Science.gov

Sample records for ag x-ray laser

  1. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  2. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  3. Applications of soft x-ray lasers

    SciTech Connect

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  4. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  5. Potential Characteristics and Applications of X-Ray Lasers,

    DTIC Science & Technology

    1982-01-01

    X - ray lasers derives from their potential uses. Both radiation physics and materials ...laboratory sources of X - rays , from radioactive materials and X - ray tubes, through storage rings, to plasmas and eventually X - ray lasers, have unique and... ray laser research; (ii) radiation physics; (iii) natrrial_ analysis ; and (iv) materials modification. These categories, whilst broad and

  6. X-ray laser driven gold targets

    SciTech Connect

    Petrova, Tz. B. Whitney, K. G.; Davis, J.

    2014-03-15

    The femtosecond population dynamics of gold irradiated by a coherent high-intensity (>10{sup 17} W/cm{sup 2}) x-ray laser pulse is investigated theoretically. There are two aspects to the assembled model. One is the construction of a detailed model of platinum-like gold inclusive of all inner-shell states that are created by photoionization of atomic gold and decay either by radiative or Auger processes. Second is the computation of the population dynamics that ensues when an x-ray pulse is absorbed in gold. The hole state generation depends on the intensity and wavelength of the driving x-ray pulse. The excited state populations reached during a few femtosecond timescales are high enough to generate population inversions, whose gain coefficients are calculated. These amplified lines in the emitted x-ray spectrum provide important diagnostics of the radiation dynamics and also suggest a nonlinear way to increase the frequency of the coherent output x-ray pulses relative to the frequency of the driver input x-ray pulse.

  7. Simulation study of 3-5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M.

    2015-05-01

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3-5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (˜nc/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using Hydra, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from Cretin, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3-5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ˜100-150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (˜20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3-5 keV x-ray source on NIF.

  8. Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    SciTech Connect

    Kemp, G. E. Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M.

    2015-05-15

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3–5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (∼n{sub c}/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using HYDRA, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from CRETIN, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3–5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ∼100–150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (∼20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3–5 keV x-ray source on NIF.

  9. Soft x-ray laser microscope

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  10. X-ray laser system, x-ray laser and method

    DOEpatents

    London, Richard A.; Rosen, Mordecai D.; Strauss, Moshe

    1992-01-01

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  11. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  12. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  13. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  14. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  15. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  16. X-ray Free-electron Lasers

    SciTech Connect

    Feldhaus, J.; Arthur, J.; Hastings, J.B.; /SLAC

    2007-02-23

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, and can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.

  17. X-ray shadowgraphing in laser-produced plasma experiments.

    PubMed

    VanHulsteyn, D B; Benjamin, R F

    1977-08-01

    We discuss a design for an x-ray framing camera. Shadowgraphing experiments using a laser-generated x-ray source demonstrate that 5-microm spatial resolution can be obtained for this camera with less than 7 J of laser energy to produce the x-ray source.

  18. Soft X-Ray Laser Development

    DTIC Science & Technology

    1989-10-01

    AND SUBTrI 5 . FUNDING NUMBERS Soft X-ray Laser Development 61102F/2301/A8 L AUTHOR(S) ( Szymon Suckewer 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS...diDr-uinteg~uior Slack 5 . Funding Numbers. To include contract a-d5( fcanTehil and grant numtners; may include programn Reports. element number(s...g~m x 5 mm line-focus on a length-varying cylindrical target. The target lengths used in this experiment were 1, 2.5, and 4.5 mm ( limited by the

  19. Density gradient free electron collisionally excited x-ray laser

    DOEpatents

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  20. Density gradient free electron collisionally excited X-ray laser

    DOEpatents

    Campbell, Edward M.; Rosen, Mordecai D.

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  1. Transient and Capillary Collisional X-ray Laser

    SciTech Connect

    Shlyaptsev, V N; Dunn, J; Fournier, K B; Moon, S; Osterheld, A L; Rocca, J J; Detering, F; Rozmus, W; Matte, J P; Fiedorowicz, H; Bartnik, A; Kanouff, M

    2001-12-17

    In this work we report our numerical modeling results of laser-generated transient inversion and capillary discharge X-ray lasers. In the search for more efficient X-ray lasers we look closely at other approaches in conjunction with experiments at LLNL. In the search for improved X-ray lasers we perform modeling and experimental investigations of low density targets including gas puff targets. We have found the importance of plasma kinetics in transient X-ray lasers by expanding the physical model beyond hydrodynamics approach with Particle In Cell (PIC) and Fokker-Planck codes. The evidence of the Langdon effect was inferred from the recent experimental data obtained with the Ni-like Pd X-ray laser. We continue modeling different kinds of capillary discharge plasma configurations directed toward shorter wavelength X-ray lasers, plasma diagnostics and other applications.

  2. Legacy of the X-Ray Laser Program

    SciTech Connect

    Nilsen, J.

    1993-08-06

    The X-Ray Laser Program has evolved from a design effort focusing on developing a Strategic Defense Initiative weapon that protects against Soviet ICBMs to a scientific project that is producing new technologies for industrial and medical research. While the great technical successes and failures of the X-ray laser itself cannot be discussed, this article presents the many significant achievements made as part of the X-ray laser effort that are now being used for other applications at LLNL.

  3. All-laser-driven Thomson X-ray sources

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald P.

    2015-10-01

    We discuss the development of a new generation of accelerator-based hard X-ray sources driven exclusively by laser light. High-intensity laser pulses serve the dual roles: first, accelerating electrons by laser-driven plasma wakefields, and second, generating X-rays by inverse Compton scattering. Such all-laser-driven X-rays have recently been demonstrated to be energetic, tunable, relatively narrow in bandwidth, short pulsed and well collimated. Such characteristics, especially from a compact source, are highly advantageous for numerous advanced X-ray applications - in metrology, biomedicine, materials, ultrafast phenomena, radiology and fundamental physics.

  4. Laser-Pumped Coherent X-Ray FEL

    DTIC Science & Technology

    2008-11-14

    laser field replaces the magnetic wiggler field of a conventional FEL. Depending on the intensity and quality of both the electron beam and pump laser...and Line Width 16 IV. Comparison of Theory with Simulations 17 a) Wiggler based X-Ray FEL 17 b) Laser Pumped X-Ray FEL 18 V. Conclusions 19...FEL) an intense laser field replaces the magnetic wiggler field of a conventional FEL. Depending on the intensity and quality of both the electron

  5. Lasers, extreme UV and soft X-ray

    SciTech Connect

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  6. Collisional redistribution effects on x-ray laser saturation behavior

    SciTech Connect

    Koch, J.A.; MacGowan, B.J.; Da Silva, L.B.; Matthews, D.J.; Lee, R.W.; London, R.A.; Mrowka, S.; Underwood, J.H.; Batson, P.J.

    1994-06-01

    We recently published a detailed summary of our experimental and theoretical research on Ne-like Se x-ray laser line widths, and one of our conclusions was that collisional redistribution rates are likely to have an effect on the saturation behavior of the 206.4 {angstrom} Se x-ray laser. In this paper we focus on the effects of collisional redistribution on x-ray laser gain coefficients, and discuss ways of including these effects in existing laser line- transfer models.

  7. Development of small scale soft x-ray lasers

    SciTech Connect

    Kim, D.; Suckewer, S. . Plasma Physics Lab. Princeton Univ., NJ . Dept. of Mechanical and Aerospace Engineering); Skinner, C.H.; Voorhees, D. . Plasma Physics Lab.)

    1991-05-01

    At present rapid progress is being made in the application of soft x-ray lasers to fields such as microscopy and microlithography. A critical factor in the range of suitable applications is the scale and hence cost of the soft x-ray lasers. At Princeton, gain at 183{angstrom} has been obtained with relatively low pump laser energies (as low as 6J) in a portable'' small-scale soft x-ray laser system. We will also discuss aspects of data interpretation and pitfalls to be avoided in measurements of gain in such systems. 14 refs., 7 figs.

  8. X-ray laser `` oscillator-amplifier`` experiments

    SciTech Connect

    Shimkaveg, G.M.; Carter, M.R.; Young, B.K.F.; Walling, R.S.; Osterheld, A.L.; Trebes, J.E.; London, R.A.; Ratowsky, R.P.; Stewart, R.E.; Craxton, R.S.

    1993-03-19

    We present results from experiments directed toward increasing the degree of transverse coherence in x-ray laser beams. We have concentrated on the neon-like yttrium (Z=39) collisionally-pumped x-ray laser as the test system for these studies because of its unique combination of brightness, monochromaticity, and high-reflectivity optics availability. Attempts at improving laser performance using proximate feedback optics failed. Modest success has been found to date in ``double foil`` experiments, involving two x-ray lasers spatially separated by 29 cm and shot sequentially in an ``oscillator-amplifier`` configuration.

  9. Grazing Incidence Pumping for Efficient X-ray Lasers

    SciTech Connect

    Dunn, J; Keenan, R; Patel, P K; Price, D F; Smith, R F; Shlyaptsev, V N

    2004-09-30

    We report progress in developing efficient pumping of laser-driven x-ray lasers that opens new possibilities for both high average power x-ray lasers as well as producing progressively shorter wavelength lasers. The new scheme of grazing incidence pumping (GRIP) is described. In essence, a chosen electron density region of a pre-formed plasma column, produced by a longer pulse at normal incidence onto a slab target, is selectively pumped by focusing the short pulse {approx}ps laser at a determined grazing incidence angle to the target. The controlled use of refraction of the pumping laser in the plasma results in several benefits: The pump laser path length is longer and there is an increase in the laser absorption in the gain region for creating a collisional Ni-like ion x-ray laser. There is also an inherent traveling wave, close to c, that increases the overall pumping efficiency. The scheme requires careful tailoring of the pump and plasma conditions to the specific x-ray laser under investigation but the main advantage is a 3 - 30 times reduction in the laser pump energy for mid-Z materials. We report several examples of this new x-ray laser on two different laser systems. The first demonstrates a 10 Hz x-ray laser operating at 18.9 nm pumped with a total of 150 mJ of 800 nm wavelength from a Ti:Sapphire laser. The second case is shown where the COMET laser is used both at 527 nm and 1054 nm wavelength to pump higher Z materials with the goal of extending the wavelength regime of tabletop x-ray lasers below 10 nm.

  10. ZAP! The X-Ray Laser is Born

    SciTech Connect

    Ratner, Daniel

    2009-11-17

    SLAC has converted its giant particle accelerator into the world's first X-ray laser. By a billion fold the world's brightest X-ray source, the laser packs a trillion photons into pulses as short as a millionth of a billionth of a second. The ultra-bright, ultra-short X-ray pulses will drive a wide range of new experiments, as scientists strip electrons from atoms, photograph single molecules and make movies of chemical reactions. How has SLAC accomplished such feats of X-ray wizardry? Attend this public lecture to learn about the basics of an X-ray laser, the technologies at SLAC that make it possible, and the exciting new experiments now underway.

  11. Compact Laser-Compton X-ray Source at LLNL

    NASA Astrophysics Data System (ADS)

    Hwang, Yoonwoo; Marsh, Roark; Gibson, David; Anderson, Gerald; Barty, Christopher; Tajima, Toshiki

    2016-10-01

    The scaling of laser-Compton X-ray and gamma-ray sources is dependent upon high-current, low-emittance accelerator operation and implementation of efficient laser-electron interaction architectures. Laser-Compton X-rays have been produced using the unique compact X-band linear accelerator at LLNL operated in a novel multibunch mode, and results agree extremely well with modeling predictions. An Andor X-ray CCD camera and image plates have been calibrated and used to characterize the 30 keV laser-Compton X-ray beam. The X-ray source size and the effect of scintillator blur have been measured. K-edge absorption measurements using thin metallic foils confirm the production of narrow energy spread X-rays and results validate X-ray image simulations. Future plans for medically relevant imaging will be discussed with facility upgrades to enable 250 keV X-ray production. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Laser Electron Generator of the X-Ray Radiation

    NASA Astrophysics Data System (ADS)

    Artyukov, I. A.; Bessonov, E. G.; Vinogradov, A. V.; Gorbunkov, M. V.; Maslova, Yu. Ya.; Popov, N. L.; Postnov, A. A.; Uspenski, Yu. A.; Feshchenko, R. M.; Shabalin, Yu. V.; Slovokhotov, Yu. L.; Zubavichus, Ya. V.; Ishanov, B. S.; Poseryaev, A. V.; Shvedunov, V. I.; Kostrukov, P. V.; Tunkin, V. G.

    The possibility of the creation and the application prospects of the laser-electron X-ray generator based on the Thompson scattering of the laser radiation on a bunch of relativistic electrons are considered. Such a generator fills the existing gap between X-ray tubes and synchrotron sources, which is several orders of magnitude in terms of the brightness, average intensity, size and also in the construction and exploitation costs. The layout of beam-lines and experimental stations intended for the applications of the X-ray laser-electron generator to the investigation of the elemental composition and material structure and biological objects is discussed.

  13. Inner-shell photoionized x-ray lasers

    SciTech Connect

    Moon, Stephen J.

    1998-09-01

    The inner-shell photoionized x-ray lasing scheme is an attractive method for achieving x-ray lasing at short wavelengths, via population inversion following inner-shell photoionization (ISPI). This scheme promises both a short wavelength and a short pulse source of coherent x rays with high average power. In this dissertation a very complete study of the ISPI x-ray laser scheme is done concerning target structure, filter design and lasant medium. An investigation of the rapid rise time of x-ray emission from targets heated by an ultra-short pulse high-intensity optical laser was conducted for use as the x-ray source for ISPI x-ray lasing. Lasing by this approach in C at a wavelength of 45 Å requires a short pulse (about 50 fsec) driving optical laser with an energy of 1-5 J and traveling wave optics with an accuracy of ~ 15 μm. The optical laser is incident on a high-Z target creating a high-density plasma which emits a broadband spectrum of x rays. This x-ray source is passed through a filter to eliminate the low-energy x rays. The remaining high-energy x rays preferentially photoionize inner-shell electrons resulting in a population inversion. Inner-shell photoionized x-ray lasing relies on the large energy of a K-α transition in the initially neutral lasant. The photo energy required to pump this scheme is only slightly greater than the photon energy of the lasing transition yielding a lasing scheme with high quantum efficiency. However, the overall efficiency is reduced due to low x-ray conversion efficiency and the large probability of Auger decay yielding an overall efficiency of ~ 10-7 resulting in an output energy of μJ's. They calculate that a driving laser with a pulse duration of 40 fs, a 10μm x 1 cm line focus, and an energy of 1 J gives an effective gain length product (gl) of 10 in C at 45 Å. At saturation (gl ~ 18) they expect an output of ~ 0.1 μJ per pulse. The short duration of x-ray lasing (< 100 fs) combined with a 10-Hz

  14. Numerical Modeling of Table-Top X-Ray Lasers

    SciTech Connect

    Shlyaptsev, V N; Dunn, J; Moon, S; Osterheld, A L; Rocca, J J; Detering, F; Rozmus, W; Matte, J P; Fiedorowicz, H; Bartnik, A; Kanouff, M

    2002-04-29

    In this work we report numerical modeling results of laser-generated transient inversion and capillary discharge X-ray lasers. We have found the importance of plasma kinetics approaches in transient X-ray lasers physics by expanding the physical model beyond hydrodynamics approximation. Using Particle and Fokker-Planck codes the clear evidence of the Langdon effect was inferred from the recent experimental data obtained with the Ni-like Pd X-ray laser. In the search for more efficient X-ray lasers we looked closely at alternative target designs utilizing low density targets. In conjunction with recent experiments at LLNL the numerical investigations of gas puff targets has been performed.

  15. X-ray pumped Cr,Nd:GSGG laser

    SciTech Connect

    Brannon, P.J.; Hedemann, M.A.; Weichman, L.S.

    1995-12-31

    It has been demonstrated that X-rays alone can be used to pump a 1,061 nm Cr,Nd:GSGG laser. Lasing action has been observed when the laser rod absorbs greater than 27 krad of 2 MeV X-rays. The laser cavity consists of a corner cube and a output mirror with a reflectivity of 67%. The X-rays are delivered in a 20 ns pulse, and laser action is observed several {micro}s after the X-ray pulse. This delay suggests that chromium is important in the laser pumping process since it is known that an excited chromium ion takes about 10 {micro}s to transfer its energy to a neodymium ion.

  16. A High Efficiency Grazing Incidence Pumped X-ray Laser

    SciTech Connect

    Dunn, J; Keenan, R; Price, D F; Patel, P K; Smith, R F; Shlyaptsev, V N

    2006-08-31

    The main objective of the project is to demonstrate a proof-of-principle, new type of high efficiency, short wavelength x-ray laser source that will operate at unprecedented high repetition rates (10Hz) that could be scaled to 1kHz or higher. The development of a high average power, tabletop x-ray laser would serve to complement the wavelength range of 3rd and future 4th generation light sources, e.g. the LCLS, being developed by DOE-Basic Energy Sciences. The latter are large, expensive, central, synchrotron-based facilities while the tabletop x-ray laser is compact, high-power laser-driven, and relatively inexpensive. The demonstration of such a unique, ultra-fast source would allow us to attract funding from DOE-BES, NSF and other agencies to pursue probing of diverse materials undergoing ultrafast changes. Secondly, this capability would have a profound impact on the semiconductor industry since a coherent x-ray laser source would be ideal for ''at wavelength'' {approx}13 nm metrology and microscopy of optics and masks used in EUV lithography. The project has major technical challenges. We will perform grazing-incidence pumped laser-plasma experiments in flat or groove targets which are required to improve the pumping efficiency by ten times. Plasma density characterization using our existing unique picosecond x-ray laser interferometry of laser-irradiated targets is necessary. Simulations of optical laser propagation as well as x-ray laser production and propagation through freely expanding and confined plasma geometries are essential. The research would be conducted using the Physics Directorate Callisto and COMET high power lasers. At the end of the project, we expect to have a high-efficiency x-ray laser scheme operating below 20 nm at 10Hz with a pulse duration of {approx}2 ps. This will represent the state-of-the-art in x-ray lasers and would be a major step forward from our present picosecond laser-driven x-ray lasers. There is an added bonus of creating

  17. X-ray laser microscopy of rat sperm nuclei.

    PubMed

    Da Silva, L B; Trebes, J E; Balhorn, R; Mrowka, S; Anderson, E; Attwood, D T; Barbee, T W; Brase, J; Corzett, M; Gray, J

    1992-10-09

    The development of high brightness and short pulse width (< 200 picoseconds) x-ray lasers now offers biologists the possibility of high-resolution imaging of specimens in an aqueous environment without the blurring effects associated with natural motions and chemical erosion. As a step toward developing the capabilities of this type of x-ray microscopy, a tantalum x-ray laser at 44.83 angstrom wavelength was used together with an x-ray zone plate lens to image both unlabeled and selectively gold-labeled dried rat sperm nuclei. The observed images show approximately 500 angstrom features, illustrate the importance of x-ray microscopy in determining chemical composition, and provide information about the uniformity of sperm chromatin organization and the extent of sperm chromatin hydration.

  18. X-ray laser microscopy of rat sperm nuclei

    SciTech Connect

    Da Silva, L.B. ); Trebes, J.E.; Balhorn, R.; Mrowka, S.; Barbee, T.W.Jr.; Brase, J.; Corzett, M.; Koch, J.A.; Lee, C.; London, R.A.; MacGowan, B.J.; Matthews, D.L.; Stone, G. ); Anderson, E.; Attwood, D.T. ); Gray, J. ); Kern, D. )

    1992-10-09

    The development of high brightness and short pulse width x-ray lasers now offers biologists the possibility of high-resolution imaging of specimens in an aqueous environment without the blurring effects associated with natural motions and chemical erosion. As a step toward developing the capabilities of this type of x-ray microscopy, a tantalum x-ray laser at 44.83 angstrom wavelength was used together with an x-ray zone plate lens to image both unlabeled and selectively gold-labeled dried rat sperm nuclei. The observed images show {approximately}500 angstrom features, illustrate the importance of x-ray microscopy in determining chemical composition, and provide information about the uniformity of sperm chromatin organization and the extent of sperm chromatin hydration.

  19. Recent X-Ray Laser Characterization Experiments at LLNL

    SciTech Connect

    Smith, R F; Dunn, J; Nilsen, J; Fiedorowicz, H; Bartnik, A; Shlyaptsev, V N

    2002-02-26

    We report on a series of experiments, using the COMET picosecond facility, designed to characterize and develop different x-ray laser sources. This work encompasses collisional pumping of slab and gas puff targets.

  20. Review of soft x-ray lasers and their applications

    SciTech Connect

    Skinner, C.H.

    1991-03-01

    The emerging technology of soft x-ray lasers is in a transition phase between the first laboratory demonstrations of gain and the acceptance of soft x-ray lasers as practical tools for novel applications. Current research is focused on several fronts. The operational wavelength range has been extended to the water window'', important for applications in the life sciences. Gain has also been generated with substantially simpler technology (such as a 6J laser) and this augurs well for the commercially availability in the near future of soft x-ray lasers for a variety of applications. Advanced soft x-ray laser concepts are being developed from investigations into ultra-high intensity laser/matter interactions. The first paper a brief historical perspective of x-ray microscopy and holography have begun. In this paper a brief historical perspective of x-ray laser development will be followed by a review of recent advances in recombination, collisional and photo-pumped systems and applications. A summary of current gain-length performance achieved in laboratories worldwide is presented. Near term prospects for applications to novel fields are discussed. 81 refs., 9 figs., 1 tab.

  1. Ultrafast laser pump/x-ray probe experiments

    SciTech Connect

    Larsson, J.; Judd, E.; Schuck, P.J.

    1997-04-01

    In an ongoing project aimed at probing solids using x-rays obtained at the ALS synchrotron with a sub-picosecond time resolution following interactions with a 100 fs laser pulse, the authors have successfully performed pump-probe experiments limited by the temporal duration of ALS-pulse. They observe a drop in the diffraction efficiency following laser heating. They can attribute this to a disordering of the crystal. Studies with higher temporal resolution are required to determine the mechanism. The authors have also incorporated a low-jitter streakcamera as a diagnostic for observing time-dependant x-ray diffraction. The streakcamera triggered by a photoconductive switch was operated at kHz repetition rates. Using UV-pulses, the authors obtain a temporal response of 2 ps when averaging 5000 laser pulses. They demonstrate the ability to detect monochromatized x-ray radiation from a bend-magnet with the streak camera by measuring the pulse duration of a x-ray pulse to 70 ps. In conclusion, the authors show a rapid disordering of an InSb crystal. The resolution was determined by the duration of the ALS pulse. They also demonstrate that they can detect x-ray radiation from a synchrotron source with a temporal resolution of 2ps, by using an ultrafast x-ray streak camera. Their set-up will allow them to pursue laser pump/x-ray probe experiments to monitor structural changes in materials with ultrafast time resolution.

  2. Laser-heated X-ray flashlamp brightness measurements

    SciTech Connect

    Matthews, D.L.; Campbell, E.M.; Hagelstein, P.; Halsey, W.; Kauffman, R.L.; Koppel, L.; Phillion, D.; Price, R.; Toor, A.

    1983-12-01

    The authors present measurements of the X-ray emission characteristics of laser-irradiated flashlamp foils which are candidates to produce by resonant photoexcitation a population inversion in either a neon or fluorine lasant gas. Using the Shiva 1.06 ..mu.. laser, the authors heated Fe, Cr, and Ni foils to study the brightness and centroid energies of X-ray lines stemming from L-M transitions. Results indicate that appropriately bright and uniform sources can be produced.

  3. Contact microscopy with a soft x-ray laser

    SciTech Connect

    DiCicco, D.S.; Kim, D.; Rosser, R.J.; Skinner, C.H.; Suckewer, S.; Gupta, A.P.; Hirschberg, J.G.

    1989-03-01

    A soft x-ray laser of output energy 1-3 mJ at 19.2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. We also present a Composite Optical X- ray Laser Microscope ''COXRALM'' of novel design. 14 refs., 8 figs., 1 tab.

  4. X-Ray Diffraction Simulation Using Laser Pointers and Printers.

    ERIC Educational Resources Information Center

    Johnson, Neil E.

    2001-01-01

    Uses a laser pointer to demonstrate the analogy between optical and X-ray diffraction and a laser printer with 600 or 1200 dot resolution to create and modify arrays, print them on transparencies, and illuminate them with laser pointers. Includes 14 references. (Author/YDS)

  5. X-ray laser related experiments and theory at Princeton

    SciTech Connect

    Suckewer, S.

    1989-04-01

    This paper describes a new system for the development of an x-ray laser in the wavelength region from 5 nm to 1 nm utilizing a Powerful Sub-Picosecond Laser (PP-Laser) of expected peak power up to 0.5 TW in a 300 fs pulse. Soft x-ray spectra generated by the interaction of the PP-Laser beam with different targets are presented and compared to the spectra generated by a much less intense laser beam (20--30 GW). A theoretical model for the interaction of atoms with such a strong laser EM field is also briefly discussed. The development of additional amplifiers for the recombining soft x-ray laser and the design of a cavity are presented from the point of view of applications for x-ray microscopy and microlithography. This overview concludes with the presentation of recent results on the quenching of spontaneous emission radiation and its possible effect on the absolute intensity calibration of soft x-ray spectrometers. 26 refs., 18 figs.

  6. X-ray production with sub-picosecond laser pulses

    SciTech Connect

    Schappert, G.T.; Cobble, J.A.; Fulton, R.D.; Kyrala, G.A.

    1993-12-31

    The interaction of intense, sub-picosecond laser pulses with solid targets produces intense picosecond x-ray pulses. With focused laser pulses of several 10 {sup 18} W/cm{sup 2}, He-like and H-like line radiation from targets such as aluminum and silicon has been produced. The energy conversion efficiency from the laser pulse energy to the 1--2 keV line x-rays is nearly one percent. The duration of the line x-ray radiation is of the order of ten picoseconds, although this may be an upper estimate because of the temporal resolution of the x-ray streak camera. The spatial extent of the x-ray source region is only slightly larger than the laser focal spot, or about 10 {mu}m in diameter. With these characteristics, such x-ray sources emit an intensity of nearly 10{sup 14} W/cm{sup 2}. Experiments and modeling which led to the above conclusions will be discussed.

  7. X-Ray Laser Applications Study

    DTIC Science & Technology

    1977-07-01

    that attaching adenine to the sugar-phosphate " protects " the sugar phosphate from radical formation by about a factor of 7 (9.4 + 1.3), but...attaching thymine affords much less protection (9.4 -> 4.3) and in whole DNA a G-value of 3.8 indicates that about 2 radicals are produced per ionization...P. and B. Jacobson, Acta Radiologica 5^, 337 (1959), Eisenberger, P. and S. L. McCall, Phys. Rev. Lett, 26, 684 (1971), Eisenberger, P., X-Ray

  8. Streaked x-ray microscopy of laser-fusion targets

    SciTech Connect

    Price, R.H.; Campbell, E.M.; Rosen, M.D.; Auerbach, J.M.; Phillion, D.W.; Whitlock, R.R.; Obenshain, S.P.; McLean, E.A.; Ripin, B.H.

    1982-08-01

    An ultrafast soft x-ray streak camera has been coupled to a Wolter axisymmetric x-ray microscope. This system was used to observe the dynamics of laser fusion targets both in self emission and backlit by laser produced x-ray sources. Spatial resolution was 7 ..mu..m and temporal resolution was 20 ps. Data is presented showing the ablative acceleration of foils to velocities near 10/sup 7/ cm/sec and the collision of an accelerated foil with a second foil, observed using 3 keV streaked x-ray backlighting. Good agreement was found between hydrocode simulations, simple models of the ablative acceleration and the observed velocities of the carbon foils.

  9. Excitation of nuclear isomers by X rays from laser plasma

    SciTech Connect

    Andreev, Aleksandr A; Karpeshin, F; Trzhaskovskaya, M B; Platonov, Konstantin Yu; Rozhdestvenskii, Yu V

    2010-06-23

    The possibility of obtaining isomer nuclei is studied by the example of the molybdenum isomer {sup 93}Mo upon irradiation of a niobium {sup 93}Nb target by {approx}50-J, 100-fs laser pulses. It is shown that the modern laser technique allows production of isomer nuclei by accelerated protons and radiative de-excitation of isomer nuclear states by thermal or line X-rays from laser plasma. (interaction of laser radiation with matter. laser plasma)

  10. Picosecond resolution soft x-ray laser plasma interferometry

    SciTech Connect

    Moon, S; Nilsen, J; Ng, A; Shlyaptsev, V; Dunn, J; Hunter, J; Keenan, R; Marconi, M; Filevich, J; Rocca, J; Smith, R

    2003-12-01

    We describe a soft x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high throughput amplitude division interferometer and a 14.7 nm transient inversion soft x-ray laser that produces {approx} 5 ps pulses. Due to its picosecond resolution and short wavelength scalability, this technique has potential for extending the high inherent precision of soft x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confined fusion. Results of its use in the diagnostics of dense large scale laser-created plasmas are presented.

  11. Compact Laser-Compton X-ray Source Development

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun

    The state-of-the-art X-ray source based on inverse-Compton scattering between a high-brightness, relativistic electron beam produced by an X-band RF accelerator and a high-intensity laser pulse generated by chirped-pulse amplification (CPA) has been carried out by our research team at Lawrence Livermore National Laboratory. This system is called "Compact Laser-Compton X-ray Source". The applications include nuclear resonance fluorescence, medical imaging and therapy, and nuclear waste imaging and assay. One of the key factors in this system is how we know the interaction happened in the vacuum chamber, which is the spectrometer of electron beams. The other key factor is the interaction after the spectrometer, which is the outgoing X-ray. In this thesis, the work in the simulation for the result of the interaction between electrons and the laser, the calibration of spectrometer, and laser focus characterization are discussed.

  12. Laser Produced X-Ray for High Resolution Lithography.

    DTIC Science & Technology

    2014-09-26

    Neodymium Laser Pulse ....... ....................... ... 24 Figure 11. Densitometer Trace of Al X-Ray Spectrum ........... ... 26...typical x-ray lithography experiments, 100 joule light pulses with a nanosecond pulse width (full-width-half-maximum) were produced with a neodymium -doped...34."..’’’.. ’ ’.’/ .. ".-".’ ’ ’ . > . . ’ ’ ’ ’ ’ , ’ : . r "" ’ "" " " ". . . .;" 23 The Laser -, The laser used in prior research is a neodymium

  13. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, Joseph

    1992-01-01

    A resonantly photo-pumped x-ray laser (10) is formed of a vanadium (12) and titanium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state neon-like titanium ions (34) are resonantly photo-pumped by line emission from fluorine-like vanadium ions (32).

  14. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, J.

    1992-05-26

    A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions. 4 figs.

  15. Absolute calibration of a soft X-ray spectrograph for X-ray laser research using white beam.

    PubMed

    Fujikawa, C; Kawachi, T; Ando, K; Yamaguchi, N; Hara, T

    1998-05-01

    Absolute calibration of a soft X-ray spectrograph has been performed using a white beam of synchrotron radiation. The calibrated spectrograph was a flat-field grazing-incidence spectrograph with an X-ray CCD detector for X-ray laser research. Absolute sensitivity of the spectrograph system can be obtained from transmitted spectra using filters made of several different materials, each providing an absorption-edge wavelength standard. The absolute sensitivity determined in this work shows nearly the same behaviour with wavelength as that in another calibration experiment using a laser-produced plasma as an X-ray source.

  16. Optical Shaping of X-Ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Marinelli, A.; Coffee, R.; Vetter, S.; Hering, P.; West, G. N.; Gilevich, S.; Lutman, A. A.; Li, S.; Maxwell, T.; Galayda, J.; Fry, A.; Huang, Z.

    2016-06-01

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes.

  17. Optical Shaping of X-Ray Free-Electron Lasers.

    PubMed

    Marinelli, A; Coffee, R; Vetter, S; Hering, P; West, G N; Gilevich, S; Lutman, A A; Li, S; Maxwell, T; Galayda, J; Fry, A; Huang, Z

    2016-06-24

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes.

  18. Tabletop Transient Collisional Excitation X-Ray Lasers

    SciTech Connect

    Dunn, J; Li, Y; Osterheld, A L; Nilsen, J; Moon, S J; Fournier, K B; Hunter, J R; Faenov, A; Pikuz, T A; Shlyaptsev, V N

    1999-09-03

    Recent transient collisional excitation x-ray laser experiments are reported using the COMET tabletop laser driver at the Lawrence Livermore National Laboratory (LLNL). Ne-like and Ni-like ion x-ray laser schemes have been investigated with a combination of long 600 ps and short {approximately}1 ps high power laser pulses with 5-10 J total energy. We show small signal gain saturation for x-ray lasers when a reflection echelon traveling wave geometry is utilized. A gain length product of 18 has been achieved for the Ni-like Pd 4d{r_arrow}4p J=0-1 line at 147 {angstrom}, with an estimated output of {approximately}10{micro}J. Strong lasing on the 119 {angstrom} Ni-like Sn line has also been observed. To our knowledge this is the first time gain saturation has been achieved on a tabletop laser driven scheme and is the shortest wavelength tabletop x-ray laser demonstrated to date. In addition, we present preliminary results of the characterization of the line focus uniformity for a Ne-like ion scheme using L-shell spectroscopy.

  19. Pulsed x-ray generator for commercial gas lasers

    NASA Astrophysics Data System (ADS)

    Bollanti, S.; Bonfigli, F.; Di Lazzaro, P.; Flora, F.; Giordano, G.; Letardi, T.; Murra, D.; Schina, G.; Zheng, C. E.

    2001-10-01

    We have designed and tested a 1-m-long x-ray diode based on innovative plasma cathodes, which exploit commercial spark plugs as electron emitters. Based on the results of a numerical study, we optimized both diode geometry (e.g., the angle between anode and cathode surfaces, the thickness of the Al window) and electrical circuitry (e.g., the capacitance in series to each spark plug, the peak voltage of the anode) of our x-ray generator. The overall result is a simple and efficient circuitry, giving a total diode current in excess of 2.1 kA with a breakdown voltage of 70 kV, which generates a 50 ns rise-time x-ray pulse with a spatially averaged dosage of up to 6×10-4 Gy when using a Pb-wrapped anode. The double-diode x-ray generator was operated for 1.5×106 shots at a repetition rate of up to 30 Hz, and the lifetime test was interrupted without any fault. During the lifetime test, it was not necessary to adjust any working parameter. At the end of the lifetime test, the x-ray emission uniformity was better than 80% along the longitudinal axis. This x-ray generator has a lifetime, reliability, and cost fitting the requirements of industrial users. Among the broad range of potential applications, this x-ray generator is particularly suitable to ionize discharge pumped gas lasers, like TEA CO2 and excimer lasers, including those operated by x-ray triggered discharges.

  20. A Feasibility Experiment for a Soft X-Ray Laser

    DTIC Science & Technology

    1976-09-01

    AFWL-TR-76-107 ( )FWL-TR- 76-107 A FEASIBILITY EXPERIMENT FOR A SOFT X-RAY LASER September 1976 Final Report Approved for public release...Introduction 29 The Utah Experiment 29 Other Hard X-ray Laser Considerations 29 V SUMMARY Conclusions 31 A4CEUI@N lV Future Directions 31 IT4 whie... Experimental Chamber 23 4 Sketch of Vacuum Chamber 24 ii AFWL-TR-76-107 SECTION I INTRODUCTION 1. SYNOPSIS The purpose of this report is to present an

  1. Laser induced x-ray `RADAR' particle physics model

    NASA Astrophysics Data System (ADS)

    Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.

    2016-05-01

    The technique of high-power laser-induced plasma acceleration can be used to generate a variety of diverse effects including the emission of X-rays, electrons, neutrons, protons and radio-frequency radiation. A compact variable source of this nature could support a wide range of potential applications including single-sided through-barrier imaging, cargo and vehicle screening, infrastructure inspection, oncology and structural failure analysis. This paper presents a verified particle physics simulation which replicates recent results from experiments conducted at the Central Laser Facility at Rutherford Appleton Laboratory (RAL), Didcot, UK. The RAL experiment demonstrated the generation of backscattered X-rays from test objects via the bremsstrahlung of an incident electron beam, the electron beam itself being produced by Laser Wakefield Acceleration. A key initial objective of the computer simulation was to inform the experimental planning phase on the predicted magnitude of the backscattered X-rays likely from the test objects. This objective was achieved and the computer simulation was used to show the viability of the proposed concept (Laser-induced X-ray `RADAR'). At the more advanced stages of the experimental planning phase, the simulation was used to gain critical knowledge of where it would be technically feasible to locate key diagnostic equipment within the experiment. The experiment successfully demonstrated the concept of X-ray `RADAR' imaging, achieved by using the accurate timing information of the backscattered X-rays relative to the ultra-short laser pulse used to generate the electron beam. By using fast response X-ray detectors it was possible to derive range information for the test objects being scanned. An X-ray radar `image' (equivalent to a RADAR B-scan slice) was produced by combining individual X-ray temporal profiles collected at different points along a horizontal distance line scan. The same image formation process was used to generate

  2. High repetition rate laser produced soft x-ray source for ultrafast x-ray absorption near edge structure measurements.

    PubMed

    Fourmaux, S; Lecherbourg, L; Harmand, M; Servol, M; Kieffer, J C

    2007-11-01

    Recent progress in high intensity ultrafast laser systems provides the opportunity to produce laser plasma x-ray sources exhibiting broad spectrum and high average x-ray flux that are well adapted to x-ray absorption measurements. In this paper, the development of a laser based x-ray absorption near edge structure (XANES) beamline exhibiting high repetition rate by using the Advanced Laser Light Source (ALLS) facility 100 Hz laser system (100 mJ, 35 fs at 800 nm) is presented. This system is based on a broadband tantalum solid target soft x-ray source and a grazing incidence grating spectrometer in the 1-5 nm wavelength range. To demonstrate the high potential of this laser based XANES technique in condensed matter physics, material science, or biology, measurements realized with several samples are presented: VO2 vanadium L edge, Si3N4 nitrogen K edge, and BPDA/PPD polyimide carbon K edge. The characteristics of this laser based beamline are discussed in terms of brightness, signal to noise ratio, and compared to conventional synchrotron broadband x-ray sources which allow achieving similar measurements. Apart from the very compact size and the relative low cost, the main advantages of such a laser based soft x-ray source are the picosecond pulse duration and the perfect synchronization between this x-ray probe and a laser pulse excitation which open the way to the realization of time resolved x-ray absorption measurements with picosecond range time resolution to study the dynamics of ultrafast processes and phase transition.

  3. Ultrafast x-ray diffraction of laser-irradiated crystals

    NASA Astrophysics Data System (ADS)

    Heimann, P. A.; Larsson, J.; Chang, Z.; Lindenberg, A.; Schuck, P. J.; Judd, E.; Padmore, H. A.; Bucksbaum, P. H.; Lee, R. W.; Murnane, M.; Kapteyn, H.; Wark, J. S.; Falcone, R. W.

    1997-07-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si (111) crystal and then by a sample crystal, presently InSb (111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or `camshaft' operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

  4. Ultrafast x-ray diffraction of laser-irradiated crystals

    SciTech Connect

    Heimann, P.A.; Padmore, H.A.; Lindenberg, A.; Schuck, P.J.; Judd, E.; Falcone, R.W.; Bucksbaum, P.H.; Murnane, M.; Kapteyn, H. Lee, R.W. Wark, J.S.

    1997-07-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si (111) crystal and then by a sample crystal, presently InSb (111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or {open_quote}camshaft{close_quote} operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps. {copyright} {ital 1997 American Institute of Physics.}

  5. Ultrafast x-ray diffraction of laser-irradiated crystals

    SciTech Connect

    Heimann, P.A.; Larsson, J.; Chang, Z.

    1997-09-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si(111) crystal and then by a sample crystal, presently InSb(111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or camshaft operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

  6. Ultrafast x-ray diffraction of laser-irradiated crystals

    SciTech Connect

    Heimann, P. A.; Padmore, H. A.; Larsson, J.; Lindenberg, A.; Schuck, P. J.; Judd, E.; Falcone, R. W.; Chang, Z.; Bucksbaum, P. H.; Murnane, M.; Kapteyn, H.; Lee, R. W.; Wark, J. S.

    1997-07-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si (111) crystal and then by a sample crystal, presently InSb (111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or 'camshaft' operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

  7. Liquid explosions induced by X-ray laser pulses

    SciTech Connect

    Stan, Claudiu A.; Milathianaki, Despina; Laksmono, Hartawan; Sierra, Raymond G.; McQueen, Trevor A.; Messerschmidt, Marc; Williams, Garth J.; Koglin, Jason E.; Lane, Thomas J.; Hayes, Matt J.; Guillet, Serge A. H.; Liang, Mengning; Aquila, Andrew L.; Willmott, Philip R.; Robinson, Joseph S.; Gumerlock, Karl L.; Botha, Sabine; Nass, Karol; Schlichting, Ilme; Shoeman, Robert L.; Stone, Howard A.; Boutet, Sébastien

    2016-05-23

    Explosions are spectacular and intriguing phenomena that expose the dynamics of matter under extreme conditions. We investigated, using time-resolved imaging, explosions induced by ultraintense X-ray laser pulses in water drops and jets. Our observations revealed an explosive vaporization followed by high-velocity interacting flows of liquid and vapour, and by the generation of shock trains in the liquid jets. These flows are different from those previously observed in laser ablation, owing to a simpler spatial pattern of X-ray absorption. We show that the explosion dynamics in our experiments is consistent with a redistribution of absorbed energy, mediated by a pressure or shock wave in the liquid, and we model the effects of explosions, including their adverse impact on X-ray laser experiments. As a result, X-ray laser explosions have predictable dynamics that may prove useful for controlling the state of pure liquids over broad energy scales and timescales, and for triggering pressure-sensitive molecular dynamics in solutions.

  8. Liquid explosions induced by X-ray laser pulses

    DOE PAGES

    Stan, Claudiu A.; Milathianaki, Despina; Laksmono, Hartawan; ...

    2016-05-23

    Explosions are spectacular and intriguing phenomena that expose the dynamics of matter under extreme conditions. We investigated, using time-resolved imaging, explosions induced by ultraintense X-ray laser pulses in water drops and jets. Our observations revealed an explosive vaporization followed by high-velocity interacting flows of liquid and vapour, and by the generation of shock trains in the liquid jets. These flows are different from those previously observed in laser ablation, owing to a simpler spatial pattern of X-ray absorption. We show that the explosion dynamics in our experiments is consistent with a redistribution of absorbed energy, mediated by a pressure ormore » shock wave in the liquid, and we model the effects of explosions, including their adverse impact on X-ray laser experiments. As a result, X-ray laser explosions have predictable dynamics that may prove useful for controlling the state of pure liquids over broad energy scales and timescales, and for triggering pressure-sensitive molecular dynamics in solutions.« less

  9. Soft x-ray laser microscope. Final report

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL`s 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si{sub 3}N{sub 4}) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  10. Liquid explosions induced by X-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Stan, Claudiu A.; Milathianaki, Despina; Laksmono, Hartawan; Sierra, Raymond G.; McQueen, Trevor A.; Messerschmidt, Marc; Williams, Garth J.; Koglin, Jason E.; Lane, Thomas J.; Hayes, Matt J.; Guillet, Serge A. H.; Liang, Mengning; Aquila, Andrew L.; Willmott, Philip R.; Robinson, Joseph S.; Gumerlock, Karl L.; Botha, Sabine; Nass, Karol; Schlichting, Ilme; Shoeman, Robert L.; Stone, Howard A.; Boutet, Sébastien

    2016-10-01

    Explosions are spectacular and intriguing phenomena that expose the dynamics of matter under extreme conditions. We investigated, using time-resolved imaging, explosions induced by ultraintense X-ray laser pulses in water drops and jets. Our observations revealed an explosive vaporization followed by high-velocity interacting flows of liquid and vapour, and by the generation of shock trains in the liquid jets. These flows are different from those previously observed in laser ablation, owing to a simpler spatial pattern of X-ray absorption. We show that the explosion dynamics in our experiments is consistent with a redistribution of absorbed energy, mediated by a pressure or shock wave in the liquid, and we model the effects of explosions, including their adverse impact on X-ray laser experiments. X-ray laser explosions have predictable dynamics that may prove useful for controlling the state of pure liquids over broad energy scales and timescales, and for triggering pressure-sensitive molecular dynamics in solutions.

  11. Grazing Incidence Pumping for High Efficiency X-ray Lasers

    SciTech Connect

    Dunn, J; Keenan, R; Shlyaptsev, V N

    2005-10-03

    Over the last decade, most laser-driven collisional excitation x-ray lasers have relied on the absorption of the pump energy incident at normal incidence to a pre-formed plasma. The main advantage is that the inversion can be created at various plasma regions in space and time where the amplification and ray propagation processes are best served. The main disadvantage is that different plasma regions regardless of the contribution to the inversion have to be pumped simultaneously in order to make the laser work. This leads to a loss of efficiency. The new scheme of grazing incidence pumping (GRIP) addresses this issue. In essence, a chosen electron density region of a pre-formed plasma column, produced by a longer pulse at normal incidence onto a slab target, is selectively pumped by focusing a short pulse of 100 fs-10 ps duration laser at a determined grazing incidence angle to the target surface. The exact angle is dependent on the pump wavelength and relates to refraction of the drive beam in the plasma. The controlled use of refraction of the pumping laser in the plasma results in several benefits: The pump laser path length is longer and there is an increase in the laser absorption in the gain region for creating a collisional Ni-like ion x-ray laser. There is also an inherent traveling wave, close to c, that increases the overall pumping efficiency. This can lead to a 3-30 times reduction in the pump energy for mid-Z, sub-20 nm lasers. We report several examples of this new x-ray laser on two different laser systems. The first demonstrates a 10 Hz x-ray laser operating at 18.9 nm pumped with a total of 150 mJ of 800 nm wavelength from a Ti:Sapphire laser. The second case is shown where the COMET laser is used both at 527 nm and 1054 nm wavelength to pump higher Z materials with the goal of extending the wavelength regime of tabletop x-ray lasers below 10 nm.

  12. X-ray Laser Animated Fly-Through

    ScienceCinema

    None

    2016-07-12

    Take a tour with an electron's-eye-view through SLAC's revolutionary new X-ray laser facility with this 5 1/2 minute animation. See how the X-ray pulses are generated using the world's longest linear accelerator along with unique arrays of machinery specially designed for this one-of-a-kind tool. For more than 40 years, SLAC's two-mile-long linear accelerator (or linac) linac has produced high-energy electrons for cutting-edge physics experiments. Now, SLAC's linac has entered a new phase of its career with the creation of the Linac Coherent Light Source (LCLS).

  13. The First Angstrom X-Ray Free-Electron Laser

    SciTech Connect

    Galayda, John; /SLAC

    2012-08-24

    The Linac Coherent Light Source produced its first x-ray laser beam on 10 April 2009. Today it is routinely producing x-ray pulses with energy >2 mJ across the operating range from 820-8,200 eV. The facility has begun operating for atomic/molecular/optical science experiments. Performance of the facility in its first user run (1 October - 21 December) and current machine development activities will be presented. Early results from the preparations for the start of the second user run is also reported.

  14. Compact x-ray lasers in the laboratory

    SciTech Connect

    Barletta, W.A.

