Science.gov

Sample records for ag thin film

  1. Pressureless Bonding Using Sputtered Ag Thin Films

    NASA Astrophysics Data System (ADS)

    Oh, Chulmin; Nagao, Shijo; Suganuma, Katsuaki

    2014-12-01

    To improve the performance and reliability of power electronic devices, particularly those built around next-generation wide-bandgap semiconductors such as SiC and GaN, the bonding method used for packaging must change from soldering to solderless technology. Because traditional solders are problematic in the harsh operating conditions expected for emerging high-temperature power devices, we propose a new bonding method in this paper, namely a pressureless, low-temperature bonding process in air, using abnormal grain growth on sputtered Ag thin films to realize extremely high temperature resistance. To investigate the mechanisms of this bonding process, we characterized the microstructural changes in the Ag films over various bonding temperatures and times. We measured the bonding properties of the specimens by a die-shear strength test, as well as by x-ray diffraction measurements of the residual stress in the Ag films to show how the microstructural developments were essential to the bonding technology. Sound bonds with high die strength can be achieved only with abnormal grain growth at optimum bonding temperature and time. Pressureless bonding allows for production of reliable high-temperature power devices for a wide variety of industrial, energy, and environmental applications.

  2. Ferroelectric domain of epitaxial AgNbO3 thin film

    NASA Astrophysics Data System (ADS)

    Ahn, Yoonho; Seo, Jeongdae; Lee, Kwang Jo; Son, Jong Yeog

    2016-03-01

    We investigated ferroelectric properties of silver niobate (AgNbO3) thin film grown on Nb-doped SrTiO3 substrate by pulsed laser deposition. The AgNbO3 thin film exhibited room temperature ferroelectricity with a large remanent polarization of about 31 μC/cm2 (2Pr~62 μC/cm2) and fast switching behavior within 120 ns. Triangular grains of AgNbO3 thin film were observed by atomic force microscopy (AFM). The piezoelectric force microscopy (PFM) study revealed that the AgNbO3 thin film had mosaic-like ferroelectric domain structure. In comparison with PbTiO3 thin films, domain size of the AgNbO3 thin films was smaller than that of PbTiO3 thin films. Based on Landau, Lifshitz, and Kittel (LLK) scaling law of the domain size versus film thickness curves, it is inferred that AgNbO3 thin films have slightly lower domain wall energy than that of PbTiO3 thin films.

  3. Characterization of the Ag/YBa2Cu3O(7-x) contact in thin films

    NASA Astrophysics Data System (ADS)

    Jia, Q. X.; Anderson, W. A.; Zheng, J. P.; Zhu, Y. Z.; Patel, S.

    1990-12-01

    Ag contacts to very thin superconducting YBa2Cu3O(7-x) films were prepared by thermal evaporation. The nature of the Ag/YBa2Cu3O(7-x) contact during thermal treatment was in situ investigated by a combination of three- and four-terminal resistance measurements. The experimental results suggested that the interaction between Ag and the YBa2Cu3O(7-x) film began at a temperature of around 370 C. The lack of reproducibility in forming a low-resistance contact to very thin YBa2Cu3O(7-x) films and the high probability of degrading the film quality after thermal treatment of the contact might be due to the excess Ag doping in YBa2Cu3O(7-x). Ag island formation, as revealed by SEM after thermal treatment of the contact, is a limitation of Ag for use as a good contact electrode for very thin superconducting films.

  4. Spoof-like plasmonic behavior of plasma enhanced atomic layer deposition grown Ag thin films

    SciTech Connect

    Prokes, S. M.; Glembocki, O. J.; Cleveland, Erin; Caldwell, Josh D.; Foos, Edward; Niinistoe, Jaakko; Ritala, Mikko

    2012-01-30

    The plasmonic behavior of Ag thin films produced by plasma enhanced atomic layer deposition (PEALD) has been investigated. We show that as-deposited flat PEALD Ag films exhibit unexpected plasmonic properties, and the plasmonic enhancement can differ markedly, depending on the microstructure of the Ag film. Electromagnetic field simulations indicate that this plasmonic behavior is due to air gaps that are an inherent property of the mosaic-like microstructure of the PEALD-grown Ag film, suggesting that this is a metamaterial with behavior very similar to what would be expected in spoof plasmonics where gaps are fabricated in films to create plasmonic-like resonances.

  5. Surface-enhanced Raman scattering from Ag nanoparticles formed by visible laser irradiation of thermally annealed AgO{sub x} thin films

    SciTech Connect

    Fujimaki, Makoto; Awazu, Koichi; Tominaga, Junji; Iwanabe, Yasuhiko

    2006-10-01

    Visible laser irradiation of AgO{sub x} thin films forms Ag nanoparticles, which then results in surface-enhanced Raman scattering (SERS). The efficiency of this Ag nanoparticle formation strongly depends on the properties of the AgO{sub x} thin films. Thermal annealing causes changes in physical properties such as deoxidization of the films and aggregation of Ag atoms in the films. In the present research, the effects of the changes induced by thermal annealing on SERS efficiency were examined. It was found that AgO{sub x} thin films annealed at 300 deg. C for 5 min in a N{sub 2} atmosphere were suitable for the formation of Ag nanoparticles effective for SERS, while films that were not annealed were not. From these results, it was deduced that the Ag aggregation resulting from thermal annealing in AgO{sub x} thin films promotes the Ag nanoparticle formation.

  6. Photocurrent enhancement of chemically synthesized Ag nanoparticle-embedded BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Maruyama, Rika; Sakamoto, Wataru; Yuitoo, Isamu; Takeuchi, Teruaki; Hayashi, Koichiro; Yogo, Toshinobu

    2016-10-01

    BiFeO3 and Ag nanoparticle-embedded BiFeO3 thin films were prepared on Pt/TiO x /SiO2/Si and MgO(100) substrates using colloidal silver and BiFeO3 metal-organic precursor solutions. Colloidal silver solution was prepared by a chemical reductive method using NaBH4 as a reductant. The prepared Ag nanoparticles exhibited characteristic optical absorption properties based on their surface plasmon resonance related to particle size. The synthesized BiFeO3 and Ag nanoparticle/BiFeO3 thin films demonstrated rapid on/off responses of photocurrent to visible light. The Ag nanoparticle-incorporated BiFeO3 film exhibited a 2-4-fold higher photocurrent than the BiFeO3 film. Optical and ferroelectric properties did not change markedly even when Ag nanoparticles were embedded in the BiFeO3 thin film within the quantities of this study. Furthermore, in the Ag nanoparticle/BiFeO3 composite structure, Ag nanoparticles were introduced in the near-metallic state with maintained their nanometer size. In the Ag nanoparticle-embedded BiFeO3 film, photoinduced charge separation and transport of photoexcited carriers were enhanced by the surface plasmon effect of nanosized Ag particles as well as the internal bias electric field existed in the narrow-bandgap BiFeO3 thin film.

  7. Antibacterial activity of microstructured Ag/Au sacrificial anode thin films.

    PubMed

    Köller, Manfred; Sengstock, Christina; Motemani, Yahya; Khare, Chinmay; Buenconsejo, Pio J S; Geukes, Jonathan; Schildhauer, Thomas A; Ludwig, Alfred

    2015-01-01

    Ten different Ag dot arrays (16 to 625 microstructured dots per square mm) were fabricated on a continuous Au thin film and for comparison also on Ti film by sputter deposition and photolithographic patterning. To analyze the antibacterial activity of these microstructured films Escherichia coli and Staphylococcus aureus were placed onto the array surfaces and cultivated overnight. To analyze the viability of planktonic as well as surface adherent bacteria, the applied bacterial fluid was subsequently aspirated, plated on blood agar plates and adherent bacteria were detected by fluorescence microscopy. A particular antibacterial effect towards both bacterial strains was induced by Ag dot arrays on fabricated Au thin film (sacrificial anode system for Ag), due to the release of Ag ions from dissolution of Ag dots in contrast to Ag dot arrays fabricated on the Ti thin films (non-sacrificial anode system for Ag) which remained intact to the original dot shape. The required number of Ag dots on gold film to achieve complete bactericidal effects for both bacterial strains was seven times lower than that observed with Ag dot arrays on Ti film.

  8. Structure and bonding in photodiffused amorphous Ag-GeSe/sub 2/ thin films

    SciTech Connect

    Fischer-Colbrie, A.; Bienenstock, A.; Fuoss, P.H.; Marcus, M.A.

    1988-12-15

    Grazing-incidence x-ray scattering (GIXS) techniques have been used to study the local and intermediate-range order in photodiffused amorphous Ag-GeSe/sub 2/ thin films and a variety of Ag-Ge-Se alloys. Using synchrotron-radiation sources, the GIXS technique can be used in conjunction with radial-distribution-function analysis, differential anomalous x-ray scattering, and differential distribution-function analysis to study the structure of very thin amorphous films. With these techniques, we have determined that the local atomic structure of Ag-GeSe/sub 2/ films satisfies a model where Se-Ag dative bonds are formed, one Se-Ag covalent bond is formed for each Ag atom added (below a critical composition), and Ge-Ge bonds are created as Ag is added. This last result significantly modifies the intermediate-range order in this system.

  9. Ag Nanodots Emitters Embedded in a Nanocrystalline Thin Film Deposited on Crystalline Si Solar Cells.

    PubMed

    Park, Seungil; Ryu, Sel Gi; Ji, HyungYong; Kim, Myeong Jun; Peck, Jong Hyeon; Kim, Keunjoo

    2016-06-01

    We fabricated crystalline Si solar cells with the inclusion of various Ag nanodots into the additional emitters of nanocrystallite Si thin films. The fabricated process was carried out on the emitter surface of p-n junction for the textured p-type wafer. The Ag thin films were deposited on emitter surfaces and annealed at various temperatures. The amorphous Si layers were also deposited on the Ag annealed surfaces by hot-wire chemical vapor deposition and then the deposited layers were doped by the second n-type doping process to form an additional emitter. From the characterization, both the Ag nanodots and the deposited amorphous Si thin films strongly reduce photo-reflectances in a spectral region between 200-400 nm. After embedding Ag nanodots in nanocrystallite Si thin films, a conversion efficiency of the sample with added emitter was achieved to 15.1%, which is higher than the 14.1% of the reference sample and the 14.7% of the de-posited sample with a-Si:H thin film after the Ag annealing process. The additional nanocrystallite emitter on crystalline Si with Ag nanodots enhances cell properties. PMID:27427665

  10. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF.

  11. Chemically-inactive interfaces in thin film Ag/AgI systems for resistive switching memories

    PubMed Central

    Cho, Deok-Yong; Tappertzhofen, Stefan; Waser, Rainer; Valov, Ilia

    2013-01-01

    AgI nanoionics-based resistive switching memories were studied in respect to chemical stability of the Ag/AgI interface using x-ray absorption spectroscopy. The apparent dissolution of Ag films of thickness below some tens of nanometers and the loss of electrode/electrolyte contact was critically addressed. The results evidently show that there are no chemical interactions at the interface despite the high ionic mobility of Ag ions. Simulation results further show that Ag metal clusters can form in the AgI layer with intermediate-range order at least up to next-next nearest neighbors, suggesting that Ag can permeate into the AgI only in an aggregated form of metal crystallite. PMID:23378904

  12. Preparation of vanadium oxide thin films modified with Ag using a hybrid deposition configuration

    NASA Astrophysics Data System (ADS)

    Gonzalez-Zavala, F.; Escobar-Alarcón, L.; Solís-Casados, D. A.; Rivera-Rodríguez, C.; Basurto, R.; Haro-Poniatowski, E.

    2016-04-01

    The application of a hybrid deposition configuration, formed by the interaction of a laser ablation plasma with a flux of atomic vapor, to deposit vanadium oxide thin films modified with different amounts of silver, is reported. The effect of the amount of Ag incorporated in the films on their structural, morphological, compositional and optical properties was studied. The obtained results reveal that films with variable Ag content from 11.7 to 24.6 at.% were obtained. Depending on the silver content, the samples show very different surface morphologies. Optical characterization indicates the presence of nanostructures of Ag. Thin films containing silver exhibit better photocatalytic performances than unmodified V2O5 films. Raman spectra reveal that as the silver content is increased, the signals associated with V2O5 disappear and new modes attributed mainly to silver vanadates appear suggesting the formation of ternary compounds.

  13. Ag nanoparticle dispersed PbTiO3 percolative composite thin film with high permittivity

    NASA Astrophysics Data System (ADS)

    Wang, Zongrong; Hu, Tao; Tang, Liwen; Ma, Ning; Song, Chenlu; Han, Gaorong; Weng, Wenjian; Du, Piyi

    2008-12-01

    Ag nanoparticle dispersed PbTiO3 percolative composite thin films were prepared in situ by sol-gel method using Pb(NO3)2, Ti(C4H9O)4, and AgNO3 as raw materials and lactic acid along with citric acid as complexing agent. The size of the Ag nanoparticles measured by ultraviolet-visible spectra is about 3nm. The percolation effect occurs in composite thin films. The composite exhibits relatively high dielectric constant which is about five times higher than that of PbTiO3 thin film and comparatively low dielectric loss comparable to pure PbTiO3 system. It is highly attractive in application of high quality dielectric devices and miniaturization.

  14. Tuning the Stoichiometry of Ag2S Thin Films for Resistive Switching Applications.

    PubMed

    Dias, C; Proenca, M P; Fernandes, L; Tavares, P B; Vilarinho, R; Moreira, J Agostinho; Araújo, J P; Ventura, J

    2016-03-01

    In this work silver-rich and sulfur-rich silver sulfide (Ag2S) thin films were fabricated using a diversified set of experimental methods, namely ion beam deposition and atmosphere- and solution-based sulfurizations. The composition of the Ag2S thin films was studied using X-ray diffraction, Raman spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. We found that it strongly depends on the fabrication conditions, such as sulfurization time and temperature. These conditions, in turn, affect the electrical characteristics of the thin films, namely the resistivity and resistive switching. We were able to control the Ag2S stoichiometry and infer its dependence on the fabrication parameters for all the followed methods.

  15. Structural and optical studies on AgSbSe{sub 2} thin films

    SciTech Connect

    Asokan, T. Namitha; Urmila, K. S.; Pradeep, B.

    2014-01-28

    AgSbSe{sub 2} semiconducting thin films are successfully deposited using reactive evaporation technique at a substrate temperature of 398K. X-ray diffraction studies reveal that the films are polycrystalline in nature. The structural parameters such as average particle size, dislocation density, and number of crystallites per unit have been evaluated. Atomic Force Microscopy is used to study the topographic characteristics of the film including the grain size and surface roughness. The silver antimony selenide thin films have high absorption coefficient of about 10{sup 5} cm{sup −1} and it has an indirect band gap of 0.64eV.

  16. The mechanism of Ag top layer on the coercivity enhancement of FePt thin films

    SciTech Connect

    Zhao, Z.L.; Ding, J.; Yi, J.B.; Chen, J.S.; Zeng, J.H.; Wang, J.P.

    2005-05-15

    The magnetic properties of the FePt thin films with a Ag top layer prepared by magnetron sputtering have been studied. With 4 nm Ag layer deposited right after the deposition of FePt layer, the ordering temperature of the L1{sub 0} FePt phase decreased to 350 deg. C or below. X-ray photoelectron spectroscopy results indicate that Ag has diffused into the FePt layer when Ag was deposited at 350 deg. C, while Ag remains on the top of the FePt when Ag was deposited at room temperature. The Ag top layer deposited at 350 deg. C was also found to protect the FePt layer from oxidation.

  17. Linear magnetoresistance in Ag2+δSe thin films

    NASA Astrophysics Data System (ADS)

    von Kreutzbruck, M.; Lembke, G.; Mogwitz, B.; Korte, C.; Janek, J.

    2009-01-01

    In the nonstoichiometric low-temperature phase of silver selenide a very small silver excess within the semiconducting silver selenide matrix in the order of 0.01% is sufficient to generate a linear magnetoresistance (LMR) of more than 300% at 5 T, which does not saturate at fields up to 60 T. Different theoretical models have been proposed to explain this unusual magnetoresistance (MR) behavior, among them a random resistor network consisting of four-terminal resistor units. According to this model the LMR and the crossover field from linear to quadratic behavior are primarily controlled by both the spatial distribution of the charge-carrier mobility and its average value, being essentially functions of the local and average compositions. Here we report measurements on silver-rich thin AgxSe films with a thickness between 20 nm and 2μm , which show an increasing average mobility in conjunction with an enhanced MR for increasing film thickness. We found a linear scaling between the size of the transverse LMR and the crossover field, as predicted by the theory. For films thinner than about 100 nm the MR with field directed in the sample plane shows a breakdown of the LMR, revealing the physical length scale of the inhomegeneities in thin AgxSe devices.

  18. Electronic properties and bonding characteristics of AlN:Ag thin film nanocomposites

    SciTech Connect

    Lekka, Ch. E.; Patsalas, P.; Komninou, Ph.; Evangelakis, G. A.

    2011-03-01

    We present theoretical and experimental results on the bonding and structural characteristics of AlN:Ag thin film nanocomposites obtained by means of density functional theory (DFT) computations, high resolution transmission electron microscopy (HRTEM) observations, Auger electron spectroscopy (AES), and x-ray diffraction (XRD) measurements. From the theoretical calculations it was determined that the presence of the Ag substitutional of N or Al atoms affects the electronic density of states (EDOS) of the resulting systems. In particular, occupied energy states are introduced (between others) that lie within the energy gap of the AlN matrix due to Ag-d, Al-p (accompanied with a charge transfer from Al to Ag), Ag-p, and N-p hybridizations, respectively. The effect is predicted to be even more pronounced in the case of Ag nanoparticle inclusions affecting the EDOS of the composite system. These predictions were verified by the HRTEM images that gave unequivocal evidence for the presence and stability of Ag nanoparticles in the AlN matrix. In addition, the AES data suggested a metal-metal (Ag-Al) bonding preference, while the XRD patterns revealed that the atomic Ag dispersions in the AlN thin films results in a small elongation of the Wurtzite lattice, which is in agreement with the DFT predictions. These results may useful in tailoring the electronic response of AlN-based systems and the design of devices for various opto-electronic applications.

  19. Characterization of radiative recombination in Ag(In,Ga)Se2 thin films by photoluminescence

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Liu, J.; Liu, G. F.

    2016-06-01

    A detailed analysis of the radiative recombination processes in Ag(InGa)Se2 thin films grown by a three-stage method was carried out by photoluminescence. The temperature and excitation dependence of the photoluminescence spectra was used to identify the recombination types and determine the ionization energy of the defects in the films. Significant differences were observed between the spectra of the Ag-rich and Ag-poor samples. The Ag-rich films were dominated by two emission peaks of donor acceptor pairs (DAPs). The DAP at lower energy level is attributed to recombination of donor level 13.8 meV (Agi) with acceptor level 70.3 meV (AgIn), while the one at high energy level is assigned to recombination of donor level 18.5 meV (Agi) with acceptor level 108.9 (AgSe). When Ag/III atomic ratio was near 2.00, a phonon related-structure began to appear, which is attributed to the phonon replica of the high energy level DAP. In the case of Ag-poor AIGS samples, the dominant broad asymmetric peaks of AIGS films with different Ag/III atomic ratios were related to potential fluctuation at low temperature, and the compensation level decreased with increasing Ag/III atomic ratio. The emission line was assigned to recombination of donor level 12.7 meV (Agi) with acceptor level 175 meV ( AgGa 2). When the excitation power and temperature were increased, new free-bound and DAP emission lines began to appear. The free-bound was assigned to the transition from the conduction band to an acceptor level of 80 meV (AgIn). The DAP was assigned to recombination of donor level 20 meV (VSe) with acceptor level 145 meV (AgGa).

  20. Patterned PPy Polymer and PPy/Ag Nanocomposites Thin Films by Photo-DLICVD

    NASA Astrophysics Data System (ADS)

    Manole, C. C.; Maury, F.; Demetrescu, I.

    This work deals with the deposition of both undoped (insulator) and extrinsically Ag-doped (conductive) polypyrrole (PPy) coatings by an original Photo-DLICVD process. The uniform and conformal coverage of PPy thin films on both Si(100) wafer and liquid micro-droplets forming blisters is investigated. A self-ordered surface patterning of the blisters is achieved and discussed in relation with the substrate nature. By changing the precursor chemistry in this CVD process, conductive PPy/Ag nanocomposite films are grown. First evidence for conductive behavior of these Ag-doped PPy coatings was found. The Ag nanoparticles (NPs) reveal 1D assembly at the ledges of crystal-like facets of micron size nanocomposite particles leading to more complex arrangements of the metal NPs in the hybrid PPy/Ag coatings.

  1. Influence of the preparation method on the As-Se-AgI thin films behaviour

    NASA Astrophysics Data System (ADS)

    Hineva, T.; Petkova, T.; Petkov, P.; Mikli, V.; Socol, G.; Mihailescu, C. N.; Mihailescu, I. N.

    2008-05-01

    Bulk glasses of the (As2Se3)1-x (AgI)x and (AsSe)1-x(AgI)x systems, where x = 5, 10, 15 up to 35 mol.% have been prepared by the melt-quenched technique. The thin films have been deposited by means of vacuum thermal evaporation (VTE) and pulsed laser deposition (PLD). The XRD investigation reveals a generally amorphous structure; small peaks are only observed in the samples with the highest AgI. The film compositions have been determined by EDS (energy dispersive X-ray microanalysis). WDS (wavelength dispersive spectroscopy) studies have shown that the films do not contain oxygen within the accuracy of the method (1 %). The films are dense with smooth surface as revealed by using scanning electron microscopy (SEM) and atomic force microscopy (AFM).

  2. Preparation of AgInS{sub 2} chalcopyrite thin films by chemical spray pyrolysis

    SciTech Connect

    Ortega-Lopez, M.; Vigil-Galan, O.; Cruz Gandarilla, F.; Solorza-Feria, O

    2003-01-01

    AgInS{sub 2} thin films were prepared by the spray pyrolysis technique using a water/ethanol solution containing silver acetate, indium chloride and thiourea. We reported our results on the characterization of tetragonal AgInS{sub 2} (chalcopyrite type) films, which were grown from indium deficient spraying solution. The films displayed a n-type conductivity with room temperature resistivities in the range between 10{sup 3} and 10{sup 4} {omega} cm. The absorption spectra of sprayed films revealed two direct band-gaps with characteristic energies around 1.87 and 2.01 eV, which are in good agreement with the reported energy values for interband transitions from the split p-like valence band to the s-like conduction band in tetragonal AgInS{sub 2} single crystals.

  3. Properties of cathodic arc deposited high-temperature superconducting composite thin films on Ag substrates

    NASA Astrophysics Data System (ADS)

    Chae, M. S.; Simnad, M. T.; Maple, M. B.; Anders, S.; Anders, A.; Brown, I. G.

    1996-02-01

    High temperature superconducting composite thin films on Ag substrates were prepared by cathodic arc deposition of alloy precursors. The deposition technique employed a cathode comprised of a precursor alloy for the vacuum arc plasma source. The precursor alloy was prepared by multiple arc-melting of mixed metallic constituents of the high-temperature superconducting material Bi 2Sr 2CaCu 2O y (Bi2212) and 50 wt.% of Ag. The presence of silver in the precursor alloy film was expected to allow accommodation of the lattice and thermal expansion mismatch between the oxidized film and the silver substrate. The as-deposited film could be formed to practically any desirable shape before being subjected to heat treatments. Following deposition, controlled oxidation of the precursor alloy thin film on the Ag substrate was performed to produce the superconducting composite on the silver substrate. After the heat treatment, the composite film consisted of Bi2212 highly c-axis oriented normal to the Ag substrate.

  4. The role of Ag in the pulsed laser growth of YBCO thin films

    NASA Astrophysics Data System (ADS)

    Kalyanaraman, R.; Oktyabrsky, S.; Narayan, J.

    1999-05-01

    We have studied systematically the role of silver in improving microstructure and properties of Y1Ba2Cu3O7-δ (YBCO) thin films. We have more than doubled the grain size to nearly 1.8 μm and reduced processing temperatures by incorporating Ag in the YBCO films, which is accomplished by using a composite target containing 15% by weight of Ag. These films show approximately four times higher Jc than the best films obtained on MgO(001) substrates deposited from stoichiometric Y1Ba2Cu3O7-δ targets. Study of the silver content in the film as a function of the deposition temperature shows clearly a decreasing concentration with increasing temperature and a segregation of the Ag to the surface. The increased oxygen content in the films is also observed at lower processing temperatures, providing strong support for the efficient oxygenation of YBCO via the presence of silver. A qualitative model suggests that the formation of silver oxide, rapid surface diffusion of Ag on MgO surfaces, and the nonreactivity of Ag with YBCO are the key aspects to the improvement in microstructure. The possibility of extending these ideas to the growth of oxides is also discussed, along with the fabrication of in-situ superconducting-metal junctions with 3D geometries.

  5. Influence of Ag doping concentration on structural and optical properties of CdS thin film

    SciTech Connect

    Kumar, Pragati; Saxena, Nupur; Gupta, Vinay; Agarwal, Avinash

    2015-05-15

    This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.

  6. SPR sensitivity of silver nanorods in CsBr-Ag nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Lovkush; Ravikant, Chhaya; Arun, P.; Kumar, Kuldeep

    2016-07-01

    We have investigated the optical and morphological properties of CsBr-Ag complex thin films deposited by thermal evaporation on glass substrate. By varying the thickness of the film with fixed mass ratio of cesium bromide and silver, we observed a broad absorption peak in the visible region from 350 to 450 nm corresponding to the transverse and longitudinal surface plasmon resonance (SPR) mode. Red shift is observed, with varying film thickness, in SPR peak position corresponding to longitudinal mode with no significant change in transverse mode due to variation in the aspect ratio of the silver nano crystalline grains. Scanning electron microscope and EDX revealed the formation of silver nanorods in film samples. Such, stable and tunable CsBr-Ag films can be used in optical filters.

  7. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  8. Sputtered Ag thin films with modified morphologies: Influence on wetting property

    NASA Astrophysics Data System (ADS)

    Dutheil, P.; Thomann, A. L.; Lecas, T.; Brault, P.; Vayer, M.

    2015-08-01

    Silver thin films with thickness ranging from 3 nm to 33 nm were sputter deposited onto silicon wafers and tungsten layers. Those W layers were previously synthesized in the same DC magnetron sputter deposition system with various experimental conditions (argon pressure, target to substrate distance) in order to stabilize different surface morphologies. SEM observations and AFM images showed that the growth mode of Ag films is similar on Si substrates and on the smoothest W layers, whereas it is modified for rough W layers made of sharp grains. The effect of the W layer morphology on Ag film growth was clearly evidenced when the deposition took place at high temperature. It is seen that performing the deposition onto substrates of various morphologies allows tailoring the wetting property of the Ag deposit.

  9. Enhanced resistive switching effect in Ag nanoparticle embedded BaTiO{sub 3} thin films

    SciTech Connect

    Au, K.; Wang, Juan; Bao, Z. Y.; Dai, J. Y.; Gao, X. S.; Liu, J. M.

    2013-07-14

    Ag nanoparticle (NP) embedded BaTiO{sub 3} (BTO) thin films on SrRuO{sub 3}-coated SrTiO{sub 3} (STO) substrates are prepared by the integrated nanocluster beam deposition and laser-molecular beam epitaxy. Enhanced resistive switching, up to an ON/OFF ration of 10{sup 4}, has been achieved at low switching voltage (less than 1 V) without a forming voltage. These characteristics make such nanocomposite film very promising for application of low voltage non-volatile random access memory. The enhanced resistive switching effect may be attributed to the charge storage effect of the Ag nanoparticles and easy formation of Ag filament inside the BTO film.

  10. Chemical and phase distributions in a multilayered organic matter-Ag nanoparticle thin film system

    NASA Astrophysics Data System (ADS)

    Michel, F. M.; Levard, C.; Wang, Y.; Choi, Y.; Eng, P.; Brown, G. E.

    2010-12-01

    Rapid development of nanotechnologies raises concern regarding the environmental impact of nanoparticles on ecosystems. Among the types of nanoparticles currently in production, metallic silver is the most widely used in nanotechnology (1). Synthetic Ag nanoparticles (Ag-NPs) are most often used for their antimicrobial and antifungal properties that are, in part, explained by the release of highly toxic Ag+ species (2). While such properties are desirable in certain applied cases, the release of Ag-NPs and soluble Ag+ species to the environment is expected to impact biota as well as soil and water quality (3). With the production of Ag-NPs projected to increase (1), the amount of Ag-NPs that will be released to the environment through waste streams is also likely to increase. As such, a deeper understanding of the fundamental processes associated with Ag-NPs toxicity and reactivity is needed to evaluate their impact on the environment. We have studied the interaction during aging of poly-acrylic acid (PAA) and Ag-NPs with average particle sizes of 20 ±5 nm. The sample studied was composed of thin films of PAA and Ag-NPs deposited on a Si-wafer support. PAA served as a model compound and a simplified surrogate for exopolysaccharide, an organic substance produced through metabolic activity by most microorganisms. We applied a novel combination of long-period x-ray standing wave fluorescence yield (XSW-FY) spectroscopy, grazing-incidence x-ray diffraction (GI-XRD), and XRD-based standing wave profiles (XSW-XRD) to obtain chemical- and phase-specific information on this sample. After 24 hours, we observed the formation of AgCl(s) in the PAA film of the sample, which suggests oxidation and dissolution of a portion of the Ag-NPs during aging, resulting in the release of Ag+. In addition, we see partitioning of Cl and Br, both present initially in the PAA, to the intact Ag-NPs thin film. To our knowledge, this is the first application of this suite of techniques to this

  11. Deposition of Pd–Ag thin film membranes on ceramic supports for hydrogen purification/separation

    SciTech Connect

    Pereira, A.I.; Pérez, P.; Rodrigues, S.C.; Mendes, A.; Madeira, L.M.

    2015-01-15

    Highlights: • Thin film Pd–Ag membranes have been produced for hydrogen selectivity. • Magnetron sputtering yields Pd–Ag compact films for atomic H diffusion. • The thin film Pd–Ag membranes yielded a selectivity of α (H{sub 2}/N{sub 2}) = 10. - Abstract: Pd–Ag based membranes supported on porous α-Al{sub 2}O{sub 3} (doped with yttria-stabilized zirconia) were studied for hydrogen selective separation. Magnetron sputtering technique was employed for the synthesis of thin film membranes. The hydrogen permeation flux is affected by the membrane columnar structure, which is formed during deposition. From scanning electron microscopy analysis, it was observed that different sputtering deposition pressures lead to distinct columnar structure growth. X-ray diffraction patterns provided evidence of a Pd–Ag solid solution with an average crystallite domain size of 21 nm, whose preferential growth can be altered by the deposition pressure. The gas-permeation results have shown that the Pd–Ag membrane supported on porous α-Al{sub 2}O{sub 3} is selective toward H{sub 2}. For optimized membrane synthesis conditions, the permeance toward N{sub 2} is 0.076 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1} at room temperature, whereas for a pressure difference of 300 kPa the H{sub 2}-flux is of the order of ca. 0.21 mol m{sup −2} s{sup −1}, which corresponds to a permeance of 0.71 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1}, yielding a selectivity of α (H{sub 2}/N{sub 2}) = 10. These findings suggest that the membrane has a reasonable capacity to selectively permeate this gas.

  12. Effect of Grazing Angle Cross-Ion Irradiation on Ag Thin Films

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Jangid, Teena; Panchal, Vandana; Kumar, Praveen; Pathak, Abhishek

    2016-10-01

    Apart from the spherical shape, control over other shapes is a technical challenge in synthesis approaches of nanostructures. Here, we studied the effect of grazing angle cross-irradiation Ag thin films for the nanostructures evolution from a top-down approach. Ag thin films of different thicknesses were deposited on Si (100) and glass substrates by electron beam evaporation system and subsequently irradiated at grazing angle ions by 80 keV Ar+ in two steps (to induce effectively a cross-ion irradiation). Pristine films exhibited dense and uniform distribution of Ag nanoparticles with their characteristic surface plasmon resonance-induced absorption peak around 420 nm. When the film surfaces were treated with cross-grazing angle irradiation of Ar ions with varying effective fluences from 0.5 × 1017 ions/cm2 to 2.0 × 1017 ions/cm2, it was found that fluence values governed the competition of sputtering and sputter re-deposition of Ag. As a result, lower irradiation fluence favoured the formation of cone-like nanostructures, whereas high fluence values demonstrated dominant sputtering. Fluence-dependent modification of surface features was studied through the Fourier transform infrared spectroscopy and the Rutherford backscattering spectroscopy. Theoretical justifications for the underlying mechanisms are presented to justify the experimental results.

  13. SEMICONDUCTOR DEVICES: Ag/PEPC/NiPc/ZnO/Ag thin film capacitive and resistive humidity sensors

    NASA Astrophysics Data System (ADS)

    Karimov, Kh. S.; Yew Cheong, Kuan; Saleem, M.; Murtaza, Imran; Farooq, M.; Fauzi Mohd Noor, Ahmad

    2010-05-01

    A thin film of blended poly-N-epoxypropylcarbazole (PEPC) (25 wt.%), nickel phthalocyanine (NiPc) (50 wt.%) and ZnO nano-powder (25 wt.%) in benzene (5 wt.%) was spin-coated on a glass substrate with silver electrodes to produce a surface-type Ag/PEPC/NiPc/ZnO/Ag capacitive and resistive sensor. Sensors with two different PEPC/NiPc/ZnO film thicknesses (330 and 400 nm) were fabricated and compared. The effects of humidity on capacitance and resistance of the Ag/PEPC/NiPc/ZnO/Ag sensors were investigated at two frequencies of the applied voltage: 120 Hz and 1 kHz. It was observed that at 120 Hz under humidity of up to 95% RH the capacitance of the sensors increased by 540 times and resistance decreased by 450 times with respect to humidity conditions of 50% RH. It was found that the sensor with a thinner semiconducting film (330 nm) was more sensitive than the sensor with a thicker film (400 nm). The sensitivity was improved when the sensor was used at a lower frequency as compared with a high frequency. It is assumed that the humidity response of the sensors is associated with absorption of water vapors and doping of water molecules in the semiconductor blend layer. This had been proven by simulation of the capacitance-humidity relationship.

  14. Quantum stabilities and growth modes of thin metal films: Unsupported and NiAl-supported Ag(1 1 0) and Ag(1 0 0)

    NASA Astrophysics Data System (ADS)

    Han, Yong; Evans, J. W.; Liu, Da-Jiang

    2008-07-01

    We present density functional theory (DFT) analyses of the stability of Ag thin films versus film thicknesses for various surface orientations. We include benchmark results for freestanding films, but consider in detail Ag(1 1 0) films supported on a NiAl(1 1 0) substrate, and Ag(1 0 0) films supported on a NiAl(1 0 0) substrate. The supported films exhibit an almost perfect lattice-match between film and substrate surface unit cells, so one can assess film stability in the absence of significant lateral mismatch strain. We also provide a characterization of film growth modes for these NiAl-supported Ag films based on DFT results for the relevant energetics.

  15. Characterization of Ag nanostructures fabricated by laser-induced dewetting of thin films

    NASA Astrophysics Data System (ADS)

    Nikov, Ru. G.; Nedyalkov, N. N.; Atanasov, P. A.; Hirsch, D.; Rauschenbach, B.; Grochowska, K.; Sliwinski, G.

    2016-06-01

    The paper presents results on laser nanostructuring of Ag thin films. The thin films are deposited on glass substrates by pulsed laser deposition technology. The as fabricated films are then annealed by nanosecond laser pulses delivered by Nd:YAG laser system operated at λ = 355 nm. The film modification is studied as a function of the film thickness and the parameters of the laser irradiation as pulse number and laser fluence. In order to estimate the influence of the environment on the characteristics of the fabricated structures the Ag films are annealed in different surrounding media: water, air and vacuum. It is found that at certain conditions the laser treatment may lead to decomposition of the films into a monolayer of nanoparticles with narrow size distribution. The optical properties of the fabricated nanostructures are investigated on the basis of transmission spectra taken by optical spectrometer. In the measured spectra plasmon resonance band is observed as its shape and position vary depending on the processing conditions. The fabricated structures are covered with Rhodamine 6G and tested as active substrates for Surface Enhanced Raman Spectroscopy (SERS).

  16. One step 'dip' and 'use' Ag nanostructured thin films for ultrahigh sensitive SERS Detection.

    PubMed

    Rajkumar, Kanakaraj; Jayram, Naidu Dhanpal; Mangalaraj, Devanesan; Rajendra Kumar, Ramasamy Thangavelu

    2016-11-01

    A simple one step galvanic displacement method which involves dipping of the silicon substrate in the AgNO3/HF solution and using it for SERS application without any further process is demonstrated. The size and shape of the Ag nanoparticles changes as the deposition time is increased. Initially the shape of the particles was nearly spherical and as it grows, becomes oblong and then coalesce to form a discontinuous film with vertically grown hierarchical Ag nanostructures. The sizes of the deposited particles were in the ranges from 30nm to a discontinuous film. It also demonstrated a highly sensitive chemical detection by surface-enhanced Raman scattering of rhodamine 6G dye, down to 10(-16)M concentration. Prepared samples were able to detect lower concentrations of Melamine. Discontinuous thin films with hierarchical Ag nanostructures were obtained for 5min Ag deposition. The formation of Hot spots between the discontinuous islands and also along the hierarchical structures is responsible for the high SERS enhancement. This simple one step, fast, non-lithographic and cost effective method can be applied for various label free detection of analytes of importance.

  17. One step 'dip' and 'use' Ag nanostructured thin films for ultrahigh sensitive SERS Detection.

    PubMed

    Rajkumar, Kanakaraj; Jayram, Naidu Dhanpal; Mangalaraj, Devanesan; Rajendra Kumar, Ramasamy Thangavelu

    2016-11-01

    A simple one step galvanic displacement method which involves dipping of the silicon substrate in the AgNO3/HF solution and using it for SERS application without any further process is demonstrated. The size and shape of the Ag nanoparticles changes as the deposition time is increased. Initially the shape of the particles was nearly spherical and as it grows, becomes oblong and then coalesce to form a discontinuous film with vertically grown hierarchical Ag nanostructures. The sizes of the deposited particles were in the ranges from 30nm to a discontinuous film. It also demonstrated a highly sensitive chemical detection by surface-enhanced Raman scattering of rhodamine 6G dye, down to 10(-16)M concentration. Prepared samples were able to detect lower concentrations of Melamine. Discontinuous thin films with hierarchical Ag nanostructures were obtained for 5min Ag deposition. The formation of Hot spots between the discontinuous islands and also along the hierarchical structures is responsible for the high SERS enhancement. This simple one step, fast, non-lithographic and cost effective method can be applied for various label free detection of analytes of importance. PMID:27524085

  18. Critical current behavior of Ag-coated YBa2Cu3O(7-x) thin films

    NASA Astrophysics Data System (ADS)

    Ono, R. H.; Beall, J. A.; Harvey, T. E.; Reintsema, C. D.; Johansson, M.

    1991-03-01

    The authors studied the behavior of high-quality YBa2Cu3O(7-x) (YBCO) thin films with Ag overlayers. The authors chose to study Ag in detail because of its widespread use as contact metallization and because of their earlier studies of proximity effects in YBCO. The details of transport critical current measurements are presented. It is shown that the Ag coatings can reduce normal state resistance while not degrading the critical current density. The key technological result is that the various thicknesses of Ag that were used did not reduce Jc or Jc(H). Critical current densities in excess of 106 A/sq cm have been achieved at temperatures greater than 76 K. An unusual effect was seen in Jc(H) when the field was oriented perpendicular to the c axis of the film. The Jc at 1 T was higher in samples with 10-nm coatings of Ag than in similar uncoated samples. It was also shown that the composite resistance of Ag-YBCO bilayers can be much lower than the resistance of uncoated YBCO.

  19. Electrical switching in sol-gel derived Ag -SiO2 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Sarkar, D. K.; Cloutier, F.; El Khakani, M. A.

    2005-04-01

    The sol-gel technique has been used to produce Ag -SiO2 nanocomposite thin films consisting of silver nanoparticles embedded in a SiO2 matrix. The size of the silver nanoparticles is of about (4±0.2)nm when the firing temperature is in the (500-700°C ) range, as determined from ultraviolet-visible spectroscopy analysis. The increase of the firing temperature beyond 300°C, was found to lead to an outer diffusion of Ag toward the surface. As a consequence the surface atomic concentration of Ag is found to increase from 1.3% to 12% for the as-dried (at 120°C) and for those further fired at 600°C, respectively. On the other hand, it is shown that the electrical behavior of these Ag -SiO2 nanocomposite films can drastically change from highly insulating to conducting depending on the firing temperature used. In the intermediate firing temperature (300-400°C) range, the films were found to exhibit a reversible switching behavior with a resistivity transition of about 7 orders of magnitude between the insulating (OFF) and the conducting (ON) state. Such an electrical switching could be explained by a change in the predominant conduction mechanism of the films.

  20. Surface electronic structure of polar NiO thin film grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-01

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  1. Electrical and photoconductivity studies on AgSbSe2 thin films

    NASA Astrophysics Data System (ADS)

    Namitha Asokan, T.; Urmila, K. S.; Pradeep, B.

    2015-02-01

    Silver antimony selenide thin films have been deposited on ultrasonically cleaned glass substrate at a vacuum of 10-5 torr using reactive evaporation technique. The preparative parameters like substrate temperature and incident fluxes have been properly controlled in order to get highly reproducible compound films. The polycrystalline nature of the sample is confirmed using XRD. The dependence of the electrical conductivity on the temperature has also been studied. The prepared AgSbSe2 samples show p-type conductivity. The samples show a little photoresponse.

  2. Surface electronic structure of polar NiO thin film grown on Ag(111)

    SciTech Connect

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-24

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  3. Systematic Surface Phase Transition of Ag Thin Films by Iodine Functionalization at Room Temperature: Evolution of Optoelectronic and Texture Properties.

    PubMed

    Bashouti, Muhammad Y; Talebi, Razieh; Kassar, Thaer; Nahal, Arashmid; Ristein, Jürgen; Unruh, Tobias; Christiansen, Silke H

    2016-01-01

    We show a simple room temperature surface functionalization approach using iodine vapour to control a surface phase transition from cubic silver (Ag) of thin films into wurtzite silver-iodid (β-AgI) films. A combination of surface characterization techniques (optical, electronical and structural characterization) reveal distinct physical properties of the new surface phase. We discuss the AgI thin film formation dynamics and related transformation of physical properties by determining the work-function, dielectric constant and pyroelectric behavior together with morphological and structural thin film properties such as layer thickness, grain structure and texture formation. Notable results are: (i) a remarkable increase of the work-function (by 0.9 eV) of the Ag thin layer after short a iodine exposure time (≤60 s), with simultaneous increase of the thin film transparency (by two orders of magnitude), (ii) pinning of the Fermi level at the valance band maximum upon iodine functionalization, (iii) 84% of all crystallites grain were aligned as a result of the evolution of an internal electric field. Realizing a nano-scale layer stack composed of a dielectric AgI layer on top of a metallic thin Ag layer with such a simple method has some technological implications e.g. to realize optical elements such as planar optical waveguides. PMID:26899434

  4. Systematic Surface Phase Transition of Ag Thin Films by Iodine Functionalization at Room Temperature: Evolution of Optoelectronic and Texture Properties

    PubMed Central

    Bashouti, Muhammad Y.; Talebi, Razieh; Kassar, Thaer; Nahal, Arashmid; Ristein, Jürgen; Unruh, Tobias; Christiansen, Silke H.

    2016-01-01

    We show a simple room temperature surface functionalization approach using iodine vapour to control a surface phase transition from cubic silver (Ag) of thin films into wurtzite silver-iodid (β-AgI) films. A combination of surface characterization techniques (optical, electronical and structural characterization) reveal distinct physical properties of the new surface phase. We discuss the AgI thin film formation dynamics and related transformation of physical properties by determining the work-function, dielectric constant and pyroelectric behavior together with morphological and structural thin film properties such as layer thickness, grain structure and texture formation. Notable results are: (i) a remarkable increase of the work-function (by 0.9 eV) of the Ag thin layer after short a iodine exposure time (≤60 s), with simultaneous increase of the thin film transparency (by two orders of magnitude), (ii) pinning of the Fermi level at the valance band maximum upon iodine functionalization, (iii) 84% of all crystallites grain were aligned as a result of the evolution of an internal electric field. Realizing a nano-scale layer stack composed of a dielectric AgI layer on top of a metallic thin Ag layer with such a simple method has some technological implications e.g. to realize optical elements such as planar optical waveguides. PMID:26899434

  5. Systematic Surface Phase Transition of Ag Thin Films by Iodine Functionalization at Room Temperature: Evolution of Optoelectronic and Texture Properties

    NASA Astrophysics Data System (ADS)

    Bashouti, Muhammad Y.; Talebi, Razieh; Kassar, Thaer; Nahal, Arashmid; Ristein, Jürgen; Unruh, Tobias; Christiansen, Silke H.

    2016-02-01

    We show a simple room temperature surface functionalization approach using iodine vapour to control a surface phase transition from cubic silver (Ag) of thin films into wurtzite silver-iodid (β-AgI) films. A combination of surface characterization techniques (optical, electronical and structural characterization) reveal distinct physical properties of the new surface phase. We discuss the AgI thin film formation dynamics and related transformation of physical properties by determining the work-function, dielectric constant and pyroelectric behavior together with morphological and structural thin film properties such as layer thickness, grain structure and texture formation. Notable results are: (i) a remarkable increase of the work-function (by 0.9 eV) of the Ag thin layer after short a iodine exposure time (≤60 s), with simultaneous increase of the thin film transparency (by two orders of magnitude), (ii) pinning of the Fermi level at the valance band maximum upon iodine functionalization, (iii) 84% of all crystallites grain were aligned as a result of the evolution of an internal electric field. Realizing a nano-scale layer stack composed of a dielectric AgI layer on top of a metallic thin Ag layer with such a simple method has some technological implications e.g. to realize optical elements such as planar optical waveguides.

  6. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application.

    PubMed

    Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun

    2011-03-18

    TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag(0) state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm(-2) and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.

  7. Formation of nanodots and enhancement of thermoelectric power induced by ion irradiation in PbTe:Ag composite thin films

    NASA Astrophysics Data System (ADS)

    Bala, Manju; Meena, Ramcharan; Gupta, Srashti; Pannu, Compesh; Tripathi, Tripurari S.; Varma, Shikha; Tripathi, Surya K.; Asokan, K.; Avasthi, Devesh K.

    2016-07-01

    Present study demonstrates an enhancement in thermoelectric power of 10% Ag doped PbTe (PbTe:Ag) thin films when irradiated with 200 keV Ar ion. X-ray diffraction showed an increase in crystallinity for both PbTe and PbTe:10Ag nano-composite films after Ar ion irradiation due to annealing of defects in the grain boundaries. The preferential sputtering of Pb and Te ions in comparison to Ag ions resulted in the formation of nano-dots. This was further confirmed by X-ray photoelectron spectroscopy (XPS). Such an enhancement in thermoelectric power of irradiated PbTe:10Ag films in comparison to pristine PbTe:10Ag film is attributed to the decrease in charge carrier concentration that takes part in the transport process via restricting the tunneling of carriers through the wider potential barrier formed at the interface of nano-dots.

