ZrO3 effectively promotes densification and further enhances the piezoelectric and dielectric properties of of the ceramics. Moreover, the ceramic with x = 0.025 possesses excellent electrical properties of k p = 42.3%, {d_{33}^{*}} = 320 pm/V and d 33 = 235 pC/N, tan δ = 0.039, and T c = 326°C. This result indicates that 0.94KNN-0.035LS-0.025BAZ ceramic is a promising lead-free material for practical applications.

  4. Low-Cycle Fatigue Behavior of 95.8Sn-3.5Ag-0.7Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Li, G. Y.; Shi, X. Q.

    2013-01-01

    Low-cycle fatigue (LCF) behavior of 95.8Sn-3.5Ag-0.7Cu solder joints was investigated over a range of test temperatures (25°C, 75°C, and 125°C), frequencies (0.001 Hz, 0.01 Hz, and 0.1 Hz), and strain ranges (0.78%, 1.6%, and 3.1%). Effects of temperature and frequency on the LCF life were studied. Results show that the LCF lifetime decreases with an increase in test temperature or a decrease of test frequency, which is attributed to the longer exposure time to creep and the stress relaxation mechanism during fatigue testing. A modified Coffin-Manson model considering effects of temperature and frequency on the LCF life is proposed. The fatigue exponent and ductility coefficient were found to be influenced by both the temperature and frequency. By fitting the experimental data, the mathematical relations between the fatigue exponent and temperature, and ductility coefficient and temperature, were analyzed. Scanning electron microscopy (SEM) of the cross-sections and fracture surfaces of failed specimens at different temperature and frequency was applied to verify the failure mechanisms.

  5. Mechanical Behavior of Sn-3.0Ag-0.5Cu/Cu Solder Joints After Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Luong; Chung, Chin-Sung; Kim, Ho-Kyung

    2016-01-01

    The tensile impact behavior of lead-free Sn-3Ag-0.5Cu/Cu solder joints aged at 413 K and 453 K for times ranging from 24 h to 1000 h has been investigated in this study. The activation energy for growth of the intermetallic compound (IMC) layer was estimated and compared with literature values. Additionally, the tensile strength of solder joints with IMC thickness of 17.6 μm was found to be more sensitive to the strain rate as compared with solder joints with thinner IMC layers. Equations representing the relationships among the effective stress, strain rate, aging time, and aging temperature as well as IMC thickness were established using matrix laboratory (MATLAB) software. These equations show that the tensile strength decreases with increase in the IMC thickness to about 8 μm, after which it becomes nearly constant when the IMC thickness is between approximately 8 μm and 14 μm, before decreasing significantly when the IMC thickness exceeds 14 μm. The main reason for these characteristics was excessive increase in the IMC thickness of solder joints, causing a change in the stress concentration of the tensile load from the protruding region to the inside of the IMC layer at the same tested strain rate.

  6. Hardening by cooling rate control and post-firing heat treatment in Pd-Ag-Sn alloy for bonding porcelain.

    PubMed

    Yu, Young-Jun; Seol, Hyo-Joung; Cho, Mi-Hyang; Kim, Hyung-Il; Kwon, Yong Hoon

    2016-01-01

    The aim of this study was to determine the hardening effect by controlling the cooling rate during the porcelain firing process and performing an additional post-firing heat treatment in a Pd-Ag-Sn alloy. The most effective cooling rate for alloy hardening was determined by cooling the specimens at various cooling rates after oxidation treatment. A subsequent porcelain firing simulation followed by cooling at the selected cooling rate was performed. A post-firing heat treatment was then done at 600°C in a porcelain furnace. The hardening mechanism was characterized by a hardness test, X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Alloy softening occurred during the porcelain firing process followed by cooling at a controlled cooling rate. A post-firing heat treatment allowed apparent precipitation hardening. It is advisable to perform a postfiring heat treatment at 600°C in a porcelain furnace by annealing metal substructure after porcelain fusing. PMID:27041022

  7. Nanostructured rocksalt-type solid solution series (Ge{sub 1−x}Sn{sub x}Te){sub n}Sb{sub 2}Te{sub 3} (n=4, 7, 12; 0≤x≤1): Thermal behavior and thermoelectric properties

    SciTech Connect

    Rosenthal, Tobias; Neudert, Lukas; Ganter, Pirmin; Boor, Johannes de; Stiewe, Christian; Oeckler, Oliver

    2014-07-01

    Solid solutions (Ge{sub 1−x}Sn{sub x}Te){sub n}Sb{sub 2}Te{sub 3} (n=4, 7, 12; 0≤x≤1) represent stable high-temperature phases and can be obtained as metastable compounds by quenching. High-resolution transmission electron microscopy reveals that the quenched (pseudo-)cubic materials exhibit parquet-like nanostructures comparable to, but especially for n=4 more pronounced than in (GeTe){sub n}Sb{sub 2}Te{sub 3} (GST materials). The temperature-dependent phase transitions are comparable; however, substitution with Sn significantly lowers the transition temperatures between cubic high-temperature phase and the long range ordered layered phases that are stable at ambient conditions. In addition, the metrics of the quenched Sn-containing materials remains closer to cubic, especially for samples with n=7 or 12. For samples with high defect concentrations (n=4, 7), Sn-substituted samples exhibit electrical conductivities up to 3 times higher than those of corresponding GST materials. Since the difference in thermal conductivity is much less pronounced, this results in a doubling of the thermoelectric figure of merit (ZT) at high temperatures for (Ge{sub 0.5}Sn{sub 0.5}Te){sub 4}Sb{sub 2}Te{sub 3} as compared to (GeTe){sub 4}Sb{sub 2}Te{sub 3}. Sn doping in (GeTe){sub 7}Sb{sub 2}Te{sub 3} increases the ZT value by a factor of up to 4 which is also due to an increased Seebeck coefficient. - Graphical abstract: High-resolution transmission electron micrographs of (GeTe){sub 4}Sb{sub 2}Te{sub 3} (top) and (Ge{sub 0.5}Sn{sub 0.5}Te){sub 4}Sb{sub 2}Te{sub 3} (bottom) with different nanostructures and thermoelectric figures of merit (ZT) of these samples. - Highlights: • Representative samples of solid solutions of (Ge{sub 1−x}Sn{sub x}Te){sub n}Sb{sub 2}Te{sub 3} were synthesized. • Sn substitution leads to more pronounced nanostructures in defect-rich compounds. • Phase transitions are comparable to (GeTe){sub n}Sb{sub 2}Te{sub 3} but occur at lower temperatures

  8. Electrochemical degradation of the β-blocker metoprolol by Ti/Ru 0.7 Ir 0.3 O 2 and Ti/SnO 2-Sb electrodes.

    PubMed

    Radjenovic, Jelena; Escher, Beate I; Rabaey, Korneel

    2011-05-01

    Electrochemical oxidation has been proposed for the elimination of pesticides, pharmaceuticals and other organic micropollutants from complex waste streams. However, the detrimental effect of halide ion mediators and the generation of halogenated by-products in this process have largely been neglected thus far. In this study, we investigated the electrochemical oxidation pathways of the β-blocker metoprolol in reverse osmosis concentrate (ROC) from a water reclamation plant using titanium anodes coated with Ru(0.7)Ir(0.3)O(2) or SnO(2)-Sb metal oxide layers. The results of liquid chromatography-mass spectrometry analysis indicated that irrespective of the electrode coating the same oxidant species participated in electrochemical transformation of metoprolol in ROC. Although Ti/SnO(2)-Sb exhibited higher oxidizing power for the same applied specific electrical charge, the generation of large fractions of chloro-, chloro-bromo- and bromo derivatives was observed for both electrode coatings. However, degradation rates of metoprolol and its degradation products were generally higher for the Ti/SnO(2)-Sb anode. Chemical analyses of metoprolol and its by-products were complemented with bioanalytical tools in order to investigate their toxicity relative to the parent compound. Results of the bioluminescence inhibition test with Vibrio fischeri and the combined algae test with Pseudokirchneriella subcapitata indicated a substantial increase in non-specific toxicity of the reaction mixture due to the formed halogenated by-products, while the specific toxicity (inhibition of photosynthesis) remained unchanged. PMID:21496862

  9. Elaborated 1H NMR study for the ligitional behavior of two thiosemicarbazide derivatives towards some heavy metals (Sn(II), Sb(III), Pb(II) and Bi(III)), thermal, antibacterial and antifungal studies

    NASA Astrophysics Data System (ADS)

    El-Metwaly, Nashwa M.; Refat, Moamen S.

    2011-10-01

    A new series of heavy metal complexes are prepared. Sn(II), Sb(III), Pb(II) and Bi(III) are the metal ions used in complexation with two thiosemicarbazide ligands. The IR and 1H NMR spectra of the free ligands display their presence in thiole-thione forms coincide with each other. The IR spectra of the complexes support the presence of 2:2 molar ratio (M:HL) with HL 1 ligand and 1:1 beside 1:2 with HL 2. The ligand coordinates as bi molecules in some complexes and displays two tautomer forms at the same complex molecule 1H NMR spectra of Sn(II) and Sb(III) complexes were done and comes coincide with IR data. The electronic spectral analysis displays a lower shift appearance in n → π* charge transfer band in most isolated complexes. As well as, a new band is shinned in visible region with Sb(III), Bi(III) complexes and Sn(II)-HL 2. This band is pointed to its use in spectrophotometric analysis for these metal ions. The TG analysis for all isolated compounds was briefly discussed. The molecular modeling parameters support the stability of thiole form of the free ligands in comparing with their thiones by a small difference. The antibacterial and antifungal activities were studied against some organisms and reveal the priority of most investigated complexes.

  10. Low-temperature solid state reaction synthesis and thermoelectric properties of high-performance and low-cost Sb-doped Mg2Si0.6Sn0.4

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tang, Xinfeng; Sharp, Jeff

    2010-03-01

    Mg2Si1-xSnx compounds are a type of low-price, environment-friendly medium temperature thermoelectric materials with very important prospects for practical application, and the exploration of high performance Mg2Si1-xSnx compounds is currently attracting worldwide interest. In this study, Sb-doped Mg2Si0.6Sn0.4 compounds were prepared through a two-step, low-temperature solid state reaction method combined with the spark plasma sintering technique for rapid densification. The influence of Sb doping amount on the thermoelectric properties of Mg2Si0.6-ySn0.4Sby (0 <= y <= 0.015) compounds was investigated. The solid solubility limit of Sb in Mg2Si0.6Sn0.4 compounds was estimated around y = 0.0125. As y increased, the electrical conductivity of Mg2Si0.6-ySn0.4Sby (0 <= y <= 0.0125) compounds increased considerably, while the absolute value of the Seebeck coefficient and the lattice thermal conductivity decreased. The sample with y = 0.0125 had the highest ZT, reaching 1.11 at 860 K, and the samples with 0.005 <= y <= 0.015 all attained ZTmax > 0.95. The adopted synthesis process also showed very good repeatability and regularity in obtaining thermoelectric properties, together with the capability of precise composition control of Mg2Si0.6-ySn0.4Sby, making it promising for the practical application of Mg2Si based thermoelectric materials.

  11. Preferential orientation, microstructure and functional properties of SnO2:Sb thin film: The effects of post-growth annealing

    NASA Astrophysics Data System (ADS)

    Zheng, Haoran; Li, Lingxia; Sun, Zheng; Yu, Shihui; Luo, Weijia

    2016-01-01

    The SnO2:Sb thin films (ATO) were deposited on quartz glass by magnetron sputtering. The effects of post-growth annealing on preferential orientation, microstructure and functional properties of thin films have been investigated. It was found that the thin films were polycrystalline with the cassiterite tetragonal (rutile type) structure. As the annealing temperature increased from 200 °C to 600 °C, the crystalline quality of the thin films improved. The texture transition from (2 0 0) to (2 1 1) crystallographic orientations was found as annealing temperature increased to 600 °C. This result revealed that the process of abnormal grain growth occurred. However, the crystalline quality was subsequently deteriorated with further increase of the annealing temperature. The obtained ATO thin film annealed at 600 °C showed the lowest resistivity of 1.5 × 10-3 Ω cm with the carrier concentration of 2.11 × 1020 cm-3 and hall mobility of 21.37 cm2 V-1 s-1. The average optical transmittance was 84.9% in the visible wavelength range from 380 to 780 nm. In addition, the mechanism of the changes of electrical and optical properties at different annealing temperature was proposed.

  12. TiO2 nanotube array photoelectrocatalyst and Ni-Sb-SnO2 electrocatalyst bifacial electrodes: a new type of bifunctional hybrid platform for water treatment.

    PubMed

    Yang, So Young; Choi, Wonyong; Park, Hyunwoong

    2015-01-28

    Bifunctional hybrid electrodes capable of generating various reactive oxygen species (ROS) over a wide range of potentials were developed by coupling electrocatalysts and photoelectrocatalysts. To achieve this, Ni-doped Sb-SnO2 (NSS) was deposited on one side of a titanium (Ti) foil while the other side was anodized to grow a TiO2 nanotube array (TNA) for electrochemical ozone generation and photoelectrochemical hydroxyl radical generation, respectively. Surface characterization indicated that NSS and TNA were formed and spatially separated yet electrically connected through the Ti substrate. While each catalyst possessed unique electrochemical properties, the coupling of both catalysts resulted in mixed electrochemical properties that drove electrocatalysis at high potentials and photoelectrocatalysis at low potentials. The performance of the NSS/TNA electrode for phenol decomposition was ∼3 times greater than that of single-layer catalysts and ∼1.5 times greater than the combined catalytic performances of the individual NSS and TNA catalysts. This synergistic effect was attributed partly to the simultaneous generation of hydroxyl radicals and ozone, followed by the production of other ROS. A mechanism for the generation of ROS was discussed. PMID:25561436

  13. Thermal Cycling Reliability of Sn-Ag-Cu Solder Interconnections—Part 2: Failure Mechanisms

    NASA Astrophysics Data System (ADS)

    Hokka, Jussi; Mattila, Toni T.; Xu, Hongbo; Paulasto-Kröckel, Mervi

    2013-06-01

    Part 1 of this study focused on identifying the effects of (i) temperature difference (Δ T), (ii) lower dwell temperature and shorter dwell time, (iii) mean temperature, (iv) dwell time, and (v) ramp rate on the lifetime of ball grid array (with 144 solder balls) component boards. Based on the characteristic lifetime, the studied thermal cycling profiles were categorized into three groups: (i) highly accelerated conditions, (ii) moderately accelerated conditions, and (iii) mildly/nonaccelerated conditions. In this work, the observed differences in component board lifetime are explained by studying the failure mechanisms and microstructural changes that take place in the three groups of loading conditions. It was observed that, under the standardized thermal cycling conditions (highly accelerated conditions), the networks of grain boundaries formed by recrystallization provided favorable paths for cracks to propagate intergranularly. It is noteworthy that the coarsening of intermetallic particles was strong in the recrystallized regions (the cellular structure had disappeared completely in the crack region). However, under real-use conditions (mildly/nonaccelerated conditions), recrystallization was not observed in the solder interconnections and cracks had propagated transgranularly in the bulk solder or between the intermetallic compound (IMC) layer and the bulk solder. The real-use conditions showed slight coarsening of the microstructure close to the crack region, but the solder bulk still included finer IMC particles and β-Sn cells characteristic of the as-solidified microstructures. These findings suggest that standardized thermal cycling tests used to assess the solder interconnection reliability of BGA144 component boards create failure mechanisms that differ from those seen in conditions representing real-use operation.

  14. Morphology of the Tin Whiskers on the Surface of a Sn-3Ag-0.5Cu-0.5Nd Alloy

    NASA Astrophysics Data System (ADS)

    Chuang, Tung-Han; Jain, Chao-Chi

    2011-03-01

    Rapid growth of tin whiskers has been observed on the surface of rosette-shaped NdSn3 intermetallic phase in a Sn-3Ag-0.5Cu-0.5Nd alloy after air storage. It is shown that various cross sections of NdSn3 rosettes in the solder matrix reveal different morphologies of tin whiskers, which can be classified as four types: long fibers, short fibers, tiny sprouts, and hillocks. The fibrous whiskers and tiny sprouts are found on the surfaces of specimens exposed to air at room temperature and 423 K (150 °C), while hillocks appear only after storage at 423 K (150 °C). In addition, it is observed that, in most cases, each oxidized NdSn3 intermetallic phase contains only a single whisker at its center. Through metallographic observations and chemical analyses on the cross sections of the oxidized NdSn3 intermetallics, a "successive compressive stress model" has been proposed to interpret the tin whisker growth on the surface of a rare earth (RE)-containing solder.

  15. Effects of Annealing, Thermomigration, and Electromigration on the Intermetallic Compounds Growth Kinetics of Cu/Sn-2.5Ag Microbump.

    PubMed

    Kim, Seung-Hyun; Park, Gyu-Tae; Park, Jong-Jin; Park, Young-Bae

    2015-11-01

    The effects of annealing, thermomigration (TM), and electromigration (EM) on the intermetallic com- pound (IMC) growth kinetics of Cu/Sn-2.5Ag microbumps were investigated using in-situ scanning electron microscopy at 120-165 degrees C with a current density of 1.5 x 10(5) A/cm2. The IMC growth kinetics was controlled by a diffusion-dominant mechanism and a chemical-reaction-dominant mechanism with annealing and current-stressing conditions, respectively. Before all of the Sn was fully transformed into IMCs, the activation energies of the Cu3Sn IMCs were 0.54 eV, 0.50 eV, and 0.40 eV for annealing, TM, and EM, respectively, which is closely related to the acceleration effect of the interfacial reaction by electron wind force under current stressing. After all of the Sn was fully transformed into IMCs by reacting with Cu, the Cu3Sn IMC growth rates of the three structures became similar due to the reduced and similar diffusion rates inside the IMCs with and without current stressing. PMID:26726558

  16. Isothermal Ageing of SnAgCu Solder Alloys: Three-Dimensional Morphometry Analysis of Microstructural Evolution and Its Effects on Mechanical Response

    NASA Astrophysics Data System (ADS)

    Maleki, Milad; Cugnoni, Joë; Botsis, John

    2014-04-01

    Due to the high homologous temperature and fast cooling rates, the microstructures of SnAgCu (SAC) solders are in a meta-stable state in most applications, which is the cause of significant microstructural evolution and continuous variation in the mechanical behavior of the joints during service. The link between microstructures evolution and deformation behavior of Sn-4.0Ag-0.5Cu solder during isothermal ageing is investigated. The evolution of the microstructures in SAC solders are visualized at different scales in 3D by using a combination of synchrotron x-ray and focused ion beam/scanning electron microscopy tomography techniques at different states of ageing. The results show that, although the grain structure, morphology of dendrites, and overall volume fraction of intermetallics remain almost constant during ageing, considerable coarsening occurs in the Ag3Sn and Cu6Sn5 phases to lower the interfacial energy. The change in the morphometrics of sub-micron intermetallics is quantified by 3D statistical analyses and the kinetic of coarsening is discussed. The mechanical behavior of SAC solders is experimentally measured and shows a continuous reduction in the yield resistance of solder during ageing. For comparison, the mechanical properties and grain structure of β-tin are evaluated at different annealing conditions. Finally, the strengthening effect due to the intermetallics at different ageing states is evaluated by comparing the deformation behaviors of SAC solder and β-tin with similar grain size and composition. The relationship between the morphology and the strengthening effect due to intermetallics particles is discussed and the causes for the strength degradation in SAC solder during ageing are identified.

  17. Wetting behavior of molten In-Sn alloy on bulk amorphous and crystalline Cu{sub 40}Zr{sub 44}Al{sub 8}Ag{sub 8}

    SciTech Connect

    Ma, G. F.; Zhang, H. F.; Li, H.; Hu, Z. Q.

    2007-10-29

    Using the sessile-drop method, the wettability of the molten In-Sn alloy on bulk amorphous and crystalline Cu{sub 40}Zr{sub 44}Al{sub 8}Ag{sub 8} alloy was studied at different temperatures. It was found that the equilibrium contact angle of In-Sn alloy melt on bulk amorphous substrate was smaller than that of the crystalline one. An intermetallic compound existed at the interface of In-Sn alloy on amorphous Cu{sub 40}Zr{sub 44}Al{sub 8}Ag{sub 8}, while no intermediate reaction layer was formed at the interface of In-Sn alloy on crystalline Cu{sub 40}Zr{sub 44}Al{sub 8}Ag{sub 8} in the temperature range studied.

  18. Comparison of Sn-Ag-Cu Solder Alloy Intermetallic Compound Growth Under Different Thermal Excursions for Fine-Pitch Flip-Chip Assemblies

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Liu, Xi; Chow, Justin; Wu, Yi Ping; Sitaraman, Suresh K.

    2013-08-01

    The intermetallic compound (IMC) evolution in Cu pad/Sn-Ag-Cu solder interface and Sn-Ag-Cu solder/Ni pad interface was investigated using thermal shock experiments with 100- μm-pitch flip-chip assemblies. The experiments show that low standoff height of solder joints and high thermomechanical stress play a great role in the interfacial IMC microstructure evolution under thermal shock, and strong cross-reaction of pad metallurgies is evident in the intermetallic growth. Furthermore, by comparing the IMC growth during thermal aging and thermal shock, it was found that thermal shock accelerates IMC growth and that kinetic models based on thermal aging experiments underpredict IMC growth in thermal shock experiments. Therefore, new diffusion kinetic parameters were determined for the growth of (Cu,Ni)6Sn5 using thermal shock experiments, and the Cu diffusion coefficient through the IMC layer was calculated to be 0.2028 μm2/h under thermal shock. Finite-element models also show that the solder stresses are higher under thermal shock, which could explain why the IMC growth is faster and greater under thermal shock cycling as opposed to thermal aging.

  19. Reactions of a cyclodimethylsiloxane (Me2SiO)6 with silver salts of weakly coordinating anions; crystal structures of [Ag(Me2SiO)6][Al] ([Al] = [FAl{OC(CF3)3}3], [Al{OC(CF3)3}4]) and their comparison with [Ag(18-crown-6)]2[SbF6]2.

    PubMed

    Cameron, T Stanley; Decken, Andreas; Krossing, Ingo; Passmore, Jack; Rautiainen, J Mikko; Wang, Xinping; Zeng, Xiaoqing

    2013-03-18

    Two silver-cyclodimethylsiloxane cation salts [AgD6][Al] ([Al] = [Al(ORF)4](1) or [FAl(OR(F))3](2), R(F) = C(CF3)3, D = Me2SiO) were prepared by the reactions of Ag[Al] with D6 in SO2(l). For a comparison the [Ag(18-crown-6)]2[SbF6]2(3) salt was prepared by the reaction of Ag[SbF6] and 18-crown-6 in SO2(l). The compounds were characterized by IR, multinuclear NMR, and single crystal X-ray crystallography. The structures of 1 and 2 show that D6 acts as a pseudo crown ether toward Ag(+). The stabilities and bonding of [MDn](+) and [M(18-crown-6)](+) (M = Ag, Li, n = 4-8) complexes were studied with theoretical calculations. The calculations predicted that D6 adopts a puckered C(i) symmetric structure in the gas phase in contrast to previous reports. 18-Crown-6 was calculated to bind more strongly to Li(+) and Ag(+) than D6. (29)Si[(1)H] NMR results in solution, and calculations in the gas phase established that a hard Lewis acid Li(+) binds more strongly to D6 than Ag(+). A comparison of the [MD(n)](+) complex stabilities showed D7 to form the most stable metal complexes in the gas phase and the solid state and explained why [AgD7][SbF6] was isolated in a previous reaction where ring transformations resulted in an equilibrium of [AgD(n)](+) complexes. In contrast, the isolations of 1 and 2 were possible because the corresponding equilibrium of [AgD(n)](+) complexes was not observed with [Al](-) anions. The formation of the dinuclear complex salt 3 instead of the corresponding mononuclear complex salt was shown to be driven by the gain in lattice enthalpy in the solid state. The bonding to Li(+) in D6 and 18-crown-6 metal complexes was described by a quantum theory of atoms in molecules (QTAIM) analysis to be mostly electrostatic while the bonding to Ag(+) also had a significant charge transfer component. The charge transfer from both D6 and 18-crown-6 to Ag(+) and Li(+) metal ions was depicted by the QTAIM analysis to be of similar strength, and the difference in the

  20. Impact of Cooling Rate-Induced Recrystallization on High G Mechanical Shock and Thermal Cycling in Sn-Ag-Cu Solder Interconnects

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Bieler, Thomas R.; Kim, Choong-Un

    2016-01-01

    The mechanical stability and thermo-mechanical fatigue performance of solder joints with low silver content Sn-1.0Ag-0.5Cu (wt.%) (SAC105) alloy based on different cooling rates are investigated in high G level shock environment and thermal cycling conditions. The cooling rate-controlled samples ranging from 1°C/min to 75°C/min cooling rate, not only show differences in microstructure, where a fine poly-granular microstructure develops in the case of fast cooling versus normal cooling, but also show various shock performances based on the microstructure changes. The fast cooling rate improves the high G shock performance by over 90% compared to the normal cooled SAC105 alloy air-cooling environment commonly used after assembly reflow. The microstructure effect on thermal cycling performance is also discussed, which is analyzed based on the Sn grain orientation, interconnect stability, and solder joint bulk microstructure.

  1. Control of Surface Plasmon Resonance of Au/SnO2 by Modification with Ag and Cu for Photoinduced Reactions under Visible-Light Irradiation over a Wide Range.

    PubMed

    Tanaka, Atsuhiro; Hashimoto, Keiji; Kominami, Hiroshi

    2016-03-18

    Gold particles supported on tin(IV) oxide (0.2 wt% Au/SnO2) were modified with copper and silver by the multistep photodeposition method. Absorption around λ=550 nm, attributed to surface plasmon resonance (SPR) of Au, gradually shifted to longer wavelengths on modification with Cu and finally reached λ=620 nm at 0.8 wt% Cu. On the other hand, the absorption shifted to shorter wavelength with increasing amount of Ag and reached λ=450 nm at 0.8 wt% Ag. These Cu- and Ag-modified 0.2 wt% Au/SnO2 materials (Cu-Au/SnO2 and Ag-Au/SnO2) and 1.0 wt% Au/SnO2 were used for mineralization of formic acid to carbon dioxide in aqueous suspension under irradiation with visible light from a xenon lamp and three kinds of light-emitting diodes with different wavelengths. The reaction rates for the mineralization of formic acid over these materials depend on the wavelength of light. Apparent quantum efficiencies of Cu-Au/SnO2, Au/SnO2, and Ag-Au/SnO2 reached 5.5% at 625 nm, 5.8% at 525 nm, and 5.1% at 450 nm, respectively. These photocatalysts can also be used for selective oxidation of alcohols to corresponding carbonyl compounds in aqueous solution under visible-light irradiation. Broad responses to visible light in formic acid mineralization and selective alcohol oxidation were achieved when the three materials were used simultaneously. PMID:26880569

  2. Microstructural characterization and mechanical property of active soldering anodized 6061 Al alloy using Sn-3.5Ag-xTi active solders

    SciTech Connect

    Wang, Wei-Lin Tsai, Yi-Chia

    2012-06-15

    Active solders Sn-3.5Ag-xTi varied from x = 0 to 6 wt.% Ti addition were prepared by vacuum arc re-melting and the resultant phase formation and variation of microstructure with titanium concentration were analyzed using X-ray diffraction, optical microscopy and scanning electron microscopy. The Sn-3.5Ag-xTi active solders are used as metallic filler to join with anodized 6061 Al alloy for potential applications of providing a higher heat conduction path. Their joints and mechanical properties were characterized and evaluated in terms of titanium content. The mechanical property of joints was measured by shear testing. The joint strength was very dependent on the titanium content. Solder with a 0.5 wt.% Ti addition can successfully wet and bond to the anodized aluminum oxide layers of Al alloy and posses a shear strength of 16.28 {+-} 0.64 MPa. The maximum bonding strength reached 22.24 {+-} 0.70 MPa at a 3 wt.% Ti addition. Interfacial reaction phase and chemical composition were identified by a transmission electron microscope with energy dispersive spectrometer. Results showed that the Ti element reacts with anodized aluminum oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti phases at the joint interfaces. - Highlights: Black-Right-Pointing-Pointer Active solder joining of anodized Al alloy needs 0.5 wt.% Ti addition for Sn-3.5Ag. Black-Right-Pointing-Pointer The maximum bonding strength occurs at 3 wt.% Ti addition. Black-Right-Pointing-Pointer The Ti reacts with anodized Al oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti at joint interface.

