Science.gov

Sample records for ag x-ray laser

  1. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  2. Modeling of the Transient Ni-Like Ag X-Ray Laser

    SciTech Connect

    Smith, R; Benredjem, D; Moller, C; Kuba, J; Klisnick, A; Pert, G J; Upcraft, L; King, R; Jean-Claude, G; Drska, L

    2002-02-26

    Recent high temporal resolution Ni-like x-ray laser experiments have yielded important insights into the output characteristics of picosecond pumped x-ray lasers. However, current experimental observations do not fully explain the plasma dynamics which are critical to the gain generation within the x-ray laser medium. A theoretical study of the Ni-like Silver x-ray laser has therefore been undertaken to compliment our experimental results, in an attempt to further our understanding of the processes at play in yielding the observed x-ray laser output. Preliminary findings are presented within this paper.

  3. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  4. Laboratory x ray lasers

    NASA Astrophysics Data System (ADS)

    Matthews, D. L.

    1989-08-01

    One of the most innovative spinoffs of ICF technology and physics was the development of the x ray wavelength laser. The first incontrovertible demonstration of this type of laser came from LLNL in 1984 using the Novette laser to pump a selenium foil target. The power and energy of Novette were then needed to produce a column of plasma of sufficient length to achieve a sufficient gainlength product (approximately 5.5, this corresponds to an amplification of approximately 250X) that could unquestionably illustrate the lasing effect. LLNL ICF expertise was also required to develop time-resolved spectrometers used to view the lasing transitions at approximately 20 nm, a region of the XUV spectrum normally dominated by high backgrounds. The design of the x ray laser amplifier, which required maintaining nonequilibrium level populations in a tailored plasma having the proper conditions for gain and x ray laser beam propagation, was accomplished with modified versions of ICF kinetics and hydrodynamics codes. Since the first demonstration, progress in the development of the x ray laser was rapid. New achievements include production of megawatt power levels at 20 nm, amplified spontaneous emission levels approaching saturation intensity GL of approximately 17 at 20 nm, efficiency (x ray laser energy/pump energy) approximately 10(exp 6), the demonstration of double and triple pass amplification (hinting at the possibility of producing x ray wavelength resonators), the focusing of x ray lasers to pump other types of lasers and the first demonstration of an x ray hologram produced by an x ray laser. The generation of amplification at ever shorter wavelength is possible using various types of inversion schemes. We depict below this progress benchmarked against production of gain in the water window (2.2 to 4.4 nm,), where applications to biological imaging may be facilitated.

  5. Soft x-ray lasers

    SciTech Connect

    Matthews, D.L.; Rosen, M.D.

    1988-12-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.

  6. Recent Progress on the Understanding of the Transient Ni-like Ag X-ray Laser at 13.9 nm at LULI facilities

    NASA Astrophysics Data System (ADS)

    Ros, D.; Klisnick, A.; Joyeux, D.; Phalippou, D.; Guilbaud, O.; Kuba, J.; Carillon, A.; Jamelot, G.; Smith, R.; Edwards, M.

    2002-11-01

    This paper summarises our recent progress achieved in the characterisation and understanding of the Ni-like Ag transient X-ray laser pumped under traveling wave irradiation. We carried out two experiments at the LULI CPA laser facility. Several diagnostics of the plasma emission at the XRL wavelength or in the keV range indicate the presence of small-scale spatial structures in the emitting XRL source. Single-shot Fresnel interference patterns at 13.9 nm were successfully obtained with a good fringe visibility. For the first time we obtained plasma images with a high spatial resolution about 1 mum, showing the effects of pumping parameters on the X-ray laser far-field.

  7. Applications of soft x-ray lasers

    SciTech Connect

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  8. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  9. X-ray Fluorescence (XRF) Assay Using Laser Compton Scattered (LCS) X-rays

    NASA Astrophysics Data System (ADS)

    Naeem, Syed F.; Chouffani, Khalid; Wells, Douglas P.

    2009-03-01

    Laser Compton Scattered (LCS) X-rays are produced as a result of the interaction between accelerated electrons and a laser beam. The yield of LCS X-rays is dependent on the laser power, angle of collision between interacting particles, and the electron linear accelerator's (linac) electron beam energy and its current. One of our research goals at the Idaho Accelerator Center (IAC) focuses on applications such as detection and imaging of fissionable isotopes for nuclear non-proliferation, safeguards and homeland security. Quasi monochromatic LCS X-rays offer much better signal-to-noise ratios for such applications. The energy of LCS X-rays is tunable, that enable element-specific analysis. Two sharp 36.5 keV and 98.4 keV LCS peaks were observed in two separate experiments based on electron beams tuned at 32 MeV and 37 MeV, that were brought in collision with the (Power)peak = 4 GW Nd.YAG laser operating at 532 nm and 266 nm wavelengths. The linac was operating at 60 Hz with an electron beam pulse length of about 50 ps and a peak current of about 7 A. We exploited X-ray fluorescence (XRF) techniques to identify elemental Kα1, Kα2, and Kβ1 lines in a high-purity germanium (HPGe) detector, with a 0.5 mm thick Beryllium (Be) absorbing layer, emitted from tin (Sn), cadmium (Cd), silver (Ag), gold (Au), and lead (Pb) foils with thicknesses ranging from 25-500 μm, following absorption of 36.1 keV and 98.4 keV LCS X-rays. These reference foils were used for the proof of principle, and some have atomic numbers near to that of relevant fission products.

  10. Simulation study of 3-5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M.

    2015-05-01

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3-5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (˜nc/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using Hydra, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from Cretin, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3-5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ˜100-150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (˜20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3-5 keV x-ray source on NIF.

  11. Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    SciTech Connect

    Kemp, G. E. Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M.

    2015-05-15

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3–5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (∼n{sub c}/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using HYDRA, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from CRETIN, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3–5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ∼100–150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (∼20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3–5 keV x-ray source on NIF.

  12. X-ray laser driven gold targets

    SciTech Connect

    Petrova, Tz. B. Whitney, K. G.; Davis, J.

    2014-03-15

    The femtosecond population dynamics of gold irradiated by a coherent high-intensity (>10{sup 17} W/cm{sup 2}) x-ray laser pulse is investigated theoretically. There are two aspects to the assembled model. One is the construction of a detailed model of platinum-like gold inclusive of all inner-shell states that are created by photoionization of atomic gold and decay either by radiative or Auger processes. Second is the computation of the population dynamics that ensues when an x-ray pulse is absorbed in gold. The hole state generation depends on the intensity and wavelength of the driving x-ray pulse. The excited state populations reached during a few femtosecond timescales are high enough to generate population inversions, whose gain coefficients are calculated. These amplified lines in the emitted x-ray spectrum provide important diagnostics of the radiation dynamics and also suggest a nonlinear way to increase the frequency of the coherent output x-ray pulses relative to the frequency of the driver input x-ray pulse.

  13. Soft x-ray laser microscope

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  14. Saturated output tabletop x-ray lasers

    SciTech Connect

    Dunn, J; Osterheld, A L; Nilsen, J; Hunter, J R; Li, Y; Faenov, A Ya; Pikuz, T A; Shlyaptsev, N

    2000-12-01

    The high efficiency method of transient collisional excitation has been successfully demonstrated for Ne-like and Ni-like ion x-ray laser schemes with small 5-10 J laser facilities. Our recent studies using the tabletop COMET (Compact Multipulse Terawatt) laser system at the Lawrence Livermore National Laboratory (LLNL) have produced several x-ray lasers operating in the saturation regime. Output energy of 10-15 {micro}J corresponding to a gL product of 18 has been achieved on the Ni-like Pd 4d {yields} 4p transition at 147 {angstrom} with a total energy of 5-7 J in a 600 ps pulse followed by a 1.2 ps pulse. Analysis of the laser beam angular profile indicates that refraction plays an important role in the amplification and propagation process in the plasma column. We report further improvement in the extraction efficiency by varying a number of laser driver parameters. In particular, the duration of the second short pulse producing the inversion has an observed effect on the x-ray laser output.

  15. X-ray laser system, x-ray laser and method

    DOEpatents

    London, Richard A.; Rosen, Mordecai D.; Strauss, Moshe

    1992-01-01

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  16. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  17. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  18. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  19. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  20. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  1. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  2. Observation of living cells by x-ray microscopy with a laser-plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Tomie, Toshihisa; Shimizu, Hazime; Majima, Toshikazu; Yamada, Mitsuo; Kanayama, Toshihiko; Yano, M.; Kondo, H.

    1991-12-01

    We studied laser-produced plasma as an x-ray source for x-ray microscopy. Using water- window x rays, contact x-ray images of living sea urchin sperm were taken by a 500 picosecond x-ray pulse. The resist relief was examined by atomic force microscope and informations characteristic of x-ray microscopy were obtained. The finest feature noticed in the x-ray image was 0.1 micrometers .

  3. X-ray Free-electron Lasers

    SciTech Connect

    Feldhaus, J.; Arthur, J.; Hastings, J.B.; /SLAC

    2007-02-23

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, and can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.

  4. Laser-based X-ray and electron source for X-ray fluorescence studies

    NASA Astrophysics Data System (ADS)

    Valle Brozas, F.; Crego, A.; Roso, L.; Peralta Conde, A.

    2016-08-01

    In this work, we present a modification to conventional X-rays fluorescence using electrons as excitation source and compare it with the traditional X-ray excitation for the study of pigments. For this purpose, we have constructed a laser-based source capable to produce X-rays as well as electrons. Because of the large penetration depth of X-rays, the collected fluorescence signal is a combination of several material layers of the artwork under study. However, electrons are stopped in the first layers, allowing a more superficial analysis. We show that the combination of both excitation sources can provide extremely valuable information about the structure of the artwork.

  5. Density gradient free electron collisionally excited x-ray laser

    DOEpatents

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  6. Density gradient free electron collisionally excited X-ray laser

    DOEpatents

    Campbell, Edward M.; Rosen, Mordecai D.

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  7. Soft X-Ray Absorption Spectroscopy at an X-ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Higley, Daniel; Schlotter, William; Turner, Joshua; Moeller, Stefan; Mitra, Ankush; Tsukamoto, Arata; Marvel, Robert; Haglund, Richard; Durr, Hermann; Stohr, Joachim; Dakovski, Georgi

    2015-03-01

    X-ray free electron lasers, providing coherent, ultrafast, high intensity x-ray pulses, have enabled groundbreaking scattering experiments to probe the atomic structure of materials on femtosecond timescales. Nonetheless, x-ray absorption spectroscopy (XAS), one of the most fundamental and common x-ray techniques practiced at synchrotron light sources, has proven challenging to conduct with satisfactory signal-to-noise levels at soft x-ray energies using free electron laser sources. The ability to routinely collect high quality XAS spectra, especially in a time-resolved manner, will open many new scientific possibilities in the areas of ultrafast demagnetization, phase transitions and chemical dynamics to highlight a few. Here, we report how XAS using total fluorescence yield detection yields high signal-to-noise x-ray absorption spectra at an x-ray free electron laser source. Data were collected over multiple absorption edges on technologically relevant materials. These measurements were recorded on the Soft X-Ray Materials Science instrument at the Linac Coherent Light Source. The results are easily extendable to time-resolved measurements.

  8. Development of short pulse laser pumped x-ray lasers

    SciTech Connect

    Dunn, J; Osterheld, A L; Hunter, J R; Shlyaptsev, V N

    2000-02-22

    X-ray lasers have been extensively studied around the world since the first laboratory demonstration on the Novette laser at LLNL in 1984. The characteristic properties of short wavelength, high monochromaticity, collimation and coherence make x-ray lasers useful for various applications. These include demonstrations of biological imaging within the water window, interferometry of laser plasmas and radiography of laser-heated surfaces. One of the critical issues has been the high power pump required to produce the inversion. The power scaling as a function of x-ray laser wavelength follows a {approx} {lambda}{sup -4} to {approx} {lambda}{sup -6} law. The shortest x-ray laser wavelength of {approx}35 {angstrom} demonstrated for Ni-like Au was at the limit of Nova laser capabilities. By requiring large, high power lasers such as Nova, the shot rate and total number of shots available have limited the rapid development of x-ray lasers and applications. In fact over the last fifteen years the main thrust has been to develop more efficient, higher repetition rate x-ray lasers that can be readily scaled to shorter wavelengths. The recent state of progress in the field can be found in references. The objective of the project was to develop a soft x-ray laser (XRL) pumped by a short pulse laser of a few joules. In effect to demonstrate a robust, worlung tabletop x-ray laser at LLNL for the first time. The transient collisional scheme as proposed by Shlyaptsev et al. was the candidate x-ray laser for study. The successful endeavor of any scientific investigation is often based upon prudent early decisions and the choice of this scheme was both sound and fruitful. It had been demonstrated very recently for Ne-like Ti at 326 {angstrom} using a small tabletop laser but had not yet reached its full potential. We chose this scheme for several reasons: (a) it was a collisional-type x-ray laser which has been historically the most robust; (b) it had the promise of high efficiency

  9. Legacy of the X-Ray Laser Program

    SciTech Connect

    Nilsen, J.

    1993-08-06

    The X-Ray Laser Program has evolved from a design effort focusing on developing a Strategic Defense Initiative weapon that protects against Soviet ICBMs to a scientific project that is producing new technologies for industrial and medical research. While the great technical successes and failures of the X-ray laser itself cannot be discussed, this article presents the many significant achievements made as part of the X-ray laser effort that are now being used for other applications at LLNL.

  10. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  11. Recent X-Ray Laser Experiments on the COMET Facility

    SciTech Connect

    Dunn, J; Smith, R F; Nilsen, J; Hunter, J R; Barbee, T W; Shlyaptsev, V N; Filevich, J; Rocca, J J; Marconi, M C; Fiedorowicz, H; Bartnik, A

    2001-09-22

    The development of the transient collisional excitation x-ray laser scheme using tabletop laser systems with multiple pulse capability has progressed rapidly in the last three years. The high small-signal gain and strong x-ray output have been demonstrated for laser drive energies of typically less than 10 J. We report recent x-ray laser experiments on the Lawrence Livermore National Laboratory (LLNL) Compact Multipulse Terawatt (COMET) tabletop facility using this technique. In particular, the saturated output from the Ni-like Pd ion 4d - 4p x-ray laser at 146.8 {angstrom} has been well characterized and has potential towards a useable x-ray source in a number of applications. One important application of a short wavelength x-ray laser beam with picosecond pulse duration is the study of a high density laser-produced plasma. We report the implementation of a Mach-Zehnder type interferometer using diffraction grating optics as beam splitters designed for the Ni-like Pd laser and show results from probing a 600 ps heated plasma. In addition, gas puff targets are investigated as an x-ray laser gain medium and we report results of strong lasing on the n = 3 - 3 transitions of Ne-like Ar.

  12. Lasers, extreme UV and soft X-ray

    SciTech Connect

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  13. Lasers, extreme UV and soft X-ray

    DOE PAGES

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA)more » laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.« less

  14. Grazing Incidence Pumping for Efficient X-ray Lasers

    SciTech Connect

    Dunn, J; Keenan, R; Patel, P K; Price, D F; Smith, R F; Shlyaptsev, V N

    2004-09-30

    We report progress in developing efficient pumping of laser-driven x-ray lasers that opens new possibilities for both high average power x-ray lasers as well as producing progressively shorter wavelength lasers. The new scheme of grazing incidence pumping (GRIP) is described. In essence, a chosen electron density region of a pre-formed plasma column, produced by a longer pulse at normal incidence onto a slab target, is selectively pumped by focusing the short pulse {approx}ps laser at a determined grazing incidence angle to the target. The controlled use of refraction of the pumping laser in the plasma results in several benefits: The pump laser path length is longer and there is an increase in the laser absorption in the gain region for creating a collisional Ni-like ion x-ray laser. There is also an inherent traveling wave, close to c, that increases the overall pumping efficiency. The scheme requires careful tailoring of the pump and plasma conditions to the specific x-ray laser under investigation but the main advantage is a 3 - 30 times reduction in the laser pump energy for mid-Z materials. We report several examples of this new x-ray laser on two different laser systems. The first demonstrates a 10 Hz x-ray laser operating at 18.9 nm pumped with a total of 150 mJ of 800 nm wavelength from a Ti:Sapphire laser. The second case is shown where the COMET laser is used both at 527 nm and 1054 nm wavelength to pump higher Z materials with the goal of extending the wavelength regime of tabletop x-ray lasers below 10 nm.

  15. ZAP! The X-Ray Laser is Born

    SciTech Connect

    Ratner, Daniel

    2009-11-17

    SLAC has converted its giant particle accelerator into the world's first X-ray laser. By a billion fold the world's brightest X-ray source, the laser packs a trillion photons into pulses as short as a millionth of a billionth of a second. The ultra-bright, ultra-short X-ray pulses will drive a wide range of new experiments, as scientists strip electrons from atoms, photograph single molecules and make movies of chemical reactions. How has SLAC accomplished such feats of X-ray wizardry? Attend this public lecture to learn about the basics of an X-ray laser, the technologies at SLAC that make it possible, and the exciting new experiments now underway.

  16. Characteristics of a Ni-like silver x-ray laser pumped by a single profiled laser pulse

    SciTech Connect

    Kim, H. T.; Kim, C. M.; Choi, I. W.; Hafz, N.; Kang, H. C.; Sung, J. H.; Yu, T. J.; Lee, S. K.; Jeong, T. M.; Noh, Y.-C.; Hong, K.-H.; Ko, D.-K.; Lee, J.; Tuemmler, J.; Nickles, P. V.; Sandner, W.; Janulewicz, K. A.

    2008-07-15

    We characterized a Ni-like silver soft x-ray laser realized as, what we believe is, a new variant of the grazing incidence pumping (GRIP) scheme. The x-ray laser was pumped by a single profiled laser pulse from a 10 Hz Ti:sapphire laser system. The Ni-like Ag x-ray laser was saturated with a gain coefficient of 76 cm{sup -1} and an effective gain-length product of 28.2. The spatial characteristics of the new version of GRIP x-ray laser are presented including the far- and near-field beam profiles. Computational modeling of the lasing conditions was used to provide some qualitative explanations of the physical processes occurring in the x-ray laser. Additionally, we obtained some preliminary results on the injection seeding technique applied to the Ni-like Ag active medium using the 59th harmonic of the Ti:sapphire laser pulse as the seed. The single-pulse variant of the pumping scheme proved to be a stable and simple configuration of the table-top x-ray lasers also suitable for the injector-amplifier arrangement.

  17. Continuous high-repetition-rate operation of collisional soft-x-ray lasers with solid targets.

    PubMed

    Weith, A; Larotonda, M A; Wang, Y; Luther, B M; Alessi, D; Marconi, M C; Rocca, J J; Dunn, J

    2006-07-01

    We have generated a laser average output power of 2 microW at a wavelength of 13.9 nm by operating a tabletop laser-pumped Ni-like Ag laser at a 5 Hz repetition rate, using a solid helicoidal target that is continuously rotated and advanced to renew the target surface between shots. More than 2 x 10(4) soft-x-ray laser shots were obtained by using a single target. Similar results were obtained at 13.2 nm in Ni-like Cd with a Cd-coated target. This scheme will allow uninterrupted operation of laser-pumped tabletop collisional soft-x-ray lasers at a repetition rate of 10 Hz for a period of hours, enabling the generation of continuous high average soft-x-ray powers for applications. PMID:16770410

  18. A High Efficiency Grazing Incidence Pumped X-ray Laser

    SciTech Connect

    Dunn, J; Keenan, R; Price, D F; Patel, P K; Smith, R F; Shlyaptsev, V N

    2006-08-31

    The main objective of the project is to demonstrate a proof-of-principle, new type of high efficiency, short wavelength x-ray laser source that will operate at unprecedented high repetition rates (10Hz) that could be scaled to 1kHz or higher. The development of a high average power, tabletop x-ray laser would serve to complement the wavelength range of 3rd and future 4th generation light sources, e.g. the LCLS, being developed by DOE-Basic Energy Sciences. The latter are large, expensive, central, synchrotron-based facilities while the tabletop x-ray laser is compact, high-power laser-driven, and relatively inexpensive. The demonstration of such a unique, ultra-fast source would allow us to attract funding from DOE-BES, NSF and other agencies to pursue probing of diverse materials undergoing ultrafast changes. Secondly, this capability would have a profound impact on the semiconductor industry since a coherent x-ray laser source would be ideal for ''at wavelength'' {approx}13 nm metrology and microscopy of optics and masks used in EUV lithography. The project has major technical challenges. We will perform grazing-incidence pumped laser-plasma experiments in flat or groove targets which are required to improve the pumping efficiency by ten times. Plasma density characterization using our existing unique picosecond x-ray laser interferometry of laser-irradiated targets is necessary. Simulations of optical laser propagation as well as x-ray laser production and propagation through freely expanding and confined plasma geometries are essential. The research would be conducted using the Physics Directorate Callisto and COMET high power lasers. At the end of the project, we expect to have a high-efficiency x-ray laser scheme operating below 20 nm at 10Hz with a pulse duration of {approx}2 ps. This will represent the state-of-the-art in x-ray lasers and would be a major step forward from our present picosecond laser-driven x-ray lasers. There is an added bonus of creating

  19. X-ray laser microscopy of rat sperm nuclei

    SciTech Connect

    Da Silva, L.B. ); Trebes, J.E.; Balhorn, R.; Mrowka, S.; Barbee, T.W.Jr.; Brase, J.; Corzett, M.; Koch, J.A.; Lee, C.; London, R.A.; MacGowan, B.J.; Matthews, D.L.; Stone, G. ); Anderson, E.; Attwood, D.T. ); Gray, J. ); Kern, D. )

    1992-10-09

    The development of high brightness and short pulse width x-ray lasers now offers biologists the possibility of high-resolution imaging of specimens in an aqueous environment without the blurring effects associated with natural motions and chemical erosion. As a step toward developing the capabilities of this type of x-ray microscopy, a tantalum x-ray laser at 44.83 angstrom wavelength was used together with an x-ray zone plate lens to image both unlabeled and selectively gold-labeled dried rat sperm nuclei. The observed images show {approximately}500 angstrom features, illustrate the importance of x-ray microscopy in determining chemical composition, and provide information about the uniformity of sperm chromatin organization and the extent of sperm chromatin hydration.

  20. Recent X-Ray Laser Characterization Experiments at LLNL

    SciTech Connect

    Smith, R F; Dunn, J; Nilsen, J; Fiedorowicz, H; Bartnik, A; Shlyaptsev, V N

    2002-02-26

    We report on a series of experiments, using the COMET picosecond facility, designed to characterize and develop different x-ray laser sources. This work encompasses collisional pumping of slab and gas puff targets.

  1. The role of EBIT in X-ray laser research

    SciTech Connect

    Nilsen, J

    2007-01-25

    Back in the early 1980's the X-ray laser program required a new level of understanding and measurements of the atomic physics of highly charged ions. The electron-beam ion trap (EBIT) was developed and built at Lawrence Livermore National Laboratory (LLNL) as part of the effort to understand and measure the cross sections and wavelengths of highly charged ions. In this paper we will discuss some of the early history of EBIT and how it was used to help in the development of X-ray lasers. EBIT's capability was unique and we will show some of the experimental results obtained over the years that were done related to X-ray lasers. As X-ray lasers have now become a table-top tool we will show some new areas of research that involve understanding the index of refraction in partially ionized plasmas and suggest new areas where EBIT may be able to contribute.

  2. Review of soft x-ray lasers and their applications

    SciTech Connect

    Skinner, C.H.

    1991-03-01

    The emerging technology of soft x-ray lasers is in a transition phase between the first laboratory demonstrations of gain and the acceptance of soft x-ray lasers as practical tools for novel applications. Current research is focused on several fronts. The operational wavelength range has been extended to the water window'', important for applications in the life sciences. Gain has also been generated with substantially simpler technology (such as a 6J laser) and this augurs well for the commercially availability in the near future of soft x-ray lasers for a variety of applications. Advanced soft x-ray laser concepts are being developed from investigations into ultra-high intensity laser/matter interactions. The first paper a brief historical perspective of x-ray microscopy and holography have begun. In this paper a brief historical perspective of x-ray laser development will be followed by a review of recent advances in recombination, collisional and photo-pumped systems and applications. A summary of current gain-length performance achieved in laboratories worldwide is presented. Near term prospects for applications to novel fields are discussed. 81 refs., 9 figs., 1 tab.

  3. Ultrafast laser pump/x-ray probe experiments

    SciTech Connect

    Larsson, J.; Judd, E.; Schuck, P.J.

    1997-04-01

    In an ongoing project aimed at probing solids using x-rays obtained at the ALS synchrotron with a sub-picosecond time resolution following interactions with a 100 fs laser pulse, the authors have successfully performed pump-probe experiments limited by the temporal duration of ALS-pulse. They observe a drop in the diffraction efficiency following laser heating. They can attribute this to a disordering of the crystal. Studies with higher temporal resolution are required to determine the mechanism. The authors have also incorporated a low-jitter streakcamera as a diagnostic for observing time-dependant x-ray diffraction. The streakcamera triggered by a photoconductive switch was operated at kHz repetition rates. Using UV-pulses, the authors obtain a temporal response of 2 ps when averaging 5000 laser pulses. They demonstrate the ability to detect monochromatized x-ray radiation from a bend-magnet with the streak camera by measuring the pulse duration of a x-ray pulse to 70 ps. In conclusion, the authors show a rapid disordering of an InSb crystal. The resolution was determined by the duration of the ALS pulse. They also demonstrate that they can detect x-ray radiation from a synchrotron source with a temporal resolution of 2ps, by using an ultrafast x-ray streak camera. Their set-up will allow them to pursue laser pump/x-ray probe experiments to monitor structural changes in materials with ultrafast time resolution.

  4. Contact microscopy with a soft x-ray laser

    SciTech Connect

    DiCicco, D.S.; Kim, D.; Rosser, R.J.; Skinner, C.H.; Suckewer, S.; Gupta, A.P.; Hirschberg, J.G.

    1989-03-01

    A soft x-ray laser of output energy 1-3 mJ at 19.2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. We also present a Composite Optical X- ray Laser Microscope ''COXRALM'' of novel design. 14 refs., 8 figs., 1 tab.

  5. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser.

    PubMed

    Higley, Daniel J; Hirsch, Konstantin; Dakovski, Georgi L; Jal, Emmanuelle; Yuan, Edwin; Liu, Tianmin; Lutman, Alberto A; MacArthur, James P; Arenholz, Elke; Chen, Zhao; Coslovich, Giacomo; Denes, Peter; Granitzka, Patrick W; Hart, Philip; Hoffmann, Matthias C; Joseph, John; Le Guyader, Loïc; Mitra, Ankush; Moeller, Stefan; Ohldag, Hendrik; Seaberg, Matthew; Shafer, Padraic; Stöhr, Joachim; Tsukamoto, Arata; Nuhn, Heinz-Dieter; Reid, Alex H; Dürr, Hermann A; Schlotter, William F

    2016-03-01

    X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L(3,2)-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature. PMID:27036761

  6. Spectral and imaging characterization of tabletop x-ray lasers

    SciTech Connect

    Dunn, J; Faenov, A Ya; Pikuz, T A; Osterheld, A; Moon, S J; Fournier, K B; Nilsen, J; Skobelev, I Yu; Magunov, A I; Shlyaptsev, V N

    2000-12-01

    We have performed L-shell spectroscopy and one-dimensional (1-D) imaging of a line focus plasma from a laser-heated Fe polished slab using the tabletop COMET laser system at the Lawrence Livermore National Laboratory. These plasmas are used to generate a Ne-like Fe transient gain x-ray laser that is recorded simultaneously. A spherically-curved crystal spectrometer gives high resolution x-ray spectra of the n = 3-2 and n = 4-2 resonance lines with 1-D spatial resolution along the line focus. Spectra are presented for different laser pulse conditions. In addition, a variety of x-ray imaging techniques are described. We discuss imaging results from a double-slit x-ray camera with a spherically-curved crystal spectrometer. We show a high resolution Fe K-{alpha} spectrum from the x-ray laser target that indicates the presence of hot electrons in the x-ray laser plasma.

  7. Molecular design concept for x-ray laser research

    SciTech Connect

    Rhodes, C.K.; Luk, Ting Shan; McPherson, A.; Boyer, K.

    1991-09-17

    The goal of this program is the construction of an x-ray laser in the kilovolt regime. Recent experimental results indicate that a new technique for the generation of strong amplification of x-ray wavelengths is feasible. It involves the combination of (1) a new ultrahigh brightness subpicosecond laser technology and (2) a recently discovered unique mode of strong-field interaction, particularly applicable to molecules. A concept of molecular x-ray laser design emerges from these considerations which matches the mode of excitation to the structure of the molecular system. The molecular approach enables the combination of very highly electronically excited conditions with an environment characteristic of dense cold matter, a general situation exceptionally conducive to x-ray amplification. Both high efficiency and wavelength tunability are intrinsic features of this method. 19 refs., 4 figs.

  8. Fabrication of x-ray spiral masks by laser ablation

    NASA Astrophysics Data System (ADS)

    Peele, Andrew G.; Nugent, Keith A.; McMahon, Phillip J.; Paterson, David; Tran, Chanh Q.; Mancuso, Adrian; Mackin, Tracy R.; Hayes, Jason P.; Harvey, Erol C.; McNulty, Ian

    2002-11-01

    The manipulation of x-rays by phase structures is becoming more common through devices such as compound refractive lenses, blazed zone-plates and other structures. A spiral phase modulation structure can be used to condition an x-ray beam to produce an x-ray vortex. An x-ray beam in this form can be used as the first step towards a self-collimating beam. Also it can be used as a controllable pathological feature in studies of x-ray phase retrieval. We describe the microfabrication of a spiral phase modulation structure by excimer laser ablation. A multi-step fabrication using 15 separate chrome-on-quartz mask patterns is used to create a 16 step spiral staircase structure approximating the desired spiral ramp. The results of simulations and initial experimental results are presented.