  8. Optical and structural properties of Cr and Ag thin films deposited on glass substrate

    NASA Astrophysics Data System (ADS)

    Rauf, A.; Ahmed, K.; Nasim, F.; Khan, A. N.; Gul, A.

    2016-08-01

    Most of the rotating or noting patterns are being developed by using silver plating through chemical coating. Silver layers deteriorate with the passage of time and become less reflective while undergo through cleaning process due to its softness and the results become unpredictable. In this paper an alternate method for development of above mentioned pattern has been demonstrated. Chromium (Cr) and Silver (Ag) thin films of 200nm and 160nm thick respectively have been realized using electron beam evaporation (PVD technique) on quartz substrate. Structural analysis has been carried out by XRD and SEM while optical transmission/reflection has been studied using spectrophotometer. XRD analysis shows that Ag coated thin films exhibit FCC structure while Cr coated thin films reveals a BCC structure. SEM analysis shows almost smooth and uniform surfaces in both cases. After passing through high and low temperature cycles it was found that the results of pattern structures developed by chromium coating were more reliable than obtained through silver platting process.

  9. Synthesis and Characterization of Varying Concentrations of Ag-doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Hachlica, Justin; Wadie-Ibrahim, Patrick; Sahiner, M. Alper

    Silver doped ZnO is a promising compound for photovoltaic solar cell use. Doping this compound with varying amounts of silver will theoretically make this type of thin film more efficient by reducing the overall resistance and increasing the voltage and current output. The extent of this promise is being tested experimentally, by analysis of both the electrical and the surface roughness properties of the cells. Ag-doped Zinc Oxide is deposited by method of Pulsed Laser Deposition (PLD) onto Indium Tin Oxide (ITO) coated Glass. Annealing effects were also observed by varying the temperature at which the annealing occurred after synthesis of the sample. Thickness is confirmed by use of Ellipsometery. X-Ray Diffraction (XRD) measurements confirmed a ZnO crystal structure on the thin films. The active dopant carrier concentrations were determined using a Hall Effect Measuring System. Finally, the photovoltaic properties of the film are recorded by using a Keithley Source Meter. The structural characterization and electrical results of the effect of Ag doping on ZnO will then be discussed.

  10. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    EPA Science Inventory

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  11. Optical absorption characteristics of polycrystalline AgGaSe2 thin films

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. R. A.; Firoz Hasan, S. M.

    2006-12-01

    Silver gallium di-selenide (AgGaSe2) composite thin films have been formed onto ultrasonically and chemically cleaned glass substrates by in situ thermal annealing of the stack of successively evaporated individual elemental layers in vacuum. The structural properties of the films were ascertained by the x-ray diffraction method. The diffractogram indicated that these films were polycrystalline in nature having tetragonal structure with lattice parameters, a ap 6.00 Å and c ap 10.92 Å and average grain dimension 40 nm. The optical properties and atomic compositions of the films have been determined by UV-VIS-NIR spectrophotometry (photon wavelength ranging between 300 and 2500 nm) and energy dispersive analysis of x-ray, respectively. The typical optical absorption characteristic of the films has been critically analysed. The optical absorption coefficients vary from 103 to 105 cm-1 in the measured wavelength range of photons. The films have more than one type of fundamental electronic transitions. Direct allowed and direct forbidden transitions vary from 1.628 to 1.748 eV and 2.077 to 2.193 eV, respectively, depending on the composition of the films. The former transitions are found to have a general tendency to be symmetric around non-molecularity ΔX = 0, defined by ΔX = [(Ag/Ga)] - 1, while the latter shows no such dependence. Stoichiometric or slightly silver-deficient films show electron transition energies closer to the single crystal value. Spin-orbit splitting of the valence band becomes minimum at perfect stoichiometry.

  12. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    SciTech Connect

    Fujii, S.; Kawamura, S.; Maitani, M. M.; Suzuki, E.; Wada, Y.; Mochizuki, D.

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  13. Thermal tuning of surface plasmon resonance: Ag gratings on barium strontium titanate thin films

    NASA Astrophysics Data System (ADS)

    Xin, J. Z.; Hui, K. C.; Wang, K.; Chan, H. L. W.; Ong, D. H. C.; Leung, C. W.

    2012-04-01

    Surface plasmon tuning via thermally induced refractive index changes in ferroelectrics is investigated. Epitaxial (Ba0.7Sr0.3)TiO3 (BST) thin films were deposited on MgO (001) substrates by pulsed laser deposition. The refractive index of BST thin films measured by the prism-coupling technique was found to increase from 2.3932 (TE)/1.9945 (TM) at room temperature to 2.3949 (TE)/1.9965 (TM) at 66°C. Then 30-nm-Ag gratings with periodicity 750 nm and width 300 nm were fabricated on BST by soft ultraviolet nanoimprint lithography and subsequent lift-off process. The reflection spectra from 500 to 1000 nm with incident angle from 5° to 60° were measured at room temperature and 66°C, with a collimated and p-polarized light incident perpendicularly to the grating direction. Several modes were observed from the spectra. At 66°C, a red shift of a dip at about 850 nm by 2 nm was obtained at an incident angle of 15°. Calculations confirmed that the observed modes belong to the (-1), (2), (-2) and (3) surface plasmon modes from the Ag and BST interfaces and localized mode; the red shift by thermal tuning is also confirmed. The results indicate the feasibility of active modulation in surface plasmon resonance in solid-state structures.

  14. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films.

    PubMed

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates. PMID:25483981

  15. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films

    NASA Astrophysics Data System (ADS)

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  16. Chemically deposited In2S3-Ag2S layers to obtain AgInS2 thin films by thermal annealing

    NASA Astrophysics Data System (ADS)

    Lugo, S.; Peña, Y.; Calixto-Rodriguez, M.; López-Mata, C.; Ramón, M. L.; Gómez, I.; Acosta, A.

    2012-12-01

    AgInS2 thin films were obtained by the annealing of chemical bath deposited In2S3-Ag2S layers at 400 °C in N2 for 1 h. According to the XRD and EDX results the chalcopyrite structure of AgInS2 has been obtained. These films have an optical band gap, Eg, of 1.86 eV and an electrical conductivity value of 1.2 × 10-3 (Ω cm)-1.

  17. The distribution of Ag in Ag-doped YBa2Cu3O7-δ thin film prepared by dual-beam pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Zhou, W. Z.; Chua, D. H. C.; Xu, S. Y.; Ong, C. K.; Feng, Y. P.; Osipowicz, T.; Chen, M. S.

    1999-06-01

    The Ag distribution in Ag-doped YBa2Cu3O7-δ (YBCO) thin films fabricated by dual-beam pulsed-laser deposition on SrTiO3 (100) substrates has been studied by Auger electron spectroscopy, microproton-induced x-ray emission, atomic force microscopy and scanning electron microscopy. All the results consistently show that Ag aggregated in the bar-like structures observed in the film. These bars are aligned along the a-b-axis or at 45° to the a-b-axis of the YBCO thin film. The main body of the long bars aligned with the a-b-axes of the film was found to be a combination of metallic Ag with other precipitates of YBCO film that may grow from the substrate surface to the YBCO film surface. There were other precipitates aggregating as well at the surface of these bars, such as oxides of Cu and Ba. The short bars that aligned along 45° to the a-b-axes of the film were found to be deficient in Ag but rich in Cu, Ba and O, which could be oxide precipitates of YBCO. The growth mechanisms of the two types of bars seem quite different.

  18. Surface resistance and residual losses of Ag-doped YBa2Cu3O7 - delta thin films on sapphire

    NASA Astrophysics Data System (ADS)

    Pinto, R.; Apte, P. R.; Hegde, M. S.; Kumar, Dhananjay

    1995-04-01

    High-quality Ag-doped YBa2Cu3O7-δ thin films have been grown by laser ablation on R-plane <11¯02> sapphire without any buffer layer. Thin films have been found to be highly c-axis oriented with Tc=90 K, transition width ΔT≤1 K, and transport Jc=1.2×106 A cm-2 at 77 K in self-field conditions. The microwave surface resistance of these films measured on patterned microstrip resonators has been found to be 530 μΩ at 10 GHz at 77 K which is the lowest reported on unbuffered sapphire. Improved in-plane epitaxy and reduced reaction rate between the substrate and the film caused due to Ag in the film are believed to be responsible for this greatly improved microwave surface resistance.

  19. Photoluminescence of SrS:Cu,Ag and SrS 1- xSe x:Cu,Ag thin films

    NASA Astrophysics Data System (ADS)

    Poelman, D.; Wauters, D.; Van Meirhaeghe, R. L.; Cardon, F.

    2000-01-01

    The photoluminescence (PL) of SrS:Cu,Ag and SrS 1- xSe x:Cu,Ag thin films has been investigated. The influence of rapid thermal annealing conditions and Cu dopant concentration on the PL intensity has been studied. The PL emission spectrum was measured as a function of both Cu concentration and temperature. An unexpected PL intensity peak was observed around a temperature of 54 K.

  20. Spectroscopic Ellipsometry Studies of Ag and ZnO Thin Films and Their Interfaces for Thin Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Sainju, Deepak

    Many modern optical and electronic devices, including photovoltaic devices, consist of multilayered thin film structures. Spectroscopic ellipsometry (SE) is a critically important characterization technique for such multilayers. SE can be applied to measure key parameters related to the structural, optical, and electrical properties of the components of multilayers with high accuracy and precision. One of the key advantages of this non-destructive technique is its capability of monitoring the growth dynamics of thin films in-situ and in real time with monolayer level precision. In this dissertation, the techniques of SE have been applied to study the component layer materials and structures used as back-reflectors and as the transparent contact layers in thin film photovoltaic technologies, including hydrogenated silicon (Si:H), copper indium-gallium diselenide (CIGS), and cadmium telluride (CdTe). The component layer materials, including silver and both intrinsic and doped zinc oxide, are fabricated on crystalline silicon and glass substrates using magnetron sputtering techniques. These thin films are measured in-situ and in real time as well as ex-situ by spectroscopic ellipsometry in order to extract parameters related to the structural properties, such as bulk layer thickness and surface roughness layer thickness and their time evolution, the latter information specific to real time measurements. The index of refraction and extinction coefficient or complex dielectric function of a single unknown layer can also be obtained from the measurement versus photon energy. Applying analytical expressions for these optical properties versus photon energy, parameters that describe electronic transport, such as electrical resistivity and electron scattering time, can be extracted. The SE technique is also performed as the sample is heated in order to derive the effects of annealing on the optical properties and derived electrical transport parameters, as well as the

  1. Collective magnetic behaviors of Fe-Ag nanostructured thin films above the percolation limit

    SciTech Connect

    Alonso, J.; Fdez-Gubieda, M. L.; Barandiaran, J. M.; Svalov, A.; Sarmiento, G.; Fernandez Barquin, L.; Pedro, I. de; Orue, I.

    2009-04-01

    The magnetic behavior of sputtered and pulsed laser deposited (PLD) Fe{sub x}Ag{sub 100-x} thin films with 27{<=}x{<=}55 has been studied by means of ac and dc magnetic measurements. Sputtered samples present a continuous decrease in the magnetization, down to 310 K for x=30, where a magnetic transition into a superparamagnetic state with the presence of dipolar interactions is observed. The ac susceptibility measurements indicate that this transition resembles that of three dimensional glassy systems. Sputtered samples with higher concentration of Fe present a similar but slower thermal evolution of magnetization. PLD samples with x{>=}50 show a Curie-Weiss-type transition above {approx}200 K triggered by direct exchange interactions. As the temperature decreases, the system behaves like a ferromagnet and below {approx}75 K, a transition into a cluster-glass state appears. As the composition decreases, these phenomena vanish.

  2. Development of Ag/WO3/ITO thin film memristor using spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Dongale, T. D.; Mohite, S. V.; Bagade, A. A.; Gaikwad, P. K.; Patil, P. S.; Kamat, R. K.; Rajpure, K. Y.

    2015-11-01

    The unique nonlinear relationship between charge and magnetic flux along with the pinched hysteresis loop in I- V plane provide memory with resistance combinations of attribute to Memristor which lead to their novel applications in non volatile memory, nonlinear dynamics, analog computations and neuromorphic biological systems etc. The present paper reports development of Ag/WO3/ITO thin film memristor device using spray pyrolysis method. The structural, morphological and electrical properties of the thin film memristor device are further characterized using x-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and semiconductor device analyzer. The memristor is simulated using linear dopent drift model to ascertain the theoretical and experimental conformations. For the simulation purpose, the width of doped region (w) limited to the interval [0, D] is considered as a state variable along with the window function characterized by the equation f ( x) = w (1 - w). The reported memristor device exhibits the symmetric pinched hysteresis loop in I- V plane within the low operating voltage (±1 V). [Figure not available: see fulltext.

  3. Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111)

    SciTech Connect

    Yoshida, Yasuo Yokosuka, Takuya; Hasegawa, Yukio; Yang, Hung-Hsiang; Huang, Hsu-Sheng; Guan, Shu-You; Su, Wei-Bin; Chang, Chia-Seng; Yanagisawa, Susumu; Lin, Minn-Tsong; Hoffmann, Germar

    2014-09-21

    Using ultrahigh-vacuum low-temperature scanning tunneling microscopy and spectroscopy combined with first principles density functional theory calculations, we have investigated structural and electronic properties of pristine and potassium (K)-deposited picene thin films formed in situ on a Ag(111) substrate. At low coverages, the molecules are uniformly distributed with the long axis aligned along the [112{sup ¯}] direction of the substrate. At higher coverages, ordered structures composed of monolayer molecules are observed, one of which is a monolayer with tilted and flat-lying molecules resembling a (11{sup ¯}0) plane of the bulk crystalline picene. Between the molecules and the substrate, the van der Waals interaction is dominant with negligible hybridization between their electronic states; a conclusion that contrasts with the chemisorption exhibited by pentacene molecules on the same substrate. We also observed a monolayer picene thin film in which all molecules were standing to form an intermolecular π stacking. Two-dimensional delocalized electronic states are found on the K-deposited π stacking structure.

  4. Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111).

    PubMed

    Yoshida, Yasuo; Yang, Hung-Hsiang; Huang, Hsu-Sheng; Guan, Shu-You; Yanagisawa, Susumu; Yokosuka, Takuya; Lin, Minn-Tsong; Su, Wei-Bin; Chang, Chia-Seng; Hoffmann, Germar; Hasegawa, Yukio

    2014-09-21

    Using ultrahigh-vacuum low-temperature scanning tunneling microscopy and spectroscopy combined with first principles density functional theory calculations, we have investigated structural and electronic properties of pristine and potassium (K)-deposited picene thin films formed in situ on a Ag(111) substrate. At low coverages, the molecules are uniformly distributed with the long axis aligned along the [112̄] direction of the substrate. At higher coverages, ordered structures composed of monolayer molecules are observed, one of which is a monolayer with tilted and flat-lying molecules resembling a (11̄0) plane of the bulk crystalline picene. Between the molecules and the substrate, the van der Waals interaction is dominant with negligible hybridization between their electronic states; a conclusion that contrasts with the chemisorption exhibited by pentacene molecules on the same substrate. We also observed a monolayer picene thin film in which all molecules were standing to form an intermolecular π stacking. Two-dimensional delocalized electronic states are found on the K-deposited π stacking structure. PMID:25240362

  5. Silver activation on thin films of Ag-ZrCN coatings for antimicrobial activity.

    PubMed

    Ferreri, I; Calderon V, S; Escobar Galindo, R; Palacio, C; Henriques, M; Piedade, A P; Carvalho, S

    2015-10-01

    Nowadays, with the increase of elderly population and related health problems, knee and hip joint prosthesis are being widely used worldwide. However, failure of these invasive devices occurs in a high percentage thus demanding the revision of the chirurgical procedure. Within the reasons of failure, microbial infections, either hospital or subsequently-acquired, contribute in high number to the statistics. Staphylococcus epidermidis (S. epidermidis) has emerged as one of the major nosocomial pathogens associated with these infections. Silver has a historic performance in medicine due to its potent antimicrobial activity, with a broad-spectrum on the activity of different types of microorganisms. Consequently, the main goal of this work was to produce Ag-ZrCN coatings with antimicrobial activity, for the surface modification of hip prostheses. Thin films of ZrCN with several silver concentrations were deposited onto stainless steel 316 L, by DC reactive magnetron sputtering, using two targets, Zr and Zr with silver pellets (Zr+Ag target), in an atmosphere containing Ar, C2H2 and N2. The antimicrobial activity of the modified surfaces was tested against S. epidermidis and the influence of an activation step of silver was assessed by testing samples after immersion in a 5% (w/v) NaClO solution for 5 min. The activation procedure revealed to be essential for the antimicrobial activity, as observed by the presence of an inhibition halo on the surface with 11 at.% of Ag. The morphology analysis of the surface before and after the activation procedure revealed differences in silver distribution indicating segregation/diffusion of the metallic element to the film's surface. Thus, the results indicate that the silver activation step is responsible for an antimicrobial effect of the coatings, due to silver oxidation and silver ion release.

  6. Silver activation on thin films of Ag-ZrCN coatings for antimicrobial activity.

    PubMed

    Ferreri, I; Calderon V, S; Escobar Galindo, R; Palacio, C; Henriques, M; Piedade, A P; Carvalho, S

    2015-10-01

    Nowadays, with the increase of elderly population and related health problems, knee and hip joint prosthesis are being widely used worldwide. However, failure of these invasive devices occurs in a high percentage thus demanding the revision of the chirurgical procedure. Within the reasons of failure, microbial infections, either hospital or subsequently-acquired, contribute in high number to the statistics. Staphylococcus epidermidis (S. epidermidis) has emerged as one of the major nosocomial pathogens associated with these infections. Silver has a historic performance in medicine due to its potent antimicrobial activity, with a broad-spectrum on the activity of different types of microorganisms. Consequently, the main goal of this work was to produce Ag-ZrCN coatings with antimicrobial activity, for the surface modification of hip prostheses. Thin films of ZrCN with several silver concentrations were deposited onto stainless steel 316 L, by DC reactive magnetron sputtering, using two targets, Zr and Zr with silver pellets (Zr+Ag target), in an atmosphere containing Ar, C2H2 and N2. The antimicrobial activity of the modified surfaces was tested against S. epidermidis and the influence of an activation step of silver was assessed by testing samples after immersion in a 5% (w/v) NaClO solution for 5 min. The activation procedure revealed to be essential for the antimicrobial activity, as observed by the presence of an inhibition halo on the surface with 11 at.% of Ag. The morphology analysis of the surface before and after the activation procedure revealed differences in silver distribution indicating segregation/diffusion of the metallic element to the film's surface. Thus, the results indicate that the silver activation step is responsible for an antimicrobial effect of the coatings, due to silver oxidation and silver ion release. PMID:26117788

  7. Co-assembled thin films of Ag nanowires and functional nanoparticles at the liquid-liquid interface by shaking

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-Yi; Liu, Jian-Wei; Zhang, Chuan-Ling; Yu, Shu-Hong

    2013-05-01

    In this paper, we report the fabrication of co-assembled thin films composed of silver nanowires (NWs) and Au nanoparticles (NPs) at the liquid-liquid interface (water-chloroform) by vigorous shaking. The composition of co-assembled thin films can be controlled by adjusting the concentration of the nanosized building blocks. As a versatile interfacial assembly method, other nanoparticles such as Ag2S and Fe3O4 NPs can also be co-assembled with Ag NWs using the same procedure. Meanwhile, the co-assembly state of the obtained Au NPs and Ag NWs makes a significant contribution to the high sensitivity of surface-enhanced Raman scattering (SERS) to model the molecule 3,3'-diethylthiatricarbocyanine iodide (DTTCI). The SERS intensities show high dependence on the molar ratio of Au NPs and Ag NWs and the layer number of the co-assembled thin films. This shaking-assisted liquid-liquid assembly system has been proved to be a facile way for co-assembling nanowires and nanoparticles, and will pave a way for further applications of the macroscopic co-assemblies with novel functionalities.In this paper, we report the fabrication of co-assembled thin films composed of silver nanowires (NWs) and Au nanoparticles (NPs) at the liquid-liquid interface (water-chloroform) by vigorous shaking. The composition of co-assembled thin films can be controlled by adjusting the concentration of the nanosized building blocks. As a versatile interfacial assembly method, other nanoparticles such as Ag2S and Fe3O4 NPs can also be co-assembled with Ag NWs using the same procedure. Meanwhile, the co-assembly state of the obtained Au NPs and Ag NWs makes a significant contribution to the high sensitivity of surface-enhanced Raman scattering (SERS) to model the molecule 3,3'-diethylthiatricarbocyanine iodide (DTTCI). The SERS intensities show high dependence on the molar ratio of Au NPs and Ag NWs and the layer number of the co-assembled thin films. This shaking-assisted liquid-liquid assembly system

  8. Ag2ZnSn(S,Se)4: A highly promising absorber for thin film photovoltaics.

    PubMed

    Chagarov, Evgueni; Sardashti, Kasra; Kummel, Andrew C; Lee, Yun Seog; Haight, Richard; Gershon, Talia S

    2016-03-14

    The growth in efficiency of earth-abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has slowed, due in part to the intrinsic limitations imposed by the band tailing attributed primarily to I-II antisite exchange. In this study, density functional theory simulations show that when Ag is substituted for Cu to form kesterite Ag2ZnSnSe4 (AZTSe), the I-II isolated antisite formation energy becomes 3.7 times greater than in CZTSSe, resulting in at least an order of magnitude reduction in I-II antisite density. Experimental evidence of an optoelectronically improved material is also provided. Comparison of the low-temperature photoluminescence (PL) structure of Cu(In,Ga)Se2 (CIGSe), CZTSSe, and AZTSe shows that AZTSe has a shallow defect structure with emission significantly closer to the band edge than CZTSe. Existence of suppressed band tailing is found in the proximity of the room-temperature PL peak of AZTSe to its measured band gap. The results are consistent with AZTSe being a promising alternative to CZTSSe and CIGSe for thin film photovoltaics.

  9. Ag2ZnSn(S,Se)4: A highly promising absorber for thin film photovoltaics.

    PubMed

    Chagarov, Evgueni; Sardashti, Kasra; Kummel, Andrew C; Lee, Yun Seog; Haight, Richard; Gershon, Talia S

    2016-03-14

    The growth in efficiency of earth-abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has slowed, due in part to the intrinsic limitations imposed by the band tailing attributed primarily to I-II antisite exchange. In this study, density functional theory simulations show that when Ag is substituted for Cu to form kesterite Ag2ZnSnSe4 (AZTSe), the I-II isolated antisite formation energy becomes 3.7 times greater than in CZTSSe, resulting in at least an order of magnitude reduction in I-II antisite density. Experimental evidence of an optoelectronically improved material is also provided. Comparison of the low-temperature photoluminescence (PL) structure of Cu(In,Ga)Se2 (CIGSe), CZTSSe, and AZTSe shows that AZTSe has a shallow defect structure with emission significantly closer to the band edge than CZTSe. Existence of suppressed band tailing is found in the proximity of the room-temperature PL peak of AZTSe to its measured band gap. The results are consistent with AZTSe being a promising alternative to CZTSSe and CIGSe for thin film photovoltaics. PMID:26979701

  10. Ag2ZnSn(S,Se)4: A highly promising absorber for thin film photovoltaics

    NASA Astrophysics Data System (ADS)

    Chagarov, Evgueni; Sardashti, Kasra; Kummel, Andrew C.; Lee, Yun Seog; Haight, Richard; Gershon, Talia S.

    2016-03-01

    The growth in efficiency of earth-abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has slowed, due in part to the intrinsic limitations imposed by the band tailing attributed primarily to I-II antisite exchange. In this study, density functional theory simulations show that when Ag is substituted for Cu to form kesterite Ag2ZnSnSe4 (AZTSe), the I-II isolated antisite formation energy becomes 3.7 times greater than in CZTSSe, resulting in at least an order of magnitude reduction in I-II antisite density. Experimental evidence of an optoelectronically improved material is also provided. Comparison of the low-temperature photoluminescence (PL) structure of Cu(In,Ga)Se2 (CIGSe), CZTSSe, and AZTSe shows that AZTSe has a shallow defect structure with emission significantly closer to the band edge than CZTSe. Existence of suppressed band tailing is found in the proximity of the room-temperature PL peak of AZTSe to its measured band gap. The results are consistent with AZTSe being a promising alternative to CZTSSe and CIGSe for thin film photovoltaics.

  11. Iodization of rf sputter induced disordered Ag thin films reveals volume plasmon-exciton 'transition'

    SciTech Connect

    Bharathi Mohan, D.; Sunandana, C. S.

    2006-09-15

    Quasiamorphous Ag films of thicknesses ranging from 5 to 30 nm were prepared using rf magnetron sputtering technique and their controlled iodization was carried out for selected durations in the range of 15 min-60 h at room temperature. As deposited Ag and iodized films were characterized using x-ray diffraction (XRD), atomic force microscope (AFM), and optical absorption techniques. From XRD, {gamma} and {beta}+{gamma} (mixed) phases of AgI nanoparticles have been observed for 5-10 and 20-30 nm thick films, respectively. Lattice parameters (a and c) and average strain ({epsilon}) were calculated versus iodization time for {gamma} and {beta}-AgI nanoparticles. Uniform and nonuniform spherically shaped AgI nanoparticles ({approx}20-130 nm) are realized through AFM for 5-10 and 20-30 nm thick films. Optical absorption shows volume plasmons (classified as PR1) for short duration iodization, which ''decay'' upon further iodization to convert to Z{sub 1,2} and Z{sub 3} excitons at 420 and 330 nm, respectively, in the manner of a metal-semiconductor/dielectric phase transition. Ag 'colloidal' particles (classified as PR2) are formed for 5-10 nm thick films and thereby control the {gamma} phase--a significant and applicable effect attributed to critical film thickness. With increasing thickness, a surface strain field lifting the degeneracy of the valence band results in Z{sub 1,2} and Z{sub 3} exciton formation at room temperature. Blueshift in the exciton absorption with decreasing film thickness implies the progressive quantum confinement due to decrease in the particle size. A thickness induced phase transition from {gamma}-AgI to {beta}-AgI is discussed by means of x-ray diffraction and optical absorption studies.

  12. Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films.

    PubMed

    Bryaskova, Rayna; Pencheva, Daniela; Kale, Girish M; Lad, Umesh; Kantardjiev, T

    2010-09-01

    Novel hybrid material thin films based on polyvinyl alcohol (PVA)/tetraethyl orthosilicate (TEOS) with embedded silver nanoparticles (AgNps) were synthesized using sol-gel method. Two different strategies for the synthesis of silver nanoparticles in PVA/TEOS matrix were applied based on reduction of the silver ions by thermal annealing of the films or by preliminary preparation of silver nanoparticles using PVA as a reducing agent. The successful incorporation of silver nanoparticles ranging from 5 to 7nm in PVA/TEOS matrix was confirmed by TEM and EDX analysis, UV-Vis spectroscopy and XRD analysis. The antibacterial activity of the synthesized hybrid materials against etalon strains of three different groups of bacteria -Staphylococcus aureus (gram-positive bacteria), Escherichia coli (gram-negative bacteria), Pseudomonas aeruginosa (non-ferment gram-negative bacteria) has been studied as they are commonly found in hospital environment. The hybrid materials showed a strong bactericidal effect against E. coli, S. aureus and P. aeruginosa and therefore have potential applications in biotechnology and biomedical science.

  13. Structural and optical properties of (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin film alloys

    SciTech Connect

    Boyle, J. H.; Shafarman, W. N.; Birkmire, R. W.; McCandless, B. E.

    2014-06-14

    The structural and optical properties of pentenary alloy (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin films were characterized over the entire compositional range at a fixed (Cu + Ag)/(In + Ga) ratio. Films deposited at 550 °C on bare and molybdenum coated soda-lime glass by elemental co-evaporation in a single-stage process with constant incident fluxes exhibit single phase chalcopyrite structure, corresponding to 122 spacegroup (I-42d) over the entire compositional space. Unit cell refinement of the diffraction patterns show that increasing Ag substitution for Cu, the refined a{sub o} lattice constant, (Ag,Cu)-Se bond length, and anion displacement increase in accordance with the theoretical model proposed by Jaffe, Wei, and Zunger. However, the refined c{sub o} lattice constant and (In,Ga)-Se bond length deviated from theoretical expectations for films with mid-range Ag and Ga compositions and are attributed to influences from crystallographic bond chain ordering or cation electronegativity. The optical band gap, derived from transmission and reflection measurements, widened with increasing Ag and Ga content, due to influences from anion displacement and cation electronegativity, as expected from theoretical considerations for pseudo-binary chalcopyrite compounds.

  14. Plasmonic enhanced optical characteristics of Ag nanostructured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sarkar, Arijit; Gogurla, Narendar; Shivakiran Bhaktha, B. N.; Ray, Samit K.

    2016-04-01

    We have demonstrated the enhanced photoluminescence and photoconducting characteristics of plasmonic Ag–ZnO films due to the light scattering effect from Ag nanoislands. Ag nanoislands have been prepared on ITO-coated glass substrates by thermal evaporation followed by annealing. Plasmonic Ag–ZnO films have been fabricated by depositing ZnO over Ag nanoislands by sol–gel process. The band-edge emission of ZnO is enhanced for 170 nm sized Ag nanoislands in ZnO as compared to pure ZnO. The defect emission is also found to be quenched simultaneously for plasmonic Ag–ZnO films. The enhancement and quenching of photoluminescence at different wavelengths for Ag–ZnO films can be well understood from the localized surface plasmon resonance of Ag nanoislands. The Ag–ZnO M–S–M photoconductor device showed a tenfold increment in photocurrent and faster photoresponse as compared to the control ZnO device. The enhancement in photoresponse of the device is due to the increased photon absorption in ZnO films via scattering of the incident illumination.

  15. Application of patterned Ag-nanowire networks to transparent thin-film heaters and electrodes for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Rok; Triambulo, Ross E.; Kim, Jin-Hoon; Park, Jaeyoon; Jeong, Unyong; Park, Jin-Woo

    2016-06-01

    We present patterned Ag-nanowire (AgNW) networks for their application to transparent electrodes in flexible devices. Using capillary-force-based soft lithography (CFL), we formed 25- to 30-µm-wide line patterns of AgNWs on flexible polymer substrates. Organic light-emitting diodes (OLEDs) and transparent thin-film heaters (TFHs) were successfully fabricated on the patterned substrates, which verified the potential of AgNW patterns formed by CFL as interconnects in flexible devices.

  16. Study of Ag transport in Cr2N0.61-7Ag nanocomposite thin film due to thermal exposition

    NASA Astrophysics Data System (ADS)

    Bílek, P.; Jurči, P.; Podgornik, B.; Jenko, D.; Hudáková, M.; Kusý, M.

    2015-12-01

    Cr2N0.61-7Ag nanocomposite coatings were deposited on substrates made of Cr-V ledeburitic tool steel Vanadis 6 using reactive magnetron sputtering at a deposition temperature of 500 °C. Investigations of as-deposited films and annealing experiments in closed-air atmosphere at temperatures of 300, 400 and 500 °C and the durations up to 24 h, followed by quantitative scanning electron microscopy, transmission electron microscopy, Auger electron spectroscopy and X-ray diffraction revealed that the films were composed of Cr2N0.61 matrix and individual silver agglomerates located along columnar crystals of the matrix. The maximal size of Ag-agglomerates was 80 nm. The surface population density of silver agglomerates increased with prolonging the annealing time up to 2 h and then decreased. The increase was more pronounced at lower annealing temperatures. This behaviour was referred to the competition between three phenomena, namely the transport of detached Ag atoms to the free surface, formation of oxide layer on the surface and sublimation of silver from the surface. At lower temperatures and/or shorter annealing times, the Ag-transport to the free surface was determined to be prevalent, thus, an increase in population density of silver agglomerates was determined. On the other hand, for higher temperatures and/or longer annealing times the population density of Ag-agglomerates rather decreased due to retarding effect of thicker oxide layer and sublimation of silver.

  17. Amperometric biosensor of SnO2 thin film modified by Pd, In and Ag nanostructure synthesized by CSP method

    NASA Astrophysics Data System (ADS)

    Hassan, Marwa Abdul Muhsien; Hateef, Areej Adnan; Majeed, Aseel Mustafa Abdul; Al-Jabiry, Ali Jasim Mohammed; Jameel, Sabah; Hussian, Haidar Abdul Razaq Abdul

    2013-10-01

    Palladium, Indium and Silver-doped SnO2 thin film was deposited by chemical spray pyrolysis on ITO and porous silicon substrates to be a fast MgSO4·7H2O amperometric biosensor. The prepared SnO2 films were doped by dipping in palladium chloride PdCl2, indium chloride, InCl3 and silver nitrides AgNO3 dissolved in ethanol C2H5OH. The structural and optical properties of the prepared films were studied. The sensitivity behaviors of SnO2, SnO2: Pd, SnO2: In and SnO2: Ag based on the amperometric biosensor to MgSO4·7H2O salts were investigated at room temperature with different doping.

  18. A chemical bath deposition route to facet-controlled Ag3PO4 thin films with improved visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young; Lee, Jang Mee; Patil, Sharad B.; Pyun, Jae.-Chul.; Hwang, Seong-Ju

    2016-08-01

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag3PO4 thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag3PO4 nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag3PO4 from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag+]/[phosphate] ratio enables to maximize the loading amount of Ag3PO4 crystals per the unit area of the deposited film. All the fabricated Ag3PO4 thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag3PO4-ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid.

  19. Structural characteristics of thermally evaporated Cu0.5Ag0.5InSe2 thin films

    NASA Astrophysics Data System (ADS)

    Gullu, H. H.; Parlak, M.

    2016-05-01

    In this work, Cu0.5Ag0.5InSe2 (CAIS) thin film samples were prepared by thermal evaporation of Cu, Ag, InSe and Se evaporants sequentially on glass substrates. Following the deposition, annealing processes were applied at different temperatures. The as-grown and annealed CAIS samples were nearly stoichiometric in the detection limit of the compositional measurement. The x-ray diffraction (XRD) measurements revealed that they were in polycrystalline structure with a preferred orientation along the (112) direction. Moreoever, the crystallinity of the films improved with increasing annealing temperature. According to the results of Raman measurements, the highest Raman intensity was found in the A1 mode which is directly proportional to the crystallinity of the samples. The surface properties of the thin films were analyzed by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM). These results showed that there was a Se agglomeration on the deposited film surfaces and with annealing processes segregation effects were observed on the surface of the annealed samples. X-ray photoelectron spectroscopy (XPS) measurements were carried out to get information about surface and near-surface properties of the films. The results from the surface and depth surface analyses of the films were found to be in agreement with the energy dispersive spectroscopy (EDS) analysis.

  20. Structural, morphological and optical properties of Ag-AgO thin films with the effect of increasing film thickness and annealing temperature

    NASA Astrophysics Data System (ADS)

    Pal, Anil Kumar; Bharathi Mohan, D.

    2015-10-01

    Ag films of thickness ranging from 5 to 60 nm were deposited by thermal evaporation technique followed by air annealing process with temperature varying from 50 to 250 °C. Morphological properties such as particle size, shape, surface roughness and number particles density were studied by atomic force microscope (AFM). The structural transition from quasi-amorphous to nanocrystalline to crystalline upon increasing film thickness and annealing temperature were studied. Ag films with smallest particle size and surface roughness were achieved up to film thickness of 7 nm. The possibility of surface oxidation of Ag on both as deposited and annealed films was studied through Raman mapping by using confocal Raman spectroscopy. Ag film was X-ray amorphous even after annealing process up to the film thickness of 7 nm and above which the crystallinity reached maximum at 250 °C. The surface plasmon resonance (SPR) with a symmetric line shape due to dipole-dipole interactions was found to be very strong for film thickness of 5 nm at 100 °C, attributed to the formation of smaller Ag NPs size of ∼22 nm with least size distribution and higher particles number density of ∼1625 μm-2 in a self-organized fashion. With an increase of film thickness and annealing temperature, an asymmetric broad absorption arose due to increase in damping of collective electron oscillation on bulky NPs. Theoretical absorption spectra were simulated using extended Maxwell garnet method showing a decent agreement with experimental data. The real and imaginary parts of dielectric constants were determined and plotted for different film thicknesses of as deposited Ag films. Even though the film is oxidized at the surface level, it still can be used for plasmonic sensor applications however the film thickness should be approximately 7 nm for the enhanced result.

  1. Speciation and lability of Ag-, AgCl-, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films.

    PubMed

    Sekine, R; Brunetti, G; Donner, E; Khaksar, M; Vasilev, K; Jämting, Å K; Scheckel, K G; Kappen, P; Zhang, H; Lombi, E

    2015-01-20

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-), and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed “nano” Diffusive Gradients in Thin Films (DGT) devices. These nano-DGT devices were designed specifically to avoid confounding effects when measuring element lability in the presence of nanoparticles. The aging profile and stabilities of the three nanoparticles and AgNO3 (ionic Ag) in soil were examined at three different soil pH values over a period of up to 7 months. Transformation of ionic Ag, Ag-NP and AgCl-NPs were dependent on pH. AgCl formation and persistence was observed under acidic conditions, whereas sulfur-bound forms of Ag dominated in neutral to alkaline soils. Ag2S-NPs were found to be very stable under all conditions tested and remained sulfur bound after 7 months of incubation. Ag lability was characteristically low in soils containing Ag2S-NPs. Other forms of Ag were linked to higher DGT-determined lability, and this varied as a function of aging and related speciation changes as determined by XAS. These results clearly indicate that Ag2S-NPs, which are the most environmentally relevant form of Ag that enter soils, are chemically stable and have profoundly low Ag lability over extended periods. This may minimize the long-term risks of Ag toxicity in the soil environment. PMID:25436975

  2. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Tunable Anisotropic Absorption of Ag-Embedded SiO2 Thin Films by Oblique Angle Deposition

    NASA Astrophysics Data System (ADS)

    Xiao, Xiu-Di; Dong, Guo-Ping; Shao, Jian-Da; Fan, Zheng-Xiu; He, Hong-Bo; Qi, Hong-Ji

    2009-08-01

    Ag-embedded SiO2 thin films are prepared by oblique angle deposition. Through field emission scanning electron microscopy (SEM), an orientated slanted columnar structure is observed. Energy-dispersive x-ray (EDX) analysis shows the Ag concentration is about 3% in the anisotropic SiO2 matrix. Anisotropic surface plasma resonance (SPR) absorption is observed in the Ag-embedded SiO2 thin films, which is dependent on polarization state and incidence angle of two orthogonal polarized lights and the deposition angle. This means that optical properties and anisotropic SPR absorption can be tunable in Ag-embedded SiO2 thin films. Broadband polarization splitting is also observed and the transmission ratio Tp/Ts between p- and s-polarized lights is up to 2.7 for thin films deposited at α = 70°, which means that Ag-embedded SiO2 thin films are a promising candidate for thin film polarizers.

  3. Superconducting YBCO thin film on multicrystalline Ag film evaporated on MgO substrate

    NASA Astrophysics Data System (ADS)

    Azoulay, Jacob; Verdyan, Armen; Lapsker, Igor

    Superconducting YBa 2Cu 3O 7-δ films were grown by resistive evaporation on multicrystalline silver film which was evaporated on MgO substrate. A simple inexpensive vacuum system equipped with resistively heated boat was used for the whole process. Silver film was first evaporated on MgO substrate kept at 400°C during the evaporation after which with no further annealing a precursor mixture of yttrium small grains and Cu and BaF2 in powder form weighed in the atomic proportion to yield stoichiometric YBa 2Cu 3O 7 was evaporated. The films thus obtained were annealed at 740°C under low oxygen partial pressure of about 1Pa for 30 minutes to form the superconducting phase. X-ray diffraction and scanning electron microscopy techniques were used for texture and surface analysis. Electrical properties were determined using a standard dc four-probe for electrical measurements. The physical and electrical properties of the YBCO films are discussed in light of the fact that X-ray diffraction measurements done on the silver film have revealed a multicrystalline structure

  4. Incommensurate growth of Co thin film on close-packed Ag(111) surface

    NASA Astrophysics Data System (ADS)

    Barman, Sukanta; Menon, Krishna Kumar S. R.

    2016-05-01

    Growth of ultrathin Co layers on close-packed Ag(111)were investigated by means of Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Angle-resolved Photoemission Spectroscopy(ARPES) techniques. The close-packed hexagonal face of Co(0001), exhibits a lattice misfit about 13% with Ag(111) surface which manipulates the growth to be incommensurate up to a certain thickness. The strain field causes aperiodic height undulation in the sub-angstrom regime of the film which was confirmed by p(1 × 1) LEED pattern along with a 6-fold moiré reconstruction pattern in the lower film thickness (up to ˜2ML). The evolution of the LEED pattern was studied with increasing film coverage. Lattice strain was measured with respect to the relative positions of these double spots as a functionof film thickness. Almost a constant strain (˜13%) in the full range of film thickness explains the moiré pattern formation in order to stabilize the incommensurate growth. For higher film coverages, an epitaxial well-ordered commensurate growth was observed. Core level and valance band electronic structures of these films were studied by XPS and ARPES techniques.

  5. Tensile and fatigue behaviors of printed Ag thin films on flexible substrates

    SciTech Connect

    Sim, Gi-Dong; Won, Sejeong; Lee, Soon-Bok

    2012-11-05

    Flexible electronics using nanoparticle (NP) printing has been highlighted as a key technology enabling eco-friendly, low-cost, and large-area fabrication. For NP-based printing to be used as a successive alternative to photolithography and vacuum deposition, stretchability and long term reliability must be considered. This paper reports the stretchability and fatigue behavior of 100 nm thick NP-based silver thin films printed on polyethylene-terephthalate substrate and compares it to films deposited by electron-beam evaporation. NP-based films show stretchability and fatigue life comparable to evaporated films with intergranular fracture as the dominant failure mechanism.

  6. Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics.

    PubMed

    Kim, Younghoon; Yang, Zhenyu; Jain, Ankit; Voznyy, Oleksandr; Kim, Gi-Hwan; Liu, Min; Quan, Li Na; García de Arquer, F Pelayo; Comin, Riccardo; Fan, James Z; Sargent, Edward H

    2016-08-01

    Bismuth-based hybrid perovskites are candidates for lead-free and air-stable photovoltaics, but poor surface morphologies and a high band-gap energy have previously limited these hybrid perovskites. A new materials processing strategy to produce enhanced bismuth-based thin-film photovoltaic absorbers by incorporation of monovalent silver cations into iodobismuthates is presented. Solution-processed AgBi2 I7 thin films are prepared by spin-coating silver and bismuth precursors dissolved in n-butylamine and annealing under an N2 atmosphere. X-ray diffraction analysis reveals the pure cubic structure (Fd3m) with lattice parameters of a=b=c=12.223 Å. The resultant AgBi2 I7 thin films exhibit dense and pinhole-free surface morphologies with grains ranging in size from 200-800 nm and a low band gap of 1.87 eV suitable for photovoltaic applications. Initial studies produce solar power conversion efficiencies of 1.22 % and excellent stability over at least 10 days under ambient conditions. PMID:27355567

  7. Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics.

    PubMed

    Kim, Younghoon; Yang, Zhenyu; Jain, Ankit; Voznyy, Oleksandr; Kim, Gi-Hwan; Liu, Min; Quan, Li Na; García de Arquer, F Pelayo; Comin, Riccardo; Fan, James Z; Sargent, Edward H

    2016-08-01

    Bismuth-based hybrid perovskites are candidates for lead-free and air-stable photovoltaics, but poor surface morphologies and a high band-gap energy have previously limited these hybrid perovskites. A new materials processing strategy to produce enhanced bismuth-based thin-film photovoltaic absorbers by incorporation of monovalent silver cations into iodobismuthates is presented. Solution-processed AgBi2 I7 thin films are prepared by spin-coating silver and bismuth precursors dissolved in n-butylamine and annealing under an N2 atmosphere. X-ray diffraction analysis reveals the pure cubic structure (Fd3m) with lattice parameters of a=b=c=12.223 Å. The resultant AgBi2 I7 thin films exhibit dense and pinhole-free surface morphologies with grains ranging in size from 200-800 nm and a low band gap of 1.87 eV suitable for photovoltaic applications. Initial studies produce solar power conversion efficiencies of 1.22 % and excellent stability over at least 10 days under ambient conditions.

  8. Thin Film?

    NASA Astrophysics Data System (ADS)

    Kariper, İ. Afşin

    2014-09-01

    This study focuses on the critical surface tension of lead sulfite (PbSO3) crystalline thin film produced with chemical bath deposition on substrates (commercial glass).The PbSO3 thin films were deposited at room temperature at different deposition times. The structural properties of the films were defined and examined according to X-ray diffraction (XRD) and the XRD results such as dislocation density, average grain size, and no. of crystallites per unit area. Atomic force microscopy was used to measure the film thickness and the surface properties. The critical surface tension of the PbSO3 thin films was measured with an optical tensiometer instrument and calculated using the Zisman method. The results indicated that the critical surface tension of films changed in accordance with the average grain size and film thickness. The film thickness increased with deposition time and was inversely correlated with surface tension. The average grain size increased according to deposition time and was inversely correlated with surface tension.

  9. The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films

    NASA Astrophysics Data System (ADS)

    Politano, Antonio; Chiarello, Gennaro

    2015-05-01

    Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs) are waves that propagate along the surface of a conductor. SPs find applications in magneto-optic data storage, optics, microscopy, and catalysis. The investigation of SPs in silver and gold is relevant as these materials are extensively used in plasmonics. The theoretical approach for calculating plasmon modes in noble metals is complicated by the existence of localized d electrons near the Fermi level. Nevertheless, recent calculations based on linear response theory and time-dependent local density approximation adequately describe the dispersion and damping of SPs in noble metals. Furthermore, in thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications. The presence of quantum well states in the Ag and Au overlayer affects both the dispersion relation of SP frequency and the damping processes of the SP. Recent calculations indicate the emergence of acoustic surface plasmons (ASP) in Ag thin films exhibiting quantum well states. The slope of the dispersion of ASP decreases with film thickness. High-resolution electron energy loss spectroscopy (HREELS) is the main experimental technique for investigating collective electronic excitations, with adequate resolution in both the energy and momentum domains to investigate surface modes. Herein we review on recent progress of research on collective electronic excitations in Ag and Au films deposited on single-crystal substrates.

  10. Structural and optical properties of annealed and illuminated (Ag3AsS3)0.6(As2S3)0.4 thin films

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Neimet, Yu. Yu.; Rati, Y. Y.; Stanko, D.; Kranjčec, M.; Kökényesi, S.; Daróci, L.; Bohdan, R.