  3. New Interest in Intermetallic Compound ZnSb

    NASA Astrophysics Data System (ADS)

    Fedorov, M. I.; Prokof'eva, L. V.; Pshenay-Severin, D. A.; Shabaldin, A. A.; Konstantinov, P. P.

    2014-06-01

    The intermetallic compound ZnSb has been known since the 1830s. It has semiconductor properties, but its mechanical, thermal, and chemical properties are very close to those of a metallic alloy. When thermoelectrics based on (BiSb)2(TeSe)3 solid solutions were created, interest in ZnSb subsided. However, the current situation is different, as tellurium has become expensive and rare. Moreover, its compounds are too toxic, and it is too difficult to produce such materials and devices from these solid solutions. Recently, n-type material based on Mg2(SnSi) solid solution was proposed in the Laboratory of Physics for Thermoelements of the Ioffe Physical-Technical Institute. This material together with ZnSb may form a promising couple for creating various thermoelectric modules. In this paper, various properties (Hall and Seebeck coefficients, electrical and thermal conductivities) are reported in the temperature range from 80 K to 797 K. Different acceptor impurities have been tested. The Hall concentration at room temperature varied from 1.5 × 1018 cm-3 to 2.7 × 1019 cm-3. Some features have been discovered in the behavior of the thermoelectric parameters of double-doped ZnSb samples at temperatures above 500 K. Their nature points to a temperature-dependent increase of the Hall concentration. The existence of two temperature ranges with additional doping is revealed by Hall coefficient and electrical conductivity measurements in the range from 80 K to 797 K. The experimental data are discussed based on a model of the energy spectrum with impurity and native defect states localized in the energy gap. It is shown that the dimensionless thermoelectric figure of merit of ZnSb: Cd, Ag, Sn is not less than 1.0 at 600 K.

  4. Effect of Reflow Time on Wetting Behavior, Microstructure Evolution, and Joint Strength of Sn-2.5Ag-0.5Cu Solder on Bare and Nickel-Coated Copper Substrates

    NASA Astrophysics Data System (ADS)

    Sona, Mrunali; Prabhu, K. Narayan

    2016-04-01

    The effect of reflow time on wetting behavior of Sn-2.5Ag-0.5Cu lead-free solder on bare and nickel-coated copper substrates has been investigated. The solder alloy was reflowed at 270°C for various reflow times of 10 s, 100 s, 300 s, and 500 s. On bare copper substrate, the intermetallic compound (IMC) thickness increased with increase in reflow time, whereas on Ni-coated Cu substrate, the IMC thickness increased up to 300 s followed by a drop for solder alloy reflowed for 500 s. The spreading behavior of the solder alloy was categorized into capillary, gravity (diffusion), and viscous zones. Gravity zone was obtained from 3.8 ± 0.43 s to 38.97 ± 3.38 s and from 5.99 ± 0.5 s to 77.82 ± 8.84 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. Sn-2.5Ag-0.5Cu solder alloy was also reflowed for the period corresponding to the end of the gravity zone (40 s and 80 s on bare and Ni-coated Cu, respectively). The joint strength was maximum at reflow time of 40 s and 80 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. The dynamic contact angle at the end of the gravity (diffusion) zone (θ gz) was found to be a better parameter compared with the stabilized contact angle (θ f) to assess the effect of the wettability of the liquid solder on the microstructure and joint strength. The present investigation reveals the significance of the gravity zone in assessment of optimum reflow time for lead-free solder alloys.

  5. Effect of Reflow Time on Wetting Behavior, Microstructure Evolution, and Joint Strength of Sn-2.5Ag-0.5Cu Solder on Bare and Nickel-Coated Copper Substrates

    NASA Astrophysics Data System (ADS)

    Sona, Mrunali; Prabhu, K. Narayan

    2016-07-01

    The effect of reflow time on wetting behavior of Sn-2.5Ag-0.5Cu lead-free solder on bare and nickel-coated copper substrates has been investigated. The solder alloy was reflowed at 270°C for various reflow times of 10 s, 100 s, 300 s, and 500 s. On bare copper substrate, the intermetallic compound (IMC) thickness increased with increase in reflow time, whereas on Ni-coated Cu substrate, the IMC thickness increased up to 300 s followed by a drop for solder alloy reflowed for 500 s. The spreading behavior of the solder alloy was categorized into capillary, gravity (diffusion), and viscous zones. Gravity zone was obtained from 3.8 ± 0.43 s to 38.97 ± 3.38 s and from 5.99 ± 0.5 s to 77.82 ± 8.84 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. Sn-2.5Ag-0.5Cu solder alloy was also reflowed for the period corresponding to the end of the gravity zone (40 s and 80 s on bare and Ni-coated Cu, respectively). The joint strength was maximum at reflow time of 40 s and 80 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. The dynamic contact angle at the end of the gravity (diffusion) zone ( θ gz) was found to be a better parameter compared with the stabilized contact angle ( θ f) to assess the effect of the wettability of the liquid solder on the microstructure and joint strength. The present investigation reveals the significance of the gravity zone in assessment of optimum reflow time for lead-free solder alloys.

  6. Magnetic and transport properties of transparent SrSn{sub 0.9}Sb{sub 0.05}Fe{sub 0.05}O{sub 3} semiconductor films

    SciTech Connect

    Prathiba, G.; Harish Kumar, N.; Venkatesh, S.; Kamala Bharathi, K.

    2011-04-01

    The effect of antimony doping on the structural, magnetic, and electrical properties of transparent SrSn{sub 0.9}Sb{sub 0.05}Fe{sub 0.05}O{sub 3} films synthesized by RF sputtering on oxidized Si and quartz substrates has been investigated. A reduction in electrical resistivity by two orders of magnitude compared to 5% Fe doped SrSnO{sub 3} film was observed. The electrical conductivity behavior has been analyzed using the Mott's Variable range hopping model. The nature of magnetic ordering were investigated by field cooled (FC) and zero field cooled (ZFC) magnetization measurements. The applicability of models based on oxygen vacancies to explain the magnetic ordering present in the sample has been discussed.

  7. Microstructure and Grain Orientation Evolution in Sn-3.0Ag-0.5Cu Solder Interconnects Under Electrical Current Stressing

    NASA Astrophysics Data System (ADS)

    Chen, Hongtao; Hang, Chunjin; Fu, Xing; Li, Mingyu

    2015-10-01

    In situ observation was performed on cross-sections of Sn-3.0Ag-0.5Cu solder interconnects to track the evolution of microstructure and grain orientation under electrical current stressing. Cross-sections of Cu/Ni-Sn-3.0Ag-0.5Cu-Ni/Cu sandwich-structured solder interconnects were prepared by the standard metallographic method and subjected to electrical current stressing for different times. The electron backscatter diffraction technique was adopted to characterize the grain orientation and structure of the solder interconnects. The results show that metallization dissolution and intermetallic compound (IMC) migration have close relationships with the grain orientation and structure of the solder interconnects. Ni metallization dissolution at the cathode interface and IMC migration in the solder bulk can be accelerated when the c-axis of the grain is parallel to the electron flow direction, while no observable change was found when the c-axis of the grain was perpendicular to the electron flow direction. IMC can migrate along or be blocked at the grain boundary, depending on the misorientation between the current flow direction and grain boundary.

  8. Effect of Joint Scale and Processing on the Fracture of Sn-3Ag-0.5Cu Solder Joints: Application to Micro-bumps in 3D Packages

    NASA Astrophysics Data System (ADS)

    Talebanpour, B.; Huang, Z.; Chen, Z.; Dutta, I.

    2016-01-01

    In 3-dimensional (3D) packages, a stack of dies is vertically connected to each other using through-silicon vias and very thin solder micro-bumps. The thinness of the micro-bumps results in joints with a very high volumetric proportion of intermetallic compounds (IMCs), rendering them much more brittle compared to conventional joints. Because of this, the reliability of micro-bumps, and the dependence thereof on the proportion of IMC in the joint, is of substantial concern. In this paper, the growth kinetics of IMCs in thin Sn-3Ag-0.5Cu joints attached to Cu substrates were analyzed, and empirical kinetic laws for the growth of Cu6Sn5 and Cu3Sn in thin joints were obtained. Modified compact mixed mode fracture mechanics samples, with adhesive solder joints between massive Cu substrates, having similar thickness and IMC content as actual micro-bumps, were produced. The effects of IMC proportion and strain rate on fracture toughness and mechanisms were investigated. It was found that the fracture toughness G C decreased with decreasing joint thickness ( h Joint). In addition, the fracture toughness decreased with increasing strain rate. Aging also promoted alternation of the crack path between the two joint-substrate interfaces, possibly proffering a mechanism to enhance fracture toughness.

  9. Orbitally induced hierarchy of exchange interactions in the zigzag antiferromagnetic state of honeycomb silver delafossite Ag3Co2SbO6.

    PubMed

    Zvereva, E A; Stratan, M I; Ushakov, A V; Nalbandyan, V B; Shukaev, I L; Silhanek, A V; Abdel-Hafiez, M; Streltsov, S V; Vasiliev, A N

    2016-04-25

    We report the revised crystal structure, static and dynamic magnetic properties of quasi-two dimensional honeycomb-lattice silver delafossite Ag3Co2SbO6. The magnetic susceptibility and specific heat data are consistent with the onset of antiferromagnetic long range order at low temperatures with Néel temperature TN ∼ 21.2 K. In addition, the magnetization curves revealed a field-induced (spin-flop type) transition below TN in moderate magnetic fields. The GGA+U calculations show the importance of the orbital degrees of freedom, which maintain a hierarchy of exchange interaction in the system. The strongest antiferromagnetic exchange coupling was found in the shortest Co-Co pairs and is due to direct and superexchange interaction between the half-filled xz + yz orbitals pointing directly to each other. The other four out of six nearest neighbor exchanges within the cobalt hexagon are suppressed, since for these bonds the active half-filled orbitals turned out to be parallel and do not overlap. The electron spin resonance (ESR) spectra reveal a broad absorption line attributed to the Co(2+) ion in an octahedral coordination with an average effective g-factor g = 2.40 ± 0.05 at room temperature and show strong divergence of the ESR parameters below ∼150 K, which implies an extended region of short-range correlations. Based on the results of magnetic and thermodynamic studies in applied fields, we propose a magnetic phase diagram for the new honeycomb-lattice delafossite. PMID:27029886

  10. Interfacial Reactions of Sn-3.0Ag-0.5Cu Solder with Cu-Mn UBM During Aging

    NASA Astrophysics Data System (ADS)

    Tseng, Chien-Fu; Wang, Kai-Jheng; Duh, Jenq-Gong

    2010-12-01

    Cu under bump metallurgy (UBM) has been widely used in flip-chip technology. The major disadvantages of Cu UBM are fast consumption of copper, rapid growth of intermetallic compounds (IMCs), and easy formation of Kirkendall voids. In this study we added two different contents of Mn (2 at.% and 10 at.%) to Cu UBM by sputtering to modify the conventional Cu metallization. For the higher Mn concentration in the Cu-Mn UBM, a new Sn-rich phase formed between Cu6Sn5 and the Cu-Mn UBM, and cracks formed after aging. For the lower Mn concentration, growth of Cu3Sn and Kirkendall voids was significantly suppressed after thermal aging. Kinetic analysis and x-ray elemental mapping provided evidence that Mn diffusion into Cu3Sn slowed diffusion of Cu in the Cu3Sn layer. The Mn-enriched Cu3Sn layer may serve as a diffusion barrier to reduce the interfacial reaction rate and Kirkendall void formation. These results suggest that Cu-Mn UBM with low Mn concentration is beneficial in terms of retarding Cu pad consumption in solder joints.

  11. Effect of Bath Life of Ni(P) on the Brittle-Fracture Behavior of Sn-3.0Ag-0.5Cu/ENIG

    NASA Astrophysics Data System (ADS)

    Seo, Wonil; Kim, Kyoung-Ho; Bang, Jung-Hwan; Kim, Mok-Soon; Yoo, Sehoon

    2014-12-01

    The effect of bath life of Ni(P) on the brittle-fracture behavior of Sn-3.0 wt.%Ag-0.5 wt.%Cu (SAC)/electroless nickel immersion gold (ENIG) was evaluated in this study. The bath lives of Ni(P) for the ENIG surface finish in this study were varied from 0 to 3 metal turnover (MTO), which were indirectly indicative of Ni(P) bath life, with "0 MTO" denoting the as-make-up state and "3 MTO" denoting almost waste plating solution. The SAC/ENIG sample when Ni(P) was plated in the 3 MTO bath (3 MTO sample) had thicker (Cu,Ni)6Sn5 and P-rich layers than when Ni(P) was plated in the 0 MTO bath (0 MTO sample). The brittle-fracture behavior of the 0 and 3 MTO samples was evaluated by use of a igh-speed shear (HSS) test with a strain rate of 0.1-2.0 m/s. The shear strength of the 0 MTO sample was higher than that of the 3 MTO sample. The incidence of brittle fracture increased as the bath life of Ni(P) of ENIG (= MTO of Ni(P)) increased. Observation by transmission electron microscopy (TEM) revealed nano-sized voids (or particles) in the Ni-Sn-P layer. As the MTO of the Ni(P) increased, the number of nano-sized voids in the Ni-Sn-P layer of the SAC/ENIG interface increased. The poor brittle-fracture behavior of the 3 MTO sample originated from the weak interface at the thick P-rich layer and from the large nano-sized voids.

  12. Effect of Bath Life of Ni(P) on the Brittle-Fracture Behavior of Sn-3.0Ag-0.5Cu/ENIG

    NASA Astrophysics Data System (ADS)

    Seo, Wonil; Kim, Kyoung-Ho; Bang, Jung-Hwan; Kim, Mok-Soon; Yoo, Sehoon

    2014-09-01

    The effect of bath life of Ni(P) on the brittle-fracture behavior of Sn-3.0 wt.%Ag-0.5 wt.%Cu (SAC)/electroless nickel immersion gold (ENIG) was evaluated in this study. The bath lives of Ni(P) for the ENIG surface finish in this study were varied from 0 to 3 metal turnover (MTO), which were indirectly indicative of Ni(P) bath life, with "0 MTO" denoting the as-make-up state and "3 MTO" denoting almost waste plating solution. The SAC/ENIG sample when Ni(P) was plated in the 3 MTO bath (3 MTO sample) had thicker (Cu,Ni)6Sn5 and P-rich layers than when Ni(P) was plated in the 0 MTO bath (0 MTO sample). The brittle-fracture behavior of the 0 and 3 MTO samples was evaluated by use of a igh-speed shear (HSS) test with a strain rate of 0.1-2.0 m/s. The shear strength of the 0 MTO sample was higher than that of the 3 MTO sample. The incidence of brittle fracture increased as the bath life of Ni(P) of ENIG (= MTO of Ni(P)) increased. Observation by transmission electron microscopy (TEM) revealed nano-sized voids (or particles) in the Ni-Sn-P layer. As the MTO of the Ni(P) increased, the number of nano-sized voids in the Ni-Sn-P layer of the SAC/ENIG interface increased. The poor brittle-fracture behavior of the 3 MTO sample originated from the weak interface at the thick P-rich layer and from the large nano-sized voids.

  13. Influence of Cyclic Strain-Hardening Exponent on Fatigue Ductility Exponent for a Sn-Ag-Cu Micro-Solder Joint

    NASA Astrophysics Data System (ADS)

    Kanda, Yoshihiko; Kariya, Yoshiharu; Oto, Yuji

    2012-03-01

    The fatigue ductility exponent in the Coffin-Manson law for a Sn-Ag-Cu micro-solder joint was investigated in terms of the cyclic strain-hardening property and the inelastic strain energy in fracture for isothermal fatigue. The fatigue ductility exponent was found to increase with temperature and holding time under strain at high temperature. This exponent is closely related to the cyclic strain-hardening exponent, which displays the opposite behavior in that it decreases with increasing temperature and with coarsening of intermetallic compound particles while holding under strain at high temperature. This result differs from the creep damage mechanism (grain boundary fracture), which is a primary reason for the significant reduction in fatigue life for all strain ranges for large-size specimens.

  14. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions

    NASA Astrophysics Data System (ADS)

    Tan, Ai Ting; Tan, Ai Wen; Yusof, Farazila

    2015-06-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn-Ag-Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided.

  15. Enthalpy Effect of Adding Cobalt to Liquid Sn-3.8Ag-0.7Cu Lead-Free Solder Alloy: Difference between Bulk and Nanosized Cobalt

    PubMed Central

    2016-01-01

    Heat effects for the addition of Co in bulk and nanosized forms into the liquid Sn-3.8Ag-0.7Cu alloy were studied using drop calorimetry at four temperatures between 673 and 1173 K. Significant differences in the heat effects between nano and bulk Co additions were observed. The considerably more exothermic values of the measured enthalpy for nano Co additions are connected with the loss of the surface enthalpy of the nanoparticles due to the elimination of the surface of the nanoparticles upon their dissolution in the liquid alloy. This effect is shown to be independent of the calorimeter temperature (it depends only on the dropping temperature through the temperature dependence of the surface energy of the nanoparticles). Integral and partial enthalpies of mixing for Co in the liquid SAC-alloy were evaluated from the experimental data. PMID:26877829

  16. Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores

    NASA Astrophysics Data System (ADS)

    Spiridonov, E. M.; Kulagov, E. A.; Serova, A. A.; Kulikova, I. M.; Korotaeva, N. N.; Sereda, E. V.; Tushentsova, I. N.; Belyakov, S. N.; Zhukov, N. N.

    2015-09-01

    The undeformed ore-bearing intrusions of the Noril'sk ore field (NOF) cut through volcanic rocks of the Late Permian-Early Triassic trap association folded in brachysynclines. Due to the nonuniform load on the roof of intrusive bodies, most sulfide melts were squeezed, up to the tops of ore-bearing intrusions; readily fusible Ni-Fe-Cu sulfide melts were almost completely squeezed. In our opinion, not only one but two stages of mineralization developed at the Noril'sk deposits: (i) syntrap magmatic and (ii) epigenetic post-trap metamorphic-hydrothermal. All platinum-group minerals (PGM) and minerals of gold are metasomatic in the Noril'sk ores. They replaced sulfide solid solutions and exsolution structures. All types of PGM and Au minerals occur in the ores, varying in composition from pyrrhotite to chalcopyrite, talnakhite, mooihoekite, and rich in galena; they are localized in the inner and outer contact zones and differ only in the quantitative proportions of ore minerals. The aureoles of PGM and Au-Ag minerals are wider than the contours of sulfide bodies and coincide with halos of fluid impact on orebodies and adjacent host rocks. The pneumatolytic PGM and Au-Ag minerals are correlated in abundance with the dimensions of sulfide bodies. Their amounts are maximal in veins of late fusible ore composed of eutectic PbS ss and iss intergrowths, as well as at their contacts. The Pd and Pt contents in eutectic sulfide ores of NOF are the world's highest. In the process of noble-metal mineral formation, the fluids supply Pd, Pt, Au, As, Sb, Sn, Bi, and a part of Te, whereas Fe, Ni, Cu, Pb, Ag, Rh, a part of Te and Pd are leached from the replaced sulfide minerals. The pneumatolytic PGM of the early stage comprises Pd and Pt intermetallic compounds enriched in Au along with Pd-Pt-Fe-Ni-Cu-Sn-Pb(As) and (Pd,Pt,Au)(Sn,Sb,Bi,Te,As) solid solutions. Pneumatolytic PGM and Au minerals of the middle stage are products of solid-phase transformation and recrystallization of

  17. The Structural Changes of the Sn(y)OX Thin Films Under Influence of Heat Treament

    NASA Astrophysics Data System (ADS)

    Vong, V.

    2001-04-01

    Composite oxide Sn(y) Ox made by thermal oxidation of the Sn(y)-bimetal thin films, in which y is the doped-materials as well as Sb, Ag or Pd. The Sn(y)-bimetal thin films have been made by evaporation in high vacuum onto NaCl-monocrystall and optical glass substrates. In the work the tin and the doped material (y) were put on two different boats and then both the boats were simultaniously heated to evaporate. The Sn(y)Ox thin films were annealed at the differential temperatures. The structural changes of its have been investigated by using X-ray diffraction and transmission electron microscope.

  18. Internal oxidation of sp-Impurities in silver studied by119Sn Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Andreasen, H.; Damgaard, S.; Nielsen, H. L.; Petersen, J. W.; Weyer, G.

    1983-12-01

    The internal oxidation of the ion-implanted radioactive precursors119Cd and119Sb to the Mössbauer isotope119Sn in silver has been investigated. The oxidation is monitored by the intensity of a line in the Mössbauer spectra, which is characteristic of SnO2 (δ=(0 0.23)mm/s relative to CaSnO3, ΔEQ ≈ 0.5 mm/s, ϑ ≈ 220 K). This line is attributed to an internal oxidation of the implanted impurities by interstitially diffusing oxygen pairs. The formation and annealing kinetics of the impurity-oxygen complexes are interpreted in terms of the diffusion coefficients of oxygen and the sp-impurities in silver, respectively, and the reactivity between them. Comparison is made to Mössbauer experiments on SnAg alloys and to PAC measurements on111cd in silver.

  19. Morphology and Shear Strength of Lead-Free Solder Joints with Sn3.0Ag0.5Cu Solder Paste Reinforced with Ceramic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yakymovych, A.; Plevachuk, Yu.; Švec, P.; Švec, P.; Janičkovič, D.; Šebo, P.; Beronská, N.; Roshanghias, A.; Ipser, H.

    2016-08-01

    To date, additions of different oxide nanoparticles is one of the most widespread procedures to improve the mechanical properties of metals and metal alloys. This research deals with the effect of minor ceramic nanoparticle additions (SiO2, TiO2 and ZrO2) on the microstructure and mechanical properties of Cu/solder/Cu joints. The reinforced Sn3.0Ag0.5Cu (SAC305) solder alloy with 0.5 wt.% and 1.0 wt.% of ceramic nanoparticles was prepared through mechanically stirring. The microstructure of as-solidified Cu/solder/Cu joints was studied using scanning electron microscopy. The additions of ceramic nanoparticles suppressed the growth of the intermetallic compound layer Cu6Sn5 at the interface solder/Cu and improved the microstructure of the joints. Furthermore, measurements of mechanical properties showed improved shear strength of Cu/composite solder/Cu joints compared to joints with unreinforced solder. This fact related to all investigated ceramic nanoinclusions and should be attributed to the adsorption of nanoparticles on the grain surface during solidification. However, this effect is less pronounced on increasing the nanoinclusion content from 0.5 wt.% to 1.0 wt.% due to agglomeration of nanoparticles. Moreover, a comparison analysis showed that the most beneficial influence was obtained by minor additions of SiO2 nanoparticles into the SAC305 solder alloy.

  20. AsSb energetics in argentian sulfosalts

    NASA Astrophysics Data System (ADS)

    Ghosal, Subhabrata; Sack, Richard O.

    1995-09-01

    Experimental brackets on As-Sb partitioning between polybasite-pearceite {Pbp; (Cu, Ag) 16(Sb, As) 2S 11} and pyrargyrite-proustite {Ppr; (Cu, Ag) 3(Sb, As)S 3}, and between pyrargyrite-proustite, and miargyrite and smithite {αMi, βMi, Smt; Ag(Sb, As)S 2} (350-400°C; evacuated silica tubes) define standard state Gibbs energies of theAsSb exchange reactions {Ag 16As 2S 11+Ag 3SbS 3=Ag 16Sb 2S 11 + Ag 3AsS 3, Δ Gro Pbp-Ppr = 0.65 ± 0.60 kJ/gfw; Ag 3AsS 3, + AgSbS 2 = Ag 3SbS 3 + AgASS 2, Δ overlineGro Ppr-α Mi = 3.10 ± 0.50 kJ/gfw, Δ Gro PPr-Smt = 1.70 ± 0.50 kJ/gfw and the nonidealities associated with the AsSb substitutions in these minerals (measured by symmetric regular-solution parameters for formula units on a one AsSb site basis; WAsSbPbp = 4.00 ± 0.25 kJ/gfw; WAsSbPpr =6.00 ± 0 .60 kJ/gfw; WAsSbαMi = WAsSbSmt = 7.00 ± 0.50 kJ/gfw). The above constraints applied to the miscibility gap between Ag (Sb, As) S 2 solutions with α-miargyrite and smithite structures at 350°C determine the relative stabilities of these structures in the As and Sb endmembers to be: ( GSbo, α Mi - GSbo, Smt) ˜ -0.63 kJ/gfw; ( GAso, α Mi - GAsSmt) ˜ 0.77 kJ/gfw. Combining these constraints with the calorimetric data of Bryndzia and Kleppa (1988, 1989) and our melting point determinations we have constructed a phase diagram for the AgSbS 2AgAsS 2 subsystem. The salient features of this diagram are (1) eutectic behaviour ( T ˜ 396°C, XAs ˜ 0.50), (2) modest increase in the temperature of the α → β miargyrite transition with As substitution (˜380°C in Sb-subsystem; 386.6°C at XAsMi ˜ 0.36), (3) a 42.5°C depression of the trechmannite-smithite transition with preferential incorporation of Sb in smithite { smithite ( XAs ˜ 0.62) → α-miargyrite ( XAs ˜ 0.34) + trechmannite (X As ˜ 1.00) at ˜277.5°C}, and (4) widening of the miargyrite-trechmannite gap at lower temperatures. The latter feature is consistent with the inference that the most As

  1. Transport and mechanical property evaluation of (AgSbTe){sub 1-x}(GeTe){sub x} (x=0.80, 0.82, 0.85, 0.87, 0.90)

    SciTech Connect

    Salvador, James R.; Yang, J.; Shi, X.; Wang, H.; Wereszczak, A.A.

    2009-08-15

    (AgSbTe{sub 2}){sub 1-x}(GeTe){sub x} (known collectively by the acronym of their constituent elements as TAGS-x, where x designates the mole fraction of GeTe) materials, despite being described over 40 years ago, have only recently been studied in greater detail from a fundamental standpoint. We have prepared a series of samples with composition (AgSbTe{sub 2}){sub 1-x}(GeTe){sub x} (x=0.80, 0.82, 0.85, 0.87 and 0.90). Cast ingots of the above compositions were ground and consolidated by spark plasma sintering (SPS). Sintering conditions, specifically high applied pressures of 65 MPa and slow heating rates, were identified as important variables that lead to samples with low porosity and good mechanical strength. The resulting ingots were cut for high temperature electrical, thermal transport and mechanical property evaluation. TAGS-85 was found to have the highest ZT of all samples investigated (ZT=1.36 at 700 K) as a result of its very low value of thermal conductivity. Hall effect measurements performed from 5 to 300 K found these materials to have complex multi-band transport characteristics. - Graphical Abstract: Powder X-ray diffraction of TAGS-x (x=0.80, 0.82, 0.85, 0.87 and 0.90) showing characteristic bifurcation indicative of rhombohedral structure.

  2. Effect of Pd Thickness on the Interfacial Reaction and Shear Strength in Solder Joints Between Sn-3.0Ag-0.5Cu Solder and Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) Surface Finish

    NASA Astrophysics Data System (ADS)

    Kim, Young Min; Park, Jin-Young; Kim, Young-Ho

    2012-04-01

    Intermetallic compound formation at the interface between Sn-3.0Ag-0.5Cu (SAC) solders and electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish and the mechanical strength of the solder joints were investigated at various Pd thicknesses (0 μm to 0.5 μm). The solder joints were fabricated on the ENEPIG surface finish with SAC solder via reflow soldering under various conditions. The (Cu,Ni)6Sn5 phase formed at the SAC/ENEPIG interface after reflow in all samples. When samples were reflowed at 260°C for 5 s, only (Cu,Ni)6Sn5 was observed at the solder interfaces in samples with Pd thicknesses of 0.05 μm or less. However, the (Pd,Ni)Sn4 phase formed on (Cu,Ni)6Sn5 when the Pd thickness increased to 0.1 μm or greater. A thick and continuous (Pd,Ni)Sn4 layer formed over the (Cu,Ni)6Sn5 layer, especially when the Pd thickness was 0.3 μm or greater. High-speed ball shear test results showed that the interfacial strengths of the SAC/ENEPIG solder joints decreased under high strain rate due to weak interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 interfaces when the Pd thickness was greater than 0.3 μm. In the samples reflowed at 260°C for 20 s, only (Cu,Ni)6Sn5 formed at the solder interfaces and the (Pd,Ni)Sn4 phase was not observed in the solder interfaces, regardless of Pd thickness. The shear strength of the SAC/ENIG solder joints was the lowest of the joints, and the mechanical strength of the SAC/ENEPIG solder joints was enhanced as the Pd thickness increased to 0.1 μm and maintained a nearly constant value when the Pd thickness was greater than 0.1 μm. No adverse effect on the shear strength values was observed due to the interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 since the (Pd,Ni)Sn4 phase was already separated from the (Cu,Ni)6Sn5 interface. These results indicate that the interfacial microstructures and mechanical strength of solder joints strongly depend on the Pd thickness and reflow conditions.