  9. Soft x-ray laser experiments at Novette Laser Facility

    SciTech Connect

    Matthews, D.; Hagelstein, P.; Rosen, M.; Kauffman, R.; Lee, R.; Wang, C.; Medecki, H.; Campbell, M.; Ceglio, N.; Leipelt, G.

    1984-03-05

    We discuss the results of and future plans for experiments to study the possibility of producing an x-ray laser. The schemes we have investigated are all pumped by the Novette Laser, operated at short pulse (tau/sub L/ approx. 100 psec) and an incident wavelength of lambda /sub L/ approx. 0.53 ..mu..m. We have studied the possibility of lasing at 53.6, 68.0 to 72.0, 119.0, and 153.0 eV, using the inversion methods of resonant photo-excitation, collisional excitation, and three-body recombination.

  10. X-Ray Diffraction Simulation Using Laser Pointers and Printers.

    ERIC Educational Resources Information Center

    Johnson, Neil E.

    2001-01-01

    Uses a laser pointer to demonstrate the analogy between optical and X-ray diffraction and a laser printer with 600 or 1200 dot resolution to create and modify arrays, print them on transparencies, and illuminate them with laser pointers. Includes 14 references. (Author/YDS)

  11. X-ray laser related experiments and theory at Princeton

    SciTech Connect

    Suckewer, S.

    1989-04-01

    This paper describes a new system for the development of an x-ray laser in the wavelength region from 5 nm to 1 nm utilizing a Powerful Sub-Picosecond Laser (PP-Laser) of expected peak power up to 0.5 TW in a 300 fs pulse. Soft x-ray spectra generated by the interaction of the PP-Laser beam with different targets are presented and compared to the spectra generated by a much less intense laser beam (20--30 GW). A theoretical model for the interaction of atoms with such a strong laser EM field is also briefly discussed. The development of additional amplifiers for the recombining soft x-ray laser and the design of a cavity are presented from the point of view of applications for x-ray microscopy and microlithography. This overview concludes with the presentation of recent results on the quenching of spontaneous emission radiation and its possible effect on the absolute intensity calibration of soft x-ray spectrometers. 26 refs., 18 figs.

  12. X-ray production with sub-picosecond laser pulses

    SciTech Connect

    Schappert, G.T.; Cobble, J.A.; Fulton, R.D.; Kyrala, G.A.

    1993-12-31

    The interaction of intense, sub-picosecond laser pulses with solid targets produces intense picosecond x-ray pulses. With focused laser pulses of several 10 {sup 18} W/cm{sup 2}, He-like and H-like line radiation from targets such as aluminum and silicon has been produced. The energy conversion efficiency from the laser pulse energy to the 1--2 keV line x-rays is nearly one percent. The duration of the line x-ray radiation is of the order of ten picoseconds, although this may be an upper estimate because of the temporal resolution of the x-ray streak camera. The spatial extent of the x-ray source region is only slightly larger than the laser focal spot, or about 10 {mu}m in diameter. With these characteristics, such x-ray sources emit an intensity of nearly 10{sup 14} W/cm{sup 2}. Experiments and modeling which led to the above conclusions will be discussed.

  13. Excitation of nuclear isomers by X rays from laser plasma

    SciTech Connect

    Andreev, Aleksandr A; Karpeshin, F; Trzhaskovskaya, M B; Platonov, Konstantin Yu; Rozhdestvenskii, Yu V

    2010-06-23

    The possibility of obtaining isomer nuclei is studied by the example of the molybdenum isomer {sup 93}Mo upon irradiation of a niobium {sup 93}Nb target by {approx}50-J, 100-fs laser pulses. It is shown that the modern laser technique allows production of isomer nuclei by accelerated protons and radiative de-excitation of isomer nuclear states by thermal or line X-rays from laser plasma. (interaction of laser radiation with matter. laser plasma)

  14. Compact Laser-Compton X-ray Source Development

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun

    The state-of-the-art X-ray source based on inverse-Compton scattering between a high-brightness, relativistic electron beam produced by an X-band RF accelerator and a high-intensity laser pulse generated by chirped-pulse amplification (CPA) has been carried out by our research team at Lawrence Livermore National Laboratory. This system is called "Compact Laser-Compton X-ray Source". The applications include nuclear resonance fluorescence, medical imaging and therapy, and nuclear waste imaging and assay. One of the key factors in this system is how we know the interaction happened in the vacuum chamber, which is the spectrometer of electron beams. The other key factor is the interaction after the spectrometer, which is the outgoing X-ray. In this thesis, the work in the simulation for the result of the interaction between electrons and the laser, the calibration of spectrometer, and laser focus characterization are discussed.

  15. Picosecond resolution soft x-ray laser plasma interferometry

    SciTech Connect

    Moon, S; Nilsen, J; Ng, A; Shlyaptsev, V; Dunn, J; Hunter, J; Keenan, R; Marconi, M; Filevich, J; Rocca, J; Smith, R

    2003-12-01

    We describe a soft x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high throughput amplitude division interferometer and a 14.7 nm transient inversion soft x-ray laser that produces {approx} 5 ps pulses. Due to its picosecond resolution and short wavelength scalability, this technique has potential for extending the high inherent precision of soft x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confined fusion. Results of its use in the diagnostics of dense large scale laser-created plasmas are presented.

  16. X-ray imaging of laser produced plasmas by a compound 3D x-ray lens

    NASA Astrophysics Data System (ADS)

    Garanin, R. V.; Pavlov, G. A.; Suslov, N. A.; Treushnikov, V. M.; Treushnikov, V. V.; Zhidkov, N. V.

    2015-04-01

    Pilot scheme for the study of plasma under extreme condition is implemented using a compound 3D X-ray lens. Hard X-ray image of laser plasma produced by irradiating of copper foil by intense laser pulse was recorded using this lens.

  17. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser

    SciTech Connect

    Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Kameshima, Takashi; Inubushi, Yuichi; Sato, Takahiro; Hatsui, Takaki; Yabashi, Makina; Obara, Yuki; Misawa, Kazuhiko; Bhattacharya, Atanu; Kurahashi, Naoya; Ogi, Yoshihiro; Suzuki, Toshinori

    2013-09-23

    We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (ΔE/E ∼ 5 × 10{sup −3}), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ∼3 × 10{sup −3}, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.

  18. Vanadium-pumped titanium x-ray laser

    SciTech Connect

    Nilsen, J.

    1991-02-13

    A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions.

  19. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, J.

    1992-05-26

    A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions. 4 figs.

  20. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, Joseph

    1992-01-01

    A resonantly photo-pumped x-ray laser (10) is formed of a vanadium (12) and titanium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state neon-like titanium ions (34) are resonantly photo-pumped by line emission from fluorine-like vanadium ions (32).

  1. Optical Shaping of X-Ray Free-Electron Lasers.

    PubMed

    Marinelli, A; Coffee, R; Vetter, S; Hering, P; West, G N; Gilevich, S; Lutman, A A; Li, S; Maxwell, T; Galayda, J; Fry, A; Huang, Z

    2016-06-24

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes. PMID:27391728

  2. Optical Shaping of X-Ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Marinelli, A.; Coffee, R.; Vetter, S.; Hering, P.; West, G. N.; Gilevich, S.; Lutman, A. A.; Li, S.; Maxwell, T.; Galayda, J.; Fry, A.; Huang, Z.

    2016-06-01

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes.

  3. Soft x-ray streak camera for laser fusion applications

    SciTech Connect

    Stradling, G.L.

    1981-04-01

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.

  4. Powder X-ray Diffraction Using the Omega Laser

    NASA Astrophysics Data System (ADS)

    Eggert, Jon; Rygg, Ryan; Smith, Raymond; Bastea, Marina; Ping, Yuan; Shepherd, Ronnie; Collins, Gilbert

    2009-06-01

    The past several years have seen dramatic improvements in dynamic ramp-compression experiments to measure stress-density using laser and pulsed-power drivers. Goals for future experiments center on achieving pressures over 1 TPa (10 Mbar), while keeping the samples in a solid phase and applying additional diagnostics to probe the nature of these states. X-ray scattering is a natural probe for such studies due to the copious x-ray energy produced by laser sources. Such experiments allow studies of the crystal structure, texture, strength, and possibly temperature of ramp-compressed solids at unprecedented density. With this in mind we have developed a powder x-ray diffraction diagnostic fielded at the Omega laser. We will report our results on ramp-driven iron, tin and copper. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  5. Tabletop Transient Collisional Excitation X-Ray Lasers

    SciTech Connect

    Dunn, J; Li, Y; Osterheld, A L; Nilsen, J; Moon, S J; Fournier, K B; Hunter, J R; Faenov, A; Pikuz, T A; Shlyaptsev, V N

    1999-09-03

    Recent transient collisional excitation x-ray laser experiments are reported using the COMET tabletop laser driver at the Lawrence Livermore National Laboratory (LLNL). Ne-like and Ni-like ion x-ray laser schemes have been investigated with a combination of long 600 ps and short {approximately}1 ps high power laser pulses with 5-10 J total energy. We show small signal gain saturation for x-ray lasers when a reflection echelon traveling wave geometry is utilized. A gain length product of 18 has been achieved for the Ni-like Pd 4d{r_arrow}4p J=0-1 line at 147 {angstrom}, with an estimated output of {approximately}10{micro}J. Strong lasing on the 119 {angstrom} Ni-like Sn line has also been observed. To our knowledge this is the first time gain saturation has been achieved on a tabletop laser driven scheme and is the shortest wavelength tabletop x-ray laser demonstrated to date. In addition, we present preliminary results of the characterization of the line focus uniformity for a Ne-like ion scheme using L-shell spectroscopy.

  6. Pulsed x-ray generator for commercial gas lasers

    NASA Astrophysics Data System (ADS)

    Bollanti, S.; Bonfigli, F.; Di Lazzaro, P.; Flora, F.; Giordano, G.; Letardi, T.; Murra, D.; Schina, G.; Zheng, C. E.

    2001-10-01

    We have designed and tested a 1-m-long x-ray diode based on innovative plasma cathodes, which exploit commercial spark plugs as electron emitters. Based on the results of a numerical study, we optimized both diode geometry (e.g., the angle between anode and cathode surfaces, the thickness of the Al window) and electrical circuitry (e.g., the capacitance in series to each spark plug, the peak voltage of the anode) of our x-ray generator. The overall result is a simple and efficient circuitry, giving a total diode current in excess of 2.1 kA with a breakdown voltage of 70 kV, which generates a 50 ns rise-time x-ray pulse with a spatially averaged dosage of up to 6×10-4 Gy when using a Pb-wrapped anode. The double-diode x-ray generator was operated for 1.5×106 shots at a repetition rate of up to 30 Hz, and the lifetime test was interrupted without any fault. During the lifetime test, it was not necessary to adjust any working parameter. At the end of the lifetime test, the x-ray emission uniformity was better than 80% along the longitudinal axis. This x-ray generator has a lifetime, reliability, and cost fitting the requirements of industrial users. Among the broad range of potential applications, this x-ray generator is particularly suitable to ionize discharge pumped gas lasers, like TEA CO2 and excimer lasers, including those operated by x-ray triggered discharges.

  7. Direct nano-scale patterning of Ag films using hard X-ray induced oxidation.

    PubMed

    Kim, Jae Myung; Lee, Su Yong; Kang, Hyon Chol; Noh, Do Young

    2015-01-01

    The morphological change of silver nano-particles (AgNPs) exposed to an intense synchrotron X-ray beam was investigated for the purpose of direct nano-scale patterning of metal thin films. AgNPs irradiated by hard X-rays in oxygen ambient were oxidized and migrated out of the illuminated region. The observed X-ray induced oxidation was utilized to fabricate nano-scale metal line patterns using sectioned WSi2/Si multilayers as masks. Lines with a width as small as 21 nm were successfully fabricated on Ag films on silicon nitride. Au/Ag nano-lines were also fabricated using the proposed method.

  8. Experimental Evidence of an X-Ray Laser

    PubMed Central

    Kepros, John G.; Eyring, Edward M.; Cagle, F. William

    1972-01-01

    A three-stage neodymium:glass laser has been used to produce collimated x-radiation from an aqueous copper(II) sulfate gel. The 1.06-μm Q-switch pulse from the neodymium laser was focused by a cylindrical lens to a horizontal line traversing a microscope slide sandwich that contained a thin film of gel. The emission from the gel was detected as a 0.2-mm spot on shielded, standard x-ray photographic film at distances that varied from 30 to 110 cm from the sandwich. Spot size did not increase with distance, suggesting coherence of the x-rays. PMID:16591998

  9. Dynamic x-ray imaging of laser-driven nanoplasmas

    NASA Astrophysics Data System (ADS)

    Fennel, Thomas

    2016-05-01

    A major promise of current x-ray science at free electron lasers is the realization of unprecedented imaging capabilities for resolving the structure and ultrafast dynamics of matter with nanometer spatial and femtosecond temporal resolution or even below via single-shot x-ray diffraction. Laser-driven atomic clusters and nanoparticles provide an ideal platform for developing and demonstrating the required technology to extract the ultrafast transient spatiotemporal dynamics from the diffraction images. In this talk, the perspectives and challenges of dynamic x-ray imaging will be discussed using complete self-consistent microscopic electromagnetic simulations of IR pump x-ray probe imaging for the example of clusters. The results of the microscopic particle-in-cell simulations (MicPIC) enable the simulation-assisted reconstruction of corresponding experimental data. This capability is demonstrated by converting recently measured LCLS data into a ultrahigh resolution movie of laser-induced plasma expansion. Finally, routes towards reaching attosecond time resolution in the visualization of complex dynamical processes in matter by x-ray diffraction will be discussed.

  10. Estimate of nuclear-pumped X-ray laser mechanism

    NASA Astrophysics Data System (ADS)

    Renxiang, L.

    1984-12-01

    It is proposed that the recently reported 14A X-ray laser is due to the n = 5 to n = 3 transition of the recombining hydrogen-like plasma of Z = 30 (zinc). When the stimulated radiation builds up, the size of the reacting material is about phi 3.36 mm x 2 mm. The X-ray flux of the nuclear explosion should be greater than 10 to the 15th power W/sq cm with an energy greater than 12.2 keV, the total ionization energy of zinc. Miniaturized hydrogen bomb of several hundred tons of TNT might have been used. It is suggested that the zinc wire may be doped with selenium to strengthen the 14A X-ray laser by resonant optical excitation.

  11. Laser induced x-ray `RADAR' particle physics model

    NASA Astrophysics Data System (ADS)

    Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.

    2016-05-01

    The technique of high-power laser-induced plasma acceleration can be used to generate a variety of diverse effects including the emission of X-rays, electrons, neutrons, protons and radio-frequency radiation. A compact variable source of this nature could support a wide range of potential applications including single-sided through-barrier imaging, cargo and vehicle screening, infrastructure inspection, oncology and structural failure analysis. This paper presents a verified particle physics simulation which replicates recent results from experiments conducted at the Central Laser Facility at Rutherford Appleton Laboratory (RAL), Didcot, UK. The RAL experiment demonstrated the generation of backscattered X-rays from test objects via the bremsstrahlung of an incident electron beam, the electron beam itself being produced by Laser Wakefield Acceleration. A key initial objective of the computer simulation was to inform the experimental planning phase on the predicted magnitude of the backscattered X-rays likely from the test objects. This objective was achieved and the computer simulation was used to show the viability of the proposed concept (Laser-induced X-ray `RADAR'). At the more advanced stages of the experimental planning phase, the simulation was used to gain critical knowledge of where it would be technically feasible to locate key diagnostic equipment within the experiment. The experiment successfully demonstrated the concept of X-ray `RADAR' imaging, achieved by using the accurate timing information of the backscattered X-rays relative to the ultra-short laser pulse used to generate the electron beam. By using fast response X-ray detectors it was possible to derive range information for the test objects being scanned. An X-ray radar `image' (equivalent to a RADAR B-scan slice) was produced by combining individual X-ray temporal profiles collected at different points along a horizontal distance line scan. The same image formation process was used to generate

  12. Ultrafast x-ray diffraction of laser-irradiated crystals

    NASA Astrophysics Data System (ADS)

    Heimann, P. A.; Larsson, J.; Chang, Z.; Lindenberg, A.; Schuck, P. J.; Judd, E.; Padmore, H. A.; Bucksbaum, P. H.; Lee, R. W.; Murnane, M.; Kapteyn, H.; Wark, J. S.; Falcone, R. W.

    1997-07-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si (111) crystal and then by a sample crystal, presently InSb (111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or `camshaft' operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

  13. Liquid explosions induced by X-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Stan, Claudiu A.; Milathianaki, Despina; Laksmono, Hartawan; Sierra, Raymond G.; McQueen, Trevor A.; Messerschmidt, Marc; Williams, Garth J.; Koglin, Jason E.; Lane, Thomas J.; Hayes, Matt J.; Guillet, Serge A. H.; Liang, Mengning; Aquila, Andrew L.; Willmott, Philip R.; Robinson, Joseph S.; Gumerlock, Karl L.; Botha, Sabine; Nass, Karol; Schlichting, Ilme; Shoeman, Robert L.; Stone, Howard A.; Boutet, Sébastien

    2016-10-01

    Explosions are spectacular and intriguing phenomena that expose the dynamics of matter under extreme conditions. We investigated, using time-resolved imaging, explosions induced by ultraintense X-ray laser pulses in water drops and jets. Our observations revealed an explosive vaporization followed by high-velocity interacting flows of liquid and vapour, and by the generation of shock trains in the liquid jets. These flows are different from those previously observed in laser ablation, owing to a simpler spatial pattern of X-ray absorption. We show that the explosion dynamics in our experiments is consistent with a redistribution of absorbed energy, mediated by a pressure or shock wave in the liquid, and we model the effects of explosions, including their adverse impact on X-ray laser experiments. X-ray laser explosions have predictable dynamics that may prove useful for controlling the state of pure liquids over broad energy scales and timescales, and for triggering pressure-sensitive molecular dynamics in solutions.

  14. Soft x-ray laser microscope. Final report

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL`s 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si{sub 3}N{sub 4}) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  15. Grazing Incidence Pumping for High Efficiency X-ray Lasers

    SciTech Connect

    Dunn, J; Keenan, R; Shlyaptsev, V N

    2005-10-03

    Over the last decade, most laser-driven collisional excitation x-ray lasers have relied on the absorption of the pump energy incident at normal incidence to a pre-formed plasma. The main advantage is that the inversion can be created at various plasma regions in space and time where the amplification and ray propagation processes are best served. The main disadvantage is that different plasma regions regardless of the contribution to the inversion have to be pumped simultaneously in order to make the laser work. This leads to a loss of efficiency. The new scheme of grazing incidence pumping (GRIP) addresses this issue. In essence, a chosen electron density region of a pre-formed plasma column, produced by a longer pulse at normal incidence onto a slab target, is selectively pumped by focusing a short pulse of 100 fs-10 ps duration laser at a determined grazing incidence angle to the target surface. The exact angle is dependent on the pump wavelength and relates to refraction of the drive beam in the plasma. The controlled use of refraction of the pumping laser in the plasma results in several benefits: The pump laser path length is longer and there is an increase in the laser absorption in the gain region for creating a collisional Ni-like ion x-ray laser. There is also an inherent traveling wave, close to c, that increases the overall pumping efficiency. This can lead to a 3-30 times reduction in the pump energy for mid-Z, sub-20 nm lasers. We report several examples of this new x-ray laser on two different laser systems. The first demonstrates a 10 Hz x-ray laser operating at 18.9 nm pumped with a total of 150 mJ of 800 nm wavelength from a Ti:Sapphire laser. The second case is shown where the COMET laser is used both at 527 nm and 1054 nm wavelength to pump higher Z materials with the goal of extending the wavelength regime of tabletop x-ray lasers below 10 nm.

  16. X-ray Laser Animated Fly-Through

    SciTech Connect

    2011-02-25

    Take a tour with an electron's-eye-view through SLAC's revolutionary new X-ray laser facility with this 5 1/2 minute animation. See how the X-ray pulses are generated using the world's longest linear accelerator along with unique arrays of machinery specially designed for this one-of-a-kind tool. For more than 40 years, SLAC's two-mile-long linear accelerator (or linac) linac has produced high-energy electrons for cutting-edge physics experiments. Now, SLAC's linac has entered a new phase of its career with the creation of the Linac Coherent Light Source (LCLS).

  17. The First Angstrom X-Ray Free-Electron Laser

    SciTech Connect

    Galayda, John; /SLAC

    2012-08-24

    The Linac Coherent Light Source produced its first x-ray laser beam on 10 April 2009. Today it is routinely producing x-ray pulses with energy >2 mJ across the operating range from 820-8,200 eV. The facility has begun operating for atomic/molecular/optical science experiments. Performance of the facility in its first user run (1 October - 21 December) and current machine development activities will be presented. Early results from the preparations for the start of the second user run is also reported.

  18. Laser produced plasma soft x-ray generation

    SciTech Connect

    Cerjan, C.; Rosen, M.D.

    1991-05-20

    The efficiency of soft x-ray production from laser-irradiated plasmas is simulated for two different spectral regions. These two regions, 14{Angstrom} {plus minus} 15% and 130{Angstrom} {plus minus} 1%, were chosen for proximity mask or point-projection technological applications. Relatively large conversion efficiencies were obtained from irradiation of a stainless steel target using the conditions suggested by recent Hampshire Instruments' experiments for proximity masking. Pulse-width and laser frequency parameter studies were performed for point-projection applications which suggest that the conversion applications which suggest that the conversion efficiency is sensitive to pulse-width but not to laser frequency. One of the critical components of any x-ray lithographic scheme is of course the x-ray laser source. There are two primary contenders for a reliable, efficient source currently: synchrotron radiation and spectral emission from laser produced plasma. The dominant issue for laser-plasma emission is the conversion efficiency -- output in the intended operating spectral region relative the required incident laser energy. Simulations are described in the following for both high and low energy spectral regions which have been suggested by either the proximity masking or point-projection technology.

  19. Recent results in capillary discharge soft x-ray laser research

    NASA Astrophysics Data System (ADS)

    Rocca, Jorge J.; Marconi, Mario C.; Wang, Yong; Luther, Bradley M.; Pedacci, Francesco; Grisham, Michael; Vaschenko, Georgiy; Menoni, Carmen S.; Filevich, Jorge; Juha, Libor; Pershin, Yu. P.; Zubarev, E. N.; Voronov, D. L.; Sevryukova, V. A.; Kondratenko, V. V.; Shlyaptsev, Vyacheslav V.; Vinogradov, Alexander; Artioukov, Igor

    2003-12-01

    We report results of the development of capillary discharge driven metal-vapor plasma waveguides for the development of efficient laser-pumped soft x-ray lasers; and of the use of a previously developed capillary discharge Ne-like Ar 46.9 nm laser in study of the interaction of intense soft x-ray laser with materials. The guiding of a laser beam in a dense capillary discharge plasma channel containing a large density of Ag ions is reported. In term of applications we have conducted studies of materials modification and ablation with focalized 46.9 nm laser radiation at fluences between 0.1 and 100 J cm-2. The experiments demonstrated that the combined high repetition rate and high energy per pulse of the capillary discharge laser allows for the first time the processing of large surface areas with intense soft x-ray laser radiation. The damage threshold and damage mechanism of extreme ultraviolet Sc/Si multilayer mirror coatings was studied . Damage threshold fluences of ~ 0.08 J/cm2 were determined for coatings deposited on both borosilicate glass and Si substrates. Scanning and transmission electron microscopy, and small-angle X-ray diffraction techniques revealed the thermal nature of the damage mechanism. These results provide a benchmark for the use of Sc/Si multilayer mirrors in high fluence applications, and for the development of higher damage threshold mirrors. Soft x-ray laser ablation studies were also conducted for silicon and several plastic materials, including PMMA, Polyamide and PTFE.

  20. Multilayer structures for X-ray laser cavities

    NASA Astrophysics Data System (ADS)

    Ceglio, N. M.; Stearns, D. G.; Hawryluk, A. M.

    1985-08-01

    Recent demonstrations of the generation of amplified spontaneous emission at soft X-ray wavelenths have spurred interest in normal incidence multilayer structures for use as X-ray laser (XRL) cavity mirrors. Calculations indicate that cavity mirrors can provide significant enhancement of RXL output, and drive the oscillations to the saturation limit. Novel ideas for cavity output coupling may expand the versatility of XRL devices, while encouraging the marriage of lithographic and multilayer technologies to the general benefit of X-ray optics. Preliminary tests of a double pass cavity have already been conducted. These tests point out the importance of detailed cavity design issues such as precision mirror alignment, mirror damage dynamics, and detailed mirror calibration, to the future success of this field.

  1. Molecular imaging using X-ray free-electron lasers.

    PubMed

    Barty, Anton; Küpper, Jochen; Chapman, Henry N

    2013-01-01

    The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 10(13) transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 10(18) to 10(21) W cm(-2) or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available.

  2. Molecular Imaging Using X-Ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Barty, Anton; Küpper, Jochen; Chapman, Henry N.

    2013-04-01

    The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 1013 transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 1018 to 1021 W cm-2 or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available.

  3. Molecular imaging using X-ray free-electron lasers.

    PubMed

    Barty, Anton; Küpper, Jochen; Chapman, Henry N

    2013-01-01

    The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 10(13) transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 10(18) to 10(21) W cm(-2) or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available. PMID:23331310

  4. The History of X-ray Free-Electron Lasers

    SciTech Connect

    Pellegrini, C.; /UCLA /SLAC

    2012-06-28

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  5. The history of X-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Pellegrini, C.

    2012-10-01

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 Å, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 1013 to 1011, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  6. Lawrence Bragg, microdiffraction and X-ray lasers

    SciTech Connect

    Spence, John

    2012-11-01

    We trace the historical development of W. L. Bragg's `law' and the key experimental observation which made it possible using polychromatic radiation at a time when neither X-ray wavelengths nor cell constants were known. This led, through his phasing and solving large mineral structures (without use of a computer), to work on metals, proteins, bubble rafts and his X-ray microscope. The relationship of this to early X-ray microdiffraction is outlined, followed by a brief review of electron microdiffraction methods, where electron-probe sizes smaller than one unit cell can be formed with an interesting `failure' of Bragg's law. We end with a review of recent femtosecond X-ray `snapshot' diffraction from protein nanocrystals, using an X-ray laser which generates pulses so short that they terminate before radiation damage can commence, yet subsequently destroy the sample. Using short pulses instead of freezing, the nexus between dose, resolution and crystal size has been broken, opening the way to time-resolved diffraction without damage for a stream of identical particles.

  7. Characterization of Pr:LuAG scintillating crystals for X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertoni, R.; Bonesini, M.; Cervi, T.; Clemenza, M.; De Bari, A.; Falcone, A.; Mazza, R.; Menegolli, A.; Nastasi, M.; Rossella, M.

    2016-07-01

    The main features of the Pr doped Lu3Al5O12 (Pr:LuAG) scintillating crystals for X-ray spectroscopy applications have been studied using different radioactive sources and photo-detectors. Pr:LuAG is cheaper, compared to a Germanium detector, but with remarkable properties which make it useful for many applications, from fundamental physics measurements to the PET imaging for medical purposes: high density, elevate light yield, fast response, high energy resolution, no hygroscopicity. A sample of Pr:LuAG crystals with 14 mm×14 mm surface area and 13 mm thickness and a NaI crystal of the same surface and 26 mm thickness used as a reference have been characterized with several radioactive sources, emitting photons in the range 100-1000keV. Different light detectors were adopted for the Pr:LuAG studies, sensitive to its UV emission (peak at 310 nm): a 3 in. PMT (Hamamatsu R11065) and new arrays of Hamamatsu SiPM S13361, with siliconic resin as a window. Preliminary results are presented on the performance of the Pr:LuAG crystals, to be mounted in a 2 × 2 array to be tested in the 2015 run of the FAMU experiment at RIKEN-RAL muon facility. The goal is the detection of the X-rays (around 130 keV) emitted during the de-excitation processes of the muonic hydrogen after the excitation with an IR laser with wavelength set at the resonance of the hyperfine splitting, to measure the muonic atom proton radius with unprecedented precision.

  8. Imaging experiments of Ne-like x-ray lasers

    SciTech Connect

    Moreno, J.C., Nilsen, J.; Barbee, T.W.; Da Silva, L.B.; Fill, E.; Li, Y,; Lu, P.

    1997-06-01

    We discuss high resolution two-dimensional near-field images of the neon-like nickel and germanium x-ray laser obtained using the Asterix laser at the Max-Planck-Institute and the Nova laser at Lawrence Livermore National Laboratory. Our imaging diagnostic consisted of a concave multilayer mirror that imaged the output end of the x-ray laser line onto a backside illuminated x-ray CCD detector. A 25 microm thick wire positioned at the end of the target provided a spatial fiducial. With the Asterix iodine laser, a prepulse 5.23 ns before the main pulse, was used to irradiate slab targets. A great deal of structure was observed in the near field images, particularly in the J=0-1 emission. We observed a large difference in the spatial dependence of the J=0-1 and J=2-1 lines of germanium, with the J=2-1 emission peaking farther away from the original target surface. A larger prepulse moved the peak emission farther away from the target surface. For the Nova experiments we used a series of 100 ps pulses spaced 400 ps apart to illuminate a germanium target. We obtained high resolution images of both the J=0-1 and J=2-1 lines of Ge. These measurements are compared to hydrodynamic simulations coupled with atomic kinetics and including refraction effects.