    1988-10-03

    Compact x-ray lasers in the laboratory can be produced with ultrahigh gradient rf linacs based on recent advances in linac technology by an SLAC-LLNL-LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be converted to soft x rays in the range of 2--10 nm by passage through short period, high field strength wigglers. Alternatively, the beam can pump a low density dielectric to produce x rays via recombination. Such linear light sources can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 15 refs., 7 figs., 3 tabs.

  15. The History of X-ray Free-Electron Lasers

    SciTech Connect

    Pellegrini, C.; /UCLA /SLAC

    2012-06-28

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  16. Short wavelength nickel-like x-ray laser development

    SciTech Connect

    MacGowan, B.J.; Da Silva, L.B.; Fields, D.J.; Fry, A.R.; Keane, C.J.; Koch, J.A.; Matthews, D.L.; Maxon, M.S.; Mrowka, S.; Osterheld, A.L.; Scofield, J.H.; Shimkaveg, G.

    1991-01-07

    Ni-like x-ray lasers have been produced at wavelengths near to, and below the carbon K edge (43.76-{Angstrom}). Recent work has concentrated on the development of the Ni-like Ta amplifier at 44.83-{Angstrom}. Amplification occurs in a laser produced plasma created by irradiating a thin foil of Ta with two beams of the Nova laser. Up to 8 gainlengths have been demonstrated so far, with a gain coefficient of 3.2 cm{sup {minus}1} and a gain duration of 250 psec. The wavelength of 44.83-{Angstrom} is close to optimal for holographic imaging of live cells. It remains to optimize the coherent output power of the amplifier to use it as a source for future x-ray holography experiments. 19 refs., 10 figs., 2 tabs.

  17. Solid-state lasers for x-ray lithography

    SciTech Connect

    Manes, K.R.

    1989-12-01

    Background technical and cost information are compiled on four solid-state laser systems for x-ray lithography. If one takes a single work station on an IBM synchrotron beam-line as a standard, there is no near-term glass laser driven source to equal it. Our least cost near-term solid-state laser which can meet all the requirements is CVL pumped Ti:sapphire, but the high cost of CVL pumping makes its long-term salability questionable. The most attractive long-term option appears to be diode pumped Nd:YAG with Vortek arc-lamp pumped Nd:YAG as a low risk backup. Both of these solid-state options appear to significantly undercut synchrotron based x-ray sources in capital cost and probably also in operating costs as well as safety considerations. Once engineering development of solid-state x-ray lithographic laser systems is complete, one to a few kilowatt crystalline lasers should be producible for between $1 million and $2 million. 23 refs., 25 figs., 4 tabs.

  18. Transient-gain photoionization x-ray laser

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Rohringer, Nina

    2014-12-01

    We present a generalized theory based on one-dimensional Maxwell-Bloch equations to study the amplification process of an inner-shell photoionization-pumped atomic x-ray laser. Focusing an x-ray free-electron laser beam in an elongated neon-gas target results in a strong exponential amplification of K α fluorescence, as recently demonstrated [N. Rohringer et al., Nature (London) 481, 488 (2012), 10.1038/nature10721; C. Weninger et al., Phys. Rev. Lett. 111, 233902 (2013), 10.1103/PhysRevLett.111.233902]. Here, we present an in-depth theoretical study of the amplification process that goes beyond the previous theory based on a rate-equation approach. We study the evolution of the pulse characteristics during the amplification process for transform-limited Gaussian and broadband self-amplified spontaneous-emission pump pulses. We discuss the impact of the gain-dependent group velocity on the emitted x-ray radiation and the resulting gain-guiding effects. A thorough analysis of the spectral and temporal properties of the emitted radiation is presented, including higher-order field-correlation functions, to characterize the ensemble of emitted x-ray pulses.

  19. Diagnostics for an XUV/soft x-ray laser

    SciTech Connect

    Kauffman, R.L.; Matthews, D.L.; Ceglio, N.; Medecki, H.

    1984-03-03

    We have begun investigating the production of an XUV/soft x-ray laser, using our high-powered glass lasers as drivers. A major diagnostic for lasing is the measure of the absolute power produced in the lasing line. I have developed a spectrograph to time-resolved lasing lines in the energy range from 50 eV to greater than 200 eV. the spectrograph combines a transmission grating and x-ray streak camera to produce a flat field instrument. A cylindrical mirror is used in front of the grating to image the source and act as a collecting optic. The efficiency of the components is calibrated so that absolute intensities can be measured. I will compare the performance of this instrument with reflection grating systems. I will also discuss planned improvements to the system which should increase total throughput, image quality, and resolving power.

  20. [Soft X-ray reflectometer with laser produced plasma source].

    PubMed

    Chen, Bo; Ni, Qi-liang; Cao, Ji-hong

    2005-03-01

    A soft X-ray reflectometor with laser-produced plasma source developed in the authorial lab is presented for the measurements of efficiencies of gratings, transmission of filter and reflectance of multilayer coatings. The reflectometer is composed of a soft X-ray laser-produced plasma source, a grazing incidence monochromator with a constant deviation angle, a vacuum chamber, a sample table, a photo-electronic unit and a computer controlling unit. The working wavelength is from 8 to 30 nm and the maximum sample size is 130 mm long by 120 mm wide by 120 mm high. In order to test the performances of the reflectometer, the reflectivity of multilayer coatings was obtained by using this device. The measured results agree well with the theoretical calculation. The reproducibility of measured reflectance is +/-0.6%.

  1. Characterization of Pr:LuAG scintillating crystals for X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertoni, R.; Bonesini, M.; Cervi, T.; Clemenza, M.; De Bari, A.; Falcone, A.; Mazza, R.; Menegolli, A.; Nastasi, M.; Rossella, M.

    2016-07-01

    The main features of the Pr doped Lu3Al5O12 (Pr:LuAG) scintillating crystals for X-ray spectroscopy applications have been studied using different radioactive sources and photo-detectors. Pr:LuAG is cheaper, compared to a Germanium detector, but with remarkable properties which make it useful for many applications, from fundamental physics measurements to the PET imaging for medical purposes: high density, elevate light yield, fast response, high energy resolution, no hygroscopicity. A sample of Pr:LuAG crystals with 14 mm×14 mm surface area and 13 mm thickness and a NaI crystal of the same surface and 26 mm thickness used as a reference have been characterized with several radioactive sources, emitting photons in the range 100-1000keV. Different light detectors were adopted for the Pr:LuAG studies, sensitive to its UV emission (peak at 310 nm): a 3 in. PMT (Hamamatsu R11065) and new arrays of Hamamatsu SiPM S13361, with siliconic resin as a window. Preliminary results are presented on the performance of the Pr:LuAG crystals, to be mounted in a 2 × 2 array to be tested in the 2015 run of the FAMU experiment at RIKEN-RAL muon facility. The goal is the detection of the X-rays (around 130 keV) emitted during the de-excitation processes of the muonic hydrogen after the excitation with an IR laser with wavelength set at the resonance of the hyperfine splitting, to measure the muonic atom proton radius with unprecedented precision.

  2. The physics of x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Pellegrini, C.; Marinelli, A.; Reiche, S.

    2016-01-01

    X-ray free-electron lasers (x-ray FELs) give us for the first time the possibility to explore structures and dynamical processes of atomic and molecular systems at the angstrom-femtosecond space and time scales. They generate coherent photon pulses with time duration of a few to 100 fs, peak power of 10 to 100 GW, over a wavelength range extending from about 100 nm to less than 1 Å. Using these novel and unique capabilities new scientific results are being obtained in atomic and molecular sciences, in areas of physics, chemistry, and biology. This paper reviews the physical principles, the theoretical models, and the numerical codes on which x-ray FELs are based, starting from a single electron spontaneous undulator radiation to the FEL collective instability of a high density electron beam, strongly enhancing the electromagnetic radiation field intensity and its coherence properties. A short review is presented of the main experimental properties of x-ray FELs, and the results are discussed of the most recent research to improve their longitudinal coherence properties, increase the peak power, and generate multicolor spectra.

  3. X-ray lasers for structural and dynamic biology

    NASA Astrophysics Data System (ADS)

    Spence, J. C. H.; Weierstall, U.; Chapman, H. N.

    2012-10-01

    Research opportunities and techniques are reviewed for the application of hard x-ray pulsed free-electron lasers (XFEL) to structural biology. These include the imaging of protein nanocrystals, single particles such as viruses, pump-probe experiments for time-resolved nanocrystallography, and snapshot wide-angle x-ray scattering (WAXS) from molecules in solution. The use of femtosecond exposure times, rather than freezing of samples, as a means of minimizing radiation damage is shown to open up new opportunities for the molecular imaging of biochemical reactions at room temperature in solution. This is possible using a ‘diffract-and-destroy’ mode in which the incident pulse terminates before radiation damage begins. Methods for delivering hundreds of hydrated bioparticles per second (in random orientations) to a pulsed x-ray beam are described. New data analysis approaches are outlined for the correlated fluctuations in fast WAXS, for protein nanocrystals just a few molecules on a side, and for the continuous x-ray scattering from a single virus. Methods for determining the orientation of a molecule from its diffraction pattern are reviewed. Methods for the preparation of protein nanocrystals are also reviewed. New opportunities for solving the phase problem for XFEL data are outlined. A summary of the latest results is given, which now extend to atomic resolution for nanocrystals. Possibilities for time-resolved chemistry using fast WAXS (solution scattering) from mixtures is reviewed, toward the general goal of making molecular movies of biochemical processes.

  4. Near Edge X-Ray Absorption Fine Structure Spectroscopy with X-Ray Free-Electron Lasers

    SciTech Connect

    Bernstein, D.P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stohr, J.; Beye, M.; Schlotter, W.F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Fohlisch, A.; /Hamburg U.

    2009-12-11

    We demonstrate the feasibility of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the Free-Electron Laser at Hamburg (FLASH), used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example we recorded the {sup 3}D{sub 1} N{sub 4,5}-edge absorption resonance of La{sup 3+}-ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  5. Reminiscing About the Early Years of the X-Ray Laser

    SciTech Connect

    Nilsen, J.

    2002-06-26

    To put the development of the X-ray laser in historic context, this paper presents some of the motivation and history of the development of the X-ray laser from the perspective of a scientist at Lawrence Livermore National Laboratory where the first X-ray laser was demonstrated in the early 1980's using a nuclear device as the driver.

  6. Chemical Bond Activation Observed with an X-ray Laser.

    PubMed

    Beye, Martin; Öberg, Henrik; Xin, Hongliang; Dakovski, Georgi L; Dell'Angela, Martina; Föhlisch, Alexander; Gladh, Jörgen; Hantschmann, Markus; Hieke, Florian; Kaya, Sarp; Kühn, Danilo; LaRue, Jerry; Mercurio, Giuseppe; Minitti, Michael P; Mitra, Ankush; Moeller, Stefan P; Ng, May Ling; Nilsson, Anders; Nordlund, Dennis; Nørskov, Jens; Öström, Henrik; Ogasawara, Hirohito; Persson, Mats; Schlotter, William F; Sellberg, Jonas A; Wolf, Martin; Abild-Pedersen, Frank; Pettersson, Lars G M; Wurth, Wilfried

    2016-09-15

    The concept of bonding and antibonding orbitals is fundamental in chemistry. The population of those orbitals and the energetic difference between the two reflect the strength of the bonding interaction. Weakening the bond is expected to reduce this energetic splitting, but the transient character of bond-activation has so far prohibited direct experimental access. Here we apply time-resolved soft X-ray spectroscopy at a free-electron laser to directly observe the decreased bonding-antibonding splitting following bond-activation using an ultrashort optical laser pulse.

  7. Development of Laser Plasma X-ray Microbeam Irradiation System and Radiation Biological Application

    NASA Astrophysics Data System (ADS)

    Sato, Katsutoshi; Nishikino, Masaharu; Numasaki, Hodaka; Kawachi, Tetsuya; Teshima, Teruki; Nishimura, Hiroaki

    Laser plasma x-ray source has the features such as ultra short pulse, high brilliance, monochromaticity, and focusing ability. These features are excellent compared with conventional x-ray source. In order to apply the laser plasma x-ray source to the biomedical study and to more closely research the radiobilogical responce of the cancer cell such as radiation induced bystander effect, we have developed x-ray microbeam system using laser plasma x-ray source. The absorbed dose of laser plasma x-ray was estimated with Gafchromic EBT film and DNA double strand breaks on the cells were detected by immunofluorescence staining. When the cells were irradiated with laser plasma x-ray, the circular regions existing γ-H2AX positive cells were clearly identified. The usefulness of the laser plasma x-ray on the radiobiological study was proved in this research.

  8. Imploding plasma x-ray laser research. Draft final report

    SciTech Connect

    Wong, S.; Koppel, L.; Burr, L.; Rodenburg, R.; Fortner, R.; Stewart, R.; Dietrich, D.; Egan, P.; Young, B.; Dukart, R.

    1984-09-01

    The population inversion mechanisms and gain estimates for the Ne-like Kr x-ray laser scheme are discussed. An experimental configuration has been developed which produces stable plasmas with conditions close to the optimum for lasing. By imploding a coaxial argon plasma on an inner krypton plasma (the puff-on-puff configuration), a quiescent krypton center plasma was produced with an electron temperature of about 600 eV and an electron density of about 10/sup 21/ cm/sup -3/. The center plasma was stable and linear, with little evidence of kink instabilities. Nozzle development work was also performed. X-ray measurements of electron temperature and density as well as XUV linewidths are presented. (LEW)

  9. A compact x-ray free electron laser

    SciTech Connect

    Barletta, W.; Attac, M.; Cline, D.B.; Kolonko, J.; Wang, X.; Bhowmik, A.; Bobbs, B.; Cover, R.A.; Dixon, F.P.; Rakowsky, G.; Gallardo, J.; Pellegrini, C.; Westenskow, G.

    1988-09-09

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be concerted to soft x-rays in the range from 2--10 nm by passage through short period, high fields strength wigglers as are being designed at Rocketdyne. Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs.

  10. LCLS - The X-ray Laser Has Turned On

    SciTech Connect

    Bergmann, Uwe

    2010-11-03

    On April 10, 2009 the Linac Coherent Light Source (LCLS), the world's first hard x-ray free electron laser, was brought to lasing. Producing an x-ray beam with over a billion times higher peak brightness that then most powerful existing syncrotron sources, it marked the beginning of a new era of science. The LCLS pulses arrive at a rate of 60 - 120 Hz in an energy range from 480 eV to 10 keV, with pulse lengths as short as a few fs to about 300 fs. Since October 2009, users have been performing experiments at the LCLS, and currently three of the six planned instruments are available. Although we stand only at the beginning of LCLS science, there is no doubt about the strong sense of early excitement.

  11. X-ray absorption in neon modulated by a strong laser pulse

    NASA Astrophysics Data System (ADS)

    Hertlein, M. P.; Glover, T. E.; Allison, T. K.; van Tilborg, J.; Rude, B. S.; Belkacem, A.; Southworth, S. H.; Kanter, E. P.; Krässig, B.; Varma, H. R.; Santra, R.; Young, L.

    2009-11-01

    We have measured the absorption of x-rays in neon gas in the presence of a strong laser pulse. The femtosecond x-rays were tuned to energies near the neon 1s-3p resonance, and the laser intensity of 1013 W/cm2 was below the intensity required to alone ionize neon. We observed strong modification of the x-ray absorption when the neon was subjected to laser light that was temporally overlapped with the x-rays.

  12. Development of x-ray sources using PW laser systems at APRI GIST

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Taek; Lee, Kyoung Hwan; Yun, Hyeok; Kim, I. Jong; Kim, Chul Min; Pae, Ki Hong; Sung, Jae Hee; Lee, Sung Ku; Yu, Tae Jun; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Depresseux, Adrien; Nejdl, Jaroslav; Kozlová, Michaela; Jeong, Tae Moon; Nam, Chang Hee

    2013-09-01

    A PW Ti:Sapphire laser with 30-J energy and 30-fs pulse duration has been developed at GIST and applied to generate x-rays and energetic charged particles. We present the status and plan of developing ultrashort x-ray sources and their applications. We successfully demonstrated x-ray lasers and their applications to high-resolution imaging. In addition, we plan to generate high flux x-ray/gamma-ray sources using the PW laser.

  13. Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld

    SciTech Connect

    Wang, Yong; Wang, Shoujun; Oliva, E; Lu, L; Berrill, Mark A; Yin, Liang; Nejdl, J; Luther, Brad; Proux, C; Le, T. T.; Dunn, James; Ros, D; Zeitoun, Philippe; Rocca, Jorge

    2014-01-01

    Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionally excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.

  14. Limiting parameters of the x-ray lasers

    SciTech Connect

    Bessonov, E.G.

    1995-12-31

    Recent progress in free-electron lasers is do to such advantages as tunability, ability to operate at high power or to extend into X-ray regions. The scaling of fre-electron and free-ion lasers down to X-ray regime is analyzed theoretically. A production of a relativistic multilayer ion mirror and hard and high power electromagnetic radiation by reflection from this mirror are discussed. The reflectivity of the mirror is rather high because of the cross-section of the backward Rayleigh scattering of photon light by non-fully stripped relativistic ions ({approximately} {lambda}{sup 2}) is much greater ({approximately} 10 {divided_by} 15 orders) then Thompson one ({approximately}r{sub e}{sup 2}). This position is valid even in the case of non-monochromatic laser light ({Delta}{omega}/{omega}{approximately} 10{sup -4}). Ion cooling both in longitudinal plane and three-dimensional radiation ion cooling had been proposed based on this observation. The using of these cooling techniques will permit to store high current and low emittance relativistic ion beams in storage rings. The bunched ion beam can be used in ordinary Free-Ion Lasers as well. After bunching the ion beam can be extracted from the storage ring in this case.

  15. Structural enzymology using X-ray free electron lasers.

    PubMed

    Kupitz, Christopher; Olmos, Jose L; Holl, Mark; Tremblay, Lee; Pande, Kanupriya; Pandey, Suraj; Oberthür, Dominik; Hunter, Mark; Liang, Mengning; Aquila, Andrew; Tenboer, Jason; Calvey, George; Katz, Andrea; Chen, Yujie; Wiedorn, Max O; Knoska, Juraj; Meents, Alke; Majriani, Valerio; Norwood, Tyler; Poudyal, Ishwor; Grant, Thomas; Miller, Mitchell D; Xu, Weijun; Tolstikova, Aleksandra; Morgan, Andrew; Metz, Markus; Martin-Garcia, Jose M; Zook, James D; Roy-Chowdhury, Shatabdi; Coe, Jesse; Nagaratnam, Nirupa; Meza, Domingo; Fromme, Raimund; Basu, Shibom; Frank, Matthias; White, Thomas; Barty, Anton; Bajt, Sasa; Yefanov, Oleksandr; Chapman, Henry N; Zatsepin, Nadia; Nelson, Garrett; Weierstall, Uwe; Spence, John; Schwander, Peter; Pollack, Lois; Fromme, Petra; Ourmazd, Abbas; Phillips, George N; Schmidt, Marius

    2017-07-01

    Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.

  16. High efficiency, multiterawatt x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Emma, C.; Fang, K.; Wu, J.; Pellegrini, C.

    2016-02-01

    In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs), a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  17. Structural enzymology using X-ray free electron lasers

    PubMed Central

    Kupitz, Christopher; Olmos, Jose L.; Holl, Mark; Tremblay, Lee; Pande, Kanupriya; Pandey, Suraj; Oberthür, Dominik; Hunter, Mark; Liang, Mengning; Aquila, Andrew; Tenboer, Jason; Calvey, George; Katz, Andrea; Chen, Yujie; Wiedorn, Max O.; Knoska, Juraj; Meents, Alke; Majriani, Valerio; Norwood, Tyler; Poudyal, Ishwor; Grant, Thomas; Miller, Mitchell D.; Xu, Weijun; Tolstikova, Aleksandra; Morgan, Andrew; Metz, Markus; Martin-Garcia, Jose M.; Zook, James D.; Roy-Chowdhury, Shatabdi; Coe, Jesse; Nagaratnam, Nirupa; Meza, Domingo; Fromme, Raimund; Basu, Shibom; Frank, Matthias; White, Thomas; Barty, Anton; Bajt, Sasa; Yefanov, Oleksandr; Chapman, Henry N.; Zatsepin, Nadia; Nelson, Garrett; Weierstall, Uwe; Spence, John; Schwander, Peter; Pollack, Lois; Fromme, Petra; Ourmazd, Abbas; Phillips, George N.; Schmidt, Marius

    2016-01-01

    Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions. PMID:28083542

  18. The ultrafast high-peak power lasers in future biomedical and medical x-ray imaging

    NASA Astrophysics Data System (ADS)

    Kieffer, J. C.; Fourmaux, S.; Krol, A.

    2016-01-01

    This paper reviews recent progresses in ultrafast laser-based X-ray sources and their potential applications to high throughput X-ray imaging. Prospects for the utilization of X-rays sources related to the Laser Wakefield electron Acceleration (LWFA) are more specifically discussed with emphasis on application in diagnostic radiology.

  19. Performance of Laser Megajoule's x-ray streak camera

    NASA Astrophysics Data System (ADS)

    Zuber, C.; Bazzoli, S.; Brunel, P.; Burillo, M.; Fronty, J. P.; Gontier, D.; Goulmy, C.; Moreau, I.; Oudot, G.; Rubbelynck, C.; Soullié, G.; Stemmler, P.; Trosseille, C.

    2016-11-01

    A prototype of a picosecond x-ray streak camera has been developed and tested by Commissariat à l'Énergie Atomique et aux Énergies Alternatives to provide plasma-diagnostic support for the Laser Megajoule. We report on the measured performance of this streak camera, which almost fulfills the requirements: 50-μm spatial resolution over a 15-mm field in the photocathode plane, 17-ps temporal resolution in a 2-ns timebase, a detection threshold lower than 625 nJ/cm2 in the 0.05-15 keV spectral range, and a dynamic range greater than 100.

  20. X rays generated in the interaction of subpicosecond laser pulses with solid targets

    SciTech Connect

    Kyrala, G.A.; Wahlin, E.K.; Fulton, R.D.; Schappert, G.T.; Jones, L.A.; Taylor, A.J.; Casperson, D.E.; Cobble, J.A.

    1991-01-01

    We are investigating the generation of short pulse short wavelength x-rays for pumping inner-shell x-ray lasers by photo-ionization. In contrast with previous proposals, we are looking at the use of a single line as an efficient means of pumping these lasers. As a first step we are optimizing the flashlamp x-ray conversion efficiency and characterizing the x-ray pulse length. 18 refs., 5 figs., 2 tabs.

  1. Development of a soft x-ray plasma camera with a Fresnel zone plate to image laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Kado, M.; Mori, M.; Nishiuchi, M.; Ishino, M.; Kawachi, T.

    2009-09-01

    A soft x-ray plasma camera operated at 3.35nm in the water window x-ray region is developed and demonstrated imaging gas jet plasmas of several spices produced with a 10TW Ti: sapphire laser. The plasma camera consists of a 300nm thick Ag/Ti/Si3N4 x-ray band pass filter with bandwidth of 1.43nm to cut visible light and also to reduce colour aberration of the Fresnel zone plate, a Fresnel zone plate with diameter of 1mm and outermost zone width of 300nm, and a soft x-ray CCD camera. The magnification of the plasma camera is 10. The soft x-ray plasma camera powered by a Fresnel zone plate is a very powerful tool to observe laser produced plasmas since it is 1000 times brighter and has 5 times higher spatial resolution comparing ordinary x-ray pinhole camera. The soft x-ray images of helium, nitrogen, argon, krypton, and xenon gas jet plasmas are obtained changing gas pressure from 0.01MPa to 1MPa.

  2. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, Arnold L.; Gerardo, James B.; Raymond, Thomas D.

    1992-01-01

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser.

  3. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, A.L.; Gerardo, J.B.; Raymond, T.D.

    1992-12-29

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography is disclosed. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser. 8 figs.

  4. X-Ray Free Electron Laser Interaction With Matter

    SciTech Connect

    Hau-Riege, S

    2009-05-12

    X-ray free electron lasers (XFELs) will enable studying new areas of laser-matter interaction. We summarize the current understanding of the interaction of XFEL pulses with matter and describe some of the simulation approaches that are used to design experiments on future XFEL sources. Modified versions of these models have been successful in guiding and analyzing experiments performed at the extreme-ultraviolet FEL FLASH at wavelengths of 6 nm and longer. For photon energies of several keV, no XFEL-matter interaction experiments have been performed yet but data is anticipated to become available in the near future, which will allow to test our understanding of the interaction physics in this wavelength regime.

  5. Characterization of germanium stripe x-ray lasers

    SciTech Connect

    Wan, A.S.; Moreno, J.C.; MacGowan, B.J.

    1993-07-01

    One method of improving the transverse spatial coherence of x-ray lasers (XRLS) is by adaptive spatial filtering of XRL apertures using geometric shaping in the form of bowtie or wedge XRLS. However, we must maintain the desired geometric shapes in exploding foil or slab configurations during the lasing period. As a first step toward understanding Lasing in such geometries we study the behavior of simple stripe XRLs. Past experience with stripe XRLs deposited on thick plastic substrates resulted in significantly weaker laser intensities as compared to line-focused slab XRLs. Possible reasons for this intensity reduction of stripe XRLs could include mixing at the laser boundary, and changes in plasma, kinetics, and hydrodynamic properties which affect laser gains and propagation. We will present experimental and theoretical characterizations of germanium line-focused and stripe XRLs. Key experimental parameters we will study include images of emission profiles of the laser blow-off, angular divergences, XRL output intensities, and ionization balances as we vary XRL designs. We will compare the experimental results with two-dimensional (2-D) laser deposition and hydrodynamics simulations using LASNEX, and study the changes in ionization balances and level populations from post-processing LASNEX results.

  6. Bent diamond-crystal x-ray spectrographs for x-ray free-electron laser noninvasive diagnostics

    NASA Astrophysics Data System (ADS)

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd'ko, Yuri

    2016-09-01

    We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-μm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0:6 m and R = 0:1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  7. Temporal Characterization of a Picosecond Laser-Pumped X-ray Laser (for Applications)

    SciTech Connect

    Dunn, J; Nilsen, J; Shepherd, R; Shlyaptsev, V; Booth, R; Smith, R; Hunter, J

    2003-11-25

    Compact soft x-ray laser sources are now used routinely for various applications primarily because of their high repetition rate, high photon fluence and short pulse duration characteristics. For some of these applications, for example interferometry of high density laser-produced plasmas, longer optical drive pulses, 6-13 ps (FWHM), have been implemented to maximize the x-ray output and coherence. It is therefore important to know the x-ray laser pulse length, shape and repeatability for these specific experiments as a baseline measurement but also to better understand the temporal behavior as a function of the pumping conditions in general. We report a detailed temporal characterization of the picosecond-driven 14.7 nm Ni-like Pd ion x-ray laser on the Compact Multipulse Terawatt (COMET) laser at LLNL using an ultrafast x-ray streak camera measurement of a horizontal slice of the near-field x-ray laser pattern. This is measured as a function of the chirped pulse amplification pumping laser conditions, including varying the pump pulse from 0.5-27 ps (FWHM), varying the plasma column length as well as investigating traveling wave (TW) and non-TW irradiation conditions.

  8. Reflection of attosecond x-ray free electron laser pulses

    SciTech Connect

    Hau-Riege, S; Chapman, H

    2006-10-30

    In order to utilize hard x-ray free electron lasers (XFEL's) when they are extended to attosecond pulse lengths, it is necessary to choose optical elements with minimal response time. Specular grazing incidence optics made of low-Z materials are popular candidates for reflectors since they are likely to withstand x-ray damage and provide sufficiently large reflectivities. Using linear-optics reflection theory, we calculated the transient reflectivity of a delta-function electric pulse from a homogeneous semi-infinite medium as a function of angle of incidence for s- and p-polarized light. We specifically considered the pulse response of Be, diamond, silicon carbide, and silicon, all of which are of relevance to the XFEL's that are currently being built. We found that the media emit energy in a damped oscillatory way, and that the impulse-response times are shorter than 0.3 fs for normal incidence. For grazing incidence, the impulse-response time is substantially shorter, making grazing-incidence mirrors a good choice for deep-sub-femtosecond reflective optics.

  9. Reflection of attosecond x-ray free electron laser pulses

    SciTech Connect

    Hau-Riege, Stefan P.; Chapman, Henry N.

    2007-01-15

    In order to utilize hard x-ray free electron lasers (XFEL's) when they are extended to attosecond pulse lengths, it is necessary to choose optical elements with minimal response time. Specular grazing-incidence optics made of low-Z materials are popular candidates for reflectors since they are likely to withstand x-ray damage and provide sufficiently large reflectivities. Using linear-optics reflection theory, we calculated the transient reflectivity of a delta-function electric pulse from a homogenous semi-infinite medium as a function of angle of incidence for s- and p-polarized light. We specifically considered the pulse response of beryllium, diamond, silicon carbide, and silicon, all of which are of relevance to the XFEL's that are currently being built. We found that the media emit energy in a damped oscillatory way, and that the impulse-response times are shorter than 0.3 fs for normal incidence. For grazing incidence, the impulse-response time is substantially shorter, making grazing-incidence mirrors a good choice for deep subfemtosecond reflective optics.

  10. High Brightness, Laser-Driven X-ray Source for Nanoscale Metrology and Femtosecond Dynamics

    SciTech Connect

    Siders, C W; Crane, J K; Semenov, V; Betts, S; Kozioziemski, B; Wharton, K; Wilks, S; Barbee, T; Stuart, B; Kim, D E; An, J; Barty, C

    2007-02-26

    This project developed and demonstrated a new, bright, ultrafast x-ray source based upon laser-driven K-alpha generation, which can produce an x-ray flux 10 to 100 times greater than current microfocus x-ray tubes. The short-pulse (sub-picosecond) duration of this x-ray source also makes it ideal for observing time-resolved dynamics of atomic motion in solids and thin films.

  11. Lawrence Livermore National Laboratory Soft X-ray Laser Program: Progress report

    SciTech Connect

    Trebes, J.; Brown, S.; Campbell, E.M.; Ceglio, N.; Eder, D.; Gaines, D.; Hawryluk, A.; Keane, C.; London, R.; MacGowan, B.

    1987-08-01

    Significant progress toward the goal of producing high power, high coherence x-ray lasers has been made. Lasing at wavelengths as low as 66 A has been achieved in a nickel like laser scheme which is scalable to sub-44 A wavelengths. In addition, x-ray laser cavities, x-ray holography, and an applications beamline have been demonstrated. 15 refs., 3 figs.

  12. X-Ray Diffraction Study of L2005 AG17 (IDPs) by Using SR

    NASA Technical Reports Server (NTRS)

    Ohsumi, K. O.; Hagiya, K. H.; Zolensky, M. E.

    2002-01-01

    X-ray diffraction study revealed the existence of magnetite and new type of pyrrhotite with the chemical formula of Fe0.56S in L2005 AG17. Considering the total chemical formula of Fe0.83S, residual iron in amorphous state might exist in this sample. Additional information is contained in the original extended abstract.

  13. Enhancement of laser to X-ray conversion by counter-propagating laser beams irradiating thin gold targets

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Ge, Z. Y.; Ma, Y. Y.; Yang, X. H.; Xu, B. B.; Ramis, R.

    2017-03-01

    X-ray emission from laser irradiating solid target is an important X-ray source for various potential applications. Counter-propagating (C-P) laser beams configuration is proposed to enhance the laser to X-ray conversion efficiency (CE) from laser irradiating solid targets. One-dimensional radiation hydrodynamics simulations show that the total X-ray CE for the C-P lasers case is as high as 65%, which has a 13% improvement compared with the single laser case. The improvement is mainly caused by the enlarged radiation region, and the enhancement of X-ray emission is from soft X-ray. Detailed energy term distributions and influences of the foil thickness on the X-ray CEs for both cases are presented. It is found that the enhancement of radiation is attributed to lower thermal and kinetic energy of the C-P lasers scheme.

  14. Picosecond soft-x-ray pulses from a high-intensity laser-plasma source.

    PubMed

    Pelletier, J F; Chaker, M; Kieffer, J C

    1996-07-15

    We report time-resolved spectroscopic analysis of laser-produced plasma x-ray sources. Plasmas produced by a 400-fs 1-TW tabletop laser are characterized with a transmission grating spectrometer coupled to a soft-x-ray streak camera. Soft-x-ray radiation in the 1-6-nm range with durations of 2-7 ps is observed for copper and tantalum plasmas. The effect of incident laser energy on the x-ray pulse duration is also investigated.

  15. The trickle before the torrent-diffraction data from X-ray lasers.

    PubMed

    Maia, Filipe R N C; Hajdu, Janos

    2016-08-01

    Today Scientific Data launched a collection of publications describing data from X-ray free-electron lasers under the theme 'Structural Biology Applications of X-ray Lasers'. The papers cover data on nanocrystals, single virus particles, isolated cell organelles, and living cells. All data are deposited with the Coherent X-ray Imaging Data Bank (CXIDB) and available to the scientific community to develop ideas, tools and procedures to meet challenges with the expected torrents of data from new X-ray lasers, capable of producing billion exposures per day.

  16. The Laser-Driven X-ray Big Area Backlighter (BABL): Design, Optimization, and Evolution

    SciTech Connect

    Flippo, Kirk Adler; DeVolder, Barbara Gloria; Doss, Forrest William; Kline, John L.; Merritt, Elizabeth Catherine; Loomis, Eric Nicholas; Capelli, Deanna; Schmidt, Derek William; Schmitt, Mark J

    2016-05-26

    The Big Area BackLigher (BABL) has been developed for large area laser-driven x-ray backlighting on the National Ignition Facility (NIF), which can be used for general High Energy Density (HED) experiments. The BABL has been optimized via hydrodynamic simulations to produce laser-to-x-ray conversion efficiencies of up to nearly 5%. Lastly, four BABL foil materials, Zn, Fe, V, and Cu, have been used for He-α x ray production.

  17. Note: Application of laser produced plasma K alpha x-ray probe in radiation biology.

    PubMed

    Nishikino, Masaharu; Sato, Katsutoshi; Hasegawa, Noboru; Ishino, Masahiko; Ohshima, Shinsuke; Okano, Yasuaki; Kawachi, Tetsuya; Numasaki, Hodaka; Teshima, Tetruki; Nishimura, Hiroaki

    2010-02-01

    A dedicated radiation biology x-ray generation and exposure system has been developed. 8.0 keV in energy x-ray pulses generated with a femtosecond-laser pulse was used to irradiate sample cells through a custom-made culture dish with a silicon nitride membrane. The x-ray irradiation resulted in DNA double-strand breaks in the nucleus of a culture cell that were similar to those obtained with a conventional x-ray source, thus demonstrating the feasibility of radiobiological studies utilizing a single burst of x-rays focused on single cell specimens.

  18. Ultrafast Time Resolved X-ray Diffraction Studies of Laser Heated Metals and Semiconductors

    NASA Astrophysics Data System (ADS)

    Chen, Peilin; Tomov, I. V.; Rentzepis, P. M.

    1998-03-01

    Time resolved hard x-ray diffraction has been employed to study the dynamics of lattice structure deformation. When laser pulse energy is deposited in a material it generates a non uniform transient temperature distribution, which alters the lattice structure of the crystal. The deformed crystal lattice will change the angle of diffraction for a monochromatic x-ray beam. We report picosecond and nanosecond time resolved x-ray diffraction measurements of the lattice temperature distribution, transient structure and stress, in Pt (111) and GaAs (111) crystals, caused by pulsed UV laser irradiation. An ArF excimer laser operated at 300 Hz was used, both, to drive an x-ray diode with copper anode and heat the crystal. Bragg diffracted x-ray radiation was recorded by a direct imaging x-ray CCD. Changes in the diffraction patterns induced by a few millijouls pulse energy were observed at different time delays between the laser heating pulse and the x-ray probing pulse. A kinematical model for time resolved x-ray diffraction was used to analyze the experimental data. Good agreement between the measured and calculated scattered x-ray intensities profiles was achieved, indicating that detailed time resolved x-ray diffraction measurements can be made with nanosecond and picosecond resolution for small temperature changes. Our system can detect changes in the lattice spacing of about 10-3 A.

  19. Hybrid-K-edge/X-ray Fluorescense Densitometry with Laser-Compton Scattered X-rays

    SciTech Connect

    Dr. Khalid Chouffani El Fassi

    2010-08-29

    The quantitative verification of the accountancy of fissile nuclear materials through independent measurements represents one of the key elements of nuclear materials Safeguards. Elemental probes of materials of interest to non-proliferation are critical to research strategy in order to identify sensitive advanced instrumentation detection technologies. Advanced instrumentation for material detection and accountability are needed for use in fuel cycle facilities for real-time in-process monitoring of separations-partitioning, fuels fabrication as well as for traditional safeguards activities. Radiation-based NDA (non-destructive analysis) techniques can provide some vital information about nuclear materials much more quickly, cheaply and safely than chemical or radio chemical analysis. Hybrid K-edge densitometry (HKED) is currently the most accurate nondestructive inspection technique that provides sensitive quantification of heavy metal contamination. HKED in a technique that exploits both K-edge absorption and X-ray fluorescence (XRF) and allows simultaneously greater elemental specificity and lower detection limits

  20. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    PubMed

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  1. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    SciTech Connect

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10/sup 12/ watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10/sup 9/ watts) and can be focussed to intensities of /approximately/10/sup 16/ W/cm/sup 2/. Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs.

  2. The trickle before the torrent—diffraction data from X-ray lasers

    PubMed Central

    Maia, Filipe R.N.C.; Hajdu, Janos

    2016-01-01

    Today Scientific Data launched a collection of publications describing data from X-ray free-electron lasers under the theme ‘Structural Biology Applications of X-ray Lasers’. The papers cover data on nanocrystals, single virus particles, isolated cell organelles, and living cells. All data are deposited with the Coherent X-ray Imaging Data Bank (CXIDB) and available to the scientific community to develop ideas, tools and procedures to meet challenges with the expected torrents of data from new X-ray lasers, capable of producing billion exposures per day. PMID:27479637

  3. High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths

    SciTech Connect

    Reagan, Brendon; Berrill, Mark A; Wernsing, Keith; Baumgarten, Cory; Woolston, Mark; Rocca, Jorge

    2014-01-01

    Efficient excitation of dense plasma columns at 100-Hz repetition rate using a tailored pump pulse profile produced a tabletop soft-x-ray laser average power of 0.1 mW at = 13.9 nm and 20 W at = 11.9 nm from transitions of Ni-like Ag and Ni-like Sn, respectively. Lasing on several other transitions with wavelengths between 10.9 and 14.7 nm was also obtained using 0.9-J pump pulses of 5-ps duration from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Hydrodynamic and atomic plasma simulations show that the pump pulse profile, consisting of a nanosecond ramp followed by two peaks of picosecond duration, creates a plasma with an increased density of Ni-like ions at the time of peak temperature that results in a larger gain coefficient over a temporally and spatially enlarged space leading to a threefold increase in the soft-x-ray laser output pulse energy. The high average power of these compact soft-x-ray lasers will enable applications requiring high photon flux. These results open the path to milliwatt-average-power tabletop soft-x-ray lasers.

  4. King's College laser plasma x-ray source design

    NASA Astrophysics Data System (ADS)

    Alnaimi, Radhwan; Adjei, Daniel; Alatabi, Saleh; Appuhamilage, Indika Arachchi; Michette, Alan

    2013-05-01

    The aim of this work is to design and build a source for a range of applications, with optimized multilayer structures in order to use the source output as efficiently as possible. The source is built around a Nd:YAG laser with fundamental wavelength 1064 nm, frequency doubled 532 nm (green) and tripled 355 nm, with a pulse length of about 800 ps and a repetition rate up to 50 Hz. The target material is Mylar (C10H8O4) tape, which is cheap, readily available and has many benefits as explained in this article. A versatile cubic target chamber and a set of computer controlled stage motors are used to allow positioning of the X-ray emission point. A range of measures is used to protect delicate components and optics, including a glass slide between the focusing lens and the target to prevent the lens being coated with debris. A low pressure gas (typically 3-6 mbar) is used inside the chamber as collision of atomic size debris particles with gas molecules reduces their kinetic energy and consequently their adhesion to the surrounding surfaces. The gas used is typically helium or nitrogen, the latter also acting as a spectral filter. Finally, the chamber is continually pumped to ensure that more than 70% of the debris particles are pumped out of the chamber.

  5. Design and measurement of a Cu L-edge x-ray filter for free electron laser pumped x-ray laser experiments

    SciTech Connect

    Dunn, J.; London, R. A.; Rohringer, N.; Cone, K. V.; Rocca, J. J.

    2010-10-15

    An inner-shell photoionized x-ray laser pumped by the Linac Coherent Light Source (LCLS) free electron laser has been proposed recently. The measurement of the on-axis 849 eV Ne K{alpha} laser and protection of the x-ray spectrometer from damage require attenuation of the 1 keV LCLS beam. An Al/Cu foil combination is well suited, serving as a low energy bandpass filter below the Cu L-edge at 933 eV. A high resolution grating spectrometer is used to measure the transmission of a candidate filter with an intense laser-produced x-ray backlighter developed at the Lawrence Livermore National Laboratory Jupiter Laser Facility Janus. The methodology and discussion of the observed fine structure above the Cu L-edge will be presented.

  6. Comparison of Single Event Transients Generated by Short Pulsed X-Rays, Lasers and Heavy Ions

    SciTech Connect

    Cardoza, David; LaLumondiere, Stephen D.; Tockstein, Michael A.; Brewe, Dale L.; Wells, Nathan P.; Koga, Rokutaro; Gaab, K. M.; Lotshaw, William T.; Moss, Steven C.

    2014-12-01

    We report an experimental study of the transients generated by pulsed x-rays, heavy ions, and different laser wavelengths in a Si p-i-n photodiode. We compare the charge collected by all of the excitation methods to determine the equivalent LET for pulsed x-rays relative to heavy ions. Our comparisons show that pulsed x-rays from synchrotron sources can generate a large range of equivalent LET and generate transients similar to those excited by laser pulses and heavy ion strikes. We also look at how the pulse width of the transients changes for the different excitation methods. We show that the charge collected with pulsed x-rays is greater than expected as the x-ray photon energy increases. Combined with their capability of focusing to small spot sizes and of penetrating metallization, pulsed x-rays are a promising new tool for high resolution screening of SEE susceptibility

  7. Sub-MeV tunably polarized X-ray production with laser Thomson backscattering

    SciTech Connect

    Kawase, K.; Kando, M.; Hayakawa, T.; Daito, I.; Kondo, S.; Homma, T.; Kameshima, T.; Kotaki, H.; Chen, L.-M.; Fukuda, Y.; Faenov, A.; Shizuma, T.; Fujiwara, M.; Bulanov, S. V.; Kimura, T.; Tajima, T.

    2008-05-15

    Reported in this article is the generation of unique polarized x-rays in the sub-MeV region by means of the Thomson backscattering of the Nd:YAG laser photon with a wavelength of 1064 nm on the 150 MeV electron from the microtron accelerator. The maximum energy of the x-ray photons is estimated to be about 400 keV. The total energy of the backscattered x-ray pulse is measured with an imaging plate and a LYSO scintillator. The angular divergence of the x-rays is also measured by using the imaging plate. We confirm that the x-ray beam is polarized according to the laser polarization direction with the Compton scattering method. In addition, we demonstrate the imaging of the object shielded by lead with the generated x-rays.

  8. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    PubMed

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  9. X-ray laser resonator for the kilo-electron-volt range

    SciTech Connect

    Chen, Jie; Tomov, Ivan V.; Er, Ali O.; Rentzepis, Peter M.

    2013-04-29

    We have designed, constructed, and tested an x-ray laser resonator operating in the hard x-ray, keV energy region. This ring x-ray laser cavity is formed by four highly oriented pyrolytic graphite crystals. The crystals are set at the Bragg angles that allow for the complete 360 Degree-Sign round trip of the 2.37 A, 5.23 keV L{sub {alpha}} line of neodymium. In addition, we also present experimental data of a similar ring laser resonator that utilizes the Cr K{sub {alpha}}, 5.41 keV, x-ray line to propagate through the four mirrors of the cavity. The specific properties of these x-ray laser resonator mirrors, including reflection losses and cavity arrangement, are presented.

  10. Overview of Tabletop X-ray Laser Development at the Lawrence Livermore National Laboratory

    SciTech Connect

    Dunn, J; Shlyaptsev, V; Nilsen, J; Smith, R; Keenan, R; Moon, S; Filevich, J; Rocca, J; Nelson, A; Hunter, J; Marconi, M; Li, Y; Osterheld, A; Shepherd, R; Fiedorowicz, H; Bartnik, A; Faenov, A Y; Pikuz, T; Zeitoun, P; Hubert, S; Jacquemot, S; Fajardo, M

    2006-11-03

    It is almost a decade since the first tabletop x-ray laser experiments were implemented at the Lawrence Livermore National Laboratory (LLNL). The decision to pursue the picosecond-driven schemes at LLNL was largely based around the early demonstration of the tabletop Ne-like Ti x-ray laser at the Max Born Institute (MBI) as well as the established robustness of collisional excitation schemes. These picosecond x-ray lasers have been a strong growth area for x-ray laser research. Rapid progress in source development and characterization has achieved ultrahigh peak brightness rivaling the previous activities on the larger facilities. Various picosecond soft-x-ray based applications have benefited from the increased repetition rates. We will describe the activities at LLNL in this area.

  11. Observation of Actin Filaments in Leydig Cells with a Contact-type Soft X-ray Microscope with Laser Plasma X-ray Source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Tamotsu, Satoshi; Yasuda, Keiko; Kishimoto, Maki; Nishikino, Masaharu; Kinjo, Yasuhito; Shinohara, Kunio

    Actin filaments in Leydig cells from mouse testes have been observed with a contact-type soft x-ray microscope with laser plasma x-ray source. The Leydig cells were fixed with paraformaldehyde, stained with Phalloidin, and observed with a confocal laser microscope prior to the observation with x-ray microscope. Obtained images by both of the confocal laser microscopy and the x-ray microscopy were directly compared and revealed that not only position of actin filaments but also the shapes can be identified each other. The actin filaments in the x-ray images were clearly recognized and their structures were obtained in more detail compared to those in the confocal laser microscope images.

  12. The prospects for soft x-ray contact microscopy using laser plasmas as an x-ray source

    SciTech Connect

    Stead, A.D.; Page, A.M.; Ford, T.W.

    1995-12-31

    Since its invention, a major concern of those using a microscope has been to improve the resolution without the introduction of artifacts. While light microscopy carries little risk of the introduction of artifacts, because the preparative techniques are often minimal, the resolution is somewhat limited. The advent of the electron microscope offered greatly improved resolution but since biological specimens require extensive preparation, the possibility of causing structural damage to the specimen is also increased. The ideal technique for structural studies of biological specimens would enable hydrated material to be examined without any preparation and with a resolution equal to that of electron microscopy. Soft x-ray microscopy certainly enables living material to be examined and whilst the resolution does not equal that of electron microscopy it exceeds that attainable by light microscopy. This paper briefly reviews the limitations of light and electron microscopy for the biologist and considers the various ways that soft x-rays might be used to image hydrated biological material. Consideration is given to the different sources that have been used for soft x-ray microscopy and the relative merits of laser-plasma sources are discussed.