  3. Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems

    NASA Astrophysics Data System (ADS)

    Romaka, V. V.; Romaka, L.; Horyn, A.; Rogl, P.; Stadnyk, Yu; Melnychenko, N.; Orlovskyy, M.; Krayovskyy, V.

    2016-07-01

    The phase equilibria in the Gd-Ni-Sb and Lu-Ni-Sb ternary systems were studied at 873 K by X-ray and metallographic analyses in the whole concentration range. The interaction of the elements in the Gd-Ni-Sb system results the formation of five ternary compounds at investigated temperature: Gd5Ni2Sb (Mo5SiB2-type), Gd5NiSb2 (Yb5Sb3-type), GdNiSb (MgAgAs-type), Gd3Ni6Sb5 (Y3Ni6Sb5-type), and GdNi0.72Sb2 (HfCuSi2-type). At investigated temperature the Lu-Ni-Sb system is characterized by formation of the LuNiSb (MgAgAs-type), Lu5Ni2Sb (Mo5SiB2-type), and Lu5Ni0.56Sb2.44 (Yb5Sb3-type) compounds. The disordering in the crystal structure of half-Heusler GdNiSb and LuNiSb was revealed by EPMA and studied by means of Rietveld refinement and DFT modeling. The performed electronic structure calculations are in good agreement with electrical transport property studies.

  4. Optical properties and electronic structures of d- and f-electron metals and alloys, Ag-In, Ni-Cu, AuGa sub 2 , PtGa sub 2 ,. beta. prime -NiAl,. beta. prime -CoAl, CeSn sub 3 , and LaSn sub 3

    SciTech Connect

    Kim, Kwang Joo.

    1990-10-17

    Optical properties and electronic structures of disordered Ag{sub 1- x}In{sub x}(x = 0.0, 0.04, 0.08, 0.12) and Ni{sub 1-x}Cu{sub x} (x = 0.0, 0.1, 0.3, 0.4) alloys and ordered AuGa{sub 2}, PtGa{sub 2}, {beta}{prime}-NiAl, {beta}{prime}-CoAl, CeSn{sub 3}, and LaSn{sub 3} have been studied. The complex dielectric functions have been determined for Ag{sub 1-x}In{sub x}, Ni{sub 1-x}Cu{sub x}, AuGa{sub 2}, and PtGa{sub 2} in the 1.2--5.5 eV region and for CeSn{sub 3} and LaSn{sub 3} in the 1.5--4.5 eV region using spectroscopic ellipsometry. Self-consistent relativistic band calculations using the linearized-augmented-plane-wave method have been performed for AuGa{sub 2}, PtGa{sub 2}, {beta}{prime}-NiAl, {beta}{prime}-CoAl, CeSn{sub 3}, and LaSn{sub 3} to interpret the experimental optical spectra.

  5. Reliability of Sn/Pb and lead-free (SnAgCu) solders of surface mounted miniaturized passive components for extreme temperature (-185°C to +125°C) space missions

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2011-02-01

    Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability for future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185°C to +125°C) covers military specifications (-55°C to +100°C), extreme cold Martian (-120°C to +115°C), asteroid Nereus (-180°C to +25°C) and JUNO (-150°C to +120°C) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185°C to +125°C) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.

  6. Reliability of Sn/Pb and Lead-Free (SnAgCu) Solders of Surface Mounted Miniaturized Passive Components for Extreme Temperature (-185 C to +125 C) Space Missions

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2011-01-01

    Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability or future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185oC to +125oC) covers military specifications (-55oC to +100oC), extreme old Martian (-120oC to +115oC), asteroid Nereus (-180oC to +25oC) and JUNO (-150oC to +120oC) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185oC to +125oC) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.

  7. Magnetic and half-metallic properties of the full-Heusler alloys Co2TiX(X=Al,Ga;Si,Ge,Sn;Sb)

    NASA Astrophysics Data System (ADS)

    Lee, S. C.; Lee, T. D.; Blaha, P.; Schwarz, K.

    2005-05-01

    The electronic structure and magnetic properties of the full-Heusler alloys Co2TiX (X element from groups III, IV and V) were studied by first principle calculations. Previous calculations found Co2TiAl and Co2TiSn not to be half metallic. In this paper, however, it will be shown that the alloys with X =Al,Si,Ge,Sn are half metallic and ferromagnetic. The effect of atomic disorder in the Ti-Al sublattices reduces the half metallicity of the Co2TiAl Heusler alloy.

  8. Effect of reaction time and P content on mechanical strength of the interface formed between eutectic Sn-Ag solder and Au/electroless Ni(P)/Cu bond pad

    NASA Astrophysics Data System (ADS)

    Alam, M. O.; Chan, Y. C.; Tu, K. N.

    2003-09-01

    In this work, shear strengths of the solder joints for Sn-Ag eutectic alloy with the Au/electroless Ni(P)/Cu bond pad were measured for three different electroless Ni(P) layers. Sn-Ag eutectic solder alloy was kept in molten condition (240 °C) on the Au/electroless Ni(P)/Cu bond pad for different time periods ranging from 0.5 min to 180 min to render the ultimate interfacial reaction and the consecutive shear strength. After the shear test, fracture surfaces were investigated by scanning electron microscopy equipped with energy dispersed x ray. Cross-sectional studies of the interfaces were also conducted to correlate with the fracture surfaces. It was found that formation of crystalline phosphorous-rich Ni layer at the solder interface of Au/electroless Ni(P)/Cu bond pad with Sn-Ag eutectic alloy deteriorates the mechanical strength of the joints significantly. It was also noticed that such weak P-rich Ni layer appears quickly for high-P content electroless Ni(P) layer. However, when this P-rich Ni layer disappears from a prolonged reaction, the shear strength increases again.

  9. Refinement of the Microstructure of Sn-Ag-Bi-In Solder, by Addition of SiC Nanoparticles, to Reduce Electromigration Damage Under High Electric Current

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Nagao, Shijo; Sugahara, Tohru; Suganuma, Katsuaki; Ueshima, Minoru; Albrecht, Hans-Juergen; Wilke, Klaus; Strogies, Joerg

    2014-12-01

    The trends of miniaturization, multi-functionality, and high performance in advanced electronic devices require higher densities of I/O gates and reduced area of soldering of interconnections. This increases the electric current density flowing through the interconnections, increasing the risk of interconnection failure caused by electromigration (EM). Accelerated directional atomic diffusion in solder materials under high current induces substantial growth of intermetallic compounds (IMCs) at the anode, and also void and crack formation at the cathode. In the work discussed in this paper, addition of SiC nanoparticles to Sn-Ag-Bi-In (SABI) lead-free solder refined its microstructure and improved its EM reliability under high current stress. Electron backscattering diffraction analysis revealed that the added SiC nanoparticles refined solder grain size after typical reflow. Under current stress, SABI joints with added nano-SiC had lifetimes almost twice as long as those without. Comparison of results from high-temperature aging revealed direct current affected evolution of the microstructure. Observations of IMC growth indicated that diffusion of Cu in the SiC composite solder may not have been reduced. During current flow, however, only narrow voids were formed in solder containing SiC, thus preventing the current crowding caused by bulky voids in the solder without SiC.

  10. Effect of Thermal Aging on the Mechanical Properties of Sn3.0Ag0.5Cu/Cu Solder Joints Under High Strain Rate Conditions

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Luong; Kim, Ho-Kyung

    2015-07-01

    Shear tests with velocities between 0.5 m/s and 2.5 m/s were conducted to investigate the deformation characteristics of 0.76 mm lead-free Sn-3Ag-0.5Cu solder ball joints after thermal aging at 373 K up to 1000 h. A scanning electron microscope equipped with energy dispersive spectroscopy was then used to examine the fracture surfaces and microstructures of the solder joints. The results showed that the main failure mode of the solder joints was the brittle interfacial fracture mode with cleavage failure in the intermetallic compound (IMC). The maximum shear strength and the fracture toughness ( K C) of the solder joint decreased substantially after aging for the initial aging time, after which they decreased gradually with further aging or an increase in the strain rate. The evolution of the IMC layer when it was thicker and had coarser nodules due to thermal aging was the primary cause of the reduction in the shear strength and fracture toughness in this study.

  11. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst.

    PubMed

    Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel

    2013-01-01

    Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500-575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol-1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620

  12. Effect of Electromigration on the Type of Drop Failure of Sn-3.0Ag-0.5Cu Solder Joints in PBGA Packages

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Zhao, N.

    2015-10-01

    Board-level drop tests of plastic ball grid array (PBGA) packages were performed in accordance with the Joint Electron Devices Engineering Council standard to investigate the effect of electromigration (EM) on the drop reliability of Sn-3.0Ag-0.5Cu solder joints with two substrate surface finishes, organic solderability preservative (OSP) and electroless nickel electroless palladium immersion gold (ENEPIG). In the as-soldered state, drop failures occurred at the substrate sides only, with cracks propagating within the interfacial intermetallic compound (IMC) layer for OSP solder joints and along the IMC/Ni-P interface for ENEPIG solder joints. The drop lifetime of OSP solder joints was approximately twice that of ENEPIG joints. EM had an important effect on crack formation and drop lifetime of the PBGA solder joints. ENEPIG solder joints performed better in drop reliability tests after EM, that is, the drop lifetime of ENEPIG joints decreased by 43% whereas that of OSP solder joints decreased by 91%, compared with the as-soldered cases. The more serious polarity effect, i.e., excessive growth of the interfacial IMC at the anode, was responsible for the sharper decrease in drop lifetime. The different types of drop failure of PBGA solder joints before and after EM, including the position of initiation and the propagation path of cracks, are discussed on the basis of the growth behavior of interfacial IMC.

  13. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst

    PubMed Central

    Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel

    2013-01-01

    Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620

  14. A rapid, partial leach and organic separation for the sensitive determination of Ag, Bi, Cd, Cu, Mo, Pb, Sb, and Zn in surface geologic materials by flame atomic absorption

    USGS Publications Warehouse

    Viets, J.G.; Clark, J.R.; Campbell, W.L.

    1984-01-01

    A solution of dilute hydrochloric acid, ascorbic acid, and potassium iodide has been found to dissolve weakly bound metals in soils, stream sediments, and oxidized rocks. Silver, Bi, Cd, Cu, Mo, Pb, Sb, and Zn are selectively extracted from this solution by a mixture of Aliquat 336 (tricaprylyl methyl ammonium chloride) and MIBK (methyl isobutyl ketone). Because potentially interfering major and minor elements do not extract, the organic separation allows interference-free determinations of Ag and Cd to the 0.05 ppm level, Mo, Cu, and Zn to 0.5 ppm, and Bi, Pb, and Sb to 1 ppm in the sample using flame atomic absorption spectroscopy. The analytical absorbance values of the organic solution used in the proposed method are generally enhanced more than threefold as compared to aqueous solutions, due to more efficient atomization and burning characteristics. The leaching and extraction procedures are extremely rapid; as many as 100 samples may be analyzed per day, yielding 800 determinations, and the technique is adaptable to field use. The proposed method was compared to total digestion methods for geochemical reference samples as well as soils and stream sediments from mineralized and unmineralized areas. The partial leach showed better anomaly contrasts than did total digestions. Because the proposed method is very rapid and is sensitive to pathfinder elements for several types of ore deposits, it should be useful for reconnaissance surveys for concealed deposits. ?? 1984.

  15. Depletion and phase transformation of a submicron Ni(P) film in the early stage of soldering reaction between Sn-Ag-Cu and Au/Pd(P)/Ni(P)/Cu

    NASA Astrophysics Data System (ADS)

    Ho, Cheng-En; Hsieh, Wan-Zhen; Yang, Tsung-Hsun

    2015-01-01

    The early stage of soldering reaction between Sn-3Ag-0.5Cu solder and ultrathin-Ni(P)-type Au/Pd(P)/Ni(P)/Cu pad was investigated by field-emission scanning electron microscopy (FE-SEM) in conjunction with field-emission electron probe microanalysis (FEEPMA) and high-resolution transmission electron microscopy (HRTEM). FE-SEM, FE-EPMA, and HRTEM investigations showed that Ni2SnP and Ni3P were the predominant P-containing intermetallic compounds (IMCs) in the soldering reaction and that their growth behaviors strongly depended on the depletion of Ni(P). The growth of Ni3P dominated over that of Ni2SnP in the early stage of soldering, whereas the Ni3P gradually transformed into Ni2SnP after Ni(P) depletion. This Ni(P)-depletion-induced Ni2SnP growth behavior is different from the reaction mechanisms reported in the literature. Detailed analyses of the microstructural evolution of the IMC during Ni(P) depletion were conducted, and a two-stage reaction mechanism was proposed to rationalize the unique IMC growth behavior.

  16. Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf0.75-xTixZr0.25NiSn0.99Sb0.01

    SciTech Connect

    Joshi, Giri; Dahal, Tulashi; Chen, Shuo; Wang, Hengzhi Z; Shiomi, Junichiro; Chen, Gang; Ren, Zhifeng F.

    2012-08-08

    The effect of titanium (Ti) substitution for hafnium (Hf) on thermoelectric properties of (Hf, Zr)-based n-type half-Heuslers: Hf0.75-xTixZr0.25NiSn0.99Sb0.01, has been studied. The samples are made by arc melting followed by ball milling and hot pressing via the nanostructuring approach. A peak thermoelectric figure-of-merit (ZT) of ~1.0 is achieved at 500 °C in samples with a composition of Hf0.5Zr0.25Ti0.25NiSn0.99Sb0.01 due to a slight increase in carrier concentration and also a lower thermal conductivity caused by Ti. TheZT values below 500 °C of hot pressed Hf0.5Zr0.25Ti0.25NiSn0.99Sb0.01 samples are significantly higher than those of the same way prepared Hf0.75Zr0.25NiSn0.99Sb0.01samples at each temperature, which are very much desired for mid-range temperature applications such as waste heat recovery in automobiles.

  17. Effects of Rh on the thermoelectric performance of the p-type Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} half-Heusler alloys

    SciTech Connect

    Maji, Pramathesh; Takas, Nathan J.; Misra, Dinesh K.; Gabrisch, Heike; Stokes, Kevin; Poudeu, Pierre F.P.

    2010-05-15

    We show that Rh substitution at the Co site in Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} (0<=x<=1) half-Heusler alloys strongly reduces the thermal conductivity with a simultaneous, significant improvement of the power factor of the materials. Thermoelectric properties of hot-pressed pellets of several compositions with various Rh concentrations were investigated in the temperature range from 300 to 775 K. The Rh 'free' composition shows n-type conduction, while Rh substitution at the Co site drives the system to p-type semiconducting behavior. The lattice thermal conductivity of Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} alloys rapidly decreased with increasing Rh concentration and lattice thermal conductivity as low as 3.7 W/m*K was obtained at 300 K for Zr{sub 0.5}Hf{sub 0.5}RhSb{sub 0.99}Sn{sub 0.01}. The drastic reduction of the lattice thermal conductivity is attributed to mass fluctuation induced by the Rh substitution at the Co site, as well as enhanced phonon scattering at grain boundaries due to the small grain size of the synthesized materials. - Graphical abstract: Significant reduction of the lattice thermal conductivity with increasing Rh concentration in the p-type Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} half-Heusler materials prepared by solid state reaction at 1173 K.

  18. Effects of Microstructure and Loading on Fracture of Sn-3.8Ag-0.7Cu Joints on Cu Substrates with ENIG Surface Finish

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2014-12-01

    When dropped, electronic packages often undergo failure by propagation of an interfacial crack in solder joints under a combination of tensile and shear loading. Hence, it is crucial to understand and predict the fracture behavior of solder joints under mixed-mode high-rate loading conditions. In this work, the effects of the loading conditions (strain rate and loading angle) and microstructure [interfacial intermetallic compound (IMC) morphology and solder yield strength] on the mixed-mode fracture toughness of Sn-3.8 wt.%Ag-0.7 wt.%Cu solder joints sandwiched between two Cu substrates with electroless nickel immersion gold (ENIG) metallization have been studied, and compared with the fracture behavior of joints attached to bare Cu. Irrespective of the surface finish, the fracture toughness of the solder joints decreased monotonically with strain rate and mode-mixity, both resulting in increased fracture proportion through the interfacial IMC layer. Furthermore, the proportion of crack propagation through the interfacial IMC layer increased with increase in the thickness and the roughness of the interfacial IMC layer and the yield strength of the solder, resulting in a decrease in the fracture toughness of the joint. However, under most conditions, solder joints with ENIG finish showed higher resistance to fracture than joints attached directly to Cu substrates without ENIG metallization. Based on the experimental observations, a fracture mechanism map is constructed correlating the yield strength of the solder, the morphology and thickness of the interfacial IMC, and the fracture mechanisms as well as the fracture toughness values for different solder joints under mode I loading.

  19. The synthesis and characterization of Ti/SnO 2-Sb 2O 3/PbO 2 electrodes: The influence of morphology caused by different electrochemical deposition time

    NASA Astrophysics Data System (ADS)

    An, Hao; Li, Qin; Tao, Dejing; Cui, Hao; Xu, Xiaotian; Ding, Liang; Sun, Li; Zhai, Jianping

    2011-10-01

    For the electrochemical oxidative degradation of wastewater, it is crucial for electrodes to be highly catalytic active, stable in performance and inexpensive in price. This study focuses on the preparation of the Ti/SnO 2-Sb 2O 3/PbO 2 anodes by anodic deposition under galvanostatic conditions and their electrocatalytic activity affected by crystal structure and surface roughness under different electrochemical deposition time, with phenol taken as the model pollutant to evaluate the electrocatalytic activity. The electrode surface morphology is characterized by XRD and SEM-EDX. The treatment effect of phenol is reflected by electrochemical analysis like CV and LSV. An important conclusion from experiment is that electrochemical deposition time has a major impact on electrocatalytic activity with the optimal deposition time observed around 30 min. At both deposition time beyond this optimal time window, electrocatalytic activity of phenol is substantially lowered. Increasing in electrochemical deposition time leads to a more uniform and smooth electrode surface, which enjoys a more compact structure than the "cracked-mud" one but lower specific surface area and catalytic activity. On the contrary, the "cracked-mud" structure means potentially a unique porous structure, which makes morphology at 30 min a perfect one for high electrocatalytic activity.

  20. Thermoelectric performance enhancement of Mg2Sn based solid solutions by band convergence and phonon scattering via Pb and Si/Ge substitution for Sn.

    PubMed

    Mao, Jun; Wang, Yumei; Ge, Binghui; Jie, Qing; Liu, Zihang; Saparamadu, Udara; Liu, Weishu; Ren, Zhifeng

    2016-07-27

    In this study, the thermoelectric properties of Mg2Sn0.98-xPbxSb0.02 were first studied, and then Mg2Sn0.93-xSixPb0.05Sb0.02 and Mg2Sn0.93-xGexPb0.05Sb0.02 were accordingly investigated. The results showed that the formation of Mg2Sn0.98-xPbxSb0.02 solid solutions effectively reduced the lattice thermal conductivity of Mg2Sn. The room temperature lattice thermal conductivity of Mg2Sn0.98Sb0.02 is ∼5.2 W m(-1) K(-1) but only ∼2.5 W m(-1) K(-1) for Mg2Sn0.73Pb0.25Sb0.02, a reduction of ∼52%. Further alloying Mg2Sn0.98-xPbxSb0.02 with Mg2Si or Mg2Ge to form Mg2Sn0.93-xSixPb0.05Sb0.02 or Mg2Sn0.93-xGexPb0.05Sb0.02 reduced the lattice thermal conductivity significantly due to enhanced phonon scattering by point defects as well as nanoparticles. Moreover, bipolar thermal conductivities were suppressed due to the larger bandgap of Mg2Si and Mg2Ge than Mg2Sn. Furthermore, similar to the pseudo-binary Mg2Sn-Mg2Si and Mg2Sn-Mg2Ge systems, band convergence was also observed in pseudo-ternary Mg2Sn0.93-xSixPb0.05Sb0.02 and Mg2Sn0.93-xGexPb0.05Sb0.02 materials. The convergence of conduction bands led to higher PFs at lower temperatures for Mg2Sn0.93-xSixPb0.05Sb0.02 and Mg2Sn0.93-xGexPb0.05Sb0.02 materials. As a result, higher peak ZTs of ∼1.3 for Mg2Sn0.63Si0.3Pb0.05Sb0.02 and ∼1.2 for Mg2Sn0.68Ge0.25Pb0.05Sb0.02 were achieved. PMID:27412367

  1. Effect of Cooling Rate on the Microstructure and Mechanical Properties of Sn-1.0Ag-0.5Cu-0.2BaTiO3 Composite Solder

    NASA Astrophysics Data System (ADS)

    Yang, Li; Ge, Jinguo; Liu, Haixiang; Xu, Liufeng; Bo, Anbing

    2015-11-01

    The microstructure, interfacial intermetallic compound (IMC) layer, microhardness, tensile properties, and fracture surfaces of Sn-1.0Ag-0.5Cu-0.2BaTiO3 composite solder were explored under three different cooling conditions (water-, air-, and furnace-cooled) during solidification. The average grain size was refined and the volume fraction of primary β-Sn dendrites increased with increasing cooling rate. The thickness of the IMC layer increased as the cooling rate was decreased, and the morphology also transformed from scallop shaped, for a rapid cooling rate, to irregular shaped for slower cooling; a Cu3Sn IMC layer was detected between the Cu6Sn5 IMC and copper substrate under the furnace-cooled condition, but not in water- or air-cooled specimens. The mechanical properties, including the microhardness and tensile properties, improved with rapid solidification due to the combined effects of grain refinement and a secondary strengthening mechanism. Fracture surfaces after tensile tests showed that the amount of dimples decreased and a cleavage-like pattern increased as the cooling rate was decreased from the water-cooled to furnace-cooled condition, so the fracture process transformed from ductile to mixed-mode fracture. A refined microstructure and excellent mechanical properties were obtained for the rapidly cooled sample.

  2. Thermal stability of Ag, Al, Sn, Pb, and Hg films reinforced by 2D (C, Si) crystals and the formation of interfacial fluid states in them upon heating. MD experiment

    NASA Astrophysics Data System (ADS)

    Polukhin, V. A.; Kurbanova, E. D.

    2016-02-01

    Molecular dynamics simulation is used to study the thermal stability of the interfacial states of metallic Al, Ag, Sn, Pb, and Hg films (i.e., the structural elements of superconductor composites and conducting electrodes) reinforced by 2D graphene and silicene crystals upon heating up to disordering and to analyze the formation of nonautonomous fluid pseudophases in interfaces. The effect of perforation defects in reinforcing 2D-C and 2D-Si planes with passivated edge covalent bonds on the atomic dynamics is investigated. As compared to Al and Ag, the diffusion coefficients in Pd and Hg films increase monotonically with temperature during thermally activated disordering processes, the interatomic distances decrease, the sizes decrease, drops form, and their density profile grows along the normal. The coagulation of Pb and Hg drops is accompanied by a decrease in the contact angle, the reduction of the interface contact with graphene, and the enhancement of its corrugation (waviness).

  3. Contact resistivities of antimony-doped n-type Ge1‑x Sn x

    NASA Astrophysics Data System (ADS)

    Senthil Srinivasan, V. S.; Fischer, Inga A.; Augel, Lion; Hornung, Anja; Koerner, Roman; Kostecki, Konrad; Oehme, Michael; Rolseth, Erlend; Schulze, Joerg

    2016-08-01

    As Ge1‑x Sn x is being investigated for CMOS applications, obtaining contacts to n-type Ge1‑x Sn x with low specific contact resistivity (ρ c) is a major concern. Here, we present results on specific contact resistivities of Sb doped n-type Ge1‑x Sn x with 0 ≤ x ≤ 0.08 also with varying doping concentrations using Ni, Ag and Mn as contact metals. Our results show that Ni offers the lowest ρ c for all x values of Ge1‑x Sn x . The lowest ρ c measured for Ni contacts on highly n-doped Ge0.92Sn0.08 is 2.29 × 10‑6 Ω cm2. We find a strong dependence of the specific contact resistivity on doping, which we attribute to the fact that strong Fermi level pinning is present in metal/n-Ge1‑x Sn x contacts.

  4. Low-Temperature Bonding of Bi0.5Sb1.5Te3 Thermoelectric Material with Cu Electrodes Using a Thin-Film In Interlayer

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng; Yang, Chung-Lin; Huang, Jing-Yi; Jain, Chao-Chi; Hwang, Jen-Dong; Chu, Hsu-Shen; Chen, Sheng-Chi; Chuang, Tung-Han

    2016-09-01

    A Bi0.5Sb1.5Te3 thermoelectric material electroplated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode at low temperatures of 448 K (175 °C) to 523 K (250 °C) using a 4- μm-thick In interlayer under an external pressure of 3 MPa. During the bonding process, the In thin film reacted with the Ag layer to form a double layer of Ag3In and Ag2In intermetallic compounds. No reaction occurred at the Bi0.5Sb1.5Te3/Ni interface, which resulted in low bonding strengths of about 3.2 MPa. The adhesion of the Bi0.5Sb1.5Te3/Ni interface was improved by precoating a 1- μm Sn film on the surface of the thermoelectric element and preheating it at 523 K (250 °C) for 3 minutes. In this case, the bonding strengths increased to a range of 9.1 to 11.5 MPa after bonding at 473 K (200 °C) for 5 to 60 minutes, and the shear-tested specimens fractured with cleavage characteristics in the interior of the thermoelectric material. The bonding at 448 K (175 °C) led to shear strengths ranging from 7.1 to 8.5 MPa for various bonding times between 5 and 60 minutes, which were further increased to the values of 10.4 to 11.7 MPa by increasing the bonding pressure to 9.8 MPa. The shear strengths of Bi0.5Sb1.5Te3/Cu joints bonded with the optimized conditions of the modified solid-liquid interdiffusion bonding process changed only slightly after long-term exposure at 473 K (200 °C) for 1000 hours.

  5. Low-Temperature Bonding of Bi0.5Sb1.5Te3 Thermoelectric Material with Cu Electrodes Using a Thin-Film In Interlayer

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng; Yang, Chung-Lin; Huang, Jing-Yi; Jain, Chao-Chi; Hwang, Jen-Dong; Chu, Hsu-Shen; Chen, Sheng-Chi; Chuang, Tung-Han

    2016-07-01

    A Bi0.5Sb1.5Te3 thermoelectric material electroplated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode at low temperatures of 448 K (175 °C) to 523 K (250 °C) using a 4-μm-thick In interlayer under an external pressure of 3 MPa. During the bonding process, the In thin film reacted with the Ag layer to form a double layer of Ag3In and Ag2In intermetallic compounds. No reaction occurred at the Bi0.5Sb1.5Te3/Ni interface, which resulted in low bonding strengths of about 3.2 MPa. The adhesion of the Bi0.5Sb1.5Te3/Ni interface was improved by precoating a 1-μm Sn film on the surface of the thermoelectric element and preheating it at 523 K (250 °C) for 3 minutes. In this case, the bonding strengths increased to a range of 9.1 to 11.5 MPa after bonding at 473 K (200 °C) for 5 to 60 minutes, and the shear-tested specimens fractured with cleavage characteristics in the interior of the thermoelectric material. The bonding at 448 K (175 °C) led to shear strengths ranging from 7.1 to 8.5 MPa for various bonding times between 5 and 60 minutes, which were further increased to the values of 10.4 to 11.7 MPa by increasing the bonding pressure to 9.8 MPa. The shear strengths of Bi0.5Sb1.5Te3/Cu joints bonded with the optimized conditions of the modified solid-liquid interdiffusion bonding process changed only slightly after long-term exposure at 473 K (200 °C) for 1000 hours.

  6. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    PubMed Central

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors. PMID:26743814

  7. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    NASA Astrophysics Data System (ADS)

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors.