    2014-11-01

    (Ag3AsS3)0.6(As2S3)0.4 thin films were deposited upon a quartz substrate by rapid thermal evaporation. Structural studies of the as-deposited, annealed and illuminated films were performed using XRD, scanning electron and atomic force microscopies. Surfaces of all the films were found to be covered with Ag-rich crystalline micrometer sized cones. Thermal annealing leads to mechanical deformation of part of the cones and their detachment from the base film surface while the laser illumination leads to the new formations appearance on the surface of thin films. The spectroscopic studies of optical transmission spectra for as-deposited, annealed and illuminated thin films were carried out. The optical absorption spectra in the region of its exponential behaviour were analysed, the dispersion dependences of refractive index as well as their variation after annealing and illumination were investigated.

  11. Investigation of nanostructured Pd-Ag/n-ZnO thin film based Schottky junction for methane sensing

    NASA Astrophysics Data System (ADS)

    Roy, S.; Das, S.; Sarkar, C. K.

    2016-07-01

    Undoped nanocrystalline n-type ZnO thin film was deposited by chemical deposition technique on a thermally oxidized p-Si (~5 Ω cm resistivity and <100> orientation) substrate. Formation of stable zinc oxide thin film was confirmed by two-dimensional X-Ray Diffraction (XRD) and EDX analysis. The average crystallite size of the ZnO sample was evaluated as ~50 nm. The surface was characterized by Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) that confirm the formation of nanocrystalline (grain size ~50 nm) ZnO thin film with surface roughness of ~100 nm. Good conversion of precursor into ZnO thin film in the chemical deposition method was evident by Fourier Transform Infrared Spectroscopy (FTIR). A small peak at 479 cm-1was observed in the FTIR spectrum confirming the formation of quartzite structure of the ZnO. The band gap (~3.44 eV) of the material was calculated from the optical absorption spectroscopy. To prepare Pd-Ag/n-ZnO Schottky junction, Pd-Ag contacts were taken by electron beam evaporation method. I-V characteristics of the junction were studied at different temperatures in inert and reducing ambient (N2 and N2 + CH4) with turn on voltage of around 0.2 V. The parameters like ideality factor ( η), saturation current ( I 0), series resistance ( Rs), and barrier height ( Φ BO) of the junction were calculated in the temperature range 50-200 °C in N2 as well as in 1 % CH4 + N2 ambient. It was observed that the ideality factor decreases in the temperature range 50-200 °C ( η = 12.34 at 50 °C and η = 1.52 at 200 °C) in N2 ambient and η = 1.18 in N2 +CH4 ambient at 200 °C. Schottky Barrier Height ( Φ BO) of the Pd-Ag/n-ZnO junction was found to increase with temperature. A close observation of Pd-Ag/n-ZnO junction in the presence of methane was performed to appreciate its application as methane sensor. The sensing mechanism was illustrated by a simplified energy band diagram.

  12. Normal zone propagation in superconducting thin-film fault current limiting elements with Au-Ag alloy shunt layers

    NASA Astrophysics Data System (ADS)

    Arai, K.; Yamasaki, H.; Kaiho, K.; Furuse, M.; Nakagawa, Y.; Sohma, M.; Yamaguchi, I.

    2008-02-01

    We have been developing a superconducting fault current limiter (FCL), in which YBCO superconducting thin films with Au-Ag alloy shunt layers are used. We have already achieved high electric fields (>40 Vpeak/cm), which enable the total length of FCL elements to be reduced drastically, thus greatly reducing the cost of FCLs. In this paper, we report the normal zone propagation velocity in our films when over-current was applied to the films at 50 Hz for 100 ms. The velocity plotted against the root-mean square values of the normalized film current showed a common curve or curves. The data were also discussed using the adiabatic theory. As the normal zone propagation velocity was not so fast, we divided one unit film of 120 mm length into two portions, to each of which an external resistance was attached. The test result showed that a high electric field of 45 Vpeak/cm and total voltage of 450 Vpeak were achieved in the first cycle after quenching, and the film withstood the voltage for five cycles. The temperature distribution along the length of the film was also shown.

  13. A Solid-State Thin-Film Ag/AgCl Reference Electrode Coated with Graphene Oxide and Its Use in a pH Sensor

    PubMed Central

    Kim, Tae Yong; Hong, Sung A; Yang, Sung

    2015-01-01

    In this study, we describe a novel solid-state thin-film Ag/AgCl reference electrode (SSRE) that was coated with a protective layer of graphene oxide (GO). This layer was prepared by drop casting a solution of GO on the Ag/AgCl thin film. The potential differences exhibited by the SSRE were less than 2 mV for 26 days. The cyclic voltammograms of the SSRE were almost similar to those of a commercial reference electrode, while the diffusion coefficient of Fe(CN)63− as calculated from the cathodic peaks of the SSRE was 6.48 × 10−6 cm2/s. The SSRE was used in conjunction with a laboratory-made working electrode to determine its suitability for practical use. The average pH sensitivity of this combined sensor was 58.5 mV/pH in the acid-to-base direction; the correlation coefficient was greater than 0.99. In addition, an integrated pH sensor that included the SSRE was packaged in a secure digital (SD) card and tested. The average sensitivity of the chip was 56.8 mV/pH, with the correlation coefficient being greater than 0.99. In addition, a pH sensing test was also performed by using a laboratory-made potentiometer, which showed a sensitivity of 55.4 mV/pH, with the correlation coefficient being greater than 0.99. PMID:25789490

  14. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry

    PubMed Central

    Molnár, Gábor Y; Shenouda, Shenouda S; Katona, Gábor L; Langer, Gábor A

    2016-01-01

    Summary Alloying by grain boundary diffusion-induced grain boundary migration is investigated by secondary neutral mass spectrometry depth profiling in Ag/Au and Ag/Pd nanocrystalline thin film systems. It is shown that the compositions in zones left behind the moving boundaries can be determined by this technique if the process takes place at low temperatures where solely the grain boundary transport is the contributing mechanism and the gain size is less than the half of the grain boundary migration distance. The results in Ag/Au system are in good accordance with the predictions given by the step mechanism of grain boundary migration, i.e., the saturation compositions are higher in the slower component (i.e., in Au or Pd). It is shown that the homogenization process stops after reaching the saturation values and further intermixing can take place only if fresh samples with initial compositions, according to the saturation values, are produced and heat treated at the same temperature. The reversal of the film sequence resulted in the reversal of the inequality of the compositions in the alloyed zones, which is in contrast to the above theoretical model, and explained by possible effects of the stress gradients developed by the diffusion processes itself. PMID:27335738

  15. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry.

    PubMed

    Molnár, Gábor Y; Shenouda, Shenouda S; Katona, Gábor L; Langer, Gábor A; Beke, Dezső L

    2016-01-01

    Alloying by grain boundary diffusion-induced grain boundary migration is investigated by secondary neutral mass spectrometry depth profiling in Ag/Au and Ag/Pd nanocrystalline thin film systems. It is shown that the compositions in zones left behind the moving boundaries can be determined by this technique if the process takes place at low temperatures where solely the grain boundary transport is the contributing mechanism and the gain size is less than the half of the grain boundary migration distance. The results in Ag/Au system are in good accordance with the predictions given by the step mechanism of grain boundary migration, i.e., the saturation compositions are higher in the slower component (i.e., in Au or Pd). It is shown that the homogenization process stops after reaching the saturation values and further intermixing can take place only if fresh samples with initial compositions, according to the saturation values, are produced and heat treated at the same temperature. The reversal of the film sequence resulted in the reversal of the inequality of the compositions in the alloyed zones, which is in contrast to the above theoretical model, and explained by possible effects of the stress gradients developed by the diffusion processes itself. PMID:27335738

  16. Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates

    NASA Astrophysics Data System (ADS)

    Eraković, S.; Janković, A.; Ristoscu, C.; Duta, L.; Serban, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Socol, M.; Iordache, O.; Dumitrescu, I.; Luculescu, C. R.; Janaćković, Dj.; Miškovic-Stanković, V.

    2014-02-01

    Hydroxyapatite (HA) is a widely used biomaterial for implant thin films, largely recognized for its excellent capability to chemically bond to hard tissue inducing the osteogenesis without immune response from human tissues. Nowadays, intense research efforts are focused on development of antimicrobial HA doped thin films. In particular, HA doped with Ag (Ag:HA) is expected to inhibit the attachment of microbes and contamination of metallic implant surface. We herewith report on nano-sized HA and Ag:HA thin films synthesized by pulsed laser deposition on pure Ti and Ti modified with 100 nm diameter TiO2 nanotubes (fabricated by anodization of Ti plates) substrates. The HA-based thin films were characterized by SEM, AFM, EDS, FTIR, and XRD. The cytotoxic activity was tested with HEp2 cells against controls. The antifungal efficiency of the deposited layers was tested against the Candida albicans and Aspergillus niger strains. The Ti substrates modified with TiO2 nanotubes covered with Ag:HA thin films showed the highest antifungal activity.

  17. Analysis of Ag sbnd Co thin film alloys using PIXE and RBS

    NASA Astrophysics Data System (ADS)

    Sˇandrik, R.; Grime, G. W.

    1996-04-01

    The Ag sbnd Co system representing a grain type alloy has non-mixing properties resulting in the formation of pure metal precipitates under certain conditions. 50 nm thin layers of Ag 1- xCo x (0.35≤x≤0.55) on SiO 2Si substrates were analysed using microbeam PIXE and RBS to determine whether structural changes following 600°C annealing could be detected. With the aim to estimate the accuracy of proposed analytical techniques the parameters of linear model CiPIXE= f( CiRBS) have been statistically tested. Using a 1 μm beam of 2 MeV protons many random point analyses were carried out on areas ranging from 20 × 20 μm 2 to 2000 ×2000 μm 2. Statistical evaluation of this data shows differences in the Ag/Co yields ratio for annealed as well as non-annealed samples. Lateral concentration inhomogeneity on a scale less than the beam diameter can be observed within a sample according to the analysis of variance based on an F-test of many random point analyses.

  18. Photocatalytic Properties of TiO2 Thin Films Modified with Ag and Pt Nanoparticles Deposited by Gas Flow Sputtering.

    PubMed

    Maicu, M; Glöss, D; Frach, Peter; Hecker, D; Gerlach, G; Córdoba, José M

    2015-09-01

    In this work, a gas flow sputtering (GFS) process which allows the production and deposition of metal nanoparticles (NPs) in a vacuum environment is described. Aim of the study is to prove the potential of this technology for the fabrication of new TiO2 films with enhanced photocatalytic properties. For this purpose, Ag and Pt NPs have been produced and deposited on photocatalytic float glass coated with TiO2 thin films by magnetron sputtering. The influence of the process parameters and of the metal amount on the final properties of the particles (quantity, size, size distribution, oxidation state etc.,) was widely investigated. Moreover, the effect of the NPs on the photocatalytic activity of the resulting materials was evaluated for the case of the decomposition of stearic acid (SA) during UV-A irradiation. The reduction of the water contact angle (WCA) during the irradiation period was measured in order to test the photo-induced super-hydrophilicity (PSH).

  19. Effect of mesh patterning with UV pulsed-laser on optical and electrical properties of ZnO/Ag-Ti thin films

    NASA Astrophysics Data System (ADS)

    Kao, K. S.; Cheng, D. L.; Chang, S. H.; Hsieh, P. T.; Chin, H. S.; Lin, H. K.

    2010-10-01

    In this study, the ZnO/Ag-Ti structure for transparence conducting oxide (TCO) is investigated by optimizing the thickness of the Ag-Ti alloy and ZnO layers. The Ag-Ti thin film is deposited by DC magnetron sputtering and its thicknesses is well controlled. The ZnO thin film is prepared by sol-gel method using zinc acetate as cation source, 2-methoxiethanol as solvent and monoethanolamine as solution stabilizer. The ZnO film deposition is performed by spin-coating technique and dried at 150 °C on Corning 1737 glass. Due to the conductivity of ZnO/Ag-Ti is dominated by Ag-Ti, the sheet resistance of ZnO/Ag-Ti decrease dramatically as the thickness of Ag-Ti layer increases. However, the transmittances of ZnO/Ag-Ti become unacceptable for TCO application after the thickness of Ag-Ti layer beyond 6 nm. The as-deposited ZnO/Ag-Ti structure has the optical transmittance of 83% @ 500 nm and the low resistivity of 1.2 × 10 -5 Ω-cm. Furthermore, for improving the optical and electrical properties of ZnO/Ag-Ti, the thermal treatment using laser is adopted. Experimental results indicate that the transmittance of ZnO/Ag-Ti is improved from 83% to 89% @ 500 nm with resistivity of 1.02 × 10 -5 Ω-cm after laser drilling. The optical spectrum, the resistance, and the morphology of the ZnO/Ag-Ti will be reported in the study.

  20. Characterization of the (Ag,Cu)(In,Ga)Se2 thin film alloy system for solar cells

    NASA Astrophysics Data System (ADS)

    Boyle, Jonathan

    Energy is the underlying factor to human economic activity, and more energy is projected to be needed in the near future and photovoltaics provide a means to supply that energy. Results presented in this dissertation detail material properties of the (Ag,Cu)(In,Ga)Se2 thin film alloy system for use as a solar cell material. Structural and optical properties were determined via X-ray diffraction and UV/Vis/NIR spectrophotometry, respectively. Structural data was analyzed using JADE 2010 software and optical data was analyzed via two different methods. Results of Ag substitution into Cu(In,Ga)Se2 alloy were reconciled with the Jaffe-Wei-Zunger (JWZ) theoretical model, which relates structural and chemical properties of Cu-based ternary chalcopyrite alloys to their optical properties. Dominant phase of the alloy system was identified as chalcopyrite I-42d, Space group 122, with minor secondary phases and order defect phases. No chalcopyrite-chalcopyrite miscibility gap was present in the alloy compositional space, counter to prior literature on bulk polycrystalline materials and thermodynamic calculations performed here, indicating that Ag was successfully substituted into the chalcopyrite lattice. Lattice constant results were consistent with JWZ model, where a O lattice constant closely follows Vegard's rule, cO lattice constant changes at different rates than aO does with composition, and anion displacement is affected by cation radii. Optical results showed bandgap widening with Ag and Ga substitution across the full compositional space, with bowing parameters shown overall to be invariant with cation substitution, counter to expectations. (Ag+Cu)/(In+Ga) ratio effect on bandgap for a limited set of samples is consistent with p-d hybridization effects from JWZ model.

  1. The Role of Annealing Process in Ag-Based BaSnO3 Multilayer Thin Films

    NASA Astrophysics Data System (ADS)

    Wu, Muying; Yu, Shihui; He, Lin; Yang, Lei; Zhang, Weifeng

    2016-08-01

    The BaSnO3/Ag/BaSnO3 multilayer structure was designed and fabricated on a quartz glass by magnetron sputtering, followed by an annealing process at a temperature from 150 to 750 °C in air. In this paper, we investigated the influence of the annealing temperature on the structural, optical, and electrical properties of the multilayers and proposed the mechanisms of conduction and transmittance. The maximum value of the figure of merit of 31.8 × 10-3 Ω-1 was achieved for the BaSnO3/Ag/BaSnO3 multilayer thin films annealed at 150 °C, while the average optical transmittance in the visible ranges was >84 %, the resistivity was 5.71 × 10-5 Ω cm, and the sheet resistance was 5.57 Ω/sq. When annealed at below 600 °C, the values of resistivity and transmittance of the multilayers were within an acceptable range (resistivity <5.0 × 10-4 Ω cm, transmittance >80 %). The observed property of the multilayer film is suitable for the application of transparent conductive electrodes.

  2. The Role of Annealing Process in Ag-Based BaSnO3 Multilayer Thin Films.

    PubMed

    Wu, Muying; Yu, Shihui; He, Lin; Yang, Lei; Zhang, Weifeng

    2016-12-01

    The BaSnO3/Ag/BaSnO3 multilayer structure was designed and fabricated on a quartz glass by magnetron sputtering, followed by an annealing process at a temperature from 150 to 750 °C in air. In this paper, we investigated the influence of the annealing temperature on the structural, optical, and electrical properties of the multilayers and proposed the mechanisms of conduction and transmittance. The maximum value of the figure of merit of 31.8 × 10(-3) Ω(-1) was achieved for the BaSnO3/Ag/BaSnO3 multilayer thin films annealed at 150 °C, while the average optical transmittance in the visible ranges was >84 %, the resistivity was 5.71 × 10(-5) Ω cm, and the sheet resistance was 5.57 Ω/sq. When annealed at below 600 °C, the values of resistivity and transmittance of the multilayers were within an acceptable range (resistivity <5.0 × 10(-4) Ω cm, transmittance >80 %). The observed property of the multilayer film is suitable for the application of transparent conductive electrodes. PMID:27544775

  3. Temperature behaviour of optical parameters in (Ag3AsS3)0.3(As2S3)0.7 thin films

    NASA Astrophysics Data System (ADS)

    Kutsyk, Mykhailo M.; Ráti, Yosyp Y.; Izai, Vitalii Y.; Makauz, Ivan I.; Studenyak, Ihor P.; Kökényesi, Sandor; Komada, Paweł; Zhailaubayev, Yerkin; Smailov, Nurzhigit

    2015-12-01

    (Ag3AsS3)0.3(As2S3)0.7 thin films were deposited onto a quartz substrate by rapid thermal evaporation. The optical transmission spectra of thin films were measured in the temperature range 77-300 K. It is shown that the absorption edge spectra are described by the Urbach rule. The temperature behaviour of absorption spectra was studied, the temperature dependences of energy position of absorption edge and Urbach energy were investigated. The influence of transition from three-dimensional glass to the two-dimensional thin film as well as influence of Ag3AsS3 introduction into As2S3 on the optical parameters of (Ag3AsS3)0.3(As2S3)0.7 were analysed. The spectral and temperature behaviour or refractive index for (Ag3AsS3)0.3(As2S3)0.7 thin film were studied.

  4. High-quality reproducible PLD Y-Ba-Cu-O:Ag thin films up to 4 inch diameter for microwave applications

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Hochmuth, Holger; Natusch, Dieter; Grundmann, Marius

    2002-08-01

    Large-area pulsed laser deposition (PLD) has reached a state in terms of film quality and reproducibility which makes possible now real applications of PLD-YBa 2Cu 3O 7- δ (YBCO) thin films on both sides of R-plane sapphire substrates as HTSC devices in mobile communication systems. Bandpass filters optimized from PLD-YBCO thin films presently fulfill the requirements of the main national companies which are active in future communication techniques. A relatively simple PLD arrangement with fixed laser plume and rotating substrate, with an offset between the laser plume and the center of the substrate is employed to deposit laterally homogeneous 4 inch diameter Ag-doped YBCO thin films. With the experience of more than 1000 double-sided 3 inch diameter films a high degree of homogeneity and reproducibility of jc and Rs is reached. The extension up to 8 inch substrate diameter will increase the productivity of the flexible PLD technique considerably.

  5. The effect of Ag diffusion on properties of YBa 2Cu 3O 7- x thin films produced by electron beam deposition techniques

    NASA Astrophysics Data System (ADS)

    Görür, O.; Küçükömeroğlu, T.; Terzioğlu, C.; Varilci, A.; Altunbaş, M.

    2005-01-01

    Superconducting YBa 2Cu 3O 7- x thin films were prepared on pure MgO and Ag/MgO substrates (without and with Ag buffer layer) using an electron beam evaporation technique. The effects of isothermal annealing temperature and Ag diffusion on the crystalline structure and some superconducting properties were investigated by X-ray diffraction, scanning electron microscopy, critical temperature, critical current density and room temperature resistivity measurements. The optimum annealing conditions causing a high degree of preferential orientation with the c-axis perpendicular to the substrates were found to be the isothermal annealing at 930 °C for 5 h. Annealing of films on Ag/MgO substrates is accompanied by Ag diffusion from the buffer layer into YBCO films. The higher rate of crystallization of the YBCO films, the higher degree of c-axis orientation, the higher dense surface morphology, the increased lattice parameter c (by ≈0.1%), the reduced room temperature resistivity (2-3 times), the slightly enchanced critical temperature ( Tc = 92 K at R = 0) and the critical current density ( Jc = 4.2 × 10 5 A/cm 2 at 77 K) were observed for the Ag-doped films (on Ag/MgO substrates) in comparison with those for the undoped films (on MgO substrates). The temperature dependence of the Ag diffusion coefficient in YBCO films in the range 600-800 °C was described by the relation D = 1.9 × 10 -6 exp(-0.73 eV/kT).

  6. Growth of NaCl on thin epitaxial KCl films on Ag(100) studied by SPA-LEED

    NASA Astrophysics Data System (ADS)

    Marquardt, Christian; Paulheim, Alexander; Sokolowski, Moritz

    2015-11-01

    We investigated the growth of NaCl on thin (100)-oriented films of KCl by spot profile analysis of low energy electron diffraction (SPA-LEED). The underlying question of this investigation was how the system accommodates to the misfit of - 10% between the NaCl and KCl lattices. The KCl films (3 atomic layers thick) were epitaxially grown on a Ag(100) single crystal. We studied the heteroepitaxial growth of NaCl on KCl at 300 K and at 500 K, respectively. At 300 K, the first NaCl monolayer (ML) grows pseudomorphically on the KCl film. From the second layer onward, the NaCl lattice relaxes. The NaCl multilayers roughen, and a small rotational disorder (± 4°) of the NaCl domains is observed. The roughening results from the formation of multilayer islands of limited lateral size due to the misfit to the pseudomorphic first NaCl layer. At a growth temperature of 500 K, no pseudomorphic NaCl layer forms, instead relaxed multilayer island growth of NaCl is observed from the first layer onward. Similarly to the growth at 300 K, we find NaCl multilayer islands of limited lateral size. For both temperatures, we explain this growth behavior by the misfit that makes the adsorption sites at the island edges of the first relaxed NaCl layer less favorable for larger islands, promoting nucleation of multilayer islands.

  7. Enhancement of critical current density in YBa2Cu3O7-dgr thin films grown using PLD on YSZ (001) surface modified with Ag nano-dots

    NASA Astrophysics Data System (ADS)

    Ionescu, M.; Li, A. H.; Zhao, Y.; Liu, H. K.; Crisan, A.

    2004-07-01

    Y123 thin films were grown by pulsed laser deposition (PLD) on YSZ (001) substrate. Prior to the film deposition, a discontinuous layer of Ag was deposited on the substrate, also using PLD, in the form of separate islands. Atomic force microscopy (AFM) investigation of the Ag layer showed that its morphology consisted of self-assembled islands of nanometre size, randomly distributed on the surface of the substrate, called nano-dots. The Y123 superconducting films grown on such a surface were characterized using AFM, x-ray diffraction, secondary electron microscopy, ac susceptibility and dc magnetization. The results show that there is no significant difference in surface morphology, crystallographic orientation, phase composition or superconducting transition temperature between the Y123 films grown on YSZ (001) with an Ag nano-dots layer and a control Y123 film grown on a virgin YSZ (001) surface. On the other hand, at 77 K, the magnetic critical current density ( J_c^m ) was three times higher for the Y123 film grown on YSZ with the modified (001) surface than for the film grown on YSZ with a virgin (001) surface. At 5 K the enhancement of J_c^m was approximately seven times, at both low and high fields. This suggests an increase in pinning, caused presumably by point defects formed in the Y123 film above the Ag islands.

  8. Raman Spectroscopy of the Reaction of Thin Films of Solid-State Benzene with Vapor-Deposited Ag, Mg, and Al

    SciTech Connect

    Schalnat, Matthew C.; Hawkridge, Adam M.; Pemberton, Jeanne E.

    2011-07-21

    Thin films of solid-state benzene at 30 K were reacted with small quantities of vapor-deposited Ag, Mg, and Al under ultrahigh vacuum, and products were monitored using surface Raman spectroscopy. Although Ag and Mg produce small amounts of metal–benzene adduct products, the resulting Raman spectra are dominated by surface enhancement of the normal benzene modes from metallic nanoparticles suggesting rapid Ag or Mg metallization of the film. In contrast, large quantities of Al adduct products are observed. Vibrational modes of the products in all three systems suggest adducts that are formed through a pathway initiated by an electron transfer reaction. The difference in reactivity between these metals is ascribed to differences in ionization potential of the metal atoms; ionization potential values for Ag and Mg are similar but larger than that for Al. These studies demonstrate the importance of atomic parameters, such as ionization potential, in solid-state metal–organic reaction chemistry.

  9. Augmentation of thermoelectric performance of VO2 thin films irradiated by 200 MeV Ag9+-ions

    NASA Astrophysics Data System (ADS)

    Khan, G. R.; Kandasami, A.; Bhat, B. A.

    2016-06-01

    Swift Heavy Ion (SHI) irradiation with 200 MeV Ag9+-ion beam at ion fluences of 1E11, 5E11, 1E12, and 5E12 for tuning of electrical transport properties of VO2 thin films fabricated by so-gel technique on alumina substrates has been demonstrated in the present paper. The point defects created by SHI irradiation modulate metal to insulator phase transition temperature, carrier concentration, carrier mobility, electrical conductivity, and Seebeck coefficient of VO2 thin films. The structural properties of the films were characterized by XRD and Raman spectroscopy and crystallite size was found to decrease upon irradiation. The atomic force microscopy revealed that the surface roughness of specimens first decreased and then increased with increasing fluence. Both resistance as well as Seebeck coefficient measurements demonstrated that all the samples exhibit metal-insulator phase transition and the transition temperatures decreases with increasing fluence. Hall effect measurements exhibited that carrier concentration increased continuously with increasing fluence which resulted in an increase of electrical conductivity by several orders of magnitude in the insulating phase. Seebeck coefficient in insulating phase remained almost constant in spite of an increase in the electrical conductivity by several orders of magnitude making SHI irradiation an alternative stratagem for augmentation of thermoelectric performance of the materials. The carrier mobility at room temperature decreased up to the beam fluence of 5E11 and then started increasing whereas Seebeck coefficient in metallic state first increased with increasing ion beam fluence up to 5E11 and thereafter decreased. Variation of these electrical transport parameters has been explained in detail.

  10. Evaluation of first crystallization in amorphous Ag-added Ag5.5In6.5Sb59Te29 thin films

    NASA Astrophysics Data System (ADS)

    Song, Ki-Ho; Seo, Jae-Hee; Kim, Jun-Hyong; Lee, Hyun-Yong

    2009-12-01

    In this article, several experimental results were reported for the evaluation of the first crystallization speed (v1st) on the nanosecond time scale as well as the material characteristics of the Ag-added Ag-In-Sb-Te films. The (Ag)x(Ag5.5In6.5Sb59Te29)1-x (x=0, 0.1, and 0.2) films were prepared by thermal evaporation and their phase transformation from an amorphous state to a hexagonal structure via a stable fcc structure was confirmed using x-ray diffraction. Some differences were measured in the optical transmittance (TOP) and absorption between the amorphous and crystalline films in the wavelength (λ) range of 800-3000 nm using an UV-visible-IR spectrophotometer. The v1st values, evaluated using nanopulse reflection response, slightly improved with an increase in the Ag content. For example, the nucleation time/average growth time ratio for the Ag5.5In6.5Sb59Te29 and Ag0.2(Ag5.5In6.5Sb59Te29)0.8 films were approximately 170 ns/70 ns and 110 ns/60 ns, respectively, for an illumination power of 7 mW.

  11. AgSb(S{sub x}Se{sub 1−x}){sub 2} thin films for solar cell applications

    SciTech Connect

    González, J.O.; Shaji, S.; Avellaneda, D.; Castillo, A.G.; Roy, T.K. Das; and others

    2013-05-15

    Highlights: ► AgSb(S{sub x}Se{sub 1−x}){sub 2} thin films were formed by heating Na{sub 2}SeSO{sub 3} dipped Sb{sub 2}S{sub 3}/Ag layers. ► S/Se ratio was varied by changing the dipping time in Na{sub 2}SeSO{sub 3} solution. ► Characterized the films using XRD, XPS, SEM, Optical and electrical measurements. ► Band gap engineering of 1−1.1 eV for x = 0.51 and 0.52 respectively. ► PV Glass/FTO/CdS/AgSb(S{sub x}Se{sub 1−x}){sub 2}/C were prepared showing V{sub oc} = 410 mV, J{sub sc} = 5.7 mA/cm{sup 2}. - Abstract: Silver antimony sulfoselenide (AgSb(S{sub x}Se{sub 1−x}){sub 2}) thin films were prepared by heating glass/Sb{sub 2}S{sub 3}/Ag layers after selenization using sodium selenosulphate solution. First, Sb{sub 2}S{sub 3} thin films were deposited on glass substrates from a chemical bath containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3}. Then Ag thin films were thermally evaporated onto glass/Sb{sub 2}S{sub 3}, followed by selenization by dipping in an acidic solution of Na{sub 2}SeSO{sub 3}. The duration of selenium dipping was varied as 30 min and 2 h. The heating condition was at 350 °C for 1 h in vacuum. Analysis of X-ray diffraction pattern of the thin films formed after heating showed the formation of AgSb(S{sub x}Se{sub 1−x}){sub 2}. Morphology and elemental analysis were done by scanning electron microscopy and energy dispersive X-ray detection. Depth profile of composition of the thin films was performed by X-ray Photoelectron Spectroscopy. The spectral study showed the presence of Ag, Sb, S, and Se, and the corresponding binding energy analysis confirmed the formation of AgSb(S{sub x}Se{sub 1−x}){sub 2}. Photovoltaic structures (PV) were prepared using AgSb(S{sub x}Se{sub 1−x}){sub 2} thin films as absorber and CdS thin films as window layers on FTO coated glass substrates. The PV structures were heated at 60–80 °C in air for 1 h to improve ohmic contact. Analysis of J–V characteristics of the PV structures showed V

  12. YBa2Cu3O7-δ - ag Sputtered Thin Films on MgO (100) and LaAlO3 (100) Biased and Unbiased Substrates

    NASA Astrophysics Data System (ADS)

    Moshfegh, A. Z.; Akhavan, O.; Salamati, H.; Kameli, P.; Akhavan, M.

    2000-09-01

    In this investigation, we have deposited YBa2Cu3O7-δ - Ag thin films on various biased and unbiased substrates, including MgO (100), LaAlO3 (100) and Si (111), using a single stoichiometric composite target of YBa2Cu3O7-δ with 10 wt.% Ag content, applying DC sputtering technique. The growth parameters are varied as following: sputtering gas pressure PAr = 100 - 300 mtorr, sputtering power P = 30 - 80 W, substrate bias voltage Vb= 0 - 220 V and film thickness t = 500 - 5000 Å. An optimum bias voltage of Vb= - 100 V was obtained under our experimental conditions. The post annealed (930°C for 1 hr in O2 environment) films exhibit superconducting state with Tc (onset) of about 40 K for biased (on - axis), and 86 K for unbiased (off- axis) post annealed (800 ° C, 3 hr) films grown over both MgO(100) and LaAlO3 (100) substrates. According to our SEM analysis, Ag particles are uniformly distributed in the annealed films with average grain size of about 0.3 μm located mostly at the grain boundaries. PIXE compositional analysis of the deposited films indicates deficiency of Cu and Ba for unannealed and Cu rich concentration for the annealed YBCO - Ag films grown over unbiased LaAlO3 (100) substrate.

  13. Coexistent compressive and tensile strain in Ag thin films on Si(1 1 1)-(7×7) surfaces

    NASA Astrophysics Data System (ADS)

    Goswami, D. K.; Bhattacharjee, K.; Satpati, B.; Roy, S.; Kuri, G.; Satyam, P. V.; Dev, B. N.

    2007-09-01

    Growth and strain behavior of thin Ag films on Si substrates have been investigated by scanning tunneling microscopy, cross-sectional transmission electron microscopy and high resolution X-ray diffraction studies. Ag islands formed on Si at room temperature growth show strongly preferred heights and flat top. At low coverage [ ≳1 monolayer (ML)], Ag islands with (1 1 1) orientation containing two atomic layers of Ag are overwhelmingly formed [D.K. Goswami, K. Bhattacharjee, B. Satpati, S. Roy, P.V. Satyam, B.N. Dev, Surf. Sci. 601 (2007) 603]. A thicker (40 ML) annealed film shows two closely spaced Ag(1 1 1) diffraction peaks—one weak and broad and the other narrow and more intense. The broad peak corresponds to an average expansion (0.21%) and the narrow intense peak corresponds to a contraction (0.17%) of the Ag(1 1 1) planar spacing compared to the bulk value. This coexistence of compressive and tensile strain can be explained in terms of changes in the Ag lattice during the heating-cooling cycle due to thermal expansion coefficient mismatch between Ag and Si.

  14. Photocatalytic Properties of TiO2 Thin Films Modified with Ag and Pt Nanoparticles Deposited by Gas Flow Sputtering.

    PubMed

    Maicu, M; Glöss, D; Frach, Peter; Hecker, D; Gerlach, G; Córdoba, José M

    2015-09-01

    In this work, a gas flow sputtering (GFS) process which allows the production and deposition of metal nanoparticles (NPs) in a vacuum environment is described. Aim of the study is to prove the potential of this technology for the fabrication of new TiO2 films with enhanced photocatalytic properties. For this purpose, Ag and Pt NPs have been produced and deposited on photocatalytic float glass coated with TiO2 thin films by magnetron sputtering. The influence of the process parameters and of the metal amount on the final properties of the particles (quantity, size, size distribution, oxidation state etc.,) was widely investigated. Moreover, the effect of the NPs on the photocatalytic activity of the resulting materials was evaluated for the case of the decomposition of stearic acid (SA) during UV-A irradiation. The reduction of the water contact angle (WCA) during the irradiation period was measured in order to test the photo-induced super-hydrophilicity (PSH). PMID:26716202

  15. AgGaSe2 thin films grown by chemical close-spaced vapor transport for photovoltaic applications: structural, compositional and optical properties.

    PubMed

    Merschjann, C; Mews, M; Mete, T; Karkatzinou, A; Rusu, M; Korzun, B V; Schorr, S; Schubert-Bischoff, P; Seeger, S; Schedel-Niedrig, Th; Lux-Steiner, M-Ch

    2012-05-01

    Thin films of chalcopyrite AgGaSe(2) have been successfully grown on glass and glass/molybdenum substrates using the technique of chemical close-spaced vapor transport. The high crystallinity of the samples is confirmed by grazing-incidence x-ray diffraction, scanning and transmission electron microscopy, and optical transmission/reflection spectroscopy. Here, two of the three expected direct optical bandgaps are found at 1.77(2) and 1.88(6) eV at 300 K. The lowest bandgap energy at 4 K is estimated to be 1.82(3) eV. Photoluminescence spectroscopy has further revealed the nature of the point defects within the AgGaSe(2), showing evidence for the existence of very shallow acceptor levels of 5(1) and 10(1) meV, and thus suggesting the AgGaSe(2) phase itself to exhibit a p-type conductivity. At the same time, electrical characterization by Hall, Seebeck and four-point-probe measurements indicate properties of a compensated semiconductor. The electrical properties of the investigated thin films are mainly influenced by the presence of Ag(2)Se and Ga(2)O(3) nanometer-scaled surface layers, as well as by Ag(2)Se inclusions in the bulk and Ag clusters at the layers' rear side. PMID:22469870

  16. Improved optical and electrical properties of 200 MeV Ag{sup 15+} irradiated 3 wt% 'Li' doped MoO{sub 3} thin film

    SciTech Connect

    Kovendhan, M.; Mohan, R.; Joseph, D. Paul; Manimuthu, P.; Venkateswaran, C.; Sambasivam, S.; Singh, J. P.; Asokan, K.

    2013-02-05

    The lithium (3 wt%) doped MoO{sub 3} thin film was prepared by spray deposition onto ITO substrate at 325 Degree-Sign C. The film of thickness 577 nm was irradiated with 200 MeV Ag{sup 15+} ion beams at a fluence of 5 Multiplication-Sign 10{sup 12} ions/cm{sup 2}. The XRD pattern confirmed that the pristine film is polycrystalline with orthorhombic symmetry. Upon irradiation, the film turned amorphous. The sharp Raman peak in pristine film at 993 cm{sup -1} is due to the terminal oxygen of {alpha}-MoO{sub 3} phase. Optical transparency of the film increased upon irradiation. Large red shift was observed in both direct and indirect band gaps. Electrical transport property study shows that the carrier concentration increased by one order for the irradiated film.

  17. Study on the fabrication of transparent electrodes by using a thermal-roll imprinted Ag mesh and anATO thin film

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jin; Choi, Kyoon; Choi, Se Young

    2016-03-01

    Transparent conductive films have been widely studied because of their potential applications in optoelectronic devices such as paper displays, dye-sensitized solar cells (DSSCs), organic lighting-emitting diodes (OLEDs), organic solar cells and so on. In this paper, we report on a low-resistance, a high-transparents conductive film that can be applied as It a flexible device substrate. In order to the fabricate transparent conductive film, we used a high-resolution roll imprinting method. The following steps were performed: The design and manufacture of an electroforming stamp mold, the fabrication of high resolution roll imprinted on flexible film, and the manufacture of an Ag grid that was filled by using a doctor blade process with a nano-sized Ag paste. Then on patterned Its films, antimony tin oxide was coated with ATO sol solution by using bar the coating method. The fabricated ATO/Ag mesh electrode showed good flexibility, and It exhibited a high optical transmittance of 85.3% in the visible wavelength and a sheet resistance of 41 Ω/sq. Furthermore, the bending test for mechanical properties showed that the ATO/Ag thin film had good flexibility.

  18. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    SciTech Connect

    Das, Sayantan; Alford, T. L.

    2013-06-28

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  19. The growth mode and microstructure of Ag-doped YBa 2Cu 3O 7-δ thin films prepared by dual beam pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Xu, S. Y.; Ong, C. K.; You, L. P.; Li, J.; Wang, S. J.

    Ag-doped c-axis YBa 2Cu 3O 7-δ thin films were fabricated by using dual-beam pulsed-laser deposition. When a small amount of silver was doped in the film grown at 700 °C, the Jc value was obviously enhanced. The temperature dependence of Jc was found proportional to ( 1- T/T c0 ) {3}/{2} at T close to Tc). In the films grown at 730 °C, we observed long bar-like structures with lengths in tens of μm, oriented along or at 45° to the a/ b axes of the film. The bars consisted mainly a-axis YBCO grains and a mixture of polycrystalline and amorphous oxides. Defects on substrate surface and growth temperature were found dominating in formation of the bars, which could be attributed to a Ag-assisted diffusion mechanism during the deposition process.

  20. The structural studies of Ag containing TiO2-SiO2 gels and thin films deposited on steel

    NASA Astrophysics Data System (ADS)

    Adamczyk, Anna; Rokita, Magdalena

    2016-06-01

    FTIR spectroscopic structural studies of titania-silica monolith samples as well as thin films deposited on steel were described in this work. Thin films were synthesized by the sol-gel method applying the dip coating as separate one-component TiO2 and/or SiO2 layers or as two-component TiO2-SiO2 thin films. Silver nanoparticles were incorporated into the structure from pure SiO2 sol, deposited then as an additional layer in those hybrid multilayers systems. Except the spectroscopic studies, XRD diffraction, SEM microscopy with EDX analysis and AFM microscopy were applied. The structural studies allow to describe and compare the structure and the morphology of thin films, as well those Ag free as Ag containing ones, also by the comparison with the structure of bulk samples. In FTIR spectra, the band observed at about 613 cm-1 can be connected with the presence of the non-tetrahedral cation in the structure and is observed only in the spectra of Ag containing bulk samples and thin films. The bands at 435-467 cm-1 are due to the stretching vibrations of Ti-O bonds or as well to the bending vibrations of O-Si-O one. In the ranges of 779-799 cm-1 and 1027-1098 cm-1, the bands ascribed to the symmetric stretching vibrations and asymmetric vibrations of Si-O-Si connections, respectively, are observed. SEM and AFM images gave the information on the microstructure and the topography of samples surface. XRD measurements confirmed the presence of only amorphous phase in samples up to 500 °C and allowed to observe the tendency of their crystallization.

  1. Laser irradiation of ZnO:Al/Ag/ZnO:Al multilayers for electrical isolation in thin film photovoltaics

    NASA Astrophysics Data System (ADS)

    Crupi, Isodiana; Boscarino, Stefano; Torrisi, Giacomo; Scapellato, Giorgia; Mirabella, Salvatore; Piccitto, Giovanni; Simone, Francesca; Terrasi, Antonio

    2013-09-01

    Laser irradiation of ZnO:Al/Ag/ZnO:Al transparent contacts is investigated for segmentation purposes. The quality of the irradiated areas has been experimentally evaluated by separation resistance measurements, and the results are complemented with a thermal model used for numerical simulations of the laser process. The presence of the Ag interlayer plays two key effects on the laser scribing process by increasing the maximum temperature reached in the structure and accelerating the cool down process. These evidences can promote the use of ultra-thin ZnO:Al/Ag/ZnO:Al electrode in large-area products, such as for solar modules.

  2. Laser irradiation of ZnO:Al/Ag/ZnO:Al multilayers for electrical isolation in thin film photovoltaics

    PubMed Central

    2013-01-01

    Laser irradiation of ZnO:Al/Ag/ZnO:Al transparent contacts is investigated for segmentation purposes. The quality of the irradiated areas has been experimentally evaluated by separation resistance measurements, and the results are complemented with a thermal model used for numerical simulations of the laser process. The presence of the Ag interlayer plays two key effects on the laser scribing process by increasing the maximum temperature reached in the structure and accelerating the cool down process. These evidences can promote the use of ultra-thin ZnO:Al/Ag/ZnO:Al electrode in large-area products, such as for solar modules. PMID:24053228

  3. Influence of a hot and humid environment on thermal transport across the interface between a Ag thin-film line and a substrate

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Noguchi, Kyohei; Saka, Masumi

    2016-04-01

    To evaluate the reliability of Ag thin-film lines for a wide range of applications in electronic devices, knowledge of the thermal transport across the interface between the line and the underlying substrate is of great importance. This is because such thermal transport significantly affects the temperature distribution in the line, the electrical performance of the line and the service life of the device the line is installed on. In this work, we examine the influence of a hot and humid environment on the thermal transport across the interface between a Ag thin-film line and a substrate. By performing a series of current-stressing experiments using the four-point probe method at atmospheric conditions (296 K and 30 RH%) on a Ag thin-film line for different durations of exposure to a hot and humid environment (323 K and 90 RH%), the electrical resistivity was found to increase with the exposure duration. Such an increase is believed to be the result of a decrease in the interfacial thermal conductance, which indicates less thermal transport from the line to the substrate. Moreover, by observing the surface morphology changes in the line and conducting a one-dimensional electro-thermal analysis, such variations can be attributed to the generation and growth of voids within the line, which hinder heat transfer from the line to the substrate through the interface.

  4. Evenly distributed thin-film Ag coating on stainless plate by tricomponent Ag/silicate/PU with antimicrobial and biocompatible properties.

    PubMed

    Huang, Yi-Hsiu; Chen, Mark Hung-Chih; Lee, Bing-Heng; Hsieh, Kuo-Huang; Tu, Yuan-Kun; Lin, Jiang-Jen; Chang, Chih-Hao

    2014-11-26

    A tricomponent nanohybrid dispersion in water comprising silver nanoparticles (AgNP), nanometer-thick silicate platelets (NSP), and water-based polyurethane (PU) was developed for surface coating on orthopedic metal plates. The previously developed AgNP-on-NSP nanohybrid was homogeneously blended into a selected waterborne PU dispersion at varied weight ratios from 1/0.1 to 1/10 (w/w). PU was used to adhere the Ag nanohybrid to the metal surface. The resultant dispersions were analyzed and found to contain AgNP 2-18 nm in diameter and characterized by using UV absorption and TEM micrograph. The subsequent coating of AgNP/NSP-PU dispersion generated a film of 1.5 μm thickness on the metal plate surface, further characterized by an energy dispersive spectroscope (EDS) to show the homogeneous distribution of Ag, Si, and C elements on the metal plates. The surface antimicrobial efficacy was proven for the coating composition of AgNP/NSP to PU ranging from 1/1 to 1/5 by weight ratio but irrelevant to the thickness of the coated materials. The metal plate coated with the high Ag content at 1/1 (w/w) ratio was shown to have very low cytotoxicity toward the contacted mammal fibroblasts. Overall, the optimized tricomponent Ag/silicate/PU in water dispersion from 1/2 to 1/3 (w/w) could generate a stable film on a metal surface exhibiting both antimicrobial and biocompatible properties. The facile coating technique of the AgNP/NSP in waterborne PU is proven to be viable for fabricating infection- and cytotoxicity-free medical devices.

  5. Effect of thickness and Ti interlayers on stresses and texture transformations in thin Ag films during thermal cycling

    SciTech Connect

    Baker, Shefford P.; Saha, Krishanu; Shu, Jonathan B.

    2013-11-04

    The driving forces for the (111) to (100) texture transformation often observed during annealing of thin face-centered cubic metal films were investigated. Thin passivated silver films were produced with and without Ti adhesion layers. Stresses were measured in situ during heating to induce the texture transformation, and the texture was characterized using x-ray diffraction. Sufficiently thin films did not transform and sufficiently thick films transformed fully. Intermediate thickness films transformed to an extent dependent on thickness, leading to stable mixed textures. In the prevailing thermodynamic model, texture transformation is attributed to minimization of strain and interface energies. However, calculations using the measured stresses, known elastic constants, and estimated interface energies in this model reveal that the stresses are not sufficient to cause the texture transformation and, furthermore, that variations in interface energy cannot lead to the observed behavior. The results suggest that neither the interface energy nor the stress plays decisive roles in the texture transformation.

  6. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses.

    PubMed

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C; Altman, Sidney; Schwarz, Udo D; Kyriakides, Themis R; Schroers, Jan

    2016-01-01

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.

  7. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses

    PubMed Central

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B. Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C.; Altman, Sidney; Schwarz, Udo D.; Kyriakides, Themis R.; Schroers, Jan

    2016-01-01

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design. PMID:27230692

  8. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses

    NASA Astrophysics Data System (ADS)

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B. Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C.; Altman, Sidney; Schwarz, Udo D.; Kyriakides, Themis R.; Schroers, Jan

    2016-05-01

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.

  9. 200 MeV Ag15+ ion beam irradiation effects on spray deposited 5 wt% `Li' doped V2O5 thin film

    NASA Astrophysics Data System (ADS)

    Kovendhan, M.; Joseph, D. Paul; Manimuthu, P.; Sendilkumar, A.; Asokan, K.; Venkateswaran, C.; Mohan, R.

    2016-05-01

    Lithium 5 wt% doped V2O5 thin film was deposited onto ITO substrate by spray pyrolysis technique. The substrate temperature was kept at 450 °C. 200 MeV Ag15+ ion beams at a fluence of 5×1012 ions/cm2 was irradiated on 5 wt% `Li' doped V2O5 film of thickness 1367 nm. The XRD pattern confirms that the pristine film is non stoichiometry with orthorhombic structure and upon irradiation the crystallinity decreased and an obvious textured growth along (020) plane is induced. Raman peak observed at 917 cm-1 is due to oxygen deficiency. Upon irradiation, the optical transparency and band gap of the film decreased. Electrical transport property study shows that the resistivity increased by one order for the irradiated film.