  13. Flash imaging of fine structures of cellular organelles by contact x-ray microscopy with a high intensity laser plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Kishimoto, Maki; Tamotsu, Satoshi; Yasuda, Keiko; Kinjo, Yasuhito; Shinohara, Kunio

    2011-09-01

    X-ray flash imaging by contact microscopy with a highly intense laser-plasma x-ray source was achieved for the observation of wet biological cells. The exposure time to obtain a single x-ray image was about 600 ps as determined by the pulse duration of the driving laser pulse. The x-ray flash imaging makes it possible to capture an x-ray image of living biological cells without any artificial treatment such as staining, fixation, freezing, and so on. The biological cells were cultivated directly on the surface of the silicon nitride membranes, which are used for the x-ray microscope. Before exposing the cells to x-rays they were observed by a conventional fluorescent microscope as reference, since the fluorescent microscopes can visualize specific organelles stained with fluorescent dye. Comparing the x-ray images with the fluorescent images of the exact same cells, each cellular organelle observed in the x-ray images was identified one by one and actin filaments and mitochondria were clearly identified in the x-ray images.

  14. Femtosecond x-rays from Thomson scattering using laser wakefield accelerators

    SciTech Connect

    Catravas, P.; Esarey, E.; Leemans, W.P.

    2001-03-01

    The possibility of producing femtosecond x-rays through Thomson scattering high power laser beams off laser wakefield generated relativistic electron beams is discussed. The electron beams are produced with either a self-modulated laser wakefield accelerator (SM-LWFA) or through a standard laser wakefield accelerator (LWFA) with optical injection. For a SM-LWFA (LWFA) produced electron beam, a broad (narrow) energy distribution is assumed, resulting in X-ray spectra that are broadband (monochromatic). Designs are presented for 3-100 fs x-ray pulses and the expected flux and brightness of these sources are compared.

  15. Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses

    DOEpatents

    MacGowan, Brian J.; Matthews, Dennis L.; Trebes, James E.

    1988-01-01

    A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

  16. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOEpatents

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  17. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.

    PubMed

    Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi

    2015-07-01

    Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles.

  18. With mirrors and finesse, labs domesticate the x-ray laser

    SciTech Connect

    Hellemans, A.

    1996-07-05

    Space beam weapons and unlimited energy from fusion may have been pipe dreams of the 1980s. But today these dreams are giving birth to practical laboratory tools: tabletop x-ray lasers that may open up whole new areas of chemistry and biology. The first x-ray lasers were energized by nuclear explosions or jolts of light from giant glass lasers built for fusion experiments-hardly bench-top equipment. Now, says Joseph Nilsen, a physicist at Lawrence Livermore National Laboratory (LLNL), {open_quotes}several small university-size places are actually making a lot of progress toward tabletop lasers people can use every day.{close_quotes} This article highlight progress towards cheap ubiquitous X-ray lasers as described at the 5th International Conference on X-ray Lasers.

  19. KSwAGS: A Swift X-Ray and UV Survey of the Kepler Field. I.

    NASA Astrophysics Data System (ADS)

    Smith, Krista Lynne; Boyd, Patricia T.; Mushotzky, Richard F.; Gehrels, Neil; Edelson, Rick; Howell, Steve B.; Gelino, Dawn M.; Brown, Alexander; Young, Steve

    2015-10-01

    We introduce the first phase of the Kepler-Swift Active Galaxies and Stars survey (KSwAGS), a simultaneous X-ray and UV survey of ˜6 square degrees of the Kepler field using the Swift X-ray telescope (XRT) and UV/Optical Telescope. We detect 93 unique X-ray sources with signal-to-noise ratio ≥slant 3 with the XRT, of which 60 have UV counterparts. We use the Kepler Input Catalog (KIC) to obtain the optical counterparts of these sources, and construct the fX/fV ratio as a first approximation of the classification of the source. The survey produces a mixture of stellar sources, extragalactic sources, and sources which we are not able to classify with certainty. We have obtained optical spectra for thirty of these targets, and are conducting an ongoing observing campaign to fully identify the sample. For sources classified as stellar or active galactic nuclei (AGNs) with certainty, we construct spectral energy distributions (SEDs) using the 2MASS, UBV, and GALEX data supplied for their optical counterparts by the KIC, and show that the SEDs differ qualitatively between the source types, and so can offer a method of classification in absence of a spectrum. Future papers in this series will analyze the timing properties of the stars and AGN in our sample separately. Our survey provides the first X-ray and UV data for a number of known variable stellar sources, as well as a large number of new X-ray detections in this well-studied portion of the sky. The KSwAGS survey is currently ongoing in the K2 ecliptic plane fields.

  20. Soft x-ray radiation from laser-produced plasmas: characterization of radiation emission and its use in x-ray lithography.

    PubMed

    Kühne, M; Petzold, H C

    1988-09-15

    Laser pulses of 15 ns and x-ray radiation pulses. The plasma generation is described, and the x-ray emission is spectrally and spatially characterized. Using this plasma as an x-ray source, FBM120 resist was exposed through a gold patterned 2-microm silicon mask. Exposing the same resist to a primary standard source (electron storage ring BESSY) the plasma x-ray emission was evaluated resulting in conversion efficiencies (laser into x-ray radiation) of up to 3.4% for 1064 nm and up to 5.0% for 532-nm laser radiation pulses.

  1. X-ray lasers. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Mauk, S. C.

    1980-01-01

    Various aspects of X-ray lasers are discussed in approximately 122 citations. Included are laser plasmas and outputs, plasma radiation, far ultraviolet radiation, gamma rays, optical pumping, optical resonators, and electron transitions. Laser applications, laser materials, and laser fusion are also included.

  2. Photoelectron dynamics in x-ray free-electron-laser diffractive imaging of biological samples.

    PubMed

    Hau-Riege, Stefan P

    2012-06-08

    X-ray free electron lasers hold the promise of enabling atomic-resolution diffractive imaging of single biological molecules. We develop a hybrid continuum-particle model to describe the x-ray induced damage and find that the photoelectron dynamics and electrostatic confinement strongly affect the time scale of the damage processes. These phenomena are not fully captured in hydrodynamic modeling approaches.

  3. Diamond x-ray refractive lenses produced by femto-second laser ablation

    NASA Astrophysics Data System (ADS)

    Polikarpov, M.; Kononenko, T. V.; Ralchenko, V. G.; Ashkinazi, E. E.; Konov, V. I.; Ershov, P.; Kuznetsov, S.; Yunkin, V.; Snigireva, I.; Polikarpov, V. M.; Snigirev, A.

    2016-09-01

    Femto-second laser processing of polycrystalline CVD diamond was applied to manufacturing of X-ray planar refractive lenses. Surface morphology and material quality were analyzed with optical and scanning electron microscopy and X-ray radiography. Lenses were tested in a focusing mode at the IIIrd generation synchrotron radiation source (ESRF).

  4. X-ray phase-contrast tomography with a compact laser-driven synchrotron source.

    PubMed

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D; Pfeiffer, Franz

    2015-05-05

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced--and more challenging--X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches.

  5. Nonlinear effects in propagation of radiation of X-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Nosik, V. L.

    2016-05-01

    Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of "hollow" atomic shells as a result of the photoelectric effect.

  6. Miniaturized X-ray Generation by Pyroelectric Effect using Short Pulse Laser

    DTIC Science & Technology

    2011-11-30

    1 Report of AOARD Program CONTRACT NO: FA23861014160 Miniaturized X-ray Generation by Pyroelectric Effect using Short Pulse Laser...induced currents by short- pulse high-power laser irradiation II-1: Experiments and results II-2: Theoretical calculations ~Analysis of currents...effect using short pulse laser aiming at miniaturized X-ray generator 5a. CONTRACT NUMBER FA23861014160 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  7. Soft X-Ray Emission from Alexandrite Laser-Matter-Interaction

    DTIC Science & Technology

    1993-07-15

    34AD-A267 905 NRL/MR/6681--93-7359 Soft X-ray Emission from Alexandrite Laser-Matter-Interaction P. G. BURKHALTER Dvnamit s of Solids Branch Condensed...Soft X-ray Emission from Alexandrite Laser-Matter-Interaction 6. AUTHOR(S) P.G. Burkhalter, D.J. Harter*, E.F. Gabl**, P. Bado**, and D.A. Newman*** 7...Proscribed by ANSI Std 230-13 290-102 SOFT X-RAY EMISSION FROM ALEXANDRITE LASER-MATTER-INTERACTION Accesion For NTIS CRA&I DTIC TAB Unannounced 5

  8. High-average-power water window soft X-rays from an Ar laser plasma

    NASA Astrophysics Data System (ADS)

    Amano, Sho

    2016-07-01

    A high average power of 140 mW and high conversion efficiency of 14% were demonstrated in “water window” soft X-rays generated using a laser plasma source developed in-house, when a solid Ar target was irradiated by a commercial Nd:YAG Q-switched laser with an energy of 1 J at a repetition rate of 1 Hz. This soft X-ray power compared favorably with that produced using a synchrotron radiation source, and the developed laser plasma source can be used in various applications, such as soft X-ray microscopy, in place of synchrotron facilities.

  9. Application of imaging plate to x-ray imaging and spectroscopy in laser plasma experiments

    SciTech Connect

    Izumi, N; Snavely, R; Gregori, G; Koch, J A; Park, H; Remington, B A

    2006-04-25

    We report recent progress of x-ray diagnostic techniques in laser plasma experiment with using imaging plates. Imaging plate is a photo-stimulable phosphor screen (BaF(Br0.85,10.15):Eu{sup 2+}) deposited on flexible metal or plastic substrate. We applied the imaging plate to x-ray microscopy in laser fusion experiment experiments. Self-emission x-ray images of imploded core were obtained successfully with using imaging plate and high magnification target mounted pinhole arrays. The imaging plates were applied also in ultra-intense laser experiment at the Rutherford Appleton Laboratory. Small samarium foil was irradiated by high intensity laser pulse from the Vulcan laser system. The k shell x-rays from the foil ({approx}40keV) was used as a line x-ray source for microscopic radiography. Performance of imaging plate on high-energy x-ray backlit radiography was demonstrated by imaging sinusoidal grooves of 6um amplitude on a Au foil. Detailed spectrum of k shell x-ray from Cu embedded foil target was successfully observed by fully coupling imaging plate with a highly ordered pyrolytic graphite crystal spectrometer. The performances of the imaging plates evaluated in actual laser plasma experiments will be presented.

  10. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE PAGES

    Schulz, S.; Grguraš, I.; Behrens, C.; ...

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  11. Femtosecond all-optical synchronization of an X-ray free-electron laser

    SciTech Connect

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.

  12. Femtosecond all-optical synchronization of an X-ray free-electron laser

    PubMed Central

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  13. Femtosecond all-optical synchronization of an X-ray free-electron laser.

    PubMed

    Schulz, S; Grguraš, I; Behrens, C; Bromberger, H; Costello, J T; Czwalinna, M K; Felber, M; Hoffmann, M C; Ilchen, M; Liu, H Y; Mazza, T; Meyer, M; Pfeiffer, S; Prędki, P; Schefer, S; Schmidt, C; Wegner, U; Schlarb, H; Cavalieri, A L

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.

  14. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.

    PubMed

    Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi

    2013-01-01

    We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.

  15. Shielded radiography with a laser-driven MeV-energy X-ray source

    NASA Astrophysics Data System (ADS)

    Chen, Shouyuan; Golovin, Grigory; Miller, Cameron; Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen; Clarke, Shaun; Pozzi, Sara; Umstadter, Donald

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 107 photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam's inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  16. Tomography of human trabecular bone with a laser-wakefield driven x-ray source

    NASA Astrophysics Data System (ADS)

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Parker, S.; Symes, D. R.; Sandholzer, M. A.; Mangles, S. P. D.; Najmudin, Z.

    2016-01-01

    A laser-wakefield driven x-ray source is used for the radiography of human bone. The betatron motion of accelerated electrons generates x-rays which are hard (critical energy {{E}\\text{crit}}>30 keV), have small source size (<3 μm) and high average brightness. The x-rays are generated from a helium gas cell which is near-instantly replenishable, and thus the average photon flux is limited by the repetition rate of the driving laser rather than the breakdown of the x-ray source. A tomograph of a human bone sample was recorded with a resolution down to 50 μm. The photon flux was sufficiently high that a radiograph could be taken with each laser shot, and the fact that x-ray beams were produced on 97% of shots minimised failed shots and facilitated full micro-computed tomography in a reasonable time scale of several hours, limited only by the laser repetition rate. The x-ray imaging beamline length (not including the laser) is shorter than that of a synchrotron source due to the high accelerating fields and small source size. Hence this interesting laboratory-based source may one day bridge the gap between small microfocus x-ray tubes and large synchrotron facilities.

  17. Pair annihilation in laser pulses: Optical versus x-ray free-electron laser regimes

    SciTech Connect

    Ilderton, Anton; Johansson, Petter; Marklund, Mattias

    2011-09-15

    We discuss the theory and phenomenology of pair annihilation, within an ultrashort laser pulse, to a single photon. The signature of this process is the unidirectional emission of single photons with a fixed energy. We show that the cross section is significantly larger than for two-photon pair annihilation in vacuum, with x-ray free-electron laser parameters admitting a much clearer signal than optical beams.

  18. Development of a Time-resolved Soft X-ray Spectrometer for Laser Produced Plasma Experiments

    SciTech Connect

    Cone, K V; Dunn, J; Schneider, M B; Baldis, H A; Brown, G V; Emig, J; James, D L; May, M J; Park, J; Shepherd, R; Widmann, K

    2010-05-12

    A 2400 line/mm variable spaced grating spectrometer (VSG) has been used to measure soft x-ray emission (8-22 {angstrom}) from laser-produced plasma experiments at Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) Laser Facility. The spectrometer was coupled to a Kentech x-ray streak camera to study the temporal evolution of soft x-rays emitted from the back of mylar and copper foils irradiated at 10{sup 15} W/cm{sup 2}. The instrument demonstrated a resolving power of {approx} 120 at 19 {angstrom} with a time resolution of 31 ps. The time-resolved copper emission spectrum was consistent with a photodiode monitoring the laser temporal pulse shape and indicated that the soft x-ray emission follows the laser heating of the target. The time and spectral resolution of this diagnostic make it useful for studies of high temperature plasmas.

  19. In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell.

    PubMed

    Kunz, Martin; Caldwell, Wendel A; Miyagi, Lowell; Wenk, Hans-Rudolf

    2007-06-01

    We report a first combination of diamond anvil cell radial x-ray diffraction with in situ laser heating. The laser-heating setup of ALS beamline 12.2.2 was modified to allow one-sided heating of a sample in a diamond anvil cell with an 80 W yttrium lithium fluoride laser while probing the sample with radial x-ray diffraction. The diamond anvil cell is placed with its compressional axis vertical, and perpendicular to the beam. The laser beam is focused onto the sample from the top while the sample is probed with hard x-rays through an x-ray transparent boron-epoxy gasket. The temperature response of preferred orientation of (Fe,Mg)O is probed as a test experiment. Recrystallization was observed above 1500 K, accompanied by a decrease in stress.

  20. In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell

    SciTech Connect

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk, Hans-Rudolf

    2007-06-15

    We report a first combination of diamond anvil cell radial x-ray diffraction with in situ laser heating. The laser-heating setup of ALS beamline 12.2.2 was modified to allow one-sided heating of a sample in a diamond anvil cell with an 80 W yttrium lithium fluoride laser while probing the sample with radial x-ray diffraction. The diamond anvil cell is placed with its compressional axis vertical, and perpendicular to the beam. The laser beam is focused onto the sample from the top while the sample is probed with hard x-rays through an x-ray transparent boron-epoxy gasket. The temperature response of preferred orientation of (Fe,Mg)O is probed as a test experiment. Recrystallization was observed above 1500 K, accompanied by a decrease in stress.

  1. X-ray Free-Electron Lasers - Present and Future Capabilities [Invited

    SciTech Connect

    Galayda, John; Ratner, John Arthur:a Daniel F.; White, William E.; /SLAC

    2011-11-16

    The Linac Coherent Light Source is now in operation as an X-ray free-electron laser (FEL) user facility. It produces coherent pulses of 550-10,000 eV X-rays of duration adjustable from <10 fsto500 fs. Typical peak power is in excess of 20 GW. The facility will soon be joined by several X-ray FELs under construction around the world. This article will provide an abridged history of free-electron lasers, a description of some basic physics regarding free-electron laser light amplification, and an overview of the rapidly growing list of examples in which lasers will be used in the control and operation of X-ray FELs.

  2. X-ray free-electron lasers--present and future capabilities [Invited

    SciTech Connect

    Galayda, John N.; Arthur, John; Ratner, Daniel F.; White, William E.

    2010-11-15

    The Linac Coherent Light Source is now in operation as an X-ray free-electron laser (FEL) user facility. It produces coherent pulses of 550-10,000 eV X-rays of duration adjustable from <10 fs to 500 fs. Typical peak power is in excess of 20 GW. The facility will soon be joined by several X-ray FELs under construction around the world. This article will provide an abridged history of free-electron lasers, a description of some basic physics regarding free-electron laser light amplification, and an overview of the rapidly growing list of examples in which lasers will be used in the control and operation of X-ray FELs.

  3. Calibration of a flat field soft x-ray grating spectrometer for laser produced plasmas

    SciTech Connect

    Park, J.; Cone, K. V.; Brown, G. V.; Schneider, M. B.; Beiersdorfer, P.; Magee, E. W.; May, M. J.; Baldis, H. A.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2010-10-15

    We have calibrated the x-ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL and at both the Omega and Omega EP lasers at the University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range of {approx}6-60 A. The calibration results presented here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from the hydrogenlike and heliumlike ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x-ray intensities recorded by the VSG to those simultaneously recorded by an x-ray microcalorimeter spectrometer.

  4. Calibration of a Flat Field Soft X-ray Grating Spectrometer for Laser Produced Plasmas

    SciTech Connect

    Park, J; Brown, G V; Schneider, M B; Baldis, H A; Beiersdorfer, P; Cone, K V; Kelley, R L; Kilbourne, C A; Magee, E; May, M J; Porter, F S

    2010-05-12

    We have calibrated the x ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL, and at both the Omega and Omega EP lasers at University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range from {approx} 6 to 60 {angstrom}. The calibration results present here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from hydrogen-like and helium-like ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x ray intensities recorded by the VSG to those simultaneously recorded by an x ray microcalorimeter spectrometer.

  5. Calibration of a flat field soft x-ray grating spectrometer for laser produced plasmasa)

    NASA Astrophysics Data System (ADS)

    Park, J.; Brown, G. V.; Schneider, M. B.; Baldis, H. A.; Beiersdorfer, P.; Cone, K. V.; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; May, M. J.; Porter, F. S.

    2010-10-01

    We have calibrated the x-ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL and at both the Omega and Omega EP lasers at the University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range of ˜6-60 Å. The calibration results presented here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from the hydrogenlike and heliumlike ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x-ray intensities recorded by the VSG to those simultaneously recorded by an x-ray microcalorimeter spectrometer.

  6. Proposal for an x-ray free electron laser oscillator with intermediate energy electron beam.

    PubMed

    Dai, Jinhua; Deng, Haixiao; Dai, Zhimin

    2012-01-20

    Harmonic lasing of low-gain free electron laser oscillators has been experimentally demonstrated in the terahertz and infrared regions. Recently, the low-gain oscillator has been reconsidered as a promising candidate for hard x-ray free electron lasers, through the use of high reflectivity, high-resolution x-ray crystals. In this Letter, it is proposed to utilize a crystal-based cavity resonant at a higher harmonic of the undulator radiation, together with phase shifting, to enable harmonic lasing of the x-ray free electron laser oscillator, and hence allow the generation of hard x-ray radiation at a reduced electron beam energy. Results show that fully coherent free electron laser radiation with megawatt peak power, in the spectral region of 10-25 keV, can be generated with a 3.5 GeV electron beam.

  7. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    SciTech Connect

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-10-15

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10{sup 14} to 1.8 × 10{sup 15} W/cm{sup 2}. Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data.

  8. Enhanced x-rays from resonant betatron oscillations in laser wakefield with external wigglers

    NASA Astrophysics Data System (ADS)

    Zhang, Z. M.; Zhang, B.; Hong, W.; Yu, M. Y.; Deng, Z. G.; Teng, J.; He, S. K.; Gu, Y. Q.

    2016-11-01

    Generation of ultra-short betatron x-rays by laser-accelerated electron beams is of great research interest as it has many applications. In this paper, we propose a scheme for obtaining bright betatron x-rays by applying external wiggler magnetic field in the laser wakefield to resonantly drive the betatron oscillations of the accelerated electrons therein. This results in a significant enhancement of the betatron oscillation amplitude and generation of bright x-rays with high photon energy. The scheme is demonstrated using two-dimensional particle-in-cell simulation and discussed using a simple analytical model.

  9. Progress in compact soft x-ray lasers and their applications

    SciTech Connect

    Suckewer, S.; Skinner, C.H.

    1995-01-01

    The ultra-high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. A crucial factor in the availability of these devices is their scale and cost. Recent breakthroughs in this field has brought closer the advent of table-top devices, suitable for applications to fields such as x-ray microscopy, chemistry, material science, plasma diagnostics, and lithography. In this article we review recent progress in the development of compact (table-top) soft x-ray lasers.

  10. Experimental demonstration of laser to x-ray conversion enhancements with low density gold targets

    DOE PAGES

    Shang, Wanli; Yang, Jiamin; Zhang, Wenhai; ...

    2016-02-12

    The enhancement of laser to x-ray conversion efficiencies using low density gold targets [W. L. Shang, J. M. Yang, and Y. S. Dong, Appl. Phys. Lett. 102, 094105 (2013)] is demonstrated. Laser to x-ray conversion efficiencies with 6.3% and 12% increases are achieved with target densities of 1 and 0.25 g/cm3, when compared with that of a solid gold target (19.3 g/cm3). Experimental data and numerical simulations are in good agreement. Lastly, the enhancement is caused by larger x-ray emission zone lengths formed in low density targets, which is in agreement with the simulation results.

  11. Exploring the Potential of Table-Top X-Ray Lasers and Capillary Discharge for Applications

    SciTech Connect

    Shlyaptev, V N; Dunn, J; Smith, R F; Moon, S J; Fournier, K B; Nilsen, J; Osterheld, A L; Kuba, J; Wootton, A J; Lee, R W; Rocca, J J; Rahman, A; Hammarsten, E; Filevich, J; Jankovska, E; Marconi, M C; Fornaciari, N; Buchenauer, D; Hender, H A; Kari,M S; Kanouff, M; Dimkoff, J; Kubiak, G; Shimkaveg, G; Silfvast, W T

    2003-05-08

    The advantages of using of table top x-ray lasers (XRLs) for different applications have been described. Examples of the first successful use of XRLs, the current efforts in applying them and the potential applications where an XRL can be used in future have been discussed. Modeling results showing the possibility of 3-4 times shorter wavelength capillary discharge x-ray lasers and calculated spectrum of Xe capillary EUV source are presented.

  12. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    SciTech Connect

    Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G.; Heimann, P.; Krupin, O.; Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S.; Kelez, N.; Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W.; and others

    2012-04-15

    The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

  13. Effect of a laser irradiation on the vascularisation of safety and X-ray radiated bone.

    PubMed

    Desmons, Sophie; Delfosse, Caroline; Rochon, Philippe; Buys, Bruno; Penel, Guillaume; Mordon, Serge

    2007-01-01

    Thermal preconditioning induces a cytoprotective effect and promotes tissue recovering. Laser is an appropriated method to generate a controlled and reproducible heating. Bone healing, a crucial challenge in medicine, is affected by X-ray radiation which induces a chronic antiangiogenic effect. So, this study aims to investigate the role of laser preconditioning on the vascularisation of bone after X-ray radiation. An optical bone chamber allowed the study of the vascularization process. The vascular density (VD) was determined using image processing. A longitudinal study was performed on 20 rabbits divided in four groups: #1: control group (n=5); #2: laser irradiation alone (diode laser 810nm, fluence= 48J/cm2) (n=5). #3: X-ray radiation (18.75Gy) alone (n=5), #4: laser preconditioning 24 hours before a X-ray radiation (n=5). VD remained stable during 12-week follow up for groups #1 and #2. X-ray radiation lead to an important decrease of the superficial bone vascularization in group #3. The decrease of the vascularization was limited in group #4 highlighting a different evolution between group #3 and #4. Those results were confirmed by histological analysis. Our preliminary findings show that laser preconditioning preserves vascularization in X-ray radiated bone site, outlining a novel approach for the bone healing in which the vascular supply has been injured.

  14. Laser Assisted Emittance Exchange: Downsizing the X-ray Free Electron Laser

    SciTech Connect

    Xiang, Dao; /SLAC

    2009-12-11

    A technique is proposed to generate electron beam with ultralow transverse emittance through laser assisted transverse-to-longitudinal emittance exchange. In the scheme a laser operating in the TEM10 mode is used to interact with the electron beam in a dispersive region and to initiate the emittance exchange. It is shown that with the proposed technique one can significantly downsize an x-ray free electron laser (FEL), which may greatly extend the availability of these light sources. A hard x-ray FEL operating at 1.5 {angstrom} with a saturation length within 30 meters using a 3.8 GeV electron beam is shown to be practically feasible.

  15. Simulation of the fundamental and nonlinear harmonic output from an FEL amplifier with a soft x-ray seed laser

    SciTech Connect

    Biedron, S. G.; Freund, H. P.; Li, Y.; Milton, S. V.

    2000-07-05

    A single-pass, high-gain free-electron laser (FEL) x-ray amplifier was simulated using the 3D, polychromatic simulation code MEDUSA. The seed for the system is a table-top, soft x-ray laser. The simulated fundamental and nonlinear harmonic x-ray output wavelengths are discussed.

  16. Observation of pulsed x-ray trains produced by laser-electron Compton scatterings

    SciTech Connect

    Sakaue, Kazuyuki; Washio, Masakazu; Araki, Sakae; Fukuda, Masafumi; Higashi, Yasuo; Honda, Yosuke; Omori, Tsunehiko; Taniguchi, Takashi; Terunuma, Nobuhiro; Urakawa, Junji; Sasao, Noboru

    2009-12-15

    X-ray generation based on laser-electron Compton scattering is one attractive method to achieve a compact laboratory-sized high-brightness x-ray source. We have designed, built, and tested such a source; it combines a 50 MeV multibunch electron linac with a mode-locked 1064 nm laser stored and amplified in a Fabry-Perot optical cavity. We directly observed trains of pulsed x rays using a microchannel plate detector; the resultant yield was found to be 1.2x10{sup 5} Hz in good agreement with prediction. We believe that the result has demonstrated good feasibility of linac-based compact x-ray sources via laser-electron Compton scatterings.

  17. MeV-energy x rays from inverse compton scattering with laser-wakefield accelerated electrons.

    PubMed

    Chen, S; Powers, N D; Ghebregziabher, I; Maharjan, C M; Liu, C; Golovin, G; Banerjee, S; Zhang, J; Cunningham, N; Moorti, A; Clarke, S; Pozzi, S; Umstadter, D P

    2013-04-12

    We report the generation of MeV x rays using an undulator and accelerator that are both driven by the same 100-terawatt laser system. The laser pulse driving the accelerator and the scattering laser pulse are independently optimized to generate a high energy electron beam (>200  MeV) and maximize the output x-ray brightness. The total x-ray photon number was measured to be ∼1×10(7), the source size was 5  μm, and the beam divergence angle was ∼10  mrad. The x-ray photon energy, peaked at 1 MeV (reaching up to 4 MeV), exceeds the thresholds of fundamental nuclear processes (e.g., pair production and photodisintegration).

  18. Inner-Shell Photon-Ionized X-Ray Laser at 45(Angstrom)

    SciTech Connect

    Weber, F; Celliers, P; Moon, S; Snavely, R; Da Silva, L

    2002-02-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Lab Wide (LW) project entitled, ''An Inner-Shell Photo-Ionized X-Ray Laser at 45 {angstrom}'', tracking code 99-LW-042. The most significant accomplishments of this project include the design of a suitable x-ray laser target, the invention of a measurement technique for the determination of rise times of x-ray pulses on the order of 50 femtoseconds, and a novel setup for generating a traveling wave with an ultrashort optical laser pulse. The pump probe technique for rise time measurement will allow us to detect ultrashort x-ray pulses, whose generation by means of a variety of 4th generation light sources is currently under planning elsewhere.

  19. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source

    PubMed Central

    Wenz, J.; Schleede, S.; Khrennikov, K.; Bech, M.; Thibault, P.; Heigoldt, M.; Pfeiffer, F.; Karsch, S.

    2015-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources. PMID:26189811

  20. Images of the laser entrance hole from the static x-ray imager at NIF.

    PubMed

    Schneider, M B; Jones, O S; Meezan, N B; Milovich, J L; Town, R P; Alvarez, S S; Beeler, R G; Bradley, D K; Celeste, J R; Dixit, S N; Edwards, M J; Haugh, M J; Kalantar, D H; Kline, J L; Kyrala, G A; Landen, O L; MacGowan, B J; Michel, P; Moody, J D; Oberhelman, S K; Piston, K W; Pivovaroff, M J; Suter, L J; Teruya, A T; Thomas, C A; Vernon, S P; Warrick, A L; Widmann, K; Wood, R D; Young, B K

    2010-10-01

    The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.

  1. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE PAGES

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il; ...

    2017-02-17

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  2. Ion and X-ray techniques used for study of laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Wolowski, J.; Parys, P.; Rosinski, M.; Ryć, L.; Woryna, E.

    2015-04-01

    This review article describes apparatus for ion and X-ray diagnostics, which were used in experimental studies of laser-produced plasmas performed by the IPPLM's team in collaboration with other researchers at IPPLM and PALS Research Centre in Prague (the Czech Republic). The investigations of expanding laser-produced plasma properties in dependence on laser beam parameters were done by means of ion diagnostics devices: ion collectors (ICs), cylindrical ion energy analyzer (IEA) and the mass spectrograph of the Thomson type. At IPPLM, different types of detectors have been developed for measurement of X-ray emission. Properties of laser-produced beams of ions and X-ray radiation were analysed in the cooperative experiments performed with the use of a high-energy iodine laser PALS at the PALS Research Centre ASCR in the Czech Republic and the low-energy repetitive laser at IPPLM.

  3. Photoionization-pumped x-ray lasers using ultrashort-pulse excitation.

    PubMed

    Kapteyn, H C

    1992-08-20

    Recent advances in the production of ultrashort x-ray pulses by using femtosecond laser-produced plasmas coupled with the development of terawatt ultrashort-pulse lasers may make possible ultrashortpulse photoexcited x-ray lasers. I examine the creation of a population inversion on the K-alpha transition of neon at 1.5 nm by using the photoionization scheme first suggested by Duguay and Rentzepis in 1967. It is shown that this laser can be produced by using a pump laser of ~ 10 J in 50 fs, provided that a sufficiently bright laser-produced plasma x-ray source can be created. Recent experimental and theoretical results are discussed that verify the potential feasibility of this scheme.

  4. Pore size dependent behavior of hydrated Ag+ ions confined in mesoporous MCM-41 materials under synchrotron X-ray irradiation.

    PubMed

    Ito, Kanae; Yoshida, Koji; Kittaka, Shigeharu; Yamaguchi, Toshio

    2012-01-01

    The behavior of hydrated Ag+ ions in a 1.5 mol dm(-3) AgNO3 aqueous solution confined in mesoporous silica MCM-41 with different pore sizes was characterized by synchrotron X-ray absorption spectroscopy. The hydrated Ag+ ions are stabilized in 4-fold coordination down to 195 K in the pores (21 Å in diameter), whereas in the larger pores (28 Å) the hydrated Ag+ ions are reduced to Ag0 to form nano clusters with the Ag-Ag interactions of 2.80 Å.

  5. Kinetic Modeling of Ultraintense X-ray Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Royle, Ryan; Sentoku, Yasuhiko; Mancini, Roberto

    2016-10-01

    Hard x-ray free-electron lasers (XFELs) have had a profound impact on the physical, chemical, and biological sciences. They can produce millijoule x-ray laser pulses just tens of femtoseconds in duration with more than 1012 photons each, making them the brightest laboratory x-ray sources ever produced by several orders of magnitude. An XFEL pulse can be intensified to 1020 W/cm2 when focused to submicron spot sizes, making it possible to isochorically heat solid matter well beyond 100 eV. These characteristics enable XFELs to create and probe well-characterized warm and hot dense plasmas of relevance to HED science, planetary science, laboratory astrophysics, relativistic laser plasmas, and fusion research. Several newly developed atomic physics models including photoionization, Auger ionization, and continuum-lowering have been implemented in a particle-in-cell code, PICLS, which self-consistently solves the x-ray transport, to enable the simulation of the non-LTE plasmas created by ultraintense x-ray laser interactions with solid density matter. The code is validated against the results of several recent experiments and is used to simulate the maximum-intensity x-ray heating of solid iron targets. This work was supported by DOE/OFES under Contract No. DE-SC0008827.

  6. Photoionization-pumped, Ne II, x-ray laser studies project. Final report

    SciTech Connect

    Richardson, M.C.; Hagelstein, P.L.; Eckart, M.J.; Forsyth, J.M.; Gerrassimenko, M.; Soures, J.M.

    1984-01-01

    The energetics of this pumping scheme are shown. Short-pulse (50 to 100 ps) laser irradiation of an appropriate x-ray flashlamp medium generates broad-band emission in the range of 300 to 800 eV which preferentially photoionizes Ne to the /sup 2/S state of Ne II creating an inversion at approximately 27 eV. Although this approach does not depend on precise spectral overlap between the x-ray pump radiation and the medium to be pumped, it does require that the x-ray medium remain un-ionized prior to photoionization by the soft x-ray emission. Well-controlled focus conditions are required to ensure that the x-ray medium is not subjected to electron or x-ray preheat prior to irradiation by the soft x-ray source. The magnitude of the population inversion is predicted to be critically dependent upon rapid photoionization of the two states; therefore, ultra-short pulse irradiation of the laser flashlamps is required.

  7. High Energy X-Ray Source Generation by Short Pulse High Intensity Lasers

    SciTech Connect

    Park, H-S; Koch, J A; Landen, O L; Phillips, T W; Goldsack, T; Clark, E; Eagleton, R; Edwards, R

    2003-09-02

    We are studying the feasibility of utilizing K{alpha} x-ray sources in the range of 20 to 100 keV as a backlighters for imaging various stages of implosions and high areal density planar samples driven by the NIF laser facility. The hard x-ray K{alpha} sources are created by relativistic electron plasma interactions in the target material after a radiation by short pulse high intensity lasers. In order to understand K{alpha} source characteristics such as production efficiency and brightness as a function of laser parameters, we have performed experiments using the 10 J, 100 fs JanUSP laser. We utilized single-photon counting spectroscopy and x-ray imaging diagnostics to characterize the K{alpha} source. We find that the K{alpha} conversion efficiency from the laser energy at 22 keV is {approx} 3 x 10{sup -4}.

  8. Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator

    SciTech Connect

    Albert, F.; Pollock, B. B.; Shaw, J. L.; Marsh, K. A.; Ralph, J. E.; Chen, Y. -H.; Alessi, D.; Pak, A.; Clayton, C. E.; Glenzer, S. H.; Joshi, C.

    2014-07-22

    This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.

  9. Refraction and absorption of x rays by laser-dressed atoms.

    SciTech Connect

    Buth, C.; Santra, R.; Young, L.

    2010-06-01

    X-ray refraction and absorption by neon atoms under the influence of an 800 nm laser with an intensity of 10{sup 13} W/cm{sup 2} is investigated. For this purpose, we use an ab initio theory suitable for optical strong-field problems. Its results are interpreted in terms of a three-level model. On the Ne 1s {yields} 3p resonance, we find electromagnetically induced transparency (EIT) for x rays. Our work opens novel perspectives for ultrafast x-ray pulse shaping.

  10. Toward the development of a soft x-ray reflection imaging microscope in the Schwarzschild configuration using a soft x-ray laser at 18. 2 nm

    SciTech Connect

    Dicicco, D.; Rosser, R. ); Kim, D.; Suckewer, S. . Plasma Physics Lab.)

    1991-12-01

    We present the recent results obtained from a soft X-ray reflection imaging microscope in the Schwarzschild configuration. The microscope demonstrated a spatial resolution of 0.7 {mu}m with a magnification of 16 at 18.2 nm. The soft X-ray laser at 18.2 nm was used as an X-ray source. Mo/Si multilayers were coated on the Schwarzschild optics and the normal incidence reflectivity at 18.2 nm per surface was measured to be {approximately} 20 %. 18 refs., 6 figs.

  11. Time-resolved x-ray line diagnostics of laser-produced plasmas

    SciTech Connect

    Kauffman, R.L.; Matthews, D.L.; Kilkenny, J.D.; Lee, R.W.

    1982-01-01

    We have examined the underdense plasma conditions of laser irradiated disks using K x-rays from highly ionized ions. A 900 ps laser pulse of 0.532 ..mu..m light is used to irradiate various Z disks which have been doped with low concentrations of tracer materials. The tracers whose Z's range from 13 to 22 are chosen so that their K x-ray spectrum is sensitive to typical underdense plasma temperatures and densities. Spectra are measured using a time-resolved crystal spectrograph recording the time history of the x-ray spectrum. A spatially-resolved, time-integrated crystal spectrograph also monitors the x-ray lines. Large differences in Al spectra are observed when the host plasma is changed from SiO/sub 2/ to PbO or In. Spectra will be presented along with preliminary analysis of the data.

  12. A high-resolving-power x-ray spectrometer for the OMEGA EP Laser (invited)

    NASA Astrophysics Data System (ADS)

    Nilson, P. M.; Ehrne, F.; Mileham, C.; Mastrosimone, D.; Jungquist, R. K.; Taylor, C.; Stillman, C. R.; Ivancic, S. T.; Boni, R.; Hassett, J.; Lonobile, D. J.; Kidder, R. W.; Shoup, M. J.; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Froula, D. H.; Hill, K. W.; Gao, L.; Bitter, M.; Efthimion, P.; Meyerhofer, D. D.

    2016-11-01

    A high-resolving-power x-ray spectrometer has been developed for the OMEGA EP Laser System based on a spherically bent Si [220] crystal with a radius of curvature of 330 mm and a Spectral Instruments (SI) 800 Series charge-coupled device. The instrument measures time-integrated x-ray emission spectra in the 7.97- to 8.11-keV range, centered on the Cu Kα1 line. To demonstrate the performance of the spectrometer under high-power conditions, Kα1,2 emission spectra were measured from Cu foils irradiated by the OMEGA EP laser with 100-J, 1-ps pulses at focused intensities above 1018 W/cm2. The ultimate goal is to couple the spectrometer to a picosecond x-ray streak camera and measure temperature-equilibration dynamics inside rapidly heated materials. The plan for these ultrafast streaked x-ray spectroscopy studies is discussed.

  13. A high-resolving-power x-ray spectrometer for the OMEGA EP Laser (invited).

    PubMed

    Nilson, P M; Ehrne, F; Mileham, C; Mastrosimone, D; Jungquist, R K; Taylor, C; Stillman, C R; Ivancic, S T; Boni, R; Hassett, J; Lonobile, D J; Kidder, R W; Shoup, M J; Solodov, A A; Stoeckl, C; Theobald, W; Froula, D H; Hill, K W; Gao, L; Bitter, M; Efthimion, P; Meyerhofer, D D

    2016-11-01

    A high-resolving-power x-ray spectrometer has been developed for the OMEGA EP Laser System based on a spherically bent Si [220] crystal with a radius of curvature of 330 mm and a Spectral Instruments (SI) 800 Series charge-coupled device. The instrument measures time-integrated x-ray emission spectra in the 7.97- to 8.11-keV range, centered on the Cu Kα1 line. To demonstrate the performance of the spectrometer under high-power conditions, Kα1,2 emission spectra were measured from Cu foils irradiated by the OMEGA EP laser with 100-J, 1-ps pulses at focused intensities above 10(18) W/cm(2). The ultimate goal is to couple the spectrometer to a picosecond x-ray streak camera and measure temperature-equilibration dynamics inside rapidly heated materials. The plan for these ultrafast streaked x-ray spectroscopy studies is discussed.

  14. Atom Specific Ultrafast Surface Chemistry using a Soft X-ray Laser

    NASA Astrophysics Data System (ADS)

    Nilsson, Anders

    2014-03-01

    Catalysis is central for many chemical energy transformations that occur at interfaces. One of the dreams is to follow catalytic reactions in real time from reactants over various intermediates to products. The prospective for the study of chemical reactions on surfaces using X-ray free-electron lasers (Linac Coherent Light Source, or LCLS, at SLAC National Accelerator Laboratory) will be presented. We induced the hot electron and phonon mediated excitation of adsorbates on Ru(0001) with synchronized excitation by a femtosecond optical laser pulse. We have followed the ultrafast evolution of the bond distortions, weakening and breaking, using x-ray absorption spectroscopy and x ray emission spectroscopy resonantly tuned to the oxygen core level with ultrashort x-ray pulses delivered from LCLS. We can directly follow the time evolution of the molecular orbitals in an atom-specific way on a subpicosecond timescale. Three examples will be shown CO desorption, Oxygen activation and CO oxidation on Ru(0001).

  15. 21nm x-ray laser Thomson scattering of laser-heated exploding foil plasmas

    SciTech Connect

    Dunn, J; Rus, B; Mocek, T; Nelson, A J; Foord, M E; Rozmus, W; Baldis, H A; Shepherd, R L; Kozlova, M; Polan, J; Homer, P; Stupka, M

    2007-09-26

    Recent experiments were carried out on the Prague Asterix Laser System (PALS) towards the demonstration of a soft x-ray laser Thomson scattering diagnostic for a laser-produced exploding foil. The Thomson probe utilized the Ne-like zinc x-ray laser which was double-passed to deliver {approx}1 mJ of focused energy at 21.2 nm wavelength and lasting {approx}100 ps. The plasma under study was heated single-sided using a Gaussian 300-ps pulse of 438-nm light (3{omega} of the PALS iodine laser) at laser irradiances of 10{sup 13}-10{sup 14} W cm{sup -2}. Electron densities of 10{sup 20}-10{sup 22} cm{sup -3} and electron temperatures from 200 to 500 eV were probed at 0.5 or 1 ns after the peak of the heating pulse during the foil plasma expansion. A flat-field 1200 line mm{sup -1} variable-spaced grating spectrometer with a cooled charge-coupled device readout viewed the plasma in the forward direction at 30{sup o} with respect to the x-ray laser probe. We show results from plasmas generated from {approx}1 {micro}m thick targets of Al and polypropylene (C{sub 3}H{sub 6}). Numerical simulations of the Thomson scattering cross-sections will be presented. These simulations show electron peaks in addition to a narrow ion feature due to collective (incoherent) Thomson scattering. The electron features are shifted from the frequency of the scattered radiation approximately by the electron plasma frequency {+-}{omega}{sub pe} and scale as n{sub e}{sup 1/2}.

  16. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.

    PubMed

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J; Brewster, Aaron S; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; White, William E; Schafer, Donald W; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Glatzel, Pieter; Zwart, Petrus H; Grosse-Kunstleve, Ralf W; Bogan, Michael J; Messerschmidt, Marc; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K; Adams, Paul D; Sauter, Nicholas K

    2014-05-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.

  17. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Kononenko, T. V.; Ralchenko, V. G.; Ashkinazi, E. E.; Polikarpov, M.; Ershov, P.; Kuznetsov, S.; Yunkin, V.; Snigireva, I.; Konov, V. I.

    2016-03-01

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented.

  18. Visualizing a protein quake with time resolved X-ray scattering at a free electron laser

    PubMed Central

    Arnlund, David; Johansson, Linda C.; Wickstrand, Cecilia; Barty, Anton; Williams, Garth J.; Malmerberg, Erik; Davidsson, Jan; Milathianaki, Despina; DePonte, Daniel P.; Shoeman, Robert L.; Wang, Dingjie; James, Daniel; Katona, Gergely; Westenhoff, Sebastian; White, Thomas A.; Aquila, Andrew; Bari, Sadia; Berntsen, Peter; Bogan, Mike; van Driel, Tim Brandt; Doak, R. Bruce; Kjær, Kasper Skov; Frank, Matthias; Fromme, Raimund; Grotjohann, Ingo; Henning, Robert; Hunter, Mark S.; Kirian, Richard A.; Kosheleva, Irina; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nielsen, Martin Meedom; Messerschmidt, Marc; Seibert, M. Marvin; Sjöhamn, Jennie; Stellato, Francesco; Weierstall, Uwe; Zatsepin, Nadia A.; Spence, John C. H.; Fromme, Petra; Schlichting, Ilme; Boutet, Sébastien; Groenhof, Gerrit; Chapman, Henry N.; Neutze, Richard

    2014-01-01

    A ‘protein quake’ describes the hypothesis that proteins rapidly dissipate energy through quake like structural motions. Here we measure ultrafast structural changes in the Blastochloris viridis photosynthetic reaction center following multi-photon excitation using time-resolved wide angle X-ray scattering at an X-ray free electron laser. A global conformational change arises within picoseconds, which precedes the propagation of heat through the protein. This motion is damped within a hundred picoseconds. PMID:25108686

  19. Soft x-ray generation in gases with an ultrashort pulse laser

    SciTech Connect

    Ditmire, Todd Raymond

    1996-01-08

    An experimental investigation of soft x-ray production resulting from the interaction of intense near infra-red laser radiation with gases is presented in this thesis. Specifically, soft x-ray generation through high order harmonic generation or exploiting intense inverse bremsstrahlung heating is examined. Most of these studies are conducted with femtosecond, terawatt class Cr:LiSrAlF6 (LiSAF) laser, though results derived from studies with other laser systems are presented as well. The majority of this work is devoted to experimental investigations, however, theoretical and computational models are developed to interpret the data. These studies are motivated by the possibility of utilizing the physics of intense laser/matter interactions as a potential compact source of bright x-rays. Consequently, the thrust of many of the experiments conducted is aimed at characterizing the x-rays produced for possible use in applications. In general, the studies of this manuscript fall into three categories. First, a unique 130 fs, 8 TW laser that is based on chirped pulse amplification, is described, and its performance is evaluated. The generation of x-rays through high order harmonics is then discussed with emphasis on characterizing and optimizing harmonic generation. Finally, the generation of strong, incoherent x-ray radiation by the intense irradiation of large (>1,000 atom) clusters in gas jets, is explored. The physics of laser energy absorption by clusters illuminated with intensities of 1015 to 1017 W/cm2 is considered in detail. X-ray spectroscopy of the hot plasmas that result from the irradiation of the clusters is conducted, and energy transport and kinetics issues in these plasmas are discussed.

  20. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  1. High-intensity double-pulse X-ray free-electron laser

    DOE PAGES

    Marinelli, A.; Ratner, D.; Lutman, A. A.; ...

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  2. High-intensity double-pulse X-ray free-electron laser

    SciTech Connect

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T. J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.

  3. A final report to the Laboratory Directed Research and Development committee on Project 93-ERP-075: ``X-ray laser propagation and coherence: Diagnosing fast-evolving, high-density laser plasmas using X-ray lasers``

    SciTech Connect

    Wan, A.S.; Cauble, R.; Da Silva, L.B.; Libby, S.B.; Moreno, J.C.