  8. A first-principles study on the negative thermal expansion material: Mn3(A0.5B0.5)N (A=Cu, Zn, Ag, or Cd; B=Si, Ge, or Sn)

    NASA Astrophysics Data System (ADS)

    Qu, Bingyan; He, Haiyan; Pan, Bicai

    2016-07-01

    In this paper, using the first-principles calculations, we systemically study the magnetic and the negative thermal expansion (NTE) properties of Mn3(A0.5B0.5)N (A = Cu, Zn, Ag, or Cd; B = Si, Ge, or Sn). From the calculated results, except Mn3(Cu0.5Si0.5)N, all the doped compounds considered would exhibit the NTE. For the dopants at B sites, the working temperature of the NTE shifts to higher temperature range from Si to Sn, and among the compounds with these dopants, Mn3(A0.5Ge0.5)N has the largest amplitude of the NTE coefficient. As to the dopants at A sites, compared to Mn3(Cu0.5B0.5)N, Mn3(A0.5B0.5)N (A = Ag or Cd) exhibit the NTE with higher temperature ranges and lower coefficient of the thermal expansion. In a word, these compounds would have different working temperatures and coefficients of the NTE, which is important for the applications in different conditions.

  9. Magnetic ordering and physical stability of X2Mn1+xSn1-x (X=Ru, Os, Co, Rh, Ni, Pd, Cu, and Ag) Heusler alloys from a first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Chun-Mei; Hu, Qing-Miao; Yang, Rui; Johansson, Börje; Vitos, Levente

    2013-07-01

    The magnetic ordering and its effect on the physical stability of X2Mn1+xSn1-x (0≤x≤0.5, and X=Ru, Os, Co, Rh, Ni, Pd, Cu, and Ag) Heusler alloys are investigated systematically by the use of first-principles method. It is found that the ferromagnetic (FM) coupling between Mn on Mn sublattice (Mn1) and Mn on Sn sublattice (Mn2) is favorable over the antiferromagnetic (AFM) coupling for X with the number of valence electrons [Nv(X)] of 8 and 9, and vice versa for X with Nv(X)=10 and 11, originated from the competition of the exchange interactions between X-Mn2 and Mn1-Mn2. In comparison with the FM Mn1-Mn2 coupling, the AFM coupling decreases significantly the shear elastic constant C' but increases slightly C44, which results in increasing elastic anisotropy (A=C44/C') and consequently may facilitate the tetragonal shear lattice deformation. The hybridization of the minority electronic states between X d and Sn p plays a dominant role on the orientation of the magnetic coupling. The smaller change of the density of states in the Fermi level, induced by the lattice distortion for C', corresponds to the softer C' as well as the larger A in the AFM state than the FM one.

  10. Interfacial Reaction Between Sn3.0Ag0.5Cu Solder and ENEPIG for Fine Pitch BGA by Stencil Printing

    NASA Astrophysics Data System (ADS)

    Liu, Ziyu; Cai, Jian; Wang, Qian; He, Xi; Chen, Yu

    2014-09-01

    In this work, solder balls in ball grid array packaging technology with the pitch of 300 μm were fabricated by stencil printing solder paste and then reflowed at high temperature. In order to evaluate the quality of solder ball after printing and reflowing processes, the mechanical performance of the joint between the solder balls and the pad was measured by shear test and the electrical resistance was tested after assembly of the substrate and printed circuit board. A comparative study of pad size on the interfacial reaction between solder paste and surface finish of electroless nickel-electroless palladium-immersion gold on the organic substrate was performed and then analyzed by observing the microstructure at the interface. Large discontinuous (Cu,Ni)6Sn5 was found at the interface of the solder with the pad size of 120 μm, while spalled (Pd,Ni)Sn4 and thin (Cu,Ni)6Sn5 layer appeared for a pad size of 140 μm. The IMC (intermetallic compounds) was determined by the residual Cu concentration, the Pd concentration in the solder, and the Ni2SnP barrier layer morphology at the interface, which were significantly influenced by the pad size. A reaction model during the reflow was proposed to illustrate the growth of the IMC and the relationship between the IMC and the pad size. With Pd concentration higher than the solubility of Pd in the solder, spalled (Pd,Ni)Sn4 took shape along the interface. The solubility of Pd was influenced by Ni concentration; however, the Ni diffusion from the substrate was largely dependent on the barrier layer Ni2SnP. Furthermore, the Ni diffusion also impacted the growth and morphology of (Cu,Ni)6Sn5, which was not only limited by the Cu concentration.

  11. Physical properties of some Sn-based melts

    NASA Astrophysics Data System (ADS)

    Sidorov, V.; Uporov, S.; Rozitsina, E.; Yagodin, D.; Grushevskij, K.; Ilinykh, N.

    2011-05-01

    The physical properties (viscosity, density, electroresistivity and magnetic susceptibility) of pure tin, copper, silver, some binary (Sn - Ag, Sn - Cu, Sn - Bi, Sn - Zn) and ternary (Sn-Ag-Cu, Sn-BiAg, Sn-Bi-Zn) alloys with near eutectic compositions are investigated in wide temperature ranges. The irreversible decrease of viscosity in pure tin melt is discovered at 820 °С during heating. The similar anomaly with the following hysteresis of dynamic viscosity was fixed for binary and ternary alloys but at higher temperatures - 900 °С and 950 °С respectively. For all the systems it was shown that the alloys with eutectic compositions differ significantly in their electric and magnetic properties from hypo- and hypereutectic ones. Qualitative and quantitative metallographic analysis for Sn-3.8wt.%Ag-0.7wt.%Cu samples, heated low and above characteristic temperatures, showed the influence of melt overheating on crystallization kinetics.

  12. As, Bi, Hg, S, Sb, Sn and Te geochemistry of the J-M Reef, Stillwater Complex, Montana: constraints on the origin of PGE-enriched sulfides in layered intrusions

    USGS Publications Warehouse

    Zientek, M.L.; Fries, T.L.; Vian, R.W.

    1990-01-01

    The J-M Reef is an interval of disseminated sulfides in the Lower Banded series of the Stillwater Complex that is enriched in the platinum group elements (PGE). Palladium and Pt occur in solid solution in base-metal sulfides and as discrete PGE minerals. PGE minerals include sulfides, tellurides, arsenides, antimonides, bismuthides, and alloys with Fe, Sn, Hg, and Au. Several subpopulations can be delineated based on whole-rock chemical analyses for As, Bi, Cu, Hg, Pd, Pt, S, Sb and Te for samples collected from and adjacent to the J-M Reef. In general, samples from within the reef have higher Pt/Cu, Pd/Cu, Pd/Pt, Te/Bi and S/(Te+Bi) than those collected adjacent to the reef. Vertical compositional profiles through the reef suggest that Pd/Cu and Pt/Cu decrease systematically upsection from mineralized to barren rock. The majority of samples with elevated As, Sb and Hg occur adjacent to the reef, not within it, or in sulfide-poor rocks. Neither magma mixing nor fluid migration models readily explain why the minor quantities of sulfide minerals immediately adjacent to the sulfide-enriched layers that form the J-M Reef have different element ratios than the sulfide minerals that form the reef. If all the sulfides formed by exsolution during a magma mixing event and the modal proportion of sulfide now in the rocks are simply the result of mechanical processes that concentrated the sulfides into some layers and not others, then the composition of the sulfide would not be expected to be different. Models that rely upon ascending liquids or fluids are incompatible with the presence of sulfides that are not enriched in PGE immediately below or interlayered with the PGE-enriched sulfides layers. PGE-enriched postcumulus fluids should have reacted to the same extent with sulfides immediately outside the reef as within the reef. One explanation is that some of the sulfide minerals in the rocks outside the reef have a different origin than those that make up the reef. The

  13. Whisker Growth Behavior of Sn and Sn Alloy Lead-Free Finishes

    NASA Astrophysics Data System (ADS)

    Baated, Alongheng; Hamasaki, Kyoko; Kim, Sun Sik; Kim, Keun-Soo; Suganuma, Katsuaki

    2011-11-01

    Sn whisker growth behavior, over periods of time up to 10,080 h at room temperature, was examined for Sn and Sn-Cu, Sn-Ag, Sn-Bi, and Sn-Pb coatings electroplated on copper in 2 μm and 5 μm thicknesses to understand the effects of the alloying elements on whisker formation. Sn-Ag and Sn-Bi coatings were found to significantly suppress Sn whisker formation compared with the pure Sn coatings, whereas whisker growth was enhanced by Sn-Cu coatings. In addition, annealed Sn and Sn-Pb coatings were found to suppress Sn whisker formation, as is well known. Compared with the 2- μm-thick coatings, the 5- μm-thick coatings had high whisker resistance, except for the Sn-Cu coating. Whisker growth was correlated with coating crystal texture and its stability during storage, crystal grain microstructure, and the formation of intermetallic compounds at Sn grain boundaries and substrate-coating interfaces.

  14. Analytical performance of a lab-made concomitant metal analyzer to generate volatile species of Ag, Au, Cd, Cu, Ni, Sn and Zn using 8-hydroxyquinoline as a reaction media.

    PubMed

    Villanueva-Alonso, Julia; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2012-10-15

    This study evaluated the main parameters affecting Ag, Au, Cd, Cu, Ni, Sn and Zn vapor generation using a lab-made concomitant metal analyzer (CMA) as a reaction chamber and gas-liquid separator. The modifier used in the reaction media was 8-hydroxyquinoline, and Inductively-Coupled Plasma Optical Emission Spectrometry was used as detection technique. The performance of the lab-made concomitant analyzer was compared with the performance of a continuous flow gas-liquid separator and of a cyclonic spray chamber. Standards were prepared in acid media and included 1 mg L(-1) of Co as a catalyzer. The optimum concentrations of the reagents in the standards were: 450 mg L(-1) of 8-hydroxyquinoline and 0.4 M nitric acid. The optimum concentration of sodium borohydride to generate the vapors was 2.25% (w/v) (prepared in 0.4% (w/v) NaOH). The volatile species were swept from the CMA to the torch by an argon flow of 0.6 mL min(-1). The use of the CMA led to an improvement of the detection limits for some elements compared to conventional nebulization: 1.1 μg L(-1) for Ag, 7.0 μg L(-1) for Au and 4.3 μg L(-1) for Sn. The limit of detection for Cu was 1.4 μg L(-1) and for Ni 22.5 μg L(-1). The direct mixing of the reagents on the spray chamber was not effective for Cd and Zn; a deviation of the linearity was observed for these elements. PMID:23141310

  15. In-gas-cell laser ionization spectroscopy in the vicinity of 100Sn: Magnetic moments and mean-square charge radii of N=50-54 Ag

    NASA Astrophysics Data System (ADS)

    Ferrer, R.; Bree, N.; Cocolios, T. E.; Darby, I. G.; De Witte, H.; Dexters, W.; Diriken, J.; Elseviers, J.; Franchoo, S.; Huyse, M.; Kesteloot, N.; Kudryavtsev, Yu.; Pauwels, D.; Radulov, D.; Roger, T.; Savajols, H.; Van Duppen, P.; Venhart, M.

    2014-01-01

    In-gas-cell laser ionization spectroscopy studies on the neutron deficient 97-101Ag isotopes have been performed with the LISOL setup. Magnetic dipole moments and mean-square charge radii have been determined for the first time with the exception of 101Ag, which was found in good agreement with previous experimental values. The reported results allow tentatively assigning the spin of 97,99Ag to 9/2 and confirming the presence of an isomeric state in these two isotopes, whose collapsed hyperfine structure suggests a spin of 1/2 >. The effect of the N=50 shell closure is not only manifested in the magnetic moments but also in the evolution of the mean-square charge radii of the isotopes investigated, in accordance with the spherical droplet model predictions.

  16. Investigation of electrochemical migration on Sn-0.7Cu-0.3Ag-0.03P-0.005Ni solder alloy in HNO{sub 3} solution

    SciTech Connect

    Sarveswaran, C.; Othman, N. K.; Ali, M. Yusuf Tura; Ani, F. Che; Samsudin, Z.

    2015-09-25

    Current issue in lead-free solder in term of its reliability is still under investigation. This high impact research attempts to investigate the electrochemical migration (ECM) on Sn-0.7Cu-0.3Ag-0.03P-0.005Ni solder alloy by Water Drop Test (WDT) in different concentration of HNO{sub 3} solution. The concentration of HNO{sub 3} solution used in this research was 0.05, 0.10, 0.50 and 1M. Optical Microscope (OM), Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-Ray Analysis (EDX) were carried out in order to analysis the ECM behavior based on the growth of dendrite formation after WDT. In general, the results demonstrated that dendrite growth is faster in higher concentration compared with low concentration of HNO{sub 3}. The concentration of HNO{sub 3} solution used has a strong correlation with Mean-Time-To-Failure (MTTF). As the concentration of HNO{sub 3} increases, the MTTF value decreases. Based on the MTTF results the solder alloy in 1M HNO{sub 3} solution is most susceptible to ECM. SnO{sub 2} forms as a corrosion by-product in the samples proved by EDX analysis. The solder alloy poses a high reliability risk in microelectronic devices during operation in 1M HNO{sub 3} solution.

  17. Fiber-optic ammonia sensor using Ag/SnO(2) thin films: optimization of thickness of SnO(2) film using electric field distribution and reaction factor.

    PubMed

    Pathak, Anisha; Mishra, Satyendra K; Gupta, Banshi D

    2015-10-10

    A highly sensitive ammonia gas sensor exploiting the gas sensing characteristics of tin oxide (SnO2) has been reported. The methodology of the sensor is based on the phenomenon of surface plasmon resonance (SPR) with a fiber-optic probe consisting of coatings of silver as a plasmonic material and SnO2 as the sensing layer. The sensing principle relies on the change in refractive index of SnO2 upon its reaction with ammonia gas. The capability of the sensor has been tested for a 10 to 100 ppm concentration range of ammonia gas. To enhance the sensitivity, probes with different thicknesses of SnO2 have been fabricated and characterized for ammonia sensing. It has been found that at a particular thickness the sensitivity is highest. The reason for the highest sensitivity at a particular thickness has been evinced theoretically. The electromagnetic field distribution for the multilayer structure of the probe reveals the enhancement of the evanescent field at the tin oxide-ammonia gas interface, which in turn manifests the highest shift in resonance wavelength at a particular thickness. The selectivity of the probe has been tested for various gases, and it has been found to be most accurate for the sensing of ammonia. A sensor utilizing optical fiber, the SPR technique, and metal oxide as sensing element combines the advantages of a miniaturized probe, online monitoring, and remote sensing on one hand and stability, high sensitivity and selectivity, ruggedness, and low cost on the other. PMID:26479808

  18. Distribution of chemical elements in soils and stream sediments in the area of abandoned Sb-As-Tl Allchar mine, Republic of Macedonia.

    PubMed

    Bačeva, Katerina; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu; Makreski, Petre

    2014-08-01

    The aim of this study was to investigate the distribution of some toxic elements in topsoil and subsoil, focusing on the identification of natural and anthropogenic element sources in the small region of rare As-Sb-Tl mineralization outcrop and abandoned mine Allchar known for the highest natural concentration of Tl in soil worldwide. The samples of soil and sediments after total digestion were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Factor analysis (FA) was used to identify and characterize element associations. Six associations of elements were determined by the method of multivariate statistics: Rb-Ta-K-Nb-Ga-Sn-Ba-Bi-Li-Be-(La-Eu)-Hf-Zr-Zn-In-Pd-Ag-Pt-Mg; Tl-As-Sb-Hg; Te-S-Ag-Pt-Al-Sc-(Gd-Lu)-Y; Fe-Cu-V-Ge-Co-In; Pd-Zr-Hf-W-Be and Ni-Mn-Co-Cr-Mg. The purpose of the assessment was to determine the nature and extent of potential contamination as well as to broadly assess possible impacts to human health and the environment. The results from the analysis of the collected samples in the vicinity of the mine revealed that As and Tl elements have the highest median values. Higher median values for Sb are obviously as a result of the past mining activities and as a result of area surface phenomena in the past. PMID:24906071

  19. Effect of indium and antimony doping in SnS single crystals

    SciTech Connect

    Chaki, Sunil H. Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  20. Charged Defects-Induced Resistive Switching in Sb2Te3 Memristor

    NASA Astrophysics Data System (ADS)

    Zhang, J. J.; Liu, N.; Sun, H. J.; Yan, P.; Li, Y.; Zhong, S. J.; Xie, S.; Li, R. J.; Miao, X. S.

    2016-02-01

    Resistive switching (RS) characteristics of Ta/Sb2Te3/Ta and Ag/Sb2Te3/Ta memory devices have been investigated. The I- V curves show the bipolar RS at room temperature. We have demonstrated that the redistribution and migration of charged defects are responsible for the memristive switching. By using Ag electrode instead of Ta, more defects can be created near the Ag/Sb2Te3 interface, which is a feasible method to eliminate the electroforming process.

  1. Electronic and atomic structures of a Sn induced 3√{ 3} × 3√{ 3} superstructure on the Ag/Ge(111) √{ 3} ×√{ 3} surface

    NASA Astrophysics Data System (ADS)

    Sohail, Hafiz M.; Uhrberg, R. I. G.

    2016-02-01

    We have investigated sub-monolayer coverages of Sn on the Ag/Ge(111) √{ 3} ×√{ 3} surface. It was found that ≈ 0.45 monolayer (ML) resulted in a new, well-defined, reconstruction with a 3√{ 3} × 3√{ 3} periodicity. The periodic structure of the surface atoms was verified by low-energy electron diffraction and scanning tunneling microscopy. The electronic structure was studied in detail using angle-resolved photoelectron spectroscopy and core level spectroscopy at a temperature of 100 K. Several surface bands were identified and their dispersions are presented along the Γbar -Mbar -Γbar and Γbar -Kbar -Mbar high symmetry lines of the 3√{ 3} × 3√{ 3} surface Brillouin zone (SBZ). The 3√{ 3} × 3√{ 3} surface has a metallic character since there is a strong surface band crossing the Fermi level near Γbar points coinciding with Kbar points of the 1 × 1 SBZ. The Fermi contour of the metallic band showed a hexagonal shape in contrast to the circular shaped Fermi contour of the initial √{ 3} ×√{ 3} surface. Both empty and filled state STM images showed a hexagonal arrangement of protrusions with a local √{ 3} ×√{ 3} periodicity and a superimposed modulation of the apparent heights resulting in a 3√{ 3} × 3√{ 3} periodicity.

  2. Metallurgical characterization of experimental Ag-based soldering alloys

    PubMed Central

    Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros

    2014-01-01

    Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945

  3. The first example of a mixed valence ternary compound of silver with random distribution of Ag(I) and Ag(II) cations.

    PubMed

    Mazej, Zoran; Michałowski, Tomasz; Goreshnik, Evgeny A; Jagličić, Zvonko; Arčon, Iztok; Szydłowska, Jadwiga; Grochala, Wojciech

    2015-06-28

    The reaction between colourless AgSbF6 and sky-blue Ag(SbF6)2 (molar ratio 2 : 1) in gaseous HF at 323 K yields green Ag3(SbF6)4, a new mixed-valence ternary fluoride of silver. Unlike in all other Ag(I)/Ag(II) systems known to date, the Ag(+) and Ag(2+) cations are randomly distributed on a single 12b Wyckoff position at the 4̄ axis of the I4̄3d cell. Each silver forms four short (4 × 2.316(7) Å) and four long (4 × 2.764(6) Å) contacts with the neighbouring fluorine atoms. The valence bond sum analysis suggests that such coordination would correspond to a severely overbonded Ag(I) and strongly underbonded Ag(II). Thorough inspection of thermal ellipsoids of the fluorine atoms closest to Ag centres reveals their unusual shape, indicating that silver atoms must in fact have different local coordination spheres; this is not immediately apparent from the crystal structure due to static disorder of fluorine atoms. The Ag K-edge XANES analysis confirmed that the average oxidation state of silver is indeed close to +1⅓. The optical absorption spectra lack features typical of a metal thus pointing out to the semiconducting nature of Ag3(SbF6)4. Ag3(SbF6)4 is magnetically diluted and paramagnetic (μ(eff) = 1.9 μ(B)) down to 20 K with a very weak temperature independent paramagnetism. Below 20 K weak antiferromagnetism is observed (Θ = -4.1 K). Replacement of Ag(I) with potassium gives K(I)2Ag(II)(SbF6)4 which is isostructural to Ag(I)2Ag(II)(SbF6)4. Ag3(SbF6)4 is a genuine mixed-valence Ag(I)/Ag(II) compound, i.e. Robin and Day Class I system (localized valences), despite Ag(I) and Ag(II) adopting the same crystallographic position. PMID:25815902

  4. Efficient planar Sb2S3 solar cells using a low-temperature solution-processed tin oxide electron conductor.

    PubMed

    Lei, Hongwei; Yang, Guang; Guo, Yaxiong; Xiong, Liangbin; Qin, Pingli; Dai, Xin; Zheng, Xiaolu; Ke, Weijun; Tao, Hong; Chen, Zhao; Li, Borui; Fang, Guojia

    2016-06-28

    Efficient planar antimony sulfide (Sb2S3) heterojunction solar cells have been made using chemical bath deposited (CBD) Sb2S3 as the absorber, low-temperature solution-processed tin oxide (SnO2) as the electron conductor and poly (3-hexylthiophene) (P3HT) as the hole conductor. A solar conversion efficiency of 2.8% was obtained at 1 sun illumination using a planar device consisting of F-doped SnO2 substrate/SnO2/CBD-Sb2S3/P3HT/Au, whereas the solar cells based on a titanium dioxide (TiO2) electron conductor exhibited a power conversion efficiency of 1.9%. Compared with conventional Sb2S3 sensitized solar cells, the high-temperature processed mesoscopic TiO2 scaffold is no longer needed. More importantly, a low-temperature solution-processed SnO2 layer was introduced for electron transportation to substitute the high-temperature sintered dense blocking TiO2 layer. Our planar solar cells not only have simple geometry with fewer steps to fabricate but also show enhanced performance. The higher efficiency of planar Sb2S3 solar cell devices based on a SnO2 electron conductor is attributed to their high transparency, uniform surface, efficient electron transport properties of SnO2, suitable energy band alignment, and reduced recombination at the interface of SnO2/Sb2S3. PMID:27264190

  5. Shell model calculation for Te and Sn isotopes in the vicinity of {sup 100}Sn

    SciTech Connect

    Yakhelef, A.; Bouldjedri, A.

    2012-06-27

    New Shell Model calculations for even-even isotopes {sup 104-108}Sn and {sup 106,108}Te, in the vicinity of {sup 100}Sn have been performed. The calculations have been carried out using the windows version of NuShell-MSU. The two body matrix elements TBMEs of the effective interaction between valence nucleons are obtained from the renormalized two body effective interaction based on G-matrix derived from the CD-bonn nucleon-nucleon potential. The single particle energies of the proton and neutron valence spaces orbitals are defined from the available spectra of lightest odd isotopes of Sb and Sn respectively.

  6. Theoretical electron scattering amplitudes and spin polarizations. Electron energies 100 to 1500 eV Part II. Be, N, O, Al, Cl, V, Co, Cu, As, Nb, Ag, Sn, Sb, I, and Ta targets

    NASA Astrophysics Data System (ADS)

    Wildhaber, M. L.; Wikle, C. K.; Anderson, C. J.; Franz, K. J.; Moran, E. H.; Dey, R.

    2012-12-01

    Recent decades have brought substantive changes in land use and climate across the earth, prompting a need to think of population and community ecology not as a static entity, but as a dynamic process. Increasingly there is evidence of ecological changes due to climate change. Although much of this evidence comes from ground-truth observations of biogeographic data, there is increasing reliance on models that relate climate variables to biological systems. Such models can then be used to explore potential changes to population and community level ecological systems in response to climate scenarios as obtained from global climate models (GCMs). A key issue associated with modeling ecosystem response to climate is GCM downscaling to regional and local ecological/biological response models that can be used in vulnerability and risk assessments of the potential effects of climate change. The need is for an explicit means for scaling results up or down multiple hierarchical levels and an effective assessment of the level of uncertainty surrounding current knowledge, data, and data collection methods with these goals identified as in need of acceleration in the U.S. Climate Change Science Program FY2009 Implementation Priorities. In the end, such work should provide the information needed to develop adaptation and mitigation methodologies to minimize the effects of directional and nonlinear climate change on the Nation's land, water, ecosystems, and biological populations. We are working to develop an approach that includes multi-scale and hierarchical Bayesian modeling of Missouri River sturgeon population dynamics. Statistical linkages are defined to quantify implications of climate on fish populations of the Missouri River ecosystem. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. The model must include linkages between climate and habitat, and between habitat and population. A key advantage of the hierarchical approach used in this study is that it incorporates various sources of observations and includes established scientific knowledge, and associated uncertainties. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. The predictive modeling system being developed will be a powerful tool for evaluating management options for coping with global change consequences and assessing uncertainty of those evaluations. Specifically for the endangered pallid sturgeon (Scaphirhynchus albus), we are already able to assess potential effects of any climate scenario on growth and population size distribution. Future models will incorporate survival and reproduction. Ultimately, these models provide guidance for successful recovery and conservation of the pallid sturgeon. Here we present a basic outline of the approach we are developing and a simple pallid sturgeon example to demonstrate how multiple scales and parameter uncertainty are incorporated.

  7. Characterization of silver photodiffusion in Ge{sub 8}Sb{sub 2}Te{sub 11} thin films

    SciTech Connect

    Kumar, Sandeep; Singh, D.; Sandhu, S.; Thangaraj, R.

    2015-06-24

    Silver-doped amorphous Ge{sub 8}Sb{sub 2}Te{sub 11} thin films have been prepared by photodiffusion at room-temperature; the Ge{sub 8}Sb{sub 2}Te{sub 11}/Ag bilayer was deposited by vacuum thermal evaporation. Photodiffusion of Ag into the amorphous Ge{sub 8}Sb{sub 2}Te{sub 11} thin films has been carried out by illuminating the prepared Ge{sub 8}Sb{sub 2}Te{sub 11}/Ag bilayer with halogen lamp. The photodiffused silver depth profile was traced by means of time of flight secondary ion mass spectroscopy. The film remains amorphous after Ag photodiffusion. The crystallization temperature of the films was evaluated by temperature dependent sheet resistance measurement. The amorphous nature and crystalline phases of the films have been identified by using X-ray diffraction.

  8. ([M(NH{sub 3}){sub 6}][Ag{sub 4}M{sub 4}Sn{sub 3}Se{sub 13}]){sub ∞} (M=Zn, Mn): Three-dimensional chalcogenide frameworks constructed from quaternary metal selenide clusters with two different transition metals

    SciTech Connect

    Xiong, Wei-Wei; Miao, Jianwei; Li, Pei-Zhou; Zhao, Yanli; Liu, Bin; Zhang, Qichun

    2014-10-15

    Herein we report solvothermal syntheses of two new three-dimensional chalcogenide frameworks ([M(NH{sub 3}){sub 6}][Ag{sub 4}M{sub 4}Sn{sub 3}Se{sub 13}]){sub n} (M=Zn (1), Mn (2)), which consist of quaternary metal selenide clusters with two different transition metals. The compounds represent the first Ag–Zn/Mn–Sn–Se based quaternary anionic frameworks. The optical studies show that the band gaps for 1 and 2 are 2.09 eV and 1.71 eV, respectively. Moreover, the photoelectrochemical study indicates that compound 1 displays n-type semiconducting behaviour and is photoactive under visible light illumination (λ>400 nm). - Graphical abstract: Two 3D framework selenides, [M(NH{sub 3}){sub 6}][Ag{sub 4}M{sub 4}Sn{sub 3}Se{sub 13}] (M=Zn (1), Mn (2)), constructed from quaternary metal selenide clusters, have been solvothermally synthesized and are photoactive under visible light illumination. - Highlights: • Two new three-dimensional selenide frameworks. • Quaternary metal selenide clusters with two different transition metals. • Photoelectrochemical study.