  10. The effect of strain induced by Ag underlayer on saturation magnetization of partially ordered Fe{sub 16}N{sub 2} thin films

    SciTech Connect

    Yang, Meiyin; Allard, Lawrence F.; Ji, Nian; Zhang, Xiaowei; Wang, Jian-Ping; Yu, Guang-Hua

    2013-12-09

    Partially ordered Fe-N thin films were grown by a facing target sputtering process on the surface of a (001) Ag underlayer on MgO substrates. It was confirmed by x-ray diffraction that the Ag layer enlarged the in-plane lattice of the Fe-N thin films. Domains of the ordered α″-Fe{sub 16}N{sub 2} phase within an epitaxial (001) α′-Fe{sub x}N phase were identified by electron diffraction and high-resolution aberration-corrected scanning transmission electron microscopy (STEM) methods. STEM dark-field and bright-field images showed the fully ordered structure of the α″-Fe{sub 16}N{sub 2} at the atomic column level. High saturation magnetization(Ms) of 1890 emu/cc was obtained for α″-Fe{sub 16}N{sub 2} on the Ag underlayer, while only 1500 emu/cc was measured for Fe-N on the Fe underlayer. The results are likely due to a tensile strain induced in the α″-Fe{sub 16}N{sub 2} phase by the Ag structure at the interface.

  11. A comparative study on in situ grown superconducting YBCO and YBCO-Ag thin films by PLD on polycrystalline SmBa2NbO6 substrate

    NASA Astrophysics Data System (ADS)

    Kurian, J.; John, Asha M.; Wariar, P. R. S.; Sajith, P. K.; Koshy, J.; Pai, S. P.; Pinto, R.

    2000-02-01

    The development and characterization of SmBa2NbO6, which is a new ceramic substrate material for the YBa2Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> superconductor, are reported. SmBa2NbO6 has a complex cubic perovskite structure with lattice constant a = 8.524 Å. The dielectric properties of SmBa2NbO6 are in a range suitable for its use as a substrate for microwave applications. SmBa2NbO6 was found to have a thermal conductivity of 77 W m-1 K-1 and a thermal expansion coefficient of 7.8 × 10-6 °C-1 at room temperature. Superconducting YBa2 Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> and YBa2Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> -Ag thin films have been grown in situ on polycrystalline SmBa2NbO6 by the pulsed laser ablation technique. The films exhibited (00l) orientation of an orthorhombic YBa2 Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> phase and gave a zero resistivity superconducting transition (TC(0)) at 90 K with a transition width of ~1.5 K. The critical current density of YBCO-Ag thin films grown on polycrystalline SmBa2NbO6 substrate was ~3 × 105 A cm-2 at 77 K. A comparative study of YBCO and YBCO-Ag thin films developed on polycrystalline SmBa2NbO6 substrate by PLD based on the crystallinity, orientation and critical current density of the YBCO film is discussed in detail.

  12. Enhanced Thermochromic Properties and Solar-Heat Shielding Ability of W(x)V(1-x)O2 Thin Films with Ag Nanowires Capping Layers.

    PubMed

    Zhao, Li Li; Miao, Lei; Liu, Cheng Yan; Wang, Hai Long; Tanemura, Sakae; Sun, Li Xian; Gao, Xiang; Zhou, Jian Hua

    2015-11-01

    Considerable efforts have been made to shift the phase transition temperature of metal-doped vanadium dioxide (VO2) films nearer the ambient temperature while maintain the excellent thermochromic properties simultaneously. Here, we describe a facile and economic solution-based method to fabricate W-doped VO2 (V(1-x)W(x)O2) thin films with excellent thermochromic properties for the application of smart windows. The substitutional doping of tungsten atoms notably reduces the phase transition temperature to the ambient temperature and retains the excellent thermochromic property. Furthermore, Ag nanowires (NWs) are employed as capping layers to effectively decrease the thermal emissivity from 0.833 to 0.603, while the original near infrared region (NIR) modulation ability is not severely affected. Besides, the Ag NWs layers further depress the phase transition temperature as well as the hysteresis loop width, which is important to the fenestration application. These solution-grown Ag NWs/V(1-x)W(x)O2 thin films exhibit excellent solar modulation ability, narrowed hysteresis loop width as well as low thermal emissivity, which provide a promising perspective into the practical application of VO2-based smart windows.

  13. Enhanced Thermochromic Properties and Solar-Heat Shielding Ability of W(x)V(1-x)O2 Thin Films with Ag Nanowires Capping Layers.

    PubMed

    Zhao, Li Li; Miao, Lei; Liu, Cheng Yan; Wang, Hai Long; Tanemura, Sakae; Sun, Li Xian; Gao, Xiang; Zhou, Jian Hua

    2015-11-01

    Considerable efforts have been made to shift the phase transition temperature of metal-doped vanadium dioxide (VO2) films nearer the ambient temperature while maintain the excellent thermochromic properties simultaneously. Here, we describe a facile and economic solution-based method to fabricate W-doped VO2 (V(1-x)W(x)O2) thin films with excellent thermochromic properties for the application of smart windows. The substitutional doping of tungsten atoms notably reduces the phase transition temperature to the ambient temperature and retains the excellent thermochromic property. Furthermore, Ag nanowires (NWs) are employed as capping layers to effectively decrease the thermal emissivity from 0.833 to 0.603, while the original near infrared region (NIR) modulation ability is not severely affected. Besides, the Ag NWs layers further depress the phase transition temperature as well as the hysteresis loop width, which is important to the fenestration application. These solution-grown Ag NWs/V(1-x)W(x)O2 thin films exhibit excellent solar modulation ability, narrowed hysteresis loop width as well as low thermal emissivity, which provide a promising perspective into the practical application of VO2-based smart windows. PMID:26726666

  14. Ferromagnetism in 200-MeV Ag{sup +15}-ion-irradiated Co-implanted ZnO thin films

    SciTech Connect

    Angadi, Basavaraj; Jung, Y.S.; Choi, Won-Kook; Kumar, Ravi; Jeong, K.; Shin, S.W.; Lee, J.H.; Song, J.H.; Wasi Khan, M.; Srivastava, J.P.

    2006-04-03

    Structural, electrical resistivity, and magnetization properties of 200-MeV Ag{sup +15}-ion-irradiated Co-implanted ZnO thin films are presented. The structural studies show the presence of Co clusters whose size is found to increase with increase of Co implantation. The implanted films were irradiated with 200-MeV Ag{sup +15} ions to fluence of 1x10{sup 12} ions/cm{sup 2}. The Co clusters on irradiation dissolve in the ZnO matrix. The electrical resistivity of the irradiated samples is lowered to half. The magnetization hysteresis measurements show ferromagnetic behavior at 300 K, and the coercive field increases with the Co implantation. The ferromagnetism at room temperature is confirmed by magnetic force microscopy measurements. The results are explained on the basis of the close interplay between the electrical and the magnetic properties.

  15. Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation

    SciTech Connect

    Ulmeanu, M.; Zamfirescu, M.; Rusen, L.; Luculescu, C.; Moldovan, A.; Stratan, A.; Dabu, R.

    2009-12-01

    Single pulse laser ablation of glass, Ag, Au, and Co thin films was experimentally investigated with a laser pulse width of 400 ps at a wavelength of 532 nm both in the far and near fields. In the far-field regime, the electromagnetic field results from a focused laser beam, while the near-field regime is realized by a combination of the focused laser beam incident on a spherical colloidal particle. For the near-field experiments we have used polystyrene colloidal particles of 700 nm diameter self-assembled or spin coated on top of the surfaces. Laser fluences applied are in the range of 0.01-10 J/cm{sup 2}. The diameter and the morphologies of the ablated holes were investigated by optical microscopy, profilometry, scanning electron microscopy, and atomic force microscopy. The dependence of the shape of the holes reflects the fluence regime and the thermophysical properties, i.e., melting temperature and thermal diffusivity of the surfaces involved in the experiments. We give quantitative data about the fluence threshold, diameter, and depth ablation dependence for the far and near fields and discuss their values with respect to the enhancement factor of the intensity of the electromagnetic field due to the use of the colloidal particles. Theoretical estimations of the intensity enhancement were done using the finite-difference time-domain method by using the RSOFT software. The application of near fields allows structuring of the surfaces with structure dimension in the order of 100 nm and even below.

  16. Optical and electrical properties and phonon drag effect in low temperature TEP measurements of AgSbSe2 thin films

    NASA Astrophysics Data System (ADS)

    Namitha Asokan, T.; Urmila, K. S.; Jacob, Rajani; Reena Philip, Rachel; Okram, G. S.; Ganesan, V.; Pradeep, B.

    2014-05-01

    Polycrystalline thin films of silver antimony selenide have been deposited using a reactive evaporation technique onto an ultrasonically cleaned glass substrate at a vacuum of 10-5 torr. The preparative parameters, like substrate temperature and incident fluxes, have been properly controlled in order to get stoichiometric, good quality and reproducible thin film samples. The samples are characterized by XRD, SEM, AFM and a UV—vis—NIR spectrophotometer. The prepared sample is found to be polycrystalline in nature. From the XRD pattern, the average particle size and lattice constant are calculated. The dislocation density, strain and number of crystallites per unit area are evaluated using the average particle size. The dependence of the electrical conductivity on the temperature has also been studied and the prepared AgSbSe2 samples are semiconducting in nature. The AgSbSe2 thin films exhibited an indirect allowed optical transition with a band gap of 0.64 eV. The compound exhibits promising thermoelectric properties, a large Seebeck coefficient of 30 mV/K at 48 K due to strong phonon electron interaction. It shows a strong temperature dependence on thermoelectric properties, including the inversion of a dominant carrier type from p to n over a low temperature range 9-300 K, which is explained on the basis of a phonon drag effect.

  17. Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se₂/ZnS thin film solar cells.

    PubMed

    Tan, Xiao-Hui; Chen, Yu; Liu, Ye-Xiang

    2014-05-20

    Solution processed silver nanowire indium-tin oxide nanoparticle (AgNW-ITONP) composite thin films were successfully applied as the transparent electrodes for Cu(In,Ga)Se₂ (CIGS) thin film solar cells with ZnS buffer layers. Properties of the AgNW-ITONP thin film and its effects on performance of CIGS/ZnS thin film solar cells were studied. Compared with the traditional sputtered ITO electrodes, the AgNW-ITONP thin films show comparable optical transmittance and electrical conductivity. Furthermore, the AgNW-ITONP thin film causes no physical damage to the adjacent surface layer and does not need high temperature annealing, which makes it very suitable to use as transparent conductive layers for heat or sputtering damage-sensitive optoelectronic devices. By using AgNW-ITONP electrodes, the required thickness of the ZnS buffer layers for CIGS thin film solar cells was greatly decreased. PMID:24922214

  18. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  19. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al.

    PubMed

    Estrin, Y; Rich, D H; Rozenfeld, N; Arad-Vosk, N; Ron, A; Sa'ar, A

    2015-10-30

    The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ∼2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ω(sp), and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals. PMID:26436289

  20. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al

    NASA Astrophysics Data System (ADS)

    Estrin, Y.; Rich, D. H.; Rozenfeld, N.; Arad-Vosk, N.; Ron, A.; Sa'ar, A.

    2015-10-01

    The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ˜2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ωsp, and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals.

  1. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al.

    PubMed

    Estrin, Y; Rich, D H; Rozenfeld, N; Arad-Vosk, N; Ron, A; Sa'ar, A

    2015-10-30

    The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ∼2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ω(sp), and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals.

  2. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al{sub 2}O{sub 3}(0001) substrates

    SciTech Connect

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-05-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al{sub 2}O{sub 3}(0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively.

  3. Influence of surface features on the adhesion of Staphylococcus epidermidis to Ag-TiCN thin films

    NASA Astrophysics Data System (ADS)

    Carvalho, Isabel; Henriques, Mariana; Oliveira, João Carlos; Filipa Almeida Alves, Cristiana; Piedade, Ana Paula; Carvalho, Sandra

    2013-06-01

    Staphylococcus epidermidis has emerged as one of the major nosocomial pathogens associated with infections of implanted medical devices. The initial adhesion of these organisms to the surface of biomaterials is assumed to be an important stage in their colonization. The main objective of this work is to assess the influence of surface features on the adhesion of S. epidermidis to Ag-TiCN coatings deposited by dc reactive magnetron sputtering. The structural results obtained by x-ray diffraction show that the coatings crystallize in a B1-NaCl crystal structure typical of TiC0.3N0.7. The increase of Ag content promoted the formation of Ag crystalline phases. According to the results obtained with atomic force microscopy, a decrease on the surface roughness of the films from 39 to 7 nm is observed as the Ag content increases from 0 to 15 at.%. Surface energy results show that the increase of Ag promotes an increase in hydrophobicity. Bacterial adhesion and biofilm formation on coatings were assessed by the enumeration of the number of viable cells. The results showed that the surface with lower roughness and higher hydrophobicity leads to greater bacterial adhesion and biofilm formation, highlighting that surface morphology and hydrophobicity rule the colonization of materials.

  4. Impact of 100 MeV Ag7+ SHI irradiation fluence and N incorporation on structural, optical, electrical and gas sensing properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Balakrishnan, L.; Gokul Raj, S.; Meher, S. R.; Asokan, K.; Alex, Z. C.

    2015-06-01

    In the present study, we have investigated the influence of Ag7+ ion irradiation fluence and N incorporation on structural, optical, electrical and gas sensing properties of ZnO thin films. The X-ray diffraction analysis reveals the retainment of ZnO wurtzite structure even at higher fluence irradiation with slight decrease in crystallinity. Photoluminescence and Hall effect measurement analysis showed an increase in density of defects for high ion fluence irradiation. Atomic force microscope analysis shows that the films irradiated at high ion fluence have vertical standing needle-like morphology and also have high value of roughness compared with the films irradiated at low ion fluence. The ammonia and methanol gas sensing properties of the films have been studied at different operating temperature and gas concentration. It conveys that the films have selectivity towards ammonia than methanol and also that the films irradiated at high ion fluence exhibit better sensitivity, low response and recovery times compared with the films irradiated at low ion fluence. The film grown in oxygen ambience and irradiated at high ion fluence showed good sensing characteristics at all temperatures even at room temperature.

  5. Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg4I5 thin film composite nanostructures

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Lin; Zhang, Wei; Wei, Jinquan; Gu, Bingfu

    2014-01-01

    We have explored the ion-modulated electronic transport properties of mixed ionic-electronic conductor (MIEC) composite nanostructures made of superionic conductor RbAg4I5 films and carbon nanotube (CNT) bundle spiderwebs. Our experimental and theoretical studies indicate that the formation of ion-electron bound states (IEBSs) leads to strong ion-electron interference effect and interesting electronic transport of CNT, such as nonlinear current-voltage (I-V) characteristics and novel temperature dependence of the current. With increasing temperature, the hybrid nanostructures show rich phases with different dependence of current on temperature, which is related to the structural phase transition of RbAg4I5 and the transition of dissociation of IEBSs. The ion-modulation of the electric conductivity in such MIEC composite nanostructures with great tunability has been used to design new ionic-electronic composite nano-devices with function like field effect transistor.

  6. Low-cost and high-power-density resistive fault-current limiting elements using YBCO thin films and Au-Ag alloy shunt layers

    NASA Astrophysics Data System (ADS)

    Yamasaki, H.; Arai, K.; Furuse, M.; Kaiho, K.; Nakagawa, Y.

    2006-06-01

    We propose a new design for the high-temperature superconducting thin-film faultcurrent limiter (FCL), which uses high-resistivity Au-Ag alloy shunt layers instead of the pure gold (or silver) shunt layers conventionally used. An FCL element (5 mm wide and 40 mm long) with a YBCO thin film (THEVA) and a parallel inductively-wound shunt resistor successfully withstood very high electric field (> 44 Vpeak/cm) for 5 cycles (0.1 sec) after switching, and achieved a very high switching power density, ~2.0 kVA/cm2. We confirmed similar maximum tolerable electric field (>40 Vpeak/cm, limited by power supply) in a larger sample (1 cm × 6 cm). The composition of our FCL element is very simple, and the achieved power density is more than five times higher than conventional devices, which leads to a dramatic reduction in the amount of expensive superconducting thin films. We made a conceptual design and cost estimation of our FCL elements used in a typical 6.6 kV FCL.

  7. Assembly of Submicron Sized Ag, Co, and Ni Particles Into Thin Films at Liquid/Liquid Interfaces.

    PubMed

    Al Chaghouri, Hanan; Malik, Mohammad Azad; Thomas, P John; O'Brien, Paul

    2016-05-01

    Submicron sized particles of Ag, Co and Ni were synthesised by reducing metal salts in ethylene glycol (EG) in the presence of polyvinylpyrrolidone (PVP). These particles on dispersion in water when held in contact with a toluene layer were found to assemble into dense films extending over large areas at the interface between the two liquids. The effect of reaction conditions (solvent, precursor concentration, temperature) on the synthesis and assembly of the particles was studied. The characteristics of the interfacial deposits and the particulate dispersions were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) spectroscopy and dynamic light scattering (DLS). PMID:27483942

  8. Optoelectronic characterization of wide-bandgap (AgCu)(InGa)Se 2 thin-film polycrystalline solar cells including the role of the intrinsic zinc oxide layer

    NASA Astrophysics Data System (ADS)

    Obahiagbon, Uwadiae

    Experiments and simulations were conducted to vary the thickness and the sheet resistance of the high resistance (HR) ZnO layer in polycrystalline thin film (AgCu)(GaIn)Se2 (ACIGS) solar cells. The effect of varying these parameters on the electric field distribution, depletion width and hence capacitance were studied by SCAPS simulation. Devices were then fabricated and characterized by a number of optoelectronic techniques. Thin film CIGS has received a lot of attention, for its use as an absorber layer for thin film solar cells. However, the addition of Silver (Ag) to the CIGS alloy system increases the band gap as indicated from optical transmission measurements and thus higher open circuit voltage (Voc) could be obtained. Furthermore, addition of Ag lowers the melting temperature of the alloy and it is expected that this lowers the defect densities in the absorber and thus leads to higher performance. Transient photocapacitance analysis on ACIGS devices shows sharper band edge indicating lower disorder than CIGS. Presently there is a lack of fundamental knowledge relating film characteristics to device properties and performance. This is due to the fact that some features in the present solar cell structure have been optimized empirically. The goal of this research effort was to develop a fundamental and detailed understanding of the device operation as well as the loss mechanism(s) limiting these devices. Recombination mechanisms in finished ACIGS solar cell devices was studied using advanced admittance techniques (AS, DLCP, CV) to identify electronically active defect state(s) and to study their impact on electronic properties and device performance. Analysis of various optoelectronic measurements of ACIGS solar cells provided useful feedback regarding the impact on device performance of the HR ZnO layer. It was found that thickness between 10-100 nm had negligible impact on performance but reducing the thickness to 0 nm resulted in huge variability in all

  9. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  10. An analysis of the x-ray linear dichroism spectrum for NiO thin films grown on vicinal Ag(001)

    SciTech Connect

    Wu, Y.Z.; Zhao, Y.; Arenholz, E.; Young, A.T.; Sinkovic, B.; Qiu, Z.Q.

    2008-05-10

    Antiferromagnetic (AFM) NiO thin films are grown epitaxially on vicinal Ag(118) substrate and investigated by x-ray linear dichroism (XLD). We find that the NiO AFM spin exhibits an in-plane spin reorientation transition from parallel to perpendicular to the step edges with increasing the NiO film thickness. In addition to the conventional L{sub 2} adsorption edge, x-ray linear dichroism (XLD) effect at the Ni L{sub 3} adsorption edge is also measured and analyzed. The result identifies a small energy shift of the L{sub 3} peak. Temperature-dependent measurement confirms that the observed XLD effect in this system at the normal incidence of the x-rays originates entirely from the NiO magnetic ordering.

  11. The growth, structure, and thermal stability of vapor deposited ultra-thin metal films: Rh on Ag(100), Au on Pd(110), and Pt on Pd(110)

    SciTech Connect

    Schmitz, P.

    1990-09-21

    The growth, structure, and thermal stability of ultra-thin metal films (Rh on Ag(100); Au on Pd(110) and Pt on Pd(110)) is investigated using surface sensitive techniques. The three systems studied present a variety of differing characteristics which can contribute to the growth mode, two-dimensional structure, and thermal stability of the films. The main factors contributing to the differing properties of the three systems presented here are: (1) the different substrate morphologies; (2) the differences in surface free energies between the overlayer and the substrate; (3) the degree of lattice mismatch for a particular system; and (4) the extent of miscibility of the two metals. 200 refs., 38 figs.

  12. The effect of strain induced by Ag underlayer on saturation magnetization of partially ordered Fe16N2 thin films

    DOE PAGES

    Yang, Meiyin; Allard, Lawrence F.; Ji, Nian; Zhang, Xiaowei; Yu, Guang-Hua; Wang, Jian -Ping

    2013-12-12

    Small angle neutron scattering (SANS) and scanning transmission electron microscopy (STEM) were used to study film formation by magnesium alloys AZ31B (Mg-3Al-1Zn base) and ZE10A (Elektron®717, E717: Mg-1Zn + Nd, Zr) in H2O and D2O with and without 1 or 5 wt.% NaCl. No SANS scattering changes were observed after 24 h D2O or H2O exposures compared with as received (unreacted) alloy, consistent with relatively dense MgO-base film formation. However, exposure to 5 wt.% NaCl resulted in accelerated corrosion, with resultant SANS scattering changes detected. The SANS data indicated both particle and rough surface (internal and external) scattering, but withmore » no preferential size features. The films formed in 5 wt.% NaCl consisted of a thin, inner MgO-base layer, and a nano-porous and filamentous Mg(OH)2 outer region tens of microns thick. Chlorine was detected extending to the inner MgO-base film region, with segregation of select alloying elements also observed in the inner MgO, but not the outer Mg(OH)2. Modeling of the SANS data suggested that the outer Mg(OH)2 films had very high surface areas, consistent with loss of film protectiveness. Here, implications for the NaCl corrosion mechanism, and the potential utility of SANS for Mg corrosion, are discussed.« less

  13. Effect of 100 MeV Ag+7 ion irradiation on the bulk and surface magnetic properties of Co-Fe-Si thin films

    NASA Astrophysics Data System (ADS)

    Hysen, T.; Geetha, P.; Al-Harthi, Salim; Al-Omari, I. A.; Lisha, R.; Ramanujan, R. V.; Sakthikumar, D.; Avasthi, D. K.; Anantharaman, M. R.

    2014-12-01

    Thin films of Co-Fe-Si were vacuum evaporated on pre-cleaned float glass substrates employing thermal evaporation. The films were subsequently irradiated with 100 MeV Ag+7 ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2. The pristine and irradiated samples were subjected to surface analysis using Atomic Force Microscopy (AFM), Vibrating Sample Magnetometry (VSM) and Magneto Optic Kerr Effect (MOKE) measurements. The as deposited film has a root mean square roughness (Rq) of 8.9 nm and an average roughness of (Ra) 5.6 nm. Irradiation of the as deposited films with 100 MeV Ag7+ ions modifies the surface morphology. Irradiating with ions at fluences of 1×1011 ions/cm2 smoothens the mesoscopic hill-like structures, and then, at 1×1012 ions/cm2 new surface structures are created. When the fluence is further increased to 1×1013 ions/cm2 an increase in the surface roughness is observed. The MOKE loop of as prepared film indicated a squareness ratio of 0.62. As the film is irradiated with fluences of 1×1011 ions/cm2, 1×1012 ions/cm2 and 1×1013 ions/cm2 the squareness ratio changes to 0.76, 0.8 and 0.86 respectively. This enhancement in squareness ratio towards 1 is a typical feature when the exchange interaction starts to dominates the inherent anisotropies in the system. The variation in surface magnetisation is explained based on the variations in surface roughness with swift heavy ion (SHI) irradiation.

  14. Investigation on the dielectric response of NdMnO3/LSAT thin films: Effect of 200 MeV Ag+15 ion irradiation

    NASA Astrophysics Data System (ADS)

    Udeshi, Malay; Vyas, Brinda; Trivedi, Priyanka; Katba, Savan; Ravalia, Ashish; Solanki, P. S.; Shah, N. A.; Asokan, K.; Ojha, S.; Kuberkar, D. G.

    2015-12-01

    We report the results of the modifications in structural and dielectric behaviour of pulsed laser deposited NdMnO3 manganite thin films grown on (1 0 0) single crystalline (LaAlO3)0.3 (Sr2AlTaO6)0.7 substrate irradiated with the 200 MeV Ag+15 ion irradiation having different fluences, ∼5 × 1010, ∼5 × 1011, ∼5 × 1012 ions/cm2. Structural strain was quantified using analysis of X-ray Diffraction data while Rutherford Backscattering measurements were performed on pristine NdMnO3 film to confirm the elemental composition, thickness and oxygen content. Dielectric measurements performed on all the irradiated films show that, the dielectric constant decreases with increase in ion fluence which has been correlated with the irradiation induced increase in strain at the film-substrate interface. The dielectric relaxation behaviour of pristine and irradiated NdMnO3 films have been understood by fitting the dielectric data using the Cole-Cole plots.

  15. Microstructure and temperature dependence of microwave penetration depth of Ag doped Y 1Ba 2Cu 3O 7- x thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Davinder; Pai, S. P.; Jesudasan, J.; Pinto, R.

    2004-06-01

    We report the measurements of magnetic penetration depth λ( T) of Ag-doped YBa 2Cu 3O 7- δ (YBCO) thin films in the thickness range 1500-4000 A and temperature range 18-88 K. The films are in situ grown by laser ablation on <1 0 0> LaAlO 3 substrates. The penetration depth measurements are performed by microstrip resonator technique. A correlation of λ( T) with the film microstructure observed with atomic force microscopy has shown that λ( T) depends critically on the film microstructure. Temperature dependence of magnetic penetration depth has also been studied for best quality films. The experimental results are discussed in terms of BCS theory (s-wave pairing) and d-wave Pairing with and without unitary scattering. The results are found to be best fitted to the d-wave model with unitary scattering limit. Near Tc, we have also compare the (3D) XY critical regime and the Ginzburg-Landau (GL) behaviour.

  16. 500 V/200 A fault current limiter modules made of large-area MOD-YBa2Cu3O7 thin films with high-resistivity Au-Ag alloy shunt layers

    NASA Astrophysics Data System (ADS)

    Yamasaki, H.; Arai, K.; Kaiho, K.; Nakagawa, Y.; Sohma, M.; Kondo, W.; Yamaguchi, I.; Matsui, H.; Kumagai, T.; Natori, N.; Higuchi, N.

    2009-12-01

    We developed 500 Vrms/ 200 Arms superconducting thin-film fault current limiter (FCL) modules that can withstand high electric fields (E>30 Vrms cm-1) by using large-area YBa2Cu3O7 (YBCO) thin films with high-resistivity Au-Ag alloy shunt layers. Au-Ag alloy films about 60 nm thick were sputter-deposited on YBCO/CeO2/sapphire films (2.7 cm × 20 cm) prepared using a fluorine-free MOD method. Each 20 cm long Au-Ag/YBCO film was then divided into three segments (each ~5.7 cm long) by four Ag electrodes deposited on the Au-Ag layer, resulting in an effective length of 17 cm. The 500 V/200 A FCL modules were then fabricated by first connecting two of the segmented films in parallel using Ag-sheathed Bi-2223 superconducting tapes and then connecting in parallel an external resistor and a capacitor for each segment to protect the Au-Ag/YBCO film from hot spots. Switching tests using a short-circuit generator revealed that all the modules carried a superconducting ac current of >=237 Arms and that modules prepared with YBCO films having a relatively homogeneous critical current Ic distribution successfully withstood >=515 Vrms for five cycles without any damage. These results demonstrate that (a) the FCL modules fabricated here successfully achieved the rated current of 200 Arms and rated voltage of 500 Vrms and (b) total area of the YBCO films on sapphire substrates required for the 500 V/200 A (100 kV A) module was less than one-third that for conventional thin-film FCL modules that use gold shunt layers, leading to the significantly reduced cost of thin-film FCLs. Film damage due to hot spots depended on the difference in Ic between the two parallel-connected films and on the inhomogeneity of the Ic distribution in the film, and is most probably due to nonlinear current flows at the moment of quenching that cause local overheating.

  17. Carbon thin film thermometry

    NASA Technical Reports Server (NTRS)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  18. Temperature studies of optical parameters of (Ag3AsS3)0.6(As2S3)0.4 thin films prepared by rapid thermal evaporation and pulse laser deposition

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Kutsyk, M. M.; Buchuk, M. Yu.; Rati, Y. Y.; Neimet, Yu. Yu.; Izai, V. Yu.; Kökényesi, S.; Nemec, P.

    2016-02-01

    (Ag3AsS3)0.6(As2S3)0.4 thin films were deposited using rapid thermal evaporation (RTE) and pulse laser deposition (PLD) techniques. Ag-enriched micrometre-sized cones (RTE) and bubbles (PLD) were observed on the thin film surface. Optical transmission spectra of the thin films were studied in the temperature range 77-300 K. The Urbach behaviour of the optical absorption edge in the thin films due to strong electron-phonon interaction was observed, the main parameters of the Urbach absorption edge were determined. Temperature dependences of the energy position of the exponential absorption edge and the Urbach energy are well described in the Einstein model. Dispersion and temperature dependences of refractive indices were analysed; a non-linear increase of the refractive indices with temperature was revealed. Disordering processes in the thin films were studied and compared with bulk composites, the differences between the thin films prepared by RTE and PLD were analysed.

  19. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  20. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  1. Biomimetic thin film synthesis

    SciTech Connect

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  2. A comparative study of optical and radiative characteristics of X-ray-induced luminescent defects in Ag-doped glass and LiF thin films and their applications in 2-D imaging

    NASA Astrophysics Data System (ADS)

    Kurobori, T.; Miyamoto, Y.; Maruyama, Y.; Yamamoto, T.; Sasaki, T.

    2014-05-01

    We report novel disk-type X-ray two-dimensional (2-D) imaging detectors utilising Ag-doped phosphate glass and lithium fluoride (LiF) thin films based on the radiophotoluminescence (RPL) and photoluminescence (PL) phenomena, respectively. The accumulated X-ray doses written in the form of atomic-scale Ag-related luminescent centres in Ag-doped glass and F-aggregated centres in LiF thin films were rapidly reconstructed as a dose distribution using a homemade readout system. The 2-D images reconstructed from the RPL and PL detectors are compared with that from the optically stimulated luminescence (OSL) detector. In addition, the optical and dosimetric characteristics of LiF thin films are investigated and evaluated. The possibilities of dose distributions with a high spatial resolution on the order of microns over large areas, a wide dynamic range covering 11 orders of magnitude and a non-destructive readout are successfully demonstrated by combining the Ag-doped glass with LiF thin films.

  3. Study of semiconducting parameters in dark as well as in presence of light for Se90X10 (X=Ag,In) thin films

    NASA Astrophysics Data System (ADS)

    Singh, N. K.; Kumar, Anjani; Kumar, D.; Shukla, S.

    2016-05-01

    The present paper reports the study of semiconducting parameters (activation energy and pre-exponential factor) in glassy samples of Se90X10 (X= Ag, In) in dark as well as in presence of light. Temperature dependence of dark and photo-conductivity is measured in amorphous thin films in the temperature range 300-378 K and in the intensity range 2000-18000 Lux. A straight line between lnσ0 and ΔE indicates the presence of Meyer - Neldel (MN) rule in dark as well as in presence of light. Linear dependence of ln(σ0) on ΔE in case of amorphous material indicate that the conduction band tails a finite energy distance towards the valence band and a Fermi level which is controlled by fixed dominant hole levels deeper in the gap.

  4. Evolution of structural and magnetic properties of Co-doped TiO2 thin films irradiated with 100 MeV Ag7+ ions

    NASA Astrophysics Data System (ADS)

    Mohanty, P.; Singh, V. P.; Mishra, N. C.; Ojha, S.; Kanjilal, D.; Rath, Chandana

    2014-08-01

    In continuation to our earlier studies where we have shown room temperature ferromagnetism observed in TiO2 and Co-doped TiO2 (CTO) thin films independent of their phase (Mohanty et al 2012 J. Phys. D: Appl. Phys. 45 325301), here the modifications in structure and magnetic properties in CTO thin films using 100 MeV Ag7+ ion irradiation are reported. Owing to the important role of defects in tailoring the magnetic properties of the material, we vary the ion fluence from 5 × 1011 to 1 × 1012 ions cm-2 to create post-deposition defects. While the film deposited under 0.1 mTorr oxygen partial pressure retains its crystallinity showing radiation-resistant behaviour even at a fluence of 1 × 1012 ions cm-2, films deposited under 1 to 300 mTorr oxygen partial pressure becomes almost amorphous at the same fluence. Using Poisson's law, the diameter of the amorphized region surrounding the ion path is calculated to be ˜4.2 nm from the x-ray diffraction peak intensity ((1 1 0) for rutile phase) as a function of ion fluence. The saturation magnetization (Ms) decreases exponentially similar to the decrease in x-ray peak intensity with fluence, indicating magnetic disordered region surrounding the ion path. The diameter of the magnetic disordered region is found to be ˜6.6 nm which is larger than the diameter of the amorphized latent track. Therefore, it is confirmed that swift heavy ion irradiation induces a more significant magnetic disorder than the structural disorder.

  5. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  6. Thin-film coatings

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1980-01-01

    Thin, adherent, high density films are discussed with respect to their application in two plasma physics techniques (ion plating and sputtering). The operation of each technique is described as well as what surfaces can be coated, and what kind of materials can be applied. The effects of these films on the mechanical properties of solid surfaces are also discussed.

  7. Magnetic disorder in diluted FexM100-x granular thin films (M=Au, Ag, Cu; x < 10 at.%).

    PubMed

    Alba Venero, D; Fernández Barquín, L; Alonso, J; Fdez-Gubieda, M L; Rodríguez Fernández, L; Boada, R; Chaboy, J

    2013-07-10

    Nanogranular thin films of Fe7Au93, Fe7Ag93 and Fe9Cu91 have been sputtered onto Si(100) substrates with the aim of studying the magnetic interactions. X-ray diffraction shows a major noble metal matrix with broad peaks stemming from (111) textured fcc-Au, Ag and Cu. The noble metal forms a nanogranular environment, as confirmed by transmission electron microscopy, with mean particle sizes below 10 nm. The high magnetoresistance (>6%) reveals the existence of Fe nanoparticles. X-ray absorption near edge spectroscopy confirms the presence of a bcc-Fe atom arrangement and some dissolved Fe atoms in the matrix, and XMCD shows the polarization of Au by the Fe nanoparticles. DC-magnetization displays a field-dependent irreversibility produced by the freezing of magnetic nanoparticles into a superspin-glass state. The hysteresis loops remain unsaturated at 5 K and 45 kOe. The coercivity displays a sharp temperature decrease towards a minimum below 50 K, levelling off at higher values, reaching Hc = 200 Oe at 300 K. Annealing of FeAu results in a double-peak zero field cooled magnetization and a slight decrease of the coercivity. The interpretation of the results supports the presence of Fe nanoparticles embedded in the major noble matrix, with some diluted Fe atoms/clusters. PMID:23765439

  8. Luminescent and structural properties of ZnO-Ag films

    SciTech Connect

    Khomchenko, V. S. Kushnirenko, V. I. Papusha, V. P.; Savin, A. K.; Lytvyn, O. S.

    2010-05-15

    ZnO-Ag thin films were prepared by a two-stage method on glass and sapphire substrates. Ag doping was carried out by a method of close space sublimation at atmospheric pressure. The film thickness is varied from 0.6 to 7 {mu}m. The structural and radiative properties were explored by X-ray diffraction technique, atomic force microscopy, photoluminescence and cathodoluminescence spectroscopy. The influence of the fabricating conditions on the properties of ZnO-Ag films is studied. It is found that the Ag doping modifies the crystalline structure of the films and promotes the oriented growth of monocrystalline blocks with the size of 500-2000 nm in the [0002] direction. Improvement of the crystalline quality correlates with the change of the radiative characteristics of the films. The origin of emission centers is discussed.

  9. Thin film photovoltaics

    SciTech Connect

    Zweibel, K; Ullal, H S

    1989-05-01

    Thin films are considered a potentially attractive technological approach to making cost-effective electricity by photovoltaics. Over the last twenty years, many have been investigated and some (cadmium telluride, copper indium diselenide, amorphous silicon) have become leading candidates for future large-scale commercialization. This paper surveys the past development of these key thin films and gives their status and future prospects. In all cases, significant progress toward cost-effective PV electricity has been made. If this progress continues, it appears that thin film PV could provide electricity that is competitive for summer daytime peaking power requirements by the middle of the 1990s; and electricity in a range that is competitive with fossil fuel costs (i.e., 6 cents/kilowatt-hour) should be available from PV around the turn of the century. 22 refs., 9 figs.

  10. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  11. Effect of wettability on surface morphologies and optical properties of Ag thin films grown on glass and polymer substrates by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Lv, Jing

    2013-05-01

    A series of Ag films with different thicknesses were deposited on BK-7 glass, PET and PC substrates under identical conditions by thermal evaporation. The effect of the wettability on the morphology and optical properties of Ag/glass and Ag/polymer films was studied by atomic force microscopy and spectrophotometry. The experimental results show that the wettability of Ag grains with polymer is stronger than with glass, which results in the aggregation of bigger grains in initial layer. During deposition the interaction of interlayer plays an important role for the formation of the surface morphology. The strong wettability activates the nonlinear optical properties of Ag grains grown on polymer substrates, which result in the strong absorbance in short wavelength. The effect of the bare substrate on the transmittance of Ag films is more obvious than the reflectance. With the increasing of the thickness, the effect of the wettability on the morphology and optical properties of Ag films decline. In this experiment when the thickness is above 50 nm, the effect almost vanished.

  12. Thin film composite actuators

    NASA Astrophysics Data System (ADS)

    Su, Quanmin; Kim, Taesung; Zheng, Yun; Wuttig, Manfred R.

    1995-05-01

    The mechanical properties of Ni50Ti50 deposited on Si substrates were studied focussing on the interaction of the film and substrate. This interaction determines the transformation characteristics through interface accommodation and mechanical constraints exerted by the substrate stiffness. Substrate stiffness, controlled by the film/substrate thickness ratio, was found to have a substantial influence on the output energy of the film/substrate composite. A switch type composite based on this knowledge was fabricated and tested. The thermo-mechanical properties of Terfenol-D thin films deposited on Si substrates were studied by static and dynamic measurements of film/substrate composite cantilevers. The Curie transition, (Delta) E effect and mechanical damping of the film were measured simultaneously. The stress in the film was controlled by annealing below the recrystallization temperature and determined to vary from -500 MPa, compression, in as deposited films to +480 MPa, tension, in annealed films. The Curie temperature shifts from 80 degree(s)C to 140 degree(s)C as the tension increases while the structure of the film remains amorphous. The stress change induced by annealing also drastically effects the film's damping characteristics. The (Delta) E effect of the amorphous material, about 20%, was used to estimate the magnetostriction, (lambda) s approximately equals 4 (DOT) 10-3.

  13. Thin film ceramic thermocouples

    NASA Technical Reports Server (NTRS)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  14. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  15. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  16. Reactive combinatorial synthesis and characterization of a gradient Ag-Ti oxide thin film with antibacterial properties.

    PubMed

    Unosson, Erik; Rodriguez, Daniel; Welch, Ken; Engqvist, Håkan

    2015-01-01

    The growing demand for orthopedic and dental implants has spurred researchers to develop multifunctional coatings, combining tissue integration with antibacterial features. A possible strategy to endow titanium (Ti) with antibacterial properties is by incorporating silver (Ag), but designing a structure with adequate Ag(+) release while maintaining biocompatibility has been shown difficult. To further explore the composition-structure-property relationships between Ag and Ti, and its effects against bacteria, this study utilized a combinatorial approach to manufacture and test a single sample containing a binary Ag-Ti oxide gradient. The sample, sputter-deposited in a reactive (O2) environment using a custom-built combinatorial physical vapor deposition system, was shown to be effective against Staphylococcus aureus with viability reductions ranging from 17 to above 99%, depending on the amount of Ag(+) released from its different parts. The Ag content along the gradient ranged from 35 to 62 wt.%, but it was found that structural properties such as varied porosity and degree of crystallinity, rather than the amount of incorporated Ag, governed the Ag(+) release and resulting antibacterial activity. The coating also demonstrated in vitro apatite-forming abilities, where structural variety along the sample was shown to alter the hydrophilic behavior, with the degree of hydroxyapatite deposition varying accordingly. By means of combinatorial synthesis, a single gradient sample was able to display intricate compositional and structural features affecting its biological response, which would otherwise require a series of coatings. The current findings suggest that future implant coatings incorporating Ag as an antibacterial agent could be structurally enhanced to better suit clinical requirements.

  17. Thin films for material engineering

    NASA Astrophysics Data System (ADS)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  18. Thin film solar cell workshop

    NASA Technical Reports Server (NTRS)

    Armstrong, Joe; Jeffrey, Frank

    1993-01-01

    A summation of responses to questions posed to the thin-film solar cell workshop and the ensuing discussion is provided. Participants in the workshop included photovoltaic manufacturers (both thin film and crystalline), cell performance investigators, and consumers.

  19. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  20. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  1. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  2. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T.

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  3. Thin film photovoltaic cell

    DOEpatents

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  4. Growth and properties of YBCO thin films on polycrystalline Ag substrates by inclined substrate pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Li, M.; Ma, B.; Koritala, R. E.; Fisher, B. L.; Dorris, S. E.; Venkataraman, K.; Balachandran, U.

    2002-06-01

    Fully c-axis-oriented YBCO films were directly deposited on polycrystalline silver substrates by inclined substrate pulsed laser ablation. The orientation and microstructure of the YBCO films were characterized by x-ray diffraction 2θ-scans, Ω-scans and pole figure analysis. Surface morphology was examined by scanning electron microscopy. Irregular-mosaic-shaped supergrains were observed in the films. Raman spectroscopy was used to evaluate the quality of the YBCO films. The superconducting transition temperature (Tc) and the critical current density (Jc) of the films were determined by inductive and transport measurements, respectively. Tc = 91 K with sharp transition and Jc = 2.7 × 105 A cm-2 at 77 K in zero field were obtained on a film that was 0.14 μm thick, 5 mm wide and 10 mm long. This work demonstrated a promising approach to obtain high-Jc YBCO films on nontextured polycrystalline silver substrate.

  5. In vitro antibacterial properties and UV induced response from Staphylococcus epidermidis on Ag/Ti oxide thin films.

    PubMed

    Unosson, Erik; Morgenstern, Matthias; Engqvist, Håkan; Welch, Ken

    2016-03-01

    Implanted materials are susceptible to bacterial colonization and biofilm formation, which can result in severe infection and lost implant function. UV induced photocatalytic disinfection on TiO2 and release of Ag(+) ions are two promising strategies to combat such events, and can be combined for improved efficiency. In the current study, a combinatorial physical vapor deposition technique was utilized to construct a gradient coating between Ag and Ti oxide, and the coating was evaluated for antibacterial properties in darkness and under UV light against Staphylococcus epidermidis. The findings revealed a potent antibacterial effect in darkness due to Ag(+) release, with near full elimination (97%) of viable bacteria and visible cell lysis on Ag dominated surfaces. The photocatalytic activity, however, was demonstrated poor due to low TiO2 crystallinity, and UV light irradiation of the coating did not contribute to the antibacterial effect. On the contrary, bacterial viability was in several instances higher after UV illumination, proposing a UV induced SOS response from the bacteria that limited the reduction rate during Ag(+) exposure. Such secondary effects should thus be considered in the development of multifunctional coatings that rely on UV activation.

  6. In vitro antibacterial properties and UV induced response from Staphylococcus epidermidis on Ag/Ti oxide thin films.

    PubMed

    Unosson, Erik; Morgenstern, Matthias; Engqvist, Håkan; Welch, Ken

    2016-03-01

    Implanted materials are susceptible to bacterial colonization and biofilm formation, which can result in severe infection and lost implant function. UV induced photocatalytic disinfection on TiO2 and release of Ag(+) ions are two promising strategies to combat such events, and can be combined for improved efficiency. In the current study, a combinatorial physical vapor deposition technique was utilized to construct a gradient coating between Ag and Ti oxide, and the coating was evaluated for antibacterial properties in darkness and under UV light against Staphylococcus epidermidis. The findings revealed a potent antibacterial effect in darkness due to Ag(+) release, with near full elimination (97%) of viable bacteria and visible cell lysis on Ag dominated surfaces. The photocatalytic activity, however, was demonstrated poor due to low TiO2 crystallinity, and UV light irradiation of the coating did not contribute to the antibacterial effect. On the contrary, bacterial viability was in several instances higher after UV illumination, proposing a UV induced SOS response from the bacteria that limited the reduction rate during Ag(+) exposure. Such secondary effects should thus be considered in the development of multifunctional coatings that rely on UV activation. PMID:26758896

  7. [Spectral emissivity of thin films].

    PubMed

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  8. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  9. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm–1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  10. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  11. Comparison of Ag and SiO2 Nanoparticles for Light Trapping Applications in Silicon Thin Film Solar Cells.

    PubMed

    Theuring, Martin; Wang, Peng Hui; Vehse, Martin; Steenhoff, Volker; von Maydell, Karsten; Agert, Carsten; Brolo, Alexandre G

    2014-10-01

    Plasmonic and photonic light trapping structures can significantly improve the efficiency of solar cells. This work presents an experimental and computational comparison of identically shaped metallic (Ag) and nonmetallic (SiO2) nanoparticles integrated to the back contact of amorphous silicon solar cells. Our results show comparable performance for both samples, suggesting that minor influence arises from the nanoparticle material. Particularly, no additional beneficial effect of the plasmonic features due to metallic nanoparticles could be observed. PMID:26278435

  12. Biomimetic thin film deposition

    SciTech Connect

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  13. Advanced thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-01-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  14. Thin film interconnect processes

    NASA Astrophysics Data System (ADS)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  15. Thin film mechanics

    NASA Astrophysics Data System (ADS)

    Cooper, Ryan C.

    This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate

  16. Polycrystalline thin film photovoltaic technology

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  17. Structural, electrical transport, magnetization, and 1/f noise studies in 200 MeV Ag ion irradiated La{sub 0.7}Ce{sub 0.3}MnO{sub 3} thin films

    SciTech Connect

    Kumar, Ravi; Choudhary, R.J.; Patil, S.I.; Husain, Shahid; Srivastava, J.P.; Sanyal, S.P.; Lofland, S.E.

    2004-12-15

    The effect of 200 MeV Ag ion irradiation on structural, electrical transport, magnetization, and low-frequency conduction noise properties of electron-doped La{sub 0.7}Ce{sub 0.3}MnO{sub 3} thin films have been investigated. The as-grown thin films show c-axis epitaxial structure along with a small amount of unreacted CeO{sub 2} phase. After the irradiation, at the lowest fluence both the magnetization and metal-insulator transition temperature increase. Further increase in fluence reduces the metal-insulator transition temperature and leads to larger resistivity; however, the unreacted phase of CeO{sub 2} disappears in the x-ray diffraction pattern. On the other hand, the normalized electrical noise is greatly enhanced even at the lowest nonzero fluence. Surprisingly the conducting noise in the irradiated samples is much higher in the metallic state than in the semiconducting one. The observed modifications in structural, electrical, magnetic, and noise properties of 200 MeV Ag ion irradiated La{sub 0.7}Ce{sub 0.3}MnO{sub 3} thin films have been explained on the basis of effects of the presence of swift heavy-ion irradiation-induced strain and defects.