  9. Liquid explosions induced by X-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Stan, Claudiu; Laksmono, Hartawan; Sierra, Raymond; McQueen, Trevor; Milathianaki, Despina; Koglin, Jason; Lane, Thomas; Messerschmidt, Marc; Williams, Garth; Hayes, Matt; Guillet, Serge; Botha, Sabine; Nass, Karol; Schlichting, Ilme; Shoeman, Robert; Stone, Howard; Boutet, Sébastien

    2015-11-01

    Sudden generation and release of enough energy to vaporize matter are encountered in systems that range from supernovae explosions and asteroid impacts to applications in fusion energy generation, materials processing, and laser surgery. Understanding these strong explosions is important to both fundamental science and technical applications. We studied a new type of microexplosion, induced by absorption of X-ray pulses from a free-electron laser in micron-sized drops and jets of water. These explosions are related to, but different from, those observed in experiments performed with optical lasers. Unlike explosions caused by optical lasers, X-ray laser explosions produce symmetric expansion patterns that are simpler to rationalize. The release of energy initially concentrated in a small region inside drops and jets leads to ballistic vapor flow and inertial liquid flow. The kinematics of these flows indicates that the conversion of the energy deposited by X-rays into flow has a scaling that is similar to the one encountered in shock waves.

  10. Properties and Applications of Laser Generated X-Ray Sources

    SciTech Connect

    Smith, R F; Key, M H

    2002-02-25

    The rapid development of laser technology and related progress in research using lasers is shifting the boundaries where laser based sources are preferred over other light sources particularly in the XUV and x-ray spectral region. Laser based sources have exceptional capability for short pulse and high brightness and with improvements in high repetition rate pulsed operation, such sources are also becoming more interesting for their average power capability. This study presents an evaluation of the current capabilities and near term future potential of laser based light sources and summarizes, for the purpose of comparison, the characteristics and near term prospects of sources based on synchrotron radiation and free electron lasers. Conclusions are drawn on areas where the development of laser based sources is most promising and competitive in terms of applications potential.

  11. X-ray lasers for structural and dynamic biology

    NASA Astrophysics Data System (ADS)

    Spence, J. C. H.; Weierstall, U.; Chapman, H. N.

    2012-10-01

    Research opportunities and techniques are reviewed for the application of hard x-ray pulsed free-electron lasers (XFEL) to structural biology. These include the imaging of protein nanocrystals, single particles such as viruses, pump-probe experiments for time-resolved nanocrystallography, and snapshot wide-angle x-ray scattering (WAXS) from molecules in solution. The use of femtosecond exposure times, rather than freezing of samples, as a means of minimizing radiation damage is shown to open up new opportunities for the molecular imaging of biochemical reactions at room temperature in solution. This is possible using a ‘diffract-and-destroy’ mode in which the incident pulse terminates before radiation damage begins. Methods for delivering hundreds of hydrated bioparticles per second (in random orientations) to a pulsed x-ray beam are described. New data analysis approaches are outlined for the correlated fluctuations in fast WAXS, for protein nanocrystals just a few molecules on a side, and for the continuous x-ray scattering from a single virus. Methods for determining the orientation of a molecule from its diffraction pattern are reviewed. Methods for the preparation of protein nanocrystals are also reviewed. New opportunities for solving the phase problem for XFEL data are outlined. A summary of the latest results is given, which now extend to atomic resolution for nanocrystals. Possibilities for time-resolved chemistry using fast WAXS (solution scattering) from mixtures is reviewed, toward the general goal of making molecular movies of biochemical processes.

  12. X-ray lasers for structural and dynamic biology.

    PubMed

    Spence, J C H; Weierstall, U; Chapman, H N

    2012-10-01

    Research opportunities and techniques are reviewed for the application of hard x-ray pulsed free-electron lasers (XFEL) to structural biology. These include the imaging of protein nanocrystals, single particles such as viruses, pump--probe experiments for time-resolved nanocrystallography, and snapshot wide-angle x-ray scattering (WAXS) from molecules in solution. The use of femtosecond exposure times, rather than freezing of samples, as a means of minimizing radiation damage is shown to open up new opportunities for the molecular imaging of biochemical reactions at room temperature in solution. This is possible using a 'diffract-and-destroy' mode in which the incident pulse terminates before radiation damage begins. Methods for delivering hundreds of hydrated bioparticles per second (in random orientations) to a pulsed x-ray beam are described. New data analysis approaches are outlined for the correlated fluctuations in fast WAXS, for protein nanocrystals just a few molecules on a side, and for the continuous x-ray scattering from a single virus. Methods for determining the orientation of a molecule from its diffraction pattern are reviewed. Methods for the preparation of protein nanocrystals are also reviewed. New opportunities for solving the phase problem for XFEL data are outlined. A summary of the latest results is given, which now extend to atomic resolution for nanocrystals. Possibilities for time-resolved chemistry using fast WAXS (solution scattering) from mixtures is reviewed, toward the general goal of making molecular movies of biochemical processes. PMID:22975810

  13. The physics of x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Pellegrini, C.; Marinelli, A.; Reiche, S.

    2016-01-01

    X-ray free-electron lasers (x-ray FELs) give us for the first time the possibility to explore structures and dynamical processes of atomic and molecular systems at the angstrom-femtosecond space and time scales. They generate coherent photon pulses with time duration of a few to 100 fs, peak power of 10 to 100 GW, over a wavelength range extending from about 100 nm to less than 1 Å. Using these novel and unique capabilities new scientific results are being obtained in atomic and molecular sciences, in areas of physics, chemistry, and biology. This paper reviews the physical principles, the theoretical models, and the numerical codes on which x-ray FELs are based, starting from a single electron spontaneous undulator radiation to the FEL collective instability of a high density electron beam, strongly enhancing the electromagnetic radiation field intensity and its coherence properties. A short review is presented of the main experimental properties of x-ray FELs, and the results are discussed of the most recent research to improve their longitudinal coherence properties, increase the peak power, and generate multicolor spectra.

  14. Near Edge X-Ray Absorption Fine Structure Spectroscopy with X-Ray Free-Electron Lasers

    SciTech Connect

    Bernstein, D.P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stohr, J.; Beye, M.; Schlotter, W.F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Fohlisch, A.; /Hamburg U.

    2009-12-11

    We demonstrate the feasibility of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the Free-Electron Laser at Hamburg (FLASH), used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example we recorded the {sup 3}D{sub 1} N{sub 4,5}-edge absorption resonance of La{sup 3+}-ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  15. Reminiscing About the Early Years of the X-Ray Laser

    SciTech Connect

    Nilsen, J.

    2002-06-26

    To put the development of the X-ray laser in historic context, this paper presents some of the motivation and history of the development of the X-ray laser from the perspective of a scientist at Lawrence Livermore National Laboratory where the first X-ray laser was demonstrated in the early 1980's using a nuclear device as the driver.

  16. Development of Laser Plasma X-ray Microbeam Irradiation System and Radiation Biological Application

    NASA Astrophysics Data System (ADS)

    Sato, Katsutoshi; Nishikino, Masaharu; Numasaki, Hodaka; Kawachi, Tetsuya; Teshima, Teruki; Nishimura, Hiroaki

    Laser plasma x-ray source has the features such as ultra short pulse, high brilliance, monochromaticity, and focusing ability. These features are excellent compared with conventional x-ray source. In order to apply the laser plasma x-ray source to the biomedical study and to more closely research the radiobilogical responce of the cancer cell such as radiation induced bystander effect, we have developed x-ray microbeam system using laser plasma x-ray source. The absorbed dose of laser plasma x-ray was estimated with Gafchromic EBT film and DNA double strand breaks on the cells were detected by immunofluorescence staining. When the cells were irradiated with laser plasma x-ray, the circular regions existing γ-H2AX positive cells were clearly identified. The usefulness of the laser plasma x-ray on the radiobiological study was proved in this research.

  17. Plasma-kinetics perspective on a collisional Ni-like x-ray laser pumped by a single profiled laser pulse

    SciTech Connect

    Janulewicz, K.A.; Tuemmler, J.; Priebe, G.; Nickles, P.V.

    2005-10-15

    Some aspects of plasma kinetics in a Ni-like Ag soft x-ray laser have been analyzed, starting from the real shape of the pump laser pulse measured with a third-order correlator. The role for pump energy reduction of a complex pump pulse structure at a low intensity level has been identified, and the modeling results on the gain lifetime correspond well with the length of the output x-ray pulse measured in the experiment.

  18. Chemical Bond Activation Observed with an X-ray Laser.

    PubMed

    Beye, Martin; Öberg, Henrik; Xin, Hongliang; Dakovski, Georgi L; Dell'Angela, Martina; Föhlisch, Alexander; Gladh, Jörgen; Hantschmann, Markus; Hieke, Florian; Kaya, Sarp; Kühn, Danilo; LaRue, Jerry; Mercurio, Giuseppe; Minitti, Michael P; Mitra, Ankush; Moeller, Stefan P; Ng, May Ling; Nilsson, Anders; Nordlund, Dennis; Nørskov, Jens; Öström, Henrik; Ogasawara, Hirohito; Persson, Mats; Schlotter, William F; Sellberg, Jonas A; Wolf, Martin; Abild-Pedersen, Frank; Pettersson, Lars G M; Wurth, Wilfried

    2016-09-15

    The concept of bonding and antibonding orbitals is fundamental in chemistry. The population of those orbitals and the energetic difference between the two reflect the strength of the bonding interaction. Weakening the bond is expected to reduce this energetic splitting, but the transient character of bond-activation has so far prohibited direct experimental access. Here we apply time-resolved soft X-ray spectroscopy at a free-electron laser to directly observe the decreased bonding-antibonding splitting following bond-activation using an ultrashort optical laser pulse. PMID:27584914

  19. LCLS - The X-ray Laser Has Turned On

    SciTech Connect

    Bergmann, Uwe

    2010-11-03

    On April 10, 2009 the Linac Coherent Light Source (LCLS), the world's first hard x-ray free electron laser, was brought to lasing. Producing an x-ray beam with over a billion times higher peak brightness that then most powerful existing syncrotron sources, it marked the beginning of a new era of science. The LCLS pulses arrive at a rate of 60 - 120 Hz in an energy range from 480 eV to 10 keV, with pulse lengths as short as a few fs to about 300 fs. Since October 2009, users have been performing experiments at the LCLS, and currently three of the six planned instruments are available. Although we stand only at the beginning of LCLS science, there is no doubt about the strong sense of early excitement.

  20. A compact x-ray free electron laser

    SciTech Connect

    Barletta, W.; Attac, M.; Cline, D.B.; Kolonko, J.; Wang, X.; Bhowmik, A.; Bobbs, B.; Cover, R.A.; Dixon, F.P.; Rakowsky, G.; Gallardo, J.; Pellegrini, C.; Westenskow, G.

    1988-09-09

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be concerted to soft x-rays in the range from 2--10 nm by passage through short period, high fields strength wigglers as are being designed at Rocketdyne. Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs.

  1. European X-Ray Free Electron Laser (EXFEL): local implications

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    European X-Ray FEL - free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5GeV energy and more than 2km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in frequency. The prototype of EXFEL is FLASH Laser (200 m in length), where the "proof of principle" was checked, and from the technologies were transferred to the bigger machine. The project was stared in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.

  2. X-ray measurements at high-power lasers. Relative conversion efficiencies of short pulse laser light into K X-ray radiation in medium to high Z elements

    NASA Astrophysics Data System (ADS)

    Szabo, C. I.; Indelicato, P.; Gumberidze, A.; Holland, G. E.; Seely, J. F.; Hudson, L. T.; Henins, A.; Audebert, P.; Bastiani-Ceccotti, S.; Tabakhoff, E.; Brambrink, E.

    2009-03-01

    Conversion efficiencies of laser light into K x-ray radiation are used to characterize laser-solid interactions e.g. in measurements with back-lighter targets in Inertial Confinement Fusion research or in ultra short x-ray science where ultra short laser pulses are used to create x-rays for investigation of dynamic processes. In our measurements we observed high energy (few tens of keV) K x-ray radiation of element pairs created upon impact of a 1 ps, 100 J laser pulse on the target surface. The high-energy electrons created in this interaction ionise and excite the target material. We have used high purity alloy foils of Pd and Ag, as well as In and Sn and crystals of CsI and rare earth molybdates as target materials. Both constituents of these targets were simultaneously excited in one shot. The K x-ray radiation was dispersed and detected with the LCS (LULI Crystal Spectrometer), a Cauchois-type cylindrically bent transmission-crystal spectrometer. Measuring ratios in the x-ray spectra permits determination of relative conversion efficiencies for pairs of elements under identical laser-target interaction conditions.

  3. Limiting parameters of the x-ray lasers

    SciTech Connect

    Bessonov, E.G.

    1995-12-31

    Recent progress in free-electron lasers is do to such advantages as tunability, ability to operate at high power or to extend into X-ray regions. The scaling of fre-electron and free-ion lasers down to X-ray regime is analyzed theoretically. A production of a relativistic multilayer ion mirror and hard and high power electromagnetic radiation by reflection from this mirror are discussed. The reflectivity of the mirror is rather high because of the cross-section of the backward Rayleigh scattering of photon light by non-fully stripped relativistic ions ({approximately} {lambda}{sup 2}) is much greater ({approximately} 10 {divided_by} 15 orders) then Thompson one ({approximately}r{sub e}{sup 2}). This position is valid even in the case of non-monochromatic laser light ({Delta}{omega}/{omega}{approximately} 10{sup -4}). Ion cooling both in longitudinal plane and three-dimensional radiation ion cooling had been proposed based on this observation. The using of these cooling techniques will permit to store high current and low emittance relativistic ion beams in storage rings. The bunched ion beam can be used in ordinary Free-Ion Lasers as well. After bunching the ion beam can be extracted from the storage ring in this case.

  4. High efficiency, multiterawatt x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Emma, C.; Fang, K.; Wu, J.; Pellegrini, C.

    2016-02-01

    In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs), a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  5. Performance of Laser Megajoule's x-ray streak camera

    NASA Astrophysics Data System (ADS)

    Zuber, C.; Bazzoli, S.; Brunel, P.; Burillo, M.; Fronty, J. P.; Gontier, D.; Goulmy, C.; Moreau, I.; Oudot, G.; Rubbelynck, C.; Soullié, G.; Stemmler, P.; Trosseille, C.

    2016-11-01

    A prototype of a picosecond x-ray streak camera has been developed and tested by Commissariat à l'Énergie Atomique et aux Énergies Alternatives to provide plasma-diagnostic support for the Laser Megajoule. We report on the measured performance of this streak camera, which almost fulfills the requirements: 50-μm spatial resolution over a 15-mm field in the photocathode plane, 17-ps temporal resolution in a 2-ns timebase, a detection threshold lower than 625 nJ/cm2 in the 0.05-15 keV spectral range, and a dynamic range greater than 100.

  6. X rays generated in the interaction of subpicosecond laser pulses with solid targets

    SciTech Connect

    Kyrala, G.A.; Wahlin, E.K.; Fulton, R.D.; Schappert, G.T.; Jones, L.A.; Taylor, A.J.; Casperson, D.E.; Cobble, J.A.

    1991-01-01

    We are investigating the generation of short pulse short wavelength x-rays for pumping inner-shell x-ray lasers by photo-ionization. In contrast with previous proposals, we are looking at the use of a single line as an efficient means of pumping these lasers. As a first step we are optimizing the flashlamp x-ray conversion efficiency and characterizing the x-ray pulse length. 18 refs., 5 figs., 2 tabs.

  7. Characterization of transient gain x-ray lasers

    SciTech Connect

    Dunn, J; Osterheld, A; Shlyaptsev, V

    1999-02-07

    We have performed numerical simulations of the transient collisional excitation Ni-like Pd 4d {r_arrow} 4p J = 0 {r_arrow} 1 147 {angstrom} laser transition recently observed at Lawrence Livermore National Laboratory (LLNL). The high gain {approximately}35 cm results from the experiment are compared with detailed modeling simulations from the 1-D RADEX code in order to better understand the main physics issues affecting the measured gain and x-ray laser propagation along the plasma column. Simulations indicate that the transient gain lifetime associated with the short pulse pumping and refraction of the x-ray laser beam out of the gain region are the main detrimental effects. Gain lifetimes of {approximately}7 ps(1/e decay) are inferred from the smoothly changing gain experimental observations and are in good agreement with the simulations. Furthermore, the modeling results indicate the presence of a longer-lived but lower gain later in time associated with the transition from transient to quasi-steady state excitation.

  8. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, A.L.; Gerardo, J.B.; Raymond, T.D.

    1992-12-29

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography is disclosed. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser. 8 figs.

  9. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, Arnold L.; Gerardo, James B.; Raymond, Thomas D.

    1992-01-01

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser.

  10. X-ray irradiation-induced changes in (PVA-PEG-Ag) polymer nanocomposites films

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Benthami, K.; Abutalib, M. M.

    2016-02-01

    The effects of X-ray irradiation on the structural, thermal and optical properties of polyvinyl alcohol-polyethylene glycol-silver (PVA-PEG-Ag) nanocomposites have been investigated. The samples of nanocomposites were prepared by adding Ag nanoparticles with 5 wt% to the (PVA-PEG) blend. The films of 0.05 mm thickness were prepared by the casting method. These films were irradiated with X-ray doses ranging from 20 to 200 kGy. The resultant effect of X-ray irradiation on the structural properties of PVA-PEG-Ag has been investigated using X-ray diffraction and Fourier transform infrared spectroscopy. Also, thermal property studies were carried out using thermogravimetric analysis. Further, the transmission of the PVA-PEG-Ag samples and any color changes were studied. Fourier transform infrared spectroscopy measurements showed that the crosslinking is the dominant mechanism at the dose range 50-200 kGy. This led to a more compact structure of PVA-PEG-Ag samples, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. Moreover, the color intensity ΔE was greatly increased with an increase in the dose, and was accompanied by a significant increase in the yellow color component.

  11. Modeling of saturation and refraction in x-ray lasers

    NASA Astrophysics Data System (ADS)

    Benredjem, D.; Kuba, J.; Möller, C.; Zabaydullin, O. Z.

    2003-04-01

    We model an experiment in which an iron slab target is irradiated by superimposing the six beams of the LULI facility onto a 22 mm×100 μm focal line. The driving laser is composed of two Gaussian pulses of 130-ps duration (full width at half maximum), preceded by a prepulse. A strong enhancement of the 3p-3s 0-1 x-ray line at 25.5 nm in neonlike iron was observed. Saturation is attained for plasma lengths near 1 cm. A ray-trace code working as a postprocessor to a hydroatomic code is used to model the x-ray laser beam refraction due to the variation of the electron density versus the distance to the target surface. Knowing the hydrodynamic conditions, i.e., electron density, and electron and ion temperatures, along the ray paths, the radiative transfer equation, and the population equations are solved self-consistently by using a Maxwell-Bloch approach. A more tractable approach, requiring also the intensity of saturation as a function of time and space, is also presented. In this case, calculation time is much less than in the Maxwell-Bloch approach.

  12. X-Ray Free Electron Laser Interaction With Matter

    SciTech Connect

    Hau-Riege, S

    2009-05-12

    X-ray free electron lasers (XFELs) will enable studying new areas of laser-matter interaction. We summarize the current understanding of the interaction of XFEL pulses with matter and describe some of the simulation approaches that are used to design experiments on future XFEL sources. Modified versions of these models have been successful in guiding and analyzing experiments performed at the extreme-ultraviolet FEL FLASH at wavelengths of 6 nm and longer. For photon energies of several keV, no XFEL-matter interaction experiments have been performed yet but data is anticipated to become available in the near future, which will allow to test our understanding of the interaction physics in this wavelength regime.

  13. X-ray lasers - the ultimate radiation source?

    SciTech Connect

    Matthews, D.L.

    1995-12-31

    I will review the development of the x-ray laser from its first demonstration in 1984 to today`s systems which operate from 45 to 3.5 nm with output power levels up to GW and linewidths less than 10{sup -4}. At first, these sources required large pump laser facility in order to be produced, but just now new systems are appearing which are much more efficient and are near table-top in size. I will also discuss the future development of this source which should lead to wavelengths as short as 1 nm with a near-diffraction-limited output characteristics and considerable average output power, up to 10{sup 15} ph/sec. Finally, I will discuss some of the interesting applications such as in vitro biological imaging, microsurgery on microorganisms, construction of nanomachines, probing of semiconductors and plasmas, lithographic printing of semiconductor circuits and numerous other potential uses.

  14. Recent X-ray observations of the symbiotic star AG Peg: do they signify colliding stellar winds?

    NASA Astrophysics Data System (ADS)

    Zhekov, Svetozar A.; Tomov, Toma

    2016-09-01

    We present an analysis of recent X-ray observations of the symbiotic star AG Peg. The X-ray emission of AG Peg as observed with Swift in 2015 shows considerable variability on time-scale of days as variability on shorter time-scales might be present as well. Analysis of the X-ray spectra obtained in 2013 and 2015 confirms that AG Peg is an X-ray source of class β of the X-ray sources amongst the symbiotic stars. The X-ray emission of AG Peg as observed with ROSAT (1993 June) might well originate from colliding stellar winds (CSWs) in binary system. On the other hand, the characteristics of the X-ray emission of AG Peg in 2013 and 2015 (Swift) are hard to accommodate in the framework of the CSW picture. Analysis of the light curves in 2015 shows that the power spectrum of the X-ray variability in AG Peg resembles that of the flicker noise (or flickering) being typical for accretion processes in astronomical objects. This is a sign that CSWs did not play a key role for the X-ray emission from AG Peg in 2013-2015 and a different mechanism (probably accretion) is also getting into play.

  15. A tunable optical cavity for an x-ray free-electron laser oscillator.

    SciTech Connect

    Kim, K.-J.; Shvyd'ko, Y.

    2009-03-01

    An x-ray free-electron laser oscillator proposed recently for hard x rays [K. Kim, Y. Shvydko, and S. Reiche, Phys. Rev. Lett. 100, 244802 (2008)] can be made tunable by using an x-ray cavity composed of four crystals, instead of two. The tunability of x-ray energy will significantly enhance the usefulness of an x-ray free-electron laser oscillator. We present a detailed analysis of the four-crystal optical cavity and choice of crystals for several applications: inelastic x-ray scattering, nuclear resonant scattering, bulk-sensitive hard x-ray photoemission spectroscopy, other high-energy-resolution ({le} 1 meV) spectroscopic probes, and for imaging with hard x rays at near-atomic resolution ({approx} 1 nm).

  16. Temporal Characterization of a Picosecond Laser-Pumped X-ray Laser (for Applications)

    SciTech Connect

    Dunn, J; Nilsen, J; Shepherd, R; Shlyaptsev, V; Booth, R; Smith, R; Hunter, J

    2003-11-25

    Compact soft x-ray laser sources are now used routinely for various applications primarily because of their high repetition rate, high photon fluence and short pulse duration characteristics. For some of these applications, for example interferometry of high density laser-produced plasmas, longer optical drive pulses, 6-13 ps (FWHM), have been implemented to maximize the x-ray output and coherence. It is therefore important to know the x-ray laser pulse length, shape and repeatability for these specific experiments as a baseline measurement but also to better understand the temporal behavior as a function of the pumping conditions in general. We report a detailed temporal characterization of the picosecond-driven 14.7 nm Ni-like Pd ion x-ray laser on the Compact Multipulse Terawatt (COMET) laser at LLNL using an ultrafast x-ray streak camera measurement of a horizontal slice of the near-field x-ray laser pattern. This is measured as a function of the chirped pulse amplification pumping laser conditions, including varying the pump pulse from 0.5-27 ps (FWHM), varying the plasma column length as well as investigating traveling wave (TW) and non-TW irradiation conditions.

  17. Focusing mirror for x-ray free-electron lasers

    SciTech Connect

    Mimura, Hidekazu; Kimura, Takashi; Yamakawa, Daisuke; Matsuyama, Satoshi; Morita, Shinya; Uehara, Yoshihiro; Ohmori, Hitoshi; Lin, Weimin; Yumoto, Hirokatsu; Ohashi, Haruhiko

    2008-08-15

    We present the design, fabrication, and evaluation of a large total-reflection mirror for focusing x-ray free-electron laser beams to nanometer dimensions. We used an elliptical focusing mirror made of silicon that was 400 mm long and had a focal length of 550 mm. Electrolytic in-process dressing grinding was used for initial-step figuring and elastic emission machining was employed for final figuring and surface smoothing. A figure accuracy with a peak-to-valley height of 2 nm was achieved across the entire area. Characterization of the focused beam was performed at BL29XUL of SPring-8. The focused beam size was 75 nm at 15 keV, which is almost equal to the theoretical size.

  18. Hard-X-ray imaging of laser plasma using axisymmetric refractive lenses

    NASA Astrophysics Data System (ADS)

    Garanin, R. V.; Zhidkov, N. V.; Pavlov, G. A.; Suslov, N. A.; Treushnikov, V. V.; Treushnikov, V. M.

    2015-10-01

    An experimental scheme for studying laser-produced plasmas under extremal conditions with the aid of a compound refractive X-ray lens has been implemented. Laser-produced plasma bunches have been imaged in hard X-rays upon intense laser irradiation of a copper foil target.

  19. Bright High Average Power Table-top Soft X-Ray Lasers

    SciTech Connect

    Rocca, Jorge; Reagan, Brendon; Wernsing, Keith; Luther, Brad; Curtis, Alden; Nichols,, Anthony; Wang, Yong; Alessi, David; Martz, Dale; Yin, Liang; Wang, Shoujun; Berrill, Mark A; Furch, Federico; Woolston, Mark; Patel, Dinesh; Marconi, Mario; Menoni, Carmen

    2012-01-01

    We have demonstrated the generation of bright soft x-ray laser pulses with record-high average power from compact plasma amplifiers excited by ultrafast solid state lasers. These lasers have numerous applications in nanoscience and nanotechnology.

  20. X-ray scattering measurements of the structure of strongly coupled plasmas at x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Neumayer, Paul; Döppner, Tilo; Fletcher, Luke; Galtier, Eric; Gericke, Dirk; Glenzer, Siegfried; Gregori, Gianluca; Hartley, Nicholas; Khaghani, Dimitri; Lee, Hae Ja; Ma, Tammy; Nagler, Bob; Pak, Art; Redmer, Ronald; Zastrau, Ulf

    2013-10-01

    Laser-plasma x-ray sources have been an indispensable probe to diagnose and characterize plasmas in the warm-dense matter regime. The latest generation of bright x-ray free-electron lasers now enables such diagnostic techniques to be implemented at FEL facilities. Even more, FEL parameters, such as collimation, pulse duration, focusability, bandwidth, or repetition rate, are far superior compared to laser-driven sources, enabling measurements of unprecedented resolution and accuracy. As an example, we present measurements of the static structure factor in high energy density matter. Angle-resolved x-ray scattering was performed at the Matter at Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS). Strongly coupled warm-dense aluminium was produced by laser shock compression. Covering a wide range of scattering angles with unprecedented angular resolution the correlation peak of the ion-ion structure factor could be well resolved. The exceptional collimation of the LCLS beam enabled measurements at small scattering angles, thus approaching the long wavelength limit.

  1. First refraction contrast imaging via Laser-Compton Scattering X-ray at KEK

    SciTech Connect

    Sakaue, Kazuyuki; Aoki, Tatsuro; Washio, Masakazu; Araki, Sakae; Fukuda, Masafumi; Terunuma, Nobuhiro; Urakawa, Junji

    2012-07-31

    Laser-Compton Scattering (LCS) is one of the most feasible techniques for high quality, high brightness, and compact X-ray source. High energy electron beam produced by accelerators scatters off the laser photon at a small spot. As a laser target, we have been developing a pulsedlaser storage cavity for increasing an X-ray flux. The X-ray flux was still inadequate that was 2.1 Multiplication-Sign 10{sup 5}/sec, however, we performed first refraction contrast imaging in order to evaluate the quality of LCS X-ray. Edge enhanced contrast imaging was achieved by changing the distance from sample to detector. The edge enhancement indicates that the LCS X-ray has small source size, i.e. high brightness. We believe that the result has demonstrated good feasibility of linac-based high brightness X-ray sources via laser-electron Compton scatterings.

  2. The trickle before the torrent-diffraction data from X-ray lasers.

    PubMed

    Maia, Filipe R N C; Hajdu, Janos

    2016-01-01

    Today Scientific Data launched a collection of publications describing data from X-ray free-electron lasers under the theme 'Structural Biology Applications of X-ray Lasers'. The papers cover data on nanocrystals, single virus particles, isolated cell organelles, and living cells. All data are deposited with the Coherent X-ray Imaging Data Bank (CXIDB) and available to the scientific community to develop ideas, tools and procedures to meet challenges with the expected torrents of data from new X-ray lasers, capable of producing billion exposures per day. PMID:27479637

  3. The trickle before the torrent-diffraction data from X-ray lasers.

    PubMed

    Maia, Filipe R N C; Hajdu, Janos

    2016-08-01

    Today Scientific Data launched a collection of publications describing data from X-ray free-electron lasers under the theme 'Structural Biology Applications of X-ray Lasers'. The papers cover data on nanocrystals, single virus particles, isolated cell organelles, and living cells. All data are deposited with the Coherent X-ray Imaging Data Bank (CXIDB) and available to the scientific community to develop ideas, tools and procedures to meet challenges with the expected torrents of data from new X-ray lasers, capable of producing billion exposures per day.

  4. The Laser-Driven X-ray Big Area Backlighter (BABL): Design, Optimization, and Evolution

    NASA Astrophysics Data System (ADS)

    Flippo, Kirk; DeVolder, Barbara; Doss, Forrest; Kline, John; Merritt, Elizabeth; Loomis, Eric; Capelli, Deanna; Schmidt, Derek; Schmitt, Mark J.

    2016-05-01

    The Big Area BackLigher (BABL) has been developed for large area laser-driven x-ray backlighting on the National Ignition Facility (NIF), which can be used for general High Energy Density (HED) experiments. The BABL has been optimized via hydrodynamic simulations to produce laser-to-x-ray conversion efficiencies of up to nearly 5%. Four BABL foil materials, Zn, Fe, V, and Cu, have been used for He-α x ray production.