  9. Effect of antimony doping on the structural, optical and electrical properties of SnO2 thin films prepared by spray ultrasonic

    NASA Astrophysics Data System (ADS)

    Rahal, Achour; Benhaoua, Atmane; Bouzidi, Chaker; Benhaoua, Boubaker; Gasmi, Brahim

    2014-12-01

    Antimony doped tin oxide (ATO) or (SnO2:Sb) thin films have been prepared by spray ultrasonic on heated glass substrates at 480 °C for 3 min as time deposition. The dependence of structural, optical and electrical properties of SnO2:Sb films on the Sb concentration (0-1 wt.%), is investigated. X-ray diffraction pattern reveals the presence of cassiterite structure with (2 1 1) as preferred orientation for ATO films with presence of other orientations. Focused analysis, on (2 1 1) peaks, indicated that the interplanar spacing of SnO2 (2 1 1) increases, after Sb doping until 0.8 wt.% level, due to the substitution of some Sn+4 by some Sb in Sb+3 state, (Sbsub), into the SnO2 lattice, causing distortion and generated oxygen vacancies. Good agreement has been found between AFM topographical images of the SnO2:Sb samples and XRD grain size measurements. The crystallite size varies from 24.93 to 33.25 nm and was affected by Sb concentration whereas the lattice parameters (a and c) are found to increase with Sb doping concentration until 0.8 wt.% level and then decrease. Transparency in the visible range was around ∼80%. At Sb doping level lower than 0.8 wt.%, all the envelope of transmission T (λ) curves become contracted and shift toward lower wavelength revealing the effect of plasma carrier concentration in absorbing light. The optical band gap (Eg) increases from 3.65 to 3.92 eV and then decreases. Minimum resistance sheet (Rsh) and maximum carrier concentration n achieved for SnO2:Sb thin films have been found to be 31.07 Ω cm2 and 11.8 10+19 cm-3 at 0.8 wt.% Sb doping level.

  10. Liquidus projection of the Ag-Ba-Ge system and melting points of clathrate type-I compounds

    SciTech Connect

    Zeiringer, I.; Grytsiv, A.; Broz, P.

    2012-12-15

    The liquidus and solidus projection has been constructed for the Ag-Ba-Ge system up to 33.3 at% Ba, using electron micro probe analysis (EPMA), X-ray powder diffraction (XRD) and differential thermal analysis (DSC/DTA). Eight different primary crystallization regions were found: (Ge), Ba{sub 8}Ag{sub x}Ge{sub 46-x-y}{open_square}{sub y} ({kappa}{sub I}) ({open_square} is a vacancy), Ba{sub 6}Ag{sub x}Ge{sub 25-x} ({kappa}{sub Ix}), BaGe{sub 2}, Ba(Ag{sub 1-x}Ge{sub x}){sub 2} ({tau}{sub 1}), BaAg{sub 2-x}Ge{sub 2+x} ({tau}{sub 2}) BaAg{sub 5} and (Ag). The ternary invariant reactions have been determined for the region investigated and are the basis for a Schulz-Scheil diagram. The second part of this work provides a comprehensive compilation of melting points of ternary A{sub 8}T{sub x}M{sub 46-x} and quaternary (A=Sr, Ba, Eu; T=Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga; M=Si, Ge, Sn) clathrate type-I compounds and decomposition temperatures of inverse clathrate type-I Ge{sub 38}{l_brace}P,As,Sb{r_brace}{sub 8}{l_brace}Cl,Br,I{r_brace}{sub 8}, Si{sub 46-x}P{sub x}Te{sub y} and tin based compounds. - Graphical Abstract: Partial liquidus projection of the Ag-Ba-Ge system. Highlights: Black-Right-Pointing-Pointer The liquidus and solidus projection has been constructed for the Ag-Ba-Ge system up to 33.33 at% Ba. Black-Right-Pointing-Pointer Eight different primary crystallization fields have been found. Black-Right-Pointing-Pointer All the ternary compounds form congruently from the melt. Black-Right-Pointing-Pointer The ternary invariant reactions have been determined and are the basis for a Schulz-Scheil diagram.

  11. Structural analysis of quaternary Se85-xSb10In5Agx bulk glassy alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Rita; Sharma, Shaveta; Kumar, Praveen; Chander, Ravi; Thangaraj, R.; Mian, M.

    2015-08-01

    The physical properties of chalcogenide semiconductor have attracted much attention recently due to their applications in optical recording media and inorganic resist due to photo induced structural transformations observed in these materials. The bulk samples of Se85-xSb10In5Agx system are prepared by melt-quenching technique. X-ray diffraction technique and RAMAN spectroscopy have been used to study the role of Ag additive on the amorphous/crystalline nature and molecular structure of Se85Sb10In5 glassy alloys. The phases Sb2Se3, In-Sb and In2Se3 has been observed by X-ray diffraction. The formation of AgInSe2 phase along with the enhancement in intensity has been observed with the Ag addition.Three bands observed by raman spectroscopy for Se85Sb10In5 are at 70 cm-1, 212cm-1 and 252cm-1. The formation of small bands up to wavenumber 188cm-1 and shifting in second band along with the increase in intensity up to sample x=5 has been observed with the Ag addition. The enhancement in intensity in third band with Ag content has been observed.

  12. Use of thermodynamic data to calculate surface tension and viscosity of Sn-based soldering alloy systems

    NASA Astrophysics Data System (ADS)

    Lee, Jong Ho; Lee, Dong Nyung

    2001-09-01

    A thermodynamic database for the Pb-free soldering alloy systems, which include Sn, Ag, Cu, Bi, and In, has been made using the CALPHAD method. The resulting thermodynamic properties of the Sn-based binary alloy systems were used to determine the surface tensions and viscosities. The surface tensions were calculated using Butler’s monolayer model and the viscosities by Hirai’s and Seetharaman’s models. Butler’s model was also used to determine the surface active element. The results for binary systems were extended to the Sn-based ternary systems (Sn-Ag-Cu, Sn-Ag-Bi). The surface tensions of commercial eutectic Sn-Pb and Sn-Pb-Ag solder alloys were measured by the sessile drop method. The measured values and other researchers’ results were compared with the calculated data.

  13. Diameter-Controlled and Surface-Modified Sb2Se3 Nanowires and Their Photodetector Performance

    NASA Astrophysics Data System (ADS)

    Choi, Donghyeuk; Jang, Yamujin; Lee, Jeehee; Jeong, Gyoung Hwa; Whang, Dongmok; Hwang, Sung Woo; Cho, Kyung-Sang; Kim, Sang-Wook

    2014-10-01

    Due to its direct and narrow band gap, high chemical stability, and high Seebeck coefficient (1800 μVK-1), antimony selenide (Sb2Se3) has many potential applications, such as in photovoltaic devices, thermoelectric devices, and solar cells. However, research on the Sb2Se3 materials has been limited by its low electrical conductivity in bulk state. To overcome this challenge, we suggest two kinds of nano-structured materials, namely, the diameter-controlled Sb2Se3 nanowires and Ag2Se-decorated Sb2Se3 nanowires. The photocurrent response of diameter-controlled Sb2Se3, which depends on electrical conductivity of the material, increases non-linearly with the diameter of the nanowire. The photosensitivity factor (K = Ilight/Idark) of the intrinsic Sb2Se3 nanowire with diameter of 80-100 nm is highly improved (K = 75). Additionally, the measurement was conducted using a single nanowire under low source-drain voltage. The dark- and photocurrent of the Ag2Se-decorated Sb2Se3 nanowire further increased, as compared to that of the intrinsic Sb2Se3 nanowire, to approximately 50 and 7 times, respectively.

  14. Diameter-Controlled and Surface-Modified Sb2Se3 Nanowires and Their Photodetector Performance

    PubMed Central

    Choi, Donghyeuk; Jang, Yamujin; Lee, JeeHee; Jeong, Gyoung Hwa; Whang, Dongmok; Hwang, Sung Woo; Cho, Kyung-Sang; Kim, Sang-Wook

    2014-01-01

    Due to its direct and narrow band gap, high chemical stability, and high Seebeck coefficient (1800 μVK−1), antimony selenide (Sb2Se3) has many potential applications, such as in photovoltaic devices, thermoelectric devices, and solar cells. However, research on the Sb2Se3 materials has been limited by its low electrical conductivity in bulk state. To overcome this challenge, we suggest two kinds of nano-structured materials, namely, the diameter-controlled Sb2Se3 nanowires and Ag2Se-decorated Sb2Se3 nanowires. The photocurrent response of diameter-controlled Sb2Se3, which depends on electrical conductivity of the material, increases non-linearly with the diameter of the nanowire. The photosensitivity factor (K = Ilight/Idark) of the intrinsic Sb2Se3 nanowire with diameter of 80–100 nm is highly improved (K = 75). Additionally, the measurement was conducted using a single nanowire under low source-drain voltage. The dark- and photocurrent of the Ag2Se-decorated Sb2Se3 nanowire further increased, as compared to that of the intrinsic Sb2Se3 nanowire, to approximately 50 and 7 times, respectively. PMID:25336056

  15. NiSn Half-Heusler Alloy

    NASA Astrophysics Data System (ADS)

    Appel, O.; Gelbstein, Y.

    2014-06-01

    We deal here with Sb and Bi doping effects of the n-type half-Heusler (HH) Ti0.3Zr0.35Hf0.35NiSn alloy on the measured thermoelectric properties. To date, the thermoelectric effects upon Bi doping on the Sn site of HH alloys have rarely been reported, while Sb has been widely used as a donor dopant. A comparison between the measured transport properties following arc melting and spark plasma sintering of both Bi- and Sb-doped samples indicates a much stronger doping effect upon Sb doping, an effect which was explained thermodynamically. Due to similar lattice thermal conductivity values obtained for the various doped samples, synthesized in a similar experimental route, no practical variations in the thermoelectric figure of merit values were observed between the various investigated samples, an effect which was attributed to compensation between the power factor and electrical thermal conductivity values regardless of the various investigated dopants and doping levels.

  16. In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries.

    PubMed

    Wan, Fang; Guo, Jin-Zhi; Zhang, Xiao-Hua; Zhang, Jing-Ping; Sun, Hai-Zhu; Yan, Qingyu; Han, Dong-Xue; Niu, Li; Wu, Xing-Long

    2016-03-30

    Graphene incorporation should be one effective strategy to develop advanced electrode materials for a sodium-ion battery (SIB). Herein, the micro/nanostructural Sb/graphene composite (Sb-O-G) is successfully prepared with the uniform Sb nanospheres (∼100 nm) bound on the graphene via oxygen bonds. It is revealed that the in-situ-constructed oxygen bonds play a significant role on enhancing Na-storage properties, especially the ultrafast charge/discharge capability. The oxygen-bond-enhanced Sb-O-G composite can deliver a high capacity of 220 mAh/g at an ultrahigh current density of 12 A/g, which is obviously superior to the similar Sb/G composite (130 mAh/g at 10 A/g) just without Sb-O-C bonds. It also exhibits the highest Na-storage capacity compared to Sb/G and pure Sb nanoparticles as well as the best cycling performance. More importantly, this Sb-O-G anode achieves ultrafast (120 C) energy storage in SIB full cells, which have already been shown to power a 26-bulb array and calculator. All of these superior performances originate from the structural stability of Sb-O-C bonds during Na uptake/release, which has been verified by ex situ X-ray photoelectron spectroscopies and infrared spectroscopies. PMID:26960386

  17. Zr5Sb3-first Superconductor in the Mn5Si3-type system

    NASA Astrophysics Data System (ADS)

    Lv, Bing; Zhu, X. Y.; Lorenz, B.; Wei, F. Y.; Xue, Y. Y.; Yin, Z. P.; Kotliar, G.; Chu, C. W.

    2014-03-01

    Systematic exploration for superconductivity in the Zr5X3 (x =Sb, Sn, Ge, Ga, and Al) system have been carried out, and we report the discovery of superconductivity at 2.3 K in Zr5Sb3, the first superconducting member in the large compound family of the Mn5Si3-structure type. Transport, magnetic, and calorimetric measurements clearly demonstrate the bulk superconductivity for the Zr5Sb3 and band structure calculations suggest it to be a possible phonon-mediated BCS superconductor, with a relatively large density of states at the Fermi level associated with the d-electrons of Zr and substantially larger electron-phonon coupling compared to the Sn counterpart compound Zr5Sn3. Detailed doping studies have shown that superconductivity in Zr5Sb3 is rather robust with Hf- and Y-substitution of Zr, but suppressed by Ti-substitution. It is also suppressed by interstitial filling in Zr5Sb3Z by Z = Sb, C, or O.

  18. NbFeSb based p-type half-Heusler for power generation applications

    NASA Astrophysics Data System (ADS)

    Joshi, Giri; He, Ran; Engber, Michael; Samsonidze, Georgy; Pantha, Tej; Dahal, Ekraj; Dahal, Keshab; Yang, Jian; Lan, Yucheng; Kozinsky, Boris; Ren, Zhifeng

    2015-03-01

    We report a peak dimensionless figure-of-merit (ZT) of ~1 at 700 oC in nanostructured p-type Nb0.6Ti0.4FeSb0.95Sn0.05composition. Even though the power factor of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition is improved by 25% in comparison to the previously reported p-type Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2, the ZT value is not increased due to a higher thermal conductivity. However, the higher power factor of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition led to a 15% increase in power output of a thermoelectric device in comparison to a device made from the previous best material Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. The n-type material used to make the unicouple device is the best reported nanostructured Hf0.25Zr0.75NiSn0.99Sb0.01 composition with the lowest hafnium (Hf) content. Both the p- and n-type nanostructured samples are prepared by ball milling the arc melted ingot and hot pressing the finely ground powders. Moreover, the raw material cost of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition is more than six times lower compared to the cost of the previous best p-type Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. This cost reduction is crucial for these materials to be used in large-scale quantities for vehicle and industrial waste heat recovery applications. DOE:DE-EE0004840.

  19. Medium-spin structure of single valence-proton nucleus {sup 133}Sb

    SciTech Connect

    Urban, W.; Kurcewicz, W.; Korgul, A.; Daly, P. J.; Bhattacharyya, P.; Zhang, C. T.; Durell, J. L.; Leddy, M. J.; Jones, M. A.; Phillips, W. R.

    2000-08-01

    Excited states in the nucleus {sup 133}Sb, populated in spontaneous fission of {sup 248}Cm, were studied with EUROGAM2. Medium-spin structure, described as the {nu}(f{sub 7/2}h{sub 11/2}{sup -1}) multiplet of the {sup 132}Sn core coupled to the odd proton in the g{sub 7/2} orbital, has been identified in this nucleus. Levels corresponding to the octupole excitations of the {sup 132}Sn core were also identified. Some uncertainties concerning isomeric decays in {sup 133}Sb, observed in previous works, have been resolved. (c) 2000 The American Physical Society.

  20. Realizing the full potential of insertion anodes for Mg-ion batteries through the nanostructuring of Sn.

    PubMed

    Parent, Lucas R; Cheng, Yingwen; Sushko, Peter V; Shao, Yuyan; Liu, Jun; Wang, Chong-Min; Browning, Nigel D

    2015-02-11

    Magnesium is of great interest as a replacement for lithium in next-generation ion-transfer batteries but Mg-metal anodes currently face critical challenges related to the formation of passivating layers during Mg-plating/stripping and anode-electrolyte-cathode incompatibilities. Alternative anode materials have the potential to greatly extend the spectrum of suitable electrolyte chemistries but must be systematically tailored for effective Mg(2+) storage. Using analytical (scanning) transmission electron microscopy ((S)TEM) and ab initio modeling, we have investigated Mg(2+) insertion and extraction mechanisms and transformation processes in β-SnSb nanoparticles (NPs), a promising Mg-alloying anode material. During the first several charge-discharge cycles (conditioning), the β-SnSb particles irreversibly transform into a porous network of pure-Sn and Sb-rich subparticles, as Mg ions replace Sn atoms in the SnSb lattice. After electrochemical conditioning, small Sn particles/grains (<33 ± 20 nm) exhibit highly reversible Mg-storage, while the Sb-rich domains suffer substantial Mg trapping and contribute little to the system performance. This result strongly indicates that pure Sn can act as a high-capacity Mg-insertion anode as theoretically predicted, but that its performance is strongly size-dependent, and stable nanoscale Sn morphologies (<40 nm) are needed for superior, reversible Mg-storage and fast system kinetics. PMID:25531653

  1. Mass Measurement of {sup 100}Sn

    SciTech Connect

    Chartier, M.; Auger, G.; Mittig, W.; Lepine-Szily, A.; Fifield, L.K.; Casandjian, J.M.; Chabert, M.; Ferme, J.; Gillibert, A.; Lewitowicz, M.; Mac Cormick, M.; Moscatello, M.H.; Odland, O.H.; Orr, N.A.; Politi, G.; Spitaels, C.; Villari, A.C.

    1996-09-01

    Secondary ions of {sup 100}Ag, {sup 100}Cd, {sup 100}In, and {sup 100}Sn were produced via the fusion-evaporation reaction {sup 50}Cr+{sup 58}Ni at an energy of 51MeV/nucleon, and were accelerated simultaneously in the second cyclotron of GANIL. About 10 counts were observed from the production and acceleration of {sup 100}Sn{sup 22+}. The masses of {sup 100}Cd, {sup 100}In, and {sup 100}Sn were measured with respect to {sup 100}Ag using the GANIL cyclotron, with precisions of 2{times}10{sup {minus}6}, 3{times}10{sup {minus}6}, and 10{sup {minus}5}, respectively. {copyright} {ital 1996 The American Physical Society.}

  2. Decay properties of high-spin isomers and other structures in {sup 121}Sb and {sup 123}Sb

    SciTech Connect

    Watanabe, H.; Lane, G. J.; Dracoulis, G. D.; Kibedi, T.; Nieminen, P.; Hughes, R. O.; Byrne, A. P.; Kondev, F. G.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Seweryniak, D.; Zhu, S.; Chowdhury, P.; Moon, C.-B.

    2009-02-15

    High-spin states populated in the decay of microsecond isomers in the transitional nuclei {sup 121}Sb and {sup 123}Sb have been investigated in detail in several experiments using {gamma}-ray and electron spectroscopy. The nuclei were formed using multinucleon transfer and fusion-fission reactions with {sup 136}Xe beams and also using the {sup 120}Sn({sup 7}Li,{alpha}2n){sup 121}Sb and {sup 122}Sn({sup 7}Li,{alpha}2n){sup 123}Sb incomplete-fusion reactions. Isomeric half-lives ranging from several nanoseconds to a few hundred microseconds were determined by means of conventional decay curve analyses, whereas very short-lived isomers (T{sub 1/2}{approx}1 ns) were identified using the generalized centroid-shift method. A number of new transitions were observed, including a branch through spherical states from the 19/2{sup +} member of the 9/2{sup +} deformed band in {sup 121}Sb, in competition with the main decay path through the rotational band. This is attributed to mixing between the 19/2{sup +} band member and a 19/2{sup +} spherical state. Both levels are predicted to coincide approximately in energy in {sup 121}Sb. The fact that a 25/2{sup +} isomer occurs for A=121 and the lighter isotopes, while a 23/2{sup +} isomer is observed for A=123-131 is explained through a multistate mixing calculation, taking into account the gradual shift of the 2d{sub 5/2} and 1g{sub 7/2} proton orbitals and the change in proton-neutron effective interactions from an attractive particle-particle type in the lower part of the shell to a repulsive particle-hole type with increasing the neutron number toward the N=82 shell closure. The observed enhancement of the B(E2;19/2{sup -}{yields}15/2{sup -}) values in {sup 121}Sb and {sup 123}Sb over the B(E2;7{sup -}{yields}5{sup -}) values in the corresponding Sn cores is discussed in terms of configuration mixing between spherical and deformed states.

  3. Precision mass measurements beyond 132Sn: anomalous behavior of odd-even staggering of binding energies.

    PubMed

    Hakala, J; Dobaczewski, J; Gorelov, D; Eronen, T; Jokinen, A; Kankainen, A; Kolhinen, V S; Kortelainen, M; Moore, I D; Penttilä, H; Rinta-Antila, S; Rissanen, J; Saastamoinen, A; Sonnenschein, V; Äystö, J

    2012-07-20

    Atomic masses of the neutron-rich isotopes (121-128)Cd, (129,131)In, (130-135)Sn, (131-136)Sb, and (132-140)Te have been measured with high precision (10 ppb) using the Penning-trap mass spectrometer JYFLTRAP. Among these, the masses of four r-process nuclei (135)Sn, (136)Sb, and (139,140)Te were measured for the first time. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across N = 82 for Sn, with a Z dependence that is unexplainable by the current theoretical models. PMID:22861839

  4. Enthalpies of mixing of liquid systems for lead free soldering: Co–Sb–Sn

    PubMed Central

    Elmahfoudi, A.; Sabbar, A.; Flandorfer, H.

    2012-01-01

    The partial and integral enthalpy of mixing of molten ternary Co–Sb–Sn alloys was determined performing high temperature drop calorimetry in a large compositional range at 1273 K. Measurements have been done along five sections, xSb/xSn ≈ 1:1, xSb/xSn ≈ 1:3, xSb/xSn ≈ 3:1, xCo/xSn ≈ 1:4, and xCo/xSb ≈ 1:5. Additionally, binary alloys of the constituent systems Co–Sb and Co–Sn were investigated at the same temperature. All the binary data were evaluated by means of a standard Redlich–Kister polynomial fit whereas ternary data were fitted on the basis of an extended Redlich–Kister–Muggianu model for substitutional solutions. An iso-enthalpy plot of the ternary system was constructed. In addition, the extrapolation Model of Toop was applied and compared to our data. PMID:27087752

  5. Theoretical studies on the bonding and electron structures of a [Au3Sb6](3-) complex and its oligomers.

    PubMed

    Li, Wan-Lu; Xu, Cong-Qiao; Hu, Shu-Xian; Li, Jun

    2016-08-01

    Recently an all-metal aromatic sandwich compound of a [Sb3Au3Sb3](3-) ion has been synthesized and characterized experimentally, which indicates that there might exist a variety of stable all-metal sandwich complexes. The intralayer and interlayer chemical bonding interaction in this system plays significant roles in their stability, chemical properties and functionalities. Here we report a systematic theoretical study on the geometries, electronic structures, and chemical bonding of the [Sb3Au3Sb3](3-) ion and its congeners of [X3Au3X3](3-) (X = N, P, As, Sb, Bi, Uup) as well as [X3M3X3](3-) (M, X = Cu, As; Ag, Bi; Au, Sb; Rg, Uup) to understand the special stabilities of these species. Additional studies are also performed on the oligomers [Sb3(Au3Sb3)n](3-) (n = 1-4) to explore whether the sandwich compound can form stable extended systems. Through extensive theoretical analyses, we have shown that among the [Au3X6](3-) (X = N, P, As, Sb, Bi, Uup) species, [Sb3Au3Sb3](3-) is most stable due to superb matching of Sb3 and Au3 in both geometric size and fragment orbital energies. The significant stability of the [Au3Sb6](3-) ion is determined by the interlayer (p-d-p)σ interactions between the vertical Au 5d6s hybrid orbitals of Au3 and Sb 5pπ orbitals of the Sb3 rings. Each Sb3 ring demonstrates unique σ aromaticity, which remains when the complex is extended to oligomers. The results suggest that it is likely that there might exist other stable [ApMpAp](x-) (M = transition metals, A = main group elements, p = 3, 4, 5, …) sandwich ions and oligomers. PMID:27010416

  6. Synthesis of chelating diamido Sn(IV) compounds from oxidation of Sn(II) and directly from Sn(IV) precursors.

    PubMed

    Mansell, S M; Russell, C A; Wass, D F

    2015-06-01

    Three dimethyltindiamides containing chelating diamide ligands were synthesised from the reaction of the dilithiated diamine and Me2SnCl2; [SnMe2(L1)] 1 (L1 = κ(2)-N(Dipp)C2H4N(Dipp)), [SnMe2(L2)] 2 (L2 = κ(2)-N(Dipp)C3H6N(Dipp)) and [SnMe2(L3)] 3 (L3 = κ(2)-N(Dipp)SiPh2N(Dipp)), Dipp = 2,6-(i)Pr2C6H3. Reaction of (L2)H2 with SnCl4 and NEt3 led to the formation of the diamidotin dichloride [SnCl2(L2)] 4 whereas reaction of (L1)H2 with SnCl4 and NEt3, or [Sn(L1)] with SnCl4, led to the exclusive formation of the amidotin trichloride [SnCl3{κ(2)-DippN(H)C2H4N(Dipp)}] 5. Reactions of [Sn(L1)] with sulfur and selenium formed [{Sn(L1)(μ-E)}2] (E = S 10 and Se )11. MeI reacted with N-heterocyclic stannylenes to generate the Sn(iv) addition products [Sn(Me)I(L1)] 12, [Sn(Me)I(L2)] 13, [Sn(Me)I(L3)] 14 and [Sn(Me)I(L4)] 15 (L4 = κ(3)-N(Dipp)C2H4OC2H4N(Dipp)), and subsequent reaction with AgOTf (OTf = OSO2CF3) generated the corresponding Sn(iv) triflates [Sn(Me)OTf(L1)] 16, [Sn(Me)OTf(L2)] 17 and [Sn(Me)OTf(L4)] 19 with [Sn(Me)OTf(L3)] 18 formed only as a mixture with unidentified by-products. All of the compounds were characterised by single crystal X-ray diffraction. PMID:25928403

  7. Probabilistic distribution coefficients (K(d)s) in freshwater for radioisotopes of Ag, Am, Ba, Be, Ce, Co, Cs, I, Mn, Pu, Ra, Ru, Sb, Sr and Th: implications for uncertainty analysis of models simulating the transport of radionuclides in rivers.

    PubMed

    Ciffroy, P; Durrieu, G; Garnier, J-M

    2009-09-01

    The objective of this study was to provide operational probability density functions (PDFs) for distribution coefficients (K(d)s) in freshwater, representing the partition of radionuclides between the particulate and the dissolved phases respectively. Accordingly, the K(d) variability should be considered in uncertainty analysis of transport and risk assessment models. The construction of PDFs for 8 elements (Ag, Am, Co, Cs, I, Mn, Pu and Sr) was established according to the procedure already tested in Durrieu et al. [2006. A weighted bootstrap method for the determination of probability density functions of freshwater distribution coefficients (K(d)s) of Co, Cs, Sr and I radioisotopes. Chemosphere 65 (8), 1308-1320]: (i) construction of a comprehensive database where K(d)s values obtained under various environments and parametric conditions were collected; (ii) scoring procedure to account for the 'quality' of each datapoint (according to several criteria such as the presentation of data (e.g. raw data vs mean with or without replicates), contact time, pH, solid-to-liquid ratio, expert judgement) in the construction of the PDF; (iii) weighted bootstrapping procedure to build the PDFs, in order to give more importance to the most relevant datapoints. Two types of PDFs were constructed: (i) non-conditional, usable when no knowledge about the site of concern is available; (ii) conditional PDFs corresponding to a limited range of parameters such as pH or contact time; conditional PDFs can thus be used when some parametric information is known on the site under study. For 7 other radionuclides (Ba, Be, Ce, Ra, Ru, Sb and Th), a simplified procedure was adopted because of the scarcity of data: only non-conditional PDFs were built, without incorporating a scoring procedure. PMID:19114288

  8. Solidification of InSb-GaSb alloy and InSb with vibration

    NASA Technical Reports Server (NTRS)

    Yuan, Weijun

    1992-01-01

    The objective of this project is to determine the influence of vibration on the composition homogeneity and microstructure of alloy semiconductors solidified with the Vertical Bridgman-Stockbarger (VBS) technique. InSb-GaSb and InSb were directionally solidified in a VBS apparatus with axial vibration of the ampoule.

  9. Realizing the Full Potential of Insertion Anodes for Mg-ion Batteries Through the Nano-Structuring of Sn

    SciTech Connect

    Parent, Lucas R.; Cheng, Yingwen; Sushko, Petr; Shao, Yuyan; Liu, Jun; Wang, Chong M.; Browning, Nigel D.

    2015-02-11

    For next-generation rechargeable batteries, magnesium is of great interest as an alternative to Lithium due to its relative abundance, low toxicity, and bivalent charge (3833 mAh/cm3 and 2205 mAh/g). However, Mg-ion batteries face unique challenges related to the formation of anode passivation layers, anode-electrolyte-cathode incompatibilities, slow solid-state Mg2+ diffusion, and ion trapping. Using analytical (scanning) transmission electron microscopy ((S)TEM) and ab initio modeling, we have investigated Mg2+ intercalation and extraction mechanisms in β-SnSb alloy nanoparticles (NPs). During the first several charge-discharge cycles, the SnSb particles irreversibly break down into a network of pure-Sn and Sb-rich sub-particles, as Mg-ions replace Sn ions in the SnSb lattice. Once the morphology has stabilized, the small Sn NPs (< 20 nm) are responsible for the majority of reversible storage capacity, while the Sb-rich particles trap substitutional-Mg atoms in the lattice and are significantly less active. This result strongly indicates that pure-Sn nanoparticles on a graphene support can act as a high capacity anode for Mg-ion batteries.