  18. Modification of energy band alignment and electric properties of Pt/Ba0.6Sr0.4TiO3/Pt thin-film ferroelectric varactors by Ag impurities at interfaces

    NASA Astrophysics Data System (ADS)

    Hirsch, S.; Komissinskiy, P.; Flege, S.; Li, S.; Rachut, K.; Klein, A.; Alff, L.

    2014-06-01

    We report on the effects of Ag impurities at interfaces of parallel-plate Pt/Ba0.6Sr0.4TiO3/Pt thin film ferroelectric varactors. Ag impurities occur at the interfaces due to diffusion of Ag from colloidal silver paint used to attach the varactor samples with their back side to the plate heated at 600-750 °C during deposition of Ba0.6Sr0.4TiO3. X-ray photoelectron spectroscopy and secondary ion mass spectrometry suggest that amount and distribution of Ag adsorbed at the interfaces depend strongly on the adsorbent surface layer. In particular, Ag preferentially accumulates on top of the Pt bottom electrode. The presence of Ag significantly reduces the barrier height between Pt and Ba0.6Sr0.4TiO3 leading to an increased leakage current density and, thus, to a severe degradation of the varactor performance.

  19. Modification of energy band alignment and electric properties of Pt/Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Pt thin-film ferroelectric varactors by Ag impurities at interfaces

    SciTech Connect

    Hirsch, S.; Komissinskiy, P. Flege, S.; Li, S.; Rachut, K.; Klein, A.; Alff, L.

    2014-06-28

    We report on the effects of Ag impurities at interfaces of parallel-plate Pt/Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Pt thin film ferroelectric varactors. Ag impurities occur at the interfaces due to diffusion of Ag from colloidal silver paint used to attach the varactor samples with their back side to the plate heated at 600–750 °C during deposition of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}. X-ray photoelectron spectroscopy and secondary ion mass spectrometry suggest that amount and distribution of Ag adsorbed at the interfaces depend strongly on the adsorbent surface layer. In particular, Ag preferentially accumulates on top of the Pt bottom electrode. The presence of Ag significantly reduces the barrier height between Pt and Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} leading to an increased leakage current density and, thus, to a severe degradation of the varactor performance.

  20. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  1. Thin film magnetism

    SciTech Connect

    Bader, S.D. )

    1990-06-01

    New developments in thin-film magnetism are reviewed with an emphasis on the ultrathin regime. The scope includes relatively simple metallic systems in overlayer, sandwich, and superlattice configurations. Sample fabrication, characterization, and magnetic measurement techniques are outlined by highlighting some of the more modern experimental innovations. Current issues and advances that demonstrate the symbiotic relationship between experiment and theory are then examined, including the surface magnetic anisotropy, the two-dimensional critical behavior, the creation of metastable phases via epitaxy, and phenomena associated with coupled magnetic layers. The review ends with a brief account of the impact of the various contemporary developments on the applications area.

  2. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    PubMed

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-01

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process. PMID:25691097

  3. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    PubMed

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-01

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  4. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  5. Host thin films incorporating nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  6. In-situ spectro-microscopy on organic films: Mn-Phthalocyanine on Ag(100)

    SciTech Connect

    Al-Mahboob A.; Vescovo, E.; Sadowski, J.T.

    2013-08-18

    Metal phthalocyanines are attracting significant attention, owing to their potential for applications in chemical sensors, solar cells and organic magnets. As the electronic properties of molecular films are determined by their crystallinity and molecular packing, the optimization of film quality is important for improving the performance of organic devices. Here, we present the results of in situ low-energy electron microscopy / photoemission electron microscopy (LEEM/PEEM) studies of incorporation-limited growth [1] of manganese-phthalocyanine (MnPc) on Ag(100) surfaces. MnPc thin films were grown on both, bulk Ag(100) surface and thin Ag(100)/Fe(100) films, where substrate spin-polarized electronic states can be modified through tuning the thickness of the Ag film [2]. We also discuss the electronic structure and magnetic ordering in MnPc thin films, investigated by angle- and spin-resolved photoemission spectroscopy.

  7. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  8. Thin films: Past, present, future

    SciTech Connect

    Zweibel, K

    1995-04-01

    This report describes the characteristics of the thin film photovoltaic modules necessary for an acceptable rate of return for rural areas and underdeveloped countries. The topics of the paper include a development of goals of cost and performance for an acceptable PV system, a review of current technologies for meeting these goals, issues and opportunities in thin film technologies.

  9. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  10. Study on single-domain growth of Y1.8Ba2.4Cu3.4Oy/Ag system by using Nd123/MgO thin film as seed

    NASA Astrophysics Data System (ADS)

    Cai, C.; Tachibana, K.; Fujimoto, H.

    2000-06-01

    Instead of NdBa2Cu3Oy (Nd123) bulk crystal, a (001) Nd123/MgO thin film is used as the seed to study single-domain growth in the isothermal solidification of the YBaCuO/Ag system. Various maximum processing temperatures (Tmax), down to 1000 °C, are used to fabricate the textured domain. The dependences of nucleation and single-domain growth on undercooling and Tmax are studied, respectively. For the lower Tmax processed sample, non-steady growth takes place after a time interval, which is attributed to random nucleation.

  11. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  12. Ferromagnetic thin films

    DOEpatents

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  13. Ferromagnetic thin films

    DOEpatents

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  14. Thin film hydrogen sensor

    DOEpatents

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  15. Enhanced magnetic and bolometric sensitivity of La{sub 0.7}Ce{sub 0.3}MnO{sub 3} thin films due to 200 MeV Ag ion irradiation

    SciTech Connect

    Choudhary, R.J.; Kumar, Ravi; Patil, S.I.; Husain, Shahid; Srivastava, J.P.; Malik, S.K.

    2005-05-30

    The parameters for bolometric performance [temperature coefficient of resistance (TCR) and noise value] and magnetic sensitivity of pulsed-laser-deposited thin films of La{sub 0.7}Ce{sub 0.3}MnO{sub 3} and their dependence on the 200 MeV Ag ions irradiation are studied. It is observed that the TCR value and magnetic sensitivity can be tuned in different temperature regime by controlling the irradiation fluence value. It turns out that irradiation with a fluence value of 5x10{sup 10} ions/cm{sup 2} changes the TCR value in a positive direction and enhances magnetic sensitivity at room temperature, while irradiation with a fluence value of 1x10{sup 12} ions/cm{sup 2} enhances these parameters at 200 K. The observations are explained on the basis of structural and electrical transport modifications induced by the 200 MeV Ag ion irradiation.

  16. Structural and optical characterization of Ag photo-doped thin As40S60 - xSex films for non-linear applications

    NASA Astrophysics Data System (ADS)

    Tasseva, J.; Todorov, R.; Babeva, Tz; Petkov, K.

    2010-06-01

    This paper deals with the structure and the optical properties of thin As40S60 - xSex films doped with silver. The refractive index n and the optical band gap Egopt were calculated from the transmittance and reflectance spectra. The results showed that the photo-doping leads to increase in the refractive index by about 0.25-0.27. An effect of thickness expansion was observed in the photo-doped layers. The non-linear refractive index, γ, and the two-photon absorption coefficient, β, were evaluated by applying a formula developed by Sheik-Bahae. Each of the films studied exhibits a highly non-linear refractive index at the telecommunication wavelength, 70-850 times higher than that measured for fused silica. From the Raman spectra of thin As40S30Se30 it might be concluded that under dissolution, the silver interacts with both sulfur and selenium. The surface of the thin films was investigated by using a white light interferometric profiler. It was found that the increase in the thickness of the silver layer results in roughening of the surface of the photo-doped films.

  17. Studies on structural & optical properties of CdS0.2Se0.8: Ag nanocomposite thin film for photosensor application

    NASA Astrophysics Data System (ADS)

    Chaudhari, J. B.; Patil, R. S.; Patil, I. J.; Jagtap, P. P.; Sharma, Ramphal

    2012-06-01

    Silver doped CdS0.2Se0.8 thin films of different concentrations were grown by simple and economical chemical bath deposition technique and later on characterized for optoelectronic and physicochemical properties. The X-ray diffraction (XRD) patterns of undoped and doped sample indicates polycrystalline nature with hexagonal structure. Scanning electron microscopy (SEM) micrograph showed uniform morphology with cabbage type structure for undoped film and leaf-like structure for doped films over the entire glass substrate. Room temperature absorbance for 1 wt% doping concentration of silver showed an excitonic peak which confirms the size quantization of the particle. I-V characteristic for undoped and doped film shows ohmic and Schottky junction behavior.

  18. Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg{sub 4}I{sub 5} thin film composite nanostructures

    SciTech Connect

    Sun, Jia-Lin; Zhang, Wei; Wei, Jinquan; Gu, Bingfu

    2014-01-28

    We have explored the ion-modulated electronic transport properties of mixed ionic-electronic conductor (MIEC) composite nanostructures made of superionic conductor RbAg{sub 4}I{sub 5} films and carbon nanotube (CNT) bundle spiderwebs. Our experimental and theoretical studies indicate that the formation of ion-electron bound states (IEBSs) leads to strong ion-electron interference effect and interesting electronic transport of CNT, such as nonlinear current-voltage (I–V) characteristics and novel temperature dependence of the current. With increasing temperature, the hybrid nanostructures show rich phases with different dependence of current on temperature, which is related to the structural phase transition of RbAg{sub 4}I{sub 5} and the transition of dissociation of IEBSs. The ion-modulation of the electric conductivity in such MIEC composite nanostructures with great tunability has been used to design new ionic-electronic composite nano-devices with function like field effect transistor.

  19. Early stage fractal growth in thin films below the percolation limit

    NASA Astrophysics Data System (ADS)

    Batabyal, R.; Mahato, J. C.; Das, Debolina; Dev, B. N.

    2013-02-01

    We demonstrate the fractal growth of epitaxial Ag thin films on Si(111) surfaces using scanning tunneling microscopy (STM). The initial stage growth of Ag thin films provides islands of compact shape. These compact-shaped two-dimensional (2D) islands follow the Euclidian dimension 2. As the islands grow they become fractal in nature. The fractal (Hausdorff) dimension of the islands depends on the coverage of the Ag thin films. The mechanism responsible for this fractal nature of the Ag nanostructures varies from diffusion limited aggregation (DLA) to diffusion limited cluster aggregation (DLCA).

  20. Properties of MgB2 films deposited on single crystal Ag layers

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Wei, Y. K.; Zhang, C.; Feng, Q. R.; Ma, P.; Wang, Y.

    2014-04-01

    We have recently developed a method to deposit MgB2 thin films on single crystal Ag layers, and found that thin Ag layers reduced the the superconductivity of MgB2 not much, which may be a possible material to fabricate MgB2 SNS Josephson junctions. The single crystal Ag layers were deposited on (0 0 0 1) SiC substrates, and then the MgB2 thin films were deposited on the Ag layers. All the measurements included the XRD, M-T and M-H curves. The transition temperature of MgB2 films decreases from 39 K to 37 K, while the thickness of Ag layers grows from 0 to 20 nm, and the critical current density at 4.2 K decreases from 1.76 MA/cm2 to 1.24 MA/cm2, too.

  1. Ultra thin gage plastic film

    NASA Technical Reports Server (NTRS)

    Cox, D. W., Jr.; Struble, A. D.

    1971-01-01

    Process utilizing specially modified conventional equipment, with changes in process temperature, pressure, and cooling requirements produces ultra thin 1.56 micron /0.0614 mil/ thick polyethylene film.

  2. Interference Colors in Thin Films.

    ERIC Educational Resources Information Center

    Armstrong, H. L.

    1979-01-01

    Explains interference colors in thin films as being due to the removal, or considerable reduction, of a certain color by destructive inteference that results in the complementary color being seen. (GA)

  3. Thin film cell development workshop report

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1991-01-01

    The Thin Film Development Workshop provided an opportunity for those interested in space applications of thin film cells to debate several topics. The unique characteristics of thin film cells as well as a number of other issues were covered during the discussions. The potential of thin film cells, key research and development issues, manufacturing issues, radiation damage, substrates, and space qualification of thin film cells were discussed.

  4. Thin-Film Power Transformers

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  5. Nanostructured Ag(4)O(4) films with enhanced antibacterial activity.

    PubMed

    Dellasega, D; Facibeni, A; Di Fonzo, F; Bogana, M; Polissi, A; Conti, C; Ducati, C; Casari, C S; Li Bassi, A; Bottani, C E

    2008-11-26

    Ag(4)O(4) (i.e. silver(I)-silver(III) oxide) thin films with tailored structure and morphology at the nanoscale have been grown by reactive pulsed laser deposition (PLD) in an oxygen-containing atmosphere and they are shown to exhibit a very strong antibacterial activity towards Gram-negative bacteria (E. coli) and to completely inhibit the growth of Gram-positive bacteria (S. aureus). The formation of this particular high-valence silver oxide is explained in terms of the reactions occurring during the expansion of the ablated species in the reactive atmosphere, leading to the formation of low-stability Ag-O dimers and atomic oxygen, providing reactive species at the substrate where the film grows. PLD is shown to allow control of the structure (i.e. crystallinity and grain size) and of the morphology of the films, from compact and columnar to foam-like, thus allowing the deposition of nanocrystalline films with increased porosity and surface area. The antibacterial action towards E. coli is demonstrated and is shown to be superior to that of nanostructured Ag-based medical products. This can be related to the release of Ag ions with high oxidation number, which are known to be very reactive towards bacteria, and to the peculiar morphology at the nanoscale resulting in a large effective surface area.

  6. Vapor deposition of thin films

    DOEpatents

    Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  7. The effect of strain induced by Ag underlayer on saturation magnetization of partially ordered Fe16N2 thin films

    SciTech Connect

    Yang, Meiyin; Allard, Lawrence F.; Ji, Nian; Zhang, Xiaowei; Yu, Guang-Hua; Wang, Jian -Ping

    2013-12-12

    Small angle neutron scattering (SANS) and scanning transmission electron microscopy (STEM) were used to study film formation by magnesium alloys AZ31B (Mg-3Al-1Zn base) and ZE10A (Elektron®717, E717: Mg-1Zn + Nd, Zr) in H2O and D2O with and without 1 or 5 wt.% NaCl. No SANS scattering changes were observed after 24 h D2O or H2O exposures compared with as received (unreacted) alloy, consistent with relatively dense MgO-base film formation. However, exposure to 5 wt.% NaCl resulted in accelerated corrosion, with resultant SANS scattering changes detected. The SANS data indicated both particle and rough surface (internal and external) scattering, but with no preferential size features. The films formed in 5 wt.% NaCl consisted of a thin, inner MgO-base layer, and a nano-porous and filamentous Mg(OH)2 outer region tens of microns thick. Chlorine was detected extending to the inner MgO-base film region, with segregation of select alloying elements also observed in the inner MgO, but not the outer Mg(OH)2. Modeling of the SANS data suggested that the outer Mg(OH)2 films had very high surface areas, consistent with loss of film protectiveness. Here, implications for the NaCl corrosion mechanism, and the potential utility of SANS for Mg corrosion, are discussed.

  8. Co-doping effects of Gd and Ag on YBCO films derived by metalorganic deposition

    NASA Astrophysics Data System (ADS)

    Sun, Meijuan; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Lu, Yuming; Fan, Feng; Cai, Chuanbing

    2015-12-01

    Y1-xGdxBa2Cu3O7-δ-Ag (x = 0, 0.25, 0.5, 0.75, 1) thin films were prepared on oxide buffered Hastelloy substrates by low fluorine metalorganic depostion (MOD) process. The effects of co-doping of Ag and Gd on the microstructures and superconducting properties of YBCO thin films are investigated with respect to improvement on texture and superconducting performance in case of optimized doping content. It is found that optimum addition of Ag and Gd may lead to better c-axis orientation, superior surface microstructure and finally give rise to much improvement of superconducting performance.

  9. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  10. Morphology of Microscopic Thin Rubber Films

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Briber, Robert; Wang, Howard

    2014-03-01

    Microscopic thin rubber films have been prepared using photolithographic methods. Thin films of low molecular weight polybutadiene have been spun cast on positive photoresists, and transferred to various substrates upon UV exposure for crosslinking and defining the lateral dimension. The morphological scaling of thin rubber films as a function of film dimension and temperature is discussed.

  11. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  12. Direct nano-scale patterning of Ag films using hard X-ray induced oxidation.

    PubMed

    Kim, Jae Myung; Lee, Su Yong; Kang, Hyon Chol; Noh, Do Young

    2015-01-01

    The morphological change of silver nano-particles (AgNPs) exposed to an intense synchrotron X-ray beam was investigated for the purpose of direct nano-scale patterning of metal thin films. AgNPs irradiated by hard X-rays in oxygen ambient were oxidized and migrated out of the illuminated region. The observed X-ray induced oxidation was utilized to fabricate nano-scale metal line patterns using sectioned WSi2/Si multilayers as masks. Lines with a width as small as 21 nm were successfully fabricated on Ag films on silicon nitride. Au/Ag nano-lines were also fabricated using the proposed method.

  13. Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ju, Hongbo; Xu, Junhua

    2015-11-01

    Recently, the chameleon thin films were developed with the purpose of adjusting their chemistry at self-mating interfaces in response to environmental changes at a wide temperature range. However, very few studies have focused on what state the lubricious noble metal exists in the films and the tribological properties at room temperature (RT). Composite NbN-Ag films with various Ag content (Ag/(Nb + Ag)) were deposited using reactive magnetron sputtering to investigate the crystal structure, mechanical and tribological properties. A combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) analyses showed that face-centered cubic (fcc) NbN, hexagonal close-packed (hcp) NbN and fcc silver coexisted in NbN-Ag films. The incorporation of soft Ag into NbN matrix led to the hardness decrease from 29.6 GPa at 0 at.% Ag to 11.3 GPa at 19.9 at.% Ag. Tribological properties of NbN-Ag films performed using dry pin-on-disc wear tests against Al2O3 depended on Ag content to a large extent. The average friction coefficient and wear rate of NbN-Ag films decreased as Ag content increased from 4.0 to 9.2 at.%. With a further increase of Ag content, the average friction coefficient further decreased, while the wear rate increased gradually. The optimal Ag content was found to be 9.2-13.5 at.%, which showed low average friction coefficient values of 0.46-0.40 and wear rate values of 1.1 × 10-8 to 1.7 × 10-8 mm3/(mm N). 3D Profiler and Raman spectroscopy measurements revealed that the lubricant tribo-film AgNbO3 detected on the surface of the wear tracks could lead to the friction coefficient curve stay constant and decrease the average friction coefficients. The decrease of wear rate was mainly attributed to the lubricant tribo-film AgNbO3 as Ag content increased from 4.0 to 9.2 at.%; with a further increase in Ag content, the wear rate increased with increasing Ag content in NbN-Ag films because a

  14. Thin-film forces in pseudoemulsion films

    SciTech Connect

    Bergeron, V.; Radke, C.J. |

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  15. Surface plasmon resonance in nanostructured Ag incorporated ZnS films

    SciTech Connect

    Chalana, S. R.; Mahadevan Pillai, V. P.; Ganesan, V.

    2015-10-15

    Silver incorporated zinc sulfide thin films are prepared by RF magnetron sputtering technique and the influence of silver incorporation on the structural, optical and luminescence properties is analyzed using techniques like grazing incidence X-Ray diffraction (GIXRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), micro-Raman spectroscopy, UV-Vis spectroscopy and laser photoluminescence spectroscopy. XRD analysis presents hexagonal wurtzite structure for the films. A reduction of crystallinity of the films is observed due to Ag incorporation. The Raman spectral analysis confirms the reduction of crystallinity and increase of strain due to the Ag incorporation. AFM analysis reveals a rough surface morphology for the undoped film and Ag incorporation makes the films uniform, dense and smooth. A blue shift of band gap energy with increase in Ag incorporation is observed due to quantum confinement effect. An absorption band (450-650 nm region) due to surface plasmon resonance of the Ag clusters present in the ZnS matrix is observed for the samples with higher Ag incorporation. The complex dielectric constant, loss factor and distribution of volume and surface energy loss of the ZnS thin films are calculated. Laser photoluminescence measurements gives an intense bluish green emission from the ZnS films and a quenching of the PL emission is observed which can be due to the metal plasmonic absorption and non-radiative energy transfer due to Ag incorporation.

  16. YBCO thin film evaporation on as-deposited silver film on MgO

    NASA Astrophysics Data System (ADS)

    Azoulay, J.

    1999-11-01

    YBa 2Cu 3O 7- δ (YBCO) thin film was evaporated on as-deposited Ag buffer layer on MgO substrate. A simple, inexpensive vacuum system equipped with one resistively heated source was used. The subsequent heat treatment was carried out under low oxygen partial pressure at a relatively low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using DC four-probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). It is shown that YBCO thin film can grow on as-deposited thin silver layer on MgO substrate.

  17. Thin films under chemical stress

    SciTech Connect

    Not Available

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  18. Beryllium thin films for resistor applications

    NASA Technical Reports Server (NTRS)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  19. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment.

    PubMed

    Sayama, Kazuhiro; Nomura, Atsushi; Arai, Takeo; Sugita, Tsuyoshi; Abe, Ryu; Yanagida, Masatoshi; Oi, Takashi; Iwasaki, Yasukazu; Abe, Yoshimoto; Sugihara, Hideki

    2006-06-15

    The photoelectrochemical properties of porous BiVO4 thin-film electrodes on conducting glass for H2 production from water under visible light were investigated. BiVO4 films were prepared by the metal-organic decomposition method, and particles were 90-150 nm in diameter. Under visible-light irradiation, H2 and O2 evolved in a stoichiometric ratio (H2/O2 = 2) from an aqueous solution of Na2SO4 with an external bias. The photocurrent increased with addition of methanol. The band structure of BiVO4 was investigated by open-circuit potential, flat-band potential, X-ray photoelectron spectroscopy, and calculations based on density functional theory. The top of the valence-band potential of BiVO4 was shifted negatively compared to the potentials of the conventional oxide semiconductors without Bi. We surmise that hybridization between the O-2p and Bi-6s orbitals might contribute to the negative shift of the BiVO4 valence band. Treatment with an aqueous solution of AgNO3 improved the photocurrent of the BiVO4 electrode significantly. The maximum incident photon-to-current conversion efficiency at 420 nm was 44%. This value was the highest among mixed-oxide semiconductor electrodes under visible light irradiation. AgNO3 treatment also improved the stability of the photocurrent. The Ag+ ion in/on the BiVO4 catalyzed the intrinsic photogeneration of oxygen with the holes.

  20. Process for making dense thin films

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  1. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  2. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  3. Thin film-coated polymer webs

    DOEpatents

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  4. Low work function, stable thin films

    DOEpatents

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  5. Coefficient of thermal expansion and elastic modulus of thin films

    NASA Astrophysics Data System (ADS)

    de Lima, M. M.; Lacerda, R. G.; Vilcarromero, J.; Marques, F. C.

    1999-11-01

    The coefficient of thermal expansion (CTE), biaxial modulus, and stress of some amorphous semiconductors (a-Si:H, a-C:H, a-Ge:H, and a-GeCx:H) and metallic (Ag and Al) thin films were studied. The thermal expansion and the biaxial modulus were measured by the thermally induced bending technique. The stress of the metallic films, deposited by thermal evaporation (Ag and Al), is tensile, while that of the amorphous films deposited by sputtering (a-Si:H, a-Ge:H, and a-GeCx:H) and by glow discharge (a-C:H) is compressive. We observed that the coefficient of thermal expansion of the tetrahedral amorphous thin films prepared in this work, as well as that of the films reported in literature, depend on the network strain. The CTE of tensile films is smaller than that of their corresponding crystalline semiconductors, but it is higher for compressive films. On the other hand, we found out that the elastic biaxial modulus of the amorphous and metallic films is systematically smaller than that of their crystalline counterparts. This behavior stands for other films reported in the literature that were prepared by different techniques and deposition conditions. These differences were attributed to the reduction of the coordination number and to the presence of defects, such as voids and dangling bonds, in amorphous films. On the other hand, columnar structure and microcrystallinity account for the reduced elasticity of the metallic films.

  6. Laser-nanostructured Ag films as substrates for surface-enhanced Raman spectroscopy

    SciTech Connect

    Henley, S.J.; Carey, J.D.; Silva, S.R.P.

    2006-02-20

    Pulsed-laser (248 nm) irradiation of Ag thin films was employed to produce nanostructured Ag/SiO{sub 2} substrates. By tailoring the laser fluence, it was possible to controllably adjust the mean diameter of the resultant near-spherical Ag droplets. Thin films of tetrahedral amorphous carbon (ta-C) were subsequently deposited onto the nanostructured substrates. Visible Raman measurements were performed on the ta-C films, where it was observed that the intensity of the Raman signal was increased by nearly two orders of magnitude, when compared with ta-C films grown on nonstructured substrates. The use of laser annealing as a method of preparing substrates, at low macroscopic temperatures, for surface-enhanced Raman spectroscopy on subnanometer-thick films is discussed.

  7. Thin films and uses

    DOEpatents

    Baskaran, Suresh; Graff, Gordon L.; Song, Lin

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  8. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  9. Hybrid thin-film amplifier

    NASA Technical Reports Server (NTRS)

    Cleveland, G.

    1977-01-01

    Miniature amplifier for bioelectronic instrumentation consumes only about 100 mW and has frequency response flat to within 0.5 dB from 0.14 to 450 Hz. Device consists of five thin film substrates, which contain eight operational amplifiers and seven field-effect transistor dice.

  10. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  11. Thin Film Solid Lubricant Development

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  12. Thermal durability of AZO/Ag(Al)/AZO transparent conductive films

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yukiko; Igarashi, Kanae; Shirasaki, Shinya; Kikuchi, Akihiko

    2016-04-01

    Effects of Al doping on surface morphology, sheet resistance, optical transmission spectra, and thermal durability of a thin Ag layer and AZO/Ag/AZO dielectric/metal/dielectric (DMD) transparent conductive films (TCFs) were investigated. The 1.7 at. % Al doping suppressed the initial island growth of a thin Ag layer and the plasmon resonant absorption dip in the optical transmission spectra. The threshold thickness of percolation conductivity was reduced from 9-10 (pure Al layer) to 5-6 nm (1.7 at. % Al-doped Ag layer). Al doping in the Ag layer improved the thermal durability of AZO/Ag/AZO-DMD TCFs. The threshold temperature for Ag void formation increased from 400 °C (DMD with pure Ag layer) to 600 °C (DMD with a 10.5 at. % Al-doped Ag layer). The optimum annealing temperature increased from 300 °C (DMD with a pure Ag layer) to 500 °C (DMD with a 10.5 at. % Al-doped Ag layer). Maximum figures of merit (FOM) were 0.5 × 10-2 and 1.1 × 10-2 Ω-1 for the DMD with a pure Ag layer and that with a 10.5 at. % Al-doped Ag layer, respectively.

  13. Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth

    NASA Astrophysics Data System (ADS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Bischoff, E.; Mittemeijer, E. J.

    2012-08-01

    The effect of the adatom surface diffusivity on the evolution of the microstructure and the intrinsic stress of thin metal films was investigated for the case of growth of polycrystalline Ag films on amorphous SiO2 (a-SiO2) and amorphous Ge (a-Ge) substrates, with high and low Ag adatom surface diffusivity, respectively. The surface diffusivity of the deposited Ag adatoms on the a-Ge substrate is suppressed also after coalescence of Ag islands due to the continuous (re)segregation of Ge at the surface of the growing film as evidenced by in-situ XPS. An assessment could be made of the role of adatom surface diffusivity on the microstructural development and the intrinsic stress evolution during film growth. As demonstrated by ex-situ TEM and ex-situ XRD, the Ag films grown on the a-SiO2 and a-Ge substrates possess strikingly different microstructures in terms of grain shape, grain size, and crystallographic texture. Nevertheless, the real-time in-situ stress measurements revealed a compressive → tensile → compressive stress evolution for the developing Ag films on both types of substrates, however on different time scales and with stress-component values of largely different magnitudes. It was concluded that (i) the microstructural development of metallic thin films is predominated by the surface diffusivity of the adatoms and (ii) the intrinsic stress evolution is largely controlled by the developing microstructure and the grain-boundary diffusivity.

  14. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J.

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  15. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  16. Flexible thin film magnetoimpedance sensors

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Fernández, E.; Svalov, A.; Burgoa Beitia, A.; García-Arribas, A.; Larrañaga, A.

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz.

  17. Thin film concentrator panel development

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.

    1982-01-01

    The development and testing of a rigid panel concept that utilizes a thin film reflective surface for application to a low-cost point-focusing solar concentrator is discussed. It is shown that a thin film reflective surface is acceptable for use on solar concentrators, including 1500 F applications. Additionally, it is shown that a formed steel sheet substrate is a good choice for concentrator panels. The panel has good optical properties, acceptable forming tolerances, environmentally resistant substrate and stiffeners, and adaptability to low to mass production rates. Computer simulations of the concentrator optics were run using the selected reflector panel design. Experimentally determined values for reflector surface specularity and reflectivity along with dimensional data were used in the analysis. The simulations provided intercept factor and net energy into the aperture as a function of aperture size for different surface errors and pointing errors. Point source and Sun source optical tests were also performed.

  18. Optical properties of rubrene thin film prepared by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Deng, Jin-Xiang; Kong, Le; Cui, Min; Chen, Ren-Gang; Zhang, Zi-Jia

    2015-04-01

    Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evaporation technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm-1600 nm. The analysis of the absorption coefficient (α) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the rubrene thin film is observed to be at 563 nm (2.21 eV). With the use of Ag NPs which are fabricated by radio-frequency (RF) magnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence. Project supported by the Funding for the Development Project of Beijing Municipal Education Commission of Science and Technology, China (Grant No. KZ201410005008), the Natural Science Foundation of Beijing City, China (Grant No. 4102014), and the Graduate Science Fund of the Beijing University of Technology, China (Grant No. ykj-2013-9835).

  19. Thin-Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.

    1993-01-01

    Direct conversion of thermal energy into electrical energy using a photovoltaic cell is called thermophotovoltaic energy conversion. One way to make this an efficient process is to have the thermal energy source be an efficient selective emitter of radiation. The emission must be near the band-gap energy of the photovoltaic cell. One possible method to achieve an efficient selective emitter is the use of a thin film of rare-earth oxides. The determination of the efficiency of such an emitter requires analysis of the spectral emittance of the thin film including scattering and reflectance at the vacuum-film and film-substrate interfaces. Emitter efficiencies (power emitted in emission band/total emitted power) in the range 0.35-0.7 are predicted. There is an optimum optical depth to obtain maximum efficiency. High emitter efficiencies are attained only for low (less than 0.05) substrate emittance values, both with and without scattering. The low substrate emittance required for high efficiency limits the choice of substrate materials to highly reflective metals or high-transmission materials such as sapphire.

  20. Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability

    NASA Astrophysics Data System (ADS)

    Im, Hyeon-Gyun; Jin, Jungho; Ko, Ji-Hoon; Lee, Jaemin; Lee, Jung-Yong; Bae, Byeong-Soo

    2013-12-01

    We report on the performance of an all-in-one flexible hybrid conducting film employing a monolithically embedded AgNW transparent electrode and a high-performance glass-fabric reinforced composite substrate (AgNW-GFRHybrimer film). Specifically, we perform in-depth investigations on the stability of the AgNW-GFRHybrimer film against heat, thermal oxidation, and wet chemicals to demonstrate the potential of the hybrid conducting film as a robust electrode platform for thin-film optoelectronic devices. With the ease of large-area processability, smooth surface topography, and robust performance stability, the AgNW-GFRHybrimer film can be a promising platform for high-performance optoelectronic devices.We report on the performance of an all-in-one flexible hybrid conducting film employing a monolithically embedded AgNW transparent electrode and a high-performance glass-fabric reinforced composite substrate (AgNW-GFRHybrimer film). Specifically, we perform in-depth investigations on the stability of the AgNW-GFRHybrimer film against heat, thermal oxidation, and wet chemicals to demonstrate the potential of the hybrid conducting film as a robust electrode platform for thin-film optoelectronic devices. With the ease of large-area processability, smooth surface topography, and robust performance stability, the AgNW-GFRHybrimer film can be a promising platform for high-performance optoelectronic devices. Electronic supplementary information (ESI) available: Further characteristics of AgNW-GFRHybrimer films and thermal oxidation of AgNW on glass. See DOI: 10.1039/c3nr05348b

  1. Enhancement of NO2 gas detection in hybrid silver nanoparticles-phthalocyanine thin films

    NASA Astrophysics Data System (ADS)

    Zasedatelev, A. V.; Krichevsky, D. M.; Zelenskiy, Yu M.; Tolbin, A. Yu; Krasovskii, V. I.; Karpo, A. B.; Tomilova, L. G.

    2016-08-01

    Phthalocyanine-functionalized plasmonic sensing systems are typically based on Kretschmann configuration. Such scheme of detection utilizes spectral or angular modulation of reflected light, which is induced by surface plasmon's excitation in the metal film on prism. Phthalocyanine's layer plays a role of analyte adsorber. In present paper we offer another approach to phthalocyanine-plasmonic sensing, where both local surface plasmon resonance and optical absorption of phthalocyanines are simultaneously detected. Hybrid Ag nanoparticles (AgNps) - low symmetrical A3B zinc phthalocyanine (ZnPc) thin films were prepared, and their NO2 gas sensitive properties were examined. Since the plasmon resonance of AgNps was properly tuned to charge-transfer band of ZnPc-NO2 complex, we found out more than two-fold increase of the optical response to NO2 exposure in AgNps-ZnPc thin films compared to ZnPc films without AgNps.

  2. Zinc oxide thin film acoustic sensor

    SciTech Connect

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah; Mansour, Hazim Louis

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  3. Method of producing amorphous thin films

    DOEpatents

    Brusasco, Raymond M.

    1992-01-01

    Disclosed is a method of producing thin films by sintering which comprises: a. coating a substrate with a thin film of an inorganic glass forming parulate material possessing the capability of being sintered, and b. irridiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed.

  4. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  5. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  6. Promising antimicrobial capability of thin film metallic glasses.

    PubMed

    Chu, Y Y; Lin, Y S; Chang, C M; Liu, J-K; Chen, C H; Huang, J C

    2014-03-01

    Thin film metallic glasses (TFMGs) are demonstrated to exhibit excellent surface flatness, high corrosion resistance and satisfactory hydrophobic properties. Moreover, the antimicrobial and biocompatibility abilities of TFMGs are examined and the results are compared with the behavior of pure Ag and 316L stainless steel. Three TFMGs, Al48Ag37Ti15, Zr54Ti35Si11, and Zr59Ti22Ag19, are prepared by sputtering to assess the antimicrobial performance against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, which are the most common nosocomial infection pathogens. Experimental results show that the antimicrobial effect of the Al- or Ag-containing AlAgTi and ZrTiAg TFMGs is similar to that of the pure Ag coating. The ZrTiSi TFMG with no Ag or Al shows poor antimicrobial capability. The physical properties of highly smooth surface and hydrophobic nature alone are not sufficient to result in promising antimicrobial ability. The chemical metal ion release still plays a major role, which should be born in mind in designing biomedical devices.

  7. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  8. Comparison of preferred orientation and stress in silver thin films on different substrates using x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zoo, Yeongseok; Alford, T. L.

    2007-02-01

    Silver thin films were deposited on SiO2 and polyethylene naphthalate (PEN) using e-beam evaporation. X-ray diffraction techniques were used to investigate the influence of substrate morphology on the Ag film's texture. Different modes of texture were observed in Ag thin films on SiO2 and PEN. Detailed information regarding spatial distribution of specific {hkl } planes was obtained by conducting pole figure analyses. A typical stress measurement technique for thin films, sin2ψ analysis, was performed to study how the surface morphology of the various substrates affected the stress induced during the texture evolution of the thin films. Based on the data from this study, the preferred orientation and stress of Ag thin films on SiO2 and PEN were discussed.

  9. Preparation and characterization of nanoporous gold thin films

    NASA Astrophysics Data System (ADS)

    Dixon, Matthew Curran

    In the first chapter, methods for preparing different types of nanoporous Au (nPG) are described, along with a wide variety of applications and uses in the scientific and engineering community. Of particular interest, though, is the nanoporous structure that arises from dealloying Ag from AgAu. Details about the formation of AgAu alloys and the different methods for dealloying AgAu alloys are discussed, including a brief history of the dealloying mechanism for a binary alloy. The chapter concludes with a brief overview of the thesis' subsequent chapters. The second chapter focuses on the preparation and characterization of nPG thin films of varying thickness and etch times. We adapted the approach of dealloying Ag from AgAu due to its widespread application, well understood mechanism, uniformity in pore size, and reproducible structure formation. The atomic percentage of Ag70Au30 was chosen for this work since an initial collaboration and previous studies have used this particular ratio, and demonstrated pore sizes on the order of tens of nanometers were achievable upon dealloying. We designed a new technique to deposit AgAu alloys onto surfaces. Specifically, the technique entailed argon ion sputtering a premade ingot containing Ag70Au30 onto a substrate. The third chapter describes the functionaliztion and subsequent characterization of organic films chemisorbed onto a variety of nPG films. Self-assembled monolayers of thiol containing molecules were made using typical literature procedures. The coverage of a variety of molecules were estimated using depth profiling XPS, solid state nuclear magnetic resonance, adsorption measurements and redox electrochemistry. Film quality was estimated using electrochemical tunneling measurements and reflection infrared spectroscopy; these showed that film quality on nPG was comparable to that on flat Au. The macroscopic wetting properties of functionalized nPG, as measured using contact angles, were found to reflect the

  10. Tribological properties of Ag/Ti films on Al2O3 ceramic substrates

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1991-01-01

    Ag solid lubricant films, with a thin Ti interlayer for enhanced adhesion, were sputter deposited on Al2O3 substrate disks to reduce friction and wear. The dual Ag/Ti films were tested at room temperature in a pin-on-disk tribometer sliding against bare, uncoated Al2O3 pins under a 4.9 N load at a sliding velocity of 1 m/s. The Ag/Ti films reduced the friction coefficient by 50 percent to about 0.41 compared to unlubricated baseline specimens. Pin wear was reduced by a factor of 140 and disk wear was reduced by a factor of 2.5 compared to the baseline. These films retain their good tribological properties including adhesion after heat treatments at 850 C and thus may be able to lubricate over a wide temperature range. This lubrication technique is applicable to space lubrication, advanced heat engines, and advanced transportation systems.

  11. An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics.

    PubMed

    Zhang, Cheng; Zhao, Dewei; Gu, Deen; Kim, Hyunsoo; Ling, Tao; Wu, Yi-Kuei Ryan; Guo, L Jay

    2014-08-27

    An ultrathin, smooth, and low-loss Ag film without a wetting layer is achieved by co-depositing a small amount of Al into Ag. The film can be as thin as 6 nm, with a roughness below 1 nm and excellent mechanical flexibility. Organic photovoltaics that use these thin films as transparent electrode show superior efficiency to their indium tin oxide (ITO) counterparts because of improved photon management. PMID:24943876

  12. Positive-ion emission from a-AgI films

    SciTech Connect

    Pong, W.; Lam, W.; Tong, A.; Brandt, D.

    1981-03-01

    Positive-ion emission from evaporated films of AgI was observed when the films were heated to temperatures above 160 /sup 0/C. A slow sublimation of AgI was also found to occur with the ion emission when the temperature was sufficiently high. The activation energy for positive-ion emission from the surface of a-AgI is estimated to be 1.7 eV.

  13. Electrostatic thin film chemical and biological sensor

    DOEpatents

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  14. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  15. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1993-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  16. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  17. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K.; Wei, G.; Yu, P.C.

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  18. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. . Electro-Optics Technology Center); Wei, G. ); Yu, P.C. )

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  19. Magnetostrictive thin films for microwave spintronics

    PubMed Central

    Parkes, D. E.; Shelford, L. R.; Wadley, P.; Holý, V.; Wang, M.; Hindmarch, A. T.; van der Laan, G.; Campion, R. P.; Edmonds, K. W.; Cavill, S. A.; Rushforth, A. W.

    2013-01-01

    Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications. PMID:23860685

  20. Magnetostrictive thin films for microwave spintronics.

    PubMed

    Parkes, D E; Shelford, L R; Wadley, P; Holý, V; Wang, M; Hindmarch, A T; van der Laan, G; Campion, R P; Edmonds, K W; Cavill, S A; Rushforth, A W

    2013-01-01

    Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications.

  1. Improvement of critical current density and thermally assisted individual vortex depinning in pulsed-laser-deposited YBa2Cu3O7-δ thin films on SrTiO3 (100) substrate with surface modification by Ag nanodots

    NASA Astrophysics Data System (ADS)

    Li, A. H.; Liu, H. K.; Ionescu, M.; Wang, X. L.; Dou, S. X.; Collings, E. W.; Sumption, M. D.; Bhatia, M.; Lin, Z. W.; Zhu, J. G.

    2005-05-01

    YBa2Cu3O7 films were fabricated by pulsed laser deposition on SrTiO3 (100) single-crystal substrates whose surfaces were modified by the introduction of Ag nanodots. The critical current density (Jc) was found to increase with the number of Ag shots. Zero-field magnetic Jc0 at 77K increased from 8×105 up to 3.5×106A /cm2 as the number of Ag shots increased from 0 to over 150 times. Microstructure investigations indicated that the crystallinity and the ab alignment gradually improved as the number of Ag nanodots increased. Thermally activated depinning of individual vortices is suggested responsible for a field-independent Jc plateau.

  2. Thermoelectric Properties of Hybrid Thin Films of PEDOT-PSS and Silver Nanowires

    NASA Astrophysics Data System (ADS)

    Yoshida, Akihito; Toshima, Naoki

    2016-06-01

    We report the thermoelectric (TE) properties of organic-inorganic hybrid thin films composed of conductive polymer, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS), and inorganic silver nanowire (AgNW). Two kinds of AgNW with different wire length, 3 μm and 27 μm, were used in this study. The AgNW/PEDOT-PSS hybrid films showed an increase in electrical conductivity ( σ) with increase in AgNW concentration. The maximum value of σ obtained in this system was ca. 10,000 S cm-1. The films containing long AgNWs (L-AgNWs) showed higher σ relative to short AgNWs (S-AgNWs) at given concentration, which results from the fact that longer nanowires can easily form a percolated structure. The formation of a percolated structure was confirmed by scanning electron microscopy (SEM) observation. On the other hand, the Seebeck coefficient ( S) of the hybrid films showed the opposite dependence on AgNW concentration. This decrease in S with increasing AgNW concentration is probably because of increase in carrier number due to the AgNWs. These results suggest that the presented organic-inorganic hybrid system is one example where the electrical conductivity and TE properties can be tuned by use of a nanocomposite.

  3. Morphology and oxygen incorporation effect on antimicrobial activity of silver thin films

    NASA Astrophysics Data System (ADS)

    Rebelo, Rita; Manninen, N. K.; Fialho, Luísa; Henriques, Mariana; Carvalho, Sandra

    2016-05-01

    Ag and AgxO thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the AgxO thin film showed both metallic Ag and Agsbnd O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while AgxO layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and AgxO surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to AgxO coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology was pointed as the main factors in the origin of the antibacterial effect found in AgxO thin film. The present study demonstrated that AgxO coating presented antibacterial behavior and its application in cardiovascular stents is promising.

  4. Thin film bioreactors in space.

    PubMed

    Hughes-Fulford, M; Scheld, H W

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  5. Thin film bioreactors in space

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  6. BDS thin film damage competition

    SciTech Connect

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  7. Wrinkle motifs in thin films

    PubMed Central

    Budrikis, Zoe; Sellerio, Alessandro L.; Bertalan, Zsolt; Zapperi, Stefano

    2015-01-01

    On length scales from nanometres to metres, partial adhesion of thin films with substrates generates a fascinating variety of patterns, such as ‘telephone cord’ buckles, wrinkles, and labyrinth domains. Although these patterns are part of everyday experience and are important in industry, they are not completely understood. Here, we report simulation studies of a previously-overlooked phenomenon in which pairs of wrinkles form avoiding pairs, focusing on the case of graphene over patterned substrates. By nucleating and growing wrinkles in a controlled way, we characterize how their morphology is determined by stress fields in the sheet and friction with the substrate. Our simulations uncover the generic behaviour of avoiding wrinkle pairs that should be valid at all scales. PMID:25758174

  8. Wrinkle motifs in thin films

    NASA Astrophysics Data System (ADS)

    Budrikis, Zoe; Sellerio, Alessandro L.; Bertalan, Zsolt; Zapperi, Stefano

    2015-03-01

    On length scales from nanometres to metres, partial adhesion of thin films with substrates generates a fascinating variety of patterns, such as `telephone cord' buckles, wrinkles, and labyrinth domains. Although these patterns are part of everyday experience and are important in industry, they are not completely understood. Here, we report simulation studies of a previously-overlooked phenomenon in which pairs of wrinkles form avoiding pairs, focusing on the case of graphene over patterned substrates. By nucleating and growing wrinkles in a controlled way, we characterize how their morphology is determined by stress fields in the sheet and friction with the substrate. Our simulations uncover the generic behaviour of avoiding wrinkle pairs that should be valid at all scales.

  9. Infrared radiation of thin plastic films.

    NASA Technical Reports Server (NTRS)

    Tien, C. L.; Chan, C. K.; Cunnington, G. R.

    1972-01-01

    A combined analytical and experimental study is presented for infrared radiation characteristics of thin plastic films with and without a metal substrate. On the basis of the thin-film analysis, a simple analytical technique is developed for determining band-averaged optical constants of thin plastic films from spectral normal transmittance data for two different film thicknesses. Specifically, the band-averaged optical constants of polyethylene terephthalate and polyimide were obtained from transmittance measurements of films with thicknesses in the range of 0.25 to 3 mil. The spectral normal reflectance and total normal emittance of the film side of singly aluminized films are calculated by use of optical constants; the results compare favorably with measured values.

  10. AES analysis of barium fluoride thin films

    NASA Astrophysics Data System (ADS)

    Kashin, G. N.; Makhnjuk, V. I.; Rumjantseva, S. M.; Shchekochihin, Ju. M.

    1993-06-01

    AES analysis of thin films of metal fluorides is a difficult problem due to charging and decomposition of such films under electron bombardment. We have developed a simple algorithm for a reliable quantitative AES analysis of metal fluoride thin films (BaF 2 in our work). The relative AES sensitivity factors for barium and fluorine were determined from BaF 2 single-crystal samples. We have investigated the dependence of composition and stability of barium fluoride films on the substrate temperature during film growth. We found that the instability of BaF 2 films grown on GaAs substrates at high temperatures (> 525°C) is due to a loss of fluorine. Our results show that, under the optimal electron exposure conditions, AES can be used for a quantitative analysis of metal fluoride thin films.

  11. Effects of silver nanoparticles with different sizes on photochemical responses of polythiophene-fullerene thin films.