  5. Note: Application of laser produced plasma K{alpha} x-ray probe in radiation biology

    SciTech Connect

    Nishikino, Masaharu; Hasegawa, Noboru; Ishino, Masahiko; Kawachi, Tetsuya; Sato, Katsutoshi; Numasaki, Hodaka; Teshima, Tetruki; Ohshima, Shinsuke; Okano, Yasuaki; Nishimura, Hiroaki

    2010-02-15

    A dedicated radiation biology x-ray generation and exposure system has been developed. 8.0 keV in energy x-ray pulses generated with a femtosecond-laser pulse was used to irradiate sample cells through a custom-made culture dish with a silicon nitride membrane. The x-ray irradiation resulted in DNA double-strand breaks in the nucleus of a culture cell that were similar to those obtained with a conventional x-ray source, thus demonstrating the feasibility of radiobiological studies utilizing a single burst of x-rays focused on single cell specimens.

  6. Soft x-ray contact imaging of biological specimens using a laser-produced plasma as an x-ray source

    SciTech Connect

    Cheng, P.C.

    1990-01-01

    The use of a laser-produced plasma as an x-ray source provides significant advantages over other types of sources for x-ray microradiography of, particularly, living biological specimens. The pulsed nature of the x-rays enables imaging of the specimen in a living state, and the small source size minimizes penumbral blurring. This makes it possible to make an exposure close to the source, thereby increasing the x-ray intensity. In this article, we will demonstrate the applications of x-ray contact microradiography in structural and developmental botany such as the localization of silica deposition and the floral morphologenesis of maize.

  7. Investigation on Soft X-Ray Lasers with a Picosecond-Laser-Irradiated Gas Puff Target

    SciTech Connect

    Fiedorowiez, H; Bartnik, A; Jarocki, R; Rakowski, R; Dunn, J; Smith, R F; Hunter, J; Hilsen, J; Shlyaptsev, V N

    2002-10-09

    We present results of experimental studies on transient gain soft x-ray lasers with a picosecond-laser-irradiated gas puff target. The target in a form of an elongated gas sheet is formed by pulsed injection of gas through a slit nozzle using a high-pressure electromagnetic valve developed and characterized at the Institute of Optoelectronics. The x-ray laser experiments were performed at the Lawrence Livermore National Laboratory using the tabletop Compact Multipulse Terawatt (COMET) laser to irradiate argon, krypton or xenon gas puff targets. Soft x-ray lasing in neon-like argon on the 3p-3s transition at 46.9 nm and the 3d-3p transition at 45.1 nm have been demonstrated, however, no amplification for nickel-like krypton or xenon was observed. Results of the experiments are presented and discussed.

  8. Pulse duration measurements of a picosecond laser-pumped 14.7 nm x-ray laser

    SciTech Connect

    Dunn, J; Smith, R F; Shepherd, R; Booth, R; Nilsen, J; Hunter, J R; Shlyaptsev, V N

    2004-08-03

    The temporal dependence of the 14.7 nm Ni-like Pd ion x-ray laser is measured as a function of the laser drive conditions with a fast sub-picosecond x-ray streak camera. The chirped pulse amplification laser beam that pumps the inversion process is varied from 0.5 - 27 ps (FWHM) to determine the effect on the x-ray laser pulse duration. The average x-ray laser pulse duration varies by a relatively small factor of 2.5 times from 3.6 ps to 8.1 ps with traveling wave (TW) irradiation conditions. Slightly shorter pulse durations approaching 2 ps are observed with the x-ray laser operating below saturation. The x-ray laser is found to be 4 - 5 times transform-limited for 6 - 13 ps laser pumping conditions.

  9. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    SciTech Connect

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10/sup 12/ watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10/sup 9/ watts) and can be focussed to intensities of /approximately/10/sup 16/ W/cm/sup 2/. Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs.

  10. Directional properties of hard x-ray sources generated by tightly focused ultrafast laser pulses

    SciTech Connect

    Hou Bixue; Mordovanakis, Aghapi; Easter, James; Krushelnick, Karl; Nees, John A.

    2008-11-17

    Directional properties of ultrafast laser-based hard x-ray sources are experimentally studied using tightly focused approximately millijoule laser pulses incident on a bulk Mo target. Energy distributions of K{alpha} and total x rays, as well as source-size distributions are directionally resolved in vacuum and in flowing helium, respectively. Directional distributions of x-ray emission is more isotropic for p-polarized pump than for s-polarized. Based on source-size measurements, a simple two-location model, with expanded plasma and bulk material, is employed to represent the x-ray source profile.

  11. The trickle before the torrent—diffraction data from X-ray lasers

    PubMed Central

    Maia, Filipe R.N.C.; Hajdu, Janos

    2016-01-01

    Today Scientific Data launched a collection of publications describing data from X-ray free-electron lasers under the theme ‘Structural Biology Applications of X-ray Lasers’. The papers cover data on nanocrystals, single virus particles, isolated cell organelles, and living cells. All data are deposited with the Coherent X-ray Imaging Data Bank (CXIDB) and available to the scientific community to develop ideas, tools and procedures to meet challenges with the expected torrents of data from new X-ray lasers, capable of producing billion exposures per day. PMID:27479637

  12. King's College laser plasma x-ray source design

    NASA Astrophysics Data System (ADS)

    Alnaimi, Radhwan; Adjei, Daniel; Alatabi, Saleh; Appuhamilage, Indika Arachchi; Michette, Alan

    2013-05-01

    The aim of this work is to design and build a source for a range of applications, with optimized multilayer structures in order to use the source output as efficiently as possible. The source is built around a Nd:YAG laser with fundamental wavelength 1064 nm, frequency doubled 532 nm (green) and tripled 355 nm, with a pulse length of about 800 ps and a repetition rate up to 50 Hz. The target material is Mylar (C10H8O4) tape, which is cheap, readily available and has many benefits as explained in this article. A versatile cubic target chamber and a set of computer controlled stage motors are used to allow positioning of the X-ray emission point. A range of measures is used to protect delicate components and optics, including a glass slide between the focusing lens and the target to prevent the lens being coated with debris. A low pressure gas (typically 3-6 mbar) is used inside the chamber as collision of atomic size debris particles with gas molecules reduces their kinetic energy and consequently their adhesion to the surrounding surfaces. The gas used is typically helium or nitrogen, the latter also acting as a spectral filter. Finally, the chamber is continually pumped to ensure that more than 70% of the debris particles are pumped out of the chamber.

  13. Recombination and collisional x-ray lasers at LULI

    NASA Astrophysics Data System (ADS)

    Jamelot, Gerard; Jaegle, Pierre; Carillon, Antoine; Gauthe, Bernard; Goedtkindt, P.; Guennou, M.; Klisnick, Annie; Moeller, Clary; Rus, Bedrich; Sureau, Alain; Zeitoun, Philippe

    1994-02-01

    We present our recent efforts to produce X-ray lasers in the 200 angstroms range by using the moderate power drive of the LULI facility in Palaiseau. The 4 - 5 transitions of Li-like sulfur exhibit large gain-length products in recombining plasmas, and appear to be less sensitive to plasma non-uniformity than the 3 - 4 and 3 - 5 transitions previously studied. From numerical simulations this is likely due to smaller radiative and collisional excitation from 4f than from 3d levels. In collisional scheme, neon-like zinc gives analogous results to similar works on other elements for the 3p - 3s, J equals 2 yields 1 transitions, but the J equals 0 yields 1 transition shows a surprisingly large gain coefficient of 4.9 cm-1. From a detailed comparison of time-dependent intensities of the J equals 0 yields 1 and the J equals 2 yields 1 lines, we conclude that transitions from J equals 0 and from J equals 2 are not emitted in the same region of the plasma.

  14. Comparison of Single Event Transients Generated by Short Pulsed X-Rays, Lasers and Heavy Ions

    SciTech Connect

    Cardoza, David; LaLumondiere, Stephen D.; Tockstein, Michael A.; Brewe, Dale L.; Wells, Nathan P.; Koga, Rokutaro; Gaab, K. M.; Lotshaw, William T.; Moss, Steven C.

    2014-12-01

    We report an experimental study of the transients generated by pulsed x-rays, heavy ions, and different laser wavelengths in a Si p-i-n photodiode. We compare the charge collected by all of the excitation methods to determine the equivalent LET for pulsed x-rays relative to heavy ions. Our comparisons show that pulsed x-rays from synchrotron sources can generate a large range of equivalent LET and generate transients similar to those excited by laser pulses and heavy ion strikes. We also look at how the pulse width of the transients changes for the different excitation methods. We show that the charge collected with pulsed x-rays is greater than expected as the x-ray photon energy increases. Combined with their capability of focusing to small spot sizes and of penetrating metallization, pulsed x-rays are a promising new tool for high resolution screening of SEE susceptibility

  15. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    PubMed

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  16. Absolutely calibrated soft-x-ray streak camera for laser-fusion applications

    SciTech Connect

    Kauffman, R.L.; Medecki, H.; Stradling, G.

    1982-01-01

    The intensity output of a soft-x-ray streak camera was calibrated (SXRSC) in order to make absolute flux measurements of x rays emitted from laser-produced plasmas. The SXRSC developed at LLNL is used to time-resolve x-ray pulses to better than 20 ps. The SXRSC uses a Au photocathode on a thin carbon substrate which is sensitive to x rays from 100 eV to greater than 10 keV. Calibrations are done in the dynamic mode using a small laser-produced x-ray source. The SXRSC is calibrated by comparing its integrated signal to the output of calibrated x-ray diodes monitoring the source strength. The measured SXRSC response is linear over greater than two orders of magnitude. Using these calibrations, absolute intensities can be measured to an accuracy of +-30%.

  17. Design of a hard X-ray beamline and end-station for pump and probe experiments at Pohang Accelerator Laboratory X-ray Free Electron Laser facility

    NASA Astrophysics Data System (ADS)

    Park, Jaeku; Eom, Intae; Kang, Tai-Hee; Rah, Seungyu; Nam, Ki Hyun; Park, Jaehyun; Kim, Sangsoo; Kwon, Soonam; Park, Sang Han; Kim, Kyung Sook; Hyun, Hyojung; Kim, Seung Nam; Lee, Eun Hee; Shin, Hocheol; Kim, Seonghan; Kim, Myong-jin; Shin, Hyun-Joon; Ahn, Docheon; Lim, Jun; Yu, Chung-Jong; Song, Changyong; Kim, Hyunjung; Noh, Do Young; Kang, Heung Sik; Kim, Bongsoo; Kim, Kwang-Woo; Ko, In Soo; Cho, Moo-Hyun; Kim, Sunam

    2016-02-01

    The Pohang Accelerator Laboratory X-ray Free Electron Laser project, a new worldwide-user facility to deliver ultrashort, laser-like x-ray photon pulses, will begin user operation in 2017 after one year of commissioning. Initially, it will provide two beamlines for hard and soft x-rays, respectively, and two experimental end-stations for the hard x-ray beamline will be constructed by the end of 2015. This article introduces one of the two hard x-ray end-stations, which is for hard x-ray pump-probe experiments, and primarily outlines the overall design of this end-station and its critical components. The content of this article will provide useful guidelines for the planning of experiments conducted at the new facility.

  18. X-ray laser resonator for the kilo-electron-volt range

    SciTech Connect

    Chen, Jie; Tomov, Ivan V.; Er, Ali O.; Rentzepis, Peter M.

    2013-04-29

    We have designed, constructed, and tested an x-ray laser resonator operating in the hard x-ray, keV energy region. This ring x-ray laser cavity is formed by four highly oriented pyrolytic graphite crystals. The crystals are set at the Bragg angles that allow for the complete 360 Degree-Sign round trip of the 2.37 A, 5.23 keV L{sub {alpha}} line of neodymium. In addition, we also present experimental data of a similar ring laser resonator that utilizes the Cr K{sub {alpha}}, 5.41 keV, x-ray line to propagate through the four mirrors of the cavity. The specific properties of these x-ray laser resonator mirrors, including reflection losses and cavity arrangement, are presented.

  19. Overview of Tabletop X-ray Laser Development at the Lawrence Livermore National Laboratory

    SciTech Connect

    Dunn, J; Shlyaptsev, V; Nilsen, J; Smith, R; Keenan, R; Moon, S; Filevich, J; Rocca, J; Nelson, A; Hunter, J; Marconi, M; Li, Y; Osterheld, A; Shepherd, R; Fiedorowicz, H; Bartnik, A; Faenov, A Y; Pikuz, T; Zeitoun, P; Hubert, S; Jacquemot, S; Fajardo, M

    2006-11-03

    It is almost a decade since the first tabletop x-ray laser experiments were implemented at the Lawrence Livermore National Laboratory (LLNL). The decision to pursue the picosecond-driven schemes at LLNL was largely based around the early demonstration of the tabletop Ne-like Ti x-ray laser at the Max Born Institute (MBI) as well as the established robustness of collisional excitation schemes. These picosecond x-ray lasers have been a strong growth area for x-ray laser research. Rapid progress in source development and characterization has achieved ultrahigh peak brightness rivaling the previous activities on the larger facilities. Various picosecond soft-x-ray based applications have benefited from the increased repetition rates. We will describe the activities at LLNL in this area.

  20. Flash imaging of fine structures of cellular organelles by contact x-ray microscopy with a high intensity laser plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Kishimoto, Maki; Tamotsu, Satoshi; Yasuda, Keiko; Kinjo, Yasuhito; Shinohara, Kunio

    2011-09-01

    X-ray flash imaging by contact microscopy with a highly intense laser-plasma x-ray source was achieved for the observation of wet biological cells. The exposure time to obtain a single x-ray image was about 600 ps as determined by the pulse duration of the driving laser pulse. The x-ray flash imaging makes it possible to capture an x-ray image of living biological cells without any artificial treatment such as staining, fixation, freezing, and so on. The biological cells were cultivated directly on the surface of the silicon nitride membranes, which are used for the x-ray microscope. Before exposing the cells to x-rays they were observed by a conventional fluorescent microscope as reference, since the fluorescent microscopes can visualize specific organelles stained with fluorescent dye. Comparing the x-ray images with the fluorescent images of the exact same cells, each cellular organelle observed in the x-ray images was identified one by one and actin filaments and mitochondria were clearly identified in the x-ray images.

  1. Laser-Compton Scattered x-rays for non-destructive assay of surrogate fuel-cycle samples and imaging

    NASA Astrophysics Data System (ADS)

    Naeem, Syed F.

    One of our research goals at the Idaho Accelerator Center focuses on Laser-Compton Scattering (LCS) based nuclear science applications such as non-destructively quantifying concentrations of transuranic (TRIJ) elements in a surrogate of spent nuclear fuel and imaging. Non-destructive techniques include x-ray transmission and x-ray fluorescence. Both of these can be very sensitive techniques with tunable monochromatic x-rays. We investigated quasi-monochromatic x-rays from LCS for this purpose. Four sharp ˜20 keV, ˜36.7 keV, ˜99 keV, and ˜122 keV LCS peaks were produced in four separate experiments using electron beams tuned to ˜33 MeV, -˜32 MeV, ˜37 MeV, and ˜41 MeV that were brought in collision with the Nd:YAG laser (the peak laser power was 4 GW) operating at 1064 nm, 532 nm and 266 nm wavelengths respectively. The linac was operating at 60 Hz with an electron beam pulse length of about 50 ps and a peak current of about 7 A. X-ray fluorescence (XRF) experiments were first carried out to identify elemental XRF emission from Ag, Cd, and Sn foils with thicknesses ranging from 25--500 mum, following the absorption of ˜36.7 keV LCS x-rays. The intensities of the measured Kalpha1 emission lines were then compared to the predicted Kalpha1 intensities; based on the comparison, there was an estimated deviation of up to ≈10.4% between the predicted and measured Kalpha1 intensities. Next, the transmission experiments were carried out by transmitting a ˜99 keV LCS x-ray beam through Bi foils of thicknesses ranging from 50--250 mum to measure the transmission of the interrogating LCS x-ray beam. There was a relative deviation of up to ≈9.4 % between the predicted and measured transmission respectively. We then focused on exploiting the Hybrid K-Edge Densitometry (HKED) technique for the purpose of quantifying the concentrations of Uranium in the surrogate of spent nuclear fuel using a ˜122 keV LCS x-ray beam. The measured concentrations deviated by about 2

  2. Standoff detection of hidden objects using backscattered ultra-intense laser-produced x-rays

    SciTech Connect

    Kuwabara, H.; Mori, Y.; Kitagawa, Y.

    2013-08-28

    Ultra-intense laser-produced sub-ps X-ray pulses can detect backscattered signals from objects hidden in aluminium containers. Coincident measurements using primary X-rays enable differentiation among acrylic, copper, and lead blocks inside the container. Backscattering reveals the shapes of the objects, while their material composition can be identified from the modification methods of the energy spectra of backscattered X-ray beams. This achievement is an important step toward more effective homeland security.

  3. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    SciTech Connect

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; /SLAC

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  4. Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses

    DOEpatents

    MacGowan, Brian J.; Matthews, Dennis L.; Trebes, James E.

    1988-01-01

    A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

  5. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOEpatents

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  6. Photoelectron diffraction from laser-aligned molecules with X-ray free-electron laser pulses

    PubMed Central

    Nakajima, Kyo; Teramoto, Takahiro; Akagi, Hiroshi; Fujikawa, Takashi; Majima, Takuya; Minemoto, Shinichirou; Ogawa, Kanade; Sakai, Hirofumi; Togashi, Tadashi; Tono, Kensuke; Tsuru, Shota; Wada, Ken; Yabashi, Makina; Yagishita, Akira

    2015-01-01

    We report on the measurement of deep inner-shell 2p X-ray photoelectron diffraction (XPD) patterns from laser-aligned I2 molecules using X-ray free-electron laser (XFEL) pulses. The XPD patterns of the I2 molecules, aligned parallel to the polarization vector of the XFEL, were well matched with our theoretical calculations. Further, we propose a criterion for applying our molecular-structure-determination methodology to the experimental XPD data. In turn, we have demonstrated that this approach is a significant step toward the time-resolved imaging of molecular structures. PMID:26369428

  7. Modeling of laser produced plasma and z-pinch x-ray lasers

    SciTech Connect

    Dunn, J; Frati, M; Gonzales, J J; Kalashnikov, M P; Marconi, M C; Moreno, C H; Nickels, P V; Osterheld, A L; Rocca, J J; Sandner, W; Shlyaptsev, V N

    1999-02-07

    In this work we describe our theoretical activities in two directions of interest. First, we discuss progress in modeling laser produced plasmas mostly related to transient collisional excitation scheme experiments with Ne- and recently with Ni-like ions. Calculations related to the delay between laser pulses, transient gain duration and hybrid laser/capillary approach are described in more detail. Second, the capillary discharge plasma research, extended to wider range of currents and rise-times has been outlined. We have systematically evaluated the major plasma and atomic kinetic properties by comparing near- and far-field X-ray laser output with that for the capillary Argon X-ray laser operating under typical current values. Consistent with the experiment insight was obtained for the 469{angstrom} X-ray laser shadowgraphy experiments with very small kiloamp currents. At higher currents, as much as {approximately}200 kA we evaluated plasma temperature, density and compared x-ray source size and emitted spectra.

  8. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.

    PubMed

    Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi

    2015-07-01

    Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles.

  9. X-ray Spectral Measurements of the JMAR High-Power Laser-plasma Source

    NASA Astrophysics Data System (ADS)

    Whitlock, Robert R.; Dozier, Charles M.; Newman, Daniel A.; Turcu, I. C. Edmond; Gaeta, Celestino J.; Cassidy, Kelly L.; Powers, Michael F.; Kleindolph, Thomas; Morris, James H.; Forber, Richard A.

    2002-10-01

    X-ray spectra of Cu plasmas at the focus of a four-beam, solid-state diode-pumped laser have been recorded. This laser-plasma X-ray source is being developed for JMAR's lithography systems aimed at high- performance semiconductor integrated circuits. The unique simultaneous overlay of the four sub-nanosecond laser beams at 300 Hertz produces a bright, point-plasma X-ray source. PIN diode measurements of the X-ray output indicate that the conversion efficiency (ratio of X-ray emission energy into 2π steradians to incident laser energy) was approximately 9 percent with average X-ray power yields of greater than 10 Watts. Spectra were recorded on calibrated Kodak DEF film in a curved-crystal spectrograph. A KAP crystal (2d = 26.6 Angstroms) was used to disperse the 900 eV to 3000 eV spectral energies onto the film. Preliminary examination of the films indicated the existence of Cu and Cu XX ionization states. Additional spectra as a function of laser input power were also recorded to investigate potential changes in X-ray yields. These films are currently being analyzed. The analysis of the spectra provide absolute line and continuum intensities, and total X-ray output in the measured spectral range.

  10. An X-Ray Free-Electron Laser Oscillator for Record High Spectral Purity and Average Brightness (Progress and Prospects for X-ray Free Electron Lasers)

    SciTech Connect

    Kim, Kwang-Je

    2009-06-24

    With the success of the LCLS at SLAC, synchrotron radiation community is entering the era of x-ray free-electron lasers (FELs) with an enormous jump in brightness and coherence over that possible with third-generation x-ray sources. The LCLS is a single-pass, high-gain device producing quasi-coherent x-rays known as self-amplified spontaneous emission. Hard x-ray FELs are also feasible in an oscillator (XFELO) configuration, in which an x-ray pulse is trapped a low-loss optical cavity consisting of diamond crystals, permitting build-up in the intensity and coherence over several hundred passes. An XFELO produces ultrahigh spectral purity and brightness-average brightness several orders of magnitude higher than, and peak brightness comparable to, self-amplified spontaneous emission devices; opening up new scientific opportunities as well as drastically improving and complementing experimental techniques developed at third-generation x-ray facilities. We discuss unique R&D issues in accelerator and x-ray optics and encouraging progress to date.

  11. With mirrors and finesse, labs domesticate the x-ray laser

    SciTech Connect

    Hellemans, A.

    1996-07-05

    Space beam weapons and unlimited energy from fusion may have been pipe dreams of the 1980s. But today these dreams are giving birth to practical laboratory tools: tabletop x-ray lasers that may open up whole new areas of chemistry and biology. The first x-ray lasers were energized by nuclear explosions or jolts of light from giant glass lasers built for fusion experiments-hardly bench-top equipment. Now, says Joseph Nilsen, a physicist at Lawrence Livermore National Laboratory (LLNL), {open_quotes}several small university-size places are actually making a lot of progress toward tabletop lasers people can use every day.{close_quotes} This article highlight progress towards cheap ubiquitous X-ray lasers as described at the 5th International Conference on X-ray Lasers.

  12. Characteristic x-ray emission from undermines plasmas irradiated by ultra-intense lasers

    SciTech Connect

    Niemann, Christoph

    2012-05-05

    Between FY09 and FY11 we have conducted more than a dozen three-week experimental campaigns at high-power laser facilities around the world to investigate laser-channeling through x-ray and optical imaging and the conversion from laser-energy to xrays. We have performed simultaneous two-wavelength x-ray imaging (K-alpha and He-alpha) to distinguish the hot-plasma region (hot-spot) from the laser-produced electrons (K-alpha). In addition, we have initiated a new collaboration with SNL and have performed first shots on the 100 TW beamlet chamber to commission a fast x-ray streak camera to be used to investigate the temporal evolution of our K-alpha sources. We also collaborated on campaigns at the Rutherford Appleton Laboratory (UK) and the LANL Trident laser to employ laser produced x-ray sources for Thomson scattering off dense matter.

  13. X-ray lasers. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Mauk, S. C.

    1980-01-01

    Various aspects of X-ray lasers are discussed in approximately 122 citations. Included are laser plasmas and outputs, plasma radiation, far ultraviolet radiation, gamma rays, optical pumping, optical resonators, and electron transitions. Laser applications, laser materials, and laser fusion are also included.

  14. Nonlinear effects in propagation of radiation of X-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Nosik, V. L.

    2016-05-01

    Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of "hollow" atomic shells as a result of the photoelectric effect.

  15. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.

    PubMed

    Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi

    2013-01-01

    We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.

  16. Framed, 16-Image, Kirkpatrick-Baez Microscope for Laser-Plasma X-Ray Emission

    SciTech Connect

    Marshall, F.J.; Oertel, J.A.; Walsh, P.J.

    2004-10-19

    A framed, 16-image Kirkpatrick-Baez (KB) type x-ray microscope has been designed for use in imaging laser-plasma x-ray emission. The reflecting elements are 16 pairs of concave mirrors arranged to reflect and focus x rays emanating from a laser-produced plasma. The resolution of the elements is 3 mm at best focus and is better than 5 mm within a 500-mm diam region. A framing camera will be used in combination with the KB optic to produce 16 gated images over a typical interval of 1.5 ns. The system is designed for use on the University of Rochester's OMEGA laser facility.

  17. High-average-power water window soft X-rays from an Ar laser plasma

    NASA Astrophysics Data System (ADS)

    Amano, Sho

    2016-07-01

    A high average power of 140 mW and high conversion efficiency of 14% were demonstrated in “water window” soft X-rays generated using a laser plasma source developed in-house, when a solid Ar target was irradiated by a commercial Nd:YAG Q-switched laser with an energy of 1 J at a repetition rate of 1 Hz. This soft X-ray power compared favorably with that produced using a synchrotron radiation source, and the developed laser plasma source can be used in various applications, such as soft X-ray microscopy, in place of synchrotron facilities.

  18. Application of imaging plate to x-ray imaging and spectroscopy in laser plasma experiments

    SciTech Connect

    Izumi, N; Snavely, R; Gregori, G; Koch, J A; Park, H; Remington, B A

    2006-04-25

    We report recent progress of x-ray diagnostic techniques in laser plasma experiment with using imaging plates. Imaging plate is a photo-stimulable phosphor screen (BaF(Br0.85,10.15):Eu{sup 2+}) deposited on flexible metal or plastic substrate. We applied the imaging plate to x-ray microscopy in laser fusion experiment experiments. Self-emission x-ray images of imploded core were obtained successfully with using imaging plate and high magnification target mounted pinhole arrays. The imaging plates were applied also in ultra-intense laser experiment at the Rutherford Appleton Laboratory. Small samarium foil was irradiated by high intensity laser pulse from the Vulcan laser system. The k shell x-rays from the foil ({approx}40keV) was used as a line x-ray source for microscopic radiography. Performance of imaging plate on high-energy x-ray backlit radiography was demonstrated by imaging sinusoidal grooves of 6um amplitude on a Au foil. Detailed spectrum of k shell x-ray from Cu embedded foil target was successfully observed by fully coupling imaging plate with a highly ordered pyrolytic graphite crystal spectrometer. The performances of the imaging plates evaluated in actual laser plasma experiments will be presented.

  19. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE PAGES

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; et al

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  20. Femtosecond all-optical synchronization of an X-ray free-electron laser

    SciTech Connect

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.

  1. Femtosecond all-optical synchronization of an X-ray free-electron laser

    PubMed Central

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  2. Damage threshold of coating materials on x-ray mirror for x-ray free electron laser.

    PubMed

    Koyama, Takahisa; Yumoto, Hirokatsu; Miura, Takanori; Tono, Kensuke; Togashi, Tadashi; Inubushi, Yuichi; Katayama, Tetsuo; Kim, Jangwoo; Matsuyama, Satoshi; Yabashi, Makina; Yamauchi, Kazuto; Ohashi, Haruhiko

    2016-05-01

    We evaluated the damage threshold of coating materials such as Mo, Ru, Rh, W, and Pt on Si substrates, and that of uncoated Si substrate, for mirror optics of X-ray free electron lasers (XFELs). Focused 1 μm (full width at half maximum) XFEL pulses with the energies of 5.5 and 10 keV, generated by the SPring-8 angstrom compact free electron laser (SACLA), were irradiated under the grazing incidence condition. The damage thresholds were evaluated by in situ measurements of X-ray reflectivity degradation during irradiation by multiple pulses. The measured damage fluences below the critical angles were sufficiently high compared with the unfocused SACLA beam fluence. Rh coating was adopted for two mirror systems of SACLA. One system was a beamline transport mirror system that was partially coated with Rh for optional utilization of a pink beam in the photon energy range of more than 20 keV. The other was an improved version of the 1 μm focusing mirror system, and no damage was observed after one year of operation.

  3. Damage threshold of coating materials on x-ray mirror for x-ray free electron laser.

    PubMed

    Koyama, Takahisa; Yumoto, Hirokatsu; Miura, Takanori; Tono, Kensuke; Togashi, Tadashi; Inubushi, Yuichi; Katayama, Tetsuo; Kim, Jangwoo; Matsuyama, Satoshi; Yabashi, Makina; Yamauchi, Kazuto; Ohashi, Haruhiko

    2016-05-01

    We evaluated the damage threshold of coating materials such as Mo, Ru, Rh, W, and Pt on Si substrates, and that of uncoated Si substrate, for mirror optics of X-ray free electron lasers (XFELs). Focused 1 μm (full width at half maximum) XFEL pulses with the energies of 5.5 and 10 keV, generated by the SPring-8 angstrom compact free electron laser (SACLA), were irradiated under the grazing incidence condition. The damage thresholds were evaluated by in situ measurements of X-ray reflectivity degradation during irradiation by multiple pulses. The measured damage fluences below the critical angles were sufficiently high compared with the unfocused SACLA beam fluence. Rh coating was adopted for two mirror systems of SACLA. One system was a beamline transport mirror system that was partially coated with Rh for optional utilization of a pink beam in the photon energy range of more than 20 keV. The other was an improved version of the 1 μm focusing mirror system, and no damage was observed after one year of operation. PMID:27250368

  4. X-ray microscopy and imaging of Caenorhabditis elegans nematode using a laser-plasma-pulsed x-ray source

    NASA Astrophysics Data System (ADS)

    Poletti, Giulio; Orsini, Franceasco; Ullschmied, Jiri; Skala, Jiri; Kralikova, Bozena; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomas; Prag, A. R.; Cotelli, F.; Lora Lamia, C.; Batani, Dimitri; Bernardinello, A.; Desai, Tara; Zullini, A.