  10. Hierarchical active factors to band gap and nonlinear optical response in Ag-containing quaternary-chalcogenide compounds

    NASA Astrophysics Data System (ADS)

    Huang, Jun-ben; Mamat, Mamatrishat; Pan, Shilie; Yang, Zhihua

    2016-07-01

    In this research work, Ag-containing quaternary-chalcogenide compounds KAg2TS4 (T=P, Sb) (I-II) and RbAg2SbS4 (III) have been studied by means of Density Functional Theory as potential IR nonlinear optical materials. The origin of wide band gap, different optical anisotropy and large SHG response is explained via a combination of density of states, electronic density difference and bond population analysis. It is indicated that the different covalent interaction behavior of P-S and Sb-S bonds dominates the band gap and birefringence. Specifically, the Ag-containing chalcogenide compound KAg2PS4 possesses wide band gap and SHG response comparable with that of AgGaS2. By exploring the origin of the band gap and NLO response for compounds KAg2TS4 (T=P, Sb), we found the determination factor to the properties is different, especially the roles of Ag-d orbitals and bonding behavior of P-S or Sb-S. Thus, the compounds KAg2TS4 (T=P, Sb) and RbAg2SbS4 can be used in infrared (IR) region.

  11. Chemical ordering rather than random alloying in SbAs

    NASA Astrophysics Data System (ADS)

    Shoemaker, Daniel P.; Chasapis, Thomas C.; Do, Dat; Francisco, Melanie C.; Chung, Duck Young; Mahanti, S. D.; Llobet, Anna; Kanatzidis, Mercouri G.

    2013-03-01

    The semimetallic group-V elements display a wealth of correlated electron phenomena due to a small indirect band overlap that leads to relatively small, but equal, numbers of holes and electrons at the Fermi energy with high mobility. Their electronic bonding characteristics produce a unique crystal structure, the rhombohedral A7 structure, which accommodates lone pairs on each site. Here, we show via single-crystal and synchrotron x-ray diffraction that antimony arsenide (SbAs) is a compound and the A7 structure can display chemical ordering of Sb and As, which were previously thought to mix randomly. Formation of this compound arises due to differences in electronegativity that are common to IV-VI compounds of average group V such as GeTe, SnS, PbS, and PbTe, and also ordered intraperiod compounds such as CuAu and NiPt. High-temperature diffraction studies reveal an order-disorder transition around 550 K in SbAs, which is in stark contrast to IV-VI compounds GeTe and SnTe that become cubic at elevated temperatures but do not disorder. Transport and infrared reflectivity measurements, along with first-principles calculations, confirm that SbAs is a semimetal, albeit with a direct band separation larger than that of Sb or As. Because even subtle substitutions in the semimetals, notably Bi1-xSbx, can open semiconducting energy gaps, a further investigation of the interplay between chemical ordering and electronic structure on the A7 lattice is warranted.

  12. Ba-filled Ni–Sb–Sn based skutterudites with anomalously high lattice thermal conductivity

    DOE PAGESBeta

    Paschinger, W.; Rogl, Gerda; Grytsiv, A.; Michor, H.; Heinrich, P. R.; Mueller, H.; Puchegger, S.; Klobes, B.; Hermann, Raphael P.; Reinecker, M.; et al

    2016-06-21

    Here, in this study, novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450°C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni–Sn–Sb and in the quaternary Ba–Ni–Sb–Sn systems. Phase equilibria in the Ni–Sn–Sb system at 450°C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba–Ni–Sn–Sb skutterudite system is perfectly suited to study the influence of filler atomsmore » on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the “rattling behaviour” consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10-6 K-1 for Ni4Sb8.2Sn3.8 and 13.8 × 10-6 K-1 for Ba0.92Ni4

  13. Dopant-site-dependent scattering by dislocations in epitaxial films of perovskite semiconductor BaSnO{sub 3}

    SciTech Connect

    Kim, Useong; Park, Chulkwon; Kim, Rokyeon; Mun, Hyo Sik; Kim, Hoon Min; Kim, Namwook; Yu, Jaejun; Char, Kookrin; Ha, Taewoo; Kim, Jae Hoon; Kim, Hyung Joon; Kim, Tai Hoon; Kim, Kee Hoon

    2014-05-01

    We studied the conduction mechanism in Sb-doped BaSnO{sub 3} epitaxial films, and compared its behavior with that of the mechanism of its counterpart, La-doped BaSnO{sub 3}. We found that the electron mobility in BaSnO{sub 3} films was reduced by almost 7 times when the dopant was changed from La to Sb, despite little change in the effective mass of the carriers. This indicates that the scattering rate of conduction electrons in the BaSnO{sub 3} system is strongly affected by the site at which the dopants are located. More importantly, we found that electron scattering by threading dislocations also depends critically on the dopant site. We propose that the large enhancement of scattering by the threading dislocations in Sb-doped BaSnO{sub 3} films is caused by the combination effect of the change in the distribution of Sb impurities in the films, the formation of the Sb impurity clusters near the threading dislocations, and the conduction electron clustering near the Sb impurities.

  14. Structural transformation of Sb-based high-speed phase-change material.

    PubMed

    Matsunaga, Toshiyuki; Kojima, Rie; Yamada, Noboru; Kubota, Yoshiki; Kifune, Kouichi

    2012-12-01

    The crystal structure of a phase-change recording material (the compound Ag(3.4)In(3.7)Sb(76.4)Te(16.5)) enclosed in a vacuum capillary tube was investigated at various temperatures in a heating process using a large Debye-Scherrer camera installed in BL02B2 at SPring-8. The amorphous phase of this material turns into a crystalline phase at around 416 K; this crystalline phase has an A7-type structure with atoms of Ag, In, Sb or Te randomly occupying the 6c site in the space group. This structure was maintained up to around 545 K as a single phase, although thermal expansion of the crystal lattice was observed. However, above this temperature, phase separation into AgInTe(2) and Sb-Te transpired. The first fragment, AgInTe(2), reliably maintained its crystal structure up to the melting temperature. On the other hand, the atomic configuration of the Sb-Te gradually varied with increasing temperature. This gradual structural transformation can be described as a continuous growth of the modulation period γ. PMID:23165592

  15. Effects of Ce Addition on the Microstructure and Mechanical Properties of Sn-58Bi Solder Joints

    NASA Astrophysics Data System (ADS)

    Chuang, Tung-Han; Wu, Hsing-Fei

    2011-01-01

    The effects of a rare-earth element on the microstructure, mechanical properties, and whisker growth of Sn-58Bi alloys and solder joints in ball grid array (BGA) packages with Ag/Cu pads have been investigated. Mechanical testing indicated that the elongation of Sn-58Bi alloys doped with Ce increased significantly, and the tensile strength decreased slightly, in compar- ison with undoped Sn-58Bi. In addition, the growth of both fiber- and hillock-shaped tin whiskers on the surface of Sn-58Bi-0.5Ce was retarded in the case of Sn-3Ag-0.5Cu-0.5Ce alloys. The growth of interfacial intermetallic compounds (IMC) in Sn-58Bi-0.5Ce solder joints was slower than that in Sn-58Bi because the activity of Ce atoms at the interface of the Cu6Sn5 IMC/solder was reduced. The reflowed Sn-58Bi and Sn-58Bi-0.5Ce BGA packages with Ag/Cu pads had a ball shear strength of 7.91 N and 7.64 N, which decreased to about 7.13 N and 6.87 N after aging at 100°C for 1000 h, respectively. The reflowed and aged solder joints fractured across the solder balls with ductile characteristics after ball shear tests.

  16. In situ STM studies of Sb(111) electrodes in aqueous electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Grozovski, V.; Kallip, S.; Lust, E.

    2013-07-01

    The in situ STM studies of Sb(111), which was cleaved at the temperature of liquid nitrogen inside the glove box, and of Sb(111), which was electrochemically polished in the KI + HCl aqueous solution, have been performed under negative polarizations from - 0.8 to - 0.15 V (versus Ag|AgCl in sat. KCl aqueous solution) in the 0.5 M Na2SO4 + 0.0003 M H2SO4 aqueous solution. The atomic resolution has been achieved. The in situ STM data show that there are no quick surface reconstruction processes and the surface structure of cleaved and electrochemically polished Sb(111) is stable within the potential region investigated, similarly for Bi(111) single crystal electrode, previously studied [S. Kallip, E. Lust, Electrochem. Comm. 7 (2005) 863].

  17. Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery

    NASA Astrophysics Data System (ADS)

    Shin, Jeong Ho; Song, Jae Yong

    2016-05-01

    Sn-based oxide materials as an anode of lithium ion batteries (LIBs) suffer from the unavoidable mechanical stress originated from huge volume changes during lithiation/delithiation reactions. We synthesized the hierarchical SnO nanobranches (NBs) decorated with Sn nanoparticles on Cu current collector using a vapor transport method. The Sn-decorated SnO NBs as an anode of LIB showed good electrochemical performance with high reversible capacity retention of as high as 502 mAh/g and rate capability of 455 mAh/g at a current density of 2.0 A/g after 50 cycles. Through the morphological and crystal structure analyses after the charge and discharge processes, it was found that the morphology of Sn-decorated SnO NBs was transformed to nanoporous layered-structure, composed of Sn and lithium oxide, during the repeated lithiation/delithiation reactions. The free-volume of Sn-decorated SnO NBs and nanoporous layered-structure effectively accommodate the huge volume changes and enhance the electrochemical cyclability by facilitating the diffusion of Li-ions.

  18. Development of Sn-based, low melting temperature Pb-free solder alloys.

    SciTech Connect

    Grant, Richard L.; Vianco, Paul Thomas; Rejent, Jerome Andrew

    2003-09-01

    Low temperature, Sn-based Pb-free solders were developed by making alloy additions to the starting material, 96.5Sn-3.5Ag (mass%). The melting behavior was determined using Differential Scanning Calorimetry (DSC). The solder microstructure was evaluated by optical microscopy and electron probe microanalysis (EPMA). Shear strength measurements, hardness tests, intermetallic compound (IMC) layer growth measurements, and solderability tests were performed on selected alloys. Three promising ternary alloy compositions and respective solidus temperatures were: 91.84Sn-3.33Ag-4.83Bi, 212 C; 87.5Sn-7.5Au-5.0Bi, 200 C; and 86.4Sn-5.1 Ag-8.5Au, 205 C. A quaternary alloy had the composition 86.8Sn-3.2Ag-5.0Bi-5.0Au and solidus temperature of 194 C The shear strength of this quaternary alloy was nearly twice that of the eutectic Sn-Pb solder. The 66Sn-5.0Ag-10Bi-5.0Au-101n-4.0Cu alloy had a solidus temperature of 178 C and good solderability on Cu. The lowest solidus temperature of 159 C was realized with the alloy 62Sn-5.0Ag-10Bi-4.0Au-101n-4.0Cu-5.0Ga. The contributing factor towards the melting point depression was the composition of the solid solution, Sn-based matrix phase of each solder.

  19. Synthesis and characterization of different morphological SnS nanomaterials

    NASA Astrophysics Data System (ADS)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2014-12-01

    SnS in three nano forms possessing different morphologies such as particles, whiskers and ribbons were synthesised by chemical route. The morphology variation was brought about in the chemical route synthesis by varying a synthesis parameter such as temperature and influencing the synthesis by use of surfactant. The elemental composition determination by energy dispersive analysis of x-rays (EDAX) showed that all three synthesized SnS nanomaterials were tin deficient. The x-ray diffraction (XRD) study of the three SnS nanomaterials showed that all of them possess orthorhombic structure. The Raman spectra of the three SnS nanomaterials showed that all three samples possess three common distinguishable peaks. In them two peaks lying at 98 ± 1 cm-1 and 224 ± 4 cm-1 are the characteristic Ag mode of SnS. The third peak lying at 302 ± 1 cm-1 is associated with secondary Sn2S3 phase. The transmission electron microscopy (TEM) confirmed the respective morphologies. The optical analysis showed that they possess direct as well as indirect optical bandgap. The electrical transport properties study on the pellets prepared from the different nanomaterials of SnS showed them to be semiconducting and p-type in nature. The current-voltage (I-V) plots of the silver (Ag)/SnS nanomaterials pellets for dark and incandescent illumination showed that all configurations showed good ohmic behaviour except Ag/SnS nanoribbons pellet configuration under illumination. All the obtained results are discussed in detail.

  20. Gold-gold bonding: the key to stabilizing the 19-electron ternary phases LnAuSb (Ln = La-Nd and Sm).

    PubMed

    Seibel, Elizabeth M; Schoop, Leslie M; Xie, Weiwei; Gibson, Quinn D; Webb, James B; Fuccillo, Michael K; Krizan, Jason W; Cava, Robert J

    2015-01-28

    We report a new family of ternary 111 hexagonal LnAuSb (Ln = La-Nd, Sm) compounds that, with a 19 valence electron count, has one extra electron compared to all other known LnAuZ compounds. LaAuSb, CeAuSb, PrAuSb, NdAuSb, and SmAuSb crystallize in the YPtAs-type structure, and have a doubled unit cell compared to other LnAuZ phases as a result of the buckling of the Au-Sb honeycomb layers to create interlayer Au-Au dimers. The dimers accommodate the one excess electron per Au and thus these new phases can be considered Ln2(3+)(Au-Au)(0)Sb2(3-). Band structure, density of states, and crystal orbital calculations confirm this picture, which results in a nearly complete band gap between full and empty electronic states and stable compounds; we can thus present a structural stability phase diagram for the LnAuZ (Z = Ge, As, Sn, Sb, Pb, Bi) family of phases. Those calculations also show that LaAuSb has a bulk Dirac cone below the Fermi level. The YPtAs-type LnAuSb family reported here is an example of the uniqueness of gold chemistry applied to a rigidly closed shell system in an unconventional way. PMID:25543990

  1. AGS II

    SciTech Connect

    Palmer, R.B.

    1984-01-01

    Interest in rare K decays, neutrino oscillations and other fields have generated an increasing demand for running, and improved intensity and duty cycle, at the AGS. Current projects include acceleration of polarized protons and light ions (up to mass 32). Future plans are for a booster to increase intensity and allow heavy ions (up to mass 200), and a stretcher to give 100% duty cycle. A later upgrade could yield an average current of 32 ..mu.. amps. 6 figures, 2 tables.

  2. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    SciTech Connect

    Dias, Marcelino; Costa, Thiago; Rocha, Otávio; Spinelli, José E.; Cheung, Noé; Garcia, Amauri

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  3. Molar and excess volumes of liquid In-Sb, Mg-Sb, and Pb-Sb alloys

    SciTech Connect

    Hansen, A.R.; Kaminski, M.A. ); Eckert, C.A. )

    1990-04-01

    By a direct Archimedes' technique, volumetric data were obtained for liquid In, Mg, Pb, and Sb and mixtures of In-Sb, Mg-Sb, and Pb-Sb. In this paper the excess volumes for the alloys studied are presented and discussed.

  4. Magnetothermoelectrical and adhesive properties of commutation contacts of thermoelements on the basis of extruded samples of Bi85Sb15 solid solution

    NASA Astrophysics Data System (ADS)

    Tagiyev, M. M.

    2003-09-01

    A study of electrical and adhesive properties of transient contacts for extruded samples of Bi85Sb15 solid solutions have been conducted with alloys: 25Bi + 50Pb + 12.5Cd + 12.5Sn with Tm = 343 K (Wood"s alloy) and 57Bi + 45Sn with Tm =412 K in temperature range ~77-300 K and magnetic field intensity (H) up to ~74x104 A/m. It is shown that resistance of transient contacts (rk) of the extruded of Bi85Sb15 solid solution with the specified contact alloys at ~77K is determined by the resistance of the structure the solid solution Bi85Sb15-solid solution Bi85Sb15, heavily doped by Pb and Sn atoms, diffused from contact alloy into near-contact area of the Bi85Sb15 solid solution. It is established, that by doping extruded samples of Bi85Sb15 solid solution with Pb atoms it is possible to achieve reduction of a transient contact resistance rk in Bi85Sb15 solid solution - contact alloy interface.

  5. Development of extremely ductile lead-free Sn-Al solders for futuristic electronic packaging applications

    NASA Astrophysics Data System (ADS)

    Alam, Md Ershadul; Gupta, Manoj

    2014-03-01

    In the present study, new lead-free Sn-Al solders are developed incorporating varying amount of Al (0.4 and 0.6% by weight) into pure Sn using disintegrated melt deposition technique. Solder samples were then subsequently extruded at room temperature and characterized. Microstructural characterization studies revealed equiaxed grain morphology, minimal porosity, reasonably uniform distribution of Al particles and good Sn-Al interfacial integrity. Melting temperature of Sn-0.6Al (228°C) was found to be close to the eutectic Sn-0.7Cu (227°C) solders. Microhardness was increased with increasing amount of Al in pure Sn. Room temperature tensile test results revealed that newly developed Sn-0.6Al solders exhibited significant improvement in 0.2% yield strength (˜67%), ultimate tensile strength (˜18%) and ductility (˜123%) when compared to commercial Sn-0.7Cu solder. Ductility was improved about 222%, 263% and 81% when compared to commercially available Sn-3.5Ag-0.7Cu, Sn-3.5Ag and Sn-37Pb solders, respectively without compromising strength.

  6. Nuclear data for production of /sup 117m/Sn for biomedical application

    SciTech Connect

    Mausner, L.F.; Mirzadeh, S.; Ward, T.E.

    1985-01-01

    The /sup 117m/Sn(4+)DTPA has been shown to have high uptake in cortical bone with negligible soft-tissue deposition. The long half-life (14 d) of /sup 117m/Sn and its emission of abundant short-range Auger and conversion electrons, make /sup 117m/Sn(4+)DTPA an attractive therapeutic agent for bone tumors. The necessary nuclear data for production of clinical quantities of /sup 117m/Sn using Sb(p,2pxn) reactions at BLIP was obtained. The excitation functions for /sup 121/Sb(p,2p3n) and /sup 123/Sb(p,2p5n) reactions in the regions of 43 less than or equal to E/sub p/ less than or equal to 60 MeV were measured and compared with predicted values obtained from semi-empirical formulae given by Silberberg and Tsao. /sup 117m/Sn is routinely produced at ORNL by thermal neutron activation of /sup 116/Sn. We have investigated the possibility of improving the specific activity of the reactor-produced /sup 117m/Sn by irradiating enriched /sup 116/Sn and /sup 117/Sn in the core of the HFBR. Our results indicate that, due to a strong absorption resonance at E/sub n/ approx. = 110 eV, better specific activity for reactor-produced /sup 117m/Sn can be obtained by irradiating natural tin in the core of a reactor. 7 refs., 1 fig. 1 tab.

  7. Vought SB2U-2 Vindicator

    NASA Technical Reports Server (NTRS)

    1939-01-01

    Vought SB2U-2 Vindicator: The Navy was in the transition from biplanes to monoplanes when it ordered the SB2U. Used for diving tests, this Vought SB2U-2 Vindicator was one of approximately 169 SB2Us built.

  8. Energy level alignments at the interface of N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1‧-biphenyl-4,4‧-diamine (NPB)/Ag-doped In2O3 and NPB/Sn-doped In2O3

    NASA Astrophysics Data System (ADS)

    Jung, Kwanwook; Park, Soohyung; Lee, Younjoo; Youn, Yungsik; Shin, Hae-In; Kim, Han-Ki; Lee, Hyunbok; Yi, Yeonjin

    2016-11-01

    The electronic structures of Ag-doped In2O3 (IAgO) and its energy level alignments with a N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1‧-biphenyl-4,4‧-diamine (NPB) hole transport layer (HTL) were investigated using in situ ultraviolet and X-ray photoelectron spectroscopies (UPS and XPS). As compared to the conventional Sn-doped In2O3 (ITO), IAgO has less oxygen vacancies leading to a higher work function (WF). The lower hole injection barrier (Φh) from IAgO to a NPB HTL is observed, which is attributed mainly to its higher WF and interface dipoles. The UPS measurements reveal that the Φh is 0.87 eV at NPB/IAgO while 1.11 eV is at NPB/ITO. Therefore, IAgO could be an alternative transparent anode in organic optoelectronics.

  9. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Bernechea, María; Miller, Nichole Cates; Xercavins, Guillem; So, David; Stavrinadis, Alexandros; Konstantatos, Gerasimos

    2016-08-01

    Solution-processed inorganic solar cells are a promising low-cost alternative to first-generation solar cells. Solution processing at low temperatures combined with the use of non-toxic and abundant elements can help minimize fabrication costs and facilitate regulatory acceptance. However, at present, there is no material that exhibits all these features while demonstrating promising efficiencies. Many of the candidates being explored contain toxic elements such as lead or cadmium (perovskites, PbS, CdTe and CdS(Se)) or scarce elements such as tellurium or indium (CdTe and CIGS(Se)/CIS). Others require high-temperature processes such as selenization or sintering, or rely on vacuum deposition techniques (Sb2S(Se)3, SnS and CZTS(Se)). Here, we present AgBiS2 nanocrystals as a non-toxic, earth-abundant material for high-performance, solution-processed solar cells fabricated under ambient conditions at low temperatures (≤100 °C). We demonstrate devices with a certified power conversion efficiency of 6.3%, with no hysteresis and a short-circuit current density of ∼22 mA cm‑2 for an active layer thickness of only ∼35 nm.

  10. Potential risk assessment in stream sediments, soils and waters after remediation in an abandoned W>Sn mine (NE Portugal).

    PubMed

    Antunes, I M H R; Gomes, M E P; Neiva, A M R; Carvalho, P C S; Santos, A C T

    2016-11-01

    The mining complex of Murçós belongs to the Terras de Cavaleiros Geopark, located in Trás-os-Montes region, northeast Portugal. A stockwork of NW-SE-trending W>Sn quartz veins intruded Silurian metamorphic rocks and a Variscan biotite granite. The mineralized veins contain mainly quartz, cassiterite, wolframite, scheelite, arsenopyrite, pyrite, sphalerite, chalcopyrite, galena, rare pyrrhotite, stannite, native bismuth and also later bismuthinite, matildite, joseite, roosveltite, anglesite, scorodite, zavaritskite and covellite. The exploitation produced 335t of a concentrate with 70% of W and 150t of another concentrate with 70% of Sn between 1948 and 1976. The exploitation took place mainly in four open pit mines as well as underground. Three lakes were left in the area. Remediation processes of confination and control of tailings and rejected materials and phytoremediation with macrophytes from three lakes were carried out between 2005 and 2007. Stream sediments, soils and water samples were collected in 2008 and 2009, after the remediation process. Most stream sediments showed deficiency or minimum enrichment for metals. The sequential enrichment factor in stream sediments W>Bi>As>U>Cd>Sn=Ag>Cu>Sb>Pb>Be>Zn is mainly associated with the W>Sn mineralizations. Stream sediments receiving drainage of a mine dump were found to be significantly to extremely enriched with W, while stream sediments and soils were found to be contaminated with As. Two soil samples collected around mine dumps and an open pit lake were also found to be contaminated with U. The waters from the Murçós W>Sn mine area were acidic to neutral. After the remediation, the surface waters were contaminated with F(-), Al, As, Mn and Ni and must not be used for human consumption, while open pit lake waters must also not be used for agriculture because of contamination with F(-), Al, Mn and Ni. In most waters, the As occurred as As (III), which is toxic and is easily mobilized in the drainage

  11. A model for the composition modifications in the Cu-Sb-O system

    SciTech Connect

    Stan, M.

    1997-05-01

    THE SN-SB-CU-O SYSTEM HAS BEEN EXTENSIVELY STUDIED BUT SYSTEMATIC PHASE EQUILIBRIUM STUDIES HAVE NOT BEEN APPROACHED. THE SYSTEM CONTAINS USEFUL CERAMICS WITH SPECIFIC ELECTRICAL AND MAGNETIC PROPERTIES, EMPLOYED AS SENSORS, ELECTRODES AND CATALYSTS. AS A PRELIMINARY STEP TO THE PHASE DIAGRAM CALCULATION, THE PAPER AIMS TO PRESENT A MODEL FOR THE COMPOSITION MODIFICATIONS IN THE CU-SB-O SYSTEM, WHICH IS THE MOST COMPLEX OF ALL SUBSYSTEMS. EXOTHERMIC EFFECTS ALONG WITH MASS INCREASES CAN BE OBSERVED IN DTA/GA CURVES, WERE ASSIGNED, FOR ALL SAMPLES, TO SB2O3 AND SB2O4 OXIDATION AND TO CUSB2O6 FORMATION: (1) APPROX. EQUAL 500 DIG C SB2O3 + 1/2 O2 DOUBLE RIGHT ARROW SB2O4; (2) {gt} 750 DIG C SB2O4 + CUO + 1/2 O2 DOUBLE RIGHT ARROW CUSB2O6. FOR THE SAMPLES HAVING CUO IN EXCESS, THE REDUCTION OF CUO TO CUO AND THE FORMATION OF THE CU4SBO4.5 COMPOUND SIMULTANEOUSLY OCCUR: {gt} 950 dig C CUSB2O6 + 7CuO double right arrow (1-r) CUSB2O6+7(1-r)cow+ 2rCu4SbO4.5 + 2rO2 where rEpsilon (0, 1) is the fraction of CUSB2O6 that transforms into Cu4SbO4.5. All the experimental evidences show that the Equations (1), (2) and (3) are good descriptions of the transformations that occurs in the CuO-Sb2O3 system along with the temperature. If the reactions are considered as completed, including a=1 in IQ. (3), then the quantity of oxygen that is gained or lost can be calculated for each sample. It is important to note that Equations (2) and (3) should be carefully solved because of the excess quantities of cow or SB2O4 that can be found in some samples. The calculated values of mass variation are in a good agreement with those obtained from the experimental GT diagrams. The atomic fractions of Cu, Sb and Awe content change in the system and they can be also calculated. The model assumes that at room temperature the compositions lay on the CuO-Sb2O3 line as shown in Fig. 1.

  12. Carbonate-replacement Pb-Zn-Ag ± Au mineralization in the Kamariza area, Lavrion, Greece: Mineralogy and thermochemical conditions of formation

    NASA Astrophysics Data System (ADS)

    Voudouris, P.; Melfos, V.; Spry, P. G.; Bonsall, T. A.; Tarkian, M.; Solomos, Ch.

    2008-09-01

    Carbonate-replacement Pb-Zn-Ag ± Au deposits in the Kamariza area, Lavrion district, Attica, Greece, are genetically related to the emplacement of Miocene andesitic dikes within a rapidly extending continental back-arc basin, which formed during exhumation of the Attic-Cycladic Crystalline Belt. Replacement veins as well as chimneys and mantos of massive sulfides are the major orebody types with mantos grading into chimneys and veins. Ore minerals are similar among the various types of orebodies in the Kamariza area and consist of sulfides and sulfarsenides (pyrite, arsenopyrite, chalcopyrite, galena, sphalerite, gersdorffite, marcasite), native metals (Au and Bi), Sn-bearing phases (petrukite), sulfosalts and sulfbismuthites of Ag, Bi, Cu, Pb, As, Sb (tetrahedrite-group minerals, bournonite, boulangerite, stephanite, pyrargyrite, semseyite, enargite, bismuthinite, lillianite homologues, Cu-matildite, aikinite, Ag-aikinite, mummeite, emplectite, wittichenite). The elemental association of Bi, Au, and Ag is common. The assemblages gersdorffite-bismuthinite-native gold and native gold-native bismuth are evidence for a contribution of magmatic components to the hydrothermal system. A fluctuation in the sulfidation states of the ore fluid during the evolution of the Kamariza system is evident from the deposition of early arsenopyrite, as well as of enargite-luzonite and both low-Fe and Fe-rich sphalerite in the same samples. Microthermometry of fluid inclusion assemblages show that carbonate replacement mineralization was deposited from a warm to hot (100°C to 400°C), low to moderately saline (1.8 to 17.3 wt% NaCl equiv) fluid. Eutectic temperatures of fluid inclusions as low as -55°C suggest the presence of CaCl2 in addition to NaCl, in the ore fluid. The Kamariza deposit occurs distal to the Plaka granodiorite intrusion and the associated porphyry-Mo mineralization, but is likely to be genetically related to a granitoid buried at depth.