    PubMed

    You, Jing; Leonard, Kwati; Takahashi, Yukina; Yonemura, Hiroaki; Yamada, Sunao

    2014-01-21

    Effects of size and coverage density of silver nanoparticles (AgPs) on the fluorescence emission and fluorescence lifetime of poly(3-hexylthiophene-2,5-diyl) (P3HT) thin films were investigated. AgPs of 64 nm diameter showed greater effects on the fluorescence decay process of P3HT films as compared with 7 nm AgPs. The fluorescence lifetime (FL) of P3HT decreased from 0.61 to 0.22 ns in the presence of 64 nm AgPs, while no appreciable change (0.60 ns) was seen in the case of 7 nm AgPs. The results suggest that the 64 nm AgPs showed a greater effect on the enhancement of the decay rate of excited P3HT. The photoelectric conversion of thin films consisting of P3HT and phenyl-C61-butyric acid methyl ester (PCBM) was also investigated. AgPs of 7 or 64 nm diameters were first deposited on indium-tin-oxide substrates with controlled surface coverage densities from ~1 to 40%. When the coverage densities of deposited AgPs were ~20% for both 7 and 64 nm, the enhancement of photoelectric conversion efficiency reached maximum. The degree of enhancement in the case of 64 nm AgPs was larger than in the case of 7 nm AgPs. PMID:24292622

  12. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  13. Thin film solar cell module

    SciTech Connect

    Gay, R.R.

    1987-01-20

    A thin film solar cell module is described comprising a first solar cell panel containing an array of solar cells consisting of a TFS semiconductor sandwiched between a transparent conductive zinc oxide layer and a transparent conductive layer selected from the group consisting of tin oxide, indium tin oxide, and zinc oxide deposited upon a transparent superstrate, and a second solar cell panel containing an array of solar cells consisting of a CIS semiconductor layer sandwiched between a zinc oxide semiconductor layer and a conductive metal layer deposited upon an insulating substrate. The zinc oxide semiconductor layer contains a first relatively thin layer of high resistivity zinc oxide adjacent the CIS semiconductor and a second relatively thick layer of low resistivity zinc oxide overlying the high resistivity zinc oxide layer. The transparent conductive zinc oxide layer of the first panel faces the low resistivity zinc oxide layer of the second panel, the first and second panels being positioned optically in series and separated by a transparent insulating layer.

  14. VUV thin films, chapter 7

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.

    1993-01-01

    The application of thin film technology to the vacuum ultraviolet (VUV) wavelength region from 120 nm to 230 nm has not been fully exploited in the past because of absorption effects which complicate the accurate determination of the optical functions of dielectric materials. The problem therefore reduces to that of determining the real and imaginary parts of a complex optical function, namely the frequency dependent refractive index n and extinction coefficient k. We discuss techniques for the inverse retrieval of n and k for dielectric materials at VUV wavelengths from measurements of their reflectance and transmittance. Suitable substrate and film materials are identified for application in the VUV. Such applications include coatings for the fabrication of narrow and broadband filters and beamsplitters. The availability of such devices open the VUV regime to high resolution photometry, interferometry and polarimetry both for space based and laboratory applications. This chapter deals with the optics of absorbing multilayers, the determination of the optical functions for several useful materials, and the design of VUV multilayer stacks as applied to the design of narrow and broadband reflection and transmission filters and beamsplitters. Experimental techniques are discussed briefly, and several examples of the optical functions derived for selected materials are presented.

  15. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film

    NASA Astrophysics Data System (ADS)

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-01

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.

  16. Micromotors using magnetostrictive thin films

    NASA Astrophysics Data System (ADS)

    Claeyssen, Frank; Le Letty, Ronan; Barillot, Francois; Betz, Jochen; MacKay, Ken; Givord, Dominique; Bouchilloux, Philippe

    1998-07-01

    This study deals with a micromotor based on the use of magnetostrictive thin films. This motor belongs to the category of the Standing Wave Ultrasonic Motors. The active part of the motor is the rotor, which is a 100 micrometers thick ring vibrating in a flexural mode. Teeth (300 micrometers high) are placed on special positions of the rotor and produce an oblique motion which can induce the relative motion of any object in contact with them. The magnetic excitation field is radial and uses the transverse coupling of the 4 micrometers thick magnetostrictive film. The film, deposited by sputtering on the ring, consists of layers of different rare-earth/iron alloys and was developed during a European Brite-Euram project. The finite element technique was used in order to design a prototype of the motor and to optimize the active rotor and the energizer coil. The prototype we built delivered a speed of 30 turns per minute with a torque of 2 (mu) N.m (without prestress applied on the rotor). Our experimental results show that the performance of this motor could easily be increased by a factor of 5. The main advantage of this motor is the fact that it is remotely powered and controlled. The excitation coil, which provides both power and control, can be placed away from the active rotor. Moreover, the rotor is completely wireless and is not connected to its support or to any other part. It is interesting to note that it would not be possible to build this type of motor using piezoelectric technology. Medical applications of magnetostrictive micromotors could be found for internal microdistributors of medication (the coil staying outside the body). Other applications include remote control micropositioning, micropositioning of optical components, and for the actuation of systems such as valves, electrical switches, and relays.

  17. Superconducting Yttrium Barium Copper Oxide Thin Films and Thin Film Devices

    NASA Astrophysics Data System (ADS)

    Stamper, Anthony Kendall

    Superconducting thin films of YBa_2 Cu_3O_{7 -delta} (YBCO) have been deposited using rf diode sputtering from a single composite target. These films were deposited on silicon substrates at substrate temperatures up to 600^circC using either 100% argon or a 90% argon and 10% oxygen sputtering gas mixture. Yttria-stabilized ZrO_2 (YSZ) buffer layers were employed both for electrical isolation and to minimize the reaction between the silicon and the superconductor. The YSZ crystal structure was highly dependent on the deposition parameters and films with (111) and (100) cubic texturing were grown on oxidized silicon substrates. The composition and electrical properties of the YBCO films, which were deposited on-axis from 5 cm targets, were approximately constant over most of the 5 cm substrates when oxygen was in the sputtering gas and were reproducible. The effect of the sputtering gas pressure, the presence of 10% oxygen in the sputtering gas, the target composition, and the substrate temperature on the film composition have been studied. We demonstrated that neutral oxygen bombardment was responsible for composition differences between the target and the thin film. YBCO films deposited on in-situ heated substrates had zero-transition temperatures up to 87K with 10% to 90% transition widths of less than 5K and were c-axis oriented. Films deposited on unheated substrates required processing at higher temperatures, had zero-transition temperatures up to 85K, and were randomly oriented. Lithographic processes and contact technologies were developed for device fabrication. Using these processes, we fabricated simple YBCO microstrip structures, YBCO/Au/n-Si Schottky diodes, Pb/Ag/YBCO Josephson junctions, and Au/YSZ/YBCO multi-layer structures. After optimization of the process, we were able to fabricate high quality diodes and ohmic contacts without degrading the electrical properties of the YBCO. Finally, we fabricated flux transformer structures, with winding widths

  18. Flexible thin metal film thermal sensing system

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald L. (Inventor)

    2010-01-01

    A flexible thin metal film thermal sensing system is provided. A self-metallized polymeric film has a polymeric film region and a metal surface disposed thereon. A layer of electrically-conductive metal is deposited directly onto the self-metallized polymeric film's metal surface. Coupled to at least one of the metal surface and the layer of electrically-conductive metal is a device/system for measuring an electrical characteristic associated therewith as an indication of temperature.

  19. Macro stress mapping on thin film buckling

    SciTech Connect

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-11-06

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling.

  20. Structural characterization of thin film photonic crystals

    SciTech Connect

    Subramania, G.; Biswas, R.; Constant, K.; Sigalas, M. M.; Ho, K. M.

    2001-06-15

    We quantitatively analyze the structure of thin film inverse-opal photonic crystals composed of ordered arrays of air pores in a background of titania. Ordering of the sphere template and introduction of the titania background were performed simultaneously in the thin film photonic crystals. Nondestructive optical measurements of backfilling with high refractive index liquids, angle-resolved reflectivity, and optical spectroscopy were combined with band-structure calculations. The analysis reveals a thin film photonic crystal structure with a very high filling fraction (92{endash}94%) of air and a substantial compression along the c axis ({similar_to}22{endash}25%).

  1. Surface roughness evolution of nanocomposite thin films

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; Hosson, J. Th. M. de

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growing interface is explained by ballistic effects resulting from impingements of ions to the growing thin film. These ballistic effects are sensitive to the flux and energy of impinging ions. The predictions of the model are compared with experimental data, and it is concluded that the thin film roughness can be further controlled by adjusting waveform, frequency, and width of dc pulses.

  2. Insect thin films as solar collectors.

    PubMed

    Heilman, B D; Miaoulis, L N

    1994-10-01

    A numerical method for simulation of microscale radiation effects in insect thin-film structures is described. Accounting for solar beam and diffuse radiation, the model calculates the reflectivity and emissivity of such structures. A case study examines microscale radiation effects in butterfuly wings, and results reveal a new function of these multilayer thin films: thermal regulation. For film thicknesses of the order of 0.10 µm, solar absorption levels vary by as much as 25% with small changes in film thickness; for certain existing structures, absorption levels reach 96%., This is attributed to the spectral distribution of the reflected radiation, which consists of a singular reflectance peak within the solar spectrum.

  3. Research on Advanced Thin Film Batteries

    SciTech Connect

    Goldner, Ronald B.

    2003-11-24

    During the past 7 years, the Tufts group has been carrying out research on advanced thin film batteries composed of a thin film LiCo02 cathode (positive electrode), a thin film LiPON (lithium phosphorous oxynitride) solid electrolyte, and a thin film graphitic carbon anode (negative electrode), under grant DE FG02-95ER14578. Prior to 1997, the research had been using an rfsputter deposition process for LiCoOi and LiPON and an electron beam evaporation or a controlled anode arc evaporation method for depositing the carbon layer. The pre-1997 work led to the deposition of a single layer cell that was successfully cycled for more than 400 times [1,2] and the research also led to the deposition of a monolithic double-cell 7 volt battery that was cycled for more than 15 times [3]. Since 1997, the research has been concerned primarily with developing a research-worthy and, possibly, a production-worthy, thin film deposition process, termed IBAD (ion beam assisted deposition) for depositing each ofthe electrodes and the electrolyte of a completely inorganic solid thin film battery. The main focus has been on depositing three materials - graphitic carbon as the negative electrode (anode), lithium cobalt oxide (nominally LiCoCb) as the positive electrode (cathode), and lithium phosphorus oxynitride (LiPON) as the electrolyte. Since 1998, carbon, LiCoOa, and LiPON films have been deposited using the IBAD process with the following results.

  4. Ferromagnetic properties of fcc Gd thin films

    SciTech Connect

    Bertelli, T. P. Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y.

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  5. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  6. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  7. Thin films for geothermal sensing: Final report

    SciTech Connect

    Not Available

    1987-09-01

    The report discusses progress in three components of the geothermal measurement problem: (1) developing appropriate chemically sensitive thin films; (2) discovering suitably rugged and effective encapsulation schemes; and (3) conducting high temperature, in-situ electrochemical measurements. (ACR)

  8. Thermally tunable ferroelectric thin film photonic crystals.

    SciTech Connect

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  9. Thin film production method and apparatus

    DOEpatents

    Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  10. Microstructure Related Properties of Optical Thin Films.

    NASA Astrophysics Data System (ADS)

    Wharton, John James, Jr.

    Both the optical and physical properties of thin film optical interference coatings depend upon the microstructure of the deposited films. This microstructure is strongly columnar with voids between the columns. Computer simulations of the film growth process indicate that the two most important factors responsible for this columnar growth are a limited mobility of the condensing molecules and self-shadowing by molecules already deposited. During the vacuum deposition of thin films, the microstructure can be influenced by many parameters, such as substrate temperature and vacuum pressure. By controlling these parameters and introducing additional ones, thin film coatings can be improved. In this research, ultraviolet irradiation and ion bombardment were examined as additional parameters. Past studies have shown that post-deposition ultraviolet irradiation can be used to relieve stress and reduce absorption in the far ultraviolet of silicon dioxide films. Ion bombardment has been used to reduce stress, improve packing density, and increase resistance to moisture penetration. Three refractory oxide materials commonly used in thin film coatings were studied; they are silicon dioxide, titanium dioxide, and zirconium dioxide. Both single-layer films and narrowband filters made of these materials were examined. A 1000-watt mercury-xenon lamp was used to provide ultraviolet irradiation. An inverted magnetron ion source was used to produce argon and oxygen ions. Ultraviolet irradiation was found to reduce the absorption and slightly increase the index of refraction in zirconium oxide films. X-ray diffraction analysis revealed that ultraviolet irradiation caused titanium oxide films to become more amorphous; their absorption in the ultraviolet was slightly reduced. No changes were noted in film durability. Ion bombardment enhanced the tetragonal (lll) peak of zirconium oxide but increased the absorption of both zirconium oxide and titanium oxide films. The titanium oxide

  11. Thin wetting film lensless imaging

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Poher, V.; Coutard, J. G.; Hiernard, G.; Dinten, J. M.

    2011-03-01

    Lensless imaging has recently attracted a lot of attention as a compact, easy-to-use method to image or detect biological objects like cells, but failed at detecting micron size objects like bacteria that often do not scatter enough light. In order to detect single bacterium, we have developed a method based on a thin wetting film that produces a micro-lens effect. Compared with previously reported results, a large improvement in signal to noise ratio is obtained due to the presence of a micro-lens on top of each bacterium. In these conditions, standard CMOS sensors are able to detect single bacterium, e.g. E.coli, Bacillus subtilis and Bacillus thuringiensis, with a large signal to noise ratio. This paper presents our sensor optimization to enhance the SNR; improve the detection of sub-micron objects; and increase the imaging FOV, from 4.3 mm2 to 12 mm2 to 24 mm2, which allows the detection of bacteria contained in 0.5μl to 4μl to 10μl, respectively.

  12. Flush Mounting Of Thin-Film Sensors

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1992-01-01

    Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.

  13. Thin-film microelectronic wearable body sensors.

    PubMed

    Neuman, Michael R

    2015-01-01

    This review of various applications of well-established thin-film processing techniques to wearable body sensors gives examples of work done in the author's laboratory over many years. Sensors for the vital signs of body temperature, electrocardiogram, heart rate, breathing pattern and breathing rate are presented along with other applications. Thin-film based sensors have the advantage of small size, high surface area to mass ratio, flexibility, capability for batch production, and compatibility with other microelectronic technologies.

  14. Epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.

  15. Thin-film reliability and engineering overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1984-01-01

    The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.

  16. Thin solid-lubricant films in space

    NASA Astrophysics Data System (ADS)

    Roberts, E. W.

    Low-friction films of thickness as low as 1 micron, created through sputter-deposition of low shear strength materials, are required in spacecraft applications requiring low power dissipation, such as cryogenic devices, and low torque noise, such as precision-pointing mechanisms. Due to their thinness, these coatings can be applied to high precision-machined tribological components without compromising their functional accuracy. Attention is here given to the cases of thin solid films for ball bearings, gears, and journal bearings.

  17. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2013-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film solar cells have been considered as the most promising alternatives to crystalline silicon solar cells because of their high photo-electricity conversion efficiency, reliability, and stability. However, many fabrication methods of CIGS thin film are based on vacuum processes such as evaporation and sputtering techniques which are not cost efficient. This work develops a solution method using paste or ink liquid spin-coated on glass that would be competitive to conventional ways in terms of cost effective, non-vacuum needed, and quick processing. A mixture precursor was prepared by dissolving appropriate amounts of composition chemicals. After the mixture solution was cooled, a viscous paste was prepared and ready for spin-coating process. A slight bluish CIG thin film on substrate was then put in a tube furnace with evaporation of metal Se followed by depositing CdS layer and ZnO nanoparticle thin film coating to complete a solar cell fabrication. Structure, absorption spectrum, and photo-electricity conversion efficiency for the as-grown CIGS thin film solar cell are under study.

  18. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed. PMID:27454334

  19. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  20. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  1. Thin-Film Nanocapacitor and Its Characterization

    ERIC Educational Resources Information Center

    Hunter, David N.; Pickering, Shawn L.; Jia, Dongdong

    2007-01-01

    An undergraduate thin-film nanotechnology laboratory was designed. Nanocapacitors were fabricated on silicon substrates by sputter deposition. A mask was designed to form the shape of the capacitor and its electrodes. Thin metal layers of Au with a 80 nm thickness were deposited and used as two infinitely large parallel plates for a capacitor.…

  2. MOCVD and PE-MOCVD of HTSC thin films

    NASA Astrophysics Data System (ADS)

    Kirlin, Peter S.

    1992-04-01

    High quality YBaCuO and TlBaCaCuO thin films were deposited on MgO, LaAlO3 and Ag substrates by standard thermal and plasma enhanced MOCVD. The growth was done in inverted vertical reactors designed to achieve stagnation point flow and extremely uniform deposition rates were achieved (±0.5%) over large areas (5 cm2). The films were characterized by SEM-EDX, x-ray diffraction, four point probe, critical current density, dynamic impedance, and surface resistance measurements. C-axis oriented films with resistive transitions (R≤0.1 μV/cm) exceeding 110 K and 85 K were routinely obtained for the Tl- and Y-based superconductors grown on single crystal substrates. The best films had inductive transition widths less than 1 K and critical current densities (ambient field) as high as 106 A/cm2 at 77 K. The surface resistance of the films was measured using a cavity end wall replacement method and values as low as 10 mΩ were observed at 78 K and 35 GHz on both LaAlO3 (100) and Ag substrates.

  3. Thin films, asphaltenes, and reservoir wettability

    SciTech Connect

    Kaminsky, R.; Bergeron, V.; Radke, C.J. |

    1993-04-01

    Reservoir wettability impacts the success of oil recovery by waterflooding and other methods. To understand wettability and its alteration, thin-film forces in solid-aqueous-oil systems must be elucidated. Upon rupture of thick aqueous films separating the oil and rock phases, asphaltene components in the crude oil adsorb irreversibly on the solid surface, changing it from water-wet to oil-wet. Conditions of wettability alteration can be found by performing adhesion tests, in which an oil droplet is brought into contact with a solid surface. Exceeding a critical capillary pressure destabilizes the film, causing spontaneous film rupture to a molecularly adsorbed layer and oil adhesion accompanied by pinning at the three-phase contact line. The authors conduct adhesion experiments similar to those of Buckley and Morrow and simultaneously examine the state of the underlying thin film using optical microscopy and microinterferometry. Aqueous thin films between an asphaltic Orcutt crude oil and glass surfaces are studied as a function of aqueous pH and salinity. For the first time, they prove experimentally that strongly water-wet to strongly oil-wet wettability alteration and contact-angle pinning occur when thick aqueous films thin to molecularly adsorbed films and when the oil phase contains asphaltene molecules.

  4. Bimodal swelling responses in microgel thin films.

    PubMed

    Sorrell, Courtney D; Lyon, L Andrew

    2007-04-26

    A series of studies on microgel thin films is described, wherein quartz crystal microgravimetry (QCM), surface plasmon resonance (SPR), and atomic force microscopy (AFM) have been used to probe the properties of microstructured polymer thin films as a function of film architecture and solution pH. Thin films composed of pNIPAm-co-AAc microgels were constructed by using spin-coating layer-by-layer (scLbL) assembly with poly(allylamine hydrochloride) (PAH) as a polycationic "glue". Our findings suggest that the interaction between the negatively charged microgels and the positively charged PAH has a significant impact on the pH responsivity of the film. These effects are observable in both the optical and mechanical behaviors of the films. The most significant changes in behavior are observed when the motional resistance of a quartz oscillator is monitored via QCM experiments. Slight changes to the film architecture and alternating the pH of the environment significantly changes the QCM and SPR responses, suggesting a pH-dependent swelling that is dependent on both particle swelling and polyelectrolyte de-complexation. Together, these studies allow for a deeper understanding of the morphological changes that take place in environmentally responsive microgel-based thin films. PMID:17407344

  5. Induced electronic anisotropy in bismuth thin films

    SciTech Connect

    Liao, Albert D.; Yao, Mengliang; Opeil, Cyril; Katmis, Ferhat; Moodera, Jagadeesh S.; Li, Mingda; Tang, Shuang; Dresselhaus, Mildred S.

    2014-08-11

    We use magneto-resistance measurements to investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Extraction of the mobility and the phase coherence length in both types of films indicates that carrier scattering is not responsible for the observed anisotropic conduction. Evidence from control experiments on antimony thin films suggests that the anisotropy is a result of bismuth's large electron effective mass anisotropy.

  6. Adhesion and friction of thin metal films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  7. Autophagy induction by silver nanowires: A new aspect in the biocompatibility assessment of nanocomposite thin films

    SciTech Connect

    Verma, Navin K.; Conroy, Jennifer; Lyons, Philip E.; Coleman, Jonathan; O'Sullivan, Mary P.; Kornfeld, Hardy; Kelleher, Dermot; Volkov, Yuri

    2012-11-01

    Nanomaterials and their enabled products have increasingly been attracting global attention due to their unique physicochemical properties. Among these emerging products, silver nanowire (AgNW)-based thin films are being developed for their promising applications in next generation nanoelectronics and nanodevices. However, serious concerns remain about possible health and safety risks they may pose. Here, we employed a multi-modal systematic biocompatibility assessment of thin films incorporating AgNW. To represent the possible routes of nanomaterial entry during occupational or environmental exposure, we employed four different cell lines of epithelial, endothelial, gastric, and phagocytic origin. Utilizing a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we observed a low level of cytotoxicity of AgNW, which was dependent on cell type, nanowire lengths, doses and incubation times. Similarly, no major cytotoxic effects were induced by AgNW-containing thin films, as detected by conventional cell viability and imaging assays. However, transmission electron microscopy and Western immunoblotting analysis revealed AgNW-induced autophasosome accumulation together with an upregulation of the autophagy marker protein LC3. Autophagy represents a crucial mechanism in maintaining cellular homeostasis, and our data for the first time demonstrate triggering of such mechanism by AgNW in human phagocytic cells. Finally, atomic force microscopy revealed significant changes in the topology of cells attaching and growing on these films as substrates. Our findings thus emphasize the necessity of comprehensive biohazard assessment of nanomaterials in modern applications and devices and a thorough analysis of risks associated with their possible contact with humans through occupational or environmental exposure. Highlights: ► Thin films containing nanomaterials are subject to increasing contact with humans. ► This

  8. Low temperature deposition of silver sulfide thin films by AACVD for gas sensor application

    NASA Astrophysics Data System (ADS)

    Hussain, Syed Tajammul; Bakar, Shahzad Abu; Saima, BiBi; Muhammad, Bakhtiar

    2012-10-01

    Crack free Ag2S thin films were deposited on glass substrates by aerosol assisted chemical vapor deposition (AACVD) using [Ag(S2CN (C2H5)2)3]2 (1) as a precursor. Thin films were deposited from solution of methanol at 400 °C and characterized by X-ray diffraction (XRD), UV-vis spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. SEM image of thin film showed well-defined and porous surface morphology with an average particle size of 0.3-0.5 μm. Optical band gaps energy of 1.33 eV was estimated for Ag2S thin film, by extrapolating the linear part of the Tauc plot recorded at room temperature. The gas sensing characteristics of the novel gas sensors based on Ag2S were investigated for the detection carbon monoxide. The effect of operating temperature and change in gas concentration on the performance of carbon monoxide were investigated. The sensing mechanism of sensor was discussed.

  9. Thin films of copper antimony sulfide: A photovoltaic absorber material

    SciTech Connect

    Ornelas-Acosta, R.E.; Shaji, S.; Avellaneda, D.; Castillo, G.A.; Das Roy, T.K.; Krishnan, B.

    2015-01-15

    Highlights: • CuSbS{sub 2} thin films were prepared by heating Sb{sub 2}S{sub 3}/Cu layers. • Analyzed the structure, composition, optical, and electrical properties. • PV structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag were formed at different conditions. • The PV parameters (J{sub sc}, V{sub oc}, and FF) were evaluated from the J–V characteristics. • J{sub sc}: 0.52–3.20 mA/cm{sup 2}, V{sub oc}:187–323 mV, FF: 0.27–0.48 were obtained. - Abstract: In this work, we report preparation and characterization of CuSbS{sub 2} thin films by heating glass/Sb{sub 2}S{sub 3}/Cu layers and their use as absorber material in photovoltaic structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag. The Sb{sub 2}S{sub 3} thin films of 600 nm were prepared by chemical bath deposition on which copper thin films of 50 nm were thermally evaporated, and the glass/Sb{sub 2}S{sub 3}/Cu multilayers were heated in vacuum at different temperatures. X-ray diffraction analysis showed the formation of orthorhombic CuSbS{sub 2} after heating the precursor layers. Studies on identification and chemical state of the elements were done using X-ray photoelectron spectroscopy. The optical band gap of the CuSbS{sub 2} thin films was 1.55 eV and the thin films were photoconductive. The photovoltaic parameters of the devices using CuSbS{sub 2} as absorber and CdS as window layer were evaluated from the J–V curves, yielding J{sub sc}, V{sub oc}, and FF values in the range of 0.52–3.20 mA/cm{sup 2}, 187–323 mV, and 0.27–0.48, respectively, under illumination of AM1.5 radiation.

  10. Surface plasmon enhanced photoluminescence in amorphous silicon carbide films by adjusting Ag island film sizes

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Wang, Xin-Zhan; Dai, Wan-Lei; Lu, Wan-Bing; Liu, Yu-Mei; Fu, Guang-Sheng

    2013-05-01

    Ag island films with different sizes are deposited on hydrogenated amorphous silicon carbide (α-SiC:H) films, and the influences of Ag island films on the optical properties of the α-SiC:H films are investigated. Atomic force microscope images show that Ag nanoislands are formed after Ag coating, and the size of the Ag islands increases with increasing Ag deposition time. The extinction spectra indicate that two resonance absorption peaks which correspond to out-of-plane and in-plane surface plasmon modes of the Ag island films are obtained, and the resonance peak shifts toward longer wavelength with increasing Ag island size. The photoluminescence (PL) enhancement or quenching depends on the size of Ag islands, and PL enhancement by 1.6 times on the main PL band is obtained when the sputtering time is 10 min. Analyses show that the influence of surface plasmons on the PL of α-SiC:H is determined by the competition between the scattering and absorption of Ag islands, and PL enhancement is obtained when scattering is the main interaction between the Ag islands and incident light.

  11. Flexible Thin Metal Film Thermal Sensing System

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald Laurence (Inventor)

    2012-01-01

    A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.

  12. Microcrystalline organic thin-film solar cells.

    PubMed

    Verreet, Bregt; Heremans, Paul; Stesmans, Andre; Rand, Barry P

    2013-10-11

    Microcrystalline organic films with tunable thickness are produced directly on an indium-tin-oxide substrate, by crystallizing a thin amorphous rubrene film followed by its use as a template for subsequent homoepitaxial growth. These films, with exciton diffusion lengths exceeding 200 nm, produce solar cells with increasing photocurrents at thicknesses up to 400 nm with a fill factor >65%, demonstrating significant potential for microcrystalline organic electronic devices. PMID:23939936

  13. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    SciTech Connect

    Ding, Guowen Clavero, César; Schweigert, Daniel; Le, Minh

    2015-11-15

    The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  14. Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island.

    PubMed

    Xu, Jinxia; Xiao, Xiangheng; Ren, Feng; Wu, Wei; Dai, Zhigao; Cai, Guangxu; Zhang, Shaofeng; Zhou, Juan; Mei, Fei; Jiang, Changzhong

    2012-01-01

    In order to overcome the low utilization ratio of solar light and high electron-hole pair recombination rate of TiO2, the triangular Ag nanoparticle island is covered on the surface of the TiO2 thin film. Enhancement of the photocatalytic activity of the Ag/TiO2 nanocomposite system is observed. The increase of electron-hole pair generation is caused by the enhanced near-field amplitudes of localized surface plasmon of the Ag nanoparticles. The efficiently suppressed recombination of electron-hole pair caused by the metal-semiconductor contact can also enhance the photocatalytic activity of the TiO2 film. PMID:22548875

  15. Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island

    PubMed Central

    2012-01-01

    In order to overcome the low utilization ratio of solar light and high electron-hole pair recombination rate of TiO2, the triangular Ag nanoparticle island is covered on the surface of the TiO2 thin film. Enhancement of the photocatalytic activity of the Ag/TiO2 nanocomposite system is observed. The increase of electron-hole pair generation is caused by the enhanced near-field amplitudes of localized surface plasmon of the Ag nanoparticles. The efficiently suppressed recombination of electron-hole pair caused by the metal-semiconductor contact can also enhance the photocatalytic activity of the TiO2 film. PMID:22548875

  16. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  17. Rupture Limit of Thin Moving Films

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Joseph, Daniel D.; Kim, Hyungjun

    2010-11-01

    The rupture of a thin film in another fluid is studied including the effects of disjoining pressure. The study considers the linear stability of a moving viscous film in a motionless inviscid fluid and of a stagnant viscous film in a motionless viscous fluid. These are analyzed by means of the Navier--Stokes equations and the dissipation approximation based on potential flow. Results reveal that the dissipation method provides a good approximation for the case of a moving film, whereas its predictions are off the mark for the stagnant film case. The thickness of the gap at the trough of Kelvin-Helmholtz waves locates the formation of holes. The wavelength at final collapse is determined by the length of waves at the trough of the corrugated film. The disjoining pressure effects cause very fast break-up for very thin films. These effects influence the cutoff wavenumber. In the limit of small gaps on this corrugated film, the Reynolds and Weber numbers tend to zero with the gap size, the Ohnesorge number increases like the reciprocal of the square root and the Hamaker number like the reciprocal of the square of the gap. The motion of the film does not enter at the point of formation of holes. Moreover, for the most unstable wave, the ratio of the wavelength to film thickness is found to decrease with decreasing film thickness.

  18. Holographic analysis of thin films

    NASA Technical Reports Server (NTRS)

    Norden, B. N.; Williams, J. R.

    1970-01-01

    Technique for monitoring deposition of films on surfaces, in place on a real-time basis, reads both the thickness and the uniformity of the deposited film. Holograms are produced from both reflected and transmitted light on one plate.

  19. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  20. Thin Ice Films at Mineral Surfaces.

    PubMed

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood. PMID:27377606

  1. Investigating Quantum Oscillations in the Thermal Coefficient of Resistivity of Ultra-thin Ag Capping Layers on Cu for IC Interconnect Applications

    NASA Astrophysics Data System (ADS)

    Tatem, Elroy

    As the semiconductor industry continues to scale feature sizes, scattering from phonons, surfaces, and grain boundaries result in an increase of metal interconnect resistivity in state-of-the-art integrated circuits (ICs). The interconnect chapter of the 2011 International Technology Roadmap for Semiconductors (ITRS) stated that there are currently no manufacturable solutions in the near term for suitable Cu replacements. Previous studies of thin Ag films deposited on Cu demonstrated oscillations in the electron-phonon interactions within the bilayer system. This thesis investigates oscillations in the resistive properties of the Ag/Cu bilayer system and discusses the applicability of these oscillations to the resistivity challenges facing metal-based IC interconnects. Ag/Cu bilayer films were prepared by physical vapor deposition (PVD). The films were characterized by measuring the electrical resistance of the films at various temperatures and calculating the thermal coefficient of resistance (TCR) for various Ag capping layer thicknesses. Films were further characterized by atomic force microscopy (AFM), Rutherford backscattering (RBS), and scanning electron microscopy (SEM). Patterned Ag-capped Cu lines were fabricated, which exhibited resistive behavior similar to that of the Ag/Cu films. Compared to bare Cu, the resistances of Ag-capped Cu lines and films were lower and exhibited a reduced dependence on temperature. Smaller thermal coefficients of resistivity were also observed for Ag-capped Cu films and patterned lines when compared to Cu alone.

  2. Characterization of silver photodiffusion in Ge{sub 8}Sb{sub 2}Te{sub 11} thin films

    SciTech Connect

    Kumar, Sandeep; Singh, D.; Sandhu, S.; Thangaraj, R.

    2015-06-24

    Silver-doped amorphous Ge{sub 8}Sb{sub 2}Te{sub 11} thin films have been prepared by photodiffusion at room-temperature; the Ge{sub 8}Sb{sub 2}Te{sub 11}/Ag bilayer was deposited by vacuum thermal evaporation. Photodiffusion of Ag into the amorphous Ge{sub 8}Sb{sub 2}Te{sub 11} thin films has been carried out by illuminating the prepared Ge{sub 8}Sb{sub 2}Te{sub 11}/Ag bilayer with halogen lamp. The photodiffused silver depth profile was traced by means of time of flight secondary ion mass spectroscopy. The film remains amorphous after Ag photodiffusion. The crystallization temperature of the films was evaluated by temperature dependent sheet resistance measurement. The amorphous nature and crystalline phases of the films have been identified by using X-ray diffraction.

  3. Coalescence and percolation in thin metal films

    SciTech Connect

    Yu, X.; Duxbury, P.M.; Jeffers, G.; Dubson, M.A. Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824-1116 )

    1991-12-15

    Metals thermally evaporated onto warm insulating substrates evolve to the thin-film state via the morphological sequence: compact islands, elongated islands, percolation, hole filling, and finally the thin-film state. The coverage at which the metal percolates ({ital p}{sub {ital c}}) is often considerably higher than that predicted by percolation models, such as inverse swiss cheese or lattice percolation. Using a simple continuum model, we show that high-{ital p}{sub {ital c}}'s arise naturally in thin films that exhibit a crossover from full coalescence of islands at early stages of growth to partial coalescence at later stages. In this interrupted-coalescence model, full coalescence of islands occurs up to a critical island radius {ital R}{sub {ital c}}, after which islands overlap, but do not fully coalesce. We present the morphology of films and the critical area coverages generated by this model.

  4. Magnetoelectric thin film composites with interdigital electrodes

    NASA Astrophysics Data System (ADS)

    Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J. L.; Gerken, M.; Knöchel, R.; Quandt, E.

    2013-07-01

    Magnetoelectric (ME) thin film composites on silicon cantilevers are fabricated using Pb(Zr0.52Ti0.45)O3 (PZT) films with interdigital transducer electrodes on the top side and FeCoSiB amorphous magnetostrictive thin films on the backside. These composites without any direct interface between the piezoelectric and magnetostrictive phase are superior to conventional plate capacitor-type thin film ME composites. A limit of detection of 2.6 pT/Hz1/2 at the mechanical resonance is determined which corresponds to an improvement of a factor of approximately 2.8 compared to the best plate type sensor using AlN as the piezoelectric phase and even a factor of approximately 4 for a PZT plate capacitor.

  5. Simulated Thin-Film Growth and Imaging

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  6. Tungsten-doped thin film materials

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  7. Method for making thin polypropylene film

    DOEpatents

    Behymer, R.D.; Scholten, J.A.

    1985-11-21

    An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.

  8. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  9. Highly stretchable and conductive silver nanowire thin films formed by soldering nanomesh junctions.

    PubMed

    Chen, Shih-Pin; Liao, Ying-Chih

    2014-10-01

    Silver nanowires (AgNWs) have been widely used for stretchable and foldable conductors due to their percolating network nanostructure. To enhance the mechanical strength of AgNW thin films under extreme stretching conditions, in this study, we utilize a simple chemical reaction to join AgNW network connections. Upon applying a reactive ink over AgNW thin films, silver nanoparticles are preferentially generated over the nanowire junctions and solder the nanomesh structures. The soldered nanostructure reinforces the conducting network and exhibits no obvious change in electrical conductivity in the stretching or rolling process with elongation strains up to 120%. Several examples are also demonstrated to show potential applications of this material in stretchable electronic devices. PMID:25139194

  10. Microscale damping using thin film active materials

    NASA Astrophysics Data System (ADS)

    Kerrigan, Catherine A.; Ho, Ken K.; Mohanchandra, K. P.; Carman, Gregory P.

    2007-04-01

    This paper focuses on understanding and developing a new approach to dampen MEMS structures using both experiments and analytical techniques. Thin film Nitinol and thin film Terfenol-D are evaluated as a damping solution to the micro scale damping problem. Stress induced twin boundary motion in Nitinol is used to passively dampen potentially damaging vibrations. Magnetic domain wall motion is used to passively dampen vibration in Terfenol-D. The thin films of Nitinol, Nitinol/Silicon laminates and Nitinol/Terfenol-D/Nickel laminates have been produced using a sputter deposition process and damping properties have been evaluated. Dynamic testing shows substantial damping (tan δ) measurable in each case. Nitinol film samples were tested in the Differential Scanning Calorimetry (DSC) to determine phase transformation temperatures. The twin boundary mechanism by which energy absorption occurs is present at all points below the Austenite start temperature (approximately 69°C in our film) and therefore allows damping at cold temperatures where traditional materials fail. Thin film in the NiTi/Si laminate was found to produce substantially higher damping (tan δ = 0.28) due to the change in loading condition. The NiTi/Si laminate sample was tested in bending allowing the twin boundaries to be reset by cyclic tensile and compressive loads. The thin film Terfenol-D in the Nitinol/Terfenol-D/Nickel laminate was shown to produce large damping (tan δ = 0.2). In addition to fabricating and testing, an analytical model of a heterogeneous layered thin film damping material was developed and compared to experimental work.

  11. MOF thin films: existing and future applications.

    PubMed

    Shekhah, O; Liu, J; Fischer, R A; Wöll, Ch

    2011-02-01

    The applications and potentials of thin film coatings of metal-organic frameworks (MOFs) supported on various substrates are discussed in this critical review. Because the demand for fabricating such porous coatings is rather obvious, in the past years several synthesis schemes have been developed for the preparation of thin porous MOF films. Interestingly, although this is an emerging field seeing a rapid development a number of different applications on MOF films were either already demonstrated or have been proposed. This review focuses on the fabrication of continuous, thin porous films, either supported on solid substrates or as free-standing membranes. The availability of such two-dimensional types of porous coatings opened the door for a number of new perspectives for functionalizing surfaces. Also for the porous materials themselves, the availability of a solid support to which the MOF-films are rigidly (in a mechanical sense) anchored provides access to applications not available for the typical MOF powders with particle sizes of a few μm. We will also address some of the potential and applications of thin films in different fields like luminescence, QCM-based sensors, optoelectronics, gas separation and catalysis. A separate chapter has been devoted to the delamination of MOF thin films and discusses the potential to use them as free-standing membranes or as nano-containers. The review also demonstrates the possibility of using MOF thin films as model systems for detailed studies on MOF-related phenomena, e.g. adsorption and diffusion of small molecules into MOFs as well as the formation mechanism of MOFs (101 references).

  12. Effect of substrate temperature and film thickness on the characteristics of silver thin films deposited by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mashaiekhy, Jahanbakhsh; Shafieizadeh, Zahra; Nahidi, Hossein

    2012-11-01

    Silver (Ag) films were prepared by DC magnetron sputtering deposition at different substrate temperatures (25-450 °C) and film thicknesses (100-800 nm) and their morphological, optical, electrical and structural properties were investigated. Atomic force microscopy (AFM) was employed to study the surface topography of the thin films. The grain size as well as surface roughness of the films is strongly dependent on the temperature and the film thickness. X-ray diffraction experiments showed the intensity enhancement by increasing substrate temperature, also by increasing film thickness. The optical properties were determined by means of spectrophotometric analysis. It is found that the optical reflection is not affected significantly with substrate temperature and film thickness. The electrical resistivities of films were determined by four-point probe measurements. The experimental results indicate that the films with higher thickness and deposition temperature have the lowest resistivity.

  13. Formation processes of Bi-2212 films prepared on Ag( 0 0 1 ) substrate by an atomization technique

    NASA Astrophysics Data System (ADS)

    Su, Yanjing; Satoh, Yoshimasa; Arisawa, Shunichi; Takano, Yoshihiko; Ishii, Akira; Hatano, Takeshi; Togano, Kazumasa

    2002-08-01

    We have studied in detail the growth of Bi-2212 ribbon-like thin film by melting Bi-2212 powders dispersed on flat, sputter-deposited Ag(0 0 1) films with order of tens of nm root-mean-square surface roughness. The formation processes of Bi-2212 ribbon-like thin films were studied by in situ high-temperature microscope observations. Because the powders melt incongruently, the liquid phase disperses with residual solid phases on the substrate. The residual solid phases act as the barrier for the melting phase to diffuse. Nearly monophasic Bi-2212 with excellent c-axis orientation in these thin films, proved by X-ray diffraction results, is the result of shortened diffusion length of the liquid phase. These techniques can be used especially to synthesize high quality Bi-based superconducting thin films for intrinsic Josephson junction devices.

  14. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    SciTech Connect

    Ge, Jisheng

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  15. Mesoscopically structured nanocrystalline metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Carretero-Genevrier, Adrian; Drisko, Glenna L.; Grosso, David; Boissiere, Cédric; Sanchez, Clement

    2014-11-01

    This review describes the main successful strategies that are used to grow mesostructured nanocrystalline metal oxide and SiO2 films via deposition of sol-gel derived solutions. In addition to the typical physicochemical forces to be considered during crystallization, mesoporous thin films are also affected by the substrate-film relationship and the mesostructure. The substrate can influence the crystallization temperature and the obtained crystallographic orientation due to the interfacial energies and the lattice mismatch. The mesostructure can influence the crystallite orientation, and affects nucleation and growth behavior due to the wall thickness and pore curvature. Three main methods are presented and discussed: templated mesoporosity followed by thermally induced crystallization, mesostructuration of already crystallized metal oxide nanobuilding units and substrate-directed crystallization with an emphasis on very recent results concerning epitaxially grown piezoelectric structured α-quartz films via crystallization of amorphous structured SiO2 thin films.

  16. Dynamics of Polymer Thin Film Mixtures

    NASA Astrophysics Data System (ADS)

    Besancon, Brian M.; Green, Peter F.; Soles, Christopher L.

    2006-03-01

    We examined the influence of film thickness and composition on the glass transition temperature (Tg) and mean square atomic displacements (MSD) of thin film mixtures of deuterated polystyrene (dPS) and tetramethyl bisphenol-A polycarbonate (TMPC) on Si/SiOx substrates using incoherent elastic neutron scattering (ICNS). The onset of dissipative motions, such as those associated with the glass transition and sub-Tg relaxations, are manifested as ``kinks'' in the curve of elastic intensity (or MSD) versus temperature. From the relevant kinks, the Tg was determined as a function of composition and of film thickness. The dependence of the Tg on film thickness exhibited qualitatively similar trends, at a given composition, as determined by the ICNS and ellipsometry measurements. However, with increasing PS content, the values of Tg measured by INS were consistently larger then those measured by ellipsometry. These results are examined in light of existing models on the thin film glass transition and component blend dynamics.

  17. Electrochemical Analysis of Conducting Polymer Thin Films

    PubMed Central

    Vyas, Ritesh N.; Wang, Bin

    2010-01-01

    Polyelectrolyte multilayers built via the layer-by-layer (LbL) method has been one of the most promising systems in the field of materials science. Layered structures can be constructed by the adsorption of various polyelectrolyte species onto the surface of a solid or liquid material by means of electrostatic interaction. The thickness of the adsorbed layers can be tuned precisely in the nanometer range. Stable, semiconducting thin films are interesting research subjects. We use a conducting polymer, poly(p-phenylene vinylene) (PPV), in the preparation of a stable thin film via the LbL method. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to characterize the ionic conductivity of the PPV multilayer films. The ionic conductivity of the films has been found to be dependent on the polymerization temperature. The film conductivity can be fitted to a modified Randle’s circuit. The circuit equivalent calculations are performed to provide the diffusion coefficient values. PMID:20480052

  18. AC impedance analysis of polypyrrole thin films

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Martin, Charles R.

    1987-01-01

    The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.

  19. Mirrorlike pulsed laser deposited tungsten thin film

    SciTech Connect

    Mostako, A. T. T.; Khare, Alika; Rao, C. V. S.

    2011-01-15

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10{sup -5} Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness {approx}782 nm.

  20. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm. PMID:21280810

  1. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    PubMed

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement. PMID:26736028

  2. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    PubMed

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

  3. Thin film dielectric composite materials

    DOEpatents

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  4. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M. ); Schultz, J.A. ); Schmidt, H.K. ); Chang, R.P.H. . Dept. of Materials Science)

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 [Angstrom]), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 [Angstrom] of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films.

  5. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-11-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 {Angstrom}), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 {Angstrom} of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films.

  6. Thin film calorimetry of polymer films

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhua; Rafailovich, Miriam; Sokolov, Jonathan; Salamon, William

    2000-03-01

    Polystryene and polymethylmethacrylate films for thicknesses ranging from 50nm to 500nm using a direct calorimetric technique (Lai et al, App. Phys. Lett. 67, p9(1995)). Samples were deposited on Ni foils(2-2.5um) and placed in a high vacuum oven. Calibrated heat pulses were input to the polymer films by current pulses to the Ni substrate and temperature changes were determined from the change in Ni resistance. Pulses producing temperature jumps of 3-8K were used and signal averaging over pulses reduced noise levels enough to identify glass transitions down to 50nm. Molecular weight dependence of thick films Tg was used as a temperature calibration.

  7. Kinetic Monte Carlo Simulation of Epitaxial Thin Film Growth: Formation of Submonolayer Islands and Multilayer Mounds

    SciTech Connect

    Evans, J. W.; Thiel, P. A.; Li, Maozhi

    2007-06-14

    We consider homoepitaxy (or low-misfit heteroepitaxy) via vapor deposition or MBE under UHV conditions. Thin film growth is initiated by nucleation and growth of 2D islands in the submonolayer regime. For atoms subsequently deposited on top of islands, a step edge barrier often inhibits downward transport and produces kinetic roughening during multilayer growth. Such unstable growth is characterized by the formation of 3D mounds (multilayer stacks of 2D islands). Kinetic Monte Carlo (KMC) simulation of suitable atomistic lattice-gas models can address fundamental or general issues related to both submonolayer and multilayer film evolution, and can also provide a predictive tool for morphological evolution in specific systems. Examples of the successes of KMC modeling are provided for metal homoepitaxial film growth, specifically for contrasting behavior in the classic Ag/Ag(100) and Ag/Ag(111) systems.

  8. Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles

    PubMed Central

    Wang, Xinyu; Parrish, Kevin D.; Malen, Jonathan A.; Chan, Paddy K. L.

    2015-01-01

    Thermal properties of organic semiconductors play a significant role in the performance and lifetime of organic electronic devices, especially for scaled-up large area applications. Here we employ silver nanoparticles (Ag NPs) to modify the thermal conductivity of the small molecule organic semiconductor, dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT). The differential 3-ω method was used to measure the thermal conductivity of Ag-DNTT hybrid thin films. We find that the thermal conductivity of pure DNTT thin films do not vary with the deposition temperature over a range spanning 24 °C to 80 °C. The thermal conductivity of the Ag-DNTT hybrid thin film initially decreases and then increases when the Ag volume fraction increases from 0% to 32%. By applying the effective medium approximation to fit the experimental results of thermal conductivity, the extracted thermal boundary resistance of the Ag-DNTT interface is 1.14 ± 0.98 × 10−7 m2-K/W. Finite element simulations of thermal conductivity for realistic film morphologies show good agreement with experimental results and effective medium approximations. PMID:26531766

  9. Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles.