    2004-01-01

    An experiment on Soft X-ray Contact Microscopy (SXCM) performed on Caenorhabditis elegans nematodes is discussed. This sample has been selected since it is a well studied case used as model in many biological contexts. The experiment has been performed using the iodine PALS laser source to generate pulsed soft X-rays from laser-plasma interaction, using molybdenum and gold as targets. Typical intensities on the targets exceeded 1014 W/cm2. The SXCM imprints have been recorded on Polymethilmetacrylate (PMMA) photo resists which have been chemically developed and analyzed with an Atomic Force Microscope (AFM) operating in constant force mode. The use of error signal AFM images together with topography AFM images, did allow an easier recognition of biological patterns, and the identification of observed structures with internal organs. Several organs were identified in the SXCM images, including cuticle annuli, alae, pharynx, and three different types of cell nuclei. These are the first SXCM images of multi-cellular complex organisms.

  5. X-ray diagnostic calibration with the tabletop laser facility EQUINOX.

    PubMed

    Reverdin, Charles; Paurisse, M; Caillaud, T; Combis, P; Duval, A; Gontier, D; Husson, D; Rubbelynck, C; Zuber, C

    2008-10-01

    The broadband x-ray emission of a target irradiated by a laser can be used to check the calibration of detectors. At CEA-DIF we have a tabletop picosecond laser facility called EQUINOX with 0.3 J at 800 nm. The laser is focused inside a target chamber onto a solid target and produces bright radiation in the 100-2000 eV spectral range. The x-ray source is routinely monitored with a pinhole camera for source dimension measurement and with x-ray diodes for flux measurement. In addition an x-ray transmission grating spectrometer, a crystal spectrometer, and a single count charge coupled device camera measure the x-ray spectrum between 100 eV and 15 keV. The absolute calibration of those sets of spectrometers allows us to fully characterize x-ray emission spectra. Typical duration is less than 100 ps. The spectrum can be tuned by changing target material, pulse length, and x-ray filters. An application to checking the calibration of x-ray diodes used in the broad band spectrometer DMX with single shots will be presented. PMID:19044587

  6. X-ray diagnostic calibration with the tabletop laser facility EQUINOX

    SciTech Connect

    Reverdin, Charles; Paurisse, M.; Caillaud, T.; Combis, P.; Duval, A.; Gontier, D.; Husson, D.; Rubbelynck, C.; Zuber, C.

    2008-10-15

    The broadband x-ray emission of a target irradiated by a laser can be used to check the calibration of detectors. At CEA-DIF we have a tabletop picosecond laser facility called EQUINOX with 0.3 J at 800 nm. The laser is focused inside a target chamber onto a solid target and produces bright radiation in the 100-2000 eV spectral range. The x-ray source is routinely monitored with a pinhole camera for source dimension measurement and with x-ray diodes for flux measurement. In addition an x-ray transmission grating spectrometer, a crystal spectrometer, and a single count charge coupled device camera measure the x-ray spectrum between 100 eV and 15 keV. The absolute calibration of those sets of spectrometers allows us to fully characterize x-ray emission spectra. Typical duration is less than 100 ps. The spectrum can be tuned by changing target material, pulse length, and x-ray filters. An application to checking the calibration of x-ray diodes used in the broad band spectrometer DMX with single shots will be presented.

  7. X-ray diagnostic calibration with the tabletop laser facility EQUINOXa)

    NASA Astrophysics Data System (ADS)

    Reverdin, Charles; Paurisse, M.; Caillaud, T.; Combis, P.; Duval, A.; Gontier, D.; Husson, D.; Rubbelynck, C.; Zuber, C.

    2008-10-01

    The broadband x-ray emission of a target irradiated by a laser can be used to check the calibration of detectors. At CEA-DIF we have a tabletop picosecond laser facility called EQUINOX with 0.3J at 800nm. The laser is focused inside a target chamber onto a solid target and produces bright radiation in the 100-2000eV spectral range. The x-ray source is routinely monitored with a pinhole camera for source dimension measurement and with x-ray diodes for flux measurement. In addition an x-ray transmission grating spectrometer, a crystal spectrometer, and a single count charge coupled device camera measure the x-ray spectrum between 100eV and 15keV. The absolute calibration of those sets of spectrometers allows us to fully characterize x-ray emission spectra. Typical duration is less than 100ps. The spectrum can be tuned by changing target material, pulse length, and x-ray filters. An application to checking the calibration of x-ray diodes used in the broad band spectrometer DMX with single shots will be presented.

  8. Tomography of human trabecular bone with a laser-wakefield driven x-ray source

    NASA Astrophysics Data System (ADS)

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Parker, S.; Symes, D. R.; Sandholzer, M. A.; Mangles, S. P. D.; Najmudin, Z.

    2016-01-01

    A laser-wakefield driven x-ray source is used for the radiography of human bone. The betatron motion of accelerated electrons generates x-rays which are hard (critical energy {{E}\\text{crit}}>30 keV), have small source size (<3 μm) and high average brightness. The x-rays are generated from a helium gas cell which is near-instantly replenishable, and thus the average photon flux is limited by the repetition rate of the driving laser rather than the breakdown of the x-ray source. A tomograph of a human bone sample was recorded with a resolution down to 50 μm. The photon flux was sufficiently high that a radiograph could be taken with each laser shot, and the fact that x-ray beams were produced on 97% of shots minimised failed shots and facilitated full micro-computed tomography in a reasonable time scale of several hours, limited only by the laser repetition rate. The x-ray imaging beamline length (not including the laser) is shorter than that of a synchrotron source due to the high accelerating fields and small source size. Hence this interesting laboratory-based source may one day bridge the gap between small microfocus x-ray tubes and large synchrotron facilities.

  9. X-ray Scattering from Ag (001) and Ag (111) Surfaces in Electrochemical Environments: Dynamics and Structure

    NASA Astrophysics Data System (ADS)

    Karl, Robert, Jr.; Pierce, Michael; Komanicky, Vladimir; You, Hoydoo; Barbour, Andi; Zhu, Chenhui; Sandy, Alec

    2014-03-01

    We have investigated the Ag (001) and Ag (111) single crystal surfaces in weak electrolyte using a combination of x-ray Crystal Truncation Rod (CTR) experiments to determine structural information and X-ray Photon Correlation Spectroscopy (XPCS) to examine the nano-scale dynamics. Our structural measurements confirm earlier potential dependent measurements of H2O over the Ag (111) surface, and also show that the Ag (001) H2O interface behaves in an analogous fashion. The XPCS dynamics data reveal how the surface evolves, in real-time, relative to the point of zero charge. Both the CTR and XPCS data were collected at different applied potentials. By comparing the CTR data with the XPCS data, along with ex-situ Atomic Force Microscopy (AFM), we will investigate relationships between the dynamics of the Ag surface and the distribution of H2O molecules above the crystal surface. This work and use of the Advanced Photon Source were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The work at Safarik University was supported by Slovak grant VEGA 1/0782/12.

  10. Development of a Time-resolved Soft X-ray Spectrometer for Laser Produced Plasma Experiments

    SciTech Connect

    Cone, K V; Dunn, J; Schneider, M B; Baldis, H A; Brown, G V; Emig, J; James, D L; May, M J; Park, J; Shepherd, R; Widmann, K

    2010-05-12

    A 2400 line/mm variable spaced grating spectrometer (VSG) has been used to measure soft x-ray emission (8-22 {angstrom}) from laser-produced plasma experiments at Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) Laser Facility. The spectrometer was coupled to a Kentech x-ray streak camera to study the temporal evolution of soft x-rays emitted from the back of mylar and copper foils irradiated at 10{sup 15} W/cm{sup 2}. The instrument demonstrated a resolving power of {approx} 120 at 19 {angstrom} with a time resolution of 31 ps. The time-resolved copper emission spectrum was consistent with a photodiode monitoring the laser temporal pulse shape and indicated that the soft x-ray emission follows the laser heating of the target. The time and spectral resolution of this diagnostic make it useful for studies of high temperature plasmas.

  11. Homogeneous focusing with a transient soft X-ray laser for irradiation experiments

    NASA Astrophysics Data System (ADS)

    Kazamias, S.; Cassou, K.; Guilbaud, O.; Klisnick, A.; Ros, D.; Plé, F.; Jamelot, G.; Rus, B.; Koslová, M.; Stupka, M.; Mocek, T.; Douillet, D.; Zeitoun, Ph.; Joyeux, D.; Phalippou, D.

    2006-07-01

    We report the work done on a transient soft X-ray laser (SXRL) beam to deliver a proper extreme UV irradiation source for applications. The same optical tool was first demonstrated on a quasi stationnary state (QSS) soft X-Ray laser at the PALS Institute in Prague. The problem set by the transient soft X-Ray laser developed by the LIXAM at the LULI installation in Palaiseau is more crucial, first because the beam spatial profile is more irregular secondly because high repetition rate soft X-ray laser facilities in the future are based on this SXRL type. The spots obtained show a 20 micron average diameter and a rather homogeneous and smooth profile that make them a realistic irradiation source to interact with targets requiring relatively high fluence (near 1 J/cm 2) or intensity (near 10 11 W/cm 2) in the extreme UV domain.

  12. Calibration of a Flat Field Soft X-ray Grating Spectrometer for Laser Produced Plasmas

    SciTech Connect

    Park, J; Brown, G V; Schneider, M B; Baldis, H A; Beiersdorfer, P; Cone, K V; Kelley, R L; Kilbourne, C A; Magee, E; May, M J; Porter, F S

    2010-05-12

    We have calibrated the x ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL, and at both the Omega and Omega EP lasers at University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range from {approx} 6 to 60 {angstrom}. The calibration results present here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from hydrogen-like and helium-like ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x ray intensities recorded by the VSG to those simultaneously recorded by an x ray microcalorimeter spectrometer.

  13. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    SciTech Connect

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-10-15

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10{sup 14} to 1.8 × 10{sup 15} W/cm{sup 2}. Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data.

  14. Enhanced x-rays from resonant betatron oscillations in laser wakefield with external wigglers

    NASA Astrophysics Data System (ADS)

    Zhang, Z. M.; Zhang, B.; Hong, W.; Yu, M. Y.; Deng, Z. G.; Teng, J.; He, S. K.; Gu, Y. Q.

    2016-11-01

    Generation of ultra-short betatron x-rays by laser-accelerated electron beams is of great research interest as it has many applications. In this paper, we propose a scheme for obtaining bright betatron x-rays by applying external wiggler magnetic field in the laser wakefield to resonantly drive the betatron oscillations of the accelerated electrons therein. This results in a significant enhancement of the betatron oscillation amplitude and generation of bright x-rays with high photon energy. The scheme is demonstrated using two-dimensional particle-in-cell simulation and discussed using a simple analytical model.

  15. Experimental demonstration of laser to x-ray conversion enhancements with low density gold targets

    DOE PAGES

    Shang, Wanli; Yang, Jiamin; Zhang, Wenhai; Li, Zhichao; Deng, Bo; Dong, Yunsong; Zhu, Tuo; Huang, Chengwu; Zhan, Xiayu; Mei, Yu; et al

    2016-02-12

    The enhancement of laser to x-ray conversion efficiencies using low density gold targets [W. L. Shang, J. M. Yang, and Y. S. Dong, Appl. Phys. Lett. 102, 094105 (2013)] is demonstrated. Laser to x-ray conversion efficiencies with 6.3% and 12% increases are achieved with target densities of 1 and 0.25 g/cm3, when compared with that of a solid gold target (19.3 g/cm3). Experimental data and numerical simulations are in good agreement. Lastly, the enhancement is caused by larger x-ray emission zone lengths formed in low density targets, which is in agreement with the simulation results.

  16. Exploring the Potential of Table-Top X-Ray Lasers and Capillary Discharge for Applications

    SciTech Connect

    Shlyaptev, V N; Dunn, J; Smith, R F; Moon, S J; Fournier, K B; Nilsen, J; Osterheld, A L; Kuba, J; Wootton, A J; Lee, R W; Rocca, J J; Rahman, A; Hammarsten, E; Filevich, J; Jankovska, E; Marconi, M C; Fornaciari, N; Buchenauer, D; Hender, H A; Kari,M S; Kanouff, M; Dimkoff, J; Kubiak, G; Shimkaveg, G; Silfvast, W T

    2003-05-08

    The advantages of using of table top x-ray lasers (XRLs) for different applications have been described. Examples of the first successful use of XRLs, the current efforts in applying them and the potential applications where an XRL can be used in future have been discussed. Modeling results showing the possibility of 3-4 times shorter wavelength capillary discharge x-ray lasers and calculated spectrum of Xe capillary EUV source are presented.

  17. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    SciTech Connect

    Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G.; Heimann, P.; Krupin, O.; Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S.; Kelez, N.; Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W.; and others

    2012-04-15

    The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

  18. A Picosecond 14.7 nm X-Ray Laser for Probing Matter Undergoing Rapid Changes

    SciTech Connect

    Dunn, J; Smith, R F; Nilsen, J; Nelson, A J; Van Buuren, T W; Moon, S J; Hunter, J R; Filevich, J; Rocca, J J; Marconi, M C; Shlyaptsev, V N

    2002-10-07

    With laser-driven tabletop x-ray lasers now operating in the efficient saturation regime, the source characteristics of high photon flux, high monochromaticity, picosecond pulse duration, and coherence are well-matched to many applications involving the probing of matter undergoing rapid changes. We give an overview of recent experiments at the Lawrence Livermore National Laboratory (LLNL) Compact Multipulse Terawatt (COMET) laser using the picosecond 14.7 nm x-ray laser as a compact, ultrafast probe for surface analysis and for interferometry of laser-produced plasmas. The plasma density measurements for known laser conditions allow us to reliably and precisely benchmark hydrodynamics codes. In the former case, the x-ray laser ejects photo-electrons, from the valence band or shallow core-levels of the material, and are measured in a time-of-flight analyzer. Therefore, the electronic structure can be studied directly to determine the physical properties of materials undergoing rapid phase changes.

  19. Inner-Shell Photon-Ionized X-Ray Laser at 45(Angstrom)

    SciTech Connect

    Weber, F; Celliers, P; Moon, S; Snavely, R; Da Silva, L

    2002-02-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Lab Wide (LW) project entitled, ''An Inner-Shell Photo-Ionized X-Ray Laser at 45 {angstrom}'', tracking code 99-LW-042. The most significant accomplishments of this project include the design of a suitable x-ray laser target, the invention of a measurement technique for the determination of rise times of x-ray pulses on the order of 50 femtoseconds, and a novel setup for generating a traveling wave with an ultrashort optical laser pulse. The pump probe technique for rise time measurement will allow us to detect ultrashort x-ray pulses, whose generation by means of a variety of 4th generation light sources is currently under planning elsewhere.

  20. Framed, 16-image, Kirkpatrick-Baez microscope for laser-plasma x-ray emission

    SciTech Connect

    Marshall, F.J.; Oertel, J.A.; Walsh, P.J.

    2004-10-01

    A framed, 16-image, Kirkpatrick-Baez (KB)-type x-ray microscope has been designed for use in imaging laser-plasma x-ray emission. The reflecting elements are 16 pairs of concave mirrors arranged to reflect and focus x rays emanating from a laser-produced plasma. The resolution of the elements is 3 {mu}m at best focus and is better than 5 {mu}m within a 400-{mu}m-diam region. A framing camera will be used in combination with the KB optic to produce 16 gated x-ray images in the energy range from 1.5 to 7 keV over a typical interval of 1.5 ns. This system is designed for use on the University of Rochester's OMEGA laser facility [T. R. Boehly et al., Opt Commun. 133, 495 (1997)].

  1. Enhanced X-ray radiation from laser wakefield acceleration transition to plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei; Thomas, Alexander; Cummings, Paul; Krushelnick, Karl

    2015-11-01

    The electromagnetic fields responsible for Laser Wakefield Acceleration (LWFA) also cause electrons to radiate bright X-ray pulses though betatron oscillations. Using 3-D OSIRIS particle in cell simulations with a Monte Carlo synchrotron X-ray emission algorithm, the X-ray flux was also shown to increase dramatically for interaction distances beyond the dephasing length, where the main electron beams in the first ion bubble catch up the laser pulse front. Subsequently, it forms a secondary beam in the tail of the first bubble. Laser wakefield acceleration transitions to beam driven plasma wakefield acceleration, which results in the onset of the electron-hose instability and thus significantly enhances the X-ray radiation.

  2. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source

    PubMed Central

    Wenz, J.; Schleede, S.; Khrennikov, K.; Bech, M.; Thibault, P.; Heigoldt, M.; Pfeiffer, F.; Karsch, S.

    2015-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources. PMID:26189811

  3. Images of the laser entrance hole from the static x-ray imager at NIF.

    PubMed

    Schneider, M B; Jones, O S; Meezan, N B; Milovich, J L; Town, R P; Alvarez, S S; Beeler, R G; Bradley, D K; Celeste, J R; Dixit, S N; Edwards, M J; Haugh, M J; Kalantar, D H; Kline, J L; Kyrala, G A; Landen, O L; MacGowan, B J; Michel, P; Moody, J D; Oberhelman, S K; Piston, K W; Pivovaroff, M J; Suter, L J; Teruya, A T; Thomas, C A; Vernon, S P; Warrick, A L; Widmann, K; Wood, R D; Young, B K

    2010-10-01

    The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.

  4. Images of the Laser Entrance Hole from the Static X-ray Imager at NIF

    SciTech Connect

    Schneider, M; Jones, O; Meezan, N; Milovich, J; Town, R; Alvarez, S; Beeler, R; Bradley, D; Celeste, J; Dixit, S; Edwards, M; Haugh, M; Kalantar, D; Kline, J; Kyrala, G; Landen, O; MacGowan, B; Michel, P; Moody, J; Oberhelman, S; Piston, K; Pivovaroff, M; Suter, L; Teruya, A; Thomas, C; Vernon, S; Warrick, A; Widman, K; Wood, R; Young, B

    2010-05-04

    The Static X-ray Imager (SXI) at the National Ignition Facility (NIF) is a pinhole camera using a CCD detector to obtain images of hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters combined with the CCD response allows recording images in the x-ray range of 3 to 5 keV with 60 {micro}m spatial resolution. The routines used to obtain the apparent size of the backlit LEH, and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition hohlraum) is discussed.

  5. Images of the laser entrance hole from the static x-ray imager at NIF

    SciTech Connect

    Schneider, M. B.; Jones, O. S.; Meezan, N. B.; Milovich, J. L.; Town, R. P.; Alvarez, S. S.; Beeler, R. G.; Bradley, D. K.; Celeste, J. R.; Dixit, S. N.; Edwards, M. J.; Kalantar, D. H.; Landen, O. L.; MacGowan, B. J.; Michel, P.; Moody, J. D.; Oberhelman, S. K.; Piston, K. W.; Pivovaroff, M. J.; Suter, L. J.; and others

    2010-10-15

    The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 {mu}m spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.

  6. Bright betatron X-ray radiation from a laser-driven-clustering gas target

    PubMed Central

    Chen, L. M.; Yan, W. C.; Li, D. Z.; Hu, Z. D.; Zhang, L.; Wang, W. M.; Hafz, N.; Mao, J. Y.; Huang, K.; Ma, Y.; Zhao, J. R.; Ma, J. L.; Li, Y. T.; Lu, X.; Sheng, Z. M.; Wei, Z. Y.; Gao, J.; Zhang, J.

    2013-01-01

    Hard X-ray sources from femtosecond (fs) laser-produced plasmas, including the betatron X-rays from laser wakefield-accelerated electrons, have compact sizes, fs pulse duration and fs pump-probe capability, making it promising for wide use in material and biological sciences. Currently the main problem with such betatron X-ray sources is the limited average flux even with ultra-intense laser pulses. Here, we report ultra-bright betatron X-rays can be generated using a clustering gas jet target irradiated with a small size laser, where a ten-fold enhancement of the X-ray yield is achieved compared to the results obtained using a gas target. We suggest the increased X-ray photon is due to the existence of clusters in the gas, which results in increased total electron charge trapped for acceleration and larger wiggling amplitudes during the acceleration. This observation opens a route to produce high betatron average flux using small but high repetition rate laser facilities for applications. PMID:23715033

  7. An ARXPS and ERXPS study of quaternary ammonium and phosphonium ionic liquids: utilising a high energy Ag Lα' X-ray source.

    PubMed

    Blundell, Rebecca K; Delorme, Astrid E; Smith, Emily F; Licence, Peter

    2016-02-17

    A series of ammonium- and phosphonium-based ionic liquids have been probed using X-ray photoelectron spectroscopy (XPS) with a high energy Ag Lα' X-ray source. The capability of the Ag Lα' X-ray source for ionic liquid analysis is confirmed alongside the characterisation of previously undetected high energy core photoelectron emissions. Additionally, the utilisation of the Ag Lα' X-ray source as a depth profiling technique (ERXPS) to investigate the structure of the ionic liquid/vacuum interface has been demonstrated, with comparison made to angle resolved X-ray photoelectron spectroscopy (ARXPS).

  8. Displacive phase-transition of cuprite Ag2O revealed by extended x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Sanson, Andrea

    2016-08-01

    The low-temperature phase-transition of silver oxide (Ag2O) has been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy as a function of temperature. The thermal evolution of the local structure around Ag atoms has been determined. In particular, below the phase-transition temperature at ∼35 K, a progressive splitting of the Ag-Ag next-nearest-neighbor distances is observed. This definitely supports the idea that the phase-transition of Ag2O is due to displacive disorder of the Ag atoms.

  9. Coherence Measurements of a Transient 14.7 nm X-ray Laser

    SciTech Connect

    Remond, C; Dunn, J; Delmotte, F; Nilsen, J; Hubert, S; Ravet, M; Shlyaptsev, V; Zeitoun, P; Hunter, J; Vanbostal, L; Jacquemot, S; Smith, R; Fajardo, M; Lewis, C; Marmoret, R

    2003-11-25

    We present the longitudinal coherence measurement of the transient inversion collisional x-ray laser for the first time. The Ni-like Pd x-ray laser at 14.68 nm is generated by the LLNL COMET laser facility and is operating in the gain-saturated regime. Interference fringes are produced using a Michelson interferometer setup in which a thin multilayer-coated membrane is used as a beam splitter. The longitudinal coherence length for the picosecond duration 4d{sup 1}S{sub 0} {yields} 4p{sup 1}P{sub 1} lasing transition is determined to be {approx}400 {micro}m (1/e HW) by adjusting the length of one interferometer arm and measuring the resultant variation in fringe visibility. This is four times improved coherence than previous measurements on quasi-steady state schemes largely as a result of the narrower line profile in the lower temperature plasma. The inferred gain-narrowed linewidth of {approx}0.29 pm is also substantially narrower than previous measurements on quasi-steady state x-ray laser schemes. This study shows that the coherence of the x-ray laser beam can be improved by changing the laser pumping conditions. The x-ray laser is operating at 4 - 5 times the transform-limited pulse.

  10. X-ray enhancement in a nanohole target irradiated by intense ultrashort laser pulses

    SciTech Connect

    Chakravarty, U.; Arora, V.; Chakera, J. A.; Naik, P. A.; Srivastava, H.; Tiwari, P.; Srivastava, A.; Gupta, P. D

    2011-03-01

    In this paper, we present a comparative study of the laser energy absorption, soft x-ray emission (in the water window region: 2.3-4.4 nm) and hard x-ray emission (in the 2-20 keV range) from planar aluminum and nanohole alumina of 40 nm average diameter, when irradiated by Ti:sapphire laser pulses. The laser pulse duration was varied from 45 to 500 fs, and the focused intensity on the target ranged from {approx}3 x 10{sup 16} W/cm{sup 2} to 3x10{sup 17} W/cm{sup 2}. The x-ray yield enhancement from the nanoholes shows an increased coupling of the laser energy to the target. The effect of laser pulse duration on the x-ray emission was also studied, where a resonance like phenomenon was observed. The laser energy absorption measurements in the nanoholes showed a marginal enhancement in absorption as compared to planar Al. The integrated keV x-ray yield, from nanohole alumina and planar Al, at an intensity of 3 x 10{sup 17} W/cm{sup 2}, was 25 and 3.5 {mu}J, respectively. The results can be explained by considering the hydrodynamic expansion of the laser irradiated structure and field enhancement in the nanoholes.

  11. Coherence measurements of a transient 14.7-nm x-ray laser

    NASA Astrophysics Data System (ADS)

    Dunn, James; Smith, Raymond F.; Hubert, Sebastian; Fajardo, Marta; Zeitoun, Philippe; Hunter, James R.; Remond, Christian; Vanbostal, Laurent; Jacquemot, Sylvie; Nilsen, Joseph; Lewis, Ciaran L. S.; Marmoret, Remy; Shlyaptsev, Vyacheslav N.; Ravet, Marie-Francoise; Delmotte, Franck

    2003-12-01

    We present the longitudinal coherence measurement of the transient inversion collisional x-ray laser for the first time. The Ni-like Pd x-ray laser at 14.68 nm is generated by the LLNL COMET laser facility and is operating in the gain-saturated regime. Interference fringes are produced using a Michelson interferometer setup in which a thin multilayer-coated membrane is used as a beam splitter. The longitudinal coherence length for the picosecond duration 4d1S0 --> 4p1P1 lasing transition is determined to be ~400 µm (1/e HW) by adjusting the length of one interferometer arm and measuring the resultant variation in fringe visibility. This is four times improved coherence than previous measurements on quasi-steady state schemes largely as a result of the narrower line profile in the lower temperature plasma. The inferred gain-narrowed linewidth of ~0.29 pm is also substantially narrower than previous measurements on quasi-steady state x-ray laser schemes. This study shows that the coherence of the x-ray laser beam can be improved by changing the laser pumping conditions. The x-ray laser is operating at 4 5 times the transform-limited pulse.

  12. Recent Progress of Research on X-ray Lasers at the Institute of Physics, CAS

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Lu, Xin; Li, Ying-jun

    2002-11-01

    The transient nature of x-ray laser is studied. For a drive pulse even as short as 500fs, the x-ray laser gain still shows a quasi-steady state behavior. A real transient nature can only be seen when the x-ray laser is driven by a laser pulse with a duration as short as tens of femtoseconds. A femtosecond laser pulse driven collisional Ne-like Ti x-ray laser at 32.6 nm is numerically investigated. By using the optimized drive pulse configuration, a gain of 40 cm-1 can be generated from a 5 mm x 50 mum line focus using about 1 J pump energy. Effects of delay time on transient collisional excitation nickle-like x-ray lasers are investigated analytically using a simple model. The calculations show that the longer delay time can greatly relax the density gradient. Similarly, increasing the intensity of the short pulse or extending the duration can also raise the electron temperature, resulting in higher gain coefficient. Our results indicate that extending the short pulse duration is more efficient than that of increasing the intensity.

  13. Photoionization-pumped, Ne II, x-ray laser studies project. Final report

    SciTech Connect

    Richardson, M.C.; Hagelstein, P.L.; Eckart, M.J.; Forsyth, J.M.; Gerrassimenko, M.; Soures, J.M.

    1984-01-01

    The energetics of this pumping scheme are shown. Short-pulse (50 to 100 ps) laser irradiation of an appropriate x-ray flashlamp medium generates broad-band emission in the range of 300 to 800 eV which preferentially photoionizes Ne to the /sup 2/S state of Ne II creating an inversion at approximately 27 eV. Although this approach does not depend on precise spectral overlap between the x-ray pump radiation and the medium to be pumped, it does require that the x-ray medium remain un-ionized prior to photoionization by the soft x-ray emission. Well-controlled focus conditions are required to ensure that the x-ray medium is not subjected to electron or x-ray preheat prior to irradiation by the soft x-ray source. The magnitude of the population inversion is predicted to be critically dependent upon rapid photoionization of the two states; therefore, ultra-short pulse irradiation of the laser flashlamps is required.

  14. Development of XUV-interferometry (155 {angstrom}) using a soft x-ray laser

    SciTech Connect

    Da Silva, L.B.; Barbee, T.W.; Cauble, R.

    1995-08-01

    Over the past several years the authors have developed a variety of techniques for probing plasmas with x-ray lasers. These have included direct high resolution plasma imaging to quantify laser produced plasma uniformities and moire deflectometry to measure electron density profiles in one-dimension. Although these techniques have been valuable, a need existed for direct two dimensional measurements of electron densities in large high density plasmas. For this reason the authors have worked on developing a xuv interferometer compatible with the harsh environment of laser produced plasmas. This paper describes the design and presents some results showing excellent fringe visibility using the neon-like yttrium x-ray laser operating at 155 {angstrom}. The coherence properties of this x-ray laser source were measured using interferometry and are also discussed.

  15. Elliptical X-ray analyzer spectrograph application to a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Tanaka, Tina J.; Palmer, Merrill A.; Henke, Burton L.

    1985-08-01

    A preliminary experimental study was conducted on the application of an elliptical analyzer spectrograph to X-ray diagnostics of pulsed plasmas. This spectrograph was designed to record a range of 100-2000 eV X-rays on calibrated Kodak RAR-21497 film. Using point calibrations and theoretical models, the spectrograph efficiency was predicted. Basic spectrograph geometry and photographic calibrations are presented in companion papers. A 20 J, 6 ns duration Nd:glass laser pulse was focussed upon planar targets of gold, aluminum, teflon and boron carbide. Sample spectra for line and X-ray yields analysis are presented.

  16. Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator

    SciTech Connect

    Albert, F.; Pollock, B. B.; Shaw, J. L.; Marsh, K. A.; Ralph, J. E.; Chen, Y. -H.; Alessi, D.; Pak, A.; Clayton, C. E.; Glenzer, S. H.; Joshi, C.

    2014-07-22

    This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.

  17. Refraction and absorption of x rays by laser-dressed atoms.

    SciTech Connect

    Buth, C.; Santra, R.; Young, L.