    1996-02-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Exploratory Research Project (ERP) entitled ``X-ray Laser Propagation and Coherence: Diagnosing Fast-evolving, High-density Laser Plasmas Using X-ray Lasers,`` tracking code 93-ERP-075. The most significant accomplishment of this project is the demonstration of a new laser plasma diagnostic: a soft x-ray Mach-Zehnder interferometer using a neonlike yttrium x-ray laser at 155 {angstrom} as the probe source. Detailed comparisons of absolute two-dimensional electron density profiles obtained from soft x-ray laser interferograms and profiles obtained from radiation hydrodynamics codes, such as LASNEX, will allow us to validate and benchmark complex numerical models used to study the physics of laser-plasma interactions. Thus the development of soft x-ray interferometry technique provides a mechanism to probe the deficiencies of the numerical models and is an important tool for, the high-energy density physics and science-based stockpile stewardship programs. The authors have used the soft x-ray interferometer to study a number of high-density, fast evolving, laser-produced plasmas, such as the dynamics of exploding foils and colliding plasmas. They are pursuing the application of the soft x-ray interferometer to study ICF-relevant plasmas, such as capsules and hohlraums, on the Nova 10-beam facility. They have also studied the development of enhanced-coherence, shorter-pulse-duration, and high-brightness x-ray lasers. The utilization of improved x-ray laser sources can ultimately enable them to obtain three-dimensional holographic images of laser-produced plasmas.

  4. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    SciTech Connect

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  5. Femtosecond laser-generated high-energy-density states studied by x-ray FELs

    NASA Astrophysics Data System (ADS)

    Nakatsutsumi, M.; Appel, K.; Baehtz, C.; Chen, B.; Cowan, T. E.; Göde, S.; Konopkova, Z.; Pelka, A.; Priebe, G.; Schmidt, A.; Sukharnikov, K.; Thorpe, I.; Tschentscher, Th; Zastrau, U.

    2017-01-01

    The combination of powerful optical lasers and an x-ray free-electron laser (XFEL) provides unique capabilities to study the transient behaviour of matter in extreme conditions. The high energy density science instrument (HED instrument) at the European XFEL will provide the experimental platform on which an unique x-ray source can be combined with various types of high-power optical lasers. In this paper, we highlight selected scientific examples together with the associated x-ray techniques, with particular emphasis on femtosecond (fs)-timescale pump-probe experiments. Subsequently, we present the current design status of the HED instrument, outlining how the experiments could be performed. First user experiments will start at the beginning of 2018, after which various optical lasers will be commissioned and made available to the international scientific community.

  6. Demonstration of a low electromagnetic pulse laser-driven argon gas jet x-ray source

    NASA Astrophysics Data System (ADS)

    Kugland, N. L.; Aurand, B.; Brown, C. G.; Constantin, C. G.; Everson, E. T.; Glenzer, S. H.; Schaeffer, D. B.; Tauschwitz, A.; Niemann, C.

    2012-07-01

    Laser-produced plasmas are often used as bright x-ray backlighters for time-resolved plasma diagnostics, but such backlighters simultaneously generate damaging electromagnetic pulse (EMP). A laser-driven Ar gas jet x-ray source has been measured with magnetic flux B-dot probes to produce 20 times ±37% less integrated EMP in the 0.5-2.5 GHz band than a solid chlorinated plastic foil, while retaining 85% of the laser to ≈3 keV x-ray conversion efficiency. These results are important for future backlighter development, since tailoring target density may provide a way to reduce EMP even as laser power increases.

  7. The method of pulsed x-ray detection with a diode laser

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Ouyang, Xiaoping; Zhang, Zhongbing; Sheng, Liang; Chen, Liang; Tan, Xinjian; Weng, Xiufeng

    2016-12-01

    A new class of pulsed X-ray detection methods by sensing carrier changes in a diode laser cavity has been presented and demonstrated. The proof-of-principle experiments on detecting pulsed X-ray temporal profile have been done through the diode laser with a multiple quantum well active layer. The result shows that our method can achieve the aim of detecting the temporal profile of a pulsed X-ray source. We predict that there is a minimum value for the pre-bias current of the diode laser by analyzing the carrier rate equation, which exists near the threshold current of the diode laser chip in experiments. This behaviour generally agrees with the characterizations of theoretical analysis. The relative sensitivity is estimated at about 3.3 × 10-17 C ṡ cm2. We have analyzed the time scale of about 10 ps response with both rate equation and Monte Carlo methods.

  8. X-ray beam source from a Self-modulated laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Albert, Felicie; Marsh, K. A.; Shaw, J. L.; King, P.; Patankar, S.; Ralph, J.; Pollock, B. B.; Martins, J. L.; Amorim, L. D.; Tsung, F. S.; Goyon, C.; Pak, A.; Moody, J. D.; Schumaker, W.; Fiuza, F.; Glenzer, S. H.; Hegelichand, B. M.; Saunders, A.; Flacone, R. W.; Joshi, C.

    2016-10-01

    To diagnose material properties under extreme conditions of temperature and pressure the development of a directional, small-divergence, small source size and short pulse duration x-ray source has become essential. In this work we explore through experiments and PIC simulations the betatron radiation generated in self-modulated laser-wakefield accelerators. The experiment was preformed at the Jupiter Laser Facility, LLNL where electrons with energies up to 200 MeV and Betatron x-rays with critical energies >10 keV were observed. OSIRIS 2D PIC simulations indicate that the x-ray critical energy directly scales with the a0 of the laser and can easily be increased to critical energies exceeding 50 keV using a laser with a0 of 3.

  9. X-ray emission generated by laser-produced plasmas from dielectric nanostructured targets

    NASA Astrophysics Data System (ADS)

    Samsonova, Z.; Höfer, S.; Hoffmann, A.; Landgraf, B.; Zürch, M.; Uschmann, I.; Khaghani, D.; Rosmej, O.; Neumayer, P.; Röder, R.; Trefflich, L.; Ronning, C.; Förster, E.; Spielmann, C.; Kartashov, D.

    2017-03-01

    We present an experimental study of X-ray generation from nanostructured ZnO targets. Samples of different morphology ranging from nanowires to polished surfaces are irradiated by relativistically intense femtosecond laser pulses. X-ray emission of plasma is generated by 45 fs 130 mJ laser pulses at 400 nm with picosecond temporal contrast better than 10-9 interacting with an array of ZnO nanowires. The measured spectra indicate the existence of highly ionized states of Zn (up to He-like Zn). The obtained flux of ˜1010 photons per laser shot at the neutral Zn Kα energies around 8.65 keV and at the Zn Heα energies around 9 keV is almost 3 times higher for nanostructured targets compared to the reference polished sample and implies 10-4 conversion efficiency from the laser energy to the total energy of the emitted X-ray photons.

  10. An ARXPS and ERXPS study of quaternary ammonium and phosphonium ionic liquids: utilising a high energy Ag Lα' X-ray source.

    PubMed

    Blundell, Rebecca K; Delorme, Astrid E; Smith, Emily F; Licence, Peter

    2016-02-17

    A series of ammonium- and phosphonium-based ionic liquids have been probed using X-ray photoelectron spectroscopy (XPS) with a high energy Ag Lα' X-ray source. The capability of the Ag Lα' X-ray source for ionic liquid analysis is confirmed alongside the characterisation of previously undetected high energy core photoelectron emissions. Additionally, the utilisation of the Ag Lα' X-ray source as a depth profiling technique (ERXPS) to investigate the structure of the ionic liquid/vacuum interface has been demonstrated, with comparison made to angle resolved X-ray photoelectron spectroscopy (ARXPS).

  11. Pulse energy measurement at the hard x-ray laser in Japan

    SciTech Connect

    Kato, M.; Tanaka, T.; Saito, N.; Kurosawa, T.; Richter, M.; Sorokin, A. A.; Tiedtke, K.; Kudo, T.; Yabashi, M.; Tono, K.; Ishikawa, T.

    2012-07-09

    The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

  12. Simulations of a grazing-incidence pumped x-ray laser at 14.7 nm

    SciTech Connect

    Yan, F.; Zhang, J.; Dong, Q. L.; Lu, X.; Li, Y. J.

    2006-02-15

    Numerical simulations of the grazing-incidence pumped Ni-like Pd x-ray laser at 14.7 nm (4d{yields}4p, J=0{yields}1) is performed using a modified one-dimensional hydrodynamic code MEDUSA. The effective absorption of the main laser pulse in the gain region is greatly increased due to the lengthened propagation path. Results predict that a saturated output of the x-ray laser can be achieved with only subjoules driver energy on a 4-mm-long Pd target.

  13. Nanosecond x-ray Laue diffraction apparatus suitable for laser shock compression experiments.

    PubMed

    Suggit, Matthew; Kimminau, Giles; Hawreliak, James; Remington, Bruce; Park, Nigel; Wark, Justin

    2010-08-01

    We have used nanosecond bursts of x-rays emitted from a laser-produced plasma, comprised of a mixture of mid-Z elements, to produce a quasiwhite-light spectrum suitable for performing Laue diffraction from single crystals. The laser-produced plasma emits x-rays ranging in energy from 3 to in excess of 10 keV, and is sufficiently bright for single shot nanosecond diffraction patterns to be recorded. The geometry is suitable for the study of laser-shocked crystals, and single-shot diffraction patterns from both unshocked and shocked silicon crystals are presented.

  14. Time and space resolved spectroscopy of x-ray laser experiments

    SciTech Connect

    Ceglio, N.M.

    1986-04-01

    We report experimental data from one of the first of this new generation of instruments designed specifically for laboratory x-ray laser diagnosis. Representative TGSS-EM data are presented from three different x-ray laser inversion schemes: collisional excitation of neon-like selenium (lambda approx. = 206, 209A); resonant photoexcitation of hydrogen-like fluorine (lambda = 81A); and recombination of hydrogen-like magnesium (lambda approx. = 130A). The data illustrate the measurement capabilities of the TGSS-EM and provide insight to the dynamics and emission characteristics of this new class of laser produced plasmas.

  15. Development of Silver Tape Target System for High Repetition X-ray Laser

    NASA Astrophysics Data System (ADS)

    Nishikino, Masaharu; Ochi, Yoshihiro; Hasegawa, Noboru; Kawachi, Tetsuya; Ohba, Toshiyuki; Kaihori, Takeshi; Nagashima, Keisuke

    The development of continuous pumping to the target system is an important issue for realizing an x-ray laser (XRL) with the high repetition rate. We have developed a 13.9 nm XRL using a silver tape target and demonstrated a highly coherent XRL with an oscillator-amplifier configuration using two tape target systems and the TOPAZ laser system with a 10-J and a 0.1-Hz repetition rate. The output energy is comparable to the x-ray laser generated with a silver-deposited slab target, and the pointing stability using the new tape target system is better than conventional slab target.

  16. Laser-based microfocused x-ray source for mammography: feasibility study.

    PubMed

    Krol, A; Ikhlef, A; Kieffer, J C; Bassano, D A; Chamberlain, C C; Jiang, Z; Pépin, H; Prasad, S C

    1997-05-01

    A laser-produced plasma (LPP) x-ray source with possible application in mammography was created by focusing a laser beam on a Mo target. A Table-Top-Terawatt (TTT) laser operating at 1 J energy per pulse was employed. A dual pulse technique was used. Maximum energy transfer (approximately 10%) from laser light to hot electrons was reached at a 150 ps delay between pulses and the conversion efficiency (hard x-ray yield/laser energy input) was approximately 2 x 10(-4). The created LPP x-ray source is characterized by a very small focal spot size (tens of microns), Gaussian brightness distribution, and a very short pulse duration (a few ps). The spectral distribution of the generated x rays was measured. Images of the focal spot, using a pinhole camera, and images of a resolution pattern and a mammographic phantom were obtained. The LPP focal spot modulation transfer function for different magnification factors was calculated. We have shown that the LPP source in conjunction with a spherically bent, high throughput, crystal monochromator in a fixed-exit Rowland circle configuration can be used to created a narrow band tunable mammography system. Tunability to a specific patient breast tissue thickness and density would allow one to significantly improve contrast and resolution (exceeding 20 lp/mm) while lowering the exposure up to 50% for thicker breasts. The prospects for the LPP x-ray source for mammographic application are discussed.

  17. Fabrication of x-ray diffractive optical elements for laser fusion applications

    NASA Astrophysics Data System (ADS)

    Xie, Changqing; Zhu, Xiaoli; Li, Hailiang; Niu, Jiebin; Hua, Yilei; Shi, Lina

    2013-03-01

    We review our recent progress on the fabrication of x-ray diffractive optical elements (DOEs) by combining complementary advantages of electron beam, x-ray, and proximity optical lithography. First, an electron beam lithography tool with an accelerating voltage of 100 kV is used to expose initial x-ray mask based on SiC membrane with a low aspect ratio. Second, x-ray lithography is used to replicate x-ray DOEs and amplify the aspect ratio up to 14:1. Third, proximity optical lithography is used to fabricate a large-scale gold mesh as the supporting structures. We demonstrate that this method can achieve high aspect ratio metal nanometer structures without the need of a complicated multilayer resist process. A large number of x-ray DOEs have been fabricated with feature sizes down to 100 nm for the purpose of laser plasma fusion applications. Among them, the ninth-order diffraction peak on the positive side of the zeroth order can be observed for both 3333 and 5000 lines/mm x-ray gold transmission gratings.

  18. Two-colour hard X-ray free-electron laser with wide tunability.

    PubMed

    Hara, Toru; Inubushi, Yuichi; Katayama, Tetsuo; Sato, Takahiro; Tanaka, Hitoshi; Tanaka, Takashi; Togashi, Tadashi; Togawa, Kazuaki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya

    2013-01-01

    Ultrabrilliant, femtosecond X-ray pulses from X-ray free-electron lasers (XFELs) have promoted the investigation of exotic interactions between intense X-rays and matters, and the observation of minute targets with high spatio-temporal resolution. Although a single X-ray beam has been utilized for these experiments, the use of multiple beams with flexible and optimum beam parameters should drastically enhance the capability and potentiality of XFELs. Here we show a new light source of a two-colour double-pulse (TCDP) XFEL in hard X-rays using variable-gap undulators, which realizes a large and flexible wavelength separation of more than 30% with an ultraprecisely controlled time interval in the attosecond regime. Together with sub-10-fs pulse duration and multi-gigawatt peak powers, the TCDP scheme enables us to elucidate X-ray-induced ultrafast transitions of electronic states and structures, which will significantly contribute to the advancement of ultrafast chemistry, plasma and astronomical physics, and quantum X-ray optics.

  19. Traveling wave pumping of ultra-short pulse x-ray lasers

    SciTech Connect

    Snavely, R.A.; Da Silva, L.B.; Eder, D.C.; Matthews, D.L.; Moon, S.J.

    1997-11-10

    Pumping of proposed inner-shell photo-ionized (ISPI) x-ray lasers places stringent requirements on the optical pump source. We investigate these requirements for an example x-ray laser (XRL) in Carbon lasing on the 2p-1s transition at 45 A. Competing with this lasing transition is the very fast Auger decay rate out of the upper lasing state, such that the x-ray laser would self-terminate on a femto- second time scale. XRL gain may be demonstrated if pump energy is delivered in a time short when compared to the Auger rate. The fast self-termination also demands that we sequentially pump the length of the x-ray laser at the group velocity of the x-ray laser. This is the classical traveling wave requirement. It imposes a condition on the pumping source that the phase angle of the pump laser be precisely de- coupled from the pulse front angle. At high light intensities, this must be performed with a vacuum grating delay line. We will also include a discussion of issues related to pump energy delivery, i.e. pulse-front curvature, temporal blurring and puke fidelity. An all- reflective optical system with low aberration is investigated to see if it fulfills the requirements. It is expected that these designs together with new high energy (>1J) ultra-short pulse (< 40 fs) pump lasers now under construction may fulfill our pump energy conditions and produce a tabletop x-ray laser.

  20. Divergence measurements of soft x-ray laser beam

    SciTech Connect

    Suckewer, S.; Skinner, C.H.; Kim, D.; Valeo, E.; Voorhees, D.; Wouters, A.

    1986-07-01

    The divergence of the CVI 182 A lasing line generated in a rapidly recombining, magnetically confined plasma column was measured using soft x-ray spectrometers equipped with multichannel detectors. In addition to measurements of the relative divergence, an absolute divergence of approx.9 mrad at a magnetic field of 20 kG and approx.5 mrad at a magnetic field of 35 or 50 kG was obtained by a direct scan of the 182 A axial radiation. Based on this data a peak 182 A intensity of approx.100 kW is obtained. Calculations of the spatial distribution of gain in the plasma were in very good agreement with the experimental data.

  1. Kinetic Modeling Of Ultraintense X-Ray Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Royle, Ryan Bennett

    Although hard-x-ray free-electron lasers (XFELs) have only existed since 2009 when the Linac Coherent Light Source (LCLS) at Stanford created its first laser pulse, their unique capabilities have already had a profound impact on the physical, chemical, and biological sciences. The LCLS can produce ultrashort (< 100 fs), mJ x-ray laser pulses with more than 1012 photons each, making it the brightest x-ray source ever produced in a laboratory by several orders of magnitude, and more than a billion times brighter than synchrotron sources. These properties enable XFELs to create and probe well-characterized warm and hot dense plasmas of relevance to high energy density science, planetary science, laboratory astrophysics, relativistic laser plasmas, and fusion research. An x-ray pulse produced by the LCLS or SACLA (Japan) can be intensified to 1020 W/cm2 when focused to submicron spot sizes, making it possible to isochorically heat solid matter well beyond a million degrees (>100 eV) by sequential single-photon inner-shell photoionization and subsequent Auger decay. Several newly developed atomic interaction models including photoionization, K-shell vacancy decay, KLL Auger ionization, and continuum-lowering have been implemented in a particle-in-cell plasma simulation code, PICLS--which self-consistently solves the x-ray transport--to enable the simulation of non-thermal, solid density, x-ray laser-driven plasmas, offering unique insight into experimental regimes of interest in which the plasma dynamics have a significant effect on the thermodynamic properties of the system. The code is validated against the results of two recent experiments and is used to simulate the ultraintense x-ray heating of solid iron targets in anticipation of an upcoming experimental campaign at the LCLS.

  2. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    SciTech Connect

    Sterling Backus

    2012-05-14

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  3. Soft X-ray spectrum of laser-produced aluminum plasma

    SciTech Connect

    Vergunova, G. A.; Grushin, A. S.; Kologrivov, A. A.; Novikov, V. G.; Osipov, M. V.; Puzyrev, V. N. Rozanov, V. B. Starodub, A. N. Yakushev, O. F.

    2015-05-15

    Soft X-ray spectra (30–70 Å) of aluminum plasma have been measured in experiments carried out at the Kanal-2 laser facility at laser intensities of (1–7) × 10{sup 13} W/cm{sup 2}. It is shown that the measured spectra satisfactory agree with those calculated using the RADIAN numerical code.

  4. Applications using a Picosecond 14.7 nm X-Ray Laser

    SciTech Connect

    Dunn, J; Smith, R F; Nilsen, J; Shlyaptsev, V N; Filevich, J; Rocca, J J; Marconi, M C

    2001-09-21

    We report recent application experiments on the LLNL COMET tabletop facility using the picosecond, 14.7 nm Ni-like Pd x-ray laser. This work includes measurements of a laser-produced plasma density profile with a diffraction grating interferometer.

  5. Resonantly photo-pumped nickel-like erbium X-ray laser

    DOEpatents

    Nilsen, Joseph

    1990-01-01

    A resonantly photo-pumped X-ray laser (10) that enhances the gain of seve laser lines that also lase because of collisional excitations and recombination processes, is described. The laser comprises an aluminum (12) and erbium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like erbium ions (34) are resonantly photo-pumped by line emission from hydrogen-like aluminum ions (32).

  6. Full characterization of a laser-produced keV x-ray betatron source

    NASA Astrophysics Data System (ADS)

    Albert, F.; Phuoc, K. Ta; Shah, R.; Corde, S.; Fitour, R.; Tafzi, A.; Burgy, F.; Douillet, D.; Lefrou, T.; Rousse, A.

    2008-12-01

    This paper presents the complete characterization of a kilo-electron-volt laser-based x-ray source. The main parameters of the electron motion (amplitude of oscillations and initial energy) in the laser wakefield have been investigated using three independent methods relying on spectral and spatial properties of this betatron x-ray source. First we will show studies on the spectral correlation between electrons and x-rays that is analyzed using a numerical code to calculate the expected photon spectra from the experimentally measured electron spectra. High-resolution x-ray spectrometers have been used to characterize the x-ray spectra within 0.8-3 keV and to show that the betatron oscillations lie within 1 µm. Then we observed Fresnel edge diffraction of the x-ray beam. The observed diffraction at the center energy of 4 keV agrees with the Gaussian incoherent source profile of full width half maximum <5 µm, meaning that the amplitude of the betatron oscillations is less than 2.5 µm. Finally, by measuring the far field spatial profile of the radiation, we have been able to characterize the electron's trajectories inside the plasma accelerator structure with a resolution better than 0.5 µm.

  7. Rapid, Absolute Calibration of X-ray Filters Employed By Laser-Produced Plasma Diagnostics

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Emig, J; Frankel, M; Gu, M F; Heeter, R F; Magee, E; Thorn, D B; Widmann, K; . Kelley, R L; Kilbourne, C A; Porter, F S

    2008-05-11

    The electron beam ion trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of X-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen X-ray energies. X-rays are detected using the high-resolution EBIT calorimeter spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the X-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated X-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.

  8. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    SciTech Connect

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  9. Soft x-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters

    NASA Astrophysics Data System (ADS)

    Fukuda, Y.; Faenov, A. Ya.; Pikuz, T.; Kando, M.; Kotaki, H.; Daito, I.; Ma, J.; Chen, L. M.; Homma, T.; Kawase, K.; Kameshima, T.; Kawachi, T.; Daido, H.; Kimura, T.; Tajima, T.; Kato, Y.; Bulanov, S. V.

    2008-03-01

    The intense soft x-ray light source using the supersonic expansion of the mixed gas of He and CO2, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft x-rays from the CO2 clusters. Using this soft x-ray emissions, nanostructure images of 100-nm-thick Mo foils in a wide field of view (mm2 scale) with high spatial resolution (800nm ) are obtained with high dynamic range LiF crystal detectors. The local inhomogeneities of soft x-ray absorption by the nanometer-thick foils is measured with an accuracy of less than ±3%.

  10. Soft x-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters

    SciTech Connect

    Fukuda, Y.; Kando, M.; Kotaki, H.; Daito, I.; Ma, J.; Chen, L. M.; Homma, T.; Kawase, K.; Kameshima, T.; Kawachi, T.; Daido, H.; Kimura, T.; Tajima, T.; Kato, Y.; Bulanov, S. V.; Faenov, A. Ya.; Pikuz, T.

    2008-03-24

    The intense soft x-ray light source using the supersonic expansion of the mixed gas of He and CO{sub 2}, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft x-rays from the CO{sub 2} clusters. Using this soft x-ray emissions, nanostructure images of 100-nm-thick Mo foils in a wide field of view (mm{sup 2} scale) with high spatial resolution (800 nm) are obtained with high dynamic range LiF crystal detectors. The local inhomogeneities of soft x-ray absorption by the nanometer-thick foils is measured with an accuracy of less than {+-}3%.

  11. Single-shot beam-position monitor for x-ray free electron laser.

    PubMed

    Tono, Kensuke; Kudo, Togo; Yabashi, Makina; Tachibana, Takeshi; Feng, Yiping; Fritz, David; Hastings, Jerome; Ishikawa, Tetsuya

    2011-02-01

    We have developed an x-ray beam-position monitor for detecting the radiation properties of an x-ray free electron laser (FEL). It is composed of four PIN photodiodes that detect backscattered x-rays from a semitransparent diamond film placed in the beam path. The signal intensities from the photodiodes are used to compute the beam intensity and position. A proof-of-principle experiment at a synchrotron light source revealed that the error in the beam position is reduced to below 7 μm by using a nanocrystal diamond film prepared by plasma-enhanced chemical vapor deposition. Owing to high dose tolerance and transparency of the diamond film, the monitor is suitable for routine diagnostics of extremely intense x-ray pulses from the FEL.

  12. Femtosecond nanocrystallography using X-Ray Lasers for membrane protein structure determination

    PubMed Central

    Fromme, Petra; Spence, John CH

    2012-01-01

    The invention of Free Electron X-ray Lasers has opened a new era for membrane protein structure determination with the recent first proof-of-principle of the new concept of femtosecond nanocrystallography. Structure determination is based on thousands of diffraction snapshots that are collected on a fully hydrated stream of nanocrystals. This review provides a summary of the method and describes how femtosecond X-ray crystallography overcomes the radiation damage problem in X-ray crystallography, avoids the need for growth and freezing of large single crystals while offering a new method for direct digital phase determination by making use of the fully coherent nature of the X-ray beam. We briefly review the possibilities for time-resolved crystallography, and the potential for making “molecular movies” of membrane proteins at work. PMID:21752635

  13. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments

    SciTech Connect

    Kameshima, Takashi; Ono, Shun; Kudo, Togo; Ozaki, Kyosuke; Kirihara, Yoichi; Kobayashi, Kazuo; Inubushi, Yuichi; Yabashi, Makina; Hatsui, Takaki; Horigome, Toshio; Holland, Andrew; Holland, Karen; Burt, David; Murao, Hajime

    2014-03-15

    This paper presents development of an X-ray pixel detector with a multi-port charge-coupled device (MPCCD) for X-ray Free-Electron laser experiments. The fabrication process of the CCD was selected based on the X-ray radiation hardness against the estimated annual dose of 1.6 × 10{sup 14} photon/mm{sup 2}. The sensor device was optimized by maximizing the full well capacity as high as 5 Me- within 50 μm square pixels while keeping the single photon detection capability for X-ray photons higher than 6 keV and a readout speed of 60 frames/s. The system development also included a detector system for the MPCCD sensor. This paper summarizes the performance, calibration methods, and operation status.

  14. Enhancement of x-rays generated by a guided laser wakefield accelerator inside capillary tubes

    SciTech Connect

    Ju, J.; Doepp, A.; Cassou, K.; Neveu, O.; Cros, B.; Svensson, K.; Genoud, G.; Wojda, F.; Burza, M.; Persson, A.; Lundh, O.; Wahlstroem, C.-G.; Ferrari, H. E.

    2012-05-07

    Electrons accelerated in the nonlinear regime in a laser wakefield accelerator experience transverse oscillations inside the plasma cavity, giving rise to ultra-short pulsed x-rays, also called the betatron radiation. We show that the fluence of x-ray can be enhanced by more than one order of magnitude when the laser is guided by a 10 mm long capillary tube instead of interacting with a 2 mm gas jet. X-rays with a synchrotron-like spectrum and associated critical energy {approx}5 keV, with a peak brightness of {approx}1x10{sup 21} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW, were achieved by employing 16 TW laser pulses.

  15. Compact laser accelerators for X-ray phase-contrast imaging.

    PubMed

    Najmudin, Z; Kneip, S; Bloom, M S; Mangles, S P D; Chekhlov, O; Dangor, A E; Döpp, A; Ertel, K; Hawkes, S J; Holloway, J; Hooker, C J; Jiang, J; Lopes, N C; Nakamura, H; Norreys, P A; Rajeev, P P; Russo, C; Streeter, M J V; Symes, D R; Wing, M

    2014-03-06

    Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10-100 keV range.

  16. Production of multi-kilovolt x-ray from laser-heated targets

    SciTech Connect

    Back, C.A.; Grum, J.; Decker, C.D.; Davis, J.L.; Landen, O.L.; Suter, L.J.; Wallace, R.

    1997-07-01

    Experiments to develop high photon energy x-ray sources were carried out on the Nova laser. Ten laser beams delivered approximately 39 kJ of energy in 2 ns into a Be cylinder filled with Xe gas. The conversion efficiency into x-ray {lt} 4 keV was measured to be 5-15%, which is the highest measured in this photon regime for laser-produced plasmas. The temporal dependence of the x-ray emission indicates that the bulk of the emission is emitted in the first half of the 2 ns pulse. A set of diagnostics were fielded to image the volume in emission as well as provide spectra to measure conversion efficiency.

  17. Target optimization for desired X-ray spectra produced by laser plasma accelerated electrons

    NASA Astrophysics Data System (ADS)

    Lobok, Maxim; Brantov, Andrey; Bychenkov, Valery

    2016-10-01

    Different regimes of electron acceleration from low-density targets are investigated using three-dimensional numerical simulations. Multiple spatial target density profiles were examined, including laser pre-pulse modified targets. The size of the plasma corona is shown to be one of the main parameters characterizing the temperature and number of hot electrons, which determine the yield of X-ray radiation and its hardness. The generation of X-ray radiation by laser accelerated electrons, which impact the converter target located behind the laser target, was studied. The X-ray spectra were computed using Monte-Carlo simulations. This work was partially supported by the Russian Foundation for Basic Research 16-02-00088-a.

  18. ARPA/NRL X-Ray Laser Program

    DTIC Science & Technology

    1977-04-01

    reports and else- where recently1»2. The basic idea is to prepare a suitable plasma ion environment with a laser-target combination, and to...program, using the large NRL terrawatt laser facility. The first experiments were performed with expansion into a vacuum environment , and the...charge transfer between hydrogen and heavy ions in environments typical of magnetic fusion. REFERENCES 1. "Review of Short Wavelength Laser Research," R

  19. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: X-ray spectral diagnostics of plasmas heated by picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bryunetkin, B. A.; Skobelev, I. Yu; Faenov, A. Ya; Khakhalin, S. Ya; Kalashnikov, M. P.; Nickles, P. V.; Schnürer, M.

    1993-06-01

    The properties of a magnesium plasma heated by picosecond laser pulses have been determined by x-ray spectral methods. Experiments were carried out at a laser power density ~ 1.5 · 1018 W/cm2. The x-ray spectra were detected by spectrographs with a plane CsAP crystal and a mica crystal bent into part of a spherical surface 10 cm in radius. The experimental data are compared with predictions of a calculation on the time-varying kinetics of multiply charged magnesium ions.

  20. Measurements of X-ray doses and spectra produced by picosecond laser-irradiated solid targets.

    PubMed

    Yang, Bo; Qiu, Rui; Yu, Minghai; Jiao, Jinlong; Lu, Wei; Yan, Yonghong; Zhang, Bo; Zhang, Zhimeng; Zhou, Weimin; Li, Junli; Zhang, Hui

    2017-05-01

    Experiments have shown that high-intensity laser interaction with a solid target can generate significant X-ray doses. This study was conducted to determine the X-ray doses and spectra produced for picosecond laser-irradiated solid targets. The photon doses and X-ray spectra in the laser forward and side directions were measured using an XG III ps 300 TW laser system. For laser intensities of 7×10(18)-4×10(19)W/cm(2), the maximum photon dose was 16.8 mSv at 50cm with a laser energy of ~153J on a 1-mm Ta target. The photon dose in the forward direction increased more significantly with increasing laser intensity than that in the side direction. For photon energies >300keV, the X-ray spectrum can be fit with an effective temperature distribution of the exponential form, dN/dE = k× exp(-E/Tx). The X-ray temperature Tx increased with the laser intensity in the forward direction with values of 0.46-0.75MeV. Tx was less strongly correlated with the laser intensity in the side direction with values of 0.29-0.32MeV. The escaping electron spectrum was also measured. The measured electron temperature was correlated with the electron temperature predicted by the ponderomotive law. The observations in this experiment were also investigated numerically. A good agreement was observed between the experimental and simulation results.

  1. Modal study of refractive effects on x-ray laser coherence

    SciTech Connect

    Amendt, P.; London, R.A. ); Strauss, M. . Nuclear Research Center-Negev)

    1991-04-05

    The role of smoothly varying transverse gain and refraction profiles on x-ray laser intensity and coherence is analyzed by modally expanding the electric field within the paraxial approximation. Comparison with a square transverse profile reveals that smooth-edged profiles lead to: (1) a greatly reduced number of guided modes, (2) the continued cancellation of local intensity from a loosely guided mode by resonant free modes, (3) and the absence of extraneous (or anomalous) free mode resonances. These generic spectral properties should enable a considerable simplification in analyzing and optimizing the coherence properties of laboratory soft x-ray lasers. 6 refs., 3 figs.

  2. Prospects for using X-ray free-electron lasers to investigate shock-compressed matter

    SciTech Connect

    Nagler, Bob; Higginbotham, Andrew; Kimminau, Giles; Murphy, William; Whitcher, Thomas; Wark, Justin; Hawreliak, James; Kalantar, Dan; Lee, Richard; Lorenzana, Hector; Remington, Bruce; Larsson, Jorgen; Park, Nigel; Sokolowski-Tinten, Klaus

    2007-12-12

    Within the next few years hard X-ray Free Electron Lasers will come on line. Such systems will have spectral brightnesses ten orders of magnitude greater than any extant synchrotron, with pulse lengths as short as a few femtoseconds. It is anticipated that large-scale optical lasers capable of shock-compressing matter to multi-megabar pressures will be sited alongside the X-ray source. We discuss how such systems can further our knowledge of shocked and isochorically heated matter, in particular investigating the potential to perform polycrystalline diffraction and the creation of warm dense matter.

  3. On angiography with a Thomson laser-electron X-ray generator

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. V.; Vinogradov, S. L.; D’yachkov, N. V.; Polunina, A. V.; Postnov, A. A.

    2017-02-01

    We consider a possibility of application of laser-electron X-ray generators for diagnosing the vessel status of internal organs. It is shown that modern lasers and linear accelerators can be used for the development of angiographic instruments of a new type with an increased spatial and temporal resolution while maintaining or reducing the radiation load on the patient and medical staff. Such improvements in diagnostic and ambient factors cannot be achieved with the use of X-ray tubes. All particular estimates and calculations have been performed for a contrast agent based on iodine compounds.

  4. X-ray Polarization Measurements at Relativistic Laser Intensities

    SciTech Connect

    Beiersdorfer, P; Shepherd, R; Mancini, R C; Chen, H; Dunn, J; Keenan, R; Kuba, J; Patel, P K; Ping, Y; Price, D F; Widmann, K

    2004-03-20

    An effort has been started to measure the short pulse laser absorption and energy partition at relativistic laser intensities up to 10{sup 21} W/cm{sup 2}. Plasma polarization spectroscopy is expected to play an important role in determining fast electron generation and measuring the electron distribution function.

  5. Emerging trends in X-ray spectroscopic studies of plasma produced by intense laser beams

    SciTech Connect

    Arora, V.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2015-07-31

    X-ray line emission from hot dense plasmas, produced by ultra-short high intensity laser systems, has been studied experimentally in recent years for applications in materials science as well as for back-lighter applications. By virtue of the CPA technology, several laser facilities delivering pulses with peak powers in excess of one petawatt (focused intensities > 10{sup 20} W-cm{sup −2}) have either been commissioned across the globe during the last few years or are presently under construction. On the other hand, hard x-ray sources on table top, generating ultra-short duration x-rays at a repetition rate up to 10 kHz, are routinely available for time resolved x-ray diffraction studies. In this paper, the recent experiments on x-ray spectroscopic studies of plasma produced by 45 fs, Ti:sapphire laser pulses (focused iintensity > 10{sup 18} W-cm{sup −2}) at RRCAT Indore will be presented.

  6. The GEMpix detector as new soft X-rays diagnostic tool for laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Claps, G.; Pacella, D.; Murtas, F.; Jakubowska, K.; Boutoux, G.; Burgy, F.; Ducret, J. E.; Batani, D.

    2016-10-01

    Laser produced plasmas lend to several interesting applications. The study of X-ray emission from this kind of plasmas is important not only to characterize plasmas itself but also to study the application of these particular plasmas as intense X-ray sources. In particular several emission configurations can be obtained using different kinds of targets and tuning the characteristics of the laser pulse delivered to the target. Typically, laser pulse duration ranges between a few tens of femtoseconds and tens of nanoseconds, with energies from few mJ to tens of kJ. X-ray photon emissions last for times comparable to the laser pulses and during this time a great number of photons can be emitted. The following paper presents a measure of the soft-X-ray emission on the ECLIPSE laser facility realized with a new triple-GEM gas detector (GEMpix). It is a hybrid gas detector with a C-MOS front-end electronics based on Medipix chips. In the present work, different targets have been used in order to test X-rays of different energies. In this paper, in particular, we present results obtained for copper and iron targets. GEMpix is able to realize a 2D imaging of the X-ray emission from plasma with a signal proportional to the energy released in the gas of the detector active volume. Then through a preliminary single photon equalization realized at the NIXT lab (ENEA), also the number of photons reaching the area of the detector has been estimated.

  7. The GEMpix detector as new soft X-rays diagnostic tool for laser produced plasmas.

    PubMed

    Claps, G; Pacella, D; Murtas, F; Jakubowska, K; Boutoux, G; Burgy, F; Ducret, J E; Batani, D

    2016-10-01

    Laser produced plasmas lend to several interesting applications. The study of X-ray emission from this kind of plasmas is important not only to characterize plasmas itself but also to study the application of these particular plasmas as intense X-ray sources. In particular several emission configurations can be obtained using different kinds of targets and tuning the characteristics of the laser pulse delivered to the target. Typically, laser pulse duration ranges between a few tens of femtoseconds and tens of nanoseconds, with energies from few mJ to tens of kJ. X-ray photon emissions last for times comparable to the laser pulses and during this time a great number of photons can be emitted. The following paper presents a measure of the soft-X-ray emission on the ECLIPSE laser facility realized with a new triple-GEM gas detector (GEMpix). It is a hybrid gas detector with a C-MOS front-end electronics based on Medipix chips. In the present work, different targets have been used in order to test X-rays of different energies. In this paper, in particular, we present results obtained for copper and iron targets. GEMpix is able to realize a 2D imaging of the X-ray emission from plasma with a signal proportional to the energy released in the gas of the detector active volume. Then through a preliminary single photon equalization realized at the NIXT lab (ENEA), also the number of photons reaching the area of the detector has been estimated.

  8. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Excitation of nuclear isomers by X rays from laser plasma

    NASA Astrophysics Data System (ADS)

    Andreev, Aleksandr A.; Platonov, Konstantin Yu; Rozhdestvenskii, Yu V.; Karpeshin, F.; Trzhaskovskaya, M. B.

    2010-06-01

    The possibility of obtaining isomer nuclei is studied by the example of the molybdenum isomer 93Mo upon irradiation of a niobium 93Nb target by ~50-J, 100-fs laser pulses. It is shown that the modern laser technique allows production of isomer nuclei by accelerated protons and radiative de-excitation of isomer nuclear states by thermal or line X-rays from laser plasma.

  9. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)

    SciTech Connect

    Nagel, S. R. Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B.; Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B.; Hares, J. D.; Dymoke-Bradshaw, A. K. L.

    2014-11-15

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  10. Ultrafast Time-Resolved X-ray Absorption Spectroscopy of Ferrioxalate Photolysis with a Laser Plasma X-ray Source and Microcalorimeter Array.

    PubMed

    O'Neil, Galen C; Miaja-Avila, Luis; Joe, Young Il; Alpert, Bradley K; Balasubramanian, Mahalingam; Sagar, D M; Doriese, William; Fowler, Joseph W; Fullagar, Wilfred K; Chen, Ning; Hilton, Gene C; Jimenez, Ralph; Ravel, Bruce; Reintsema, Carl D; Schmidt, Dan R; Silverman, Kevin L; Swetz, Daniel S; Uhlig, Jens; Ullom, Joel N

    2017-03-02

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. These results are compared to previously published transient X-ray absorption measurements on the same reaction and found to be consistent with the results from Ogi et al. and inconsistent with the results of Chen et al. ( Ogi , Y. ; et al. Struct. Dyn. 2015 , 2 , 034901 ; Chen , J. ; Zhang , H. ; Tomov , I. V. ; Ding , X. ; Rentzepis , P. M. Chem. Phys. Lett. 2007 , 437 , 50 - 55 ). We provide quantitative limits on the Fe-O bond length change. Finally, we review potential improvements to our measurement technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.

  11. Towards a 38 A x-ray laser

    SciTech Connect

    Bonnet, L.; Jacquemot, S.; Decoster, A.

    1995-05-01

    The aim of this study is the design of experiments on the P102 facility at CEL-V showing evidence that a significant population inversion can be achieved on a very short wavelength transition with the help of a new generation of lasers. Apart from multiple theoretical interests, from dense and hot plasma study to short pulse laser-matter interaction, applications can already be considered: microlithography as well as plasma diagnostics.

  12. Experimental demonstration of laser to x-ray conversion enhancements with low density gold targets

    SciTech Connect

    Shang, Wanli; Yang, Jiamin; Zhang, Wenhai; Li, Zhichao; Deng, Bo; Dong, Yunsong; Zhu, Tuo; Huang, Chengwu; Zhan, Xiayu; Mei, Yu; Guo, Liang; Yu, Ruizhen; Li, Samwei; Jiang, Shaoen; Liu, Shenye; Wang, Feng; Ding, Yongkun; Zhang, Baohan; Betti, Riccardo

    2016-02-12

    The enhancement of laser to x-ray conversion efficiencies using low density gold targets [W. L. Shang, J. M. Yang, and Y. S. Dong, Appl. Phys. Lett. 102, 094105 (2013)] is demonstrated. Laser to x-ray conversion efficiencies with 6.3% and 12% increases are achieved with target densities of 1 and 0.25 g/cm3, when compared with that of a solid gold target (19.3 g/cm3). Experimental data and numerical simulations are in good agreement. Lastly, the enhancement is caused by larger x-ray emission zone lengths formed in low density targets, which is in agreement with the simulation results.

  13. Overview of the ARGOS X-ray framing camera for Laser MegaJoule

    SciTech Connect

    Trosseille, C. Aubert, D.; Auger, L.; Bazzoli, S.; Brunel, P.; Burillo, M.; Chollet, C.; Jasmin, S.; Maruenda, P.; Moreau, I.; Oudot, G.; Raimbourg, J.; Soullié, G.; Stemmler, P.; Zuber, C.; Beck, T.; Gazave, J.

    2014-11-15

    Commissariat à l’Énergie Atomique et aux Énergies Alternatives has developed the ARGOS X-ray framing camera to perform two-dimensional, high-timing resolution imaging of an imploding target on the French high-power laser facility Laser MegaJoule. The main features of this camera are: a microchannel plate gated X-ray detector, a spring-loaded CCD camera that maintains proximity focus in any orientation, and electronics packages that provide remotely-selectable high-voltages to modify the exposure-time of the camera. These components are integrated into an “air-box” that protects them from the harsh environmental conditions. A miniaturized X-ray generator is also part of the device for in situ self-testing purposes.

  14. Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates.

    PubMed

    David, C; Gorelick, S; Rutishauser, S; Krzywinski, J; Vila-Comamala, J; Guzenko, V A; Bunk, O; Färm, E; Ritala, M; Cammarata, M; Fritz, D M; Barrett, R; Samoylova, L; Grünert, J; Sinn, H

    2011-01-01

    A growing number of X-ray sources based on the free-electron laser (XFEL) principle are presently under construction or have recently started operation. The intense, ultrashort pulses of these sources will enable new insights in many different fields of science. A key problem is to provide x-ray optical elements capable of collecting the largest possible fraction of the radiation and to focus into the smallest possible focus. As a key step towards this goal, we demonstrate here the first nanofocusing of hard XFEL pulses. We developed diamond based Fresnel zone plates capable of withstanding the full beam of the world's most powerful x-ray laser. Using an imprint technique, we measured the focal spot size, which was limited to 320 nm FWHM by the spectral band width of the source. A peak power density in the focal spot of 4×10(17)W/cm(2) was obtained at 70 fs pulse length.

  15. Time-resolved soft x-ray spectra from laser-produced Cu plasma

    SciTech Connect

    Cone, K V; Dunn, J; Baldis, H A; May, M J; Purvis, M A; Scott, H A; Schneider, M B

    2012-05-02

    The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated from a plasma produced using the Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) laser. A variable spaced grating spectrometer coupled to an x-ray streak camera measured soft x-ray emission (800-1550 eV) from the back of the copper target to characterize the bulk heating of the target. Radiation hydrodynamic simulations were modeled in 2-dimensions using the HYDRA code. The target conditions calculated by HYDRA were post-processed with the atomic kinetics code CRETIN to generate synthetic emission spectra. A comparison between the experimental and simulated spectra indicates the presence of specific ionization states of copper and the corresponding electron temperatures and ion densities throughout the laser-heated copper target.

  16. Overview of the ARGOS X-ray framing camera for Laser MegaJoule.

    PubMed

    Trosseille, C; Aubert, D; Auger, L; Bazzoli, S; Beck, T; Brunel, P; Burillo, M; Chollet, C; Gazave, J; Jasmin, S; Maruenda, P; Moreau, I; Oudot, G; Raimbourg, J; Soullié, G; Stemmler, P; Zuber, C

    2014-11-01

    Commissariat à l'Énergie Atomique et aux Énergies Alternatives has developed the ARGOS X-ray framing camera to perform two-dimensional, high-timing resolution imaging of an imploding target on the French high-power laser facility Laser MegaJoule. The main features of this camera are: a microchannel plate gated X-ray detector, a spring-loaded CCD camera that maintains proximity focus in any orientation, and electronics packages that provide remotely-selectable high-voltages to modify the exposure-time of the camera. These components are integrated into an "air-box" that protects them from the harsh environmental conditions. A miniaturized X-ray generator is also part of the device for in situ self-testing purposes.

  17. Overview of the ARGOS X-ray framing camera for Laser MegaJoulea)

    NASA Astrophysics Data System (ADS)

    Trosseille, C.; Aubert, D.; Auger, L.; Bazzoli, S.; Beck, T.; Brunel, P.; Burillo, M.; Chollet, C.; Gazave, J.; Jasmin, S.; Maruenda, P.; Moreau, I.; Oudot, G.; Raimbourg, J.; Soullié, G.; Stemmler, P.; Zuber, C.

    2014-11-01

    Commissariat à l'Énergie Atomique et aux Énergies Alternatives has developed the ARGOS X-ray framing camera to perform two-dimensional, high-timing resolution imaging of an imploding target on the French high-power laser facility Laser MegaJoule. The main features of this camera are: a microchannel plate gated X-ray detector, a spring-loaded CCD camera that maintains proximity focus in any orientation, and electronics packages that provide remotely-selectable high-voltages to modify the exposure-time of the camera. These components are integrated into an "air-box" that protects them from the harsh environmental conditions. A miniaturized X-ray generator is also part of the device for in situ self-testing purposes.

  18. Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector

    SciTech Connect

    Ding, Y.; Behrens, C.; Emma, P.; Frisch, J.; Huang, Z.; Loos, H.; Krejcik, P.; Wang, M-H.; /SLAC

    2011-12-13

    We propose a novel method to characterize the temporal duration and shape of femtosecond x-ray pulses in a free-electron laser (FEL) by measuring the time-resolved electron-beam energy loss and energy spread induced by the FEL process, with a transverse radio-frequency deflector located after the undulator. Its merits are simplicity, high resolution, wide diagnostic range, and non-invasive to user operation. When the system is applied to the Linac Coherent Light Source, the first hard x-ray free-electron laser in the world, it can provide single-shot measurements on the electron beam and x-ray pulses with a resolution on the order of 1-2 femtoseconds rms.

  19. X-ray Thomson scattering measurements from hohlraum-driven spheres on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Saunders, A. M.; Jenei, A.; Döppner, T.; Falcone, R. W.; Kraus, D.; Kritcher, A.; Landen, O. L.; Nilsen, J.; Swift, D.