    PubMed

    Wang, Xinyu; Parrish, Kevin D; Malen, Jonathan A; Chan, Paddy K L

    2015-11-04

    Thermal properties of organic semiconductors play a significant role in the performance and lifetime of organic electronic devices, especially for scaled-up large area applications. Here we employ silver nanoparticles (Ag NPs) to modify the thermal conductivity of the small molecule organic semiconductor, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). The differential 3-ω method was used to measure the thermal conductivity of Ag-DNTT hybrid thin films. We find that the thermal conductivity of pure DNTT thin films do not vary with the deposition temperature over a range spanning 24 °C to 80 °C. The thermal conductivity of the Ag-DNTT hybrid thin film initially decreases and then increases when the Ag volume fraction increases from 0% to 32%. By applying the effective medium approximation to fit the experimental results of thermal conductivity, the extracted thermal boundary resistance of the Ag-DNTT interface is 1.14 ± 0.98 × 10(-7) m(2)-K/W. Finite element simulations of thermal conductivity for realistic film morphologies show good agreement with experimental results and effective medium approximations.

  10. Growth morphology of thin films on metallic and oxide surfaces.

    PubMed

    Krupski, Aleksander

    2014-02-01

    In this work we briefly review recent investigations concerning the growth morphology of thin metallic films on the Mo(110) and Ni3Al(111) surfaces, and Fe and copper phthalocyanine (C32H16N8Cu) on the Al2O3/Ni3Al(111) surface. Comparison of Ag, Au, Sn, and Pb growth on the Mo(110) surface has shown a number of similarities between these adsorption systems, except that surface alloy formation has only been observed in the case of Sn and Au. In the Pb/Mo(110) and Pb/Ni3Al(111) adsorption systems selective formation of uniform Pb island heights during metal thin film growth has been observed and interpreted in terms of quantum size effects. Furthermore, our studies showed that Al2O3 on Ni3Al(111) exhibits a large superstructure in which the unit cell has a commensurate relation with the substrate lattice. In addition, copper phthalocyanine chemisorbed weakly onto an ultra-thin Al2O3 film on Ni3Al(111) and showed a poor template effect of the Al2O3/Ni3Al(111) system. In the case of iron cluster growth on Al2O3/Ni3Al(111) the nucleation sites were independent of deposition temperature, yet the cluster shape showed a dependence. In this system, Fe clusters formed a regular hexagonal lattice on the Al2O3/Ni3Al(111). PMID:24445588

  11. Chitosan in nanostructured thin films.

    PubMed

    Pavinatto, Felippe J; Caseli, Luciano; Oliveira, Osvaldo N

    2010-08-01

    This review paper brings an overview of the use of chitosans in nanostructured films produced with the Langmuir-Blodgett (LB) or the electrostatic layer-by-layer (LbL) techniques, with emphasis on their possible applications. From a survey in the literature one may identify three main types of study with chitosan in nanostructured films. First, the interaction between chitosans and phospholipid Langmuir monolayers has been investigated for probing the mechanisms of chitosan action in their biological applications, with the monolayers serving as cell membrane models. In the second type, chitosan serves as a matrix for immobilization of biomolecules in LB as well as in LbL films, for which chitosan is suitable to help preserve the bioactivity of such biomolecules for long periods of time even in dry, solid films. An important application of these chitosan-containing films is in sensing and biosensing. The third type of study involves exploiting the mechanical and biocompatibility properties of chitosan in producing films with enhanced properties, for example, for tissue engineering. It is emphasized that chitosans have been proven excellent building blocks to produce films with controlled molecular architecture, allowing for synergy between distinct materials. We also discuss the prospects of the field, following a critical review of the latest developments in nanostructured chitosan films. PMID:20590156

  12. Method for synthesizing thin film electrodes

    DOEpatents

    Boyle, Timothy J.

    2007-03-13

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  13. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  14. Thin film ferroelectric electro-optic memory

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor); Thakoor, Anilkumar P. (Inventor)

    1993-01-01

    An electrically programmable, optically readable data or memory cell is configured from a thin film of ferroelectric material, such as PZT, sandwiched between a transparent top electrode and a bottom electrode. The output photoresponse, which may be a photocurrent or photo-emf, is a function of the product of the remanent polarization from a previously applied polarization voltage and the incident light intensity. The cell is useful for analog and digital data storage as well as opto-electric computing. The optical read operation is non-destructive of the remanent polarization. The cell provides a method for computing the product of stored data and incident optical data by applying an electrical signal to store data by polarizing the thin film ferroelectric material, and then applying an intensity modulated optical signal incident onto the thin film material to generate a photoresponse therein related to the product of the electrical and optical signals.

  15. Mesoscale morphologies in polymer thin films.

    SciTech Connect

    Ramanathan, M.; Darling, S. B.

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  16. Vibration welding system with thin film sensor

    DOEpatents

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  17. Thin film silicon photovoltaic module performance assessment

    NASA Astrophysics Data System (ADS)

    Jennings, Christina

    1987-06-01

    This report evaluates the performance through December, 1986 of 15 commercially-available thin film silicon-hydrogen alloy PV modules manufactured by ARCO Solar, Chronar, ECD/Sovonics, and Solarex. Advances in the technology are indicated by the performance improvements associated with each generation of thin film silicon-hydrogen alloy PV modules introduced to the commercial market. Mounted at a 30 degree tilt facing due south, all of the thin film PV modules under evaluation have experienced decreased efficiency and fill factor on initial sun exposure. Midday efficiency tends to be highest during the summer and lowest during the winter. The seasonal change in midday air mass from 1.0 during the summer to 1.4 during the winter is among the factors that counteract the temperature effects and cause lowered efficiency and fill factor values during the winter.

  18. Structural, morphological, electrical, and optical properties of silver thin films of varying thickness deposited on cupric oxide

    NASA Astrophysics Data System (ADS)

    Hajakbari, Fatemeh; Shafieinejad, Farzaneh

    2016-03-01

    In this investigation, silver (Ag) films of varying thickness (25-100 nm) were grown on cupric oxide (CuO) on silicon and quartz. The CuO preparation was carried out by the thermal oxidation annealing of copper (Cu) thin films deposited by DC magnetron sputtering. The physical properties of the prepared films were studied by different techniques. Rutherford backscattering spectroscopy (RBS) analysis indicated that the Ag film thickness was about 25-100 nm. X-ray diffraction (XRD) results showed that by increasing Ag thickness, the film crystallinity was improved. Also, atomic force microscopy (AFM) and scanning electron microscopy (SEM) results demonstrated that the surface morphology and the grain size were affected by the Ag film thickness. Furthermore, the electrical resistivity of films determined by four-point probe measurements versus the Ag film thickness was discussed. A reduction in the optical band gap energy of CuO is observed from 1.51 to 1.42 eV with an increase in Ag film thickness to 40 nm in Ag/CuO films.

  19. Thin film oxygen partial pressure sensor

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  20. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  1. Thin film photovoltaics -- Strategy of Eurec Agency

    SciTech Connect

    Bloss, W.H.

    1994-12-31

    European activities in the field of thin film photovoltaics are coordinated in a network by Eurec Agency (European Renewable Energy Centres Agency). Main emphasis lies in the development of an appropriate production technology of CIS and CdTe based photovoltaic modules in an industrial scale. These efforts are supported by a research program on relevant materials, structures and processes for thin film photovoltaics. Substantial progress has been achieved during the last years which opens new perspectives for future trends. Joint efforts in research and development based on CIS are coordinated by the network EUROCIS. A screening program on natural minerals with relevance to photovoltaic performance provides the basis for further strategic steps.

  2. Feasibility Study of Thin Film Thermocouple Piles

    NASA Technical Reports Server (NTRS)

    Sisk, R. C.

    2001-01-01

    Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.

  3. Micro-sensor thin-film anemometer

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)

    1996-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  4. Borocarbide thin films and tunneling measurements.

    SciTech Connect

    Iavarone, M.; Andreone, A.; Cassinese, A.; Dicapual, R.; giannil, L.; Vagliol, R.; DeWilde, Y.; Crabtree, G. W.

    2000-06-15

    The results obtained by their group in thin film fabrication and STM tunneling on superconducting borocarbides YNi{sub 2}B{sub 2}C have been be briefly reviewed. Results concerning the microwave surface impedance and the S/N planar junctions on LuNi{sub 2}B{sub 2}C thin films have been also presented and analyzed. These new data unambiguously confirm the full BCS nature of the superconducting gap in borocarbides and the absence of significant pair-breaking effects in LuNi{sub 2}B{sub 2}C.

  5. Dielectric breakdown in nano-porous thin films

    NASA Astrophysics Data System (ADS)

    Borja, Juan Pablo

    Unknown to most computer users and mobile device enthusiasts, we have finally entered into a critical age of chip manufacturing. January of 2014 marks the official start of the quest by the semiconductor industry to successfully integrate sub 14nm process technology nodes in accordance to the International Technology Roadmap for Semiconductors (ITRS). The manufacturing of nano-scale features represents a major bottleneck of its own. However, a bigger challenge lies in reliably isolating the massive chip interconnect network. The present work is aimed at generating a theoretical and experimental framework to predict dielectric breakdown for thin films used in computer chip components. Here, a set of experimental techniques are presented to assess and study dielectric failure in novel thin films. A theory of dielectric breakdown in thin nano-porous films is proposed to describe combined intrinsic and metal ion catalyzed failure. This theory draws on experimental evidence as well as fundamental concepts from mass and electronic charge transport. The drift of metal species was found to accelerate intrinsic dielectric failure. The solubility of metals species such as Cu was found to range from 7.0x1025 ions/m3 to 1.86x1026 ions/m3 in 7% porous SiCOH films. The diffusion coefficient for Cu species was found to span from 4.2x10-19 m2/s to 1.86x10-21 m2/s. Ramped voltage stress experiments were used to identify intrinsic failure from metal catalyzed failure. Intrinsic breakdown is defined when time to failure against applied field ramp rate results in ∂(ln(TTF))/∂(ln(R)) ≈ -1. Intrinsic failure was studied using Au. Here, ∂(ln(TTF))/∂(ln(R)) ≈ -0.95, which is an experimental best case scenario for intrinsic failure. Au is commonly reluctant to ionize which means that failure occurs in the absence of ionic species. Metal catalyzed failure was investigated using reactive electrodes such as Cu, and Ag. Here, trends for ∂(ln(TTF))/∂(ln(R)) significantly

  6. Perovskite thin films via atomic layer deposition.

    PubMed

    Sutherland, Brandon R; Hoogland, Sjoerd; Adachi, Michael M; Kanjanaboos, Pongsakorn; Wong, Chris T O; McDowell, Jeffrey J; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J; Sargent, Edward H

    2015-01-01

    A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3 NH3 PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm(-1) .

  7. Annealed CVD molybdenum thin film surface

    DOEpatents

    Carver, Gary E.; Seraphin, Bernhard O.

    1984-01-01

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  8. Superconducting thin films on potassium tantalate substrates

    DOEpatents

    Feenstra, Roeland; Boatner, Lynn A.

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  9. Stable freestanding thin films of pure water

    SciTech Connect

    Weon, B. M.; Je, J. H.; Hwu, Y.; Margaritondo, G.

    2008-03-10

    Obtaining water microstructures is very difficult because of low viscosity and high surface tension. We produced stable freestanding thin films of pure water by x-ray bombardment of small liquid volumes in capillary tubes. A detailed characterization with phase-contrast radiology demonstrated a lifetime beyond 1 h with no chemical stabilizer for micron-thickness films with half-millimeter-level diameter. This can be attributed to the interplay of two x-ray effects: water evaporation and surface charging.

  10. Dynamics of liquid films and thin jets

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1979-01-01

    The theory of liquid films and thin jets as one- and two-dimensional continuums is examined. The equations of motion have led to solutions for the characteristic speeds of wave propagation for the parameters characterizing the shape. The formal analogy with a compressible fluid indicates the possibility of shock wave generation in films and jets and the formal analogy to the theory of threads and membranes leads to the discovery of some new dynamic effects. The theory is illustrated by examples.

  11. Processing of thin SU-8 films

    NASA Astrophysics Data System (ADS)

    Keller, Stephan; Blagoi, Gabriela; Lillemose, Michael; Haefliger, Daniel; Boisen, Anja

    2008-12-01

    This paper summarizes the results of the process optimization for SU-8 films with thicknesses <=5 µm. The influence of soft-bake conditions, exposure dose and post-exposure-bake parameters on residual film stress, structural stability and lithographic resolution was investigated. Conventionally, the SU-8 is soft-baked after spin coating to remove the solvent. After the exposure, a post-exposure bake at a high temperature TPEB >= 90 °C is required to cross-link the resist. However, for thin SU-8 films this often results in cracking or delamination due to residual film stress. The approach of the process optimization is to keep a considerable amount of the solvent in the SU-8 before exposure to facilitate photo-acid diffusion and to increase the mobility of the monomers. The experiments demonstrate that a replacement of the soft-bake by a short solvent evaporation time at ambient temperature allows cross-linking of the thin SU-8 films even at a low TPEB = 50 °C. Fourier-transform infrared spectroscopy is used to confirm the increased cross-linking density. The low thermal stress due to the reduced TPEB and the improved structural stability result in crack-free structures and solve the issue of delamination. The knowledge of the influence of different processing parameters on the responses allows the design of optimized processes for thin SU-8 films depending on the specific application.

  12. Study of iron mononitride thin films

    SciTech Connect

    Tayal, Akhil Gupta, Mukul Phase, D. M. Reddy, V. R. Gupta, Ajay

    2014-04-24

    In this work we have studied the crystal structural and local ordering of iron and nitrogen in iron mononitride thin films prepared using dc magnetron sputtering at sputtering power of 100W and 500W. The films were sputtered using pure nitrogen to enhance the reactivity of nitrogen with iron. The x-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS) and soft x-ray absorption spectroscopy (SXAS) studies shows that the film crystallizes in ZnS-type crystal structure.

  13. Optical Thin Films Prepared by Ion-Assisted and Ultrasound-Assisted Deposition.

    NASA Astrophysics Data System (ADS)

    Hwangbo, Chang Kwon

    Optical, electrical, and microstructural effects of Ar ion bombardment and Ar incorporation on thermally evaporated Ag and Al thin films were investigated. The results show that as the momentum supplied to the growing films by the bombarding Ar ions per arriving metal atom increases, refractive index at 632.8 nm increases and extinction coefficient decreases, lattice spacing expands, grain size decreases, electrical resistivity increases, and trapped Ar increases slightly. The reversal of stress from tensile to compressive in Ag films requires a threshold level of momentum. The increase in electrical resistivity is related to the increase in the void fraction, decrease in the grain size, and increase in trapped Ar in both types of films. Many of these properties correlate well with the momentum transferred, suggesting that the momentum is an important physical parameter in describing the influence of ion beams on growing thin films and determining the characteristics of thin metal films prepared by ion-assisted deposition (IAD). With a low energy ion beam, the Ar concentration in IAD Ag films was negligible. When the bombarded film thickness was less than 5 nm, the electrical resistivity of IAD Ag films tended to decrease slightly from that of the non-IAD film. Using the Bruggeman effective medium theory, a formula for the void fraction at any given wavelength was derived. We investigated optical properties, stoichiometry, chemical bonding states, and structure of aluminum oxynitride thin films prepared by reactive ion-assisted deposition. Variations of optical constants and chemical bonding states are related to the stoichiometry. We found that our amorphous aluminum oxynitride film is not simply a mixture of aluminum oxide and nitride but a compound. A rugate filter using a step -index profile of aluminum oxynitride films was fabricated by nitrogen ion beam bombardment of a growing Al film with backfilled oxygen pressure as the sole variable. The effects of

  14. Electrodeposited CuInSe{sub 2} thin film devices

    SciTech Connect

    Raffaelle, R.P.; Mantovani, J.G.; Friedfeld, R.B.; Bailey, S.G.; Hubbard, S.M.

    1997-12-31

    The authors have been investigating the electrochemical deposition of thin films and junctions based on copper indium diselenide (CIS). CIS is considered to be one of the best absorber materials for use in polycrystalline thin film photovoltaic solar cells. Electrodeposition is a simple and inexpensive method for producing thin-film CIS. The authors have produced both p and n type CIS thin films, as well as a CIS pn junction electrodeposited from a single aqueous solution. Optical bandgaps were determined for these thin films using transmission spectroscopy. Current versus voltage characteristics were measured for Schottky barriers on the individual films and for the pn junction.

  15. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels

    PubMed Central

    Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki

    2016-01-01

    We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30–70 Ohm/square), optical transmittance values (89–90%), and haze (0.5–1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle. PMID:27677410

  16. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    SciTech Connect

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  17. Ternary compound thin film solar cells

    NASA Technical Reports Server (NTRS)

    Kazmerski, L. L.

    1975-01-01

    A group of ternary compound semiconductor (I-III-VI2) thin films for future applications in photovoltaic devices is proposed. The consideration of these materials (CuInSe2, CuInTe2 and especially CuInS2) for long range device development is emphasized. Much of the activity to date has been concerned with the growth and properties of CuInX2 films. X-ray and electron diffraction analyses, Hall mobility and coefficient, resistivity and carrier concentration variations with substrate and film temperature as well as grain size data have been determined. Both p- and n-type films of CuInS2 and CuInSe2 have been produced. Single and double source deposition techniques have been utilized. Some data have been recorded for annealed films.

  18. Rim instability of bursting thin smectic films

    NASA Astrophysics Data System (ADS)

    Trittel, Torsten; John, Thomas; Tsuji, Kinko; Stannarius, Ralf

    2013-05-01

    The rupture of thin smectic bubbles is studied by means of high speed video imaging. Bubbles of centimeter diameter and film thicknesses in the nanometer range are pierced, and the instabilities of the moving rim around the opening hole are described. Scaling laws describe the relation between film thickness and features of the filamentation process of the rim. A flapping motion of the retracting smectic film is assumed as the origin of the observed filamentation instability. A comparison with similar phenomena in soap bubbles is made. The present experiments extend studies on soap films [H. Lhuissier and E. Villermaux, Phys. Rev. Lett. 103, 054501 (2009), 10.1103/PhysRevLett.103.054501] to much thinner, uniform films of thermotropic liquid crystals.

  19. Organic thin films based sensor applications

    NASA Astrophysics Data System (ADS)

    Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2006-03-01

    Organic semiconductors, such as pentacene, are particularly interesting because of its potential for various applications including thin film transistors (TFTs), electronic papers, radio frequency identification cards (RFIDs), and sensors. In this paper, we review recent progress in organic electronics with emphasis on their applications for sensing devices, and investigate the morphologies of pentacene films deposited on SiO II and Si surfaces at different substrate temperatures. Scanning electron microcopy (SEM) micrographs from a nominally 50nm-thick pentacene film on SiO II indicate that the grain sizes of pentacene film increase with an increase in substrate temperature. In addition, the grain size on clean silicon grown at a substrate temperature of 100 degrees C is markedly larger that on SiO II, ranging 10~20μm. Based on this morphological investigation on pentacene films, various types of organic sensors and devices with conjunction with interdigitated, gated and ungated structures are presented.

  20. Scanning capacitance microscopy for thin film measurements

    NASA Astrophysics Data System (ADS)

    Lee, D. T.; Pelz, J. P.; Bhushan, Bharat

    2006-03-01

    We have used direct, low-frequency scanning capacitance microscopy measurements to characterize variations in thin, dielectric films with up to 1 nm thickness and ~200 nm lateral resolution. This technique may be used on metallic as well as semiconducting substrates because it does not rely upon d C/d V measurements. We also find that the sensitivity of capacitance to film thickness can be enhanced by an aqueous meniscus that typically forms between the atomic force microscope tip and the sample surface. Further, we quantified the nanometre-scale capacitance of the tip-meniscus-sample system that is sensitive to variations in film thickness by making simultaneous capacitance and cantilever deflection measurements. This capacitance is used along with an average film thickness to quantify variations in film thickness.

  1. Flexoelectricity in barium strontium titanate thin film

    SciTech Connect

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning; Shu, Longlong; Maria, Jon-Paul

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  2. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  3. Semiconductor cooling by thin-film thermocouples

    NASA Technical Reports Server (NTRS)

    Tick, P. A.; Vilcans, J.

    1970-01-01

    Thin-film, metal alloy thermocouple junctions do not rectify, change circuit impedance only slightly, and require very little increase in space. Although they are less efficient cooling devices than semiconductor junctions, they may be applied to assist conventional cooling techniques for electronic devices.

  4. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  5. US polycrystalline thin film solar cells program

    SciTech Connect

    Ullal, H S; Zweibel, K; Mitchell, R L

    1989-11-01

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

  6. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  7. UV absorption control of thin film growth

    DOEpatents

    Biefeld, Robert M.; Hebner, Gregory A.; Killeen, Kevin P.; Zuhoski, Steven P.

    1991-01-01

    A system for monitoring and controlling the rate of growth of thin films in an atmosphere of reactant gases measures the UV absorbance of the atmosphere and calculates the partial pressure of the gases. The flow of reactant gases is controlled in response to the partial pressure.

  8. Growth induced magnetic anisotropy in crystalline and amorphous thin films

    SciTech Connect

    Hellman, F.

    1998-07-20

    The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and Ni-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials. A brief summary of work done in each area is given.

  9. Coupling of radiation into thin film modes by means of localized plasma resonances

    NASA Technical Reports Server (NTRS)

    Holland, W. R.; Hall, D. G.

    1983-01-01

    The interaction between the surface plasmon mode that propagates at a metal dielectric interface and the localized plasma resonances (LPR) is investigated experimentally in Ag-island films. A stair-stepped sample geometry comprising a glass substrate, a continuous 50-nm Ag film, an LiF spacer film of thickness d = 5-60 nm, and an Ag-island film of mass thickness 3 nm is used in near-normal-reflectivity and plasmon-propagation-constant (k) determinations. The results are presented graphically and discussed. The overall shape of the reflectivity curves is found to be characteristic of Ag films, but with a dip at about 400 nm (corresponding to the absorption resonance of the island film) which is most pronounced with d = 25 nm. It is inferred that the island resonances are strongly coupled to a continuous-film dissipative mechanism at this d value. This inference is supported by the fact that the variation in k, correctd for LiF effects and plotted as a function of d, is greatest at around d = 25 nm. The implications of this finding for broad-band coupling into a thin-film mode, LPR enhancement of waveguide nonlinear effects, and new surface-enhanced-Raman-scattering geometries are indicated.

  10. Thin film preparation of semiconducting iron pyrite

    NASA Astrophysics Data System (ADS)

    Smestad, Greg P.; Ennaoui, Ahmed; Fiechter, Sebastian; Hofmann, Wolfgang; Tributsch, Helmut; Kautek, Wolfgang

    1990-08-01

    Pyrite (Fe52) has been investigated as a promising new absorber material for thin film solar cell applications because of its high optical absorption coefficient of 1OL cm1, and its bandgap of 0.9 to 1.0 eV. Thin layers have been prepared by Metal Organic Chemical Vapor Deposition, MOCVD, Chemical Spray Pyrolysis, CSP, Chemical Vapor Transport, CVT, and Sulfurization of Iron Oxide films, 510. It is postulated that for the material FeS2, if x is not zero, a high point defect concentration results from replacing 2 dipoles by single S atoms. This causes the observed photovoltages and solar conversion efficiencies to be lower than expected. Using the Fe-O-S ternary phase diagram and the related activity plots, a thermodynamic understanding is formulated for the resulting composition of each of these types of films. It is found that by operating in the oxide portion of the phase diagram, the resulting oxidation state favors pyrite formation over FeS. By proper orientation of the grains relative to the film surface, and by control of pinholes and stoichiometry, an efficient thin film photovolatic solar cell material could be achieved.

  11. Deuterium storage in nanocrystalline magnesium thin films

    NASA Astrophysics Data System (ADS)

    Checchetto, R.; Bazzanella, N.; Miotello, A.; Brusa, R. S.; Zecca, A.; Mengucci, A.

    2004-02-01

    Nanocrystalline magnesium deuteride thin films with the β-MgD2 structure were prepared by vacuum evaporation of hexagonal magnesium (h-Mg) samples and thermal annealing in 0.15 MPa D2 atmosphere at 373 K. Thermal desorption spectroscopy analysis indicated that the rate-limiting step in the deuterium desorption was given by the thermal decomposition of the deuteride phase. The activation energy Δg of the β-MgD2→h-Mg+D2 reaction scaled from 1.13±0.03 eV in 650-nm-thick films to 1.01±0.02 eV in 75-nm-thick films most likely as consequence of different stress and defect level. Positron annihilation spectroscopy analysis of the thin-film samples submitted to deuterium absorption and desorption cycles reveal the presence of a high concentration of void-like defects in the h-Mg layers after the very first decomposition of the β-MgD2 phase, the presence of these open volume defects reduces the D2 absorption capacity of the h-Mg thin film.

  12. MISSE 5 Thin Films Space Exposure Experiment

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.; Jones, James L.

    2007-01-01

    The Materials International Space Station Experiment (MISSE) is a set of space exposure experiments using the International Space Station (ISS) as the flight platform. MISSE 5 is a co-operative endeavor by NASA-LaRC, United Stated Naval Academy, Naval Center for Space Technology (NCST), NASA-GRC, NASA-MSFC, Boeing, AZ Technology, MURE, and Team Cooperative. The primary experiment is performance measurement and monitoring of high performance solar cells for U.S. Navy research and development. A secondary experiment is the telemetry of this data to ground stations. A third experiment is the measurement of low-Earth-orbit (LEO) low-Sun-exposure space effects on thin film materials. Thin films can provide extremely efficacious thermal control, designation, and propulsion functions in space to name a few applications. Solar ultraviolet radiation and atomic oxygen are major degradation mechanisms in LEO. This paper is an engineering report of the MISSE 5 thm films 13 months space exposure experiment.

  13. Electrolyte and Electrode Passivation for Thin Film Batteries

    NASA Technical Reports Server (NTRS)

    West, W.; Whitacre, J.; Ratnakumar, B.; Brandon, E.; Blosiu, J.; Surampudi, S.

    2000-01-01

    Passivation films for thin film batteries have been prepared and the conductivity and voltage stability window have been measured. Thin films of Li2CO3 have a large voltage stability window of 4.8V, which facilitates the use of this film as a passivation at both the lithium anode-electrolyte interface at high cathodic potentials.

  14. Thin blend films of cellulose and polyacrylonitrile

    NASA Astrophysics Data System (ADS)

    Lu, Rui; Zhang, Xin; Mao, Yimin; Briber, Robert; Wang, Howard

    Cellulose is the most abundant renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. To further expand the potential applications of cellulose materials, their alloying with synthetic polymers has been investigated. In this study, thin films of cotton linter cellulose (CLC) and polyacrylonitrile (PAN) blends with various compositions spanning the entire range from neat CLC to neat PAN were spun cast on silicon wafers from common solutions in dimethyl sulfoxide / ionic liquid mixtures. The morphologies of thin films were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray reflectivity. Morphologies of as-cast films are highly sensitive to the film preparation conditions; they vary from featureless smooth films to self-organized ordered nano-patterns to hierarchical structures spanning over multiple length scales from nanometers to tens of microns. By selectively removing the PAN-rich phase, the structures of blend films were studied to gain insights in their very high stability in hot water, acid and salt solutions.

  15. Electroanalysis of tetracycline using nickel-implanted boron-doped diamond thin film electrode applied to flow injection system.

    PubMed

    Treetepvijit, Surudee; Chuanuwatanakul, Suchada; Einaga, Yasuaki; Sato, Rika; Chailapakult, Orawon

    2005-05-01

    The electrochemical analysis of tetracycline was investigated using nickel-implanted boron-doped diamond thin film electrode by cyclic voltammetry and amperometry with a flow injection system. Cyclic voltammetry was used to study the electrochemical oxidation of tetracycline. Comparison experiments were carried out using as-deposited boron-doped diamond thin film electrode (BDD). Nickel-implanted boron-doped diamond thin film electrode (Ni-DIA) provided well-resolved oxidation irreversible cyclic voltammograms. The current signals were higher than those obtained using the as-deposited BDD electrode. Results using nickel-implanted boron-doped diamond thin film electrode in flow injection system coupled with amperometric detection are presented. The optimum potential for tetracycline was 1.55 V versus Ag/AgCl. The linear range of 1.0 to 100 microM and the detection limit of 10 nM were obtained. In addition, the application for drug formulation was also investigated.

  16. Electrical properties of thin-film structures formed by pulsed laser deposition of Au, Ag, Cu, Pd, Pt, W, Zr metals on n-6H-SiC crystal

    SciTech Connect

    Romanov, R. I.; Zuev, V. V.; Fominskii, V. Yu. Demin, M. V.; Grigoriev, V. V.

    2010-09-15

    Diode structures with ideality factors of 1.28-2.14 and potential barriers from 0.58 to 0.62 eV on the semiconductor side were formed by pulsed laser deposition of Au, Ag, Cu, Pd, Pt, W, and Zr metal films on n-6H-SiC crystal without epitaxial layer preparation. A high density of surface acceptor and donor states was formed at the metal-semiconductor interface during deposition of the laser-induced atomic flux, which violated the correlation between the potential barrier height and metal work function. The barrier heights determined from characteristic currents and capacitance measurements were in quite good agreement. For the used low-resistance semiconductor and contact elements, the sizes of majority carrier (electron) depletion regions were determined as 26-60 nm.

  17. Thin film diamond microstructure applications

    NASA Technical Reports Server (NTRS)

    Roppel, T.; Ellis, C.; Ramesham, R.; Jaworske, D.; Baginski, M. E.; Lee, S. Y.

    1991-01-01

    Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.

  18. Gamma radiation induced effects in floppy and rigid Ge-containing chalcogenide thin films

    SciTech Connect

    Ailavajhala, Mahesh S.; Mitkova, Maria; Gonzalez-Velo, Yago; Barnaby, Hugh; Kozicki, Michael N.; Holbert, Keith; Poweleit, Christian; Butt, Darryl P.

    2014-01-28

    We explore the radiation induced effects in thin films from the Ge-Se to Ge-Te systems accompanied with silver radiation induced diffusion within these films, emphasizing two distinctive compositional representatives from both systems containing a high concentration of chalcogen or high concentration of Ge. The studies are conducted on blanket chalcogenide films or on device structures containing also a silver source. Data about the electrical conductivity as a function of the radiation dose were collected and discussed based on material characterization analysis. Raman Spectroscopy, X-ray Diffraction Spectroscopy, and Energy Dispersive X-ray Spectroscopy provided us with data about the structure, structural changes occurring as a result of radiation, molecular formations after Ag diffusion into the chalcogenide films, Ag lateral diffusion as a function of radiation and the level of oxidation of the studied films. Analysis of the electrical testing suggests application possibilities of the studied devices for radiation sensing for various conditions.

  19. Electrical and optical characterization of metal oxide/metal/polymer multilayer thin films

    NASA Astrophysics Data System (ADS)

    Fryc, Irena

    1998-01-01

    A new procedure for depositing three-layer structures [doped metal oxide/metal/metal oxide (In2O3/Ag/TiO2)] on a glass substrate by applying different methods of film deposition was developed. To obtain the first film -- In2O3:Sn, the spray hydrolysis method was employed and for the second, a thin Ag film, the vacuum evaporation technique was used. The third film -- TiO2 was obtained by the organic oxide compound polymerization method. The electrical and optical properties of the films and the multilayer structure thus obtained were investigated. The studies showed that the three-layer structure could be used as a broad-band infrared filter.

  20. Predictive Models for Nanostructure Evolution during Epitaxial Thin Film Growth

    NASA Astrophysics Data System (ADS)

    Evans, Jim

    2004-03-01

    We describe the development of a realistic atomistic lattice-gas (LG) model for multilayer homoepitaxial growth of metal(100) films at higher deposition temperatures (T). The model is tailored to incorporate the essential physical processes underlying growth, and is thus efficiently simulated using KMC [1]. It is shown to reliably predict film morphologies up to 1000's layers for a broad range of deposition conditions (T, flux), in fact revealing quite unexpected behavior. Specifically, we consider the Ag/Ag(100) system - the perceived prototype for smooth quasi-layer-by-layer growth at higher T. We predict the formation of mounds (multilayer stacks of islands) above 150K due to a small non-uniform step edge barrier. Initial growth at 300K is indeed smooth, but subsequent growth is actually extremely rough, corresponding to prolonged mound steepening. Thin films grow rougher at lower T down to 200K, but thick films grow smoother. Experiments confirm these surprising predictions [1,2]. We also find that long-time mound dynamics is quite distinct from predictions of standard continuum theories. For Ag/Ag(100) growth below 150K in the absence of terrace diffusion, one finds self-affine growth of films containing bulk vacancies [3], the latter feature being confirmed by X-ray scattering studies [4]. This regime can be modeled by accelerated MD [5], generic self-teaching KMC [6], or tailored LG models (distinct from the above model for higher T) [3,7]. Using the latter, we identify the key processes controlling morphology from 0-150K as capture of deposited atoms on the sides of nanoprotrusions, and the activation of low-barrier interlayer thermal diffusion processes. [1] Caspersen et al. PRB 65 (2002) 193407. [2] Elliott et al. PRB 54 (1996) 17938. [3] Stoldt et al. PRL 85 (2000) 800. [4] Botez et al. PRB 66 (2002) 075418. [5] Montalenti et al. PRL 87 (2001) 126101. [6] Henkelman et al. PRL 90 (2003) 116101. [7] Caspersen et al. PRB 64 (2001) 075401.

  1. Doping in zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Yang, Zheng

    Doping in zinc oxide (ZnO) thin films is discussed in this dissertation. The optimizations of undoped ZnO thin film growth using molecular-beam epitaxy (MBE) are discussed. The effect of the oxygen ECR plasma power on the growth rate, structural, electrical, and optical properties of the ZnO thin films were studied. It was found that larger ECR power leads to higher growth rate, better crystallinity, lower electron carrier concentration, larger resistivity, and smaller density of non-radiative luminescence centers in the ZnO thin films. Low-temperature photoluminescence (PL) measurements were carried out in undoped and Ga-doped ZnO thin films grown by molecular-beam epitaxy. As the carrier concentration increases from 1.8 x 1018 to 1.8 x 1020 cm-3, the dominant PL line at 9 K changes from I1 (3.368--3.371 eV), to IDA (3.317--3.321 eV), and finally to I8 (3.359 eV). The dominance of I1, due to ionized-donor bound excitons, is unexpected in n-type samples, but is shown to be consistent with the temperature-dependent Hall fitting results. We also show that IDA has characteristics of a donor-acceptor-pair transition, and use a detailed, quantitative analysis to argue that it arises from GaZn donors paired with Zn-vacancy (VZn) acceptors. In this analysis, the GaZn0/+ energy is well-known from two-electron satellite transitions, and the VZn0/- energy is taken from a recent theoretical calculation. Typical behaviors of Sb-doped p-type ZnO are presented. The Sb doping mechanisms and preference in ZnO are discussed. Diluted magnetic semiconducting ZnO:Co thin films with above room-temperature TC were prepared. Transmission electron microscopy and x-ray diffraction studies indicate the ZnO:Co thin films are free of secondary phases. The magnetization of the ZnO:Co thin films shows a free electron carrier concentration dependence, which increases dramatically when the free electron carrier concentration exceeds ˜1019 cm -3, indicating a carrier-mediated mechanism for

  2. Numerical simulations of thin film thermal flow

    NASA Astrophysics Data System (ADS)

    Liao, Hung; Cale, Timothy S.

    1994-12-01

    The thin film thermal flow process in long trenches is analyzed using a simulator which solves the equations which govern viscous, incompressible fluid flow. The total thermal baking process is divided into small time steps. At each time step, we solve the governing equations using the penalty function formulation and the Galerkin finite element method to obtain local velocity vectors. The free surface of the flowing film is updated according to these local velocity vectors. As an example application, we simulate the flow of boron and phosphorus doped silicon dioxide glass films in 2 micrometer high by 2 micrometer wide, infinitely long trenches, for which two-dimensional profile evolution is appropriate. The simulated film profiles show that the local leveling rate of a film is a sensitive function of surface curvature. The simulation program predicts that lower viscosity and thicker films have superior planarization properties compared with higher viscosity and thinner films. These trends are in agreement with empirical observations and previous modeling and simulation work on glass film planarization processes.

  3. Flame Synthesized Single Crystal Nanocolumn-Structured WO3 Thin Films for Photoelectrochemical Water Splitting.

    PubMed

    Ding, Jin-Rui; Kim, Kyo-Seon

    2016-02-01

    Tungsten oxide thin films have been found as an active visible light driven photoanode material for photoelectrochemical water splitting due to its good stability in aqueous solution and energetically favorable valence band position for water oxidation. Morphology control, which determines the performance of WO3 photoanode, is one of most focuses of recent research interests. In this work, we successfully prepared monoclinic WO3 thin films on ITO glass at low range of substrate temperature with a fabrication rate around 100 nm per minute by using aerosol flame deposition process. Single crystal nanocolumns with both triangular pyramid-like and triangular prism-like structure were obtained at certain process conditions. Photoelectrochemical properties of photoelectrodes assembled with both structured WO3 thin films were investigated. The prism-like nanocolumn-structured thin film generated the current density of 1.58 mAcm(-2) at potential of 1.0 V versus Ag/AgCl in 0.5 M H2SO4 solution under illumination of AM 1.5 simulated solar light (100 mVcm(-2)). It presented superior photoelectrochemical performance to pyramid-like nanocolumn-structured WO3 thin film. PMID:27433624

  4. Thin film bismuth iron oxides useful for piezoelectric devices

    DOEpatents

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  5. Herringbone and triangular patterns of dislocations in Ag, Au, and AgAu alloy films on Ru(0001).

    SciTech Connect

    Thayer, Gayle Echo; de la Figuera, Juan; Bartelt, Norman Charles; Carter, C. Barrington; Hwang, R. Q.; Thurmer, Konrad; Ling, W. L.; Hamilton, John C.; McCarty, Kevin F.

    2008-10-01

    We have studied the dislocation structures that occur in films of Ag, Au, and Ag{sub 0.5}Au{sub 0.5} alloy on a Ru(0001) substrate. Monolayer (ML) films form herringbone phases while films two or more layers thick contain triangular patterns of dislocations. We use scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) to determine how the film composition affects the structure and periodicity of these ordered structures. One layer of Ag forms two different herringbone phases depending on the exact Ag coverage and temperature. Low-energy electron microscopy (LEEM) establishes that a reversible, first-order phase transition occurs between these two phases at a certain temperature. We critically compare our 1 ML Ag structures to conflicting results from an X-ray scattering study [H. Zajonz et al., Phys. Rev. B 67 (2003) 155417]. Unlike Ag, the herringbone phases of Au and AgAu alloy are independent of the exact film coverage. For two layer films in all three systems, none of the dislocations in the triangular networks thread into the second film layer. In all three systems, the in-plane atomic spacing of the second film layer is nearly the same as in the bulk. Film composition does, however, affect the details of the two layer structures. Ag and Au films form interconnected networks of dislocations, which we refer to as 'trigons.' In 2 ML AgAu alloy, the dislocations form a different triangular network that shares features of both trigon and moire structures. Yet another well-ordered structure, with square symmetry, forms at the boundaries of translational trigon domains in 2 ML Ag films but not in Au films.

  6. Ferroelectric Thin Films for Electronic Applications

    NASA Astrophysics Data System (ADS)

    Udayakumar, K. R.

    This study yokes together the feasibility of a family of PbO-based perovskite-structured ferroelectric thin films as functional elements in nonvolatile random access memories (NVRAMs), in high capacity dynamic RAMs, and in a new class of flexure wave piezoelectric ultrasonic micromotors. The dielectric and ferroelectric properties of lead zirconate titanate (PZT) thin films were dependent on thickness; at saturation, the films were characterized by a relative permittivity of 1300, remanent polarization of 36 muC/cm^2 and breakdown strength of over 1 MV/cm. The temperature dependence of permittivity revealed an anomalous behavior with the film annealing temperature. Based on the ferroelectric properties in the bulk, thin films in the lead zirconate -lead zinc niobate (PZ-PZN) solid solution system at 8-12% PZN, examined as alternate compositions for ferroelectric memories, feature switched charges of 4-14 mu C/cm^2, with coercive and saturation voltages less than the semiconductor operating voltage of 5 V. Rapid thermally annealed lead magnesium niobate titanate films were privy to weak signal dielectric permittivity of 2900, remanent polarization of 11 muC/cm^2, and a storage density of 210 fC/mum^2 at 5 V; the films merit consideration for potential applications in ultra large scale integrated circuits as also ferroelectric nonvolatile RAMs. The high breakdown strength and relative permittivity of the PZT films entail maximum stored energy density 10^3 times larger than a silicon electrostatic motor. The longitudinal piezoelectric strain coefficient d_{33 } was measured to be 220 pC/N at a dc bias of 75 kV/cm. The transverse piezoelectric strain coefficient d_{31} bore a nonlinear relationship with the electric field; at 200 kV/cm, d _{31} was -88 pC/N. The development of the piezoelectric ultrasonic micromotors from the PZT thin films, and the architecture of the stator structures are described. Nonoptimized prototype micromotors show rotational velocities of 100

  7. Bendable, free-standing calcite thin films.

    PubMed

    Nakamura, Shiho; Naka, Kensuke

    2015-02-17

    Since the hardness and toughness of natural nacre are determined by hierarchical microstructures with organic matters, it is of great importance to control the microstructures of artificial free-standing CaCO3 thin films. However, the fabrication of such films has so far been quite limited, to the extent that their mechanical properties have not been reported. To address this, free-standing calcite thin films were prepared through repeated cycles of layer-by-layer deposition of vaterite precursor composite particles with organic polymers, followed by a phase transition to calcite. In this way, two distinct calcite thin film types were produced based on either 3.2 or 1.0 wt % organic material, with subsequent three-point bending tests revealing that both exhibit elastic bending prior to fracture. More importantly, by increasing the organic content from 1.0 to 3.2 wt %, the bending strength increased from 0.95 ± 0.26 MPa to 1.90 ± 0.21 MPa. PMID:25621634

  8. Microphase separation of block copolymer thin films.

    PubMed

    Zhang, Jilin; Yu, Xinhong; Yang, Ping; Peng, Juan; Luo, Chunxia; Huang, Weihuan; Han, Yanchun

    2010-04-01

    Today, high-ordered micro- and nano-patterned surfaces are widely used in many areas, such as in the preparation of super-thin dielectric films, photonic crystals, antireflective films, super-non-wetting surfaces, bio-compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano-scale structures (<100 nm), the development of other micro- and nano-patterning techniques that can be used to fabricate long-range ordered features - especially nanoscale arrays - is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length-scales of 10-50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long-range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order-order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given.

  9. Photoelectrochemical activity of titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Mehdinezhad Roshan, Aida

    Crystalline titanium dioxide (TiO2) thin films have been extensively investigated due to their various applications in a wide range of field such as photocatalysis, solar cells, gas sensors, self-cleaning windows, etc. The general objective of the present work can be categorized into two different parts. The first part of research is to acquire a fundamental understanding of thin film deposition and characterization of materials surfaces produced by Electrolytic Plasma Processing (EPP) and Magnetron Sputtering system. It has been tried to develop a crystalline layer of titanium dioxide thin film using these two techniques. Aluminum and titanium are the substrate materials. Also a part of study is to clean and roughen the substrate prior to the deposition to examine the effect of morphology. Aluminum was chosen as the substrate as well as titanium in order to enable us to get cheaper product. Second main portion of this work is to check the photoelectrochemical response of the deposited film and explore the effect of various parameters of coating process on this photoelectrochemical response.

  10. Polycrystalline thin film materials and devices

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. . Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  11. When are thin films of metals metallic?

    NASA Astrophysics Data System (ADS)

    Plummer, E. W.; Dowben, P. A.

    1993-04-01

    There is an increasing body of experimental information suggesting that very thin films of materials, normally considered to be metals, exhibit behavior characteristic of a nonmetal. In almost all cases, there is a nonmetal-to-metal transition as a function of film density or thickness, frequently accompanied by a structural transition. Amazingly, this behavior seems to occur for metal films on metal substrates, as well as for metals on semiconductors. The identification of this phenomena and the subsequent explanation has been slow in developing, due to the inability to directly measure the conductivity of a submonolayer film. This paper will discuss the evidence accumulated from variety of spectroscopic experimental techniques for three systems: a Mott-Hubbard transition, a Peierls-like distortion, and a Wilson transition.

  12. Design, optical and antimicrobial properties of extremely thin alumina films colored with silver nanospecies.

    PubMed

    Jagminas, A; Žalnėravičius, R; Rėza, A; Paškevičius, A; Selskienė, A

    2015-03-14

    In this study, conditions for the fabrication of extremely thin and flexible anodic films decorated with silver nanowire arrays by alternating current treatments for the finishing of high purity and commercial aluminium foils were developed. For characterization of these porous films with a thickness of ≤1.0 μm and encased silver species, inductively coupled plasma optical emission spectroscopy, X-ray diffraction and field emission scanning electron microscopy were used. Variable angle spectroscopic ellipsometry in the wavelength range of 200-1700 nm was also used to determine the influence of the deposited Ag content and the film thickness on the optical constants (n, k) of the fabricated alumina films. It is shown that due to surprisingly low k values of nano-Ag-in-alumina films in the visible and near IR regions these films could be applied as transparent films with an extremely low refractive index. In addition, the antimicrobial activity of the obtained films was assessed for the as-deposited and fully-encapsulated silver nanowire arrays against several widespread fungi and bacteria. The results obtained from in vitro tests indicated that the as-formed Ag-in-alumina films containing ≥19 μg cm(-2) of silver possessed antimicrobial properties and could be promising as foodstuff packaging materials. PMID:25652013

  13. Exploiting Elasticity with Thin Polymer Films

    NASA Astrophysics Data System (ADS)

    Croll, Andrew

    2014-03-01

    Soft matter is often dominated by long-ranging mechanical distortion and is thus intimately linked to elastic theory. The detailed understanding provided by theory has allowed remarkable technological achievements to be made with polymers and other soft systems. However, as technology pushes lengthscales downward many challenges have arisen and even basic problems such as measuring Young's modulus become difficult. To move forward, many polymer thin-film researchers have been attracted to the simple repetitive buckling pattern known as wrinkling because the instability provides a convenient tool to measure mechanical properties. As with all technology the wrinkle system does have physical limits on its applicability, several of which may not be obvious and may have implications for extreme measurement. Here we highlight some of our recent work examining the limits of this elastic pattern and the implications for thin polymer films. We first show how the morphology of ultra-thin wrinkled polystyrene and polystyrene-block-poly(2-vinylpyridine) films show signs of localization effects - a clear deviation from linear elasticity. We go on to show how roughness, in certain cases, can induce similar morphologies, even in the limits of vanishing applied stress. As random roughness influences a film's elastic behaviour it is natural to examine periodic roughness as means to control localization and create more complex morphologies. Colloidal polystyrene is an excellent test material as it can easily be assembled in highly ordered crystalline monolayers. Remarkably, this ``discrete'' polymer film shows the same wrinkled morphology as does a continuum film. We show how a completely different type of elasticity is necessary to explain the effect, that of a granular material. More disordered ``glassy'' colloidal monolayers provide a means to push our understanding of the granular elastic theory, and suggest an interesting, albeit highly speculative limit for extreme continuum

  14. Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Chesterfield, Reid J.; McKeen, John C.; Newman, Christopher R.; Frisbie, C. Daniel; Ewbank, Paul C.; Mann, Kent R.; Miller, Larry L.