    2010-06-01

    X-ray refraction and absorption by neon atoms under the influence of an 800 nm laser with an intensity of 10{sup 13} W/cm{sup 2} is investigated. For this purpose, we use an ab initio theory suitable for optical strong-field problems. Its results are interpreted in terms of a three-level model. On the Ne 1s {yields} 3p resonance, we find electromagnetically induced transparency (EIT) for x rays. Our work opens novel perspectives for ultrafast x-ray pulse shaping.

  18. Femtosecond electron and x-ray generation by laser andplasma-based sources

    SciTech Connect

    Esarey, E.; Leemans, W.P.

    2000-02-01

    The generation of ultra-short x-rays by Thomson scattering intense laser pulses from electron beams is discussed, including recent experimental results and methods for enhancing the x-ray flux. A high flux of x-rays in a femtosecond pulse requires the generation of femtosecond electron bunches and a head-on Thomson scattering geometry. The generation of ultrashort electron bunches in a plasma-based accelerator with an injection technique that uses two colliding laser pulses is discussed. Simulations indicate the bunches as short as a few fs can be produced. Conversion of the fs electron pulse to a fs x-ray pulse can be accomplished by Bremsstrahlung or Thomson scattering.

  19. A high-resolving-power x-ray spectrometer for the OMEGA EP Laser (invited)

    NASA Astrophysics Data System (ADS)

    Nilson, P. M.; Ehrne, F.; Mileham, C.; Mastrosimone, D.; Jungquist, R. K.; Taylor, C.; Stillman, C. R.; Ivancic, S. T.; Boni, R.; Hassett, J.; Lonobile, D. J.; Kidder, R. W.; Shoup, M. J.; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Froula, D. H.; Hill, K. W.; Gao, L.; Bitter, M.; Efthimion, P.; Meyerhofer, D. D.

    2016-11-01

    A high-resolving-power x-ray spectrometer has been developed for the OMEGA EP Laser System based on a spherically bent Si [220] crystal with a radius of curvature of 330 mm and a Spectral Instruments (SI) 800 Series charge-coupled device. The instrument measures time-integrated x-ray emission spectra in the 7.97- to 8.11-keV range, centered on the Cu Kα1 line. To demonstrate the performance of the spectrometer under high-power conditions, Kα1,2 emission spectra were measured from Cu foils irradiated by the OMEGA EP laser with 100-J, 1-ps pulses at focused intensities above 1018 W/cm2. The ultimate goal is to couple the spectrometer to a picosecond x-ray streak camera and measure temperature-equilibration dynamics inside rapidly heated materials. The plan for these ultrafast streaked x-ray spectroscopy studies is discussed.

  20. Time-resolved x-ray line diagnostics of laser-produced plasmas

    SciTech Connect

    Kauffman, R.L.; Matthews, D.L.; Kilkenny, J.D.; Lee, R.W.

    1982-11-01

    We have examined the underdense plasma conditions of laser irradiated disks using K x-rays from highly ionized ions. A 900 ps laser pulse of 0.532 ..mu..m light is used to irradiate various Z disks which have been doped with low concentrations of tracer materials. The tracers, whose Z's range from 13 to 22, are chosen so that their K x-ray spectrum is sensitive to typical underdense plasma temperatures and densities. Spectra are measured using a time-resolved crystal spectrograph recording the time history of the x-ray spectrum. A spatially-resolved, time-integrated crystal spectrograph also monitors the x-ray lines. Large differences in Al spectra are observed when the host plasms is changed from SiO/sub 2/ to PbO or In. Spectra will be presented along with preliminary analysis of the data.

  1. Calibration Of A KrF Laser-Plasma Source For X-Ray Microscopy Applications

    NASA Astrophysics Data System (ADS)

    Turcu, I. C. E.; O'Neill, F.; Zammit, U.; Al-Hadithi, Y.; Eason, R. W.; Rogayski, A. M.; Hills, C. P. B.; Michette, A. G.

    1988-02-01

    Plasma X-ray sources for biological microscopy in the water-window have been produced by focusing tige 200 3, 50 ns Sprit q KrF laser onto carbon targets at irradiance between 2.2 x 10" W/cm4 and 3.7 x 10i3W/cm. Absolute measurements of X-ray production have been made using a calibrated, vacuum X-ray diode detector. A peak conversion efficiency . 10% is measured from KrF laseri)Tight tcto wate-window X-rays at 280 eV < hv < 530 eV for a target irradiance . 1 x x 10 W/cm'. Some measurements with gold and tungsten targets give conversion efficiencies 2$25% at a similar laser irradiance.

  2. Two electron response to an intense x-ray free electron laser pulse

    NASA Astrophysics Data System (ADS)

    Moore, L. R.; Parker, J. S.; Meharg, K. J.; Armstrong, G. S. J.; Taylor, K. T.

    2009-11-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne8+ and Ar16+ exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 1017 to 1022 W/cm2.

  3. Toward the development of a soft x-ray reflection imaging microscope in the Schwarzschild configuration using a soft x-ray laser at 18. 2 nm

    SciTech Connect

    Dicicco, D.; Rosser, R. ); Kim, D.; Suckewer, S. . Plasma Physics Lab.)

    1991-12-01

    We present the recent results obtained from a soft X-ray reflection imaging microscope in the Schwarzschild configuration. The microscope demonstrated a spatial resolution of 0.7 {mu}m with a magnification of 16 at 18.2 nm. The soft X-ray laser at 18.2 nm was used as an X-ray source. Mo/Si multilayers were coated on the Schwarzschild optics and the normal incidence reflectivity at 18.2 nm per surface was measured to be {approximately} 20 %. 18 refs., 6 figs.

  4. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.

    PubMed

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J; Brewster, Aaron S; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; White, William E; Schafer, Donald W; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Glatzel, Pieter; Zwart, Petrus H; Grosse-Kunstleve, Ralf W; Bogan, Michael J; Messerschmidt, Marc; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K; Adams, Paul D; Sauter, Nicholas K

    2014-05-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.

  5. Visualizing a protein quake with time resolved X-ray scattering at a free electron laser

    PubMed Central

    Arnlund, David; Johansson, Linda C.; Wickstrand, Cecilia; Barty, Anton; Williams, Garth J.; Malmerberg, Erik; Davidsson, Jan; Milathianaki, Despina; DePonte, Daniel P.; Shoeman, Robert L.; Wang, Dingjie; James, Daniel; Katona, Gergely; Westenhoff, Sebastian; White, Thomas A.; Aquila, Andrew; Bari, Sadia; Berntsen, Peter; Bogan, Mike; van Driel, Tim Brandt; Doak, R. Bruce; Kjær, Kasper Skov; Frank, Matthias; Fromme, Raimund; Grotjohann, Ingo; Henning, Robert; Hunter, Mark S.; Kirian, Richard A.; Kosheleva, Irina; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nielsen, Martin Meedom; Messerschmidt, Marc; Seibert, M. Marvin; Sjöhamn, Jennie; Stellato, Francesco; Weierstall, Uwe; Zatsepin, Nadia A.; Spence, John C. H.; Fromme, Petra; Schlichting, Ilme; Boutet, Sébastien; Groenhof, Gerrit; Chapman, Henry N.; Neutze, Richard

    2014-01-01

    A ‘protein quake’ describes the hypothesis that proteins rapidly dissipate energy through quake like structural motions. Here we measure ultrafast structural changes in the Blastochloris viridis photosynthetic reaction center following multi-photon excitation using time-resolved wide angle X-ray scattering at an X-ray free electron laser. A global conformational change arises within picoseconds, which precedes the propagation of heat through the protein. This motion is damped within a hundred picoseconds. PMID:25108686

  6. 21nm x-ray laser Thomson scattering of laser-heated exploding foil plasmas

    SciTech Connect

    Dunn, J; Rus, B; Mocek, T; Nelson, A J; Foord, M E; Rozmus, W; Baldis, H A; Shepherd, R L; Kozlova, M; Polan, J; Homer, P; Stupka, M

    2007-09-26

    Recent experiments were carried out on the Prague Asterix Laser System (PALS) towards the demonstration of a soft x-ray laser Thomson scattering diagnostic for a laser-produced exploding foil. The Thomson probe utilized the Ne-like zinc x-ray laser which was double-passed to deliver {approx}1 mJ of focused energy at 21.2 nm wavelength and lasting {approx}100 ps. The plasma under study was heated single-sided using a Gaussian 300-ps pulse of 438-nm light (3{omega} of the PALS iodine laser) at laser irradiances of 10{sup 13}-10{sup 14} W cm{sup -2}. Electron densities of 10{sup 20}-10{sup 22} cm{sup -3} and electron temperatures from 200 to 500 eV were probed at 0.5 or 1 ns after the peak of the heating pulse during the foil plasma expansion. A flat-field 1200 line mm{sup -1} variable-spaced grating spectrometer with a cooled charge-coupled device readout viewed the plasma in the forward direction at 30{sup o} with respect to the x-ray laser probe. We show results from plasmas generated from {approx}1 {micro}m thick targets of Al and polypropylene (C{sub 3}H{sub 6}). Numerical simulations of the Thomson scattering cross-sections will be presented. These simulations show electron peaks in addition to a narrow ion feature due to collective (incoherent) Thomson scattering. The electron features are shifted from the frequency of the scattered radiation approximately by the electron plasma frequency {+-}{omega}{sub pe} and scale as n{sub e}{sup 1/2}.

  7. Soft x-ray generation in gases with an ultrashort pulse laser

    SciTech Connect

    Ditmire, T R

    1996-01-08

    An experimental investigation of soft x-ray production resulting from the interaction of intense near infra-red laser radiation with gases is presented in this thesis. Specifically, soft x-ray generation through high order harmonic generation or exploiting intense inverse bremsstrahlung heating is examined. Most of these studies are conducted with femtosecond, terawatt class Cr:LiSrAlF{sub 6} (LiSAF) laser, though results derived from studies with other laser systems are presented as well. The majority of this work is devoted to experimental investigations, however, theoretical and computational models are developed to interpret the data. These studies are motivated by the possibility of utilizing the physics of intense laser/matter interactions as a potential compact source of bright x-rays. Consequently, the thrust of many of the experiments conducted is aimed at characterizing the x-rays produced for possible use in applications. In general, the studies of this manuscript fall into three categories. First, a unique 130 fs, 8 TW laser that is based on chirped pulse amplification, is described, and its performance is evaluated. The generation of x-rays through high order harmonics is then discussed with emphasis on characterizing and optimizing harmonic generation. Finally, the generation of strong, incoherent x-ray radiation by the intense irradiation of large (>1,000 atom) clusters in gas jets, is explored. The physics of laser energy absorption by clusters illuminated with intensities of 10{sup 15} to 10{sup 17} W/cm{sup 2} is considered in detail. X-ray spectroscopy of the hot plasmas that result from the irradiation of the clusters is conducted, and energy transport and kinetics issues in these plasmas are discussed.

  8. High-intensity double-pulse X-ray free-electron laser

    DOE PAGES

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; et al

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  9. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  10. High-intensity double-pulse X-ray free-electron laser

    SciTech Connect

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T. J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.

  11. Utilizing ablation of solids to characterize a focused soft X-ray laser beam

    NASA Astrophysics Data System (ADS)

    Chalupský, J.; Juha, L.; Kuba, J.; Hájková, V.; Cihelka, J.; Homer, P.; Kozlová, M.; Mocek, T.; Polan, J.; Rus, B.; Krzywinsky, J.; Sobierajski, R.; Wabnitz, H.; Feldhaus, J.; Tiedtke, K.; the, And

    2007-05-01

    An advanced time integrated method has been developed for soft X-ray pulsed laser beam characterization. A technique based on poly (methyl methacrylate) - PMMA laser induced ablation has been used for beam investigations of soft X-ray laser sources like FLASH (Free-electron LASer in Hamburg; formerly known as VUV FEL and/or TTF2 FEL) and plasma-based Ne-like Zn laser performed at PALS (Prague Asterix Laser System). For the interaction experiments reported here, the FLASH system provided ultra-short pulses (~10-fs) of 21.7-nm radiation. The PMMA ablation was also induced by plasma-based Ne-like Zn soft X-ray laser pumped by NIR beams at the PALS facility. This quasi-steady-state (QSS) soft X-ray laser provides 100-ps pulses of 21.2-nm radiation, i.e. at a wavelength very close to that of FLASH but with about 5,000 times longer pulses. In both cases, the PMMA samples were irradiated by a single shot with a focused beam under normal incidence conditions. Characteristics of ablated craters obtained with AFM (Atomic Force Microscope) and Nomarski microscopes were utilized for profile reconstruction and diameter determination of the focused laser beams ablating the PMMA surface.

  12. High-gain X-ray free electron laser by beat-wave terahertz undulator

    SciTech Connect

    Chang, Chao; Hei, DongWei; Pellegrin, Claudio; Tantawi, Sami

    2013-12-15

    The THz undulator has a higher gain to realize a much brighter X-ray at saturation, compared with the optical undulator under the same undulator strength and beam quality. In order to fill the high-power THz gap and realize the THz undulator, two superimposed laser pulses at normal incidence to the electron-beam moving direction form an equivalent high-field THz undulator by the frequency difference to realize the high-gain X-ray Free electron laser. The pulse front tilt of lateral fed lasers is used to realize the electron-laser synchronic interaction. By PIC simulation, a higher gain and a larger X-ray radiation power by the beat wave THz undulator could be realized, compared with the optical undulator for the same electron beam parameters.

  13. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    SciTech Connect

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  14. Longitudinal Coherence Measurements of the Transient Collisional X-Ray Laser

    SciTech Connect

    Smith, R F; Hubert, S; Fajardo, M; Zeitoun, P; Dunn, J; Hunter, J R; Remond, C; Vanbostal, L; Jaquemot, S; Nilsen, J; Lewis, C L S; Marmoret, R

    2002-08-09

    The first longitudinal coherence measurement of the transient inversion collisional x-ray laser is presented. The scheme under study is the picosecond output of the Ni-like Pd x-ray laser at 14.68 nm generated by the C0MET laser facility at LLNL. Interference fringes were generated using a Michelson interferometer setup in which a thin multilayer membrane was used as a beam splitter. Longitudinal coherence measurements were made for this transition by changing the length of one interferometer arm and measuring the resultant variation in fringe visibility. The nature of this dependence also allows for an estimation of the linewidth of the lasing transition to be made. Analysis indicates a linewidth of {approx}0.3 pm which is a factor of four less than previous measurements on quasi-steady state x-ray laser schemes.

  15. Table-top transient collisional excitation x-ray laser research at LLNL

    SciTech Connect

    Dunn, J., Osterheld, A.L., Shepherd, R., White, W.E., Shlyaptsev, V.N., Bullock, A.B., Stewart, R.E.

    1997-10-06

    We describe recent experiments at the Lawrence Livermore National Laboratory (LLNL) to produce a table-top x-ray laser. Using a combination of long 800 ps and short {approximately}1 ps high power laser pulses with {approximately} 6 J in each beam, a transient collisionally excited Ne-like ion x-ray laser scheme has been investigated. We present results of high x-ray laser gain for the Ne- like Ti 3p-3s J=O-l transition at 326 {Angstrom} and have achieved gL product of 15 for target lengths up to 1 cm. We have extended the transient collisional scheme to shorter wavelengths using the Ni-like analog, specifically the 4d-4p J=O-l of Ni-like Pd at 147 {Angstrom}.

  16. Development of Silver Tape Target System for High Repetition X-ray Laser

    NASA Astrophysics Data System (ADS)

    Nishikino, Masaharu; Ochi, Yoshihiro; Hasegawa, Noboru; Kawachi, Tetsuya; Ohba, Toshiyuki; Kaihori, Takeshi; Nagashima, Keisuke

    The development of continuous pumping to the target system is an important issue for realizing an x-ray laser (XRL) with the high repetition rate. We have developed a 13.9 nm XRL using a silver tape target and demonstrated a highly coherent XRL with an oscillator-amplifier configuration using two tape target systems and the TOPAZ laser system with a 10-J and a 0.1-Hz repetition rate. The output energy is comparable to the x-ray laser generated with a silver-deposited slab target, and the pointing stability using the new tape target system is better than conventional slab target.

  17. Pulse energy measurement at the hard x-ray laser in Japan

    SciTech Connect

    Kato, M.; Tanaka, T.; Saito, N.; Kurosawa, T.; Richter, M.; Sorokin, A. A.; Tiedtke, K.; Kudo, T.; Yabashi, M.; Tono, K.; Ishikawa, T.

    2012-07-09

    The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

  18. Hard X-ray Imaging for Measuring Laser Absorption Spatial Profiles on the National Ignition Facility

    SciTech Connect

    Dewald, E L; Jones, O S; Landen, O L; Suter, L; Amendt, P; Turner, R E; Regan, S

    2006-04-25

    Hard x-ray (''Thin wall'') imaging will be employed on the National Ignition Facility (NIF) to spatially locate laser beam energy deposition regions on the hohlraum walls in indirect drive Inertial Confinement Fusion (ICF) experiments, relevant for ICF symmetry tuning. Based on time resolved imaging of the hard x-ray emission of the laser spots, this method will be used to infer hohlraum wall motion due to x-ray and laser ablation and any beam refraction caused by plasma density gradients. In optimizing this measurement, issues that have to be addressed are hard x-ray visibility during the entire ignition laser pulse with intensities ranging from 10{sup 13} to 10{sup 15} W/cm{sup 2}, as well as simultaneous visibility of the inner and the outer laser drive cones. In this work we will compare the hard x-ray emission calculated by LASNEX and analytical modeling with thin wall imaging data recorded previously on Omega and during the first hohlraum experiments on NIF. Based on these calculations and comparisons the thin wall imaging will be optimized for ICF/NIF experiments.

  19. Image reconstruction in serial femtosecond nanocrystallography using x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Chen, Joe P. J.; Kirian, Richard A.; Beyerlein, Kenneth R.; Bean, Richard J.; Morgan, Andrew J.; Yefanov, Oleksandr M.; Arnal, Romain D.; Wojtas, David H.; Bones, Phil J.; Chapman, Henry N.; Spence, John C. H.; Millane, Rick P.

    2015-09-01

    Serial femtosecond nanocrystallography (SFX) is a form of x-ray coherent diffraction imaging that utilises a stream of tiny nanocrystals of the biological assembly under study, in contrast to the larger crystals used in conventional x-ray crystallography using conventional x-ray synchrotron x-ray sources. Nanocrystallography utilises the extremely brief and intense x-ray pulses that are obtained from an x-ray free-electron laser (XFEL). A key advantage is that some biological macromolecules, such as membrane proteins for example, do not easily form large crystals, but spontaneously form nanocrystals. There is therefore an opportunity for structure determination for biological molecules that are inaccessible using conventional x-ray crystallography. Nanocrystallography introduces a number of interesting image reconstruction problems. Weak diffraction patterns are recorded from hundreds of thousands of nancocrystals in unknown orientations, and these data have to be assembled and merged into a 3D intensity dataset. The diffracted intensities can also be affected by the surface structure of the crystals that can contain incomplete unit cells. Furthermore, the small crystal size means that there is potentially access to diffraction information between the crystalline Bragg peaks. With this information, phase retrieval is possible without resorting to the collection of additional experimental data as is necessary in conventional protein crystallography. We report recent work on the diffraction characteristics of nanocrystals and the resulting reconstruction algorithms.

  20. Efficient Pumping Schemes for High Average Brightness Collisional X-ray Lasers

    SciTech Connect

    Keenan, R; Dunn, J; Shlyaptsev, V N; Smith, R F; Patel, P K; Price, D F

    2003-10-07

    Advances in transient collisional x-ray lasers have been demonstrated over the last 5 years as a technique for achieving tabletop soft x-ray lasers using 2-10 J of laser pump energy. The high peak brightness of these sources operating in the high output saturation regime, in the range of 10{sup 24}-10{sup 25} ph. mm{sup -2} mrad{sup -2} s-1 (0.1% BW){sup -1}, is ideal for many applications requiring high photon fluence in a single short burst. However, the pump energy required for these x-ray lasers is still relatively high and limits the x-ray laser repetition rate to 1 shot every few minutes. Higher repetition rate collisional schemes have been reported and show some promise for high output in the future. We report a novel technique for enhancing the coupling efficiency of the laser pump into the gain medium that could lead to enhanced x-ray inversion with a factor of ten reduction in the drive energy. This has been applied to the collisional excitation scheme for Ni-like Mo at 18.9 nm and x-ray laser output has been demonstrated. Preliminary results show lasing on a single shot of the optical laser operating at 10 Hz and with 70 mJ in the short pulse. Such a proposed source would have higher average brightness, {approx}10{sup 14} ph. mm{sup -2} mrad{sup -2} s{sup -1} (0.1% BW){sup -1}, than present bending magnet 3rd generation synchrotron sources operating at the same spectral range.

  1. Soft X-ray spectrum of laser-produced aluminum plasma

    SciTech Connect

    Vergunova, G. A.; Grushin, A. S.; Kologrivov, A. A.; Novikov, V. G.; Osipov, M. V.; Puzyrev, V. N. Rozanov, V. B. Starodub, A. N. Yakushev, O. F.

    2015-05-15

    Soft X-ray spectra (30–70 Å) of aluminum plasma have been measured in experiments carried out at the Kanal-2 laser facility at laser intensities of (1–7) × 10{sup 13} W/cm{sup 2}. It is shown that the measured spectra satisfactory agree with those calculated using the RADIAN numerical code.

  2. Applications using a Picosecond 14.7 nm X-Ray Laser

    SciTech Connect

    Dunn, J; Smith, R F; Nilsen, J; Shlyaptsev, V N; Filevich, J; Rocca, J J; Marconi, M C

    2001-09-21

    We report recent application experiments on the LLNL COMET tabletop facility using the picosecond, 14.7 nm Ni-like Pd x-ray laser. This work includes measurements of a laser-produced plasma density profile with a diffraction grating interferometer.

  3. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    SciTech Connect

    Sterling Backus

    2012-05-14

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  4. Divergence measurements of soft x-ray laser beam

    SciTech Connect

    Suckewer, S.; Skinner, C.H.; Kim, D.; Valeo, E.; Voorhees, D.; Wouters, A.

    1986-07-01

    The divergence of the CVI 182 A lasing line generated in a rapidly recombining, magnetically confined plasma column was measured using soft x-ray spectrometers equipped with multichannel detectors. In addition to measurements of the relative divergence, an absolute divergence of approx.9 mrad at a magnetic field of 20 kG and approx.5 mrad at a magnetic field of 35 or 50 kG was obtained by a direct scan of the 182 A axial radiation. Based on this data a peak 182 A intensity of approx.100 kW is obtained. Calculations of the spatial distribution of gain in the plasma were in very good agreement with the experimental data.

  5. Resonantly photo-pumped nickel-like erbium X-ray laser

    DOEpatents

    Nilsen, Joseph

    1990-01-01

    A resonantly photo-pumped X-ray laser (10) that enhances the gain of seve laser lines that also lase because of collisional excitations and recombination processes, is described. The laser comprises an aluminum (12) and erbium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like erbium ions (34) are resonantly photo-pumped by line emission from hydrogen-like aluminum ions (32).

  6. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics.

    PubMed

    Brown, G V; Beiersdorfer, P; Emig, J; Frankel, M; Gu, M F; Heeter, R F; Magee, E; Thorn, D B; Widmann, K; Kelley, R L; Kilbourne, C A; Porter, F S

    2008-10-01

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed. PMID:19044471

  7. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics

    SciTech Connect

    Brown, G. V.; Beiersdorfer, P.; Emig, J.; Frankel, M.; Gu, M. F.; Heeter, R. F.; Magee, E.; Thorn, D. B.; Widmann, K.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2008-10-15

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.

  8. Rapid, Absolute Calibration of X-ray Filters Employed By Laser-Produced Plasma Diagnostics

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Emig, J; Frankel, M; Gu, M F; Heeter, R F; Magee, E; Thorn, D B; Widmann, K; . Kelley, R L; Kilbourne, C A; Porter, F S

    2008-05-11

    The electron beam ion trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of X-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen X-ray energies. X-rays are detected using the high-resolution EBIT calorimeter spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the X-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated X-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.

  9. Analysis of the operation and plasma dynamics of extreme- ultraviolet and soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Bender, Howard Albert, III

    Extending lasing action into the extreme ultraviolet and soft x-ray regions of the electromagnetic spectrum has been a natural progression in the continuing development of short wavelength radiation sources. However fundamental difficulties with the media used to produce short wavelength lasers has in general hindered the widespread development and use of such lasers in applications. Up to now all EUV and soft x-ray lasers have operated with plasmas as the gain medium to support lasing. This is a general requirement imposed by (1) the characteristics of short wavelength radiation as it originates from highly energetic atomic transitions and (2) the fundamental aspects of lasing at these wavelengths. Thus the plasma environment has been the defining characteristic in achieving lasing in the EUV and soft x-ray spectral regions. This thesis presents investigations into two types of EUV/Soft x-ray lasers that describe the operation and associated plasma dynamics of these devices. The first is a numerical investigation into a recombination pumped x-ray laser at 13.5 nm operating in a Li plasma. Using a collisional-radiative model of the atomic system, simulations were performed to determine the plasma conditions necessary to produce gain that were observed in reported experiments. The second investigation is the experimental development and operation of a capillary discharge driven laser operating at 46.9 nm in Ar. This device is a new generation of EUV/Soft X-ray laser based on a small scale driver system. The first interferometric probing experiments of this device will be discussed and related to the plasma dynamics of the capillary discharge.

  10. Experimental demonstration of femtosecond two-color x-ray free-electron lasers.

    PubMed

    Lutman, A A; Coffee, R; Ding, Y; Huang, Z; Krzywinski, J; Maxwell, T; Messerschmidt, M; Nuhn, H-D

    2013-03-29

    With an eye toward extending optical wave-mixing techniques to the x-ray regime, we present the first experimental demonstration of a two-color x-ray free-electron laser at the Linac Coherent Light Source. We combine the emittance-spoiler technique with a magnetic chicane in the undulator section to control the pulse duration and relative delay between two intense x-ray pulses and we use differently tuned canted pole undulators such that the two pulses have different wavelengths as well. Two schemes are shown to produce two-color soft x-ray pulses with a wavelength separation up to ∼1.9% and a controllable relative delay up to 40 fs. PMID:23581326

  11. Generation of femtosecond to sub-femtosecond x-ray pulses in free-electron lasers

    NASA Astrophysics Data System (ADS)

    Ding, Yuantao

    2015-05-01

    Generation of high power, femtosecond to sub-femtosecond x-ray pulses is attracting much attention within the x-ray free-electron laser (FEL) user community. At the existing FEL facilities, such as the Linac Coherent Light Source at SLAC, several methods have been developed to produce such short x-rays. Low-charge operation mode and emittance-spoiling scheme have successfully delivered short pulses for user experiments with duration less than 10 fs. A nonlinear compression mode has been recently developed and the pulse duration could be about 200 as. We will review the recent experimental progress at the LCLS for achieving few-femtosecond x-rays, and also discuss other short pulse schemes for reaching sub-femtosecond regime.

  12. Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination.

    PubMed

    Fromme, Petra; Spence, John C H

    2011-08-01

    The invention of free electron X-ray lasers has opened a new era for membrane protein structure determination with the recent first proof-of-principle of the new concept of femtosecond nanocrystallography. Structure determination is based on thousands of diffraction snapshots that are collected on a fully hydrated stream of nanocrystals. This review provides a summary of the method and describes how femtosecond X-ray crystallography overcomes the radiation-damage problem in X-ray crystallography, avoids the need for growth and freezing of large single crystals while offering a new method for direct digital phase determination by making use of the fully coherent nature of the X-ray beam. We briefly review the possibilities for time-resolved crystallography, and the potential for making 'molecular movies' of membrane proteins at work. PMID:21752635

  13. Angular dependence of L X-rays emission for Ag by 10 keV electron-impact

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Xu, Zhongfeng; Zhang, Ying; Ma, Chao; Zhu, Chengwei

    2016-08-01

    The characteristic X-ray intensities of Ag-Lα, Lβ1, Lβ2 and Lγ1 are measured in electron-impact ionization at energy of 10 keV. The emission angle in this work ranges from 0° to 20° at interval of 5°. The angular dependence of L X-ray intensity ratios has been investigated for Lα / Lβ1, Lβ2 / Lβ1 and Lγ1 / Lβ1. It is found from the experimental results that the emissions of Lβ1, Lβ2 and Lγ1 X-rays are spatially isotropic, while the Lα X-rays exhibit anisotropic emission. Consequently, the alignment behavior of vacancy states is discussed with thorough analysis of vacancy transfer process.

  14. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    SciTech Connect

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  15. Interaction of short x-ray pulses with low-Z x-ray optics materials at the LCLS free-electron laser.

    PubMed

    Hau-Riege, S P; London, R A; Graf, A; Baker, S L; Soufli, R; Sobierajski, R; Burian, T; Chalupsky, J; Juha, L; Gaudin, J; Krzywinski, J; Moeller, S; Messerschmidt, M; Bozek, J; Bostedt, C

    2010-11-01

    Materials used for hard x-ray-free-electron laser (XFEL) optics must withstand high-intensity x-ray pulses. The advent of the Linac Coherent Light Source has enabled us to expose candidate optical materials, such as bulk B4C and SiC films, to 0.83 keV XFEL pulses with pulse energies between 1 μJ and 2 mJ to determine short-pulse hard x-ray damage thresholds. The fluence required for the onset of damage for single pulses is around the melt fluence and slightly lower for multiple pulses. We observed strong mechanical cracking in the materials, which may be due to the larger penetration depths of the hard x-rays.