    2016-11-01

    X-ray Thomson scattering (XRTS) is a powerful diagnostic for probing warm and hot dense matter. We present the design and results of the first XRTS experiments with hohlraum-driven CH2 targets on the OMEGA laser facility at the Laboratory for Laser Energetics in Rochester, NY. X-rays seen directly from the XRTS x-ray source overshadow the elastic scattering signal from the target capsule but can be controlled in future experiments. From the inelastic scattering signal, an average plasma temperature is inferred that is in reasonable agreement with the temperatures predicted by simulations. Knowledge gained in this experiment shows a promising future for further XRTS measurements on indirectly driven OMEGA targets.

  20. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser

    PubMed Central

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-01-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources. PMID:26610328

  1. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    SciTech Connect

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.

  2. Characterization of a high-gain Ne-like Fe transient x-ray laser

    SciTech Connect

    Dunn, J; Facnov, A; Fournier, K B; Moon, S J; Osterheld, A; Pikuz, T; Shlyaptsev, V N

    1999-09-13

    The authors present experimental results of a high efficiency Ne-like Fe transient collisional excitation x-ray laser using the COMET 15 TW table-top laser system at LLNL. The plasma formation, ionization and collision excitation of the x-ray laser have been optimized using two sequential laser pulses: a plasma formation beam with 5 J energy of 600 ps duration and a pump beam with 5 J energy of 1.2 ps duration. Since the observation of strong lasing on the 255 {angstrom} 3p-3s J = 0-1 transition of Ne-like Fe, they have achieved high gains of 35 cm{sup {minus}1} and saturation of the x-ray laser. A five-stage traveling wave excitation enhances the strongest Fe 3p-3s 255 {angstrom} lasing line as well as additional x-ray lines. A careful characterization of the plasma column conditions using L-shell spectroscopy indicates the degree of ionization along the line focus.

  3. Soft x-ray images of the Laser Entrance Hole of NIC Hohlraums (paper, HTPD2012)

    SciTech Connect

    Schneider, M B; Meezan, N B

    2012-04-30

    Hohlraums at the National Ignition Facility convert laser energy into a thermal x-radiation drive, which implodes the capsule, thus compressing the fuel. The x-radiation drive is measured with a low resolution, time-resolved x-ray spectrometer that views the hohlraum's laser entrance hole (LEH) at 37{sup o} to the hohlraum axis. This measurement has no spatial resolution. To convert this to the drive inside the hohlraum, the area and fraction of the measured x-radiation which comes from the region inside the hohlraum must be known. The size of the LEH is measured with the time integrated Static X-ray Imager (SXI) which view the LEH at 18{sup o} to the hohlraum axis. A soft x-ray image has been added to the SXI to measure the fraction of x-radiation inside the LEH's Clear Aperture in order to correct the measured radiation. A multilayer mirror plus filter selects an x-ray band centered at 870 eV, near the x-ray energy peak of a 300 eV blackbody. Results from this channel and corrections to the x-radiation drive are discussed.

  4. X-ray comb generation from nuclear-resonance-stabilized x-ray free-electron laser oscillator for fundamental physics and precision metrology

    NASA Astrophysics Data System (ADS)

    Adams, B. W.; Kim, K.-J.

    2015-03-01

    An x-ray free-electron laser oscillator (XFELO) is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as 57Fe as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS) XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as 181Ta or 45Sc.

  5. X-Ray Comb Generation from Nuclear-Resonance-Stabilized X-Ray Free-Electron Laser Oscillator for Fundamental Physics and Precision Metrology

    SciTech Connect

    Adams, B. W.; Kim, K. -J.

    2015-03-31

    An x-ray free-electron laser oscillator (XFELO) is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as Fe-57 as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS) XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as Ta-181 or Sc-45.

  6. Modeling of efficient soft x-ray lasers in transitions of nickel-like and neon-like ions.

    NASA Astrophysics Data System (ADS)

    Berrill, M.; Shlyapsev, V. N.

    2005-10-01

    We have modeled the plasma physics and amplification process in efficient soft x-ray lasers generated by rapid heating of plasmas by a short (8 ps) optical laser pulse of ˜ 1 J energy impinging at grazing incidence. This geometry allows for the efficient pumping of high repetition rate soft x-ray lasers [1-3]. The two temperature model includes all hydrodynamic equations written in 1.5D, as well a complete atomic model and multi-cell radiation transport. The equations that yield a full description of the plasma are solved using a finite difference method in a Lagrangian coordinate scheme. A post processor performs ray tracing to calculate output beam characteristics and intensities. The results corresponding to lasers in the 13.9 nm line of Ni-like Ag and the 32.6 nm and 30.1 nm of Ne-like Ti are discussed in comparison with experiments. Work supported by the NSF EUV ERC, Award EEC-0310717. 1. R. Keenan et al, Phys. Rev. Lett., 94, 103901, (2005) 2. B. M. Luther et al, Optics Lett., 30, 165, (2005) 3. D. Alessi et al, Opt. Express, 13,. 2093, ( 2005)

  7. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.

    PubMed

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A; Becker, Andreas; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2014-06-10

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.

  8. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers

    PubMed Central

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A.; Becker, Andreas; Murnane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2014-01-01

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10−18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum. PMID:24850866

  9. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)

    SciTech Connect

    Seibert, M. Marvin; Ekeberg, Tomas

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

  10. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)

    SciTech Connect

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

  11. X-ray streak camera diagnostics of picosecond laser-plasma interactions

    SciTech Connect

    Cobble, J.A.; Fulton, R.D.; Jones, L.A.; Kyrala, G.A.; Schappert, G.T.; Taylor, A.J.; Wahlin, E.K.

    1992-05-01

    An x-ray streak camera is used to diagnose a laser-produced Al plasma with time resolution of {approximately}10 ps. A streak record of filtered emission and a time-integrated transmission grating spectrum reveal that the plasma radiation is dominated by emission from He- and H-like resonance lines. 11 refs.

  12. X-ray streak camera diagnostics of picosecond laser-plasma interactions

    SciTech Connect

    Cobble, J.A.; Fulton, R.D.; Jones, L.A.; Kyrala, G.A.; Schappert, G.T.; Taylor, A.J.; Wahlin, E.K.

    1992-01-01

    An x-ray streak camera is used to diagnose a laser-produced Al plasma with time resolution of {approximately}10 ps. A streak record of filtered emission and a time-integrated transmission grating spectrum reveal that the plasma radiation is dominated by emission from He- and H-like resonance lines. 11 refs.

  13. X-ray photoelectron spectroscopy studies of the sodium chloride surface after laser exposure

    NASA Astrophysics Data System (ADS)

    Savintsev, A. P.; Gavasheli, Yu O.; Kalazhokov, Z. Kh; Kalazhokov, Kh Kh

    2016-11-01

    The surface of NaCl crystals outside and in the crater was examined using an x-ray photoelectron spectrometer. The comparative analysis of the XPS spectra showed that high- intensity laser irradiation has a significant impact on the state and composition of the surface of the ionic crystal.

  14. Calibration of a flat field soft x-ray grating spectrometer for laser produced plasmas.

    PubMed

    Park, J; Brown, G V; Schneider, M B; Baldis, H A; Beiersdorfer, P; Cone, K V; Kelley, R L; Kilbourne, C A; Magee, E W; May, M J; Porter, F S

    2010-10-01

    We have calibrated the x-ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL and at both the Omega and Omega EP lasers at the University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range of ∼6-60 Å. The calibration results presented here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from the hydrogenlike and heliumlike ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x-ray intensities recorded by the VSG to those simultaneously recorded by an x-ray microcalorimeter spectrometer.

  15. Preliminary study of X-ray and laser digital image of kidney endocast

    NASA Astrophysics Data System (ADS)

    Drewniak, Tomasz; Bielecki, Jakub; WyczóŁkowski, Marek; Smoleński, Witold; Kwiatek, Wojciech M.

    2011-10-01

    Kidney endocasts are the only way to show intrarenal arteries and the collecting system of pathologically unchanged human kidney. We describe different methods of digital endocast three dimensional (3D) imaging with the use of X-ray and laser radiation. Images of several kidney endocasts were obtained with the use of: (i) X-ray microtomography, (ii) Medical Computed Tomography (CT) and (iii) 3D Laser Scanner. The images were compared with an appearance of endocast and the images of kidney vessels obtained during angiographic CT protocols in clinical practice. The X-ray computed microtomography is characterized by very high resolution; however, relatively small field of view is available at high magnification and long data acquisition time is needed. Laser 3D scanner has a comparable resolution, but it was not possible to obtain full 3D reconstruction of the sample structure. The cast was too complex for reconstruction with limited number of projection obtained with the use of the laser scanner. Medical CT has limited resolution but time of data acquisition was very short. The achieved images were comparable with those from Angio-CT protocols. Digital imaging of kidney endocasts is possible with current imaging obtained by means of X-ray imaging techniques. The obtained images are useful for further study, such as statistical analysis, especially those obtained from Medical CT.

  16. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Arefiev, Alexey V.; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V.; Shvets, G.; Downer, M. C.

    2015-02-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0 ˜ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic "denting" of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75-200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (˜6 × 10-12) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  17. Nanosecond X-ray diffraction from biological samples with a laser-produced plasma source.

    PubMed

    Frankel, R D; Forsyth, J M

    1979-05-11

    By using 4.45-angstrom radiation generated by Cl+15 ions in a laser plasma and nanosecond exposures, low-angle x-ray diffraction patterns were obtained from dried rat spinal nerves and a powder of cholesterol. Three to four 400-picosecond, 45-joule pulses were required for the exposure. This new technique should have wide application in structural kinetic studies.

  18. Generation of phase - matched coherent point source in plasma media by propagated X-ray laser seeded beam

    NASA Astrophysics Data System (ADS)

    Pikuz, T.; Faenov, A.; Magnitskiy, S.; Nagorskiy, N.; Tanaka, M.; Ishino, M.; Nishikino, M.; Kando, M.; Kato, Y.; Kawachi, T.

    2016-03-01

    There is a significant interest in developing the coherent table-top X-ray lasers. Advent of plasma-based transient collisional excitation x-ray laser and particular, injection of coherent seeded beam, especially high-order harmonics, has tremendously improved the spatial coherence of such lasers, what allowed them to be the same widely used as synchrotron sources. Here we report experimental founding of unknown interference structure in a spatial profile of the output beam of the two-stage plasma X-ray laser. That allowed us experimental and theoretical discovering a new phenomenon consisted in a generation of phase-matched coherent point source in a laser plasma media by propagated X-ray laser seeded beam. This phenomenon could extend the applications of such x-ray lasers. For explanation of the observed phenomenon a new method of solving the standard system of Maxwell-Bloch equations has been developed. It was found that the interference pattern in the output laser beam was formed due to an emergence of phase-matched coherent virtual point source in the XRL amplifier and could be treated as the first observation of mirage phenomenon, analogous to the optical mirage, but in X-rays. The obtained results bring new comprehension into the physical nature of amplification of X-ray radiation in laser-induced plasma amplifiers and opening new opportunities for X-ray interferometry, holography and other applications, which requiring multiple rigidly phased sources of coherent radiation.

  19. Soft x-ray spectra from laser heated lithium targets

    SciTech Connect

    Nica, Petru-Edward; Miyamoto, Shuji; Amano, Sho; Inoue, Takahiro; Shimoura, Atsusi; Kaku, Kakyo; Mochizuki, Takayasu

    2006-07-24

    The extreme ultraviolet emission characteristics of laser-produced lithium plasma are experimentally and theoretically investigated. Taking into account the target oxidation, the ion fractional populations are analyzed and the averaged plasma parameters are obtained. Theoretical results show an insignificant influence of oxygen on the temperature dependence of the lithium ion fractional number. A comparison between the theoretical spectrum for stationary and homogenous plasma and experiments shows a reasonable agreement.

  20. Investigations of Vacuum Ultraviolet and Soft X-Ray Lasers.

    DTIC Science & Technology

    1984-03-01

    state vector g>, which is a solution of the Schr & dinger equation a I - > -> (2.4) , depends on the gauge. The wave function in a gauge g is...instantaneous cross section of decay rate which depends on the value of the laser field at a given time . Since this instantaneous rate is, in principle, a...34 . . . . . , . . .... r. - " . .** .* *. ** - - S." 3 . 4 integral with respect to time over an instantaneous-decay rate which depends on - the instantaneous

  1. Excited state molecular structure determination in disordered media using laser pump/x-ray probe time-domain x-ray absorption spectroscopy.

    SciTech Connect

    Chen, L. X.; Chemistry

    2003-01-01

    Advances in X-ray technologies provide opportunities for solving structures of photoexcited state molecules with short lifetimes. Using X-ray pulses from a modern synchrotron source, the structure of a metal-to-ligand-charge-transfer (MLCT) excited state of CuI(dmp)2+ (dmp 1/4 2,9-dimethyl-1,10-phenanthroline) was investigated by laser pump/X-ray probe X-ray absorption fine structure (LPXP-XAFS) in fluid solution at room temperature on a nanosecond time scale. The experimental requirements for such pump-probe XAFS are described in terms of technical challenges: (1) conversion of optimal excited state population, (2) synchronization of the pump laser pulse and probe Xray pulse, and (3) timing of the detection. Using a laser pump pulse for the photoexcitation, a photoluminescent MLCT excited state of CuI(dmp)2(BArF), (dmp 1/4 2,9-dimethyl-1,10-phenanthroline), BArF 1/4 tetrakis(3,5-bis(trifluoromethylphenyl)borate) with a lifetime of 98{+-}5 ns was created. Probing the structure of this state at its optimal concentration using an X-ray pulse cluster with a total duration of 14.2 ns revealed that (1) a Cu{sup II} center was generated via a whole charge transfer; (2) the copper in the MLCT state bound an additional ligand to form a penta-coordinate complex with a likely trigonal bipyramidal geometry; and (3) the average Cu-N bond length increases in the MLCT excited state by 0.07 . In contrast to previously reported literature, the photoluminescence of this pentacoordinate MLCT state was not quenched upon ligation with the fifth ligand. On the basis of experimental results, we propose that the absorptive and emissive states have distinct geometries. The results represent X-ray characterization of a molecular excited state in fluid solution on a nanosecond time scale.

  2. LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    NASA Astrophysics Data System (ADS)

    Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang

    2009-06-01

    A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  3. Dose estimation and shielding calculation for X-ray hazard at high intensity laser facilities

    NASA Astrophysics Data System (ADS)

    Qiu, Rui; Zhang, Hui; Yang, Bo; James, C. Liu; Sayed, H. Rokni; Michael, B. Woods; Li, Jun-Li

    2014-12-01

    An ionizing radiation hazard produced from the interaction between high intensity lasers and solid targets has been observed. Laser-plasma interactions create “hot” electrons, which generate bremsstrahlung X-rays when they interact with ions in the target. However, up to now only limited studies have been conducted on this laser-induced radiological protection issue. In this paper, the physical process and characteristics of the interaction between high intensity lasers and solid targets are analyzed. The parameters of the radiation sources are discussed, including the energy conversion efficiency from laser to hot electrons, hot electron energy spectrum and electron temperature, and the bremsstrahlung X-ray energy spectrum produced by hot electrons. Based on this information, the X-ray dose generated with high-Z targets for laser intensities between 1014 and 1020 W/cm2 is estimated. The shielding effects of common shielding items such as the glass view port, aluminum chamber wall and concrete wall are also studied using the FLUKA Monte Carlo code. This study provides a reference for the dose estimation and the shielding design of high intensity laser facilities.

  4. A Review of X-ray Free-Electron Laser Theory

    SciTech Connect

    Huang, Zhirong; Kim, Kwang-Je; /ANL, APS

    2006-12-18

    High-gain free-electron lasers (FELs) are being developed as extremely bright sources for a next-generation x-ray facility. In this paper, we review the basic theory of the startup, the exponential growth, and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission (SASE). The radiation characteristics of an x-ray FEL, including its transverse coherence, temporal characteristics, and harmonic content, are discussed. FEL performance in the presence of machine errors and undulator wakefields is examined. Various enhancement schemes through seeding and beam manipulations are summarized.

  5. Ultrafast Coherent Diffraction Imaging with X-ray Free-Electron Lasers

    SciTech Connect

    Chapman, H N; Bajt, S; Barty, A; Benner, W; Bogan, M; Frank, M; Hau-Riege, S; London, R; Marchesini, S; Spiller, E; Szoke, A; Woods, B; Boutet, S; Hodgson, K; Hajdu, J; Bergh, M; Burmeister, F; Caleman, C; Huldt, G; Maia, F; Seibert, M M; der Spoel, D v

    2006-08-22

    The ultrafast pulses from X-ray free-electron lasers will enable imaging of non-periodic objects at near-atomic resolution [1, Neutze]. These objects could include single molecules, protein complexes, or virus particles. The specimen would be completely destroyed by the pulse in a Coulomb explosion, but that destruction will only happen after the pulse. The scattering from the sample will give structural information about the undamaged object. There are many technical challenges that must be addressed before carrying out such experiments at an XFEL, which we are doing so with experiments at FLASH, the soft-X-ray FEL at DESY.

  6. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    NASA Astrophysics Data System (ADS)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  7. X-ray scattering by atoms and molecules dressed with strong fs laser fields

    NASA Astrophysics Data System (ADS)

    Hertlein, Marcus; Belkacem, Ali; Prior, Michael; Feinberg, Benedict; Roesch, Juergen; Maddi, Jason; Glover, T. Ernest; Ackerman, Glenn

    2002-05-01

    We set up an experiment at the Advanced Light Source to study fs laser-induced modifications to the resulting charge state distribution of argon ions after a K-shell is removed by a synchrotron radiation x-ray. Measurements of the "laser-off" charge state distribution of Ar ions following Auger relaxation show very clear post collision interaction effects in agreement with results found in the literature. Our "laser-on" measurements of the charge state distribution of ions, with the laser is overlapped in time (100 ps) and space (< 0.1 mm) with the ALS x-ray pulse, show an unexpected time dependence, on the nano second time scale, of the electron yield correlated to high charge states. These results will be discussed.

  8. Key Laser Technologies for X-Ray FELs

    SciTech Connect

    Kaertner, Franz

    2013-08-31

    In the final project period, we demonstrated sub femtosecond timing distribution over a 1.2 km polarization-maintaining (PM) fiber-optic link using balanced optical cross-correlators (BOCs) for link stabilization. By eliminating polarization mode dispersion, link operation for 16 days maintained 0.6 fs RMS timing drift and during a 3-day interval only 0.13 fs drift, which corresponds to a stability level of 10-21. To improve the overall system efficiency and robustness, we developed fiber-coupled, hybrid-integrated BOCs using waveguides in periodically-poled KTiOPO4 (PPKTP). The measured second-harmonic conversion efficiency in the waveguides is a factor of 50 higher than that of bulk-optic crystals. Characterization of 1st-generation devices shows performance comparable to free-space BOCs, with the potential for significant improvement in future devices. For optical-to-RF conversion, we developed two balanced optical-microwave phase detectors (BOM-PD) based on the Sagnac and Mach-Zehnder interferometers. RF extraction using BOM-PDs in phase-locked loops yielded sub-10-fs residual timing jitter for locking bandwidths on the order of several hundred kHz. Finally, we characterized the timing jitter of ultralow-noise Ti:Sapphire oscillators, demonstrating an unprecedented 13 as of jitter integrated over the entire Nyquist band. Our measurements agreed well with theory, confirming our models for quantum-limited laser noise. Measurements of commercially available solid-state lasers at 1550 nm showed that there are laser sources already available with sufficiently low noise to achieve sub-femtosecond performance as master oscillators within a timing distribution system.

  9. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode

    DOE PAGES

    Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; ...

    2012-11-05

    The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as wellmore » as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ1,3 XES spectra of MnII and Mn2III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. Furthermore, the technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.« less

  10. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode

    SciTech Connect

    Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; Sokaras, Dimosthenis; Weng, Tsu -Chien; Lassalle-Kaiser, Benedikt; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Hellmich, Julia; Glockner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Schafer, Donald W.; Sellberg, Jonas; Kenney, Christopher; Herbst, Ryan; Pines, Jack; Hart, Philip; Herrmann, Sven; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sebastien; Williams, Garth J.; Zouni, Athina; Messinger, Johannes; Glatzel, Pieter; Sauter, Nicholas K.; Yachandra, Vittal K.; Yano, Junko; Bergmann, Uwe

    2012-11-05

    The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ1,3 XES spectra of MnII and Mn2III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. Furthermore, the technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.

  11. Transient x-ray laser schemes at 1 {mu} and at 2 {mu}

    SciTech Connect

    Hagelstein, P.; Goodberlet, J.; Basu, S.

    1991-12-31

    The development of a pump laser for X-ray lasers which operates at wavelengths longer than 1 {mu} would permit the attainment of higher electron temperatures for a given pump intensity. Such a system would be of interest for electron collisional schemes at low Z, and would have the potential to improve the overall system efficiency. An initial design for an optical parametric oscillator which would down-convert 1 {mu} radiation to 2 {mu} is presented.

  12. Transient x-ray laser schemes at 1. mu. and at 2. mu

    SciTech Connect

    Hagelstein, P.; Goodberlet, J.; Basu, S.

    1991-01-01

    The development of a pump laser for X-ray lasers which operates at wavelengths longer than 1 {mu} would permit the attainment of higher electron temperatures for a given pump intensity. Such a system would be of interest for electron collisional schemes at low Z, and would have the potential to improve the overall system efficiency. An initial design for an optical parametric oscillator which would down-convert 1 {mu} radiation to 2 {mu} is presented.

  13. Performance of the x-ray free-electron laser oscillator with crystal cavity

    NASA Astrophysics Data System (ADS)

    Lindberg, R. R.; Kim, K.-J.; Shvyd'Ko, Yu.; Fawley, W. M.

    2011-01-01

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include the frequency-dependent Bragg crystal reflectivity and the transverse diffraction and focusing using the two-dimensional FEL code GINGER. A review of the physics of Bragg crystal reflectors and the x-ray FEL oscillator is made, followed by a discussion of its numerical implementation in GINGER. The simulation results for a two-crystal cavity and realistic FEL parameters indicate ˜109 photons in a nearly Fourier-limited, ps pulse. Compressing the electron beam to 100 A and 100 fs results in comparable x-ray characteristics for relaxed beam emittance, energy spread, and/or undulator parameters, albeit in a larger radiation bandwidth. Finally, preliminary simulation results indicate that the four-crystal FEL cavity can be tuned in energy over a range of a few percent.

  14. Investigations of large x-ray optics for free electron lasers

    NASA Astrophysics Data System (ADS)

    Stormer, Michael; Liard-Cloup, Audrey; Felten, Frank; Jacobi, Sandra; Steeg, Barbara; Feldhaus, Josef; Bormann, Rudiger

    2004-10-01

    A free electron laser (FEL) is being set up at DESY (Deutsches Elektronen Synchrotron, Hamburg, Germany). In the current XUV range of the FEL, total-reflection X-ray mirrors are needed for beam guidance, beam alignment, and monochromatisation. Such X-ray optics are used at a grazing incidence angle of about 2° thus a maximum length of about 500 mm is required. Due to the working range of the FEL (50 - 200 eV), carbon has been selected as a suitable material with an absorption edge at 284 eV. The amorphous carbon coatings were manufactured by magnetron sputtering in a special UHV system for large deposition at GKSS research centre (Geesthacht, Germany). The variation in film thickness over the whole length has been investigated by X-ray reflectometry (XRR). Good uniformity (better than 2 %) and low roughness (< 0.5 nm) have been observed.

  15. Two-dimensional imaging detectors for structural biology with X-ray lasers.

    PubMed

    Denes, Peter

    2014-07-17

    Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors--monolithic or hybrid--are the standard for XFELs today. For structural biology, improvements are needed for today's 10-100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art.

  16. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    SciTech Connect

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sebastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-04-12

    Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  17. Two-dimensional imaging detectors for structural biology with X-ray lasers

    PubMed Central

    Denes, Peter

    2014-01-01

    Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors—monolithic or hybrid—are the standard for XFELs today. For structural biology, improvements are needed for today's 10–100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art. PMID:24914161

  18. Spectrometer for hard X-ray free-electron laser based on diffraction focusing.

    PubMed

    Kohn, V G; Gorobtsov, O Y; Vartanyants, I A

    2013-03-01

    X-ray free-electron lasers (XFELs) generate sequences of ultra-short spatially coherent pulses of X-ray radiation. A diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ΔE/E 2 × 10(-6), is proposed. This is much better than for most modern X-ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single-crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from a metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. It is shown that the DFS can be used in a wide energy range from 5 keV to 20 keV.

  19. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    PubMed Central

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C.H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-01-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes. PMID:27070998

  20. Study on fundamental processes of laser welded metals observed with intense x-ray beams

    NASA Astrophysics Data System (ADS)

    Muramatsu, T.; Daido, H.; Shobu, T.; Takase, K.; Tsukimori, K.; Kureta, M.; Segawa, M.; Nishimura, A.; Suzuki, Y.; Kawachi, T.

    With use of photon techniques including visible light, soft and hard x-rays, precise fundamental laser welding processes in the repair and maintenance of nuclear plant engineering were reviewed mechanistically. We make discussions centered on the usefulness of an intense soft x-ray beams for evaluations of spatial residual strain distribution and welded metal convection behavior including the surface morphology. Numerical results obtained with a general purpose three-dimensional code SPLICE for the simulation of the welding and solidifying phenomena. Then it is concluded that the x-ray beam would be useful as one of the powerful tools for understanding the mechanisms of various complex phenomena with higher accuracy and higher resolution.

  1. Emerging opportunities in structural biology with X-ray free-electron lasers

    PubMed Central

    Schlichting, Ilme; Miao, Jianwei

    2012-01-01

    X-ray free-electron lasers (X-FELs) produce X-ray pulses with extremely brilliant peak intensity and ultrashort pulse duration. It has been proposed that radiation damage can be “outrun” by using an ultra intense and short X-FEL pulse that passes a biological sample before the onset of significant radiation damage. The concept of “diffraction-before-destruction” has been demonstrated recently at the Linac Coherent Light Source, the first operational hard X-ray FEL, for protein nanocrystals and giant virus particles. The continuous diffraction patterns from single particles allow solving the classical “phase problem” by the oversampling method with iterative algorithms. If enough data are collected from many identical copies of a (biological) particle, its three-dimensional structure can be reconstructed. We review the current status and future prospects of serial femtosecond crystallography (SFX) and single-particle coherent diffraction imaging (CDI) with X-FELs. PMID:22922042

  2. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    NASA Astrophysics Data System (ADS)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-04-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  3. Broad-band soft x-ray diagnostic instruments at the LLNL Novette laser facility

    SciTech Connect

    Tirsell, K.G.; Lee, P.H.Y.; Nilson, D.G.; Medecki, H.

    1983-09-15

    Complementary broad-band instruments have been developed to measure time dependent, absolute soft x-ray spectra at the Lawrence Livermore National Laboratory (LLNL) Nd glass laser irradiation facilities. Absolute flux measurements of x rays emitted from laser-produced plasmas are important for understanding laser absorption and energy transport. We will describe two new 10-channel XRD systems that have been installed at the LLNL Novette facility for use in the 0.15- to 1.5-keV range. Since XRD channel time response is limited by available oscilloscope performance to 120 ps, a soft x-ray streak camera has been developed for better time resolution (20 ps) and greater dynamic range (approx.10/sup 3/) in the same x-ray energy region. Using suitable filters, grazing incidence mirrors, and a gold or cesium-iodide transmission cathode, this streak camera instrument has been installed at Novette to provide one broad and four relatively narrow channels. It can also be used in a single channel, spatially discriminating mode by means of pinhole imaging. The complementary nature of these instruments has been enhanced by locating them in close proximity and matching their channel energy responses. As an example of the use of these instruments, we present results from Novette 2..omega..(0.53 ..mu..m) gold disk irradiations at 1 ns and 10/sup 14/ to 10/sup 15/ W/cm/sup 2/.

  4. High-resolution and ultrafast imaging using betatron x-rays from laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Najmudin, Zulfikar

    2015-11-01

    Laser wakefield accelerators now routinely produce ~GeV energy gain in ~cm plasmas. and are simultaneously capable of producing high brightness and spatially coherent hard x-ray beams. This unique light-source has been used for medical applications, and also for ultrafast imaging in high energy density science. The experiments were performed with the Astra Gemini laser producing 10 J pulses with duration ~ 40 fs focussed to produce a spot of 25 μ m (fwhm) in a gas-cell of variable length to produce a low divergence beam of x-rays. The length of the gas cell was optimised to produce high contrast x-ray images of radiographed test objects. This source was used for full tomographic imaging of a human trabecular bone sample, with resolution exceeding the ~ 100 μ m level required for CT applications. Phase-contrast imaging of human prostate and mouse neonates at the micron level was also demonstrated. These studies indicate the usefulness of these sources in research and clinical applications. The ultrafast nature of the source was also demonstrated by performing time resolved imaging of a laser driven shock. The ultrashort duration of the x-ray source essentially freeze the motion of these fast moving transient phenomena.

  5. Laser and Pulsed Power Electron Density Imaging Through Talbot-Lau X-ray Deflectometry

    NASA Astrophysics Data System (ADS)

    Valdivia Leiva, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begischev, Ildar; Theobald, Wolfgang; Bromage, Jake; Regan, Sean; Klein, Salee; Muñoz-Cordovez, Gonzalo; Vescovi, Milenko; Valenzuela-Villaseca, Vicente; Veloso, Felipe

    2016-10-01

    A Talbot-Lau X-ray Deflectometer was deployed using laser driven and x-pinch x-ray backlighters. The Talbot-Lau X-ray Deflectometer is an ideal electron density diagnostic for High Energy Density plasmas with the potential to simultaneously deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single image with source limited resolution. Grating survival and electron density mapping was demonstrated for 10-29 J, 8-30 ps laser pulses using Cu foil targets at the Multi-TeraWatt facility. An areal electron density of 0.050 g/cm2 was obtained at the center of a fluoro-nylon fiber of 300 mm diameter with a source FWHM of 80 µm and resolution of 50 µm. Grating survival and Moiré pattern formation was demonstrated using a Cu x-pinch plasma of FWHM 27 µm, driven by the 350 kA, 350 ns Llampudken pulsed power generator. These results closely match simulations and laboratory results. It was demonstrated that the technique can detect both sharp and smooth density gradients in the range of 2x1023 to 2x1025 cm-3, thus allowing implementation of the electron density technique as a HED plasma diagnostic in both laser and pulsed power experiments U.S. DoE/NNSA and DE-NA0002955.

  6. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-06-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons.

  7. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    PubMed Central

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170

  8. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator.

    PubMed

    Huang, K; Li, Y F; Li, D Z; Chen, L M; Tao, M Z; Ma, Y; Zhao, J R; Li, M H; Chen, M; Mirzaie, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2016-06-08

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 10(8)/shot and 10(8 )photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3(rd) generation synchrotrons.

  9. Serial femtosecond X-ray diffraction of 30S ribosomal subunit microcrystals in liquid suspension at ambient temperature using an X-ray free-electron laser

    PubMed Central

    Demirci, Hasan; Sierra, Raymond G.; Laksmono, Hartawan; Shoeman, Robert L.; Botha, Sabine; Barends, Thomas R. M.; Nass, Karol; Schlichting, Ilme; Doak, R. Bruce; Gati, Cornelius; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Jogl, Gerwald; Dahlberg, Albert E.; Gregory, Steven T.; Bogan, Michael J.

    2013-01-01

    High-resolution ribosome structures determined by X-ray crystallography have provided important insights into the mechanism of translation. Such studies have thus far relied on large ribosome crystals kept at cryogenic temperatures to reduce radiation damage. Here, the application of serial femtosecond X-ray crystallography (SFX) using an X-ray free-electron laser (XFEL) to obtain diffraction data from ribosome microcrystals in liquid suspension at ambient temperature is described. 30S ribosomal subunit microcrystals diffracted to beyond 6 Å resolution, demonstrating the feasibility of using SFX for ribosome structural studies. The ability to collect diffraction data at near-physiological temperatures promises to provide fundamental insights into the structural dynamics of the ribosome and its functional complexes. PMID:23989164

  10. Serial femtosecond X-ray diffraction of 30S ribosomal subunit microcrystals in liquid suspension at ambient temperature using an X-ray free-electron laser.

    PubMed

    Demirci, Hasan; Sierra, Raymond G; Laksmono, Hartawan; Shoeman, Robert L; Botha, Sabine; Barends, Thomas R M; Nass, Karol; Schlichting, Ilme; Doak, R Bruce; Gati, Cornelius; Williams, Garth J; Boutet, Sébastien; Messerschmidt, Marc; Jogl, Gerwald; Dahlberg, Albert E; Gregory, Steven T; Bogan, Michael J

    2013-09-01

    High-resolution ribosome structures determined by X-ray crystallography have provided important insights into the mechanism of translation. Such studies have thus far relied on large ribosome crystals kept at cryogenic temperatures to reduce radiation damage. Here, the application of serial femtosecond X-ray crystallography (SFX) using an X-ray free-electron laser (XFEL) to obtain diffraction data from ribosome microcrystals in liquid suspension at ambient temperature is described. 30S ribosomal subunit microcrystals diffracted to beyond 6 Å resolution, demonstrating the feasibility of using SFX for ribosome structural studies. The ability to collect diffraction data at near-physiological temperatures promises to provide fundamental insights into the structural dynamics of the ribosome and its functional complexes.

  11. The Mn4Ca photosynthetic water-oxidation catalyst studied by simultaneous X-ray spectroscopy and crystallography using an X-ray free-electron laser

    PubMed Central

    Tran, Rosalie; Kern, Jan; Hattne, Johan; Koroidov, Sergey; Hellmich, Julia; Alonso-Mori, Roberto; Sauter, Nicholas K.; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yano, Junko; Yachandra, Vittal K.

    2014-01-01

    The structure of photosystem II and the catalytic intermediate states of the Mn4CaO5 cluster involved in water oxidation have been studied intensively over the past several years. An understanding of the sequential chemistry of light absorption and the mechanism of water oxidation, however, requires a new approach beyond the conventional steady-state crystallography and X-ray spectroscopy at cryogenic temperatures. In this report, we present the preliminary progress using an X-ray free-electron laser to determine simultaneously the light-induced protein dynamics via crystallography and the local chemistry that occurs at the catalytic centre using X-ray spectroscopy under functional conditions at room temperature. PMID:24914152

  12. High-precision laser-assisted absolute determination of x-ray diffraction angles

    SciTech Connect

    Kubicek, K.; Braun, J.; Bruhns, H.; Crespo Lopez-Urrutia, J. R.; Mokler, P. H.; Ullrich, J.

    2012-01-15

    A novel technique for absolute wavelength determination in high-precision crystal x-ray spectroscopy recently introduced has been upgraded reaching unprecedented accuracies. The method combines visible laser beams with the Bond method, where Bragg angles ({theta} and -{theta}) are determined without any x-ray reference lines. Using flat crystals this technique makes absolute x-ray wavelength measurements feasible even at low x-ray fluxes. The upgraded spectrometer has been used in combination with first experiments on the 1s2p {sup 1}P{sub 1}{yields} 1s{sup 2} {sup 1}S{sub 0} w-line in He-like argon. By resolving a minute curvature of the x-ray lines the accuracy reaches there the best ever reported value of 1.5 ppm. The result is sensitive to predicted second-order QED contributions at the level of two-electron screening and two-photon radiative diagrams and will allow for the first time to benchmark predicted binding energies for He-like ions at this level of precision.

  13. Fresh-slice multicolour X-ray free-electron lasers

    SciTech Connect

    Lutman, Alberto A.; Maxwell, Timothy J.; MacArthur, James P.; Guetg, Marc W.; Berrah, Nora; Coffee, Ryan N.; Ding, Yuantao; Huang, Zhirong; Marinelli, Agostino; Moeller, Stefan; Zemella, Johann C. U.

    2016-10-24

    X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses with a narrow energy bandwidth and unprecedented brightness. Ultrafast physical and chemical dynamics, initiated with a site-specific X-ray pulse, can be explored using XFELs with a second ultrashort X-ray probe pulse. However, existing double-pulse schemes are complicated, difficult to customize or provide only low-intensity pulses. Here we present the novel fresh-slice technique for multicolour pulse production, wherein different temporal slices of an electron bunch lase to saturation in separate undulator sections. This method combines electron bunch tailoring from a passive wakefield device with trajectory control to provide multicolour pulses. The fresh-slice scheme outperforms existing techniques at soft X-ray wavelengths. It produces femtosecond pulses with a power of tens of gigawatts and flexible colour separation. The pulse delay can be varied from temporal overlap to almost one picosecond. As a result, we also demonstrate the first three-colour XFEL and variably polarized two-colour pulses.

  14. Fresh-slice multicolour X-ray free-electron lasers

    DOE PAGES

    Lutman, Alberto A.; Maxwell, Timothy J.; MacArthur, James P.; ...

    2016-10-24

    X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses with a narrow energy bandwidth and unprecedented brightness. Ultrafast physical and chemical dynamics, initiated with a site-specific X-ray pulse, can be explored using XFELs with a second ultrashort X-ray probe pulse. However, existing double-pulse schemes are complicated, difficult to customize or provide only low-intensity pulses. Here we present the novel fresh-slice technique for multicolour pulse production, wherein different temporal slices of an electron bunch lase to saturation in separate undulator sections. This method combines electron bunch tailoring from a passive wakefield device with trajectory control to provide multicolour pulses. The fresh-slice schememore » outperforms existing techniques at soft X-ray wavelengths. It produces femtosecond pulses with a power of tens of gigawatts and flexible colour separation. The pulse delay can be varied from temporal overlap to almost one picosecond. As a result, we also demonstrate the first three-colour XFEL and variably polarized two-colour pulses.« less

  15. Fresh-slice multicolour X-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Lutman, Alberto A.; Maxwell, Timothy J.; MacArthur, James P.; Guetg, Marc W.; Berrah, Nora; Coffee, Ryan N.; Ding, Yuantao; Huang, Zhirong; Marinelli, Agostino; Moeller, Stefan; Zemella, Johann C. U.

    2016-11-01

    X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses with a narrow energy bandwidth and unprecedented brightness. Ultrafast physical and chemical dynamics, initiated with a site-specific X-ray pulse, can be explored using XFELs with a second ultrashort X-ray probe pulse. However, existing double-pulse schemes are complicated, difficult to customize or provide only low-intensity pulses. Here we present the novel fresh-slice technique for multicolour pulse production, wherein different temporal slices of an electron bunch lase to saturation in separate undulator sections. This method combines electron bunch tailoring from a passive wakefield device with trajectory control to provide multicolour pulses. The fresh-slice scheme outperforms existing techniques at soft X-ray wavelengths. It produces femtosecond pulses with a power of tens of gigawatts and flexible colour separation. The pulse delay can be varied from temporal overlap to almost one picosecond. We also demonstrate the first three-colour XFEL and variably polarized two-colour pulses.

  16. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics.

    PubMed

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd'ko, Yuri

    2016-12-01

    We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-μm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ≃8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  17. Polarization control in an X-ray free-electron laser

    SciTech Connect

    Lutman, Alberto A.; MacArthur, James P.; Ilchen, Markus; Lindahl, Anton O.; Buck, Jens; Coffee, Ryan N.; Dakovski, Georgi L.; Dammann, Lars; Ding, Yuantao; Durr, Hermann A.; Glaser, Leif; Grunert, Jan; Hartmann, Gregor; Hartmann, Nick; Higley, Daniel; Hirsch, Konstantin; Levashov, Yurii I.; Marinelli, Agostino; Maxwell, Tim; Mitra, Ankush; Moeller, Stefan; Osipov, Timur; Peters, Franz; Planas, Marc; Shevchuk, Ivan; Schlotter, William F.; Scholz, Frank; Seltmann, Jorn; Viefhaus, Jens; Walter, Peter; Wolf, Zachary R.; Huang, Zhirong; Nuhn, Heinz-Dieter

    2016-05-09

    X-ray free-electron lasers are unique sources of high-brightness coherent radiation. However, existing devices supply only linearly polarized light, precluding studies of chiral dynamics. A device called the Delta undulator has been installed at the Linac Coherent Light Source (LCLS) to provide tunable polarization. With a reverse tapered planar undulator line to pre-microbunch the beam and the novel technique of beam diverting, hundreds of microjoules of circularly polarized X-ray pulses are produced at 500–1,200 eV. These X-ray pulses are tens of femtoseconds long, have a degree of circular polarization of 0.98–0.04+0.02 at 707 eV and may be scanned in energy. We also present a new two-colour X-ray pump–X-ray probe operating mode for the LCLS. As a result, energy differences of ΔE/E = 2.4% are supported, and the second pulse can be adjusted to any elliptical polarization. In this mode, the pointing, timing, intensity and wavelength of the two pulses can be modified.

  18. Polarization control in an X-ray free-electron laser

    DOE PAGES

    Lutman, Alberto A.; MacArthur, James P.; Ilchen, Markus; ...

    2016-05-09

    X-ray free-electron lasers are unique sources of high-brightness coherent radiation. However, existing devices supply only linearly polarized light, precluding studies of chiral dynamics. A device called the Delta undulator has been installed at the Linac Coherent Light Source (LCLS) to provide tunable polarization. With a reverse tapered planar undulator line to pre-microbunch the beam and the novel technique of beam diverting, hundreds of microjoules of circularly polarized X-ray pulses are produced at 500–1,200 eV. These X-ray pulses are tens of femtoseconds long, have a degree of circular polarization of 0.98–0.04+0.02 at 707 eV and may be scanned in energy. Wemore » also present a new two-colour X-ray pump–X-ray probe operating mode for the LCLS. As a result, energy differences of ΔE/E = 2.4% are supported, and the second pulse can be adjusted to any elliptical polarization. In this mode, the pointing, timing, intensity and wavelength of the two pulses can be modified.« less

  19. Convex crystal x-ray spectrometer for laser plasma experiments

    SciTech Connect

    May, M.; Heeter, R.; Emig, J.

    2004-10-01

    Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC.

  20. Cyclic voltammetry and near edge X-ray absorption fine structure spectroscopy at the Ag L3-edge on electrochemical halogenation of Ag layers on Au(111)

    NASA Astrophysics Data System (ADS)

    Endo, Osamu; Nakamura, Masashi

    2011-05-01

    One to three layers of Ag grown on a Au(111) electrode were studied by cyclic voltammetry in chloride and bromide solutions and by ex-situ near-edge X-ray absorption fine structure spectroscopy at the Ag L3-edge (Ag L3-NEXAFS). The one and two layers obtained by underpotential deposition exhibited reduced intensity at the absorption edge in the Ag L3-NEXAFS spectra, which suggests the gain of d-electrons in these layers. The cyclic voltammograms and the Ag L3-NEXAFS spectra indicate that the second and third layers of Ag halogenated at positive potentials, whereas the first layer remained in metallic form.

  1. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    SciTech Connect

    Pogorelsky, I.V.

    1996-11-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO{sub 2} laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps CO{sub 2} laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 {angstrom}) x-rays of 10-ps pulse duration, with a flux of {approximately} 10{sup 19} photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10{sup 22} photons/sec level, after the ongoing ATF CO{sub 2} laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ``table-top`` LSS of monochromatic gamma radiation may become feasible.

  2. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    SciTech Connect

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0{sub 2} laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0{sub 2} laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of {approximately}10{sup 19} photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10{sup 22} photon/sec level, after the ongoing ATF C0{sub 2} laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ``table- top`` LSS of monochromatic gamma radiation may become feasible.

  3. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    1997-03-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.

  4. Interferometric studies of laser-created plasmas using compact soft x-ray lasers

    SciTech Connect

    Dunn, J; Nilsen, J; Moon, S; Keenan, R; Jankowska, E; Maconi, M C; Hammarsten, E C; Filevich, J; Hunter, J R; Smith, R F; Shlyaptsev, V; Rocca, J J

    2003-12-04

    We summarize results of several successful dense plasma diagnostics experiments realized by combining two different kinds of table-top soft x-ray lasers with an amplitude division interferometer based on diffraction grating beam splitters. In the first set of experiments this robust high throughput diffraction grating interferometer (DGI) was used with a 46.9 nm portable capillary discharge laser to study the dynamics of line focus and point focus laser-created plasmas. The measured electron density profiles, which differ significantly from those expected from a classical expansion, unveil important two-dimensional effects of the dynamics of these plasmas. A second DGI customized to operate in combination with a 14.7 nm Ni-like Pd transient gain laser was used to perform interferometry of line focus laser-created plasmas with picosecond time resolution. These measurements provide valuable new benchmarks for complex hydrodynamic codes and help bring new understanding of the dynamics of dense plasmas. The instrumentation and methodology we describe is scalable to significantly shorter wavelengths, and constitutes a promising scheme for extending interferometry to the study of very dense plasmas such as those investigated for inertial confinement fusion.

  5. Convex Crystal X-ray Spectrometer for Laser Plasma Experiments

    SciTech Connect

    May, M; Heeter, R; Emig, J

    2004-04-15

    Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC. Work supported by U. S. DoE/UC LLNL contract W-7405-ENG-48

  6. Soft X-Ray Emission of Laser-Produced Plasmas: Comparison for 30-ps and 20-ns Laser Pulses.

    PubMed

    van Brug, H; van Dorssen, G E; van der Wiel, M J

    1989-01-01

    Soft x-ray emission spectra (250-875 eV) are presented for plasmas, produced by picosecond and nanosecond frequency-doubled Nd:YAG-glass laser pulses incident on 14 different target materials. The emitted spectra have been corrected for various apparatus functions which enables a direct comparison between plasmas produced by pico- and nanosecond laser pulses. The relative integrated emission intensity as a function of Z number, obtained from the corrected spectra, shows an oscillatory behavior, with distinct maxima for those elements exhibiting a dominant line emission in our photon energy window. We found for our two pulse lengths an approximately equal conversion efficiency from laser light into x-ray photons. General suggestions are given as to what target material should be used for different applications using the laser plasma as x-ray source in the energy range Studied.

  7. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    NASA Astrophysics Data System (ADS)

    Luo, W.; Zhuo, H. B.; Ma, Y. Y.; Song, Y. M.; Zhu, Z. C.; Yu, T. P.; Yu, M. Y.

    2013-10-01

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ≤200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 106 photons/s in the form of ˜160 as pulses in the range of 3-300 keV are predicted, with a peak brightness of ≥5 × 1020 photons/(s mm2 mrad2 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed "attosecond physics."

  8. Soft x-ray laser spectroscopy on trapped highly charged ions at FLASH.

    PubMed

    Epp, S W; López-Urrutia, J R Crespo; Brenner, G; Mäckel, V; Mokler, P H; Treusch, R; Kuhlmann, M; Yurkov, M V; Feldhaus, J; Schneider, J R; Wellhöfer, M; Martins, M; Wurth, W; Ullrich, J

    2007-05-04

    In a proof-of-principle experiment, we demonstrate high-resolution resonant laser excitation in the soft x-ray region at 48.6 eV of the 2 (2)S(1/2) to 2 (2)P(1/2) transition of Li-like Fe23+ ions trapped in an electron beam ion trap by using ultrabrilliant light from Free Electron Laser in Hamburg (FLASH). High precision spectroscopic studies of highly charged ions at this and upcoming x-ray lasers with an expected accuracy gain up to a factor of a thousand, become possible with our technique, thus potentially yielding fundamental insights, e.g., into basic aspects of QED.

  9. Transverse spatial coherence of a transient nickellike silver soft-x-ray laser pumped by a single picosecond laser pulse.