    2004-06-01

    We report structural and electrical properties in thin films of an n-channel organic semiconductor, N,N'-dipentyl-3,4,9,10-perylene tetracarboxylic dimide (PTCDI-C5). The structure of polycrystalline thin films of PTCDI-C5 was studied using x-ray diffraction and atomic force microscopy. Films order with single crystal-like packing, and the direction of π-π overlap is in the substrate plane. Organic thin film transistors (OTFTs) based on PTCDI-C5 were fabricated on hydrophobic and hydrophilic substrates. OTFTs showed effective mobility as high as 0.1 cm2/V s. Contact resistance of operating OTFTs was studied using resistance versus length plots and a four-probe method for three different contact metals (Au, Ag, Ca). Typical OTFTs had a specific contact resistance of 8×104 Ω cm at high gate voltage. There was no dependence of contact resistance with contact metal. Variable temperature measurements revealed that film resistance in the OTFT was activated in the temperature range 100-300 K, with typical activation energies of 60-80 meV. Contact resistance showed similar activated behavior, implying that the Schottky barrier at the contact is not the limiting resistance for the contact. Film resistance data showed a Meyer-Neldel relationship with characteristic energy EMN=20-25 meV, for various samples. The common TFT instability of threshold voltage shift (TVS) was observed in PTCDI-C5 OTFTs. A model is proposed to explain positive TVS in gate bias stress and oxygen exposure experiments. The model is based on the formation of a metastable complex between PTCDI-C5 and oxygen, which creates a deep acceptor-like trap state.

  15. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE PAGES

    Roberts, Scott A.; Kumar, Satish

    2010-12-09

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DCmore » field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.« less

  16. Thermal conductivities of thin, sputtered optical films

    SciTech Connect

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO{sub 2}/Si{sub 3}N{sub 4}){sup n} and Al(Al{sub 2}O{sub 3}/AIN){sup n}. Sputtered films of more conventional materials like SiO{sub 2}, Al{sub 2}O{sub 3}, Ta{sub 2}O{sub 5}, Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented.

  17. Electrohydrodynamic instabilities in thin liquid trilayer films

    SciTech Connect

    Roberts, Scott A.; Kumar, Satish

    2010-12-09

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DC field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.

  18. A Multilayered Thin Film Insulator for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Blaha, Charles A.; Busfield, A. Rachel; Thomas, Valarie D.

    2002-01-01

    The status of work to develop a reliable high temperature dielectric thin film for use with thin film sensors is presented. The use of thin films to electrically insulate thin film sensors on engine components minimizes the intrusiveness of the sensor and allows a more accurate measurement of the environment. A variety of insulating films were investigated for preventing electrical shorting caused by insulator failure between the sensor and the component. By alternating layers of sputtered high temperature ceramics, a sequence of insulating layers was devised that prevents pinholes from forming completely through the insulator and maintains high electrical resistivity at high temperatures. The major technical challenge remaining is to optimize the fabrication of the insulator with respect to composition to achieve a reliable high temperature insulating film. Data from the testing of various potentially insulating thin film systems is presented and their application to thin film sensors is also discussed.

  19. Multi-block copolymers in thin films.

    NASA Astrophysics Data System (ADS)

    Maniadis, Panagiotis; Kober, Edward; Lookman, Turab

    2008-03-01

    We study the behavior of an ABn multi-block copolymer confined to a thin film, using self consistent field theory (SCFT) methods. Due to the breaking of symmetry in the direction of confinement, the propagators do not obey the usual diffusion equation. We derive the diffusion equation which correctly describes the confined polymer system and find that it differs from the original in an area which is approximately 3 times the Kuhn length of the polymer, close to the surface of the film. We use the modified diffusion equation to study the structure of the confined polymer.

  20. Nonlinear viscoelastic characterization of thin polyethylene film

    NASA Technical Reports Server (NTRS)

    Wilbeck, J. S.

    1981-01-01

    In order to understand the state of stress and strain in a typical balloon fabricated from thin polyethylene film, experiment data in the literature reviewed. It was determined that the film behaves as a nonlinear viscoelasticity material and should be characterized accordingly. A simple uniaxial, nonlinear viscoelastic model was developed for predicting stress given a certain strain history. The simple model showed good qualitative agreement with results of constant rate, uniaxial accurately predicting stresses for cyclic strain histories typical of balloon flights. A program was outlined which will result in the development of a more complex nonlinear viscoelastic model.

  1. Meniscus Instability in a Thin Elastic Film

    NASA Astrophysics Data System (ADS)

    Ghatak, Animangsu; Chaudhury, Manoj K.; Shenoy, Vijay; Sharma, Ashutosh

    2000-11-01

    A new kind of meniscus instability leading to the formation of stationary fingers with a well-defined spacing has been observed in experiments with elastomeric films confined between a plane rigid glass and a thin curved glass plate. The wavelength of the instability increases linearly with the thickness of the confined film, but it is remarkably insensitive to the compliance and the energetics of the system. However, lateral amplitude (length) of the fingers depends on the compliance of the system and on the radius of curvature of the glass plate. A simple linear stability analysis is used to explain the underlying physics and the key observed features of the instability.

  2. Electrochromism in copper oxide thin films

    SciTech Connect

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  3. Evidence for improvement of critical current by Ag in YBaCuO-Ag thick films

    NASA Astrophysics Data System (ADS)

    Dwir, B.; Kellett, B.; Mieville, L.; Pavuna, D.

    1991-04-01

    The evidence is reported for enhancement of critical current density J(c) in YBa2Cu3O(7-delta) thick films with the addition of Ag, which is correlated with improvements in structural properties. An improvement of 50 percent in J(c) (up to about 500 A/sq cm at T = 4.2 K) was obtained in films made from YBCO + 60 wt pct Ag powder, fabricated by the spin-on technique on (100) SrTiO3, which is correlated with improvements in structure. The resulting films are 10 microns thick, uniform, partially textured, and show good adherence. The critical temperature Tc is improved by the addition of Ag, and a reduction in the density of microcracks and in the amount of secondary phases in the sintered films was observed. Normal-state resistivity is reduced by almost three orders of magnitude, making these films potentially useful for electronic applications in interconnects and novel hybrid circuits.

  4. Nitrogen doped zinc oxide thin film

    SciTech Connect

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  5. A new direct process to prepare YBa 2Cu 3O 7- δ films on biaxially textured Ag{110}<211>

    NASA Astrophysics Data System (ADS)

    Wang, Rongping; Zhou, Yueliang; Pan, Shaohua; He, Meng; Chen, Zhenghao; Yang, Guozhen

    1999-12-01

    YBa 2Cu 3O 7- δ (YBCO) films were successfully prepared on biaxially textured Ag{110}<211> substrates by using pulsed laser deposition. X-ray diffraction results showed that the degree of preferential orientation of Ag{110}<211> substrates varied with increasing annealing temperature. With a thin template layer deposited at low temperature, YBCO film with c-axis orientation and in-plane biaxial alignment could be obtained at high deposition temperature. Scanning electron microscopy observation revealed that YBCO grains enlarged, but Ag grains on the surface of the YBCO films became smaller with increasing deposition temperature. At optimal deposition conditions, Ag atoms diffuse into the YBCO grain boundaries, and then fill in the weak-link regions in the YBCO film, resulting in the easier conduction. Jc value of 5×10 5 A/cm 2 was obtained at 77 K and zero magnetic field for the best YBCO film in our work.

  6. Superconducting YBa 2Cu 3O 7- δ thin film grown on metallic film evaporated on MgO

    NASA Astrophysics Data System (ADS)

    Verdyan, A.; Azoulay, J.; Lapsker, I.

    2001-03-01

    At present it is commonly accepted that thin film formation of YBa 2Cu 3O 7- δ (YBCO) on conducting substrate is one of the keys to further development of advanced devices in the microelectronic and other applications. We have grown YBCO thin films by resistive evaporation technique on MgO coated with metallic layers (Ni or Ag). A simple inexpensive vacuum system equipped with resistively heated boats for metal and precursor mixture of yttrium, copper and barium fluoride powders was used. X-ray diffraction (XRD) and scanning electron microscopy techniques were used for texture, morphology and surface analyses respectively. Electrical and magnetical properties were determined by a standard dc four-probe method. The way of heating process is shown to be critical parameter in the film quality. The physical and electrical properties of the YBCO films are discussed in light of the fact that XRD measurements done on the metallic buffer layers have revealed a multicrystalline structure.

  7. Depositing Adherent Ag Films On Ti Films On Alumina

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.

    1995-01-01

    Report discusses cleaning of ceramic (principally, alumina) substrates in preparation for sputter deposition of titanium intermediate films on substrates followed by sputter deposition of outer silver films. Principal intended application, substrates sliding parts in advanced high-temperature heat engines, and outer silver films serve as solid lubricants: lubricating properties described in "Solid Lubricant for Alumina" (LEW-15495).

  8. Polycrystalline thin films FY 1992 project report

    SciTech Connect

    Zweibel, K.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  9. Polycrystalline thin films FY 1992 project report

    SciTech Connect

    Zweibel, K.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  10. Multiferroic oxide thin films and heterostructures

    NASA Astrophysics Data System (ADS)

    Lu, Chengliang; Hu, Weijin; Tian, Yufeng; Wu, Tom

    2015-06-01

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  11. Thin film photovoltaic panel and method

    DOEpatents

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  12. Generalized Ellipsometry on Ferromagnetic Sculptured Thin Films.

    NASA Astrophysics Data System (ADS)

    Schmidt, Daniel; Hofmann, Tino; Mok, Kah; Schmidt, Heidemarie; Skomski, Ralf; Schubert, Eva; Schubert, Mathias

    2011-03-01

    We present and discuss generalized ellipsometry and generalized vector-magneto-optic ellipsometry investigations on cobalt nanostructured thin films with slanted, highly-spatially coherent, columnar arrangement. The samples were prepared by glancing angle deposition. The thin films are highly transparent and reveal strong form-induced birefringence. We observe giant Kerr rotation in the visible spectral region, tunable by choice of the nanostructure geometry. Spatial magnetization orientation hysteresis and magnetization magnitude hysteresis properties are studied using a 3-dimensional Helmholtz coil arrangement allowing for arbitrary magnetic field direction at the sample position for field strengths up to 0.4 Tesla. Analysis of data obtained within this novel vector-magneto-optic setup reveals magnetization anisotropy of the Co slanted nanocolumns supported by mean-field theory modeling.

  13. Techniques for Connecting Superconducting Thin Films

    NASA Technical Reports Server (NTRS)

    Mester, John; Gwo, Dz-Hung

    2006-01-01

    Several improved techniques for connecting superconducting thin films on substrates have been developed. The techniques afford some versatility for tailoring the electronic and mechanical characteristics of junctions between superconductors in experimental electronic devices. The techniques are particularly useful for making superconducting or alternatively normally conductive junctions (e.g., Josephson junctions) between patterned superconducting thin films in order to exploit electron quantum-tunneling effects. The techniques are applicable to both low-Tc and high-Tc superconductors (where Tc represents the superconducting- transition temperature of a given material), offering different advantages for each. Most low-Tc superconductors are metallic, and heretofore, connections among them have been made by spot welding. Most high-Tc superconductors are nonmetallic and cannot be spot welded. These techniques offer alternatives to spot welding of most low-Tc superconductors and additional solutions to problems of connecting most high-Tc superconductors.

  14. Thin film strain gage development program

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.; Anderson, W. L.; Claing, R. G.

    1983-01-01

    Sputtered thin-film dynamic strain gages of 2 millimeter (0.08 in) gage length and 10 micrometer (0.0004 in) thickness were fabricated on turbojet engine blades and tested in a simulated compressor environment. Four designs were developed, two for service to 600 K (600 F) and two for service to 900 K (1200 F). The program included a detailed study of guidelines for formulating strain-gage alloys to achieve superior dynamic and static gage performance. The tests included gage factor, fatigue, temperature cycling, spin to 100,000 G, and erosion. Since the installations are 30 times thinner than conventional wire strain gage installations, and any alteration of the aerodynamic, thermal, or structural performance of the blade is correspondingly reduced, dynamic strain measurement accuracy higher than that attained with conventional gages is expected. The low profile and good adherence of the thin film elements is expected to result in improved durability over conventional gage elements in engine tests.

  15. Domain switching of fatigued ferroelectric thin films

    SciTech Connect

    Tak Lim, Yun; Yeog Son, Jong E-mail: hoponpop@ulsan.ac.kr; Shin, Young-Han E-mail: hoponpop@ulsan.ac.kr

    2014-05-12

    We investigate the domain wall speed of a ferroelectric PbZr{sub 0.48}Ti{sub 0.52}O{sub 3} (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue.

  16. Electrostatic Discharge Effects on Thin Film Resistors

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.; Hull, Scott M.

    1999-01-01

    Recently, open circuit failures of individual elements in thin film resistor networks have been attributed to electrostatic discharge (ESD) effects. This paper will discuss the investigation that came to this conclusion and subsequent experimentation intended to characterize design factors that affect the sensitivity of resistor elements to ESD. The ESD testing was performed using the standard human body model simulation. Some of the design elements to be evaluated were: trace width, trace length (and thus width to length ratio), specific resistivity of the trace (ohms per square) and resistance value. However, once the experiments were in progress, it was realized that the ESD sensitivity of most of the complex patterns under evaluation was determined by other design and process factors such as trace shape and termination pad spacing. This paper includes pictorial examples of representative ESD failure sites, and provides some options for designing thin film resistors that are ESD resistant. The risks of ESD damage are assessed and handling precautions suggested.

  17. EBSD analysis of electroplated magnetite thin films

    NASA Astrophysics Data System (ADS)

    Koblischka-Veneva, A.; Koblischka, M. R.; Teng, C. L.; Ryan, M. P.; Hartmann, U.; Mücklich, F.

    2010-05-01

    By means of electron backscatter diffraction (EBSD), we analyse the crystallographic orientation of electroplated magnetite thin films on Si/copper substrates. Varying the voltage during the electroplating procedure, the resulting surface properties are differing considerably. While a high voltage produces larger but individual grains on the surface, the surfaces become smoother on decreasing voltage. Good quality Kikuchi patterns could be obtained from all samples; even on individual grains, where the surface and the edges could be measured. The spatial resolution of the EBSD measurement could be increased to about 10 nm; thus enabling a detailed analysis of single magnetite grains. The thin film samples are polycrystalline and do not exhibit a preferred orientation. EBSD reveals that the grain size changes depending on the processing conditions, while the detected misorientation angles stay similar.

  18. Multiferroic oxide thin films and heterostructures

    SciTech Connect

    Lu, Chengliang E-mail: Tao.Wu@kaust.edu.sa; Hu, Weijin; Wu, Tom E-mail: Tao.Wu@kaust.edu.sa; Tian, Yufeng

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  19. Substrate heater for thin film deposition

    DOEpatents

    Foltyn, Steve R.

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  20. Packaging material for thin film lithium batteries

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Weatherspoon, Kim A.

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  1. Thin-film optical shutter. Final report

    SciTech Connect

    Matlow, S.L.

    1981-02-01

    A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.

  2. Large-area thin-film modules

    NASA Technical Reports Server (NTRS)

    Tyan, Y. S.; Perez-Albuerne, E. A.

    1985-01-01

    The low cost potential of thin film solar cells can only be fully realized if large area modules can be made economically with good production yields. This paper deals with two of the critical challenges. A scheme is presented which allows the simple, economical realization of the long recognized, preferred module structure of monolithic integration. Another scheme reduces the impact of shorting defects and, as a result, increases the production yields. Analytical results demonstrating the utilization and advantages of such schemes are discussed.

  3. Structures for dense, crack free thin films

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2011-03-08

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  4. Thin film dynamics of viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Lebon, Luc; Limat, Laurent

    2012-11-01

    We present here viscoelastic fluids in thin film flows, such as liquid bells or liquid curtains. The viscoelastic property of the liquids exhibits specific dynamics in such flows. In the case of bells, the elastic strength tends to extend the bell size for example. In the case of curtain flows, original behaviour of holes are observed with specific growth mechanism for bubbles trapped in the flow.

  5. Laser annealing of thin organic films

    NASA Astrophysics Data System (ADS)

    Agashkov, A. V.; Ivlev, G. D.; Filippov, V. V.; Kashko, I. A.; Shulitski, B. G.

    2010-09-01

    Microstructure of defects in organic solar cells containing PEDOT:PSS:Sorbitol layer has been studied and conditions for successful pulsed laser annealing of them have been determined. Investigation with oblique illumination showed that radial symmetry of fine structure is an intrinsic property of either separated discotic defects or block structure. Our study shows that pulsed laser annealing of organic thin films in inert atmosphere has promising future.

  6. Laser annealing of thin organic films

    NASA Astrophysics Data System (ADS)

    Agashkov, A. V.; Ivlev, G. D.; Filippov, V. V.; Kashko, I. A.; Shulitski, B. G.

    2011-02-01

    Microstructure of defects in organic solar cells containing PEDOT:PSS:Sorbitol layer has been studied and conditions for successful pulsed laser annealing of them have been determined. Investigation with oblique illumination showed that radial symmetry of fine structure is an intrinsic property of either separated discotic defects or block structure. Our study shows that pulsed laser annealing of organic thin films in inert atmosphere has promising future.

  7. Stable localized patterns in thin liquid films

    NASA Technical Reports Server (NTRS)

    Deissler, Robert J.; Oron, Alexander

    1991-01-01

    We study a 2-D nonlinear evolution equation which describes the 3-D spatiotemporal behavior of the air-liquid interface of a thin liquid film lying on the underside of a cooled horizontal plate. We show that the Marangoni effect can stabilize the destabilizing effect of gravity (the Rayleigh-Taylor instability) allowing for the existence of stable localized axisymmetric solutions for a wide range of parameter values. Various properties of these structures are discussed.

  8. Analysis on superhydrophobic silver decorated copper Oxide nanostructured thin films for SERS studies.

    PubMed

    Jayram, Naidu Dhanpal; Aishwarya, D; Sonia, S; Mangalaraj, D; Kumar, P Suresh; Rao, G Mohan

    2016-09-01

    The present work demonstrates the superhydrophobic and Surface Enhanced Raman Spectroscopy (SERS) active substrate performance of silver coated copper oxide (Ag@CuO) nanostructured thin films prepared by the SILAR process. Super hydrophobic substrates that combine super hydrophobic condensation effect and high enhancement ability of Ag@CuO nanoflowers are investigated for SERS studies. The possible growth mechanism for the formation of nanoflower arrays from nanospindles has been discussed. Morphology and crystallinity of the Ag@CuO thin films are confirmed using FESEM and XRD. The results obtained in the present study indicate that the as-deposited hydrophobic nanospindles structure converts to super hydrophobic nanoflower arrays on annealing at 200°C. The Ag@CuO super hydrophobic nanoflowers thin film based SERS substrates show highly enhanced Raman spectra with an EF value of 2.0×10(7) for (Rhodamine 6G) R6G, allowing a detection limit from a 10(-10)molL(-1) solution. The present study may provide a new perception in fabricating efficient super hydrophobic substrates for SERS, suggesting that the fabricated substrates are promising candidates for trace analysis of R6G dye and are expected to be widely used as highly sensitive SERS active substrates for various toxic dyes in the future. PMID:27294970

  9. Stretchability of Silver Films on Thin Acid-Etched Rough Polydimethylsiloxane Substrates Fabricated by Electrospray Deposition

    NASA Astrophysics Data System (ADS)

    Mehdi, S. M.; Cho, K. H.; Kang, C. N.; Choi, K. H.

    2015-07-01

    This paper investigates the fabrication of Ag films through the electrospray deposition (ESD) technique on sub-millimeter-thick acid-etched rough polydimethylsiloxane (PDMS) substrates having both low and high modulus of elasticity. The main focus of the study is on the stretchable behavior of ESD-deposited Ag nanoparticles-based thin films on these substrates when subjected to axial strains. Experimental results suggest that the as-fabricated films on thin acid-etched rough low modulus PDMS has an average stretchability of 5.6% with an average increase in the resistance that is 23 times that of the initial resistance at electrical failure (complete rupture of the films). Comparatively, the stretchability of Ag films on the high modulus PDMS was found to be 3 times higher with 4.65 times increase in the resistance at electrical failure. Also, a high positive value of the piezoresistive coefficient for these films suggests that the resistivity changes during stretching, and thus deviation from the simplified models is inevitable. Based on these results, new models are presented that quantify the changes in resistance with strain.

  10. Nanoparticle formation by swift heavy ion irradiation of indium oxide thin film

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Ganesan, P. G.; Singh, V. N.; Mehta, B. R.; Singh, J. P.

    2008-04-01

    In this study, a novel approach for the formation of indium oxide (IO) nanoparticles by irradiating IO thin film using 100 MeV Ag8+ ions has been reported. High resolution transmission electron microscopy and energy dispersive x-ray analysis confirm the presence of single-crystalline IO nanoparticles after irradiation. The electronic excitations induced by 100 MeV Ag8+ ions followed by thermal relaxation of the energy spike in IO thin film is responsible for the formation of latent tracks in the film. The electronic energy loss (Se) of 100 MeV Ag8+ ions in IO is greater than the threshold electronic energy loss (Seth) required for the track formation in IO film, but is less than Seth required for crystalline silicon. Therefore, the tracks are formed in the IO film and not in the silicon substrate. This results in a stress induced at the IO film and silicon substrate interface which is responsible for dewetting of the tracks and the formation of nanoparticles. The theoretically calculated value of nanoparticle diameter using the thermal spike model is found to be in good agreement with the experimentally observed value of 30 nm.

  11. Design and characterization of thin film microcoolers

    NASA Astrophysics Data System (ADS)

    LaBounty, Chris; Shakouri, Ali; Bowers, John E.

    2001-04-01

    Thin film coolers can provide large cooling power densities compared to bulk thermoelectrics due to the close spacing of hot and cold junctions. Important parameters in the design of such coolers are investigated theoretically and experimentally. A three-dimensional (3D) finite element simulator (ANSYS) is used to model self-consistently thermal and electrical properties of a complete device structure. The dominant three-dimensional thermal and electrical spreading resistances acquired from the 3D simulation are also used in a one-dimensional model (MATLAB) to obtain faster, less rigorous results. Heat conduction, Joule heating, thermoelectric and thermionic cooling are included in these models as well as nonideal effects such as contact resistance, finite thermal resistance of the substrate and the heat sink, and heat generation in the wire bonds. Simulations exhibit good agreement with experimental results from InGaAsP-based thin film thermionic emission coolers which have demonstrated maximum cooling of 1.15 °C at room temperature. With the nonideal effects minimized, simulations predict that single stage thin film coolers can provide up to 20-30 °C degrees centigrade cooling with cooling power densities of several 1000 W/cm2.

  12. Molecular theory of liquid crystal thin films

    NASA Astrophysics Data System (ADS)

    Meng, Shihong

    A molecular theory has been developed to describe the isotropic-nematic transitoon of model nematogens in bulk and in thin films. The surfaces of thin films can be hard surfaces or coated with surfactant monolayers. The theory only includes hard body interactions between all molecule species: solvent, nematogens and surfactants. We have studied the influence of the separation between confining walls, concentration of nematogens, as well as the surface anchoring and areal density of surfactant at the interface upon the phases of nematogens. We have explained the possible existence of planar degenerate phase through entropic pictures and have confirmed close to the bulk isotropic-nematic transition point, the order of the phases of nematogens from isotropic to nematic then back to isotropic when varying the areal density of surfactant monolayers at interfaces. From the results obtained, we believe that we have captured the main competing interactions between surfactants and nematogens and our molecular level theory is capable of describing these two interactions of different natures. Our results can provide a guideline for molecular design of biosensors. We have modeled the molecular systems with as much simplification as possible while retaining the main features. The thesis is arranged into introduction, results on bulk, thin films confined between hard walls and between surfactant monolayers.

  13. Hydrothermal epitaxy of perovskite thin films

    NASA Astrophysics Data System (ADS)

    Chien, Allen T.

    1998-12-01

    This work details the discovery and study of a new process for the growth of epitaxial single crystal thin films which we call hydrothermal epitaxy. Hydrothermal epitaxy is a low temperature solution route for producing heteroepitaxial thin films through the use of solution chemistry and structurally similar substrates. The application of this synthesis route has led to the growth of a variety of epitaxial perovskite (BaTiOsb3, SrTiOsb3, and Pb(Zr,Ti)Osb3 (PZT)) thin films which provides a simple processing pathway for the formation of other materials of technological interest. BaTiOsb3 and PZT heteroepitaxial thin films and powders were produced by the hydrothermal method at 90-200sp°C using various alkali bases. XRD and TEM analysis shows that, in each case, the films and powders form epitaxially with a composition nearly identical to that of the starting precursors. Sequential growth experiments show that film formation initiates by the nucleation of submicron faceted islands at the step edges of the SrTiOsb3 substrates followed by coalescence after longer growth periods. A Ba-rich interfacial layer between the BaTiOsb3 islands and the SrTiOsb3 surface is seen by cross-section TEM during early growth periods. Electrophoretic and Basp{2+} adsorption data provide a chemical basis for the existence of the interfacial layer. Homoepitaxial growth of SrTiOsb3 on SrTiOsb3 also occurs by island growth, suggesting that the growth mode may be a consequence of the aqueous surface chemistry inherent in the process. Film formation is shown to be affected by any number of factors including type of base, pH, temperature, and substrate pretreatments. Different cation bases (Na-, K-, Rb-, Cs-, TMA-OH) demonstrated pronounced changes in powder and film morphology. For example, smaller cation bases (e.g., NaOH, KOH and RbOH) resulted the formation of 1.5 mum \\{100\\} faceted perovskite PbTiOsb3 blocks while larger cation bases (e.g., CsOH and TMA-OH) produced 500 nm sized

  14. Thin Dielectric Films Containing Tb{sup 3+} Ions For Application In Thin Film Solar Cells

    SciTech Connect

    Sendova-Vassileva, M.; Angelov, O.; Dimova-Malmovska, D.; Baumgartner, K.; Carius, R.; Hollaender, B.

    2010-01-21

    Thin transparent dielectric films containing Tb{sup 3+} are developed for application as spectral converters of the solar spectrum in thin film silicon solar cells. The results on the deposition and characterization of thin SiO{sub 2} and Al{sub 2}O{sub 3} films containing Tb{sup 3+} ions are presented. The films are prepared by RF magnetron co-sputtering, a well established technique for large area coatings. Photoluminescence (PL) is measured at room temperature, using the 488 nm line of an Ar laser and a nitrogen-cooled CCD camera attached to a monochromator. The dependence of the PL intensity on the concentration of Tb in the film is studied. It is found that the intensity exhibits a maximum at about 1 at.%. Annealing studies are performed on SiO{sub 2}:Tb with two different methods to improve the PL intensity. In both regimes of annealing, the best results for thin SiO{sub 2}:Tb films are obtained in the temperature range of 650-700 deg. C. After treatment at this temperature the Tb PL increases 2.5-3 times.

  15. Growth of ultrathin vanadium oxide films on Ag(100)

    NASA Astrophysics Data System (ADS)

    Nakamura, Takuya; Sugizaki, Yuichi; Ishida, Shuhei; Edamoto, Kazuyuki; Ozawa, Kenichi

    2016-07-01

    Vanadium oxide films were grown on Ag(100) by vanadium deposition in O2 and subsequent annealing at 450 °C. It was found that at least three types of ordered V oxide films, which showed (1 × 1), hexagonal, and (4 × 1) LEED patterns, were formed on Ag(100) depending on the O2 pressure during deposition and conditions during postannealing. The films with the hexagonal and (1 × 1) periodicities were characterized by photoelectron spectroscopy (PES) and near-edge X-ray absorption fine structure (NEXAFS) analysis. The film with the (1 × 1) periodicity was ascribed to a VO(100) film. On the other hand, the film with the hexagonal periodicity was found to be composed of V2O3, and the analysis of the LEED pattern revealed that the lattice parameter of the hexagonal lattice is 0.50 nm, which is very close to that of corundum V2O3(0001) (0.495 nm).

  16. Active superconducting devices formed of thin films

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  17. Thin film cadmium telluride photovoltaic cells

    SciTech Connect

    Compaan, A.; Bohn, R. )

    1992-04-01

    This report describes research to develop to vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD) and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl{sub 2}, as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO{sub 2}-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally ({ge} 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. 19 refs.

  18. Semileaky thin-film optical isolator

    SciTech Connect

    Kirsch, S.T.; Biolsi, W.A.; Blank, S.L.; Tien, P.K.; Martin, R.J.; Bridenbaugh, P.M.; Grabbe, P.

    1981-05-01

    Two interesting effects have been experimentally demonstrated for the first time: (1) simultaneous reciprocal and nonreciprocal mode conversion to achieve an isolation effect and (2) magneto-optic switching between guided and radiation modes. These effects were observed in connection with the construction of a previously proposed thin-film optical isolator. The isolator consists of a piece of LiNbO/sub 3/ placed on top of a thin film of yttrium ion garnet (YIG) with a selenium layer to avoid optical contact problems. The isolator, which is 1 cm long, exhibited 10 dB of isolation at lambda = 1.15 ..mu..m. The observed isolation was better than theoretical predictions and a mysterious isolation direction dependence on mode order was observed. Although the device had 10 dB of insertion loss and required a magnetic field of 40 Oe, with a slight change in wavelength and film composition, it should be possible to reduce the insertion loss and field required to under 1 dB and 0.1 Oe, respectively. These characteristics combined with broad tolerances on film thickness and the length of the isolation region, broadband operation (from lambda = 1.1 to 4.5 ..mu..m), and easy construction and adjustment make the isolator very attractive for use in integrated optics.

  19. Dynamic Characterization of Thin Film Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Gu, Wei

    A broadband dynamic method for characterizing thin film magnetic material is presented. The method is designed to extract the permeability and linewidth of thin magnetic films from measuring the reflection coefficient (S11) of a house-made and short-circuited strip line testing fixture with or without samples loaded. An adaptive de-embedding method is applied to remove the parasitic noise of the housing. The measurements were carried out with frequency up to 10GHz and biasing magnetic fields up to 600 Gauss. Particular measurement setup and 3-step experimental procedures are described in detail. The complex permeability of a 330nm thick continuous FeGaB, 435nm thick laminated FeGaB film and a 100nm thick NiFe film will be induced dynamically in frequency-biasing magnetic field spectra and compared with a theoretical model based on Landau-Lifshitz-Gilbert (LLG) equations and eddy current theories. The ferromagnetic resonance (FMR) phenomenon can be observed among these three magnetic materials investigated in this thesis.

  20. Thin Films Characterization by Ultra Trace Metrology

    SciTech Connect

    Danel, A.; Nolot, E.; Decorps, T.; Lardin, T.; Veillerot, M.; Lhostis, S.; Campidelli, Y.; Calvo-Munoz, M.-L.; Kohno, H.; Yamagami, M.

    2007-09-26

    Sensitive and accurate characterization of thin films used in nanoelectronics, thinner than a few nm, represents a challenge for many conventional methods, especially when considering in-line control. With capabilities in the E10 at/cm{sup 2} (<1/10 000 of a mono layer), methods usually dedicated to contamination analysis appear promising, especially TXRF thanks to its non invasive and ease of use aspects, and to its measurement speed and mapping capability. This study shows that the range of linear results from TXRF can be extended to thicknesses of a few nm when using an incident angle higher than the critical angle of the analyzed film. Thus, despite degraded performances in terms of low detection limit, TXRF can provide a direct and very sensitive reading of some critical deposition processes. A dynamic repeatability better than 1% (standard deviation) has been obtained for the control of a 0.6 nm Al{sub 2}O{sub 3} tunnel oxide deposited on a magnetic stack. On the other hand, composition analysis by TXRF, and especially the detection of minor elements into thin films, requires the use of a specific incident angle to optimize sensitivity. Under the best conditions, determination of the composition of Co -based self aligned barriers (CoWP and CoWMoPB films with Co concentration >80%) is done with a precision of 6% on P, 8% on Mo and 13% on W (standard deviation)

  1. Thin film cadmium telluride photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Compaan, A.; Bohn, R.

    1992-04-01

    This report describes research to develop vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD), and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl(sub 2), as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO2-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally (greater than or equal to 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater.

  2. Thermal properties of methyltrimethoxysilane aerogel thin films

    NASA Astrophysics Data System (ADS)

    Acquaroli, Leandro N.; Newby, Pascal; Santato, Clara; Peter, Yves-Alain

    2016-10-01

    Aerogels are light and porous solids whose properties, largely determined by their nanostructure, are useful in a wide range of applications, e.g., thermal insulation. In this work, as-deposited and thermally treated air-filled silica aerogel thin films synthesized using the sol-gel method were studied for their thermal properties using the 3-omega technique, at ambient conditions. The thermal conductivity and diffusivity were found to increase as the porosity of the aerogel decreased. Thermally treated films show a clear reduction in thermal conductivity compared with that of as-deposited films, likely due to an increase of porosity. The smallest thermal conductivity and diffusivity found for our aerogels were 0.019 W m-1 K-1 and 9.8 × 10-9 m2 s-1. A model was used to identify the components (solid, gaseous and radiative) of the total thermal conductivity of the aerogel.

  3. Negative differential conductivity in thin ferroelectric films

    NASA Astrophysics Data System (ADS)

    Podgorny, Yury; Vorotilov, Konstantin; Sigov, Alexander

    2014-11-01

    A phenomenon of negative differential conductivity in ferroelectric thin films is discussed. We proposed that the reason is polarization recovery current arising at current-voltage I(V) measurements as a result of polarization relaxation after pre-polarization of ferroelectric film. Simulation of this current by Weibull distribution provides a good correlation with the experimental data. The obtained values of the recovered polarization Prec and the field strength Erec at which the recovery polarization current reaches maximum do not depend on the voltage sweep rate and are well correlated with the values of polarization relaxation Prel and coercive field strength Ec obtained from dielectric hysteresis loop. It is shown that the current density due to polarization recovery Jrec may exceed by about an order the ohmic current density JΩ in ferroelectric film at Ec.

  4. Supramolecular structure of electroactive polymer thin films

    NASA Astrophysics Data System (ADS)

    Kornilov, V. M.; Lachinov, A. N.; Karamov, D. D.; Nabiullin, I. R.; Kul'velis, Yu. V.

    2016-05-01

    This paper presents the results of an experimental investigation of the supramolecular structure of polydiphenylenephthalide thin films that exhibit effects of resistive switching. The supramolecular structure of the polymer has been investigated using small-angle neutron scattering in conjunction with atomic force microscopy. It has been found that the internal structure of polymer films consists of structural elements in the form of spheroids. The sizes of the structural elements, which were obtained from the neutron scattering data and analysis of the atomic force microscopy images, correlate well with each other. A model of the formation of polymer layers has been proposed. The observed structural elements in polymer films are formed due to the association of macromolecules in the initial polymer solution.

  5. Electrohydrodynamic instabilities in thin trilayer liquid films.

    SciTech Connect

    Roberts, Scott A.; Kumar, Satish

    2010-11-01

    When DC or AC electric fields are applied to a thin liquid film, the interface may become unstable and form a series of pillars. We examine how the presence of a second liquid interface influences pillar dynamics and morphologies. For perfect dielectric films, linear stability analysis of a lubrication-approximation-based model shows that the root mean square voltage governs the pillar behavior. For leaky dielectric films, Floquet theory is applied to carry out the linear stability analysis, and reveals that the accumulation of free charge at each interface depends on the conductivities in the adjoining phases and that high frequencies of the AC electric field may be used to control this accumulation at each interface independently. The results presented here may of interest for the controlled creation of surface topographical features in applications such as patterned coatings and microelectronics.

  6. Nanocrystalline silicon based thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  7. Two-fluid measurements on thin films

    NASA Astrophysics Data System (ADS)

    Mopsik, Frederick I.

    1992-05-01

    The two-fluid technique to measure the dielectric constant and thickness of a thin polymeric film is discussed. The advantages include the ability to make a non-contacting measurement both of the effective electrical thickness of the film as well as the dielectric constant. The requirements for an accurate measurement are examined and the error as a function of the cell spacing, sample thickness, and dielectric constant of the second fluid are evaluated. The specifications of both the cell and the second fluid are examined. For the cell, it must be stable to good accuracy with handling, settable to small gaps, and have a well-defined electrode area through the use of a guard ring with a narrow guard gap. A design of a holder that is suitable for films from 6 micrometers to 50 micrometers is illustrated.

  8. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    NASA Astrophysics Data System (ADS)

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  9. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    PubMed Central

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-01-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films. PMID:26156001

  10. Effect of temperature on the nano/microstructure and mechanical behavior of nanotwinned Ag films

    SciTech Connect

    Zhang, Huan; Geng, Jie; Ott, Ryan T.; Besser, Matthew F.; Kramer, Matthew J.

    2015-06-24

    In situ and ex situ annealed nanotwinned (NT) Ag thin films have been investigated by TEM and tensile testing to reveal the thermal stability of the twin boundaries, grain boundaries, dislocation densities, and their respective influence of the macroscopic yield stress. The NT Ag films synthesized by magnetron sputtering form both coherent (CTB, Σ3{111}) and incoherent (ITB, Σ3{112}) twin boundaries that are thermally stable up to 473 K (200 Celsius), i.e., no obvious changes in grain size, twin spacing, and yield stress. In situ TEM observations show the dislocations become mobile at 453 K (180 Celsius) resulting in dislocation annihilation primarily at twin and grain boundaries. Rotation of grains with low-angle grain boundaries was observed during in situ heating, resulting in the growth of columnar grains above 453 K (180 Celsius). However, no noticeable changes in the spacings of CTBs were observed during the entire in situ and ex situ annealing [up to 873 K (600 Celsius)]. The increase in grain size and concomitant decrease in yield stress following annealing at various temperatures can be described by the Hall-Petch relationship, demonstrating that grain size rather than twin spacing is most sensitive to thermal annealing and plays a dominant role in the deformation of NT Ag films.

  11. Effect of temperature on the nano/microstructure and mechanical behavior of nanotwinned Ag films

    DOE PAGES

    Zhang, Huan; Geng, Jie; Ott, Ryan T.; Besser, Matthew F.; Kramer, Matthew J.

    2015-06-24

    In situ and ex situ annealed nanotwinned (NT) Ag thin films have been investigated by TEM and tensile testing to reveal the thermal stability of the twin boundaries, grain boundaries, dislocation densities, and their respective influence of the macroscopic yield stress. The NT Ag films synthesized by magnetron sputtering form both coherent (CTB, Σ3{111}) and incoherent (ITB, Σ3{112}) twin boundaries that are thermally stable up to 473 K (200 Celsius), i.e., no obvious changes in grain size, twin spacing, and yield stress. In situ TEM observations show the dislocations become mobile at 453 K (180 Celsius) resulting in dislocation annihilationmore » primarily at twin and grain boundaries. Rotation of grains with low-angle grain boundaries was observed during in situ heating, resulting in the growth of columnar grains above 453 K (180 Celsius). However, no noticeable changes in the spacings of CTBs were observed during the entire in situ and ex situ annealing [up to 873 K (600 Celsius)]. The increase in grain size and concomitant decrease in yield stress following annealing at various temperatures can be described by the Hall-Petch relationship, demonstrating that grain size rather than twin spacing is most sensitive to thermal annealing and plays a dominant role in the deformation of NT Ag films.« less

  12. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light.

    PubMed

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-09

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  13. Preface: Thin films of molecular organic materials

    NASA Astrophysics Data System (ADS)

    Fraxedas, J.

    2008-03-01

    This special issue is devoted to thin films of molecular organic materials and its aim is to assemble numerous different aspects of this topic in order to reach a wide scientific audience. Under the term 'thin films', structures with thicknesses spanning from one monolayer or less up to several micrometers are included. In order to narrow down this relaxed definition (how thin is thin?) I suggest joining the stream that makes a distinction according to the length scale involved, separating nanometer-thick films from micrometer-thick films. While the physical properties of micrometer-thick films tend to mimic those of bulk materials, in the low nanometer regime new structures (e.g., crystallographic and substrate-induced phases) and properties are found. However, one has to bear in mind that some properties of micrometer-thick films are really confined to the film/substrate interface (e.g. charge injection), and are thus of nanometer nature. Supported in this dimensionality framework, this issue covers the most ideal and model 0D case, a single molecule on a surface, through to the more application-oriented 3D case, placing special emphasis on the fascinating 2D domain that is monolayer assembly. Thus, many aspects will be reviewed, such as single molecules, self-organization, monolayer regime, chirality, growth, physical properties and applications. This issue has been intentionally restricted to small molecules, thus leaving out polymers and biomolecules, because for small molecules it is easier to establish structure--property relationships. Traditionally, the preparation of thin films of molecular organic materials has been considered as a secondary, lower-ranked part of the more general field of this class of materials. The coating of diverse surfaces such as silicon, inorganic and organic single crystals, chemically modified substrates, polymers, etc., with interesting molecules was driven by the potential applications of such molecular materials

  14. Preparation of thin polymer films for infrared reaction rate studies

    NASA Technical Reports Server (NTRS)

    Garrard, G. G.; Houston, D. W.

    1970-01-01

    Procedure for preparing thin films for infrared spectrophotometric analysis involves pressing of a neat mixture of reactants between nonreactive thin polymer films with noninterfering absorption bands. Pressing is done under a pressure that gives desirable thickness. Following this process, the film sandwich is cut to accommodate the laboratory instrument.

  15. Fractal structure formation from Ag nanoparticle films on insulating substrates.

    PubMed

    Tang, Jing; Li, Zhiyong; Xia, Qiangfei; Williams, R Stanley

    2009-07-01

    Two dimensional (2D) fractal structures were observed to form from fairly uniform Ag island films (equivalent mass thicknesses of 1.5 and 5 nm) on insulating silicon dioxide surfaces (thermally grown silicon oxide on Si or quartz) upon immersion in deionized water. This result is distinctly different from the previously observed three-dimensional (3D) growth of faceted Ag nanocrystals on conductive surfaces (ITO and graphite) as the result of an electrochemical Ostwald ripening process, which also occurs on native oxide covered silicon surfaces as reported here. The fractal structures formed by diffusion-limited aggregation (DLA) of Ag species on the insulating surfaces. We present the experimental observation of this phenomenon and discuss some possible mechanisms for the DLA formation. PMID:19496573

  16. Memristive behaviour of spin coated titania thin film

    NASA Astrophysics Data System (ADS)

    Kamarozaman, N. S.; Herman, S. H.; Mahmudin, M. A.

    2014-08-01

    This paper presents the memristive behaviour of spin coated titania thin films. The precursor molarity of titania thin film was varied from 0.05 to 0.4 M to study the effect of precursor molarity on the memristive behaviour of the thin films. From the observation, although the film thickness increased with the precursor molarity, the resistance ratios of the best switching loop for all samples showed no significant differences. However, it was found that the sample with less precursor molarity (device that having thinner film) required lesser time to produce the stable switching loop compared to the sample with higher precursor molarity (device that having thicker film).

  17. Processing of magnetostrictive thin film devices

    NASA Astrophysics Data System (ADS)

    Loveless, Michael Ray

    (Tb,Dy)Fesb2 intermetallic alloys exhibit very large magnetostrictive strains. Alloys with composition near Tbsb{0.3}Dysb{0.7}Fesb2, known as Terfenol-D, are of particular interest because this is the composition where room temperature anisotropy compensation occurs and the moment can be easily rotated. Terfenol-D has a cubic Laves phase structure and exhibits maximum magnetostrictive strain along $ directions at room temperature. Bulk Terfenol-D tends to grow as twinned dendritic sheets with $ orientation. Recently, there has been increased interest in Terfenol-D thin film devices. Crystallographic texture can change the magnetostrictive properties of thin films. It is the purpose of this research to study the effect of postdeposition annealing and magnetic annealing treatments on the microstructure of Terfenol-D thin films. It is predicted that textured films can be obtained by exploiting increased magnetocrystalline anisotropy at elevated temperatures. This would improve the low field magnetostrictive strains attainable for device applications. Also of recent interest is the fabrication of magnetostrictive composites. Increased toughness and durability are attainable at the cost of reduced magnetostrictive performance. Terfenol-D composites have been made with polymers. Composites with metals would be stronger and tougher but conventional high temperature processing routes cause unwanted reactions. Temperatures high enough to allow appreciable diffusion for sintering would also allow the metal binder phase to interdiffuse with Terfenol-D. This work also examines the feasibility of explosive compaction of Terfenol-D-metal composites. The short duration, on the order of microseconds, of the pressure and temperature pulse experienced by the powder leads to compaction at near room temperature. This is expected to prevent unwanted reactions between Terfenol-D and the metal binder.

  18. Thin Film Evolution Over a Thin Porous Layer: Modeling a Tear Film on a Contact Lens

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel; Nong, Kumnit

    2010-11-01

    We examine a mathematical model that describes the behavior of the pre-contact lens tear film of a human eye. Our work examines the effect of contact lens thickness and lens permeability and slip on the film dynamics. A mathematical model for the evolution of the tear film is derived using a lubrication approximation applied to the hydrodynamic equations of motion in the fluid film and the porous layer. The model is a nonlinear fourth order partial differential equation subject to boundary conditions and an initial condition for post-blink film evolution. We find that increasing the lens thickness, permeability and slip all contribute to an increase in the film thinning rate although for parameter values typical for contact lens wear these modifications are minor. The presence of the contact lens can, however, fundamentally change the nature of the rupture dynamics as the inclusion of the porous lens leads to rupture in finite time rather than infinite time.

  19. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  20. Colloidal Particles in Thin Nematic Wetting Films.

    PubMed

    Jeridi, Haifa; Tasinkevych, Mykola; Othman, Tahar; Blanc, Christophe

    2016-09-01

    We experimentally and theoretically study the variety of elastic deformations that appear when colloidal inclusions are embedded in thin wetting films of a nematic liquid crystal with hybrid anchoring conditions. In the thickest films, the elastic dipoles formed by particles and their accompanying defects share features with the patterns commonly observed in liquid crystal cells. When the film gets thinner than the particles size, however, the capillary effects strongly modify the appearance of the elastic dipoles and the birefringence patterns. The influence of the film thickness and particles sizes on the patterns has been explored. The main experimental features and the transitions observed at large scale-with respect to the inclusions' size-are explained with a simple two-dimensional Ansatz, combining capillarity and nematic elasticity. In a second step, we discuss the origin of the variety of observed textures. Developing a three-dimensional Landau-de Gennes model at the scale of the particles, we show that the presence of free interfaces and the beads confinement yield metastable configurations that are quenched during the film spreading or the beads trapping at interfaces. PMID:27538098