  13. Solution-Processed hybrid Sb2 S3 planar heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Huang, Wenxiao; Borazan, Ismail; Carroll, David

    Thin-film solar cells based on inorganic absorbers permit a high efficiency and stability. Among or those absorber candidates, recently Sb2S3 has attracted extensive attention because of its suitable band gap (1.5eV ~1.7 eV) , strong optical absorption, low-cost and earth-abundant constituents. Currently high-efficiency Sb2S3 solar cells have absorber layer deposited on nanostructured TiO2 electrodes in combination with organic hole transport material (HTM) on top. However it's challenging to fill the nanostructured TiO2 layer with Sb2S3 and subsequently by HTM, this leads to uncovered surface permits charge recombination. And the existing of Sb2S3/TiO2/HTM triple interface will enhance the recombination due to the surface trap state. Therefore, a planar junction cell would not only have simpler structure with less steps to fabricate but also ideally also have a higher open circuit voltage because of less interface carrier recombination. By far there is limited research focusing on planar Sb2S3 solar cell, so the feasibility is still unclear. Here, we developed a low-toxic solution method to fabricate Sb2S3 thin film solar cell, then we studied the morphology of the Sb2S3 layer and its impact to the device performance. The best device with a structure of FTO/TiO2/Sb2S3/P3HT/Ag has PCE over 5% which is similar or higher than yet the best nanostructure devices with the same HTM. Furthermore, based on solution engineering and surface modification, we improved the Sb2S3 film quality and achieved a record PCE. .

  14. SN Heating Efficiency of the ISM of Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Melioli, C.; de Gouveia dal Pino, E. M.; D'Ercole, A.; Raga, A.

    2004-06-01

    The interstellar medium heated by supernova explosions (SN) may acquire an expansion velocity larger than the escape velocity and leave the galaxy through a supersonic wind. Galactic winds are effectively observed in many local starburst galaxies (Lehnert & Heckman 1996). The SN ejecta are transported out of the galaxies by such winds which must affect the chemical evolution of the galaxies. The effectiveness of the processes mentioned above depends on the heating efficiency (HE) of the SNs, i.e., the ratio between the kinetic plus internal energy density of the ambient gas and the SN energy density. In a starburst region, several SN explosions occur at a large rate inside a relatively small volume. If the successive generations of SN remnants (SNRs) interact with each other very fast, then a superbubble of high temperature and low density will rapidly develop, before a significant increase of the ambient gas density that could lead to substantial losses of energy by radiation. In this case, it is common to assume a value for HE of the order of unity, since most of the available energy of the SNs will be transferred to the ambient gas in the form of kinetic and internal energy, instead of being radiated away. However this assumption fails to reproduce both the chemical and dynamical characteristics of most starburst (SB) galaxies. In order to solve this paradigm, we have constructed a simple semi-analytical model, considering the essential ingredients of a SB environment, i.e., a three-phase medium composed by hot diffuse gas, SNRs and clouds, which is able to qualitatively trace the thermalisation history of the ISM in a SB region and determine the HE evolution (Melioli, de Gouveia Dal Pino, & D'Ercole, A&A, 2003, submitted). Our study has also been accompanied by fully 3-D radiative cooling, hydrodynamical simulations of SNR-SNR and SNR-clouds interactions (see Melioli, de Gouveia Dal Pino, & Raga 2003, in preparation).

  15. High-temperature thermoelectric studies of A {sub 11}Sb{sub 10} (A=Yb, Ca)

    SciTech Connect

    Brown, Shawna R.; Kauzlarich, Susan M. Gascoin, Franck; Jeffrey Snyder, G.

    2007-04-15

    Large samples (6-8 g) of Yb{sub 11}Sb{sub 10} and Ca{sub 11}Sb{sub 10} have been synthesized using a high-temperature (1275-1375 K) flux method. These compounds are isostructural to Ho{sub 11}Ge{sub 10}, crystallizing in the body-centered, tetragonal unit cell, space group I4/mmm, with Z=4. The structure consists of antimony dumbbells and squares, reminiscent of Zn{sub 4}Sb{sub 3} and filled Skutterudite (e.g., LaFe{sub 4}Sb{sub 12}) structures. In addition, these structures can be considered Zintl compounds; valence precise semiconductors with ionic contributions to the bonding. Differential scanning calorimetry (DSC), thermogravimetry (TG), resistivity ({rho}), Seebeck coefficient ({alpha}), thermal conductivity ({kappa}), and thermoelectric figure of merit (zT) from room temperature to at minimum 975 K are presented for A {sub 11}Sb{sub 10} (A=Yb, Ca). DSC/TG were measured to 1400 K and reveal the stability of these compounds to {approx}1200 K. Both A {sub 11}Sb{sub 10} (A=Yb, Ca) materials exhibit remarkably low lattice thermal conductivity ({approx}10 mW/cm K for both Yb{sub 11}Sb{sub 10} and Ca{sub 11}Sb{sub 10}) that can be attributed to the complex crystal structure. Yb{sub 11}Sb{sub 10} is a poor metal with relatively low resistivity (1.4 m{omega} cm at 300 K), while Ca{sub 11}Sb{sub 10} is a semiconductor suggesting that a gradual metal-insulator transition may be possible from a Ca{sub 11-} {sub x} Yb {sub x} Sb{sub 10} solid solution. The low values and the temperature dependence of the Seebeck coefficients for both compounds suggest that bipolar conduction produces a compensated Seebeck coefficient and consequently a low zT. - Graphical abstract: Large samples (6-8 g) of Yb{sub 11}Sb{sub 10} and Ca{sub 11}Sb{sub 10} have been synthesized from a Sn-flux method. Thermoelectric measurements from room temperature to 1075 K have been obtained. Both A {sub 11}Sb{sub 10} (A=Yb, Ca) materials exhibit remarkably low lattice thermal conductivity ({approx}10 m

  16. Superconductivity in the Mn5Si3-type Zr5Sb3 system

    NASA Astrophysics Data System (ADS)

    Lv, B.; Zhu, X. Y.; Lorenz, B.; Wei, F. Y.; Xue, Y. Y.; Yin, Z. P.; Kotliar, G.; Chu, C. W.

    2013-10-01

    We report the discovery of superconductivity at 2.3 K in Zr5Sb3, the first superconducting member in the large compound family of the Mn5Si3-type structure. Transport, magnetic, and calorimetric measurements clearly demonstrate bulk superconductivity for Zr5Sb3 and suggest it to be a possible phonon-mediated BCS superconductor with a relatively large density of states at the Fermi level associated with the d electrons of Zr and substantially larger electron-phonon coupling compared to the Sn counterpart compound Zr5Sn3 from band structure calculations. More superconductors with even higher transition temperatures are expected to be found in this family of compounds.

  17. Synthesis mechanism of nanoporous Sn3O4 nanosheets by hydrothermal process without any additives

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hua; Tan, Rui-Qin; Yang, Ye; Xu, Wei; Li, Jia; Shen, Wen-Feng; Wu, Guo-Qiang; Zhu, You-Liang; Yang, Xu-Feng; Song, Wei-Jie

    2015-06-01

    Nanoporous anorthic-phase Sn3O4 nanosheets are successfully fabricated via a hydrothermal process without any additives. With the pH value of the precursor increasing from 2.0 to 11.8, the valence of the precursor changes from mixed valence (the ratio of Sn2+ to Sn4+ is 2.7:1) to pure bivalent, and the product transformed from Sn3O4 to SnO mesocrystals. When doping SbCl3 to the alkaline precursor, the valence of the precursor shows mixed valence with the ratio of Sn2+ to Sn4+ being 2.6:1 and Sn3O4 is synthesized after the hydrothermal process. The valence state of Sn species in the precursor is the key factor of the formation of Sn3O4. The synthesis mechanism is discussed and proposed. These experimental results expand the knowledge base that can be used to guide technological applications of intermediate tin oxide materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 21377063, 51102250, 21203226, and 21205127) and the Personnel Training Foundation of Quzhou University (Grant No. BSYJ201412).

  18. Reactivity of dicoordinated stannylones (Sn0) versus stannylenes (SnII): an investigation using DFT-based reactivity indices.

    PubMed

    Broeckaert, Lies; Frenking, Gernot; Geerlings, Paul; De Proft, Frank

    2013-10-01

    The reactivity of dicoordinated Sn(0) compounds, stannylones, is probed using density functional theory (DFT)-based reactivity indices and compared with the reactivity of dicoordinated Sn(II) compounds, stannylenes. For the former compounds, the influence of different types of electron-donating ligands, such as cyclic and acyclic carbenes, stannylenes and phosphines, on the reactivity of the central Sn atom is analyzed in detail. Sn(0) compounds are found to be relatively soft systems with a high nucleophilicity, and the plots of the Fukui function f(-) for an electrophilic attack consistently predict the highest reactivity on the Sn atom. Next, complexes of dicoordinated Sn compounds with different Lewis acids of variable hardness are computed. In a first part, the double-base character of stannylones is demonstrated in interactions with the hardest Lewis acid H(+). Both the first and second proton affinities (PAs) are high and are well correlated with the atomic charge on the Sn atom, probing its local hardness. These observations are also in line with electrostatic potential plots that demonstrate that the tin atom in Sn(0) compounds bears a higher negative charge in comparison to Sn(II) compounds. Stannylones and stannylenes can be distinguished from each other by the partial charges at Sn and by various reactivity indices. It also becomes clear that there is a smooth transition between the two classes of compounds. We furthermore demonstrate both from DFT-based reactivity indices and from energy decomposition analysis, combined with natural orbitals for chemical valence (EDA-NOCV), that the monocomplexed stannylones are still nucleophilic and as reactive towards a second Lewis acid as towards the first one. The dominating interaction is a strong σ-type interaction from the Sn atom towards the Lewis acid. The interaction energy is higher for complexes with the cation Ag(+) than with the non-charged electrophiles BH(3), BF(3), and AlCl(3). PMID:23946256

  19. Preparation, characterization, and photocatalytic activity of porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Tian, Baozhu; Zhang, Jinlong; Xiong, Tianqing; Wang, Tingting

    2014-02-01

    Porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts were synthesized by a multistep route, including a dealloying method to prepare porous Ag, a transformation from Ag to AgBr and AgBrI, and a photo-reduction process to form Ag nanoparticles on the surface of AgBr and AgBrI. It was found that the porous structure kept unchanged during Ag was transferred into AgBr, AgBrI, AgBr@Ag, and AgBrI@Ag. Both porous AgBr@Ag and porous AgBrI@Ag showed much higher visible-light photocatalytic activity than cubic AgBr@Ag for the degradation of methyl orange, which is because the interconnected pore channels not only provide more reactive sites but also favor the transportation of photo-generated electrons and holes. For AgBrI@Ag, AgBrI solid solution formed at the interface of AgBr and AgI, and the phase junction can effectively separate the photo-generated electrons and holes, favorable to the improvement of photocatalytic activity. The optimal I content for obtaining the highest activity is ∼10 at.%.

  20. DWPF SB6 INITIAL CPC FLOWSHEET TESTING SB6-1 TO SB6-4L TESTS OF SB6-A AND SB6-B SIMULANTS

    SciTech Connect

    Lambert, D.; Pickenheim, B.; Best, D.

    2009-09-09

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 5 (SB5) processing to Sludge Batch 6 (SB6) processing in late fiscal year 2010. Tests were conducted using non-radioactive simulants of the expected SB6 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2008-0043, Rev.0 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. These studies were conducted with the estimated SB6 composition at the time of the study. This composition assumed a blend of 101,085 kg of Tank 4 insoluble solids and 179,000 kg of Tank 12 insoluble solids. The current plans are to subject Tank 12 sludge to aluminum dissolution. Liquid Waste Operations assumed that 75% of the aluminum would be dissolved during this process. After dissolution and blending of Tank 4 sludge slurry, plans included washing the contents of Tank 51 to {approx}1M Na. After the completion of washing, the plan assumes that 40 inches on Tank 40 slurry would remain for blending with the qualified SB6 material. There are several parameters that are noteworthy concerning SB6 sludge: (1) This is the second batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution; (2) The sludge is high in mercury, but the projected concentration is lower than SB5; (3) The sludge is high in noble metals, but the projected concentrations are lower than SB5; and(4) The sludge is high in U and Pu - components that are not added in sludge simulants. Six DWPF process simulations were completed in 4-L laboratory-scale equipment using

  1. Technological approach of 1-O-alkyl-sn-glycerols separation from Berryteuthis magister squid liver oil.

    PubMed

    Ermolenko, Ekaterina; Latyshev, Nikolay; Sultanov, Ruslan; Kasyanov, Sergey

    2016-03-01

    Biological active compounds, 1-O-alkyl-sn-glycerols (AG), were isolated from liver oil of the squid Berryteuthis magister. The main components of the initial lipids were 1-O-alkyl-2,3-diacyl-sn-glycerols (38.50 %) and triacylglycerols (24.26 %). The first step of separation was the alkaline hydrolysis of oil to form a lipid mixture consisting of AG, free fatty acids and cholesterol. AG were separated by double recrystallization from acetone at -20 °C and 1 °C. A simple procedure is proposed for obtaining AG with a purity of 99.22 %, the main component of which is chimyl alcohol (94.39 %). Purity and structure of the obtained products were confirmed by GC and GC-MS technique. Isolated AG may be used in nutrition and cosmetics. PMID:27570298

  2. Interaction of Sn atoms with defects introduced by ion implantation in Ge substrate

    SciTech Connect

    Taoka, Noriyuki Fukudome, Motoshi; Takeuchi, Wakana; Arahira, Takamitsu; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki

    2014-05-07

    The interaction of Sn atoms with defects induced by Sn implantation of Ge substrates with antimony (Sb) as an n-type dopant and the impact of H{sub 2} annealing on these defects were investigated by comparison with defects induced by Ge self-implantation. In the Ge samples implanted with either Sn or Ge, and annealed at temperatures of less than 200 °C, divacancies, Sb-vacancy complexes with single or double acceptor-like states, and defects related to Sb and interstitial Ge atoms were present. On the other hand, after annealing at 500 °C in an N{sub 2} or H{sub 2} atmosphere, defects with different structures were observed in the Sn-implanted samples by deep level transition spectroscopy. The energy levels of the defects were 0.33 eV from the conduction band minimum and 0.55 eV from the valence band maximum. From the capacitance-voltage (C-V) characteristics, interaction between Sn atoms and defects after annealing at 500 °C was observed. The effect of H{sub 2} annealing at around 200 °C was observed in the C-V characteristics, which can be attributed to hydrogen passivation, and this effect was observed in both the Ge- and Sn-implanted samples. These results suggest the presence of defects that interact with Sn or hydrogen atoms. This indicates the possibility of defect control in Ge substrates by Sn or hydrogen incorporation. Such defect control could yield high-performance Ge-based devices.

  3. [Sb4Au4Sb4]2-: A designer all-metal aromatic sandwich

    NASA Astrophysics Data System (ADS)

    Tian, Wen-Juan; Guo, Jin-Chang; Li, Da-Zhi; You, Xue-Rui; Wang, Ying-Jin; Sun, Zhong-Ming; Zhai, Hua-Jin

    2016-07-01

    We report on the computational design of an all-metal aromatic sandwich, [Sb4Au4Sb4]2-. The triple-layered, square-prismatic sandwich complex is the global minimum of the system from Coalescence Kick and Minima Hopping structural searches. Following a standard, qualitative chemical bonding analysis via canonical molecular orbitals, the sandwich complex can be formally described as [Sb4]+[Au4]4-[Sb4]+, showing ionic bonding characters with electron transfers in between the Sb4/Au4/Sb4 layers. For an in-depth understanding of the system, one needs to go beyond the above picture. Significant Sb → Au donation and Sb ← Au back-donation occur, redistributing electrons from the Sb4/Au4/Sb4 layers to the interlayer Sb-Au-Sb edges, which effectively lead to four Sb-Au-Sb three-center two-electron bonds. The complex is a system with 30 valence electrons, excluding the Sb 5s and Au 5d lone-pairs. The two [Sb4]+ ligands constitute an unusual three-fold (π and σ) aromatic system with all 22 electrons being delocalized. An energy gap of ˜1.6 eV is predicted for this all-metal sandwich. The complex is a rare example for rational design of cluster compounds and invites forth-coming synthetic efforts.

  4. SN 1604 in China

    NASA Astrophysics Data System (ADS)

    Wang, Z. R.; Zhao, Y.; Li, M.; Zhou, Q. L.

    2005-06-01

    The 6th East Asian Meeting of Astronomy was held just at the time of 400 years after the discovery of SN (supernova) 1604 and its pre-maximum observation by the astronomers both from the East and the West in the 17th century. It has a special meaning and is interesting to look back on the historical observation of SN 1604. In this paper, we only limit to concern the Chinese observation on SN 1604.

  5. Sign of the electric-field gradient at /sup 111/Cd in Zr and Sb

    SciTech Connect

    Kaufmann, E.N.; Krien, K.; Pielen, W.; Vianden, R.

    1983-01-01

    The ..beta..-..gamma.. TDPAC technique was applied to /sup 111/Ag implanted in Zr and Sb metal single crystals in order to determine sign and magnitude of the quadrupole interaction at the site of /sup 111/Cd in these metals. An analysis of the data taken at 293K yielded nu/sub Q/ = +15.4(6) MHz for /sup 111/Cd in Zr and nu/sub Q/ = -107.5(20) MHz for /sup 111/Cd in Sb. From these values electric field gradients of +7.3(8)x10/sup 16/ V/cm/sup 2/ and -5.56(62)x10/sup 17/ V/cm/sup 2/ for Cd in Zr and Sb are derived respectively.

  6. Realization of Dirac Cones in Few Bilayer Sb(111) Films by Surface Modification.

    PubMed

    Pan, Hui; Wang, Xue-Sen

    2015-12-01

    We report the first-principle study on the recovery and linearization of Dirac cones in the electronic band structures of a few bilayer Sb(111) films (n-BL Sb) by surface modification. Due to the interaction between the surface states on the two surfaces of a free-standing film, the distorted Dirac cone in n-BL Sb(111) (n < 5) disappears. We demonstrate that the Dirac cone can be restored by functionalizing one surface with certain atoms including H, Ag, and Au, to reduce the inter-surface interaction. We further show that an ideal Dirac cone with linear dispersion of topological surface states near the zone center can be realized by functionalizing both surfaces of the film with oxygen, which enhances spin-orbital coupling. The realization of Dirac cone by surface functionalization shows promise for applications of topologic materials to spintronic devices and their operation in complicated conditions. PMID:26293493

  7. Catalytic and photoelectrochemical performances of Cu-Zn-Sn-Se thin films prepared using selenization of electrodeposited Cu-Zn-Sn metal precursors

    NASA Astrophysics Data System (ADS)

    Shao, Pin-Wen; Li, Chun-Ting; Ho, Kuo-Chuan; Cheng, Kong-Wei

    2015-07-01

    In this study, Cu2ZnSnSe4 (CZTSe) films are deposited onto the fluorine-doped-tin-oxide-coated glass substrate via the selenization of electrodeposited Cu-Zn-Sn metal precursors in an acidic solution with the applied potential of -0.9 V vs. an Ag/AgCl electrode. X-ray diffraction patterns reveal that the samples are the quaternary tetragonal CZTSe phase. The thicknesses and direct band gaps of the samples are in the ranges of 2.3 to 2.7 μm and 0.95 to 1.02 eV, respectively. All samples are p-type semiconductors with carrier density, mobility and flat-band potential in the ranges of 3.88 × 1017 to 1.37 × 1018 cm-3, 10.31 to 12.6 cm2 V-1 s-1 and -0.01 V to -0.08 V vs. Ag/AgCl reference electrode, respectively. The sample with [Cu]/[Zn + Sn] and [Zn]/[Sn] molar ratios of 0.87 and 0.66, respectively, has a maximum photo-enhanced current density of 0.41 mA cm-2 at an applied bias of -0.5 V vs. an Ag/AgCl electrode in 0.5 M H2SO4 solution under illumination. The best photo-conversion efficiency of dye-sensitized solar cells using CZTSe with [Cu]/[Zn + Sn] and [Zn]/[Sn] molar ratios of 0.87 and 0.66, respectively, as the counter electrode was 7.98%. The results show the high quality CZTSe films have potentials in applications of photoelectrochemical water splitting and dye-sensitized solar cells.

  8. The first trialkylphosphane telluride complexes of Ag(I): molecular, ionic and supramolecular structural alternatives.

    PubMed

    Daniliuc, Constantin; Druckenbrodt, Christian; Hrib, Cristian G; Ruthe, Frank; Blaschette, Armand; Jones, Peter G; du Mont, Wolf-W

    2007-05-28

    The structures of the first phosphane telluride complexes of silver(I), obtained from i-Pr3PTe (1) with AgNMs2 [Ms = SO2CH3] and with AgSbF6, reveal the superior coordinating ability of 1, particularly as a bridging ligand, compared with related i-Pr3PS and i-Pr3PSe ligands. PMID:17713078

  9. Anisotropic magnetoresistance and current-perpendicular-to-plane giant magnetoresistance in epitaxial NiMnSb-based multilayers

    NASA Astrophysics Data System (ADS)

    Kwon, B.; Sakuraba, Y.; Sukegawa, H.; Li, S.; Qu, G.; Furubayashi, T.; Hono, K.

    2016-01-01

    We fabricated (001)-oriented C1b-NiMnSb epitaxial films on MgO substrate by a magnetron sputtering system and systematically investigated the structure, magnetic property, and anisotropic magnetoresistance (AMR) effect. NiMnSb film was deposited using a stoichiometric NiMnSb target which has Mn-deficient (Mn ˜ 28.7 at. %) off-stoichiometric composition ratio. We have investigated bulk spin-polarization in NiMnSb films by measuring AMR on the basis of recent study for half-metallic L21-Heusler compounds. Although the negative sign of AMR ratio, which is indicative of half-metallic nature, was observed in the single layer NiMnSb films, the magnitude of AMR ratio (-0.10% at RT) was about half of the largest value reported for half-metallic L21-Heusler compounds. The current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) devices of NiMnSb/Ag/NiMnSb show MR ratio of 13.2% at 10 K and 4.2% at 300 K, which is higher than the previous result for NiMnSb/Cu/NiMnSb CPP-GMR devices [Caballero et al., J. Magn. Magn. Mater. 198-199, 55 (1999)], but much less than the CPP-GMR using L21-Heusler electrodes. The reduction of intrinsic bulk spin-polarization originating from the Mn-deficiency in NiMnSb layer is expected to be the main reason for small MR values.

  10. Amiloride and SN-6 Suppress Audiogenic Seizure Susceptibility in Genetically Epilepsy-Prone Rats

    PubMed Central

    Quansah, Hillary; N’Gouemo, Prosper

    2015-01-01

    SUMMARY Aims We have recently reported that amiloride, a potent and nonselective blocker of acid-sensing ion channels, prevents the development of pilocarpine-induced seizures and status epilepticus. Amiloride is also known to suppress the activity of Na+/Ca2+ and Na+/H+ exchangers that have been implicated in the pathophysiology of seizures. Here, we evaluated the effects of amiloride, SN-6 (a potent blocker of Na+/Ca2+ exchangers) and zoniporide (a potent blocker of Na+/H+ exchangers) on acoustically evoked seizures (audiogenic seizures, AGS) in genetically epilepsy-prone rats (GEPR-3s), a model of inherited generalized epilepsy. Methods Male, six-week-old GEPR-3s were used. The GEPR-3s were tested for AGS susceptibility before and after treatment with various doses of amiloride, SN-6, and zoniporide (1, 3, 10, and 30 mg/kg; per os). Results We found that pretreatment with amiloride and SN-6 markedly reduced the incidence and severity of AGS in the GEPR-3s. In contrast, administration of zoniporide only minimally reduced the incidence and severity of AGS in the GEPR-3s. A combination of noneffective doses of SN-6 and zoniporide also suppressed AGS susceptibility in the GEPR-3s. Conclusions These findings suggest acid-sensing ion channels and the Na+/Ca2+ exchanger may play an important role in the pathophysiology of inherited AGS susceptibility in the GEPR-3s. PMID:24948133

  11. Synthesis and Raman analysis of SnS nanoparticles synthesized by PVP assisted polyol method

    NASA Astrophysics Data System (ADS)

    Baby, Benjamin Hudson; Mohan, D. Bharathi

    2015-06-01

    SnS film was prepared by a simple drop casting method after synthesizing SnS nanoparticles by using PVP assisted polyol method. Confocal Raman study was carried out for the as deposited and annealed (150, 300 and 400 °C) films at two different excitation wavelengths 514 and 785 nm. At the excitation wavelength of 514 nm, the Raman modes showed for a mixed phase of SnS and SnS2 up to 150 °C and then only a pure SnS phase was observed up to 400 °C due to the dissociation of SnS2 in to SnS by releasing S. The increase in intensity of Raman (Ag and B3g) as well as IR (B3u) active modes of SnS are observed with increasing annealing temperature at excitation wavelength 785 nm due to the increased crystallinity and inactiveness of SnS2 modes. X-ray diffraction confirming the formation of a single phase of SnS while the greater homogeneity in both size and shape of SnS nanoparticles were confirmed through surface morphology from SEM.

  12. BaCdSnS4 and Ba3CdSn2S8: syntheses, structures, and non-linear optical and photoluminescence properties.

    PubMed

    Zhen, Ni; Wu, Kui; Wang, Ying; Li, Qiang; Gao, Wenhui; Hou, Dianwei; Yang, Zhihua; Jiang, Huaidong; Dong, Yongjun; Pan, Shilie

    2016-06-28

    Two non-centrosymmetric metal chalcogenides, BaCdSnS4 and Ba3CdSn2S8, were synthesized using a high temperature solid-state reaction in an evacuated silica tube. Although the two compounds have the same building units in their structures, namely CdS4, SnS4 and BaS8 units, both of them have different structures. BaCdSnS4 crystallizes in the orthorhombic space group Fdd2 and its structure can be characterized by the two-dimensional ∞[Cd-Sn-S] layers composed of corner- and edge-sharing CdS4 and SnS4 tetrahedra with Ba atoms located between the two adjacent ∞[Cd-Sn-S] layers. Ba3CdSn2S8 crystallizes in the space group I4[combining macron]3d of the orthorhombic system and the CdS4 and SnS4 groups are connected with each other via corner-sharing to form a three-dimensional framework, which is different from the 2D ∞[Cd-Sn-S] layer structure in BaCdSnS4. The UV-vis-NIR diffuse-reflectance spectra show that the experimental band gaps are about 2.30 eV for BaCdSnS4 and 2.75 eV for Ba3CdSn2S8, respectively. IR and Raman measurement results indicate that their transparent ranges are up to 25 μm. Second-order NLO measurements show that BaCdSnS4 exhibits strong powder second-harmonic generation (SHG) intensities at 2.09 μm laser pumping that are ∼5 and 0.7 times that of AgGaS2 in the particle size 38-55 and 150-200 μm, respectively, whereas Ba3CdSn2S8 only exhibits SHG intensities of about 0.8 and 0.1 times that of AgGaS2 at the same particle sizes. The origin of the NLO response in BaCdSnS4 may originate from the macroscopic arrangement of the SnS4 and CdS4 tetrahedra. Furthermore, the photoluminescence properties of the two compounds have also been investigated and show obvious blue and green light emission. PMID:27272926

  13. Nanostructured rocksalt-type solid solution series (Ge1-xSnxTe)nSb2Te3 (n=4, 7, 12; 0≤x≤1): Thermal behavior and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Rosenthal, Tobias; Neudert, Lukas; Ganter, Pirmin; de Boor, Johannes; Stiewe, Christian; Oeckler, Oliver

    2014-07-01

    Solid solutions (Ge1-xSnxTe)nSb2Te3 (n=4, 7, 12; 0≤x≤1) represent stable high-temperature phases and can be obtained as metastable compounds by quenching. High-resolution transmission electron microscopy reveals that the quenched (pseudo-)cubic materials exhibit parquet-like nanostructures comparable to, but especially for n=4 more pronounced than in (GeTe)nSb2Te3 (GST materials). The temperature-dependent phase transitions are comparable; however, substitution with Sn significantly lowers the transition temperatures between cubic high-temperature phase and the long range ordered layered phases that are stable at ambient conditions. In addition, the metrics of the quenched Sn-containing materials remains closer to cubic, especially for samples with n=7 or 12. For samples with high defect concentrations (n=4, 7), Sn-substituted samples exhibit electrical conductivities up to 3 times higher than those of corresponding GST materials. Since the difference in thermal conductivity is much less pronounced, this results in a doubling of the thermoelectric figure of merit (ZT) at high temperatures for (Ge0.5Sn0.5Te)4Sb2Te3 as compared to (GeTe)4Sb2Te3. Sn doping in (GeTe)7Sb2Te3 increases the ZT value by a factor of up to 4 which is also due to an increased Seebeck coefficient.