    PubMed

    Lucianetti, A; Janulewicz, K A; Kroemer, R; Priebe, G; Tümmler, J; Sandner, W; Nickles, P V; Redkorechev, V I

    2004-04-15

    The degree of spatial coherence in the direction perpendicular to the target surface is reported for a transient nickellike silver x-ray laser at 13.9 nm. An x-ray laser plasma column was produced by irradiating a slab silver target with a single shaped picosecond laser pulse with energy less than 3 J. Young's double-slit method was applied to measure the fringe visibility as a function of the slit separation for different target lengths. The diameter of the equivalent incoherent source and the coherence radius of the output radiation were determined as well.

  10. Intense high repetition rate Mo Kα x-ray source generated from laser solid interaction for imaging application.

    PubMed

    Huang, K; Li, M H; Yan, W C; Guo, X; Li, D Z; Chen, Y P; Ma, Y; Zhao, J R; Li, Y F; Zhang, J; Chen, L M

    2014-11-01

    We report an efficient Mo Kα x-ray source produced by interaction of femtosecond Ti: sapphire laser pulses with a solid Molybdenum target working at 1 kHz repetition rate. The generated Mo Kα x-ray intensity reaches to 4.7 × 10(10) photons sr(-1) s(-1), corresponding to an average power of 0.8 mW into 2π solid angle. The spatial resolution of this x-ray source is measured to be 26 lp/mm. With the high flux and high spatial resolution characteristics, high resolving in-line x-ray radiography was realized on test objects and large size biological samples within merely half a minute. This experiment shows the possibility of laser plasma hard x-ray source as a new low cost and high resolution system for radiography and its ability of ultrafast x-ray pump-probe study of matter.

  11. Open data set of live cyanobacterial cells imaged using an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max F; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N Duane; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-08-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.

  12. First set of gated x-ray imaging diagnostics for the Laser Megajoule facility.

    PubMed

    Rosch, R; Trosseille, C; Caillaud, T; Allouche, V; Bourgade, J L; Briat, M; Brunel, P; Burillo, M; Casner, A; Depierreux, S; Gontier, D; Jadaud, J P; Le Breton, J P; Llavador, P; Loupias, B; Miquel, J L; Oudot, G; Perez, S; Raimbourg, J; Rousseau, A; Rousseaux, C; Rubbelynck, C; Stemmler, P; Troussel, P; Ulmer, J L; Wrobel, R; Beauvais, P; Pallet, M; Prevot, V

    2016-03-01

    The Laser Megajoule (LMJ) facility located at CEA/CESTA started to operate in the early 2014 with two quadruplets (20 kJ at 351 nm) focused on target for the first experimental campaign. We present here the first set of gated x-ray imaging (GXI) diagnostics implemented on LMJ since mid-2014. This set consists of two imaging diagnostics with spatial, temporal, and broadband spectral resolution. These diagnostics will give basic measurements, during the entire life of the facility, such as position, structure, and balance of beams, but they will also be used to characterize gas filled target implosion symmetry and timing, to study x-ray radiography and hydrodynamic instabilities. The design requires a vulnerability approach, because components will operate in a harsh environment induced by neutron fluxes, gamma rays, debris, and shrapnel. Grazing incidence x-ray microscopes are fielded as far as possible away from the target to minimize potential damage and signal noise due to these sources. These imaging diagnostics incorporate microscopes with large source-to-optic distance and large size gated microchannel plate detectors. Microscopes include optics with grazing incidence mirrors, pinholes, and refractive lenses. Spatial, temporal, and spectral performances have been measured on x-ray tubes and UV lasers at CEA-DIF and at Physikalisch-Technische Bundesanstalt BESSY II synchrotron prior to be set on LMJ. GXI-1 and GXI-2 designs, metrology, and first experiments on LMJ are presented here.

  13. Open data set of live cyanobacterial cells imaged using an X-ray laser

    NASA Astrophysics Data System (ADS)

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R. N. C.; Hantke, Max F.; Deponte, Daniel P.; Seibert, M. Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A.; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H.; Larsson, Daniel S. D.; Barty, Anton; Martin, Andrew V.; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D.; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W.; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N. Duane; Chapman, Henry N.; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-08-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.

  14. Open data set of live cyanobacterial cells imaged using an X-ray laser

    PubMed Central

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R.N.C.; Hantke, Max F.; DePonte, Daniel P.; Seibert, M. Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A.; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H.; Larsson, Daniel S.D.; Barty, Anton; Martin, Andrew V.; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D.; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W.; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N. Duane; Chapman, Henry N.; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-01-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences. PMID:27479514

  15. Gain dynamics measurement in injection-seeded soft x-ray laser plasma amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Wang, S.; Li, L.; Oliva, E.; Thuy Le, T. T.; Ros, D.; Berrill, M.; Dunn, J.; Zeitoun, Ph.; Yin, L.; Luther, B.; Rocca, J. J.

    2013-10-01

    Herein we report the first measurement of the gain dynamics in a soft x-ray plasma amplifier seeded by high harmonic pulses. A sequence of two time-delayed spatially-overlapping high harmonic pulses was injected into a λ = 18.9 nm Ni-like Mo plasma amplifier to measure the regeneration of the population inversion that follows the gain depletion caused by the amplification of the first seed pulse. Collisional excitation is observed to re-establish population inversion depleted during the amplification of the seed pulse in about ~1.75 ps. The measured gain-recovery time is compared to model simulations to gain insight on the population inversion mechanisms that create the transient gain in these amplifiers. This result supports the concept of a soft x-ray laser amplification scheme based on the continuous extraction of energy from a soft x-ray plasma-based amplifier by an stretched seed pulse has the potential to generate ultra-intense fully phase-coherent soft x-ray laser pulses. Work supported by AMOS program, Office of Basic Energy Sciences of the US DoE, and the NSF ERC Program with equipment developed under NSF Award MRI-ARRA 09-561, and by LASERLAB3-INREX European project and SHYLAX plus CIBORG RTRA `Triangle de la Physique.'

  16. Development of an ultrashort table-top electron and x-ray source pumped by laser

    NASA Astrophysics Data System (ADS)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire; Leboutet, Hubert

    1999-09-01

    We report on the design of the CIBER-X source which is a new laser driven table-top ultrashort electron and x-ray source. X-ray pulses are produced by a three-step process which consists of the electron pulse production from a thin metallic photocathode illuminated by picosecond 213 nm laser pulses with 16 ps duration. The electrons are accelerated in the diode by a cw electric field of 11 MV/m, and the photoinjector produces a single 70 - 100 keV electron pulse of approximately 0,5 nC and approximately 20 A peak current at a repetition rate of 10 Hz. The gun is a standard Pierce diode electrode type, the electrons leaving the diode through a hole made in the anode. The electrons are then transported along a path approximately 20 cm long, and are focused by two magnetic fields produced by electromagnetic coils. Finally, the x-rays are produced by the impact of electrons on a massive target of Tm. Simulations of geometrical and energetic characteristics of the complete source were done previously with assistance of the code PIXEL1. Finally, experimental performances of electron and x-ray bursts are discussed.

  17. Single mimivirus particles intercepted and imaged with an X-ray laser

    PubMed Central

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R. N. C.; Svenda, Martin; Andreasson, Jakob; Jönsson, Olof; Odić, Duško; Iwan, Bianca; Rocker, Andrea; Westphal, Daniel; Hantke, Max; DePonte, Daniel P.; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Coppola, Nicola; Aquila, Andrew; Liang, Mengning; White, Thomas A.; Martin, Andrew; Caleman, Carl; Stern, Stephan; Abergel, Chantal; Seltzer, Virginie; Claverie, Jean-Michel; Bostedt, Christoph; Bozek, John D.; Boutet, Sébastien; Miahnahri, A. Alan; Messerschmidt, Marc; Krzywinski, Jacek; Williams, Garth; Hodgson, Keith O.; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Andersson, Inger; Bajt, Saša; Barthelmess, Miriam; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Kirian, Richard; Hunter, Mark; Doak, R. Bruce; Marchesini, Stefano; Hau-Riege, Stefan P.; Frank, Matthias; Shoeman, Robert L.; Lomb, Lukas; Epp, Sascha W.; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Schmidt, Carlo; Foucar, Lutz; Kimmel, Nils; Holl, Peter; Rudek, Benedikt; Erk, Benjamin; Hömke, André; Reich, Christian; Pietschner, Daniel; Weidenspointner, Georg; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Schlichting, Ilme; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Chapman, Henry N.; Hajdu, Janos

    2014-01-01

    X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions1–4. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma1. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval2. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source5. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies. PMID:21293374

  18. First set of gated x-ray imaging diagnostics for the Laser Megajoule facility

    NASA Astrophysics Data System (ADS)

    Rosch, R.; Trosseille, C.; Caillaud, T.; Allouche, V.; Bourgade, J. L.; Briat, M.; Brunel, P.; Burillo, M.; Casner, A.; Depierreux, S.; Gontier, D.; Jadaud, J. P.; Le Breton, J. P.; Llavador, P.; Loupias, B.; Miquel, J. L.; Oudot, G.; Perez, S.; Raimbourg, J.; Rousseau, A.; Rousseaux, C.; Rubbelynck, C.; Stemmler, P.; Troussel, P.; Ulmer, J. L.; Wrobel, R.; Beauvais, P.; Pallet, M.; Prevot, V.

    2016-03-01

    The Laser Megajoule (LMJ) facility located at CEA/CESTA started to operate in the early 2014 with two quadruplets (20 kJ at 351 nm) focused on target for the first experimental campaign. We present here the first set of gated x-ray imaging (GXI) diagnostics implemented on LMJ since mid-2014. This set consists of two imaging diagnostics with spatial, temporal, and broadband spectral resolution. These diagnostics will give basic measurements, during the entire life of the facility, such as position, structure, and balance of beams, but they will also be used to characterize gas filled target implosion symmetry and timing, to study x-ray radiography and hydrodynamic instabilities. The design requires a vulnerability approach, because components will operate in a harsh environment induced by neutron fluxes, gamma rays, debris, and shrapnel. Grazing incidence x-ray microscopes are fielded as far as possible away from the target to minimize potential damage and signal noise due to these sources. These imaging diagnostics incorporate microscopes with large source-to-optic distance and large size gated microchannel plate detectors. Microscopes include optics with grazing incidence mirrors, pinholes, and refractive lenses. Spatial, temporal, and spectral performances have been measured on x-ray tubes and UV lasers at CEA-DIF and at Physikalisch-Technische Bundesanstalt BESSY II synchrotron prior to be set on LMJ. GXI-1 and GXI-2 designs, metrology, and first experiments on LMJ are presented here.

  19. Imaging single cells in a beam of live cyanobacteria with an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2015-02-11

    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.

  20. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    SciTech Connect

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  1. High-Energy Density science with an ultra-bright x-ray laser

    NASA Astrophysics Data System (ADS)

    Glenzer, Siegfried

    2015-11-01

    This talk will review recent progress in high-energy density physics using the world's brightest x-ray source, the Linac Coherent Light Source, SLAC's free electron x-ray laser. These experiments investigate laser-driven matter in extreme conditions where powerful x-ray scattering and imaging techniques have been applied to resolve ionic interactions at atomic (Ångstrom) scale lengths and to visualize the formation of dense plasma states. Major research areas include dynamic compression experiments of solid targets to determine structural properties and to discover and characterize phase transitions at mega-bar pressures. A second area studies extreme fields produced by high-intensity radiation where fundamental questions of laboratory plasmas can be related to cosmological phenomena. Each of these areas takes advantage of the unique properties of the LCLS x-ray beam. They include small foci for achieving high intensity or high spatial resolution, high photon flux for dynamic structure factor measurements in single shots, and high spectral bandwidth to resolve plasmon (Langmuir) waves or ion acoustic waves in dense plasmas. We will further describe new developments of ultrafast pump-probe technique at high repetition rates. These include studies on dense cryogenic hydrogen that have begun providing fundamental insights into the physical properties of matter in extreme conditions that are important for astrophysics, fusion experiments and generation of radiation sources. This work was supported by DOE Office of Science, Fusion Energy Science under FWP 100182.

  2. A computational study of x-ray emission from high-Z x-ray sources on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Colvin, Jeffrey D.; Fournier, Kevin B.; Kane, Jave; Langer, Steven; May, Mark J.; Scott, Howard A.

    2011-12-01

    We have begun to use 350-500 kJ of 1/3-micron laser light from the National Ignition Facility (NIF) laser to create millimeter-scale, bright multi-keV x-ray sources. In the first set of shots we achieved 15%-18% x-ray conversion efficiency into Xe M-shell (˜1.5-2.5 keV), Ar K-shell (˜3 keV) and Xe L-shell (˜4-5.5 keV) emission (Fournier et al., Phys. Plasmas 17, 082701, 2010), in good agreement with the emission modeled using a 2D radiation-hydrodynamics code incorporating a modern Detailed Configuration Accounting atomic model in non-LTE (Colvin et al., Phys. Plasmas, 17, 073111, 2010). In this paper we first briefly review details of the computational model and comparisons of the simulations with the Ar/Xe NIF data. We then discuss a computational study showing sensitivity of the x-ray emission to various beam illumination details (beam configuration, pointing, peak power, pulse shape, etc.) and target parameters (size, initial density, etc.), and finally make some predictions of how the x-ray conversion efficiency expected from NIF shots scales with atomic number of the emitting plasma.

  3. A Computational Study of X-ray Emissions from High-Z X-ray Sources on the National Ignition Facility Laser

    NASA Astrophysics Data System (ADS)

    Colvin, Jeffrey; Fournier, Kevin; Kane, Jave; May, Mark

    2010-11-01

    We have begun to use 350-500 kJ of 1/3-micron laser light from the National Ignition Facility (NIF) laser to create millimeter-scale, bright multi-keV x-ray sources. In the first set of shots we achieved 15% -18% x-ray conversion efficiency into Xe M-shell (˜1.5-2.5 keV), Ar K-shell (˜3 keV) and Xe L-shell (˜4-5.5 keV) emission (Fournier et al., Phys. Plasmas July 2010), in good agreement with the emission modeled using a 2D radiation-hydrodynamics code incorporating a modern Detailed Configuration Accounting atomic model in non-LTE (Colvin et al., Phys. Plasmas, July 2010). In this presentation we first briefly review details of the computational model and comparisons of the simulations with the Ar/Xe NIF data. We then discuss a computational study showing sensitivity of the x-ray emission to various beam illumination details (beam configuration, pointing, peak power, pulse shape, etc.) and target parameters (size, initial density, etc.), and finally make some predictions of how the x-ray conversion efficiency expected from NIF shots scales with atomic number of the emitting plasma.

  4. Self-modulated laser wakefield accelerators as x-ray sources

    SciTech Connect

    Lemos, N.; Martins, J. L.; Tsung, F. S.; Shaw, J. L.; Marsh, K. A.; Albert, F.; Pollock, B. B.; Joshi, C.

    2016-02-17

    The development of a directional, small-divergence, and short-duration picosecond x-ray probe beam with an energy greater than 50 keV is desirable for high energy density science experiments. We therefore explore through particle-in-cell (PIC) computer simulations the possibility of using x-rays radiated by betatron-like motion of electrons from a self-modulated laser wakefield accelerator as a possible candidate to meet this need. Two OSIRIS 2D PIC simulations with mobile ions are presented, one with a normalized vector potential a 0 = 1.5 and the other with an a 0 = 3. We find that in both cases direct laser acceleration (DLA) is an important additional acceleration mechanism in addition to the longitudinal electric field of the plasma wave. Together these mechanisms produce electrons with a continuous energy spectrum with a maximum energy of 300 MeV for a 0 = 3 case and 180 MeV in the a 0 = 1.5 case. Forward-directed x-ray radiation with a photon energy up to 100 keV was calculated for the a 0 = 3 case and up to 12 keV for the a 0 = 1.5 case. The x-ray spectrum can be fitted with a sum of two synchrotron spectra with critical photon energies of 13 and 45 keV for the a 0 of 3 and critical photon energies of 0.3 and 1.4 keV for a 0 of 1.5 in the plane of polarization of the laser. As a result, the full width at half maximum divergence angle of the x-rays was 62 × 1.9 mrad for a 0 = 3 and 77 × 3.8 mrad for a 0 = 1.5.

  5. Self-modulated laser wakefield accelerators as x-ray sources

    DOE PAGES

    Lemos, N.; Martins, J. L.; Tsung, F. S.; ...

    2016-02-17

    The development of a directional, small-divergence, and short-duration picosecond x-ray probe beam with an energy greater than 50 keV is desirable for high energy density science experiments. We therefore explore through particle-in-cell (PIC) computer simulations the possibility of using x-rays radiated by betatron-like motion of electrons from a self-modulated laser wakefield accelerator as a possible candidate to meet this need. Two OSIRIS 2D PIC simulations with mobile ions are presented, one with a normalized vector potential a 0 = 1.5 and the other with an a 0 = 3. We find that in both cases direct laser acceleration (DLA) ismore » an important additional acceleration mechanism in addition to the longitudinal electric field of the plasma wave. Together these mechanisms produce electrons with a continuous energy spectrum with a maximum energy of 300 MeV for a 0 = 3 case and 180 MeV in the a 0 = 1.5 case. Forward-directed x-ray radiation with a photon energy up to 100 keV was calculated for the a 0 = 3 case and up to 12 keV for the a 0 = 1.5 case. The x-ray spectrum can be fitted with a sum of two synchrotron spectra with critical photon energies of 13 and 45 keV for the a 0 of 3 and critical photon energies of 0.3 and 1.4 keV for a 0 of 1.5 in the plane of polarization of the laser. As a result, the full width at half maximum divergence angle of the x-rays was 62 × 1.9 mrad for a 0 = 3 and 77 × 3.8 mrad for a 0 = 1.5.« less

  6. Pump-probe laser development for the European X-ray Free-Electron Laser facility

    NASA Astrophysics Data System (ADS)

    Lederer, Max J.; Pergament, Mikhail; Kellert, Martin; Mendez, Cruz

    2012-10-01

    The successful implementation of superconducting LINAC technology at the European XFEL will boost the time averaged X-RAY power density substantially above current values. In fact, the XFEL will operate at repetition rates of up to 4.5MHz. However, this high pulse rate occurs only during 600μs long bursts of 10Hz repetition rate, rendering up to 27000 pulses per second. Matching this peculiar burst mode operation is a requirement also for the pump-probe femtosecond laser used in experiments. There is currently no commercially available femtosecond laser technology offering this kind of output at close to mJ-level energies per pulse and sub-20fs pulse width. We will outline the scheme of the pump-probe laser currently under development at the European XFEL. The laser design is based on a noncollinear optical parametric amplifier (NOPA) which will be pumped by sub-picosecond pulses from a high power, frequency-doubled Yb:YAG slab amplifier, delivering up to 20kW of fundamental average power during a burst. The design aims at highest possible flexibility regarding intra-burst rep-rates and pulse energies. Also, the use of uncompressed as well as compressed NOPA pump pulses at fundamental wavelength will enhance the flexibility in experiments.

  7. Long pulse Soft X-ray Emission from Laser Generated Irradiated Gold Foils

    NASA Astrophysics Data System (ADS)

    Davis, Joshua; Frank, Yechiel; Raicher, Erez; Fraenkel, Moshe; Keiter, Paul; Klein, Sallee; Drake, R. P.; Shvarts, Dov

    2016-10-01

    Long pulse soft x-ray sources (SXS) allow for flexibility in high-energy-density experimental designs by providing a means of driving matter to the high temperatures needed, for example to study radiation waves in different materials. SXSs can be made by using lasers to heat a high-Z thin foil, which then acts as a quasi-blackbody emitter. Previous studies of the x-ray emission characteristics of gold foils have focused on laser pulses of 1ns or less. We performed experiments using a 6.0ns laser pulse with energy of 2kJ on the Omega-60 system to generate and characterize multi-ns laser heated Au foils of thicknesses between 0.5-2.0 μm. We measured the 2D spatial profile of the emission with a soft x-ray camera and the time history of the emission with the Dante photodiode array . Effective temperatures for the emission were then calculated using the Dante measurements. Discussion of experimental results and a comparison with 1-D Rad-Hydro NLTE simulations will be presented.

  8. Correspondence between laser coupling and x-ray flux measurements in a NIF hohlraum

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; Divol, L.; Landen, O.; Lepape, S.; Michel, P.; Ralph, J.; Town, R. P. J.; Widmann, K.; Moore, A.

    2014-10-01

    We describe a simple model relating measurements of the hohlraum x-ray emission (DANTE) to the coupled (incident less backscattered) laser power in NIF indirect drive hohlraum experiments. The model was motivated by observing that the measured x-ray emission showed a lag in rise corresponding to a measured reduction in laser coupling due to backscatter. Two adjustable scalar parameters (a coupling efficiency and a time-scale) in the model are determined for each experiment. Comparing these parameters for different hohlraum gas-fill, ablator, pulse-length, and laser power conditions provides insight into the hohlraum behavior and performance. In some cases, the model can be inverted to estimate the backscatter loss using the measured hohlraum x-ray emission time-history and delivered laser power. We will describe the model and compare the adjustable parameters between different hohlraum platforms. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  9. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    SciTech Connect

    Golovin, G.; Banerjee, S.; Liu, C.; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; Seller, P.; Umstadter, D.

    2016-04-19

    Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  10. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    PubMed

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-04-19

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  11. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    PubMed Central

    Golovin, G.; Banerjee, S.; Liu, C.; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; Seller, P.; Umstadter, D.

    2016-01-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays. PMID:27090440

  12. Theory of x-ray absorption by laser-dressed atoms

    NASA Astrophysics Data System (ADS)

    Buth, Christian; Santra, Robin

    2007-03-01

    An ab initio theory is devised for the x-ray photoabsorption cross section of atoms in the field of a moderately intense optical laser ( 800nm , 1013W/cm2 ). The laser dresses the core-excited atomic states, which introduces a dependence of the cross section on the angle between the polarization vectors of the two linearly polarized radiation sources. We use the Hartree-Fock-Slater approximation to describe the atomic many-particle problem in conjunction with a nonrelativistic quantum-electrodynamic approach to treat the photon-electron interaction. The continuum wave functions of ejected electrons are treated with a complex absorbing potential that is derived from smooth exterior complex scaling. The solution to the two-color (x-ray plus laser) problem is discussed in terms of a direct diagonalization of the complex symmetric matrix representation of the Hamiltonian. Alternative treatments with time-independent and time-dependent non-Hermitian perturbation theories are presented that exploit the weak interaction strength between x rays and atoms. We apply the theory to study the photoabsorption cross section of krypton atoms near the K edge. A pronounced modification of the cross section is found in the presence of the optical laser.

  13. DNA strand breaks induced by soft X-ray pulses from a compact laser plasma source

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Wiechec, Anna; Wachulak, Przemyslaw; Ayele, Mesfin Getachew; Lekki, Janusz; Kwiatek, Wojciech M.; Bartnik, Andrzej; Davídková, Marie; Vyšín, Luděk; Juha, Libor; Pina, Ladislav; Fiedorowicz, Henryk

    2016-03-01

    Application of a compact laser plasma source of soft X-rays in radiobiology studies is demonstrated. The source is based on a laser produced plasma as a result of irradiation of a double-stream gas puff target with nanosecond laser pulses from a commercially available Nd:YAG laser. The source allows irradiation of samples with soft X-ray pulses in the "water window" spectral range (wavelength: 2.3-4.4 nm; photon energy: 280-560 eV) in vacuum or a helium atmosphere at very high-dose rates and doses exceeding the kGy level. Single-strand breaks (SSB) and double-strand breaks (DBS) induced in DNA plasmids pBR322 and pUC19 have been measured. The different conformations of the plasmid DNA were separated by agarose gel electrophoresis. An exponential decrease in the supercoiled form with an increase in linear and relaxed forms of the plasmids has been observed as a function of increasing photon fluence. Significant difference between SSB and DSB in case of wet and dry samples was observed that is connected with the production of free radicals in the wet sample by soft X-ray photons and subsequent affecting the plasmid DNA. Therefore, the new source was validated to be useful for radiobiology experiments.

  14. Improved energy coupling into the gain region of the Ni-like Pd transient collisional x-ray laser

    SciTech Connect

    Smith, R; Dunn, J; Filevich, J; Moon, S; Nilsen, J; Keenan, R; Shlyaptsev, V; Rocca, J; Hunter, J; Shepherd, R; Booth, R; Marconi, M

    2004-10-05

    We present within this paper a series of experiments, which yield new observations to further our understanding of the transient collisional x-ray laser medium. We use the recently developed technique of picosecond x-ray laser interferometry to probe the plasma conditions in which the x-ray laser is generated and propagates. This yields two dimensional electron density maps of the plasma taken at different times relative to the peak of the 600ps plasma-forming beam. In another experimental campaign, the output of the x-ray laser plasma column is imaged with a spherical multilayer mirror onto a CCD camera to give a two-dimensional intensity map of the x-ray laser output. Near-field imaging gives insights into refraction, output intensity and spatial mode structure. Combining these images with the density maps gives an indication of the electron density at which the x-ray laser is being emitted at (yielding insights into the effect of density gradients on beam propagation). Experimental observations coupled with simulations predict that most effective coupling of laser pump energy occurs when the duration of the main heating pulse is comparable to the gain lifetime ({approx}10ps for Ni-like schemes). This can increase the output intensity by more than an order of magnitude relative to the case were the same pumping energy is delivered within a shorter heating pulse duration (< 3ps). We have also conducted an experiment in which the output of the x-ray laser was imaged onto the entrance slit of a high temporal resolution streak camera. This effectively takes a one-dimensional slice of the x-ray laser spatial profile and sweeps it in time. Under some conditions we observe rapid movement of the x-ray laser ({approx} 3 {micro}m/ps) towards the target surface.

  15. Measurements of laser generated soft X-ray emission from irradiated gold foils

    NASA Astrophysics Data System (ADS)

    Davis, J. S.; Frank, Y.; Raicher, E.; Fraenkel, M.; Keiter, P. A.; Klein, S. R.; Drake, R. P.; Shvarts, D.

    2016-11-01

    Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  16. Measurements of laser generated soft X-ray emission from irradiated gold foils

    DOE PAGES

    Davis, J. S.; Frank, Y.; Raicher, E.; ...

    2016-08-22

    We measured soft x-ray emission from laser irradiated gold foils at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  17. X-ray-line polarization spectroscopy in laser-produced plasmas

    SciTech Connect

    Kieffer, J.C.; Matte, J.P.; Chaker, M.; Beaudoin, Y. ); Chien, C.Y.; Coe, S.; Mourou, G. ); Dubau, J. ); Inal, M.K. )

    1993-12-01

    In this work, we show that x-ray-line polarization spectroscopy can be a powerful diagnostic to study laser-produced plasmas. Kinetic calculations are compared to experiments designed to probe the low-density plasma region (with a 1-ps laser pulse) and the overdense plasma (with a 400-fs laser pulse). We observe the transition from a pancakelike'' electron distribution function at low density to a beamlike'' electron distribution function in the overdense plasma. The results are in agreement with the calculations which indicate non-Maxwellian behavior and strong anisotropy due to nonlocal electron heat flow.

  18. X-ray diffraction study of thermal parameters of Pd, Pd-Ag and Pd-Ag-Cu alloys as hydrogen purification membrane materials

    NASA Astrophysics Data System (ADS)

    Pati, Subhasis; Jat, Ram Avtar; Mukerjee, S. K.; Parida, S. C.

    2016-03-01

    High temperature X-ray diffraction measurements were carried out for pure palladium and palladium-rich alloys of compositions Pd0.77Ag0.23 and Pd0.77Ag0.10Cu0.13 in the temperature range of 298-1023 K at an interval of 50 K. The lattice parameters, coefficient of thermal expansion and X-ray Debye temperature of these materials were calculated as a function of temperature from the XRD data. The lattice parameter of Pd0.77Ag0.23 alloy was found to be higher than that of palladium, whereas the lattice parameter of Pd0.77Ag0.10Cu0.13 was found to be lower than that of palladium in the temperature range of investigation. Further, the lattice parameters of both the palladium alloys show negative deviation from Vegard's law and the deviation was found to increase with increase in temperature. The average value of coefficient of linear thermal expansion was found to follow the trend: αT (Pd)>αT (Pd0.77Ag0.23)>αT (Pd0.77Ag0.10Cu0.13). The X-ray Debye temperatures of Pd0.77Ag0.23 and Pd0.77Ag0.10Cu0.13 alloys were calculated and found to be 225±10 and 165±10 K, respectively.

  19. Claudio Pellegrini and the World’s First Hard X-ray Free-Electron Laser

    SciTech Connect

    Pellegrini, Claudio

    2015-10-20

    President Obama welcomed SLAC's Claudio Pellegrini inside the Oval Office on Tuesday morning as a recipient of the Enrico Fermi Award, one of the highest honors the U.S. government can give to a scientist. Pellegrini, a visiting scientist and consulting professor at SLAC and distinguished professor emeritus at the University of California, Los Angeles, received the award for research that aided in the development of X-ray free-electron lasers (XFELs) including SLAC's Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility that started up in 2009. Here, Pellegrini describes his efforts that contributed to the realization of SLAC’s Linac Coherent Light Source, the world’s first hard X-ray free-electron laser.

  20. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    PubMed

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  1. Experimental demonstration of x-ray betatron radiation spectrum from laser accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Leurent, Valentine; Michel, Pierre; Clayton, Chris; Pollock, Bradley; Doeppner, Tilo; Ralph, Joseph; Pak, Art; Wang, Tyan-Lin; Joshi, Chan; Tynan, George; Divol, Laurent; Palastro, John; Glenzer, Siegried; Froula, Dustin

    2008-11-01

    New laser wakefield acceleration (LWFA) experiments have been carried out at the Callisto Laser Facility, Lawrence Livermore National Laboratory. We will present results of the first experimental campaign on LWFA. The electron beam energy spectrum was measured with a two-screen spectrometer to avoid ambiguities due to the possible angle of the electron beam at the plasma exit [1]. Electron beams up to 300 MeV were measured. X-ray betatron radiation from the accelerated electrons were also measured. By using a set of filters acting like a spectral step function, the x-ray spectrum was reconstructed from fitting theoretical estimates; the radiation peaks at a few keVs. [1] R. Ischebeck et al., Proceedings of PAC 2007, Albuquerque NM, p. 4168. LLNL-ABS-405251

  2. X-ray laser-induced photoelectron spectroscopy for single-state measurements

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Dunn, J.; van Buuren, T.; Hunter, J.

    2004-12-01

    We demonstrate single-shot x-ray laser-induced time-of-flight photoelectron spectroscopy on metal and semiconductor surfaces with picosecond time resolution. Our compact multipulse terawatt tabletop x-ray laser source provides the necessary high photon flux (>1012/pulse), monochromaticity, picosecond pulse duration, and coherence for probing ultrafast changes in the chemical and electronic structure of these materials. Static valence band and shallow core-level photoemission spectra are presented for ambient temperature polycrystalline Cu foils and Ge(100). Surface contamination was removed by UV ozone cleaning prior to analysis. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials.

  3. X-Ray Laser Induced Photoelectron Spectroscopy for Single-State Measurements

    SciTech Connect

    Nelson, A J; Dunn, J; van Buuren, T; Hunter, J

    2004-07-14

    We demonstrate single-shot x-ray laser induced time-of-flight photoelectron spectroscopy on metal and semiconductor surfaces with picosecond time resolution. The LLNL COMET compact tabletop x-ray laser source provides the necessary high photon flux (>10{sup 12}/pulse), monochromaticity, picosecond pulse duration, and coherence for probing ultrafast changes in the chemical and electronic structure of these materials. Static valence band and shallow core-level photoemission spectra are presented for ambient temperature polycrystalline Cu foils and Ge(100). Surface contamination was removed by UV ozone cleaning prior to analysis. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials.

  4. Design study of Thomson Laser-Electron X-ray Generator (LEX) for Millisecond Angiography

    NASA Astrophysics Data System (ADS)

    Artyukov, I. A.; Bessonov, E. G.; Feshchenko, R. M.; Gorbunkov, M. V.; Maslova, Yu Ya; Popov, N. L.; Dyachkov, N. V.; Postnov, A. A.; Vinogradov, S. L.; Vinogradov, A. V.

    2017-01-01

    In this concept study a laser-electron X-ray generator (LEX) is considered for the medical imaging of the inner vessel structure. It is demonstrated that the modern lasers and linear electron accelerators are suitable for the design of the new generation of angiography medical equipment combining higher spatial and time resolution with the reduced patient dose. Angiography setup based on LEXG can make use of different contrast media (iodine, gadolinium) working on absorption edge due to the narrow tuneable spectrum which is not possible with conventional X-ray tubes. In the present study all estimations are made for iodine-based contrast agents. The conclusion is that modern technologies allow practical implementation of LEX for angiography based on multibunch linear accelerator and photon storage device.

  5. Atomic processes modeling of X-ray free electron laser produced plasmas using SCFLY code

    NASA Astrophysics Data System (ADS)

    Chung, H.-K.; Cho, B. I.; Ciricosta, O.; Vinko, S. M.; Wark, J. S.; Lee, R. W.

    2017-03-01

    With the development of X-ray free electron lasers (XFEL), a novel state of matter of highly transient and non-equilibrium plasma has been created in laboratories. As high intensity X-ray laser beams interact with a solid density target, electrons are ionized from inner-shell orbitals and these electrons and XFEL photons create dense and finite temperature plasmas. In order to study atomic processes in XFEL driven plasmas, the atomic kinetics model SCFLY containing an extensive set of configurations needed for solid density plasmas was applied to study atomic processes of XFEL driven systems. The code accepts the time-dependent conditions of the XFEL as input parameters, and computes time-dependent population distributions and ionization distributions self-consistently with electron temperatures and densities assuming an instantaneous equilibration of electron energies. The methods and assumptions in the atomic kinetics model and unique aspects of atomic processes in XFEL driven plasmas are described.

  6. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngießer, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  7. Ultrafast cavitation induced by an X-ray laser in water drops

    NASA Astrophysics Data System (ADS)

    Stan, Claudiu; Willmott, Philip; Stone, Howard; Koglin, Jason; Liang, Mengning; Aquila, Andrew; Robinson, Joseph; Gumerlock, Karl; Blaj, Gabriel; Sierra, Raymond; Boutet, Sebastien; Guillet, Serge; Curtis, Robin; Vetter, Sharon; Loos, Henrik; Turner, James; Decker, Franz-Josef

    2016-11-01

    Cavitation in pure water is determined by an intrinsic heterogeneous cavitation mechanism, which prevents in general the experimental generation of large tensions (negative pressures) in bulk liquid water. We developed an ultrafast decompression technique, based on the reflection of shock waves generated by an X-ray laser inside liquid drops, to stretch liquids to large negative pressures in a few nanoseconds. Using this method, we observed cavitation in liquid water at pressures below -100 MPa. These large tensions exceed significantly those achieved previously, mainly due to the ultrafast decompression. The decompression induced by shock waves generated by an X-ray laser is rapid enough to continue to stretch the liquid phase after the heterogeneous cavitation occurs in water, despite the rapid growth of cavitation nanobubbles. We developed a nucleation-and-growth hydrodynamic cavitation model that explains our results and estimates the concentration of heterogeneous cavitation nuclei in water.

  8. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy

    SciTech Connect

    Mantouvalou, Ioanna; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Kanngießer, Birgit; Witte, Katharina; Jung, Robert; Stiel, Holger; Sandner, Wolfgang

    2015-03-15

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  9. Simulation of a He II Lyman-alpha soft x-ray laser pumped by DESY/XFEL radiation

    NASA Astrophysics Data System (ADS)

    Lan, Ke; Fill, Ernst E.; Meyer-ter-Vehn, Jurgen

    2003-12-01

    The high brilliance expected from the X-ray Free-Electron Lasers (XFEL"s) now under construction suggest re-investigating the feasibility of a photopumped soft X-ray laser. We present simulations of a Lyman-α X-ray laser in hydrogenic He (λ = 30.4 nm) pumped by XFEL radiation with parameters of the TESLA Test Facility, phase II, at DESY/Hamburg. The simulations show that high gain can be achieved at a pump intensity of 1015 W/cm2. The realization of such a laser could provide a better understanding of the physics of photopumped lasers and thus help to develop table-top X-ray lasers.

  10. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    SciTech Connect

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-02-15

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10{sup −12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  11. Data acquisition system for X-ray free-electron laser experiments at SACLA.

    PubMed

    Joti, Yasumasa; Kameshima, Takashi; Yamaga, Mitsuhiro; Sugimoto, Takashi; Okada, Kensuke; Abe, Toshinori; Furukawa, Yukito; Ohata, Toru; Tanaka, Ryotaro; Hatsui, Takaki; Yabashi, Makina

    2015-05-01

    A data acquisition system for X-ray free-electron laser experiments at SACLA has been developed. The system has been designed for reliable shot-to-shot data storage with a high data stream greater than 4 Gbps and massive data analysis. Configuration of the system and examples of prompt data analysis during experiments are presented. Upgrade plans for the system to extend flexibility are described.

  12. Analysis of the x-ray spectrum emitted by laser-produced plasma of dysprosium

    SciTech Connect

    Marcus, Gilad; Louzon, Einat; Henis, Zohar; Maman, Shlomo; Mandelbaum, Pinchas

    2007-05-15

    A detailed analysis of the x-ray spectrum (5-10.2 A ring ) emitted by laser-produced plasma of dysprosium (Dy) is given using ab initio calculations with the HULLAC relativistic code and isoelectronic trends. Resonance 3d-4p, 3d-nf (n=4 to 7), 3p-4s, and 3p-4d transitions of Ni I-like Dy XXXIX and neighboring ion satellite transitions (from Dy XXXIV to Dy XL) are identified.

  13. Towards a Table-Top Laser Driven XUV/X-Ray Source

    DTIC Science & Technology

    2015-08-27

    applications, including bright x-ray and Extreme ultraviolet radiation (EUV or XUV) sources. The investigation was carried out in two phases. In the...of emission enhancement. The study also revealed that this laser-driven source of radiation has a small source size, short duration, and high photon...experimentally demonstrated. The study revealed that these advanced micro-engineered targets not only enhance the total number of electrons and their

  14. Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser

    SciTech Connect

    Vartanyants, I.A.; Singer, A.; Mancuso, A.P.; Yefanov, O.M.; Sakdinawat, A.; Liu, Y.; Bang, E.; Williams, G.J.; Cadenazzi, G.; Abbey, B.; Sinn, H.; Attwood, D.; Nugent, K.A.; Weckert, E.; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J.J.; Schlotter, W.F.; /SLAC /LERMA, Ivry /Zurich, ETH /LBL, Berkeley /ANL, APS /Argonne /SLAC /LLNL, Livermore /Latrobe U. /SLAC /SLAC /European XFEL, Hamburg /SLAC /Hamburg U.

    2012-06-06

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in 'diffract-and-destroy' mode. We determined a coherence length of 17 {micro}m in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  15. Formation of x-ray Newton's rings from nano-scale spallation shells of metals in laser ablation

    NASA Astrophysics Data System (ADS)

    Nishikino, Masaharu; Hasegawa, Noboru; Tomita, Takuro; Minami, Yasuo; Eyama, Takashi; Kakimoto, Naoya; Izutsu, Rui; Baba, Motoyoshi; Kawachi, Tetsuya; Suemoto, Tohru

    2017-01-01

    The initial stages of the femtosecond (fs) laser ablation process of gold, platinum, and tungsten were observed by single-shot soft x-ray imaging technique. The formation and evolution of soft x-ray Newton's rings (NRs) were found for the first time. The soft x-ray NRs are caused by the interference between the bulk ablated surface and nanometer-scale thin spallation layer; they originate from the metal surface at pump energy fluence of around 1 J/cm2 and work as a flying soft x-ray beam splitter.

  16. K-alpha x-ray source using high energy and high repetition rate laser system for phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Serbanescu, Cristina; Fourmaux, Sylvain; Kieffer, Jean-Claude; Kincaid, Russell; Krol, Andrzej

    2009-08-01

    K-alpha x-ray sources from laser produced plasmas provide completely new possibilities for x-ray phase-contrast imaging applications. By tightly focusing intense femtosecond laser pulses onto a solid target, K-alpha x-ray pulses are generated through the interaction of energetic electrons created in the plasma with the bulk target. In this paper, we present a continuous and efficient Mo K-alpha x-ray source produced by a femtosecond laser system operating at 100 Hz repetition rate with maximum pulse energy of 110 mJ before compression. The source has x-ray conversion efficiency greater than 10-5 into K-alpha line emission. In preparation for phase contrast imaging applications, the size of the resultant K-alpha x-ray emission spot has been also characterized. The source exhibits sufficient spatial coherence to observe phase contrast. We observe a relatively small broadening of the K-alpha source size compared to the size of the laser beam itself. Detailed characterization of the source including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented.

  17. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    DOE PAGES

    Golovin, G.; Banerjee, S.; Liu, C.; ...

    2016-04-19

    Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense lasermore » probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.« less

  18. QED and nuclear effects in strong optical and x-ray laser fields

    NASA Astrophysics Data System (ADS)

    Di Piazza, A.; Pálffy, A.; Liao, W.-T.; Hatsagortsyan, K. Z.; Keitel, C. H.

    2011-06-01

    The possibility of employing strong optical and x-ray laser fields to investigate processes in the realm of classical and quantum electrodynamics as well as nuclear quantum optics is considered. In the first part we show on the theoretical side how modern strong optical laser fields can be employed to test the fundamental classical equations of motion of the electron which include radiation reaction, i.e., the effect of the radiation emitted by the electron on its own motion. Then, we clarify the quantum origin of radiation reaction and discuss a new radiation regime where both quantum and radiation effects dominate the electron dynamics. The second part is dedicated to the possibility of controlling nuclear transitions with coherent x-ray light. In particular, we investigate the resonant driving of nuclear transitions by super-intense x-ray laser fields considering parameters of upcoming high-frequency coherent light sources. As relevant application, the controlled pumping or release of energy stored in long-lived nuclear states is discussed.

  19. Direct and secondary nuclear excitation with x-ray free-electron lasers

    SciTech Connect

    Gunst, Jonas; Wu, Yuanbin Kumar, Naveen; Keitel, Christoph H.; Pálffy, Adriana

    2015-11-15

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic theoretical model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of {sup 93}Mo, or it can be negligible, as it is the case for the 14.4 keV Mössbauer transition in {sup 57}Fe. These findings are most relevant for future nuclear quantum optics experiments at x-ray free electron laser facilities.

  20. Image quality of digital chest X-rays: wet versus dry laser printers.

    PubMed

    Zähringer, M; Wassmer, G; Krug, B; Winnekendonk, G; Gossmann, A; Lackner, K J

    2001-09-01

    The aim of this study was to compare the image quality of digital chest x-rays (Thoravision) obtained with 2 "wet" laser imagers of different matrix sizes and a "dry" system. Fifty chest x-rays in 2 planes were printed out in normal (100%) and reduced (61%) format using 3 different systems: 2 "wet" laser imagers (Agfa Matrix LR 3300, 4256 x 5174 pixels, 315 dpi; Agfa Scopix LR 5200, 8512 x 10348 pixels, 630 dpi), and one "dry" system (Agfa Drystar 3000,4352 x 5295 pixels, 330 dpi). All tests yielded normal findings. Anonymous images were evaluated by 4 independent reviewers on record forms rating the detectability of predefined anatomic structures. When the image quality of diagnosis-relevant, anatomic structures was evaluated on digital chest x-rays reproduced in normal and reduced format, the wet laser imagers did not show significant advantages over the dry system, Agfa Drystar 3000. The Agfa Drystar 3000 system is a feasible alternative for reproducing digital images, particularly for decentralized archives.

  1. Development of long-duration, laser driven, cold x-ray sources on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Kemp, G. Elijah; May, M. J.; Blue, B. E.; Colvin, J. D.; Fournier, K. B.; Moore, A. S.; Thorn, D. B.; Brown, C. G.; Fisher, J. H.; Newlander, C. D.; Davis, J. F.; Seiler, S. W.

    2016-10-01

    We present experimental and simulation results from an x-ray source development campaign on the National Ignition Facility laser that focused on temporally and spectrally tailoring the non-equilibrium x-ray emission from laser driven Xe gas-pipe targets. The goal of this work was to create a long-duration (> 10ns) x-ray environment that emulates 1keV blackbody emission. In one experiment, we investigated the use of sequentially driven 6ns trapezoidal pulses - which deliver more optimized laser performance than equivalent single pulse configurations - to create a 13ns total emission duration. While a successful demonstration of x-ray pulse shaping control, these sources resulted in too much low-photon-energy emission along the desired line-of-sight. Several filtering schemes were explored in subsequent experiments to remove the sub- 1.5keV emission, where we commissioned a new DIM-based, 16 channel, filtered x-ray diode array, SENTINEL, to assess line-of-sight filtering effectiveness. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  2. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    SciTech Connect

    Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A

    2012-01-31

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.

  3. Compact scanning soft-x-ray microscope using a laser-produced plasma source and normal-incidence multilayer mirrors.

    PubMed

    Trail, J A; Byer, R L

    1989-06-01

    We have constructed a scanning soft-x-ray microscope that uses a laser-produced plasma as the soft-x-ray source and normal-incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 microm, and has a soft-x-ray photon flux through the focus of 10(4)-10(5) sec(-1) when operated with only 170 mW of average laser power. The microscope is compact; the complete system, including the laser, fits on a single optical table.

  4. Diffusion of Ag into organic semiconducting materials: a combined analytical study using transmission electron microscopy and X-ray reflectivity.

    PubMed

    Fladischer, Stefanie; Neuhold, Alfred; Kraker, Elke; Haber, Thomas; Lamprecht, Bernhard; Salzmann, Ingo; Resel, Roland; Grogger, Werner

    2012-10-24

    This study shows that the morphology of organic/metal interfaces strongly depends on process parameters and the involved materials. The interface between organic n-type blocking layer materials and the top Ag cathode within an organic photodiode was investigated. Ag was deposited on either amorphous tris-8-hydroxyquinolinato-aluminum (Alq(3)) or crystalline 4,7-diphenyl-1,10-phenanthroline (Bphen) using different deposition techniques such as electron beam deposition, ion beam sputtering, and vacuum thermal evaporation at various deposition rates. The interfaces were studied by transmission electron microscopy and X-ray reflectivity. It was found that Bphen does not show any Ag diffusion no matter which deposition technique was used, whereas the Ag diffusion into Alq(3) depends on the deposition technique and the deposition rate. The highest amount of Ag diffusion into Alq(3) occurred by using thermal vacuum deposition at low deposition rates.

  5. A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.

    PubMed

    Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D

    2015-01-01

    X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.

  6. Time-Domain X-ray Diffraction in the Pulsed Laser Heated Diamond Anvil Cell

    NASA Astrophysics Data System (ADS)

    Prakapenka, V.; Goncharov, A. F.; Struzhkin, V.; Kantor, I.; Rivers, M. L.; Dalton, D. A.