  16. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments

    SciTech Connect

    Kameshima, Takashi; Ono, Shun; Kudo, Togo; Ozaki, Kyosuke; Kirihara, Yoichi; Kobayashi, Kazuo; Inubushi, Yuichi; Yabashi, Makina; Hatsui, Takaki; Horigome, Toshio; Holland, Andrew; Holland, Karen; Burt, David; Murao, Hajime

    2014-03-15

    This paper presents development of an X-ray pixel detector with a multi-port charge-coupled device (MPCCD) for X-ray Free-Electron laser experiments. The fabrication process of the CCD was selected based on the X-ray radiation hardness against the estimated annual dose of 1.6 × 10{sup 14} photon/mm{sup 2}. The sensor device was optimized by maximizing the full well capacity as high as 5 Me- within 50 μm square pixels while keeping the single photon detection capability for X-ray photons higher than 6 keV and a readout speed of 60 frames/s. The system development also included a detector system for the MPCCD sensor. This paper summarizes the performance, calibration methods, and operation status.

  17. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments

    NASA Astrophysics Data System (ADS)

    Kameshima, Takashi; Ono, Shun; Kudo, Togo; Ozaki, Kyosuke; Kirihara, Yoichi; Kobayashi, Kazuo; Inubushi, Yuichi; Yabashi, Makina; Horigome, Toshio; Holland, Andrew; Holland, Karen; Burt, David; Murao, Hajime; Hatsui, Takaki

    2014-03-01

    This paper presents development of an X-ray pixel detector with a multi-port charge-coupled device (MPCCD) for X-ray Free-Electron laser experiments. The fabrication process of the CCD was selected based on the X-ray radiation hardness against the estimated annual dose of 1.6 × 1014 photon/mm2. The sensor device was optimized by maximizing the full well capacity as high as 5 Me- within 50 μm square pixels while keeping the single photon detection capability for X-ray photons higher than 6 keV and a readout speed of 60 frames/s. The system development also included a detector system for the MPCCD sensor. This paper summarizes the performance, calibration methods, and operation status.

  18. Pair production from vacuum at the focus of an X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Ringwald, A.

    2001-06-01

    There are definite plans for the construction of X-ray free electron lasers (FEL), both at DESY, where the so-called XFEL is part of the design of the electron-positron linear collider TESLA, as well as at SLAC, where the so-called Linac Coherent Light Source (LCLS) has been proposed. Such an X-ray laser would allow for high-field science applications: one could make use of not only the high energy and transverse coherence of the X-ray beam, but also of the possibility of focusing it to a spot with a small radius, hopefully in the range of the laser wavelength. Along this route one obtains very large electric fields, much larger than those obtainable with any optical laser of the same power. In this Letter we discuss the possibility of obtaining an electric field so high that electron-positron pairs are spontaneously produced in vacuum (Schwinger pair production). We find that if X-ray optics can be improved to approach the diffraction limit of focusing, and if the power of the planned X-ray FELs can be increased to the terawatt region, then there is ample room for an investigation of the Schwinger pair production mechanism.

  19. High-resolution x-ray spectroscopy of multicharged argon and krypton ions using a laser-produced x-ray source with a gas-puff target

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Dyakin, Vladimir M.; Faenov, Anatoly Y.; Fiedorowicz, Henryk; Jarocki, Roman; Nilsen, Joseph; Osterheld, Albert L.; Skobelev, Igor Y.; Szczurek, Miroslaw

    1997-10-01

    A hot and dense plasma can be produced by high-power laser irradiation of a high-pressure gas puff target. The plasma emits strong x-ray radiation in low photon-energy range (soft x-rays and XUV radiation) and is considered to be used as a debrisless laser-produced x-ray source. It was shown that the laser-irradiated gas puff plasma is an ideal source for the high-resolution spectroscopic studies of complex spectra of the multicharged ions. This paper reports our investigations of x-ray spectra of heliumlike argon and neonlike krypton ions. The gas puff targets were created with the use of a specially designed high-pressure solenoid valve operating at a backing pressure up to 15 at and quipped with a sonic-type circular nozzle of 0.5 mm in diameter. Parameters of the gas puff targets were measured using x-ray shadowgraphy and laser interferometry. To irradiate the gas puff targets we have used a Nd:glass laser, which generates 10 J pulses in 1 ns FWHM. The laser beam was focused onto the gas puff target perpendicularly in respect to the flow of gas using an aspherical lens. The diameter of a laser beam in the focus were about 100 micrometers , what ensured the radiation power density to be of order of 1014 W/cm2. To measure x-ray spectra emitted by a laser-irradiated gas puff target we have used a simple focusing crystal spectrographs with a mica crystal curved into a spherical surface of radius R equals 100 mm. The spectra were recorded on Kodak RAR 2495 x-ray commercial film. The high resolving power of the spectrograph of about (lambda) /(Delta) (lambda) equals 10000 permitted high-precision wavelength spectral measurements. The measured x-ray spectra have the small spectra width of the observed lines associated with the low expansion velocity of the laser- irradiated gas puff plasma. Dielectronic sodiumlike satellites to neonlike krypton resonance lines have measured for the first time. High-resolution spectra of heliumlike argon were also obtained. The

  20. Optimization of x-ray emission from under-critical CH foam coated gold targets by laser irradiation

    NASA Astrophysics Data System (ADS)

    Shang, Wanli; Yu, Ruizhen; Zhang, Wenhai; Yang, Jiamin

    2016-08-01

    Under-critical CH foam coated gold targets benefit laser-to-x-ray emission because CH plasma inhibits gold plasma expansion, which leads to higher gold plasma density and temperature. Conversely, the CH foam partially absorbs the incident laser energy, which lowers laser absorption into the gold plasma. An analytical model is built to solve the laser collisional deposition fraction in the CH foam layer. The optimization of x-ray emission from under-critical CH foam coated gold targets by laser irradiation is obtained numerically with different CH foam densities and thicknesses. The plasma and x-ray emission properties are investigated. It is found that different CH thicknesses lead to different increase mechanisms for x-ray emission. The x-ray spectrum distributions show that most of the x-ray emission increases occur with photon energy less than 2000 eV.

  1. Prospects for using X-ray free-electron lasers to investigate shock-compressed matter

    SciTech Connect

    Nagler, Bob; Higginbotham, Andrew; Kimminau, Giles; Murphy, William; Whitcher, Thomas; Wark, Justin; Hawreliak, James; Kalantar, Dan; Lee, Richard; Lorenzana, Hector; Remington, Bruce; Larsson, Jorgen; Park, Nigel; Sokolowski-Tinten, Klaus

    2007-12-12

    Within the next few years hard X-ray Free Electron Lasers will come on line. Such systems will have spectral brightnesses ten orders of magnitude greater than any extant synchrotron, with pulse lengths as short as a few femtoseconds. It is anticipated that large-scale optical lasers capable of shock-compressing matter to multi-megabar pressures will be sited alongside the X-ray source. We discuss how such systems can further our knowledge of shocked and isochorically heated matter, in particular investigating the potential to perform polycrystalline diffraction and the creation of warm dense matter.

  2. Compton Scattering X-Ray Sources Driven by Laser Wakefield Acceleration

    SciTech Connect

    Hartemann, F V; Gibson, D J; Brown, W J; Rousse, A; Phuoc, K T; Pukhov, A

    2005-10-19

    Recent laser wakefield acceleration experiments have demonstrated the generation of femtosecond, nano-Coulomb, low emittance, nearly monokinetic relativistic electron bunches of sufficient quality to produce bright, tunable, ultrafast x-rays via Compton scattering. Design parameters for a proof-of-concept experiment are presented using a three-dimensional Compton scattering code and a laser-plasma interaction particle-in-cell code modeling the wakefield acceleration process; x-ray fluxes exceeding 10{sup 22} s{sup -1} are predicted, with a peak brightness > 10{sup 20} photons/(mm{sup 2} x mrad{sup 2} x s x 0.1% bandwidth).

  3. Generation of hard x rays by femtosecond laser pulse interaction with solid targets in atmosphere.

    PubMed

    Zhidkov, Alexey G; Pikuz, Sergey A; Faenov, Anatoly Ya; Chefonov, Oleg V; Ovchinnikov, Andrey V; Agranat, Mikhail B; Zigler, Arie

    2012-03-01

    X ray radiation as high as 50 keV, including K(α) of Ba and Mo, have been observed from a solid target during the interaction of low energy ~0.65 mJ, 1 kHz 40 femtosecond laser pulses focused in air at atmospheric pressure. Energetic electrons generating such x rays are possibly produced when the field strength in laser pulse wake exceeds the runaway threshold in air. Two dimensional particle-in-cell simulations that include optical field ionization of air and elastic collisions support this mechanism.

  4. Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers.

    PubMed

    Stern, S; Holmegaard, L; Filsinger, F; Rouzée, A; Rudenko, A; Johnsson, P; Martin, A V; Barty, A; Bostedt, C; Bozek, J; Coffee, R; Epp, S; Erk, B; Foucar, L; Hartmann, R; Kimmel, N; Kühnel, K-U; Maurer, J; Messerschmidt, M; Rudek, B; Starodub, D; Thøgersen, J; Weidenspointner, G; White, T A; Stapelfeldt, H; Rolles, D; Chapman, H N; Küpper, J

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an X-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett.112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i.e., picometers and femtoseconds, using X-ray free-electron lasers.

  5. Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers.

    PubMed

    Stern, S; Holmegaard, L; Filsinger, F; Rouzée, A; Rudenko, A; Johnsson, P; Martin, A V; Barty, A; Bostedt, C; Bozek, J; Coffee, R; Epp, S; Erk, B; Foucar, L; Hartmann, R; Kimmel, N; Kühnel, K-U; Maurer, J; Messerschmidt, M; Rudek, B; Starodub, D; Thøgersen, J; Weidenspointner, G; White, T A; Stapelfeldt, H; Rolles, D; Chapman, H N; Küpper, J

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an X-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett.112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i.e., picometers and femtoseconds, using X-ray free-electron lasers. PMID:25415561

  6. Exploration of the fragmentation of laser shock-melted aluminum using x-ray backlighting

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Li, Ying-Hua; Li, Xue-Mei; Ye, Xiang-Ping; Zhang, Zu-Gen; Cheng, Jin-Ming; Cai, Ling-Cang

    2016-05-01

    The fragmentation of shock-melted metal material is an important scientific problem in shock physics and is suitable for experimentally investigating by the laser-driven x-ray backlighting technique. This letter reports on the exploration of laser shock-melted aluminum fragmentation by means of x-ray backlighting at the SGII high energy facility in China. High-quality and high-resolution radiographs with negligible motion blur were obtained and these images enabled analysis of the mass distribution of the fragmentation product.

  7. Femtosecond laser induced X-ray emission from metal alloys, polymers and color filters

    NASA Astrophysics Data System (ADS)

    Hatanaka, Koji; Yomogihata, Ken-ichiro; Ono, Hiroshi; Fukumura, Hiroshi

    2005-07-01

    Various material surfaces were irradiated on a moving stage with focused laser pulses from a conventional 1 kHz femtosecond laser system, and X-ray emission spectra were measured during the laser ablation of the materials. Sharp K or L characteristic X-ray lines from the elements contained in the materials were clearly observed in a range of 2-15 keV. Signals due to copper and zinc were recognizable within a few minutes when a brass surface was irradiated. Poly(vinyl chloride) gave a marked emission originating from chlorine. When a color glass filter was irradiated, the detection of cobalt and arsenic was possible even though the amounts of these components were estimated to be less than 1 wt.% by using an electron probe microanalyzer. Time-integrated emission spectra in the visible region were also monitored during the femtosecond laser ablation of these materials. The emission spectra in the visible region were complicated owing to peaks originating from air components and white continuum emissions. Thus, the elemental analysis by femtoseond laser induced X-ray is considered to be useful for some samples. The etched trenches left at the surfaces after the laser ablation were examined with an optical microscope. The trench width varied with the materials, which may be attributed to changes in the irradiation area giving maximum counts of X-ray emission.

  8. Laser Plasma Soft X-Ray Contact Microscopy of Polymer Composites

    NASA Astrophysics Data System (ADS)

    Azuma, Hirozumi; Takeichi, Akihiro; Noda, Shoji

    1994-08-01

    Microstructures of polymer composites are observed with a good contrast and with a submicron spatial resolution by contact soft X-ray microscopy with a laser plasma as a soft X-ray source. An iron target was irradiated by a YAG laser ( 2ω=532 nm, 0.4 J) at laser power density of 2.5×1012 W/cm2 and the emitted soft X-rays were filtered with a thin aluminum foil. For a 0.1-µ m-thick poly acrylonitrile-butadiene-styrene specimen, poly-butadiene or copolymer of butadiene spheres of about 500 nm diameter, which are selectively stained with osmium, is observed with soft X-rays in the wavelength region between 17 and 20 nm. For a 4-µ m-thick polyvinyl chloride film specimen formed by polymer powder compaction, peripheral areas of holes, grain boundaries, and areas probably degraded by HCl reduction are observed with soft X-rays in the wavelength region mainly around 2 nm.

  9. Emerging trends in X-ray spectroscopic studies of plasma produced by intense laser beams

    SciTech Connect

    Arora, V.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2015-07-31

    X-ray line emission from hot dense plasmas, produced by ultra-short high intensity laser systems, has been studied experimentally in recent years for applications in materials science as well as for back-lighter applications. By virtue of the CPA technology, several laser facilities delivering pulses with peak powers in excess of one petawatt (focused intensities > 10{sup 20} W-cm{sup −2}) have either been commissioned across the globe during the last few years or are presently under construction. On the other hand, hard x-ray sources on table top, generating ultra-short duration x-rays at a repetition rate up to 10 kHz, are routinely available for time resolved x-ray diffraction studies. In this paper, the recent experiments on x-ray spectroscopic studies of plasma produced by 45 fs, Ti:sapphire laser pulses (focused iintensity > 10{sup 18} W-cm{sup −2}) at RRCAT Indore will be presented.

  10. Laser-driven proton sources and their applications: femtosecond intense laser plasma driven simultaneous proton and x-ray imaging

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Daido, H.; Yogo, A.; Sagisaka, A.; Ogura, K.; Orimo, S.; Mori, M.; Ma, J.; Pirozhkov, A. S.; Kiriyama, H.; Kanazawa, S.; Kondo, S.; Yamamoto, Y.; Shimoura, T.; Tanoue, M.; Nakai, Y.; Akutsu, A.; Nagashima, A.; Bulanov, S. V.; Esirkepov, T. Z.; Kimura, T.; Tajima, T.; Nemoto, K.; Oishi, Y.; Nayuki, T.; Fujii, T.; Noda, A.; Iwashita, Y.; Shirai, T.; Nakamura, S.; Choi, I. W.; Yu, T. J.; Sung, J. H.; Kim, H. T.; Jeong, T. M.; Hong, K.-H.; Noh, Y.-C.; Ko, D.-K.; Lee, J.

    2008-05-01

    We have performed simultaneous proton and X-ray imaging with an ultra-short and high-intensity Ti: Sap laser system. More than 1010 protons, whose maximum energy reaches 2.5 MeV, were delivered within a ~ps bunch. At the same time, keV X-ray is generated at almost the same place where protons are emitted. We have performed the simultaneous imaging of the copper mesh by using proton and x-ray beams, in practical use of the characteristics of the laser produced plasma that it can provide those beams simultaneously without any serious problems on synchronization.

  11. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited).

    PubMed

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Piston, K; Felker, B; Kilkenny, J D; Chung, T; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2014-11-01

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2-17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10(17). We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments. PMID:25430346

  12. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)

    SciTech Connect

    Nagel, S. R. Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B.; Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B.; Hares, J. D.; Dymoke-Bradshaw, A. K. L.

    2014-11-15

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  13. Highly coherent injection-seeded 13.2 nm tabletop soft x-ray laser.

    PubMed

    Pedaci, F; Wang, Y; Berrill, M; Luther, B; Granados, E; Rocca, J J

    2008-03-01

    We report a dramatic improvement of the spatial coherence and beam divergence (0.66 mrad) of a 13.2 nm wavelength Ni-like Cd tabletop laser by injection seeding the soft x-ray laser amplifier with high-harmonics pulses generated in a Ne gas jet. This phase coherent laser is an attractive light source for at-wavelength interferometry of extreme ultraviolet lithography optics and other applications. PMID:18311302

  14. Quasi-monochromatic hard X-ray source via laser Compton scattering and its application

    NASA Astrophysics Data System (ADS)

    Kuroda, R.; Toyokawa, H.; Yasumoto, M.; Ikeura-Sekiguchi, H.; Koike, M.; Yamada, K.; Yanagida, T.; Nakajyo, T.; Sakai, F.; Mori, K.

    2011-05-01

    We have developed a quasi-monochromatic hard X-ray source via laser Compton scattering (LCS) based on an S-band compact electron linac at AIST. The number of total photons and the maximum X-ray energy was 107 photons/sec and about 40 keV, respectively, in 15-degree crossing angle between a 42 MeV electron beam and a 800 nm Ti:Sa laser. The biological observation of the human bone with fractures has been successfully demonstrated using the LCS X-ray of 26.4 keV with the in-line phase contrast scheme. Good contrast enhancement is clearly observed between the absorption and the phase contrast images.

  15. Overview of the ARGOS X-ray framing camera for Laser MegaJoule

    SciTech Connect

    Trosseille, C. Aubert, D.; Auger, L.; Bazzoli, S.; Brunel, P.; Burillo, M.; Chollet, C.; Jasmin, S.; Maruenda, P.; Moreau, I.; Oudot, G.; Raimbourg, J.; Soullié, G.; Stemmler, P.; Zuber, C.; Beck, T.; Gazave, J.

    2014-11-15

    Commissariat à l’Énergie Atomique et aux Énergies Alternatives has developed the ARGOS X-ray framing camera to perform two-dimensional, high-timing resolution imaging of an imploding target on the French high-power laser facility Laser MegaJoule. The main features of this camera are: a microchannel plate gated X-ray detector, a spring-loaded CCD camera that maintains proximity focus in any orientation, and electronics packages that provide remotely-selectable high-voltages to modify the exposure-time of the camera. These components are integrated into an “air-box” that protects them from the harsh environmental conditions. A miniaturized X-ray generator is also part of the device for in situ self-testing purposes.

  16. Time-resolved soft x-ray spectra from laser-produced Cu plasma

    SciTech Connect

    Cone, K. V.; Baldis, H. A.; Dunn, J.; May, M. J.; Schneider, M. B.; Scott, H. A.; Purvis, M. A.

    2012-10-15

    The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated by a plasma produced using the Lawrence Livermore National Laboratory's Compact Multipulse Terawatt (COMET) laser. A variable spaced grating spectrometer coupled to an x-ray streak camera measured soft x-ray emission (800-1550 eV) from the back of the copper target to characterize the bulk heating of the target. Radiation hydrodynamic simulations were modeled in two-dimensions using the HYDRA code. The target conditions calculated by HYDRA were post-processed with the atomic kinetics code CRETIN to generate synthetic emission spectra. A comparison between the experimental and simulated spectra indicates the presence of specific ionization states of copper and the corresponding electron temperatures and ion densities throughout the laser-heated copper target.

  17. Time-resolved soft x-ray spectra from laser-produced Cu plasma.

    PubMed

    Cone, K V; Baldis, H A; Dunn, J; May, M J; Purvis, M A; Schneider, M B; Scott, H A

    2012-10-01

    The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated by a plasma produced using the Lawrence Livermore National Laboratory's Compact Multipulse Terawatt (COMET) laser. A variable spaced grating spectrometer coupled to an x-ray streak camera measured soft x-ray emission (800-1550 eV) from the back of the copper target to characterize the bulk heating of the target. Radiation hydrodynamic simulations were modeled in two-dimensions using the HYDRA code. The target conditions calculated by HYDRA were post-processed with the atomic kinetics code CRETIN to generate synthetic emission spectra. A comparison between the experimental and simulated spectra indicates the presence of specific ionization states of copper and the corresponding electron temperatures and ion densities throughout the laser-heated copper target.

  18. Time-resolved soft x-ray spectra from laser-produced Cu plasma

    SciTech Connect

    Cone, K V; Dunn, J; Baldis, H A; May, M J; Purvis, M A; Scott, H A; Schneider, M B

    2012-05-02

    The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated from a plasma produced using the Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) laser. A variable spaced grating spectrometer coupled to an x-ray streak camera measured soft x-ray emission (800-1550 eV) from the back of the copper target to characterize the bulk heating of the target. Radiation hydrodynamic simulations were modeled in 2-dimensions using the HYDRA code. The target conditions calculated by HYDRA were post-processed with the atomic kinetics code CRETIN to generate synthetic emission spectra. A comparison between the experimental and simulated spectra indicates the presence of specific ionization states of copper and the corresponding electron temperatures and ion densities throughout the laser-heated copper target.

  19. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    SciTech Connect

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.

  20. X-ray Thomson scattering measurements from hohlraum-driven spheres on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Saunders, A. M.; Jenei, A.; Döppner, T.; Falcone, R. W.; Kraus, D.; Kritcher, A.; Landen, O. L.; Nilsen, J.; Swift, D.

    2016-11-01

    X-ray Thomson scattering (XRTS) is a powerful diagnostic for probing warm and hot dense matter. We present the design and results of the first XRTS experiments with hohlraum-driven CH2 targets on the OMEGA laser facility at the Laboratory for Laser Energetics in Rochester, NY. X-rays seen directly from the XRTS x-ray source overshadow the elastic scattering signal from the target capsule but can be controlled in future experiments. From the inelastic scattering signal, an average plasma temperature is inferred that is in reasonable agreement with the temperatures predicted by simulations. Knowledge gained in this experiment shows a promising future for further XRTS measurements on indirectly driven OMEGA targets.

  1. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser.

    PubMed

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-01-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources. PMID:26610328

  2. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-11-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.

  3. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser

    PubMed Central

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-01-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources. PMID:26610328

  4. Time-resolved protein nanocrystallography using an X-ray free-electron laser

    PubMed Central

    Aquila, Andrew; Hunter, Mark S.; Doak, R. Bruce; Kirian, Richard A.; Fromme, Petra; White, Thomas A.; Andreasson, Jakob; Arnlund, David; Bajt, Saša; Barends, Thomas R. M.; Barthelmess, Miriam; Bogan, Michael J.; Bostedt, Christoph; Bottin, Hervé; Bozek, John D.; Caleman, Carl; Coppola, Nicola; Davidsson, Jan; DePonte, Daniel P.; Elser, Veit; Epp, Sascha W.; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Frank, Matthias; Fromme, Raimund; Graafsma, Heinz; Grotjohann, Ingo; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y.; Hartmann, Andreas; Hartmann, Robert; Hau-Riege, Stefan; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M.; Hömke, André; Johansson, Linda; Kimmel, Nils; Kassemeyer, Stephan; Krasniqi, Faton; Kühnel, Kai-Uwe; Liang, Mengning; Lomb, Lukas; Malmerberg, Erik; Marchesini, Stefano; Martin, Andrew V.; Maia, Filipe R.N.C.; Messerschmidt, Marc; Nass, Karol; Reich, Christian; Neutze, Richard; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schmidt, Carlo; Schmidt, Kevin E.; Schulz, Joachim; Seibert, M. Marvin; Shoeman, Robert L.; Sierra, Raymond; Soltau, Heike; Starodub, Dmitri; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wang, Xiaoyu; Williams, Garth J.; Weidenspointner, Georg; Weierstall, Uwe; Wunderer, Cornelia; Barty, Anton; Spence, John C. H.; Chapman, Henry N.

    2012-01-01

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. PMID:22330507

  5. Time-resolved protein nanocrystallography using an X-ray free-electron laser.

    PubMed

    Aquila, Andrew; Hunter, Mark S; Doak, R Bruce; Kirian, Richard A; Fromme, Petra; White, Thomas A; Andreasson, Jakob; Arnlund, David; Bajt, Saša; Barends, Thomas R M; Barthelmess, Miriam; Bogan, Michael J; Bostedt, Christoph; Bottin, Hervé; Bozek, John D; Caleman, Carl; Coppola, Nicola; Davidsson, Jan; DePonte, Daniel P; Elser, Veit; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Frank, Matthias; Fromme, Raimund; Graafsma, Heinz; Grotjohann, Ingo; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Andreas; Hartmann, Robert; Hau-Riege, Stefan; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M; Hömke, André; Johansson, Linda; Kimmel, Nils; Kassemeyer, Stephan; Krasniqi, Faton; Kühnel, Kai-Uwe; Liang, Mengning; Lomb, Lukas; Malmerberg, Erik; Marchesini, Stefano; Martin, Andrew V; Maia, Filipe R N C; Messerschmidt, Marc; Nass, Karol; Reich, Christian; Neutze, Richard; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schmidt, Carlo; Schmidt, Kevin E; Schulz, Joachim; Seibert, M Marvin; Shoeman, Robert L; Sierra, Raymond; Soltau, Heike; Starodub, Dmitri; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wang, Xiaoyu; Williams, Garth J; Weidenspointner, Georg; Weierstall, Uwe; Wunderer, Cornelia; Barty, Anton; Spence, John C H; Chapman, Henry N

    2012-01-30

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.

  6. Time-resolved protein nanocrystallography using an X-ray free-electron laser.

    PubMed

    Aquila, Andrew; Hunter, Mark S; Doak, R Bruce; Kirian, Richard A; Fromme, Petra; White, Thomas A; Andreasson, Jakob; Arnlund, David; Bajt, Saša; Barends, Thomas R M; Barthelmess, Miriam; Bogan, Michael J; Bostedt, Christoph; Bottin, Hervé; Bozek, John D; Caleman, Carl; Coppola, Nicola; Davidsson, Jan; DePonte, Daniel P; Elser, Veit; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Frank, Matthias; Fromme, Raimund; Graafsma, Heinz; Grotjohann, Ingo; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Andreas; Hartmann, Robert; Hau-Riege, Stefan; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M; Hömke, André; Johansson, Linda; Kimmel, Nils; Kassemeyer, Stephan; Krasniqi, Faton; Kühnel, Kai-Uwe; Liang, Mengning; Lomb, Lukas; Malmerberg, Erik; Marchesini, Stefano; Martin, Andrew V; Maia, Filipe R N C; Messerschmidt, Marc; Nass, Karol; Reich, Christian; Neutze, Richard; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schmidt, Carlo; Schmidt, Kevin E; Schulz, Joachim; Seibert, M Marvin; Shoeman, Robert L; Sierra, Raymond; Soltau, Heike; Starodub, Dmitri; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wang, Xiaoyu; Williams, Garth J; Weidenspointner, Georg; Weierstall, Uwe; Wunderer, Cornelia; Barty, Anton; Spence, John C H; Chapman, Henry N

    2012-01-30

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. PMID:22330507

  7. Characterization of a high-gain Ne-like Fe transient x-ray laser

    SciTech Connect

    Dunn, J; Facnov, A; Fournier, K B; Moon, S J; Osterheld, A; Pikuz, T; Shlyaptsev, V N

    1999-09-13

    The authors present experimental results of a high efficiency Ne-like Fe transient collisional excitation x-ray laser using the COMET 15 TW table-top laser system at LLNL. The plasma formation, ionization and collision excitation of the x-ray laser have been optimized using two sequential laser pulses: a plasma formation beam with 5 J energy of 600 ps duration and a pump beam with 5 J energy of 1.2 ps duration. Since the observation of strong lasing on the 255 {angstrom} 3p-3s J = 0-1 transition of Ne-like Fe, they have achieved high gains of 35 cm{sup {minus}1} and saturation of the x-ray laser. A five-stage traveling wave excitation enhances the strongest Fe 3p-3s 255 {angstrom} lasing line as well as additional x-ray lines. A careful characterization of the plasma column conditions using L-shell spectroscopy indicates the degree of ionization along the line focus.

  8. Modeling of efficient soft x-ray lasers in transitions of nickel-like and neon-like ions.

    NASA Astrophysics Data System (ADS)

    Berrill, M.; Shlyapsev, V. N.

    2005-10-01

    We have modeled the plasma physics and amplification process in efficient soft x-ray lasers generated by rapid heating of plasmas by a short (8 ps) optical laser pulse of ˜ 1 J energy impinging at grazing incidence. This geometry allows for the efficient pumping of high repetition rate soft x-ray lasers [1-3]. The two temperature model includes all hydrodynamic equations written in 1.5D, as well a complete atomic model and multi-cell radiation transport. The equations that yield a full description of the plasma are solved using a finite difference method in a Lagrangian coordinate scheme. A post processor performs ray tracing to calculate output beam characteristics and intensities. The results corresponding to lasers in the 13.9 nm line of Ni-like Ag and the 32.6 nm and 30.1 nm of Ne-like Ti are discussed in comparison with experiments. Work supported by the NSF EUV ERC, Award EEC-0310717. 1. R. Keenan et al, Phys. Rev. Lett., 94, 103901, (2005) 2. B. M. Luther et al, Optics Lett., 30, 165, (2005) 3. D. Alessi et al, Opt. Express, 13,. 2093, ( 2005)

  9. Soft x-ray images of the Laser Entrance Hole of NIC Hohlraums (paper, HTPD2012)

    SciTech Connect

    Schneider, M B; Meezan, N B

    2012-04-30

    Hohlraums at the National Ignition Facility convert laser energy into a thermal x-radiation drive, which implodes the capsule, thus compressing the fuel. The x-radiation drive is measured with a low resolution, time-resolved x-ray spectrometer that views the hohlraum's laser entrance hole (LEH) at 37{sup o} to the hohlraum axis. This measurement has no spatial resolution. To convert this to the drive inside the hohlraum, the area and fraction of the measured x-radiation which comes from the region inside the hohlraum must be known. The size of the LEH is measured with the time integrated Static X-ray Imager (SXI) which view the LEH at 18{sup o} to the hohlraum axis. A soft x-ray image has been added to the SXI to measure the fraction of x-radiation inside the LEH's Clear Aperture in order to correct the measured radiation. A multilayer mirror plus filter selects an x-ray band centered at 870 eV, near the x-ray energy peak of a 300 eV blackbody. Results from this channel and corrections to the x-radiation drive are discussed.