  14. MOVPE of GaSb/InGaAsSb Multilayers and Fabrication of Dual Band Photodetectors

    NASA Technical Reports Server (NTRS)

    Xiao, Ye-Gao; Bhat, Ishwara; Refaat, Tamer F.; Abedin, M. Nurul; Shao, Qing-Hui

    2005-01-01

    Metalorganic vapor phase epitaxy (MOVPE) of GaSb/InGaAsSb multilayer thin films and fabrication of bias-selectable dual band photodetectors are reported. For the dual band photodetectors the short wavelength detector, or the upper p- GaSb/n-GaSb junction photodiode, is placed optically ahead of the long wavelength one, or the lower photodiode. The latter is based on latticed-matched In0.13Ga0.87As0.11Sb0.89 with bandgap near 0.6 eV. Specifically, high quality multilayer thin films are grown sequentially from top to bottom as p+-GaSb/p-GaSb/n-GaSb/n-InGaAsSb/p-InGaAsSb/p-GaSb on undoped p-type GaSb substrate, and as n-GaSb/p-GaSb/p-InGaAsSb/n-InGaAsSb/n-GaSb on Te-doped n-type GaSb substrate respectively. The multilayer thin films are characterized by optical microscope, atomic force microscope (AFM), electron microprobe analyses etc. The photodiode mesa steps are patterned by photolithography with wet chemical etching and the front metallization is carried out by e-beam evaporation with Pd/Ge/Au/Ti/Au to give ohmic contact on both n- and p-type Sb based layer surfaces. Dark I-V measurements show typical diode behavior for both the upper and lower photodiodes. The photoresponsivity measurements indicate that both the upper and lower photodiodes can sense the infrared illumination corresponding to their cutoff wavelengths respectively, comparable with the simulation results. More work is underway to bring the long wavelength band to the medium infrared wavelength region near 4 micrometers.

  15. TANK 40 FINAL SB7B CHEMICAL CHARACTERIZATION RESULTS

    SciTech Connect

    Bannochie, C.

    2012-03-15

    /free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH{sup -}/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described. The following conclusions were drawn from the analytical results reported here: (1) The ratios of the major elements for the SB7b WAPS sample are different from those measured for the SB7a WAPS sample. There is less Al and Mn relative to Fe than the previous sludge batch. (2) The elemental composition of this sample and the analyses conducted here are reasonable and consistent with DWPF batch data measurements in light of DWPF pre-sample concentration and SRAT product heel contributions to the DWPF SRAT receipt analyses. The element ratios for Al/Fe, Ca/Fe, Mn/Fe, and U/Fe agree within 10% between this work and the DWPF Sludge Receipt and Adjustment Tank (SRAT) receipt analyses. (3) Sulfur in the SB7b WAPS sample is 82% soluble, slightly less than results reported for SB3, SB4, and SB6 samples but unlike the 50% insoluble sulfur observed in the SB5 WAPS sample. In addition, 23% of the soluble sulfur is not present as sulfate in SB7b. (4) The average activities of the fissile isotopes of interest in the SB7b WAPS sample are (in {mu}Ci/g of total dried solids): 4.22E-02 U-233, 6.12E-04 U-235, 1.08E+01 Pu-239, and 5.09E+01 Pu-241. The full radionuclide composition will be reported in a future document. (5) The fission product noble metal and Ag concentrations appear to have largely peaked in previous DWPF sludge batches, with the exception of Ru, which still shows a slight increase in SB7b.

  16. AlSb/InAs/AlSb quantum wells

    NASA Technical Reports Server (NTRS)

    Kroemer, Herbert

    1990-01-01

    Researchers studied the InAs/AlSb system recently, obtaining 12nm wide quantum wells with room temperature mobilities up to 28,000 cm(exp 2)/V center dot S and low-temperature mobilities up to 325,000 cm(exp 2)/V center dot S, both at high electron sheet concentrations in the 10(exp 12)/cm(exp 2) range (corresponding to volume concentrations in the 10(exp 18)/cm(exp 2) range). These wells were not intentionally doped; the combination of high carrier concentrations and high mobilities suggest that the electrons are due to not-intentional modulation doping by an unknown donor in the AlSb barriers, presumably a stoichiometric defect, like an antisite donor. Inasmuch as not intentionally doped bulk AlSb is semi-insulating, the donor must be a deep one, being ionized only by draining into the even deeper InAs quantum well. The excellent transport properties are confirmed by other observations, like excellent quantum Hall effect data, and the successful use of the quantum wells as superconductive weak links between Nb electrodes, with unprecendentedly high critical current densities. The system is promising for future field effect transistors (FETs), but many processing problems must first be solved. Although the researchers have achieved FETs, the results so far have not been competitive with GaAs FETs.

  17. Structure studies of nuclear systems close to the doubly-magic {sup 132}Sn using advanced {beta}{sup -}spectroscopy

    SciTech Connect

    Mach, H.; Fogelberg, B.; Jacobsson, L.; Lindroth, A.; Sanchez-Vega, M.; Taylor, R. B. E.; Blomqvist, J.; Isakov, V. I.; Mezilev, K. A.

    1998-12-21

    A brief description of the OSIRIS fission product mass separator and an outline of the current program of research in the domain of nuclear structure at the doubly magic {sup 132}Sn region are given. The most recent results on the study of the single particle states in {sup 133}Sb are briefly summarized.

  18. New Isotopes and Proton Emitters-Crossing the Drip Line in the Vicinity of 100Sn

    NASA Astrophysics Data System (ADS)

    Čeliković, I.; Lewitowicz, M.; Gernhäuser, R.; Krücken, R.; Nishimura, S.; Sakurai, H.; Ahn, D. S.; Baba, H.; Blank, B.; Blazhev, A.; Boutachkov, P.; Browne, F.; de France, G.; Doornenbal, P.; Faestermann, T.; Fang, Y.; Fukuda, N.; Giovinazzo, J.; Goel, N.; Górska, M.; Ilieva, S.; Inabe, N.; Isobe, T.; Jungclaus, A.; Kameda, D.; Kim, Y.-K.; Kwon, Y. K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Lorusso, G.; Lubos, D.; Moschner, K.; Murai, D.; Nishizuka, I.; Park, J.; Patel, Z.; Rajabali, M.; Rice, S.; Schaffner, H.; Shimizu, Y.; Sinclair, L.; Söderström, P.-A.; Steiger, K.; Sumikama, T.; Suzuki, H.; Takeda, H.; Wang, Z.; Watanabe, H.; Wu, J.; Xu, Z.

    2016-04-01

    Several new isotopes, 96In, 94Cd, 92Ag, and 90Pd, have been identified at the RIKEN Nishina Center. The study of proton drip-line nuclei in the vicinity of 93Ag and 89Rh with half-lives in the submicrosecond range. The systematics of the half-lives of odd-Z nuclei with Tz=-1 /2 toward 99Sn shows a stabilizing effect of the Z =50 shell closure. Production cross sections for nuclei in the vicinity of 100Sn measured at different energies and target thicknesses were compared to the cross sections calculated by epax taking into account contributions of secondary reactions in the primary target.

  19. Sequential and simultaneous adsorption of Sb(III) and Sb(V) on ferrihydrite: Implications for oxidation and competition.

    PubMed

    Qi, Pengfei; Pichler, Thomas

    2016-02-01

    Antimony (Sb) is a naturally occurring element of growing environmental concern whose toxicity, adsorption behavior and other chemical properties are similar to that of arsenic (As). However, less is known about Sb compared to As. Individual and simultaneous adsorption experiments with Sb(III) and Sb(V) were conducted in batch mode with focus on the Sb speciation of the remaining liquid phase during individual Sb(III) adsorption experiments. The simultaneous adsorption and oxidation of Sb(III) was confirmed by the appearance of Sb(V) in the solution at varying Fe/Sb ratios (500, 100 and 8) and varying pH values (3.8, 7 and 9). This newly formed Sb(V) was subsequently removed from solution at a Fe/Sb ratio of 500 or at a pH of 3.8. However, more or less only Sb(V) was observed in the liquid phase at the end of the experiments at lower Fe/Sb ratios and higher pH, indicating that competition took place between the newly formed Sb(V) and Sb(III), and that Sb(III) outcompeted Sb(V). This was independently confirmed by simultaneous adsorption experiments of Sb(III) and Sb(V) in binary systems. Under such conditions, the presence of Sb(V) had no influence on the adsorption of Sb(III) while Sb(V) adsorption was significantly inhibited by Sb(III) over a wide pH range (4-10). Thus, in the presence of ferrihydrite and under redox conditions, which allow the presence of both Sb species, Sb(V) should be the dominant species in aquatic environments, since Sb(III) is adsorbed preferentially and at the same time oxidized to Sb(V). PMID:26688239

  20. AGS experiments - 1994, 1995, 1996

    SciTech Connect

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  1. Preparation of mesoporous and/or macroporous SnO2-based powders and their gas-sensing properties as thick film sensors.

    PubMed

    Yuan, Luyang; Hyodo, Takeo; Shimizu, Yasuhiro; Egashira, Makoto

    2011-01-01

    Mesoporous and/or macroporous SnO(2)-based powders have been prepared and their gas-sensing properties as thick film sensors towards H(2) and NO(2) have been investigated. The mesopores and macropores of various SnO(2)-based powders were controlled by self-assembly of sodium bis(2-ethylhexyl)sulfosuccinate and polymethyl-methacrylate (PMMA) microspheres (ca. 800 nm in diameter), respectively. The introduction of mesopores and macropores into SnO(2)-based sensors increased their sensor resistance in air significantly. The additions of SiO(2) and Sb(2)O(5) into mesoporous and/or macroporous SnO(2) were found to improve the sensing properties of the sensors. The addition of SiO(2) into mesoporous and/or macroporous SnO(2) was found to increase the sensor resistance in air, whereas doping of Sb(2)O(5) into mesoporous and/or macroporous SnO(2) was found to markedly reduce the sensor resistance in air, and to increase the response to 1,000 ppm H(2) as well as 1 ppm NO(2) in air. Among all the sensors tested, meso-macroporous SnO(2) added with 1 wt% SiO(2) and 5 wt% Sb(2)O(5), which were prepared with the above two templates simultaneously, exhibited the largest H(2) and NO(2) responses. PMID:22319350

  2. Preparation of Mesoporous and/or Macroporous SnO2-Based Powders and Their Gas-Sensing Properties as Thick Film Sensors

    PubMed Central

    Yuan, Luyang; Hyodo, Takeo; Shimizu, Yasuhiro; Egashira, Makoto

    2011-01-01

    Mesoporous and/or macroporous SnO2-based powders have been prepared and their gas-sensing properties as thick film sensors towards H2 and NO2 have been investigated. The mesopores and macropores of various SnO2-based powders were controlled by self-assembly of sodium bis(2-ethylhexyl)sulfosuccinate and polymethyl-methacrylate (PMMA) microspheres (ca. 800 nm in diameter), respectively. The introduction of mesopores and macropores into SnO2-based sensors increased their sensor resistance in air significantly. The additions of SiO2 and Sb2O5 into mesoporous and/or macroporous SnO2 were found to improve the sensing properties of the sensors. The addition of SiO2 into mesoporous and/or macroporous SnO2 was found to increase the sensor resistance in air, whereas doping of Sb2O5 into mesoporous and/or macroporous SnO2 was found to markedly reduce the sensor resistance in air, and to increase the response to 1,000 ppm H2 as well as 1 ppm NO2 in air. Among all the sensors tested, meso-macroporous SnO2 added with 1 wt% SiO2 and 5 wt% Sb2O5, which were prepared with the above two templates simultaneously, exhibited the largest H2 and NO2 responses. PMID:22319350

  3. Exploring Ag(111) Substrate for Epitaxially Growing Monolayer Stanene: A First-Principles Study

    NASA Astrophysics Data System (ADS)

    Gao, Junfeng; Zhang, Gang; Zhang, Yong-Wei

    2016-07-01

    Stanene, a two-dimensional topological insulator composed of Sn atoms in a hexagonal lattice, is a promising contender to Si in nanoelectronics. Currently it is still a significant challenge to achieve large-area, high-quality monolayer stanene. We explore the potential of Ag(111) surface as an ideal substrate for the epitaxial growth of monolayer stanene. Using first-principles calculations, we study the stability of the structure of stanene in different epitaxial relations with respect to Ag(111) surface, and also the diffusion behavior of Sn adatom on Ag(111) surface. Our study reveals that: (1) the hexagonal structure of stanene monolayer is well reserved on Ag(111) surface; (2) the height of epitaxial stanene monolayer is comparable to the step height of the substrate, enabling the growth to cross the surface step and achieve a large-area stanene; (3) the perfect lattice structure of free-standing stanene can be achieved once the epitaxial stanene monolayer is detached from Ag(111) surface; and finally (4) the diffusion barrier of Sn adatom on Ag(111) surface is found to be only 0.041 eV, allowing the epitaxial growth of stanene monolayer even at low temperatures. Our above revelations strongly suggest that Ag(111) surface is an ideal candidate for growing large-area, high-quality monolayer stanene.

  4. Exploring Ag(111) Substrate for Epitaxially Growing Monolayer Stanene: A First-Principles Study.

    PubMed

    Gao, Junfeng; Zhang, Gang; Zhang, Yong-Wei

    2016-01-01

    Stanene, a two-dimensional topological insulator composed of Sn atoms in a hexagonal lattice, is a promising contender to Si in nanoelectronics. Currently it is still a significant challenge to achieve large-area, high-quality monolayer stanene. We explore the potential of Ag(111) surface as an ideal substrate for the epitaxial growth of monolayer stanene. Using first-principles calculations, we study the stability of the structure of stanene in different epitaxial relations with respect to Ag(111) surface, and also the diffusion behavior of Sn adatom on Ag(111) surface. Our study reveals that: (1) the hexagonal structure of stanene monolayer is well reserved on Ag(111) surface; (2) the height of epitaxial stanene monolayer is comparable to the step height of the substrate, enabling the growth to cross the surface step and achieve a large-area stanene; (3) the perfect lattice structure of free-standing stanene can be achieved once the epitaxial stanene monolayer is detached from Ag(111) surface; and finally (4) the diffusion barrier of Sn adatom on Ag(111) surface is found to be only 0.041 eV, allowing the epitaxial growth of stanene monolayer even at low temperatures. Our above revelations strongly suggest that Ag(111) surface is an ideal candidate for growing large-area, high-quality monolayer stanene. PMID:27373464

  5. Exploring Ag(111) Substrate for Epitaxially Growing Monolayer Stanene: A First-Principles Study

    PubMed Central

    Gao, Junfeng; Zhang, Gang; Zhang, Yong-Wei

    2016-01-01

    Stanene, a two-dimensional topological insulator composed of Sn atoms in a hexagonal lattice, is a promising contender to Si in nanoelectronics. Currently it is still a significant challenge to achieve large-area, high-quality monolayer stanene. We explore the potential of Ag(111) surface as an ideal substrate for the epitaxial growth of monolayer stanene. Using first-principles calculations, we study the stability of the structure of stanene in different epitaxial relations with respect to Ag(111) surface, and also the diffusion behavior of Sn adatom on Ag(111) surface. Our study reveals that: (1) the hexagonal structure of stanene monolayer is well reserved on Ag(111) surface; (2) the height of epitaxial stanene monolayer is comparable to the step height of the substrate, enabling the growth to cross the surface step and achieve a large-area stanene; (3) the perfect lattice structure of free-standing stanene can be achieved once the epitaxial stanene monolayer is detached from Ag(111) surface; and finally (4) the diffusion barrier of Sn adatom on Ag(111) surface is found to be only 0.041 eV, allowing the epitaxial growth of stanene monolayer even at low temperatures. Our above revelations strongly suggest that Ag(111) surface is an ideal candidate for growing large-area, high-quality monolayer stanene. PMID:27373464

  6. Lattice-Matched GaInAsSb/A1GaAsSb/GaSb Materials for Thermophotovoltaic Devices

    SciTech Connect

    C.A. Wang; C.J. Vineis; H.K. Choi; M.K. Connors; R.H. Huang; L.R. Daielson; G. Nichols; G.W. Charache; D. Donetsky; S. Anikeef; G. Belenky

    2002-09-19

    High-performance GaInAsSb/AlGaAsSb/GaSb thermophotovoltaic (TPV) devices with quantum efficiency and fill factor near theoretical limits and open-circuit voltage within about 15% of the limit can be routinely fabricated. To achieve further improvements in TPV device performance, detailed materials studies of GaInAsSb epitaxial growth, the microstructure, and minority carrier lifetime, along with device structure considerations are reported. This paper discusses the materials and device issues, and their implications on TPV device performance. In addition, improvements in TPV performance with integrated distributed Bragg reflectors and back-surface reflectors are discussed.

  7. Transport properties of a-SnxSb20Se80-x (8 <= x <= 18) chalcogenide glass

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Bindra, K. S.; Suri, N.; Thangaraj, R.

    2006-02-01

    X-ray diffraction and differential scanning calorimetric studies were performed on bulk Sn-Sb-Se chalcogenide alloys, which were obtained by the conventional melt quenching technique. The addition of Sn reduces the crystalline nature of Sb20Se80 chalcogenide alloy and amorphous samples are obtained for a-SnxSb20Se80-x 8 <= x <= 18. The Tg and Tx increase with composition up to the chemical threshold with a sharp change in slope at x = 10, corresponding to the average coordination number Z = 2.40, where a Philip-Thorpe rigidity transition occurs. Thin films were obtained by the thermal evaporation method for dc conductivity and optical measurements. From the temperature dependence of dc conductivity measurements, the activation energy (ΔE) and the pre-exponential factor (σ0) were calculated for each glassy alloy. An approximate linear dependence of ln σ0 on ΔE is observed which proved the validity of the Meyer-Neldel rule in the investigated samples. It has been observed that the difference in dc activation energy (ΔE) is less than half of the optical band gap (E0) indicating that the Fermi level is not located near the centre of the gap.

  8. Anisotropic interface induced formation of Sb nanowires on GaSb(111)A substrates.

    PubMed

    Proessdorf, A; Grosse, F; Perumal, K; Braun, W; Riechert, H

    2012-06-15

    The growth of Sb nanowires on GaSb(111)A substrates is studied by in situ azimuthal scan reflection high-energy electron diffraction (ARHEED). Bulk and layer contributions can be distinguished in the ARHEED transmission pattern through the Sb nanowires. The three-dimensional structure of the growing Sb nanowires is identified by post-growth atomic force microscopy (AFM) and x-ray diffraction (XRD). The lattice match of the Sb crystal along the [Formula: see text] and the GaSb crystal along [Formula: see text] directions lead to a preferential orientation of the Sb nanowires. The Sb adsorption and desorption kinetics is studied by thermal desorption spectroscopy. PMID:22595679

  9. Anisotropic interface induced formation of Sb nanowires on GaSb(111)A substrates

    NASA Astrophysics Data System (ADS)

    Proessdorf, A.; Grosse, F.; Perumal, K.; Braun, W.; Riechert, H.

    2012-06-01

    The growth of Sb nanowires on GaSb(111)A substrates is studied by in situ azimuthal scan reflection high-energy electron diffraction (ARHEED). Bulk and layer contributions can be distinguished in the ARHEED transmission pattern through the Sb nanowires. The three-dimensional structure of the growing Sb nanowires is identified by post-growth atomic force microscopy (AFM) and x-ray diffraction (XRD). The lattice match of the Sb crystal along the \\langle \\bar {2}10\\rangle and the GaSb crystal along \\langle \\bar {1}10\\rangle directions lead to a preferential orientation of the Sb nanowires. The Sb adsorption and desorption kinetics is studied by thermal desorption spectroscopy.

  10. Effect of metal doping on the low-temperature structural behavior of thermoelectric {beta}-Zn{sub 4}Sb{sub 3}

    SciTech Connect

    Nylen, Johanna; Lidin, Sven; Andersson, Magnus; Liu Hongxue; Newman, Nate; Haeussermann, Ulrich

    2007-09-15

    The low-temperature structural phase transitions of Bi, Pb, In and Sn-doped samples of thermoelectric Zn{sub 4}Sb{sub 3} have been characterized on crystals grown from molten metal fluxes, using electrical resistance and single crystal X-ray diffraction measurements. Room temperature stable, disordered, {beta}-Zn{sub 4}Sb{sub 3} undergoes two phase transitions at 254 and 235 K to the consecutively higher ordered phases {alpha} and {alpha}', respectively. The ideal crystallographic composition of {alpha}-Zn{sub 4}Sb{sub 3} is Zn{sub 13}Sb{sub 10}. The {alpha}-{alpha}' transformation is triggered by a slight and homogenous Zn deficiency with respect to this composition and introduces a compositional modulation in the {alpha}-Zn{sub 4}Sb{sub 3} structure. When preparing {beta}-Zn{sub 4}Sb{sub 3} in the presence of metals with low melting points (Bi, Sn, In, Pb) the additional metal atoms are unavoidably incorporated in small concentrations (0.04-1.3 at%) and act as dopants. This incorporation alters the subtle balance between Zn disorder and Zn deficiency in Zn{sub 4}Sb{sub 3} and has dramatic consequences for its low-temperature structural behavior. From molten metal flux synthesis it is possible to obtain (doped) Zn{sub 4}Sb{sub 3} samples which (1) only display a {beta}-{alpha} transition, (2) only display a {beta}-{alpha}' transition, or (3) do not display any low-temperature phase transition at all. Case (2) provided diffraction data with a sufficient quality to obtain a structural model for highly complex, compositionally modulated, {alpha}'-Zn{sub 4}Sb{sub 3}. The crystallographic composition of this phase is Zn{sub 84}Sb{sub 65}. - Graphical abstract: The thermoelectric material Zn{sub 4}Sb{sub 3} displays complex temperature polymorphism. Room temperature stable, disordered, {beta}-Zn{sub 4}Sb{sub 3} undergoes two phase transitions at 254 and 235 K to the consecutively higher ordered phases {alpha} and {alpha}', respectively. The {alpha

  11. Method of making an InAsSb/InAsSbP diode lasers

    DOEpatents

    Razeghi, Manijeh

    1997-01-01

    InAsSb/InAsSbP/InAs Double Heterostructures (DH) and Separate Confinement Heterostructure Multiple Quantum Well (SCH-MQW) structures are taught wherein the ability to tune to a specific wavelength within 3 .mu.m to 5 .mu.m is possible by varying the ratio of As:Sb in the active layer.

  12. Transport properties in AlInSb/InAsSb heterostructures

    SciTech Connect

    Zhang, Yuwei; Zhang, Yang Wang, Chengyan; Zeng, Yiping

    2013-12-28

    Based on theoretical studies of transport properties in InAsSb-based quantum well heterostructures, we propose a material design for InAsSb quantum well with AlInSb barrier. Variation of electron mobility and two-dimensional electron gas concentration in Al{sub y}In{sub 1−y}Sb/InAs{sub 1−x}Sb{sub x} heterostructures over the compositional range of which InAsSb is fully strained to AlInSb are investigated, where impact from dislocation scattering could be minimized. In comparison with InAs and InSb based quantum well heterostructures, InAsSb is advantageous in achieving the highest electron mobility despite of alloy disorder scattering. The maximum mobility of 37 000 cm{sup 2}/V s is attainable in 15 nm InAs{sub 0.2}Sb{sub 0.8} quantum well with Al{sub 0.24}In{sub 0.76}Sb barrier and there is great potential for further improvement. Our InAsSb based quantum well heterostructure is proved to be a robust structure for high-speed applications.

  13. Method of making an InAsSb/InAsSbP diode lasers

    DOEpatents

    Razeghi, M.

    1997-08-19

    InAsSb/InAsSbP/InAs Double Heterostructures (DH) and Separate Confinement Heterostructure Multiple Quantum Well (SCH-MQW) structures are taught wherein the ability to tune to a specific wavelength within 3 {micro}m to 5 {micro}m is possible by varying the ratio of As:Sb in the active layer. 9 figs.

  14. Ternary CaCu{sub 4}P{sub 2}-type pnictides AAg{sub 4}Pn{sub 2} (A=Sr, Eu; Pn=As, Sb)

    SciTech Connect

    Stoyko, Stanislav S.; Khatun, Mansura; Scott Mullen, C.; Mar, Arthur

    2012-08-15

    Four ternary pnictides AAg{sub 4}Pn{sub 2} (A=Sr, Eu; Pn=As, Sb) were prepared by reactions of the elements at 850 Degree-Sign C and their crystal structures were determined from single-crystal X-ray diffraction studies. These silver-containing pnictides AAg{sub 4}Pn{sub 2} adopt the trigonal CaCu{sub 4}P{sub 2}-type structure (Pearson symbol hR21, space group R3-bar m, Z=3; a=4.5555(6) A, c=24.041(3) A for SrAg{sub 4}As{sub 2}; a=4.5352(2) A, c=23.7221(11) A for EuAg{sub 4}As{sub 2}; a=4.7404(4) A, c=25.029(2) A for SrAg{sub 4}Sb{sub 2}; a=4.7239(3) A, c=24.689(2) A for EuAg{sub 4}Sb{sub 2}), which can be derived from the trigonal CaAl{sub 2}Si{sub 2}-type structure of the isoelectronic zinc-containing pnictides AZn{sub 2}Pn{sub 2} by insertion of additional Ag atoms into trigonal planar sites within [M{sub 2}Pn{sub 2}]{sup 2-} slabs built up of edge-sharing tetrahedra. Band structure calculations on SrAg{sub 4}As{sub 2} and SrAg{sub 4}Sb{sub 2} revealed that these charge-balanced Zintl phases actually exhibit no gap at the Fermi level and are predicted to be semimetals. - Graphical abstract: SrAg{sub 4}As{sub 2} and related pnictides adopt a CaCu{sub 4}P{sub 2}-type structure in which additional Ag atoms enter trigonal planar sites within slabs built from edge-sharing tetrahedra. Highlights: Black-Right-Pointing-Pointer AAg{sub 4}Pn{sub 2} are the first Ag-containing members of the CaCu{sub 4}P{sub 2}-type structure. Black-Right-Pointing-Pointer Ag atoms are stuffed in trigonal planar sites within CaAl{sub 2}Si{sub 2}-type slabs. Black-Right-Pointing-Pointer Ag-Ag bonding develops through attractive d{sup 10}-d{sup 10} interactions.

  15. Investigation of photoelectrochemical-oxidized p-GaSb films

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Ying; Huang, Hung-Lin; Lee, Ching-Ting; Petrovich Pchelyakov, Oleg; Andreevich Pakhanov, Nikolay

    2012-12-01

    GaSb oxide films were directly formed on the p-GaSb films using the bias-assisted photoelectrochemical (PEC) oxidation method. X-ray photoelectron spectroscopy analysis indicated that the resulting GaSb oxide films consisted of Ga2O3, Sb2O3, and Sb2O5. Different from the non-PEC oxides, the PEC derived oxide contained much more Sb2O5 than Sb2O3. Besides, the interface state density between the PEC oxide and p-GaSb was lower than that of the ordinary oxide/p-GaSb interface. The high quality of the PEC-oxidized GaSb films was attributed to the increase of the stable Sb2O5 content and decrease of the elemental Sb content in the films.

  16. Solvothermal synthesis of wire-like SnxSb2Te3+x with an enhanced thermoelectric performance.

    PubMed

    Yang, Heng Quan; Miao, Lei; Liu, Cheng Yan; Wang, Xiao Yang; Peng, Ying; Zhang, Ai Juan; Zhou, Xiao Yuan; Wang, Guo Yu; Li, Chao; Huang, Rong

    2016-04-25

    Nanostructured tellurides have attracted increasing attention in thermoelectric applications for waste heat recovery and cooling devices. Here, we report on the synthesis of wire-like SnxSb2Te3+x (x = 0, 0.02 and 0.05) nanoparticles using elemental precursors in EG. The enhanced thermoelectric performance was achieved in alloyed samples due to the increase of carrier population in heavy valence band valleys by incorporating Sn(2+) at the Sb(3+) sublattice, enabling the simultaneous realization of low electrical resistivity along with a high Seebeck coefficient as well as the decline of thermal conductivity. Thus a boosted power factor and low thermal conductivity lead to the highest ZT value of 0.58 at 150 °C in the Sn0.02Sb2Te3.02 sample. Our research offers a general wet-chemical route for the preparation of one-dimensional nanomaterials and probably promotes the practical thermo