    2011-12-01

    We have developed in situ x-ray synchrotron diffraction measurements of samples heated by a pulsed laser in the diamond anvil cell (DAC) at pressure up to 100 GPa and 3500 K. We used an electronically modulated 2-10 kHz repetition rate, 1064-1075 nm fiber laser with 1-100 microseconds pulse width synchronized with a gated x-ray detector (Pilatus) and time resolved radiometric temperature measurements. For the special APS hybrid mode, the measurements were also synchronized with a 500 ns long bunch carrying 88% of the ring current. This setup enables time domain measurements as a function of temperature in a micrometers time scale (averaged over many events, typically more than 10,000). X-ray diffraction data, temperature measurements, and finite element calculations with realistic geometric and thermochemical parameters show that in the present experimental configuration samples 4 micrometers thick can be continuously temperature monitored (up to 3000 K in our experiments) with the same level of axial and radial temperature uniformity as with continuous heating. We find that this novel technique offers a new and convenient way of fine tuning the maximum sample temperature by changing the pulse width of the laser. We will show examples of studies of the melting, thermal equation of state, and chemical reactivity. We acknowledge support from NSF EAR-0842057, DOE/ NNSA (CDAC), and EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DESC0001057. X-ray diffraction measurements were performed at GSECARS (APS) supported by DOE Contract No.W-31-109- Eng-38.

  7. X-ray production and second-harmonic generation during femtosecond laser microdrilling

    NASA Astrophysics Data System (ADS)

    Gordienko, V. M.; Zhvaniya, I. A.; Makarov, I. A.

    2015-08-01

    We investigated X-ray yield and second-harmonic generation during femtosecond laser drilling of solid targets placed in vacuum or air. Laser pulse intensity was about 1016 W/cm2 and repetition rate was 10 Hz. Hard X-ray yield ( E > 2.5 keV) and second-harmonic signal are non-monotone and reach a maximum during formation of microchannel in a target. That indicates that both signals can be utilized as a feedback for monitoring laser energy deposition to the target under laser microdrilling. Spectrum of second harmonic emitted from laser-drilled microchannel is blueshifted regardless of target type or environment (vacuum or air surrounding the target). The blueshift reaches the value of about 30 nm. The spectrum of fundamental radiation backreflected from the microchannel has also corresponding blueshift. This testifies that the cloud of ablated particles accumulates inside the microchannel. Incident laser radiation undergoes self-action inside the cloud, as a result occurs the spectral modification of incident radiation and its second harmonic.

  8. Coherent X-ray and laser spectroscopy measurements of diffusion in concentrated alpha-crystallin solutions

    NASA Astrophysics Data System (ADS)

    Karunaratne, V. N. C.

    The mammalian eye lens is composed of a concentrated solution of water soluble proteins called crystallins. Alpha-crystallin, the most abundant protein found in the lens, plays a crucial role in maintaining lens transparency and lens accommodation. However, alpha-crystallins along with other ocular proteins suffer from irreversible processes such as oxidation. One cause of oxidation is radiation-induced radical formation which alters the inter-molecular interactions, thereby degrading the normal function of ocular proteins. The main goal of this thesis is to quantify molecular scale dynamics of concentrated solutions of alpha-crystallins using coherent X-rays and visible laser light. I believe a detailed analysis of the dynamics pertaining to alpha-crystallin will provide the foundation to understand molecular scale mechanisms that lead to conditions like cataract and presbyopia. I explore the dynamics of concentrated alpha-crystallin solutions by measuring diffusive motion over a range of length scales using Dynamic light scattering (DLS) and X-ray photon correlation spectroscopy (XPCS). To a certain extent, the dynamical properties of crystallins obtained in this manner are consistent with established theories in colloidal physics. However, there are some deviations, which I will address in this thesis. In terms of X-ray data, I employed a new, efficient photon correlation technique to obtain the best possible signal, furthermore this technique is embedded in a stand-alone software program that has the ability to provide real time results, quickly and efficiently with the help of high performance computing resources available at Northern Illinois University (NIU). The technique has potential to be used by the coherent X-ray spectroscopy community in the future. In addition, by using X-ray scattering data, I probe potential modifications and or damage effects on alpha-crystallins due to radiation exposure. The damage analysis methodology described in this thesis

  9. A bright attosecond x-ray pulse train generation in a double-laser-driven cone target

    NASA Astrophysics Data System (ADS)

    Hu, Li-Xiang; Yu, Tong-Pu; Shao, Fu-Qiu; Luo, Wen; Yin, Yan

    2016-06-01

    By using full three-dimensional particle-in-cell and Monte Carlo simulations, we investigate the generation of a high-brightness attosecond x-ray pulse train in a double-laser-driven cone target. The scheme makes use of two lasers: the first high-intensity laser with a laser peak intensity 1.37 × 1020 W/cm2 irradiates the cone and produces overdense attosecond electron bunches; the second counterpropagating weakly relativistic laser with a laser peak intensity 4.932 × 1017 W/cm2 interacts with the produced electron bunches and a bright x-ray pulse train is generated by Thomson backscattering of the second laser off the attosecond electron bunches. It is shown that the photon flux rises by 5 times using the cone target as compared with a normal channel. Meanwhile, the x-ray peak brightness increases significantly from 1.4 × 1021/(s mm2 mrad2 0.1 keV) to 6.0 × 1021/(s mm2 mrad2 0.1 keV), which is much higher than that of the Thomson x-ray source generated from traditional accelerators. We also discuss the influence of the laser and target parameters on the x-ray pulse properties. This compact bright x-ray source may have diverse applications, e.g., the study of electric dynamics and harmonics emission in the atomic scale.

  10. Use of argon x-ray lines for the diagnosis of laser-produced implosions

    SciTech Connect

    Matthews, D.L.; Koppel, L.N.; Campbell, E.M.; Larsen, J.T.; Slivinsky, V.W.; Lane, S.M.; Ceglio, N.M.

    1982-06-01

    We have measured the spatial extent of heliumlike and hydrogenlike argon x-ray lines that were emitted from the fuel region of an imploded laser fusion target directly illuminated by the Argus laser. The diameter of the fuel region measured in this way agrees with that obtained from images of the thermonuclear burn region recorded simultaneously by an alpha-particle zone plate camera. Time-averaged electron temperatures in the target core were determined from argon line intensity ratios and compared to ion temperatures determined from measurements of neutron yield.

  11. Soft-x-ray free-electron-laser interaction with materials

    SciTech Connect

    Hau-Riege, Stefan P.; London, Richard A.; Chapman, Henry N.; Bergh, Magnus

    2007-10-15

    Soft-x-ray free-electron lasers have enabled materials studies in which structural information is obtained faster than the relevant probe-induced damage mechanisms. We present a continuum model to describe the damage process based on hot-dense plasma theory, which includes a description of the energy deposition in the samples, the subsequent dynamics of the sample, and the detector signal. We compared the model predictions with experimental data and mostly found reasonable agreement. In view of future free-electron-laser performance, the model was also used to predict damage dynamics of samples and optical elements at shorter wavelengths and larger photon fluences than currently available.

  12. Phase-matched generation of coherent soft and hard X-rays using IR lasers

    DOEpatents

    Popmintchev, Tenio V.; Chen, Ming-Chang; Bahabad, Alon; Murnane, Margaret M.; Kapteyn, Henry C.

    2013-06-11

    Phase-matched high-order harmonic generation of soft and hard X-rays is accomplished using infrared driving lasers in a high-pressure non-linear medium. The pressure of the non-linear medium is increased to multi-atmospheres and a mid-IR (or higher) laser device provides the driving pulse. Based on this scaling, also a general method for global optimization of the flux of phase-matched high-order harmonic generation at a desired wavelength is designed.

  13. Cautionary note concerning the CuSO4 X-ray laser. [alternative to lasing action

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Mark, H.

    1973-01-01

    For the so far unconfirmed lasing action claimed by Kepros et al. (1972) to have been obtained by focusing a 1.06-micron radiation of a q-switched Nd(3+) glass laser to a small cylindrical volume inside a CuSO4-doped gelatin medium supported between two glass plates, an alternate explanation is proposed that does not depend on the assumption of laser action in copper. The proposed explanation shows how collimated X-ray beams might be created under the experimental conditions described by Kepros et al.

  14. Toward ultrafast time-resolved Debye-Scherrer x-ray diffraction using a laser-plasma source.

    PubMed

    Shymanovich, U; Nicoul, M; Lu, W; Kähle, S; Tarasevitch, A; Sokolowski-Tinten, K; von der Linde, D

    2009-08-01

    An elliptical glass capillary has been used to focus ultrashort Cu K alpha x-ray pulses emitted from a femtosecond laser-produced plasma. Due to its high magnification (7x), the optic transforms the divergent x-ray emission of the plasma into a quasicollimated x-ray beam with a divergence of only 0.18 degrees. As an application we demonstrate the possibility to perform Debye-Scherrer diffraction experiments with the simultaneous detection of several diffraction orders. This will allow one to extend time-resolved x-ray diffraction with femtosecond laser-plasma x-ray sources to a much wider range of materials, which are not easily available as single crystals.

  15. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    DOE PAGES

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; ...

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore » based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less

  16. A Soft X-Ray/EUV Reflectometer Based on a Laser Produced Plasma Source.

    PubMed

    Gullikson, E M; Underwood, J H; Batson, P C; Nikitin, V

    1992-01-01

    A soft x-ray reflectometer is described which is based on a laser-produced plasma source and is continuously tunable over the range 40 Å < λ < 400 Å. The source is produced by focusing 0.532-μm light from a Q-switched Nd:YAG laser on a solid target. The x-ray wavelength is defined using a high throughput spherical grating monochromator with moderate resolving power (λ/Δλ ≈ 100 to 500). A time-averaged monochromatized flux of more than 109 photons/s in a 1% bandwidth at 100 eV is obtained. Photon "shot noise" limited measurements are obtained by the use of an I0 detector to normalize out the shot-to-shot variations in source intensity. Measurements with submillimeter spot sizes are readily obtainable. Various detectors have been used and the advantages and disadvantages of each are discussed. The higher order contamination of the monochromator output has been analyzed using a second grating for the purpose of making measurement corrections. The reflectometer thus provides the capability for precision absolute measurements of the reflectance of gratings and multilayer mirrors, the transmittance of thin film filters, or other properties of x-ray optical elements.

  17. Aerosol Imaging with a Soft X-ray Free Electron Laser

    SciTech Connect

    Bogan, Michael J.; Boutet, Sebastien; Chapman, Henry N.; Marchesini, Stefano; Barty, Anton; Benner, W.Henry Rohner, Urs; Frank, Matthias; Hau-Riege, Stefan P.; Bajt, Sasa; Woods, Bruce; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; Schulz, Joachim; /DESY

    2011-08-22

    Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10{sub 12} photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

  18. Simulation Studies of the X-Ray Free-Electron Laser Oscillator

    SciTech Connect

    Lindberg, R. R.; Shyd'ko, Y.; Kim, K.-J; Fawley, W. M.

    2009-08-14

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include transverse effects and realistic Bragg crystal properties with the two-dimensional code GINGER. In the present cases considered the radiation divergence is much narrower than the crystal acceptance, and the numerical algorithm can be simplified by ignoring the finite angular bandwidth of the crystal. In this regime GINGER shows that the saturated x-ray pulses have 109 photons and are nearly Fourier-limited with peak powers in excess of 1 MW. Wealso include preliminary results for a four-mirror cavity that can be tuned in wavelength over a few percent, with future plans to incorporate the full transverse response of the Bragg crystals into GINGER to more accurately model this tunable source.

  19. Breakthrough: X-ray Laser Captures Atoms and Molecules in Action

    ScienceCinema

    Bergmann, Uwe

    2016-07-12

    The Linac Coherent Light Source at SLAC is the world's most powerful X-ray laser. Just two years after turning on in 2009, breakthrough science is emerging from the LCLS at a rapid pace. A recent experiment used the X-rays to create and probe a 2-million-degree piece of matter in a controlled way for the first time-a significant leap toward understanding the extreme conditions found in the hearts of stars and giant planets, and a finding which could further guide research into nuclear fusion, the mechanism that powers the sun. Upcoming experiments will investigate the fundamental, atomic-scale processes behind such phenomena as superconductivity and magnetism, as well as peering into the molecular workings of photosynthesis in plants.

  20. Single-shot measurements of plasmons in compressed diamond with an x-ray laser

    SciTech Connect

    Gamboa, E. J.; Fletcher, L. B.; Lee, H. J.; Galtier, E.; Gauthier, M.; Granados, E.; Hastings, J. B.; Glenzer, S. H.; Zastrau, U.; MacDonald, M. J.; Vorberger, J.; Gericke, D. O.

    2015-05-15

    Strong plasmon resonances characteristics of electron density fluctuations have recently been observed in dynamically compressed diamond for the first time at the Linac Coherent Light Source. These experiments observe the forward scattering spectra from 8 keV x-ray pulses at record peak brightness to probe laser-compressed diamond foils at the Matter in Extreme Conditions instrument. We demonstrate single-shot measurements of the x-ray scattering spectrum, which are sensitive to the temperatures and densities of the compressed samples. The inferred values from the inelastic scattering are compared to simulations, finding good agreement with the temperature and demonstrating the need to include solid state effects in the modeling of the plasmon oscillation.

  1. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    SciTech Connect

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; KAIST, Daejeon; Cupane, Antonio; Cammarata, Marco

    2015-04-02

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations with a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.

  2. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    DOE PAGES

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; ...

    2015-04-02

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations withmore » a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.« less

  3. A Bragg beam splitter for hard x-ray free-electron lasers.

    PubMed

    Osaka, Taito; Yabashi, Makina; Sano, Yasuhisa; Tono, Kensuke; Inubushi, Yuichi; Sato, Takahiro; Matsuyama, Satoshi; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2013-02-11

    We report a Bragg beam splitter developed for utilization of hard x-ray free-electron lasers. The splitter is based on an ultrathin silicon crystal operating in the symmetric Bragg geometry to provide high reflectivity and transmissivity simultaneously. We fabricated frame-shaped Si(511) and (110) crystals with thicknesses below 10 μm by a reactive dry etching method using atmospheric-pressure plasma. The thickness variation over an illuminated area is less than 300 nm peak-to-valley. High crystalline perfection was verified by topographic and diffractometric measurements. The crystal thickness was evaluated from the period of the Pendellösung beats measured with a highly monochromatic and collimated x-ray probe. The crystals provide two replica pulses with uniform wavefront [(<1/50)λ] and low spatial intensity variation (<5%). These Bragg beam splitters will play an important role in innovating XFEL applications.

  4. New Snapshots of Photosynthesis Captured by SLAC’s X-ray Laser

    SciTech Connect

    2016-11-22

    The machinery responsible for photosynthesis – while commonplace and essential to life on Earth – is still not fully understood. One of its molecular mysteries involves how a protein complex, photosystem II, harvests energy from light and uses it to split water into hydrogen and oxygen. The process generates the oxygen in the air that we breathe. New X-ray methods at the Department of Energy’s SLAC National Accelerator Laboratory have captured the first detailed image of this protein complex at room temperature, which allows scientists to closely watch how water is split during photosynthesis at the temperature at which it occurs naturally. The research team took the images using the bright, fast pulses of light at SLAC’s X-ray free-electron laser – the Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility.

  5. Generation of large-bandwidth x-ray free-electron-laser pulses

    NASA Astrophysics Data System (ADS)

    Saa Hernandez, Angela; Prat, Eduard; Bettoni, Simona; Beutner, Bolko; Reiche, Sven

    2016-09-01

    X-ray free-electron lasers (XFELs) are modern research tools in disciplines such as biology, material science, chemistry, and physics. Besides the standard operation that aims at minimizing the bandwidth of the produced XFEL radiation, there is a strong scientific demand to produce large-bandwidth XFEL pulses for several applications such as nanocrystallography, stimulated Raman spectroscopy, and multiwavelength anomalous diffraction. We present a self-consistent method that maximizes the XFEL pulse bandwidth by systematically maximizing the energy chirp of the electron beam at the undulator entrance. This is achieved by optimizing the compression scheme and the electron distribution at the source in an iterative back-and-forward tracking. Start-to-end numerical simulations show that a relative bandwidth of 3.25% full-width can be achieved for the hard x-ray pulses in the SwissFEL case.

  6. Femtosecond powder diffraction with a laser-driven hard X-ray source.

    PubMed

    Zamponi, F; Ansari, Z; Woerner, M; Elsaesser, T

    2010-01-18

    X-ray powder diffraction with a femtosecond time resolution is introduced to map ultrafast structural dynamics of polycrystalline condensed matter. Our pump-probe approach is based on photoexcitation of a powder sample with a femtosecond optical pulse and probing changes of its structure by diffracting a hard X-ray pulse generated in a laser-driven plasma source. We discuss the key aspects of this scheme including an analysis of detection sensitivity and angular resolution. Applying this technique to the prototype molecular material ammonium sulfate, up to 20 powder diffraction rings are recorded simultaneously with a time resolution of 100 fs. We describe how to derive transient charge density maps of the material from the extensive set of diffraction data in a quantitative way.

  7. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    PubMed Central

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; Cupane, Antonio; Cammarata, Marco

    2015-01-01

    Light absorption can trigger biologically relevant protein conformational changes. The light-induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations with a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale. PMID:25832715

  8. New Snapshots of Photosynthesis Captured by SLAC’s X-ray Laser

    ScienceCinema

    None

    2016-11-30

    The machinery responsible for photosynthesis – while commonplace and essential to life on Earth – is still not fully understood. One of its molecular mysteries involves how a protein complex, photosystem II, harvests energy from light and uses it to split water into hydrogen and oxygen. The process generates the oxygen in the air that we breathe. New X-ray methods at the Department of Energy’s SLAC National Accelerator Laboratory have captured the first detailed image of this protein complex at room temperature, which allows scientists to closely watch how water is split during photosynthesis at the temperature at which it occurs naturally. The research team took the images using the bright, fast pulses of light at SLAC’s X-ray free-electron laser – the Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility.

  9. High-Speed X-Ray Analysis of Spatter Formation in Laser Welding of Copper

    NASA Astrophysics Data System (ADS)

    Heider, A.; Sollinger, J.; Abt, F.; Boley, M.; Weber, R.; Graf, T.

    Due to their very good electrical and thermal conductivity copper materials are more and more demanded for industrial applications. For the assembly of copper based parts an effective and reliable welding process is required. At lower feed rates and high penetration depth respectively, welds in copper suffer from many weld defects such as pores and melt ejections. Keyhole instabilities during welding result in most cases in weld defects. In this paper high-speed X-ray imaging of the welding process is used to analyze keyhole instabilities with respect to the formation of weld defects. By means of X-ray observation of the welding process it is shown that bubble formation at the tip of the capillary is one mechanism which causes weld defects such as melt ejections and pores. Furthermore the influence of laser power modulation on bubble formation is discussed.

  10. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    NASA Astrophysics Data System (ADS)

    Blagoev, K.; Grozeva, M.; Malcheva, G.; Neykova, S.

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893-972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts.

  11. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk; Vyšín, Luděk; Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M.; Pina, Ladislav; Davídková, Marie; Juha, Libor

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray "water window" spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280-540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 103 photons/μm2/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms' sensitivity to pulsed radiation in the "water window", where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET - Linear Energy Transfer) and dose-rate effects in radiobiology.

  12. Spatial coherence properties of a compact and ultrafast laser-produced plasma keV x-ray source

    SciTech Connect

    Boschetto, D.; Mourou, G.; Rousse, A.; Mordovanakis, A.; Hou, Bixue; Nees, J.; Kumah, D.; Clarke, R.

    2007-01-01

    The authors use Fresnel diffraction from knife-edges to demonstrate the spatial coherence of a tabletop ultrafast x-ray source produced by laser-plasma interaction. Spatial coherence is achieved in the far field by producing micrometer-scale x-ray spot dimensions. The results show an x-ray source size of 6 {mu}m that leads to a transversal coherence length of 20 {mu}m at a distance of 60 cm from the source. Moreover, they show that the source size is limited by the spatial spread of the absorbed laser energy.

  13. X-ray backlighting characterization experiments performed with laser wavelengths of 1. 06, 0. 53, and 0. 35. mu. m

    SciTech Connect

    Matthews, D.L.; Campbell, E.M.; Ceglio, N.

    1982-01-01

    We report the conversion efficiency, xi/sub x/, for production of x-ray backlighting line sources from 1.4 keV to 8.6 keV as a function of laser wavelength, -pulselength and intensity. For K-shell x-ray line emission we observed only a moderate increase in xi/sub x/ when using a 0.35..mu..m (instead of 1.06 ..mu..m) wavelength laser.

  14. Development of laser cladding system with process monitoring by x-ray imaging

    NASA Astrophysics Data System (ADS)

    Terada, Takaya; Yamada, Tomonori; Nishimura, Akihiko

    2014-02-01

    We have been developing a new laser cladding system to repair the damages of parts in aging plants. It consists of some devices which are a laser torch, composite-type optical fiber, QCW fiber laser and etc. All devices are installed in a mobile rack, so we can carry it to plants, laboratories or anywhere we want to use. We should irradiate the work with the best accuracy of laser beam and filler wire in laser cladding. A composite-type optical fiberscope is useful. This fiberscope was composed of a center fiber for beam delivery surrounded by 20000 fibers for visible image delivery. Thus it always keeps target on center of gun-sight. We succeeded to make a line laser cladding on an inside wall of 1-inch tube by our system. Before this success, we solved two serious problems which are the contamination of optics and the deformation of droplet. Observing laser cladding process by X-ray imaging with Spring-8 synchrotron radiation, we found that the molten pool depth was formed to be under a hundred micrometers for 10 milliseconds. A Quasi-CW fiber laser with 1 kW was employed for a heat source to generate the shallow molten pool. The X-ray shadowgraph clarified that a molten droplet was formed at the edge of a wire up to a millimeter size. It grew up if the wire didn't contact with the tube wall in initial state. Here we succeeded to measure the thermo-electromotive force voltage between a wire and a tube metal to confirm whether both came in contact. We propose to apply the laser cladding technology to the maintenance of aging industrial plants and nuclear facilities.

  15. Self-modulated laser wakefield accelerators as x-ray sources

    NASA Astrophysics Data System (ADS)

    Lemos, N.; Martins, J. L.; Tsung, F. S.; Shaw, J. L.; Marsh, K. A.; Albert, F.; Pollock, B. B.; Joshi, C.

    2016-03-01

    The development of a directional, small-divergence, and short-duration picosecond x-ray probe beam with an energy greater than 50 keV is desirable for high energy density science experiments. We therefore explore through particle-in-cell (PIC) computer simulations the possibility of using x-rays radiated by betatron-like motion of electrons from a self-modulated laser wakefield accelerator as a possible candidate to meet this need. Two OSIRIS 2D PIC simulations with mobile ions are presented, one with a normalized vector potential a 0  =  1.5 and the other with an a 0  =  3. We find that in both cases direct laser acceleration (DLA) is an important additional acceleration mechanism in addition to the longitudinal electric field of the plasma wave. Together these mechanisms produce electrons with a continuous energy spectrum with a maximum energy of 300 MeV for a 0  =  3 case and 180 MeV in the a 0  =  1.5 case. Forward-directed x-ray radiation with a photon energy up to 100 keV was calculated for the a 0  =  3 case and up to 12 keV for the a 0  =  1.5 case. The x-ray spectrum can be fitted with a sum of two synchrotron spectra with critical photon energies of 13 and 45 keV for the a 0 of 3 and critical photon energies of 0.3 and 1.4 keV for a 0 of 1.5 in the plane of polarization of the laser. The full width at half maximum divergence angle of the x-rays was 62  ×  1.9 mrad for a 0  =  3 and 77  ×  3.8 mrad for a 0  =  1.5.

  16. Ordered many-electron motions in atoms and x-ray lasers. [Subpicosecond ultraviolet laser radiation

    SciTech Connect

    Rhodes, C.K.

    1986-01-01

    Subpicosecond ultraviolet laser technology is enabling the exploration of nonlinear atomic interactions with electric field strengths considerably in excess of an atomic unit. As this regime is approached, experiments studying multiple ionization, photoelectron energy spectra, and harmonically produced radiation all exhibit strong nonlinear coupling. Peak total energy transfer rates on the order of approx.2 x 10/sup -4/ W/atom have been observed at an intensity of approx.10/sup 16/ W/cm/sup 2/, and it is expected that energy transfer rates approaching approx.0.1 to 1 W/atom will occur under more extreme conditions for which the ultraviolet electric field E is significantly greater than e/a/sub 0//sup 2/. In this high intensity regime, a wide range of new nonlinear phenomena will be open to study. These will include the possibility of ordered driven motions in atoms, molecules, and plasmas, mechanisms involving collisions, and relativistic processes such as electron-positron pair production. An understanding of these physical interactions may provide a basis for the generation of stimulated emission in the x-ray range. 100 refs., 8 figs.

  17. Quantum effects with an x-ray free-electron laser.

    PubMed

    Roberts, C D; Schmidt, S M; Vinnik, D V

    2002-10-07

    A quantum kinetic equation coupled with Maxwell's equation is used to estimate the laser power required at an x-ray free-electron laser (XFEL) facility to expose intrinsically quantum effects in the process of QED vacuum decay via spontaneous pair production. A 9 -TW-peak XFEL laser with photon energy of 8.3 keV could be sufficient to initiate particle accumulation and the consequent formation of a plasma of spontaneously produced pairs. The evolution of the particle number in the plasma will exhibit non-Markovian aspects of the strong-field pair production process, and the plasma's internal currents will generate an electric field whose interference with that of the laser leads to plasma oscillations.

  18. Generation of strongly coupled Xe cluster nanoplasmas by low intensive soft x-ray laser irradiation

    SciTech Connect

    Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Kawachi, T.

    2012-07-11

    A seeding gas jet including Xe clusters was irradiated with a laser-driven plasma soft x-ray laser pulse ({lambda}=13.9 nm, {approx}7 ps, {<=}5 Multiplication-Sign 10{sup 9} W/cm{sup 2}), where the laser photon energy is high enough to ionize 4d core electrons. In order to clarify how the innershell ionization followed by the Auger electron emission is affected under the intense laser irradiation, the electron energy distribution was measured. Photoelectron spectra showed that the peak position attributed to 4d hole shifted to lower energy and the spectral width was broadened with increasing cluster size. Moreover, the energy distribution exhibited that a strongly coupled cluster nanoplasma with several eV was generated.

  19. X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments

    NASA Astrophysics Data System (ADS)

    Harmand, M.; Ravasio, A.; Mazevet, S.; Bouchet, J.; Denoeud, A.; Dorchies, F.; Feng, Y.; Fourment, C.; Galtier, E.; Gaudin, J.; Guyot, F.; Kodama, R.; Koenig, M.; Lee, H. J.; Miyanishi, K.; Morard, G.; Musella, R.; Nagler, B.; Nakatsutsumi, M.; Ozaki, N.; Recoules, V.; Toleikis, S.; Vinci, T.; Zastrau, U.; Zhu, D.; Benuzzi-Mounaix, A.

    2015-07-01

    Taking advantage of the new opportunities provided by x-ray free electron laser (FEL) sources when coupled to a long laser pulse as available at the Linear Coherent Light Source (LCLS), we have performed x-ray absorption near-edge spectroscopy (XANES) of laser shock compressed iron up to 420 GPa (±50 ) and 10 800 K (±1390 ). Visible diagnostics coupled with hydrodynamic simulations were used to infer the thermodynamical conditions along the Hugoniot and the release adiabat. A modification of the pre-edge feature at 7.12 keV in the XANES spectra is observed above pressures of 260 GPa along the Hugoniot. Comparing with ab initio calculations and with previous laser-heated diamond cell data, we propose that such changes in the XANES pre-edge could be a signature of molten iron. This interpretation then suggests that iron is molten at pressures and temperatures higher than 260 GPa (±29 ) and 5680 K (±700 ) along the principal Fe Hugoniot.

  20. Determination of x-ray free electron laser power using a room-temperature calorimeter

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2016-02-01

    A room-temperature calorimeter was developed for the absolute laser power measurement of x-ray free electron lasers (XFELs) at the SPring-8 Angstrom Compact free electron LAser facility in Japan. In the photon energy range from 4.5 keV to 15 keV, this calorimeter was demonstrated to accurately measure laser powers of XFEL up to 6.9 mW. In addition, an online beam monitor, based on the detection of backscattered x-rays from a thin diamond film, was calibrated with the room-temperature calorimeter. The calibration results were compared with those obtained previously with a cryogenic radiometer (the primary standard detector for synchrotron radiations in Japan). The calibration results obtained with the two detectors agreed well within 1.2%, which is well below their combined relative standard uncertainty. Moreover, the spectral responsivity of the beam monitor was found to show a strong photon energy dependence owing to Debye-Scherrer diffraction patterns from the thin-film.

  1. 32.8-nm X-ray laser produced in a krypton cluster jet

    SciTech Connect

    Ivanova, E P; Vinokhodov, A Yu

    2013-12-31

    We have interpreted the well-known experimental quantum yield data for a 32.8-nm X-ray laser operating at the 3d{sup 9}4d (J = 0) – 3d{sup 9}4p (J = 1) transition of Kr{sup 8+} with the use of gaseous krypton or a krypton cluster jet. Proceeding from our model we propose a novel scheme for the 32.8-nm laser produced in a krypton cluster jet. The quantum yield is shown to saturate for a plasma length of ∼300 μm, a krypton ion density n{sub Kr} ∼ (4 – 9) × 10{sup 19} cm{sup -3}, and an electron temperature Te ∼ 5000 eV. In this case, the energy conversion coefficient amounts to ∼5 × 10{sup -3} of the pump pulse energy. We propose the experimental setup for producing a highefficiency subpicosecond X-ray laser in a krypton cluster jet. (lasers)

  2. Dose properties of x-ray beams produced by laser-wakefield-accelerated electrons.

    PubMed

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D

    2005-01-07

    Given that laser wakefield acceleration (LWFA) has been demonstrated experimentally to accelerate electron beams to energies beyond 25 MeV, it is reasonable to assess the ability of existing LWFA technology to compete with conventional radiofrequency linear accelerators in producing electron and x-ray beams for external-beam radiotherapy. We present calculations of the dose distributions (off-axis dose profiles and central-axis depth dose) and dose rates of x-ray beams that can be produced from electron beams that are generated using state-of-the-art LWFA. Subsets of an LWFA electron energy distribution were propagated through the treatment head elements (presuming an existing design for an x-ray production target and flattening filter) implemented within the EGSnrc Monte Carlo code. Three x-ray energy configurations (6 MV, 10 MV and 18 MV) were studied, and the energy width deltaE of the electron-beam subsets varied from 0.5 MeV to 12.5 MeV. As deltaE increased from 0.5 MeV to 4.5 MeV, we found that the off-axis and central-axis dose profiles for x-rays were minimally affected (to within about 3%), a result slightly different from prior calculations of electron beams broadened by scattering foils. For deltaE of the order of 12 MeV, the effect on the off-axis profile was of the order of 10%, but the central-axis depth dose was affected by less than 2% for depths in excess of about 5 cm beyond d(max). Although increasing deltaE beyond 6.5 MeV increased the dose rate at d(max) by more than 10 times, the absolute dose rates were about 3 orders of magnitude below those observed for LWFA-based electron beams at comparable energies. For a practical LWFA-based x-ray device, the beam current must be increased by about 4-5 orders of magnitude.

  3. Laser heated gas-jet: a soft x-ray source

    SciTech Connect

    Charatis, G.; Slater, D.C.; Mayer, F.J.; Tarvin, J.A.; Busch, G.E.; Sullivan, D.; Musinski, D.; Matthews, D.L.; Koppel, L.

    1981-01-01

    The laser irradiated gas jet developed to study collective scattering processes has proven to be a useful soft x-ray source. It is a reproducible and stationary source with large yield and plasma properties characterized by conventional diagnostic techniques. With a density gradient initially set by orifice size and gas pressure, a short (approx. 100 to 1000 psec) pulse operating at 1.05 ..mu..m (or 0.53 ..mu..m) is focused coaxially upstream into the jet producing a moderate temperature plasma. X-ray pinhole photographs show an axially symmetric radiating plume located at the electron density critical surface. The density gradient is obtained by holographic interferometry using a 0.26 ..mu..m wavelength probe pulse. The scale length of approx. 100 to 200 ..mu..m is measured by 2..omega.. and 3/2..omega.. photography. Electron temperatures are determined by using spatially resolving x-ray crystal spectroscopy to record and analyze line emission from H- and He-like configurations. Electron temperatures from approx. 200 to 700 eV were observed at critical electron densities as high as N/sub cr/ approx. 4 x 10/sup 21/ cm/sup -3/ for gases of hydrogen, nitrogen, neon, argon, and SF/sub 6/.

  4. Structural biology at the European X-ray free-electron laser facility.

    PubMed

    Altarelli, Massimo; Mancuso, Adrian P

    2014-07-17

    The European X-ray free-electron laser (XFEL) facility, under construction in the Hamburg region, will provide high-peak brilliance (greater than 10(33) photons s(-1) mm(-2) mrad(-2) per 0.1% BW), ultrashort pulses (approx. 10 fs) of X-rays, with a high repetition rate (up to 27 000 pulses s(-1)) from 2016 onwards. The main features of this exceptional X-ray source, and the instrumentation developments necessary to exploit them fully, for application to a variety of scientific disciplines, are briefly summarized. In the case of structural biology, that has a central role in the scientific case of this new facility, the instruments and ancillary laboratories that are being planned and built within the baseline programme of the European XFEL and by consortia of users are also discussed. It is expected that the unique features of the source and the advanced features of the instrumentation will allow operation modes with more efficient use of sample materials, faster acquisition times, and conditions better approaching feasibility of single molecule imaging.

  5. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    DOE PAGES

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; ...

    2016-04-12

    Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less

  6. Extreme ultraviolet resonant inelastic X-ray scattering (RIXS) at a seeded free-electron laser

    PubMed Central

    Dell’Angela, M.; Hieke, F.; Malvestuto, M.; Sturari, L.; Bajt, S.; Kozhevnikov, I. V.; Ratanapreechachai, J.; Caretta, A.; Casarin, B.; Glerean, F.; Kalashnikova, A. M.; Pisarev, R. V.; Chuang, Y.-D.; Manzoni, G.; Cilento, F.; Mincigrucci, R.; Simoncig, A.; Principi, E.; Masciovecchio, C.; Raimondi, L.; Mahne, N.; Svetina, C.; Zangrando, M.; Passuello, R.; Gaio, G.; Prica, M.; Scarcia, M.; Kourousias, G.; Borghes, R.; Giannessi, L.; Wurth, W.; Parmigiani, F.

    2016-01-01

    In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF3 single crystals at the cobalt M2,3-edge at FERMI FEL (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup. PMID:27941842

  7. Dynamic Ultra-Bright X-ray Laser Scattering from Isochorically Heated Cryogenic Hydrogen

    NASA Astrophysics Data System (ADS)

    Fletcher, Luke; High Energy Density Collaboration

    2015-11-01

    Recent x-ray scattering experiments performed at the MEC end-station of the LCLS, have demonstrated novel plasma measurements of the electron temperature, pressure, and density by simultaneous high-resolution angularly and spectrally resolved x-ray scattering from shock-compressed materials in the warm dense regime. Such measurements provide the structural properties relating the microscopic quantities in terms of thermodynamic properties using first-principles calculations. These studies have led us on a path where we create conditions with increasing temperatures and pressures to explore the high-energy density phase space. Specifically, we have begun experiments on hot and dense hydrogen plasmas producing energetic proton beams that find applications in fusion research and astrophysical phenomena. For our experiments with the 25 TW short pulse laser we apply repetition rates and pulse widths with a good match to the LCLS x-ray beam capabilities allowing pump-probe experiments with ultrahigh temporal resolution with very high data throughput with shot rates of up to 5 Hz. In this talk we will discuss our recent measurements that have resolved the ultrafast structural response of hydrogen to intense heating.

  8. Femtosecond Diffractive Imaging with a Soft-X-ray Free-Electron Laser

    SciTech Connect

    Chapman, H N; Barty, A; Bogan, M; Boutet, S; Frank, M; Hau-Riege, S P; Marchesini, S; Woods, B; Bajt, S; Benner, W H; London, R; Ploenjes-Palm, E; Kuhlmann, M; Treusch, R; Dusterer, S; Tschentscher, T; Schneider, J; Spiller, E; Moller, T; Bostedt, C; Hoener, M; Shapiro, D; Hodgson, K O; der Spoel, D v; Burmeister, F; Bergh, M; Caleman, C; Huldt, G; Seibert, M; Maia, F; Lee, R; Szoke, A; Timneanu, N; Hajdu, J

    2006-03-13

    Theory predicts that with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus, or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft X-ray free-electron laser. An intense 25 fs, 4 x 10{sup 13} W/cm{sup 2} pulse, containing 10{sup 12} photons at 32 nm wavelength, produced a coherent diffraction pattern from a nano-structured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling, shows no measurable damage, and extends to diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one.

  9. Femtosecond Diffractive Imaging with a Soft-X-Ray Free-Electron Laser

    SciTech Connect

    Chapman, Henry N.; Barty, Anton: AUTHOR = Bogan, Michael J.; Boutet, Sebastian; Frank, Matthias; Hau-Riege, Stefan P.; Marchesini, Stefano; Woods, Bruce W.; Bajt, Sasa; Benner, W.Henry; London, Richard A.; Plonjes, Elke; Kuhlmann, Marion; Treusch, Rolf; Dusterer, Stefan; Tschentscher, Thomas; Schneider, Jochen R.; Spiller, Eberhard; Moller, Thomas; Bostedt, Christoph; Hoener, Matthias; Shapiro, David A.; /UC, Davis /SLAC /Uppsala U. /LLNL, Livermore /Uppsala U. /Uppsala U. /SLAC /Uppsala U.

    2010-10-07

    Theory predicts that with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus, or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft X-ray free-electron laser. An intense 25 fs, 4 x 10{sup 13} W/cm{sup 2} pulse, containing 10{sup 12} photons at 32 nm wavelength, produced a coherent diffraction pattern from a nano-structured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling, shows no measurable damage, and extends to diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one.

  10. Adaptive engineering of coherent soft-x-rays by temporal and spatial laser-pulse shaping

    NASA Astrophysics Data System (ADS)

    Pfeifer, Thomas

    2005-03-01

    We demonstrate qualitative amplitude shaping of the coherent soft x-ray spectrum produced in the process of high-harmonic generation. This is accomplished by applying adaptive femtosecond pulse shaping methods. We performed the basic operations of complete spectral control by 1) selective generation of extended parts of the high-harmonic spectra, 2) tunable single harmonic generation and 3) creation of spectral holes (suppression of harmonics) in the plateau region of the spectrum. Our ability to qualitatively ``engineer'' the coherent spectral properties by application of temporal and spatial laser-pulse-shaping methods has immediate consequences for the developing field of attosecond x-ray science. Control over the spectrum is directly related to the control over the attosecond pulse shape as we will show by comparing experiment with simulation. In addition, even more important is the prospect to extend the field of coherent control into the soft x-ray range. In the future, the proposed technique will allow us to directly manipulate electronic motion on its natural attosecond time scale.

  11. X-ray free-electron lasers: from dreams to reality

    NASA Astrophysics Data System (ADS)

    Pellegrini, C.

    2016-12-01

    The brightness of x-ray sources has been increased one to ten billion times by x-ray free-electron lasers (XFELs) that generate high intensity coherent photon pulses at wavelengths from nanometers to less than one angstrom and a duration of a few to 100 femtoseconds. For the first time XFELs allow for experimental exploration of the structure and dynamics of atomic and molecular systems at the angstrom-femtosecond space and time scale, creating new opportunities for scientific research in physics, chemistry, biology, material science and high energy density physics. This paper reviews the history of this development, concentrating on the Linac Coherent Light Source (LCLS), the world’s first hard x-ray XFEL. It also presents the physical principles on which XFELs are based, their present status and future developments, together with some recent experimental results in physics, chemistry and biology. LCLS success has spurred the worldwide construction of more XFELs; SACLA in Japan, XFEL and FLASH in Germany, Swiss FEL, Korean XFEL, Fermi in Italy. The characteristics of these other sources are also discussed.

  12. Extreme ultraviolet resonant inelastic X-ray scattering (RIXS) at a seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Dell’Angela, M.; Hieke, F.; Malvestuto, M.; Sturari, L.; Bajt, S.; Kozhevnikov, I. V.; Ratanapreechachai, J.; Caretta, A.; Casarin, B.; Glerean, F.; Kalashnikova, A. M.; Pisarev, R. V.; Chuang, Y.-D.; Manzoni, G.; Cilento, F.; Mincigrucci, R.; Simoncig, A.; Principi, E.; Masciovecchio, C.; Raimondi, L.; Mahne, N.; Svetina, C.; Zangrando, M.; Passuello, R.; Gaio, G.; Prica, M.; Scarcia, M.; Kourousias, G.; Borghes, R.; Giannessi, L.; Wurth, W.; Parmigiani, F.

    2016-12-01

    In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF3 single crystals at the cobalt M2,3-edge at FERMI FEL (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup.

  13. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    DOE PAGES

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; ...

    2015-06-27

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here in this study, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallizationmore » conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.« less

  14. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    SciTech Connect

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jorg; Schertler, Gebhard; Panneels, Valerie

    2015-06-27

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here in this study, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  15. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    EPA Science Inventory

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  16. Development of a Laser-Produced Plasma X-ray source for Phase-Contrast Radiography of DT Ice layers

    SciTech Connect

    Izumi, N; Dewald, E; Kozioziemski, B; Landen, O L; Koch, J A

    2008-07-21

    Refraction enhanced x-ray phase contrast imaging is crucial for characterization of deuterium-tritium (DT) ice layer roughness in optically opaque inertial confinement fusion capsules. To observe the time development of DT ice roughness over {approx} second timescales, we need a bright x-ray source that can produce an image faster than the evolution of the ice surface roughness. A laser produced plasma x-ray source is one of the candidates that can meet this requirement. We performed experiments at the Janus laser facility at Lawrence Livermore National Laboratory and assessed the characteristics of the laser produced plasma x-ray source as a potential backlight for in situ target characterization.

  17. In-situ x-ray scattering investigation of strain in thin-film morphological evolution of homoepitaxial Ag(001)

    NASA Astrophysics Data System (ADS)

    Hayden, S. T.; Kim, C.; Conrad, E. H.; Gramlich, M. W.; Miceli, P. F.

    2010-03-01

    Because it escapes detection in most experimental probes of surfaces, the role of strain during film growth has not been widely investigated. However, large strain fields arise from vacancy nano-clusters [C. Kim et al., APL 91, 093131 (2007)] that can be incorporated during film growth at lower temperatures. It has also been suggested that extreme surface morphologies, resulting from a deposition flux at grazing angles, might lead to significant strain [Y. Shim et. al., PRL 101, 11601 (2008)]. Because of its simultaneous sensitivity to both the surface and the subsurface, x-ray scattering is a particularly valuable technique for exploring the role of strain in epitaxial crystal growth. This talk will discuss our recent in-situ x-ray diffuse scattering and reflectivity measurements, performed at the Advanced Photon Source, which investigate the low temperature homoepitaxial growth of Ag(001).

  18. Electrochemically adsorbed Pb on Ag (111) studied with grazing- incidence x-ray scattering

    SciTech Connect

    Kortright, J.B.; Ross, P.N.; Melroy, O.R.; Toney, M.F.; Borges, G.L.; Samant, M.G.

    1989-04-01

    Grazing-incidence x-ray scattering studies of the evolution of electrochemically deposited layers of lead on silver (111) as a function of applied electrochemical potential are presented. Measurements were made with the adsorbed layers in contact with solution in a specially designed sample cell. The observed lead structures are a function of the applied potential and range from an incommensurate monolayer, resulting from underpotential deposition, to randomly oriented polycrystalline bulk lead, resulting from lower deposition potentials. These early experiments demonstrate the ability of in situ x-ray diffraction measurements to determine structures associated with electrochemical deposition. 6 refs., 4 figs.

  19. Demonstration experiment of a laser synchrotron source for tunable, monochromatic x-rays at 500 eV

    SciTech Connect

    Ting, A.; Fischer, R.; Fisher, A.

    1995-12-31

    A Laser Synchrotron Source (LSS) was proposed to generate short-pulsed, tunable x-rays by Thomson scattering of laser photons from a relativistic electron beam. A proof-of-principle experiment was performed to generate x-ray photons of 20 eV. A demonstration experiment is being planned and constructed to generate x-ray photons in the range of {approximately}500 eV. Laser photons of {lambda}=1.06 {mu}m are Thomson backscattered by a 4.5 MeV electron beam which is produced by an S-band RF electron gun. The laser photons are derived from either (i) a 15 Joules, 3 nsec Nd:glass laser, (ii) the uncompressed nsec: pulse of the NRL table-top terawatt (T{sup 3}) laser, or (iii) the compressed sub-picosec pulse of the T{sup 3} laser. The RF electron gun is being constructed with initial operation using a thermionic cathode. It will be upgraded to a photocathode to produce high quality electron beams with high current and low emittance. The x-ray pulse structure consists of {approximately}10 psec within an envelope of a macropulse whose length depends on the laser used. The estimated x-ray photon flux is {approximately}10{sup 18} photons/sec, and the number of photons per macropulse is {approximately}10{sup 8}. Design parameters and progress of the experiment will be presented.

  20. Development of time resolved x-ray spectroscopy in high intensity laser-plasma interactions

    SciTech Connect

    Notley, M. M.; Weber, R. L.; Fell, B.; Jeffries, J.; Freeman, R. R.; Mackinnon, A. J.; Dickson, R.; Hey, D.; Khattak, F.; Saiz, E. Garcia; Gregori, G.

    2006-10-15

    This article discusses the design of a novel time resolved von Hamos Bragg spectrometer to provide spectra in the region around the titanium K-{alpha} and He-{alpha} lines. The instrument consists of a highly oriented pyrolitic graphite mosaic crystal coupled to a picosecond x-ray streak camera. Measurements of the time dependent behavior from Ti foils illuminated with intense laser pulses can be used to improve the understanding of recombination dynamics, electron transport, and phase transitions in strongly coupled dense plasma. This is important for the modeling of the compression phase in inertial confinement fusion research and the study of astrophysical environments.

  1. A minimal view of single-particle imaging with X-ray lasers

    PubMed Central

    Loh, N. Duane

    2014-01-01

    The ability to serially interrogate single biomolecules with femtosecond X-ray pulses from free-electron lasers has ushered in the possibility of determining the three-dimensional structure of biomolecules without crystallization. However, the complexity of imaging a sample's structure from very many of its noisy and incomplete diffraction data can be daunting. In this review, we introduce a simple analogue of this imaging workflow, use it to describe a structure reconstruction algorithm based on the expectation maximization principle, and consider the effects of extraneous noise. Such a minimal model can aid experiment and algorithm design in future studies. PMID:24914155

  2. Hydrodynamics of Exploding Foil X-Ray Lasers with Time-Dependent Ionization Effect

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Su, Dandan; Li, Yingjun

    2016-12-01

    A simple modified model is presented based on R. A. London's self-similarity model on time-independent ionization hydrodynamics of exploding foil X-ray lasers. In our model, the time-dependent ionization effect is under consideration and the average ion charge depends on the temperature. Then we obtain the new scaling laws for temperature, scale length and electron density, which have better agreement with experimental results. supported by National Natural Science Foundation of China (Nos. 11574390, 11374360, 41472130) and the National Basic Research Program of China (No. 2013CBA01504)

  3. Optimal mapping of x-ray laser diffraction patterns into three dimensions using routing algorithms

    NASA Astrophysics Data System (ADS)

    Kassemeyer, Stephan; Jafarpour, Aliakbar; Lomb, Lukas; Steinbrener, Jan; Martin, Andrew V.; Schlichting, Ilme

    2013-10-01

    Coherent diffractive imaging with x-ray free-electron lasers (XFEL) promises high-resolution structure determination of noncrystalline objects. Randomly oriented particles are exposed to XFEL pulses for acquisition of two-dimensional (2D) diffraction snapshots. The knowledge of their orientations enables 3D imaging by multiview reconstruction, combining 2D diffraction snapshots in different orientations. Here we introduce a globally optimal algorithm that can infer these orientations. We apply it to experimental XFEL data of nanoparticles and so determine their 3D electron density.

  4. Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser

    PubMed Central

    Lomb, Lukas; Barends, Thomas R. M.; Kassemeyer, Stephan; Aquila, Andrew; Epp, Sascha W.; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Rudek, Benedikt; Rolles, Daniel; Rudenko, Artem; Shoeman, Robert L.; Andreasson, Jakob; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J.; Bostedt, Christoph; Bozek, John D.; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; DePonte, Daniel P.; Doak, R. Bruce; Ekeberg, Tomas; Fleckenstein, Holger; Fromme, Petra; Gebhardt, Maike; Graafsma, Heinz; Gumprecht, Lars; Hampton, Christina Y.; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M.; Hunter, Mark S.; Kabsch, Wolfgang; Kimmel, Nils; Kirian, Richard A.; Liang, Mengning; Maia, Filipe R. N. C.; Meinhart, Anton; Marchesini, Stefano; Martin, Andrew V.; Nass, Karol; Reich, Christian; Schulz, Joachim; Seibert, M. Marvin; Sierra, Raymond; Soltau, Heike; Spence, John C. H.; Steinbrener, Jan; Stellato, Francesco; Stern, Stephan; Timneanu, Nicusor; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; White, Thomas A.; Wunderer, Cornelia; Chapman, Henry N.; Ullrich, Joachim; Strüder, Lothar; Schlichting, Ilme

    2013-01-01

    X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects. PMID:24089594

  5. A laser-plasma-produced soft X-ray laser at 89 eV generates DNA double-strand breaks in human cancer cells.

    PubMed

    Sato, Katsutoshi; Nishikino, Masaharu; Kawachi, Tetsuya; Shimokawa, Takashi; Imai, Takashi; Teshima, Teruki; Nishimura, Hiroaki; Kando, Masaki

    2015-07-01

    While it has been expected that X-ray laser will be widely applied to biomedical studies, this has not been achieved to date and its biological effects such as DNA damage have not been evaluated. As a first step for its biological application, we developed a culture cell irradiation system, particularly designed for a plasma-driven soft X-ray laser pulse, to investigate whether the soft X-ray laser is able to induce DNA double strand breaks (DSBs) in living cells or not. The human adenocarcimona cell line A549 was irradiated with the soft X-ray laser at a photon energy of 89 eV and the repair focus formation of the DSBs was assessed by immunofluorescence staining with antiphosphorylated DNA-PKcs (p-DNA-PKcs), ATM (p-ATM) and γ-H2AX antibody. The p-DNA-PKcs, ATM, and γ-H2AX foci were clearly identified after soft X-ray laser irradiation. Furthermore, the increase in the X-ray laser shot number, even from a single shot, results in the increase in p-DNA-PKcs foci. These results are the first evidence that the 89 eV soft X-ray laser is able to induce DSB in living cells. Our study demonstrated that this irradiation system is a useful tool for investigating the radiobiological effect of soft X-ray laser.

  6. Medical imaging using a laser-wakefield driven x-ray source

    NASA Astrophysics Data System (ADS)

    Cole, Jason; Wood, Jonathan; Lopes, Nelson; Poder, Kristjan; Kamperidis, Christos; Alatabi, Saleh; Bryant, Jonathan; Kneip, Stefan; Mecseki, Katalin; Norris, Dominic; Teboul, Lydia; Westerburg, Henrik; Abel, Richard; Jin, Andi; Symes, Dan; Mangles, Stuart; Najmudin, Zulfikar

    2016-10-01

    Laser-wakefield accelerators driven by high-intensity laser pulses are a proven centimetre-scale source of GeV electron beams. One of the proposed uses for these accelerators is the driving of compact hard x-ray synchrotron light sources. Such sources have been shown to be bright, have small source size and high photon energy, and are therefore interesting for imaging applications. By doubling the focal length at the Astra-Gemini laser facility of the Rutherford Appleton Laboratory, UK, we have significantly improved the average betatron x-ray flux compared to previous experiments. This fact, coupled to the stability of the radiation source, facilitated the acquisition of full 3D tomograms of hard bone tissue and soft mouse neonates, the latter requiring the recording of over 500 successive radiographs. Such multimodal performance is unprecedented in the betatron field and indicates the usefulness of these sources in clinical imaging applications, scalable to very high photon flux without compromising source size or photon energy.

  7. Evolution of Elastic X-ray Scattering in Laser-Shocked Warm Dense Li

    SciTech Connect

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C; Brown, C; Constantin, C; Glenzer, S H; Khattak, F; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-06-02

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4 ns long laser pulses. Separate 1 ns long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-{alpha} photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120{sup o} using a HOPG crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state {bar Z}, and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  8. EUV microscopy using a lab-scale x-ray laser source

    NASA Astrophysics Data System (ADS)

    Bleiner, Davide; Staub, Felix; Balmer, Juerg E.

    2011-09-01

    High brightness extreme ultraviolet (EUV) light sources for laboratory operation are needed in nano-fabrication and actinic ("at-wavelength") mask inspection. Mask inspection in next generation lithography is crucial for high volume manufacturing. Plasma-based EUV sources have the required compactness. However, their incoherent emission lacks the brightness for fast and high contrast imaging. The X-ray laser is instead characterized by a remarkable brightness in a compact footprint facility. We evaluated a simple two-mirror optical setup for EUV microscopy illuminated with the BeAGLE X-ray laser system at the University of Berne. Single-shot acquisitions were sufficient to obtain high-contrast images of a Siemens star sample at diffraction-limit. Single-shot operation makes the overall acquisition speed limited by the laser repetition rate only. A reference calculation shows how-fast could be actinic inspection. The contrast was enhanced one order of magnitude by means of image processing. For a modest magnification (12x) no significant third-order aberrations were observed, even when tilting the spherical mirror-pair. For high magnification a Schwarzschild design is considered. The latter compensates astigmatism and coma with a mirror-pair per each element (condenser/magnifier), but introduces twice as many reflections as in the evaluated two-concave setup. Hence a compromise between aberration correction and enhancement of illumination must be found case by case.

  9. Study of x-ray radiation from a laser wakefield accelerator

    SciTech Connect

    Leurent, V.; Pollock, B. B.; Michel, P.; Divol, L.; Doeppner, T.; Glenzer, S. H.; Palastro, J. P.; Froula, D. H.; Clayton, C. E.; Joshi, C.; Marsh, K. A.; Pak, A.; Ralph, J.; Wang, T. L.; Tynan, G.

    2009-01-22

    A Laser Wakefield Accelerator (LWFA) is under development at Lawrence Livermore National Laboratory (LLNL) to produce electron bunches with GeV class energy and energy spreads of a few-percent. The interaction of a high power (200 TW), short pulse (50 fs) laser with neutral He gas can generate quasi-monoenergetic electron beams at energies up to 1 GeV [1]. The laser pulse can be self-guided over 1 cm overcoming the limitation of vacuum diffraction. X-ray betatron radiation is emitted while the accelerated electrons undergo oscillations in the wakefield electrostatic field. Here we present electron spectra measurements with a two screen spectrometer allowing to measure both the electron energy and the transverse deflection at the plasma exit. We have measured monoenergetic electron beams above 300 MeV. Furthermore a forward directed x-ray beam is observed. Preliminary measurements of the spectrum are in reasonable agreement with the calculated betatron spectrum in the synchrotron asymptotic limit using the measured electron beam parameters.

  10. Characterization of intense laser-produced fast electrons using hard x-rays via bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Sawada, H.; Sentoku, Y.; Bass, A.; Griffin, B.; Pandit, R.; Beg, F.; Chen, H.; McLean, H.; Link, A. J.; Patel, P. K.; Ping, Y.

    2015-11-01

    Energy distribution of high-power, short-pulse laser produced fast electrons was experimentally and numerically studied using high-energy bremsstrahlung x-rays. The hard x-ray photons and escaping electrons from various metal foils, irradiated by the 50 TW Leopard laser at Nevada Terawatt Facility, were recorded with a differential filter stack spectrometer that is sensitive to photons produced by mainly 0.5-2 MeV electrons and an electron spectrometer measuring >2 MeV electrons. The experimental bremsstrahlung and the slope of the measured escaped electrons were compared with an analytic calculation using an input electron spectrum estimated with the ponderomotive scaling. The result shows that the electron spectrum entering a Cu foil could be continuous single slope with the slope temperature of ˜1.5 MeV in the detector range. The experiment and analytic calculation were then compared with a 2D particle-in-cell code, PICLS, including a newly developed radiation transport module. The simulation shows that a two-temperature electron distribution is generated at the laser interaction region, but only the hot component of the fast electrons flow into the target during the interaction because the low energy electron component is trapped by self-generated magnetic field in the preformed plasma. A significant amount of the photons less than 100 keV observed in the experiment could be attributed to the low energy electrons entering the foil a few picoseconds later after the gating field disappears.

  11. A New Gated X-Ray Detector for the Orion Laser Facility

    SciTech Connect

    Clark, David D.; Aragonez, Robert J.; Archuleta, Thomas N.; Fatherley, Valerie E.; Hsu, Albert H.; Jorgenson, H. J.; Mares, Danielle; Oertel, John A.; Oades, Kevin; Kemshall, Paul; Thomas, Philip; Young, Trevor; Pederson, Neal

    2012-08-08

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from the what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  12. A new gated x-ray detector for the Orion laser facility

    NASA Astrophysics Data System (ADS)

    Clark, David D.; Aragonez, Robert; Archuleta, Thomas; Fatherley, Valerie; Hsu, Albert; Jorgenson, Justin; Mares, Danielle; Oertel, John; Oades, Kevin; Kemshall, Paul; Thomas, Phillip; Young, Trevor; Pederson, Neal

    2012-10-01

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  13. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Sundqvist, Chantal

    2016-07-01

    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article, we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at an x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experiment.

  14. Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays

    SciTech Connect

    Leemans, W.P.; Esarey, E.; van Tilborg, J.; Michel, P.A.; Schroeder, C.B.; Toth, Cs.; Geddes, C.G.R.; Shadwick, B.A.

    2004-10-01

    Electron beam based radiation sources provide electromagnetic radiation for countless applications. The properties of the radiation are primarily determined by the properties of the electron beam. Compact laser driven accelerators are being developed that can provide ultra-short electron bunches (femtosecond duration) with relativistic energies reaching towards a GeV. The electron bunches are produced when an intense laser interacts with a dense plasma and excites a large amplitude plasma density modulation (wakefield) that can trap background electrons and accelerate them to high energies. The short pulse nature of the accelerated bunches and high particle energy offer the possibility of generating radiation from one compact source that ranges from coherent terahertz to gamma rays. The intrinsic synchronization to a laser pulse and unique character of the radiation offers a wide range of possibilities for scientific applications. Two particular radiation source regimes are discussed: Coherent terahertz emission and x-ray emission based on betatron oscillations and Thomson scattering.

  15. Enhanced x-ray emissions from Au-Gd mixture targets ablated by a high-power nanosecond laser

    SciTech Connect

    Dong, Yunsong; Shang, Wanli; Yang, Jiamin Zhang, Lu; Zhang, Wenhai; Li, Zhichao; Guo, Liang; Zhan, Xiayu; Du, Huabing; Deng, Bo; Pu, Yikang

    2014-01-28

    As an important x-ray source, enhancement of x-ray emissions from laser-produced plasmas is imperative for various applications. High-Z Au-Gd mixture targets are proposed to enhance the laser to x-ray conversion efficiency compared to pure Au target. In the experiments, a 1 ns frequency-tripled (351 nm wavelength) laser light was used to obtain an intensity of 3×10{sup 14} W/cm{sup 2} on the targets. The x-ray spectra, total absolute x-ray emissions of all space, M-band fraction and backscattering from pure Au and Au-Gd mixture have been measured, respectively. It is shown that the absolute laser to x-ray conversion efficiency for the Au-Gd mixture containing 60% gold by atom is 47.7%, which has a 15% enhancement compared with that of the pure Au target. The experimental results are consistent with the radiation hydrodynamic simulations.

  16. X-ray calibration of the time resolved crystal spectrometer SXDHR-1t of the Ligne d'Integration Laser

    SciTech Connect

    Reverdin, C.; Morlens, A.S.; Angelier, B.; Bourgade, J.L.; Boutin, J.Y.; Briat, M.; Charles, G.; Duval, A.; Estadieu, A.; Cholet, C.; Gontier, D.; Husson, D.; Jacquet, H.P.; LeBreton, J. P.; Lidove, G.; Marchet, B.; Marmoret, R.; Maroni, R.; Millier, P.; Raimbourg, J.

    2004-10-01

    The time resolved crystal x-ray spectrometers called SXDHR-lt of the Ligne d'Integration laser is presented. It is necessary to calibrate all x-ray sensitive elements of diagnostics before using them in laser matter interaction experiments. In particular, crystals need to be calibrated. Measurements of the integrated coefficient of reflection of a beryl cylindrical crystal used in this spectrometer were performed with synchrotron radiation and with an x-ray tube and are presented. A test of the homogeneity of the reflection of the crystal was also performed. Aging or accidental pollution of x-ray diagnostics installed around target chambers is always possible. This happened to the DMX broadband spectrometer installed on the OMEGA Laser Facility at the University of Rochester (Laboratory for Laser Energetics) and this changed the spectral sensitivity of its channels. The evolution over time of the x-ray sensitivity needs to be critically assessed and if necessary x-ray sensitive elements will need to be recalibrated.

  17. Effect of plasma density scale length on the properties of bremsstrahlung x-ray sources created by picosecond laser pulses

    SciTech Connect

    Courtois, C.; Compant La Fontaine, A.; Landoas, O.; Lidove, G.; Meot, V.; Morel, P.; Nuter, R.; Lefebvre, E.; Boscheron, A.; Grenier, J.; Aleonard, M. M.; Gerbaux, M.; Gobet, F.; Hannachi, F.; Malka, G.; Scheurer, J. N.; Tarisien, M.

    2009-01-15

    Results of an experimental study of multi-MeV bremsstrahlung x-ray sources created by picosecond laser pulses are presented. The x-ray source is created by focusing the short pulse in an expanding plasma obtained by heating a solid target with a time-delayed nanosecond laser beam. The high-energy part of the x-ray spectrum and emission lobe are inferred from photonuclear activation techniques. The x-ray dose is measured with silicon diodes. Two-dimensional images of the source are reconstructed from a penumbral imaging technique. These results indicate the creation of a relatively small source, below 200 {mu}m diameter, delivering doses up to 12 mrad in air at 1 m with x-ray temperature up to 2.8 MeV. The diagnostics used give access to a whole set of coherent experimental results on the x-ray source properties which are compared to extensive numerical simulations. X-ray intensity and temperature are found to increase with the size of the preplasma.

  18. Effect of plasma density scale length on the properties of bremsstrahlung x-ray sources created by picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Courtois, C.; Compant La Fontaine, A.; Landoas, O.; Lidove, G.; Méot, V.; Morel, P.; Nuter, R.; Lefebvre, E.; Boscheron, A.; Grenier, J.; Aléonard, M. M.; Gerbaux, M.; Gobet, F.; Hannachi, F.; Malka, G.; Scheurer, J. N.; Tarisien, M.

    2009-01-01

    Results of an experimental study of multi-MeV bremsstrahlung x-ray sources created by picosecond laser pulses are presented. The x-ray source is created by focusing the short pulse in an expanding plasma obtained by heating a solid target with a time-delayed nanosecond laser beam. The high-energy part of the x-ray spectrum and emission lobe are inferred from photonuclear activation techniques. The x-ray dose is measured with silicon diodes. Two-dimensional images of the source are reconstructed from a penumbral imaging technique. These results indicate the creation of a relatively small source, below 200μm diameter, delivering doses up to 12mrad in air at 1m with x-ray temperature up to 2.8MeV. The diagnostics used give access to a whole set of coherent experimental results on the x-ray source properties which are compared to extensive numerical simulations. X-ray intensity and temperature are found to increase with the size of the preplasma.

  19. 20-100 keV K(alpha) X-Ray Source Generation by Short Pulse High Intensity Lasers

    SciTech Connect

    Park, H-S; Koch, J A; Landen, O L; Phillips, T W; Goldsack, T

    2003-08-22

    We are studying the feasibility of utilizing K{alpha} x-ray sources in the range of 20 to 100 keV as a backlighters for imaging various stages of implosions and high areal density planar samples driven by the NIF laser facility. The hard x-ray K{alpha} sources are created by relativistic electron plasma interactions in the target material after a radiation by short pulse high intensity lasers. In order to understand K{alpha} source characteristics such as production efficiency and brightness as a function of laser parameters, we have performed experiments using the 10 J, 100 fs JanUSP laser. We utilized single-photon counting spectroscopy and x-ray imaging diagnostics to characterize the K{alpha} source. We find that the K{alpha} conversion efficiency from the laser energy is {approx} 3 x 10{sup -4}.

  20. Single-molecule imaging with longer X-ray laser pulses

    PubMed Central

    Martin, Andrew V.; Corso, Justine K.; Caleman, Carl; Timneanu, Nicusor; Quiney, Harry M.

    2015-01-01

    During the last five years, serial femtosecond crystallography using X-ray laser pulses has been developed into a powerful technique for determining the atomic structures of protein molecules from micrometre- and sub-micrometre-sized crystals. One of the key reasons for this success is the ‘self-gating’ pulse effect, whereby the X-ray laser pulses do not need to outrun all radiation damage processes. Instead, X-ray-induced damage terminates the Bragg diffraction prior to the pulse completing its passage through the sample, as if the Bragg diffraction were generated by a shorter pulse of equal intensity. As a result, serial femtosecond crystallography does not need to be performed with pulses as short as 5–10 fs, but can succeed for pulses 50–100 fs in duration. It is shown here that a similar gating effect applies to single-molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of the average structure separately to the diffraction from statistical fluctuations of the structure due to damage (‘damage noise’). The results suggest that sub-nanometre single-molecule imaging with 30–50 fs pulses, like those produced at currently operating facilities, should not yet be ruled out. The theory presented opens up new experimental avenues to measure the impact of damage on single-particle diffraction, which is needed to test damage models and to identify optimal imaging conditions. PMID:26594374

  1. Deducing the electron-beam diameter in a laser-plasma accelerator using x-ray betatron radiation.

    PubMed

    Schnell, Michael; Sävert, Alexander; Landgraf, Björn; Reuter, Maria; Nicolai, Maria; Jäckel, Oliver; Peth, Christian; Thiele, Tobias; Jansen, Oliver; Pukhov, Alexander; Willi, Oswald; Kaluza, Malte C; Spielmann, Christian

    2012-02-17

    We investigate the properties of a laser-plasma electron accelerator as a bright source of keV x-ray radiation. During the interaction, the electrons undergo betatron oscillations and from the carefully measured x-ray spectrum the oscillation amplitude of the electrons can be deduced which decreases with increasing electron energies. From the oscillation amplitude and the independently measured x-ray source size of (1.8±0.3) μm we are able to estimate the electron bunch diameter to be (1.6±0.3) μm.

  2. Pulsed x-ray imaging of high-density objects using a ten picosecond high-intensity laser driver

    NASA Astrophysics Data System (ADS)

    Rusby, D. R.; Brenner, C. M.; Armstrong, C.; Wilson, L. A.; Clarke, R.; Alejo, A.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Mirfayzi, S. R.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-10-01

    Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of 10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.

  3. Room-temperature calorimeter for x-ray free-electron lasers

    SciTech Connect

    Tanaka, T. Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2015-09-15

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (∼4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%)

  4. Ultrabright X-ray laser scattering for dynamic warm dense matter physics

    NASA Astrophysics Data System (ADS)

    Fletcher, L. B.; Lee, H. J.; Döppner, T.; Galtier, E.; Nagler, B.; Heimann, P.; Fortmann, C.; Lepape, S.; Ma, T.; Millot, M.; Pak, A.; Turnbull, D.; Chapman, D. A.; Gericke, D. O.; Vorberger, J.; White, T.; Gregori, G.; Wei, M.; Barbrel, B.; Falcone, R. W.; Kao, C.-C.; Nuhn, H.; Welch, J.; Zastrau, U.; Neumayer, P.; Hastings, J. B.; Glenzer, S. H.

    2015-04-01

    In megabar shock waves, materials compress and undergo a phase transition to a dense charged-particle system that is dominated by strong correlations and quantum effects. This complex state, known as warm dense matter, exists in planetary interiors and many laboratory experiments (for example, during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions). Here, we apply record peak brightness X-rays at the Linac Coherent Light Source to resolve ionic interactions at atomic (ångström) scale lengths and to determine their physical properties. Our in situ measurements characterize the compressed lattice and resolve the transition to warm dense matter, demonstrating that short-range repulsion between ions must be accounted for to obtain accurate structure factor and equation of state data. In addition, the unique properties of the X-ray laser provide plasmon spectra that yield the temperature and density with unprecedented precision at micrometre-scale resolution in dynamic compression experiments.

  5. Laser/x-ray coupling in the first NIF beryllium implosions

    NASA Astrophysics Data System (ADS)

    Wilson, D. C.; Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Kyrala, G. A.; Perry, T. S.; Batha, S.; Callahan, D. A.; Dewald, E. L.; Jones, O.; Hinkel, D. E.; Hurricane, O. A.; Izumi, N.; Macphee, A. G.; Milovich, J. L.; Ralph, J. E.; Rygg, J. R.; Schneider, M. B.; Strozzi, D. J.; Thomas, C. A.; Tommasini, R.

    2015-11-01

    The x-ray flux driving a capsule is currently overestimated in standard Hydra high-flux model (Rosen et al., HEDP 7,180 (2011)) calculations of gas-filled hohlraums. Jones et al. (Phys. Plasmas,19,056315 (2012)) introduced time dependent multipliers to reduce the laser drive and achieve an appropriate radiation drive on NIF capsules. Using shock velocities from VISAR capsule experiments, symmetry capsule implosion times with truncated laser pulses, and time dependent DANTE X-ray flux measurements from 1D and 2D convergent ablator implosions, we derived a set of time dependent flux multipliers for the first NIF cryogenically layered beryllium capsule implosion. The similarity between these multipliers for both plastic and beryllium capsules suggests that they are primarily correcting for improper modeling of the hohlraum physics, with possibly some residual contribution from capsule modeling deficiencies. Using Lasnex we have adjusted hohlraum physics and resolution in an attempt to model these implosions without drive multipliers. This work was funded by the US Department of Energy.

  6. Room-temperature calorimeter for x-ray free-electron lasers.

    PubMed

    Tanaka, T; Kato, M; Saito, N; Tono, K; Yabashi, M; Ishikawa, T

    2015-09-01

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (∼4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%).

  7. Room-temperature calorimeter for x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2015-09-01

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (˜4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%).

  8. Quantitative characterization of the x-ray imaging capability of rotating modulation collimators with laser light.

    PubMed

    Gaither Iii, C C; Schmahl, E J; Crannell, C J; Dennis, B R; Lang, F L; Orwig, L E; Hartman, C N; Hurford, G J

    1996-12-01

    We developed a method for making quantitative characterizations of bi-grid rotating modulation collimators (RMC's) that are used in a Fourier transform x-ray imager. With appropriate choices of the collimator spacings, this technique can be implemented with a beam-expanded He-Ne laser to simulate the plane wave produced by a point source at infinity even though the RMC's are diffraction limited at the He-Ne wavelength of 632.8 nm. The expanded beam passes through the grid pairs at a small angle with respect to their axis of rotation, and the modulated transmission through the grids as the RMC's rotate is detected with a photomultiplier tube. In addition to providing a quantitative characterization of the RMC's, the method also produces a measured point response function and provides an end-to-end check of the imaging system. We applied our method to the RMC's on the high-energy imaging device (HEIDI) balloon payload in its preflight configuration. We computed the harmonic ratios of the modulation time profile from the laser measurements and compared them with theoretical calculations, including the diffraction effects on irregular grids. Our results indicate the 25-in. (64-cm) x-ray imaging optics on HEIDI are capable of achieving images near the theoretical limit and are not seriously compromised by imperfections in the grids.

  9. Quantitative characterization of the x-ray imaging capability of rotating modulation collimators with laser light

    NASA Astrophysics Data System (ADS)

    Gaither, C. C., III; Schmahl, E. J.; Crannell, C. J.; Dennis, B. R.; Lang, F. L.; Orwig, L. E.; Hartman, C. N.; Hurford, G. J.

    1996-12-01

    We developed a method for making quantitative characterizations of bi-grid rotating modulation collimators (RMC's) that are used in a Fourier transform x-ray imager. With appropriate choices of the collimator spacings, this technique can be implemented with a beam-expanded He-Ne laser to simulate the plane wave produced by a point source at infinity even though the RMC's are diffraction limited at the He-Ne wavelength of 632.8 nm. The expanded beam passes through the grid pairs at a small angle with respect to their axis of rotation, and the modulated transmission through the grids as the RMC's rotate is detected with a photomultiplier tube. In addition to providing a quantitative characterization of the RMC's, the method also produces a measured point response function and provides an end-to-end check of the imaging system. We applied our method to the RMC's on the high-energy imaging device (HEIDI) balloon payload in its preflight configuration. We computed the harmonic ratios of the modulation time profile from the laser measurements and compared them with theoretical calculations, including the diffraction effects on irregular grids. Our results indicate the 25-in. (64-cm) x-ray imaging optics on HEIDI are capable of achieving images near the theoretical limit and are not seriously compromised by imperfections in the grids.

  10. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    DOE PAGES

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; ...

    2015-07-22

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotationmore » between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.« less

  11. X-ray microtomography and laser ablation in the analysis of ink distribution in coated paper

    NASA Astrophysics Data System (ADS)

    Myllys, M.; Häkkänen, H.; Korppi-Tommola, J.; Backfolk, K.; Sirviö, P.; Timonen, J.

    2015-04-01

    A novel method was developed for studying the ink-paper interface and the structural variations of a deposited layer of ink. Combining high-resolution x-ray tomography with laser ablation, the depth profile of ink (toner), i.e., its varying thickness, could be determined in a paper substrate. X-ray tomography was used to produce the 3D structure of paper with about 1 μm spatial resolution. Laser ablation combined with optical imaging was used to produce the 3D structure of the printed layer of ink on top of that paper with about 70 nm depth resolution. Ablation depth was calibrated with an optical profilometer. It can be concluded that a toner layer on a light-weight-coated paper substrate was strongly perturbed by protruding fibers of the base paper. Such fibers together with the surface topography of the base paper seem to be the major factors that control the leveling of toner and its penetration into a thinly coated paper substrate.

  12. Double-core-hole spectroscopy for chemical analysis with an intense X-ray femtosecond laser

    PubMed Central

    Berrah, Nora; Fang, Li; Murphy, Brendan; Osipov, Timur; Ueda, Kiyoshi; Kukk, Edwin; Feifel, Raimund; van der Meulen, Peter; Salen, Peter; Schmidt, Henning T.; Thomas, Richard D.; Larsson, Mats; Richter, Robert; Prince, Kevin C.; Bozek, John D.; Bostedt, Christoph; Wada, Shin-ichi; Piancastelli, Maria N.; Tashiro, Motomichi; Ehara, Masahiro

    2011-01-01

    Theory predicts that double-core-hole (DCH) spectroscopy can provide a new powerful means of differentiating between similar chemical systems with a sensitivity not hitherto possible. Although DCH ionization on a single site in molecules was recently measured with double- and single-photon absorption, double-core holes with single vacancies on two different sites, allowing unambiguous chemical analysis, have remained elusive. Here we report that direct observation of double-core holes with single vacancies on two different sites produced via sequential two-photon absorption, using short, intense X-ray pulses from the Linac Coherent Light Source free-electron laser and compare it with theoretical modeling. The observation of DCH states, which exhibit a unique signature, and agreement with theory proves the feasibility of the method. Our findings exploit the ultrashort pulse duration of the free-electron laser to eject two core electrons on a time scale comparable to that of Auger decay and demonstrate possible future X-ray control of physical inner-shell processes. PMID:21969540

  13. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    PubMed Central

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Ke, Jiyuan; Eileen Tan, M. H.; Zhang, Chenghai; Moeller, Arne; West, Graham M.; Pascal, Bruce; Van Eps, Ned; Caro, Lydia N.; Vishnivetskiy, Sergey A.; Lee, Regina J.; Suino-Powell, Kelly M.; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A.; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P.; Katritch, Vsevolod; Gurevich, Vsevolod V.; Griffin, Patrick R.; Hubbell, Wayne L.; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2015-01-01

    G protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signaling to numerous G protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly, in which rhodopsin uses distinct structural elements, including TM7 and Helix 8 to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotation between the N- and C- domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signaling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology. PMID:26200343

  14. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    SciTech Connect

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Ke, Jiyuan; Tan, M. H. Eileen; Zhang, Chenghai; Moeller, Arne; West, Graham M.; Pascal, Bruce D.; Van Eps, Ned; Caro, Lydia N.; Vishnivetskiy, Sergey A.; Lee, Regina J.; Suino-Powell, Kelly M.; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A.; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie E.; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S.; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P.; Katritch, Vsevolod; Gurevich, Vsevolod V.; Griffin, Patrick R.; Hubbell, Wayne L.; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2015-07-22

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.

  15. Ultrabright x-ray laser scattering for dynamic warm dense matter physics

    SciTech Connect

    Fletcher, L. B.; Lee, H. J.; Doppner, T.; Galtier, E.; Nagler, B.; Heimann, P.; Fortmann, C.; Mao, T.; Millot, M.; Pak, A.; Turnbull, D.; Chapman, D. A.; Gericke, D. O.; Vorberger, J.; White, T.; Gregori, G.; Wei, M.; Barbrel, B.; Falcone, R. W.; Kao, C. -C.; Nuhn, H.; Welch, J.; Zastrau, U.; Neumayer, P.; Hastings, J. B.; Glenzer, S. H.

    2015-03-23

    In megabar shock waves, materials compress and undergo a phase transition to a dense charged-particle system that is dominated by strong correlations and quantum effects. This complex state, known as warm dense matter, exists in planetary interiors and many laboratory experiments (for example, during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions). Here, we apply record peak brightness X-rays at the Linac Coherent Light Source to resolve ionic interactions at atomic (ångström) scale lengths and to determine their physical properties. Our in situ measurements characterize the compressed lattice and resolve the transition to warm dense matter, demonstrating that short-range repulsion between ions must be accounted for to obtain accurate structure factor and equation of state data. Additionally, the unique properties of the X-ray laser provide plasmon spectra that yield the temperature and density with unprecedented precision at micrometre-scale resolution in dynamic compression experiments.

  16. X-ray microtomography and laser ablation in the analysis of ink distribution in coated paper

    SciTech Connect

    Myllys, M.; Häkkänen, H.; Korppi-Tommola, J.; Backfolk, K.; Sirviö, P.; Timonen, J.

    2015-04-14

    A novel method was developed for studying the ink-paper interface and the structural variations of a deposited layer of ink. Combining high-resolution x-ray tomography with laser ablation, the depth profile of ink (toner), i.e., its varying thickness, could be determined in a paper substrate. X-ray tomography was used to produce the 3D structure of paper with about 1 μm spatial resolution. Laser ablation combined with optical imaging was used to produce the 3D structure of the printed layer of ink on top of that paper with about 70 nm depth resolution. Ablation depth was calibrated with an optical profilometer. It can be concluded that a toner layer on a light-weight-coated paper substrate was strongly perturbed by protruding fibers of the base paper. Such fibers together with the surface topography of the base paper seem to be the major factors that control the leveling of toner and its penetration into a thinly coated paper substrate.

  17. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    PubMed Central

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-01-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles. PMID:24763651

  18. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-05-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.

  19. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA

    PubMed Central

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed. PMID:27359147

  20. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA

    NASA Astrophysics Data System (ADS)

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki

    2016-05-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.

  1. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki

    2016-05-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.

  2. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-07-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.

  3. Electron spectroscopy of rare-gas clusters irradiated by x-ray free-electron laser pulses from SACLA

    NASA Astrophysics Data System (ADS)

    Fukuzawa, H.; Tachibana, T.; Motomura, K.; Xu, W. Q.; Nagaya, K.; Wada, S.; Johnsson, P.; Siano, M.; Mondal, S.; Ito, Y.; Kimura, M.; Sakai, T.; Matsunami, K.; Hayashita, H.; Kajikawa, J.; Liu, X.-J.; Robert, E.; Miron, C.; Feifel, R.; Marangos, J. P.; Tono, K.; Inubushi, Y.; Yabashi, M.; Yao, M.; Ueda, K.

    2016-02-01

    We have measured electron energy spectra and asymmetry parameters of Ar clusters and Xe clusters illuminated by intense x-rays at 5 and 5.5 keV. A velocity map imaging spectrometer was developed for this purpose and employed at an x-ray free-electron laser facility, SACLA in Japan. The cluster size dependence and the peak fluence dependence of the electron spectra and asymmetry parameters are discussed.

  4. Nondestructive single-shot soft x-ray lithography and contact microscopy using a laser-produced plasma source.

    PubMed

    Rosser, R J; Feder, R; Ng, A; Adams, F; Celliers, P; Speer, R J

    1987-10-01

    A toroidal relay optic has been used to overcome the problem of damage caused by debris that has limited previous attempts at soft x-ray lithography and contact microscopy using laser-produced plasma sources. Not only is the specimen preserved, but it is now possible to have a vacuum retaining soft x-ray transparent Si(3)N(4) window as a permanent part of the apparatus, greatly simplifying specimen handling. The exposure times are ~2 ns.

  5. Measurement of heating laser injection time to imploded core plasma by using x-ray framing camera

    SciTech Connect

    Koga, Mayuko; Fujiwara, Takashi; Sakaiya, Tatsuhiro; Lee, Myongdok; Shigemori, Keisuke; Shiraga, Hiroyuki; Azechi, Hiroshi

    2008-10-15

    A simultaneous measurement of imploded core plasma and injection time of heating laser is conducted by using an x-ray framing camera (XFC). The experiments are performed using Gekko XII laser system for implosion of the deuterated polystyrene (CD) plastic shell target and Peta Watt (PW) laser system for heating. The time of PW laser injection is observed as the bright zone in the XFC image. The measured x-ray intensity profiles fit the Gaussian profiles well. The calculations of microchannel plate by using dynode model explain these broadened temporal profiles qualitatively. The peak position of fitted x-ray intensity profile is almost in agreement with the time when the high energy x ray is observed by x-ray streak camera. Moreover, the peak position is delayed corresponding to the delayed setting of PW laser injection time. From these results, it is concluded that we can estimate the heating laser injection time with resolution of the order of 10 ps by using XFC.

  6. Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) for application in science and technology

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Wachulak, Przemysław; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Mirosław; Adjei, Daniel; Ahad, Inam Ul; Ayele, Mesfin G.; Fok, Tomasz; Szczurek, Anna; Torrisi, Alfio; Wegrzyński, Łukasz; Fiedorowicz, Henryk

    2015-05-01

    Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) developed in our laboratory for application in various areas of technology and science are presented. The sources are based on a laser-irradiated gas puff target approach. The targets formed by pulsed injection of gas under high-pressure are irradiated with nanosecond laser pulses from Nd:YAG lasers. We use commercial lasers generating pulses with time duration from 1ns to 10ns and energies from 0.5J to 10J at 10Hz repetition rate. The gas puff targets are produced using a double valve system equipped with a special nozzle to form a double-stream gas puff target which secures high conversion efficiency without degradation of the nozzle. The use of a gas puff target instead of a solid target makes generation of laser plasmas emitting soft x-rays and EUV possible without target debris production. The sources are equipped with various optical systems, including grazing incidence axisymmetric ellipsoidal mirrors, a "lobster eye" type grazing incidence multi-foil mirror, and an ellipsoidal mirror with Mo/Si multilayer coating, to collect soft x-ray and EUV radiation and form the radiation beams. In this paper new applications of these sources in various fields, including soft x-ray and EUV imaging in nanoscale, EUV radiography and tomography, EUV materials processing and modification of polymer surfaces, EUV photoionization of gases, radiobiology and soft x-ray contact microscopy are reviewed.

  7. Incorporation of AgI clusters into the cages of zeolites LTA and FAU observed by optical spectra and X-ray diffraction patterns

    NASA Astrophysics Data System (ADS)

    Kodaira, Tetsuya; Ikeda, Takuji; Takeo, Harutoshi

    1999-02-01

    The loading of AgI into the cages of zeolites LTA and FAU was performed by vapor-phase adsorption. The successful incorporation of AgI clusters into the cages was confirmed by optical absorption spectra and X-ray powder diffraction patterns. Large blue shifts of the absorption edges were observed in the spectra of adsorbed AgI to both zeolites, compared with the lowest excited state of AgI in the bulk. The present observation of the shift implies that a strong quantum confinement in the photoexcited state of AgI occurs, which leads to the conclusion that AgI clusters have been formed in the cages. In the X-ray powder diffraction pattern of AgI-loaded LTA, superlattice reflection peaks are observed which cannot be assigned either to the reflection of LTA or the AgI in the bulk.

  8. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    SciTech Connect

    Stradling, G.L.

    1982-04-19

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.

  9. Demonstration of a 100 Hz repetition rate gain-saturated diode-pumped table-top soft x-ray laser.

    PubMed

    Reagan, Brendan A; Wernsing, Keith A; Curtis, Alden H; Furch, Federico J; Luther, Bradley M; Patel, Dinesh; Menoni, Carmen S; Rocca, Jorge J

    2012-09-01

    We demonstrate the operation of a gain-saturated table-top soft x-ray laser at 100 Hz repetition rate. The laser generates an average power of 0.15 mW at λ=18.9  nm, the highest laser power reported to date from a sub-20-nm wavelength compact source. Picosecond laser pulses of 1.5 μJ energy were produced at λ=18.9  nm by amplification in a Mo plasma created by tailoring the temporal intensity profile of single pump pulses with 1 J energy produced by a diode-pumped chirped pulse amplification Yb:YAG laser. Lasing was also obtained in the 13.9 nm line of Ni-like Ag. These results increase by an order of magnitude the repetition rate of plasma-based soft x-ray lasers opening the path to milliwatt average power table-top lasers at sub-20 nm wavelengths.

  10. Recombination-Enhanced Surface Expansion of Clusters in Intense Soft X-Ray Laser Pulses

    NASA Astrophysics Data System (ADS)

    Rupp, Daniela; Flückiger, Leonie; Adolph, Marcus; Gorkhover, Tais; Krikunova, Maria; Müller, Jan Philippe; Müller, Maria; Oelze, Tim; Ovcharenko, Yevheniy; Röben, Benjamin; Sauppe, Mario; Schorb, Sebastian; Wolter, David; Mitzner, Rolf; Wöstmann, Michael; Roling, Sebastian; Harmand, Marion; Treusch, Rolf; Arbeiter, Mathias; Fennel, Thomas; Bostedt, Christoph; Möller, Thomas

    2016-10-01

    We studied the nanoplasma formation and explosion dynamics of single large xenon clusters in ultrashort, intense x-ray free-electron laser pulses via ion spectroscopy. The simultaneous measurement of single-shot diffraction images enabled a single-cluster analysis that is free from any averaging over the cluster size and laser intensity distributions. The measured charge state-resolved ion energy spectra show narrow distributions with peak positions that scale linearly with final ion charge state. These two distinct signatures are attributed to highly efficient recombination that eventually leads to the dominant formation of neutral atoms in the cluster. The measured mean ion energies exceed the value expected without recombination by more than an order of magnitude, indicating that the energy release resulting from electron-ion recombination constitutes a previously unnoticed nanoplasma heating process. This conclusion is supported by results from semiclassical molecular dynamics simulations.

  11. Recombination-enhanced surface expansion of clusters in intense soft x-ray laser pulses

    SciTech Connect

    Rupp, Daniela; Flückiger, Leonie; Adolph, Marcus; Gorkhover, Tais; Krikunova, Maria; Müller, Jan Philippe; Müller, Maria; Oelze, Tim; Ovcharenko, Yevheniy; Röben, Benjamin; Sauppe, Mario; Schorb, Sebastian; Wolter, David; Mitzner, Rolf; Wöstmann, Michael; Roling, Sebastian; Harmand, Marion; Treusch, Rolf; Arbeiter, Mathias; Fennel, Thomas; Bostedt, Christoph; Möller, Thomas

    2016-10-07

    Here, we studied the nanoplasma formation and explosion dynamics of single large xenon clusters in ultrashort, intense x-ray free-electron laser pulses via ion spectroscopy. The simultaneous measurement of single-shot diffraction images enabled a single-cluster analysis that is free from any averaging over the cluster size and laser intensity distributions. The measured charge state-resolved ion energy spectra show narrow distributions with peak positions that scale linearly with final ion charge state. These two distinct signatures are attributed to highly efficient recombination that eventually leads to the dominant formation of neutral atoms in the cluster. The measured mean ion energies exceed the value expected without recombination by more than an order of magnitude, indicating that the energy release resulting from electron-ion recombination constitutes a previously unnoticed nanoplasma heating process. This conclusion is supported by results from semiclassical molecular dynamics simulations.

  12. Bound state - excitation in ion-ion collisions related to X-ray lasers modelling

    SciTech Connect

    Stancalie, V.; Sureau, A.; Klisnick, A.

    1995-12-31

    As in the earlier work of Walling and Weisheit we used the Seaton`s semi-classical, impact parameter formulation of Coulomb excitation for a variety of inelastic ion-ion collisions, involved in laser-produced soft X-ray lasers with Li-like aluminum ions, 1s{sup 2} nl configuration. Energy levels has been calculated by direct SCF method including the spin-orbit interaction. Our definition of the electric 2{sup {lambda}} - pole line strength, S{sup {lambda}}, is consistent with that of Sobelman. The ion-ion collision processes have been considered for a wide range of temperature between 500 eV to 30 eV, with a particular interest in the last part of plasma evolution time, when complications such as non-Maxwellian particle distributions, radiation fields and transient plasma conditions can be neglected, and when the plasma electrons and ions have comparable temperatures.

  13. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, Glenn D.; Richardson, Martin C. (CREOL

    1996-01-01

    Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

  14. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, G.D.; Richardson, M.C.

    1996-11-19

    Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

  15. X-ray photoelectron spectroscopy study of excimer laser treated alumina films

    NASA Astrophysics Data System (ADS)

    Georgiev, D. G.; Kolev, K.; Laude, L. D.; Mednikarov, B.; Starbov, N.

    1998-01-01

    Amorphous alumina layers are deposited on a single crystal Si substrate by a e-gun evaporation technique. These films are then thermally annealed in oxygen to be crystallized and, further, irradiated with an excimer laser beam. At each stage of the film preparation, an x-ray photoelectron spectroscopy analysis is performed at the film surface and in depth, upon ion beam grinding. Results give evidence for the formation of an aluminosilicate upon thermal annealing of the film in oxygen. At the surface itself, this compound is observed to decompose upon excimer laser irradiation at energy densities exceeding 1.75 J/cm2, giving rise to free Si atoms and SiO2, however with complete disappearance of Al atoms. Model photochemical reactions are proposed to explain such transformations.

  16. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    SciTech Connect

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  17. Supersonic Heat Wave Propagation in Laser-Produced Underdense Plasma for Efficient X-Ray Generation

    SciTech Connect

    Tanabe, M; Nishimura, H; Fujioka, S; Nagai, K; Iwamae, A; Ohnishi, N; Fournier, K B; Girard, F; Primout, M; Villette, B; Tobin, M; Mima, K

    2008-06-12

    We have observed supersonic heat wave propagation in a low-density aerogel target ({rho} {approx} 3.2 mg/cc) irradiated at the intensity of 4 x 10{sup 14} W/cm{sup 2}. The heat wave propagation was measured with a time-resolved x-ray imaging diagnostics, and the results were compared with simulations made with the two-dimensional radiation-hydrodynamic code, RAICHO. Propagation velocity of the ionization front gradually decreased as the wave propagates into the target. The reason of decrease is due to increase of laser absorption region as the front propagates and interplay of hydrodynamic motion and reflection of laser propagation. These features are well reported with the simulation.

  18. X-ray and gamma ray emission from petawatt laser-driven nanostructured metal targets

    NASA Astrophysics Data System (ADS)

    Hill, Matthew; Allan, Peter; Brown, Colin; Hoarty, David; Hobbs, Lauren; James, Steven; Bargsten, Clayton; Hollinger, Reed; Rocca, Jorge; Park, Jaebum; Chen, Hui; London, Richard; Shepherd, Ronnie; Tommasini, Riccardo; Vinko, Sam; Wark, Justin; Marjoribanks, Robin; Neely, David; Spindloe, Chris

    2016-10-01

    Nano-wire arrays of nickel and gold have been fired at the Orion laser facility using high contrast 1 ω and 2 ω short pulse beams (0.7 ps pulse length, >1020 W cm-2 intensity). Time-resolved and time-integrated K-shell and M-shell emission have been characterized and compared to those of flat foils, investigating the capability of these metamaterial coatings to enhance laser-target coupling and X-ray emission. Bremsstrahlung emission of gamma rays and associated pair production via the Bethe-Heitler process have also been investigated by use of 1 mm-thick gold substrates attached to the gold nanowires. We present our latest experimental data and outline some potential future applications.

  19. Recombination-enhanced surface expansion of clusters in intense soft x-ray laser pulses

    DOE PAGES

    Rupp, Daniela; Flückiger, Leonie; Adolph, Marcus; ...

    2016-10-07

    Here, we studied the nanoplasma formation and explosion dynamics of single large xenon clusters in ultrashort, intense x-ray free-electron laser pulses via ion spectroscopy. The simultaneous measurement of single-shot diffraction images enabled a single-cluster analysis that is free from any averaging over the cluster size and laser intensity distributions. The measured charge state-resolved ion energy spectra show narrow distributions with peak positions that scale linearly with final ion charge state. These two distinct signatures are attributed to highly efficient recombination that eventually leads to the dominant formation of neutral atoms in the cluster. The measured mean ion energies exceed themore » value expected without recombination by more than an order of magnitude, indicating that the energy release resulting from electron-ion recombination constitutes a previously unnoticed nanoplasma heating process. This conclusion is supported by results from semiclassical molecular dynamics simulations.« less

  20. A capillary discharge as a potential x-ray laser driver.

    PubMed

    Peterson, B G; Ivanova, E P; Spencer, R L; Hart, G W; Lin, J; Stark, T T; Panin, A M; Knight, L V

    1995-01-01

    This paper describes a combined theoretical and experimental approach to understanding the capillary spark discharge with specific application to use as a soft x-ray or extreme ultraviolet laser source. Atomic physics calculations have identified several potential laser lines in a collisionally pumped neon-like or nickel-like plasma, and magnetohydrodynamic (MHD) modeling has shown that a capillary discharge device should be capable of producing the correct plasma conditions to achieve a population inversion in some of these lines. An experiment is constructed to evaluate the accuracy of the MHD model and investigate the potential of observing inversion in a neon-like argon or a nickel-like krypton plasma.