  10. Soft x-ray images of the laser entrance hole of ignition hohlraums.

    PubMed

    Schneider, M B; Meezan, N B; Alvarez, S S; Alameda, J; Baker, S; Bell, P M; Bradley, D K; Callahan, D A; Celeste, J R; Dewald, E L; Dixit, S N; Döppner, T; Eder, D C; Edwards, M J; Fernandez-Perea, M; Gullikson, E; Haugh, M J; Hau-Riege, S; Hsing, W; Izumi, N; Jones, O S; Kalantar, D H; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; London, R A; MacGowan, B J; MacKinnon, A J; McCarville, T J; Milovich, J L; Mirkarimi, P; Moody, J D; Moore, A S; Myers, M D; Palma, E A; Palmer, N; Pivovaroff, M J; Ralph, J E; Robinson, J; Soufli, R; Suter, L J; Teruya, A T; Thomas, C A; Town, R P; Vernon, S P; Widmann, K; Young, B K

    2012-10-01

    Hohlraums are employed at the national ignition facility to convert laser energy into a thermal x-radiation drive, which implodes a fusion capsule, thus compressing the fuel. The x-radiation drive is measured with a low spectral resolution, time-resolved x-ray spectrometer, which views the region around the hohlraum's laser entrance hole. This measurement has no spatial resolution. To convert this to the drive inside the hohlraum, the size of the hohlraum's opening ("clear aperture") and fraction of the measured x-radiation, which comes from this opening, must be known. The size of the clear aperture is measured with the time integrated static x-ray imager (SXI). A soft x-ray imaging channel has been added to the SXI to measure the fraction of x-radiation emitted from inside the clear aperture. A multilayer mirror plus filter selects an x-ray band centered at 870 eV, near the peak of the x-ray spectrum of a 300 eV blackbody. Results from this channel and corrections to the x-radiation drive are discussed. PMID:23127032

  11. X-Ray Comb Generation from Nuclear-Resonance-Stabilized X-Ray Free-Electron Laser Oscillator for Fundamental Physics and Precision Metrology

    SciTech Connect

    Adams, B. W.; Kim, K. -J.

    2015-03-31

    An x-ray free-electron laser oscillator (XFELO) is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as Fe-57 as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS) XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as Ta-181 or Sc-45.

  12. Femtosecond time-resolved X-ray absorption spectroscopy of liquid using a hard X-ray free electron laser in a dual-beam dispersive detection method.

    PubMed

    Obara, Yuki; Katayama, Tetsuo; Ogi, Yoshihiro; Suzuki, Takayuki; Kurahashi, Naoya; Karashima, Shutaro; Chiba, Yuhei; Isokawa, Yusuke; Togashi, Tadashi; Inubushi, Yuichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko

    2014-01-13

    We present femtosecond time-resolved X-ray absorption spectroscopy of aqueous solution using a hard x-ray free electron laser (SACLA) and a synchronized Ti:sapphire laser. The instrumental response time is 200 fs, and the repetition rate of measurement is 10 Hz. A cylindrical liquid beam 100 μm in diameter of aqueous ammonium iron(III) oxalate solution is photoexcited at 400 nm, and the transient X-ray absorption spectra are measured in the K-edge region of iron, 7.10 - 7.26 keV, using a dual X-ray beam dispersive detection method. Each of the dual beams has the pulse energy of 1.4 μJ, and pump-induced absorbance change on the order of 10(-3) is successfully detected. The photoexcited iron complex exhibits a red shifted iron K-edge with the appearance time constant of 260 fs. The X-ray absorption difference spectra, with and without the pump pulses, are independent of time delay after 1.5 ps up to 100 ps, indicating that the photoexcited species is long-lived.

  13. Multi-tens of GW peak power plasma-based soft x-ray laser

    NASA Astrophysics Data System (ADS)

    Oliva, E.; Fajardo, M.; Li, L.; Le, T. T. T.; Ros, D.; Sebban, S.; Velarde, P.; Zeitoun, P.

    2013-09-01

    Ultra-intense X-ray sources have opened new avenues by creating new states of matter or probing and imaging living or inert matter. Free-electron lasers have a strong leadership by delivering pulses combining femtosecond duration and 10s of microJoules to milliJoule energy. However, these sources remain highly expensive limiting their number to a few worldwide. In parallel, laser-pumped soft X-ray lasers hold outstanding promises having demonstrated the most energetic monochromatic soft x-ray pulse and being intrinsically fully synchronized with any secondary source of the pump laser. Since the first successful demonstration of amplification of a high harmonic pulse in a plasma from gas in 2003 and from solid in 2008, we have developed an extensive numerical study. 2D hydrodynamic simulations showed that optimized Transient Collisional Excitation plasma amplifiers, may store up to 0.4 mJ in the population inversion. If carefully seeded, pulses of 80 fs and 20 μJ might be generated with table-top lasers (10J). As the energy extracted is far from the milliJoule requirements of most exciting applications, we studied the seminal experiment of Ditmire et al who seeded a plasma emitting milliJoules in the form of Amplified Spontaneous Emission (ASE).We retrieved and explained for the first time the experimental result (ASE 1,000 times stronger than amplified seed). We thus proposed and fully modeled the transposition of the so-called Chirped Pulse Amplification (CPA) in the soft X-ray range, showing that 6 mJ, 200 fs, fully coherent soft X-ray pulse is accessible with compact pump lasers.

  14. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.

    PubMed

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A; Becker, Andreas; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2014-06-10

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.

  15. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers

    PubMed Central

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A.; Becker, Andreas; Murnane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2014-01-01

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10−18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum. PMID:24850866

  16. Generation of phase - matched coherent point source in plasma media by propagated X-ray laser seeded beam

    NASA Astrophysics Data System (ADS)

    Pikuz, T.; Faenov, A.; Magnitskiy, S.; Nagorskiy, N.; Tanaka, M.; Ishino, M.; Nishikino, M.; Kando, M.; Kato, Y.; Kawachi, T.

    2016-03-01

    There is a significant interest in developing the coherent table-top X-ray lasers. Advent of plasma-based transient collisional excitation x-ray laser and particular, injection of coherent seeded beam, especially high-order harmonics, has tremendously improved the spatial coherence of such lasers, what allowed them to be the same widely used as synchrotron sources. Here we report experimental founding of unknown interference structure in a spatial profile of the output beam of the two-stage plasma X-ray laser. That allowed us experimental and theoretical discovering a new phenomenon consisted in a generation of phase-matched coherent point source in a laser plasma media by propagated X-ray laser seeded beam. This phenomenon could extend the applications of such x-ray lasers. For explanation of the observed phenomenon a new method of solving the standard system of Maxwell-Bloch equations has been developed. It was found that the interference pattern in the output laser beam was formed due to an emergence of phase-matched coherent virtual point source in the XRL amplifier and could be treated as the first observation of mirage phenomenon, analogous to the optical mirage, but in X-rays. The obtained results bring new comprehension into the physical nature of amplification of X-ray radiation in laser-induced plasma amplifiers and opening new opportunities for X-ray interferometry, holography and other applications, which requiring multiple rigidly phased sources of coherent radiation.

  17. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)

    DOE Data Explorer

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

  18. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)

    DOE Data Explorer

    Seibert, M. Marvin; Ekeberg, Tomas

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

  19. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Arefiev, Alexey V.; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V.; Shvets, G.; Downer, M. C.

    2015-02-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0 ˜ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic "denting" of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75-200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (˜6 × 10-12) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  20. Strip Velocity Measurements for Gated X-Ray Imagers Using Short Pulse Lasers

    SciTech Connect

    Ross, P. W.; Cardenas, M.; Griffin, M.; Mead, A.; Silbernagel, C. T.; Bell, P.; Haque, S. H.

    2013-09-01

    Strip velocity measurements of gated X-ray imagers are presented using an ultra-short pulse laser. Obtaining time-resolved X-ray images of inertial confinement fusion shots presents a difficult challenge. One diagnostic developed to address this challenge is the gated X-ray imagers. The gated X-ray detectors (GXDs) developed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory use a microchannel plate (MCP) coated with a gold strip line, which serves as a photocathode. GXDs are used with an array of pinholes, which image onto various parts of the GXD image plane. As the pulse sweeps over the strip lines, it creates a time history of the event with consecutive images. In order to accurately interpret the timing of the images obtained using the GXDs, it is necessary to measure the propagation of the pulse over the strip line. The strip velocity was measured using a short pulse laser with a pulse duration of approximately 1-2 ps. The 200nm light from the laser is used to illuminate the GXD MCP. The laser pulse is split and a retroreflective mirror is used to delay one of the legs. By adjusting the distance to the mirror, one leg is temporally delayed compared to the reference leg. The retroreflective setup is calibrated using a streak camera with a 1 ns full sweep. Resolution of 0.5 mm is accomplished to achieve a temporal resolution of ~5 ps on the GXD strip line.

  1. Generation of intense coherent soft x-ray with electron microbunches induced and frozen by lasers

    SciTech Connect

    Yu. L.H.

    1983-01-01

    We describe a new improved version of Transverse Optical Klystron Harmonic Generator that uses three lasers to replace the undulators in the modulator and radiator and freeze the electron microbunching. We show that intense soft x-rays can be generated.

  2. An advanced high resolution x-ray imager for laser-plasma interaction observation

    NASA Astrophysics Data System (ADS)

    Dennetiere, D.; Troussel, Ph.; Courtois, C.; Wrobel, R.; Audebert, P.

    2013-11-01

    We present here the latest results obtained with our high resolution broadband X-ray microscope. These results, both spatial and spectral, were obtained in several facilities such as Berlin's synchrotron Bessy II and LULI's laser ELFIE 100TW. The results show clearly the opportunity in high resolution microscopy that offer mirror based diagnostics.

  3. X-ray streak camera diagnostics of picosecond laser-plasma interactions

    SciTech Connect

    Cobble, J.A.; Fulton, R.D.; Jones, L.A.; Kyrala, G.A.; Schappert, G.T.; Taylor, A.J.; Wahlin, E.K.

    1992-01-01

    An x-ray streak camera is used to diagnose a laser-produced Al plasma with time resolution of {approximately}10 ps. A streak record of filtered emission and a time-integrated transmission grating spectrum reveal that the plasma radiation is dominated by emission from He- and H-like resonance lines. 11 refs.

  4. X-ray streak camera diagnostics of picosecond laser-plasma interactions

    SciTech Connect

    Cobble, J.A.; Fulton, R.D.; Jones, L.A.; Kyrala, G.A.; Schappert, G.T.; Taylor, A.J.; Wahlin, E.K.

    1992-05-01

    An x-ray streak camera is used to diagnose a laser-produced Al plasma with time resolution of {approximately}10 ps. A streak record of filtered emission and a time-integrated transmission grating spectrum reveal that the plasma radiation is dominated by emission from He- and H-like resonance lines. 11 refs.

  5. Fabrication of X-ray Spiral Masks by Laser Ablation

    NASA Astrophysics Data System (ADS)

    Peele, A. G.; Nugent, K. A.; McMahon, P. J.; Paterson, D.; Tran, C. Q.

    2002-01-01

    The authors describe microfabrication of a spiral mask modulation structure by excimer laser ablation. A multi-step fabrication using 15 separate chrome-on-quartz mask pattern is used to create a 16 step spiral staircase structure approximating the desired spiral ramp. The results of simulations and experimental results are presented.

  6. Laser-based K α X-ray emission characterization using a high contrast ratio and high-power laser system

    NASA Astrophysics Data System (ADS)

    Fourmaux, S.; Kieffer, J. C.

    2016-06-01

    We characterized a laser-based K_α X-ray source produced onto a Mo solid target. We used a laser system with a high laser pulse contrast ratio (LPCR) and an instantaneous power ˜30 TW. We investigated simultaneously the K_α X-ray conversion efficiency, the X-ray source size, and the proton front surface emission. We found a high K_α X-ray conversion efficiency up to 2× 10^{-4} associated with an X-ray source size only ˜1.8 times larger than the laser focal spot for the highest intensities. We found that using a high LPCR laser pulse with 245 mJ per pulse is of interest to develop a laser-based X-ray imaging system as it can combine a high conversion efficiency with a small increase in the X-ray source size compared to the laser focal spot.

  7. A review of x-ray free-electron laser theory.

    SciTech Connect

    Huang, Z.; Kim, K.-J.; Accelerator Systems Division; Stanford Linear Accelerator Center

    2007-03-01

    High-gain free-electron lasers (FELs) are being developed as extremely bright sources for a next-generation x-ray facility. In this paper, we review the basic theory of the start-up, the exponential growth, and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission. The radiation characteristics of an x-ray FEL, including its transverse coherence, temporal characteristics, and harmonic content, are discussed. FEL performance in the presence of machine errors and undulator wakefields is examined. Various enhancement schemes through seeding and beam manipulations are summarized.

  8. Ultrafast Coherent Diffraction Imaging with X-ray Free-Electron Lasers

    SciTech Connect

    Chapman, H N; Bajt, S; Barty, A; Benner, W; Bogan, M; Frank, M; Hau-Riege, S; London, R; Marchesini, S; Spiller, E; Szoke, A; Woods, B; Boutet, S; Hodgson, K; Hajdu, J; Bergh, M; Burmeister, F; Caleman, C; Huldt, G; Maia, F; Seibert, M M; der Spoel, D v

    2006-08-22

    The ultrafast pulses from X-ray free-electron lasers will enable imaging of non-periodic objects at near-atomic resolution [1, Neutze]. These objects could include single molecules, protein complexes, or virus particles. The specimen would be completely destroyed by the pulse in a Coulomb explosion, but that destruction will only happen after the pulse. The scattering from the sample will give structural information about the undamaged object. There are many technical challenges that must be addressed before carrying out such experiments at an XFEL, which we are doing so with experiments at FLASH, the soft-X-ray FEL at DESY.

  9. A Review of X-ray Free-Electron Laser Theory

    SciTech Connect

    Huang, Zhirong; Kim, Kwang-Je; /ANL, APS

    2006-12-18

    High-gain free-electron lasers (FELs) are being developed as extremely bright sources for a next-generation x-ray facility. In this paper, we review the basic theory of the startup, the exponential growth, and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission (SASE). The radiation characteristics of an x-ray FEL, including its transverse coherence, temporal characteristics, and harmonic content, are discussed. FEL performance in the presence of machine errors and undulator wakefields is examined. Various enhancement schemes through seeding and beam manipulations are summarized.

  10. High repetition rate collisional soft x-ray lasers based on grazing incidence pumping

    SciTech Connect

    Luther, B M; Wang, Y; Larotonda, M A; Alessi, D; Berrill, M; Rocca, J J; Dunn, J; Keenan, R; Shlyaptsev, V N

    2005-11-18

    We discuss the demonstration of gain-saturated high repetition rate table-top soft x-ray lasers producing microwatt average powers at wavelengths ranging from 13.9 to 33 nm. The results were obtained heating a pre-created plasma with a picosecond optical laser pulse impinging at grazing incidence onto a pre-created plasma. This pumping geometry increases the energy deposition efficiency of the pump beam into the gain region, making it possible to saturate soft x-ray lasers in this wavelength range with a short pulse pump energy of only 1 J at 800 nm wavelength. Results corresponding to 5 Hz repetition rate operation of gain-saturated 14.7 nm Ni-like Pd and 32.6 nm line Ne-like Ti lasers pumped by a table-top Ti:sapphire laser are reported. We also discuss results obtained using a 1 {omega} 1054 nm pre-pulse and 2{omega} 527 nm short pulse from a Nd:glass pump laser. This work demonstrates the feasibility of producing compact high average power soft x-ray lasers for applications.

  11. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    NASA Astrophysics Data System (ADS)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  12. The creation of large-volume, gradient-free warm dense matter with an x-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Lévy, A.; Audebert, P.; Shepherd, R.; Dunn, J.; Cammarata, M.; Ciricosta, O.; Deneuville, F.; Dorchies, F.; Fajardo, M.; Fourment, C.; Fritz, D.; Fuchs, J.; Gaudin, J.; Gauthier, M.; Graf, A.; Lee, H. J.; Lemke, H.; Nagler, B.; Park, J.; Peyrusse, O.; Steel, A. B.; Vinko, S. M.; Wark, J. S.; Williams, G. O.; Zhu, D.; Lee, R. W.

    2015-03-01

    The efficiency and uniformity of heating induced by hard x-ray free-electron laser pulse is investigated for 0.5 μm silver foils using the X-ray Pump Probe instrument at the Linac Coherent Light Source facility. Intense 8.9 keV x-ray pulses of 60 fs duration deposit energy predominantly via inner-shell ionization to create a non-equilibrium Ag solid density plasma. The x-ray pulses are focused to 14 × 17 μm2 by means of beryllium lenses and by varying the total beam energy, the energy deposition is varied over a range of irradiances from 4.4 to 6.5 × 1015 W/cm2. Two time-and-space resolved interferometers simultaneously probed the expansion of the front and rear sample surfaces and find evidence of a nearly symmetric expansion pointing to the uniformity of energy deposition over the full target thickness. The experimental results are compared with two different hydrodynamic simulations of the sample expansion. The agreement between experimental and theoretical results yields an estimate of the temperature evolution as a function of x-ray irradiance that varies from 8 to 10 eV for the x-ray irradiances studied.

  13. Progress in table-top transient collisional excitation x-ray lasers at LLNL

    SciTech Connect

    Da Silva, L B; Dunn, J; Li, Y; Nilsen, J; Osterheld, A; Shepherd, R; Shlyaptsev, V N

    1999-02-07

    We present progress in experiments for high efficiency Ne-like and Ni-like ion x-ray lasers using the transient collisional excitation scheme. Experimental results have been obtained on the COMET 15 TW table-top laser system at the Lawrence Livermore National Laboratory (LLNL). The plasma formation, ionization and collisional excitation of the x-ray laser have been optimized using two sequential laser pulses of 600 ps and 1 ps duration with an optional pre-pulse. We have observed high gains up to 55 cm{sup {minus}1} in Ne-like and Ni-like ion schemes for various atomic numbers. We report strong output for the 4d - 4p line in lower Z Ni-like ion sequence for Mo to Y, lasing from {approximately}190 {angstrom} to 240 {angstrom}, by pumping with less than 5 J energy on target.

  14. High gain x-ray lasers pumped by transient collisional excitation

    SciTech Connect

    Dunn, J., LLNL

    1998-06-16

    We present recent results of x-ray laser amplification of spontaneous emission in Ne-like and Ni-like transient collisional excitation schemes. The plasma formation, ionization and collisional excitation can be optimized using two laser pulses of 1 ns and 1 ps duration at table-top energies of 5 J in each beam. High gain of 35 cm{sup -1} has been measured on the 147 {Angstrom} 4d{r_arrow}4p J=0{r_arrow}1 transition of Ni-like Pd and is a direct consequence of the nonstationary population inversion produced by the high intensity picosecond pulse. We report the dependence of the x-ray laser line intensity on the laser plasma conditions and compare the experimental measurements with hydrodynamic and atomic kinetics simulations for Ne-like and Ni-like lasing.

  15. Boiling the Vacuum with AN X-Ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Ringwald, A.

    2004-10-01

    X-ray free electron lasers will be constructed in this decade, both at SLAC in the form of the so-called Linac Coherent Light Source as well as at DESY, where the so-called TESLA XFEL laboratory uses techniques developed for the design of the TeV energy superconducting electron-positron linear accelerator TESLA. Such X-ray lasers may allow also for high-field science applications by exploiting the possibility to focus their beams to a spot with a small radius, hopefully in the range of the laser wavelength. Along this route one obtains very large electric fields, much larger than those obtainable with any optical laser of the same power. We consider here the possibility of obtaining an electric field so high that electron-positron pairs are spontaneously produced in vacuum (Schwinger pair production) and review the prospects to verify this non-perturbative production mechanism for the first time in the laboratory.

  16. Simulation of an X-ray laser in the transient gain-saturation regime

    SciTech Connect

    Starikov, F A; Volkov, V A; Gasparyan, P D; Roslov, V I

    2009-09-30

    By using the TRANS code, we performed three-dimensional calculations of amplified spontaneous emission (ASE) in X-ray lasers on the 3p-3s transition in Ne-like Ge ({lambda} = 19.6 nm) and Ti ({lambda} = 2.6 nm) operating in the transient regime upon irradiation of a flat target by a high-power picosecond laser pulse focused into a line with one or two nanosecond prepulses. The hydrodynamics and population kinetics of the active medium of X-ray lasers were calculated by using the SS-9M code. The pulse duration, the gain, the spatial structure of the laser beam and the type of influence of a 'travelling' pump wave on the ASE brightness obtained in calculations are in agreement with the experimental data. The use of the 'travelling pump wave' leads not only to the increase in the ASE brightness but also considerably reduces its angular divergence. (active media)

  17. Output and Optical Performances of Ne-like Ar Capillary Discharge Soft X-ray Laser

    SciTech Connect

    Watanabe, Masato; Xiao Yifan; Sakai, Yusuke; Okino, Akitoshi; Hotta, Eiki

    2006-01-05

    Compact soft X-ray laser has been developed. In past experiments, spike output has been observed, when operating the device with a predischarge current of 5 to 15 A, a current of 9 to 35 kA with a rise time of 55 ns in an argon gas pressure range from 100 to 800 mTorr. Spectroscopic measurement has been conducted using a grazing incidence spectrometer. The line at 46.9 nm has been observed. In present study, varying the capillary length, the X-ray diode measurement has been conducted. The result shows that the laser output exponentially increases with increasing the capillary length. The divergence of laser beam is also measured. For the 20 cm-long capillary, the diameter of a laser beam is in a range from 3.2 to 4.0 mm, which is corresponding to a range of divergence from 2.2 to 2.8 mrad.

  18. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode

    DOE PAGES

    Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; Sokaras, Dimosthenis; Weng, Tsu -Chien; Lassalle-Kaiser, Benedikt; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Hellmich, Julia; et al

    2012-11-05

    The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as wellmore » as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ1,3 XES spectra of MnII and Mn2III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. Furthermore, the technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.« less

  19. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode

    SciTech Connect

    Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; Sokaras, Dimosthenis; Weng, Tsu -Chien; Lassalle-Kaiser, Benedikt; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Hellmich, Julia; Glockner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Schafer, Donald W.; Sellberg, Jonas; Kenney, Christopher; Herbst, Ryan; Pines, Jack; Hart, Philip; Herrmann, Sven; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sebastien; Williams, Garth J.; Zouni, Athina; Messinger, Johannes; Glatzel, Pieter; Sauter, Nicholas K.; Yachandra, Vittal K.; Yano, Junko; Bergmann, Uwe

    2012-11-05

    The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ1,3 XES spectra of MnII and Mn2III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. Furthermore, the technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.

  20. Key Laser Technologies for X-Ray FELs

    SciTech Connect

    Kaertner, Franz

    2013-08-31

    In the final project period, we demonstrated sub femtosecond timing distribution over a 1.2 km polarization-maintaining (PM) fiber-optic link using balanced optical cross-correlators (BOCs) for link stabilization. By eliminating polarization mode dispersion, link operation for 16 days maintained 0.6 fs RMS timing drift and during a 3-day interval only 0.13 fs drift, which corresponds to a stability level of 10-21. To improve the overall system efficiency and robustness, we developed fiber-coupled, hybrid-integrated BOCs using waveguides in periodically-poled KTiOPO4 (PPKTP). The measured second-harmonic conversion efficiency in the waveguides is a factor of 50 higher than that of bulk-optic crystals. Characterization of 1st-generation devices shows performance comparable to free-space BOCs, with the potential for significant improvement in future devices. For optical-to-RF conversion, we developed two balanced optical-microwave phase detectors (BOM-PD) based on the Sagnac and Mach-Zehnder interferometers. RF extraction using BOM-PDs in phase-locked loops yielded sub-10-fs residual timing jitter for locking bandwidths on the order of several hundred kHz. Finally, we characterized the timing jitter of ultralow-noise Ti:Sapphire oscillators, demonstrating an unprecedented 13 as of jitter integrated over the entire Nyquist band. Our measurements agreed well with theory, confirming our models for quantum-limited laser noise. Measurements of commercially available solid-state lasers at 1550 nm showed that there are laser sources already available with sufficiently low noise to achieve sub-femtosecond performance as master oscillators within a timing distribution system.

  1. Two-dimensional imaging detectors for structural biology with X-ray lasers.

    PubMed

    Denes, Peter

    2014-07-17

    Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors--monolithic or hybrid--are the standard for XFELs today. For structural biology, improvements are needed for today's 10-100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art.

  2. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    PubMed Central

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C.H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-01-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes. PMID:27070998

  3. High resolution energy-angle correlation measurement of hard x rays from laser-Thomson backscattering.

    PubMed

    Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U

    2013-09-13

    Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.

  4. Two-dimensional imaging detectors for structural biology with X-ray lasers.

    PubMed

    Denes, Peter

    2014-07-17

    Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors--monolithic or hybrid--are the standard for XFELs today. For structural biology, improvements are needed for today's 10-100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art. PMID:24914161

  5. Performance of the x-ray free-electron laser oscillator with crystal cavity

    NASA Astrophysics Data System (ADS)

    Lindberg, R. R.; Kim, K.-J.; Shvyd'Ko, Yu.; Fawley, W. M.

    2011-01-01

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include the frequency-dependent Bragg crystal reflectivity and the transverse diffraction and focusing using the two-dimensional FEL code GINGER. A review of the physics of Bragg crystal reflectors and the x-ray FEL oscillator is made, followed by a discussion of its numerical implementation in GINGER. The simulation results for a two-crystal cavity and realistic FEL parameters indicate ˜109 photons in a nearly Fourier-limited, ps pulse. Compressing the electron beam to 100 A and 100 fs results in comparable x-ray characteristics for relaxed beam emittance, energy spread, and/or undulator parameters, albeit in a larger radiation bandwidth. Finally, preliminary simulation results indicate that the four-crystal FEL cavity can be tuned in energy over a range of a few percent.

  6. Two-dimensional imaging detectors for structural biology with X-ray lasers

    PubMed Central

    Denes, Peter

    2014-01-01

    Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors—monolithic or hybrid—are the standard for XFELs today. For structural biology, improvements are needed for today's 10–100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art. PMID:24914161

  7. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex.

    PubMed

    Zhou, X Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Suino-Powell, Kelly M; Boutet, Sébastien; Williams, Garth J; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2016-01-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  8. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex.

    PubMed

    Zhou, X Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Suino-Powell, Kelly M; Boutet, Sébastien; Williams, Garth J; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2016-01-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes. PMID:27070998

  9. Broad-band soft x-ray diagnostic instruments at the LLNL Novette laser facility

    SciTech Connect

    Tirsell, K.G.; Lee, P.H.Y.; Nilson, D.G.; Medecki, H.

    1983-09-15

    Complementary broad-band instruments have been developed to measure time dependent, absolute soft x-ray spectra at the Lawrence Livermore National Laboratory (LLNL) Nd glass laser irradiation facilities. Absolute flux measurements of x rays emitted from laser-produced plasmas are important for understanding laser absorption and energy transport. We will describe two new 10-channel XRD systems that have been installed at the LLNL Novette facility for use in the 0.15- to 1.5-keV range. Since XRD channel time response is limited by available oscilloscope performance to 120 ps, a soft x-ray streak camera has been developed for better time resolution (20 ps) and greater dynamic range (approx.10/sup 3/) in the same x-ray energy region. Using suitable filters, grazing incidence mirrors, and a gold or cesium-iodide transmission cathode, this streak camera instrument has been installed at Novette to provide one broad and four relatively narrow channels. It can also be used in a single channel, spatially discriminating mode by means of pinhole imaging. The complementary nature of these instruments has been enhanced by locating them in close proximity and matching their channel energy responses. As an example of the use of these instruments, we present results from Novette 2..omega..(0.53 ..mu..m) gold disk irradiations at 1 ns and 10/sup 14/ to 10/sup 15/ W/cm/sup 2/.

  10. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator.

    PubMed

    Huang, K; Li, Y F; Li, D Z; Chen, L M; Tao, M Z; Ma, Y; Zhao, J R; Li, M H; Chen, M; Mirzaie, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2016-06-08

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 10(8)/shot and 10(8 )photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3(rd) generation synchrotrons.

  11. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    PubMed Central

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170

  12. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator.

    PubMed

    Huang, K; Li, Y F; Li, D Z; Chen, L M; Tao, M Z; Ma, Y; Zhao, J R; Li, M H; Chen, M; Mirzaie, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 10(8)/shot and 10(8 )photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3(rd) generation synchrotrons. PMID:27273170

  13. Monochromatic computed tomography with a compact laser-driven X-ray source.

    PubMed

    Achterhold, K; Bech, M; Schleede, S; Potdevin, G; Ruth, R; Loewen, R; Pfeiffer, F

    2013-01-01

    A laser-driven electron-storage ring can produce nearly monochromatic, tunable X-rays in the keV energy regime by inverse Compton scattering. The small footprint, relative low cost and excellent beam quality provide the prospect for valuable preclinical use in radiography and tomography. The monochromaticity of the beam prevents beam hardening effects that are a serious problem in quantitative determination of absorption coefficients. These values are important e.g. for osteoporosis risk assessment. Here, we report quantitative computed tomography (CT) measurements using a laser-driven compact electron-storage ring X-ray source. The experimental results obtained for quantitative CT measurements on mass absorption coefficients in a phantom sample are compared to results from a rotating anode X-ray tube generator at various peak voltages. The findings confirm that a laser-driven electron-storage ring X-ray source can indeed yield much higher CT image quality, particularly if quantitative aspects of computed tomographic imaging are considered.

  14. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-06-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons.

  15. Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source (LCLS) X-ray free electron laser.

    PubMed

    Barty, Anton; Soufli, Regina; McCarville, Tom; Baker, Sherry L; Pivovaroff, Michael J; Stefan, Peter; Bionta, Richard

    2009-08-31

    The first X-ray free electron laser (XFEL) at keV energies will be the Linac Coherent Light Source (LCLS), located at the SLAC National Accelerator Laboratory. Scheduled to begin operation in 2009, this first-of-a-kind X-ray source will produce ultra-short X-ray pulses of unprecedented brightness in the 0.8 to 8 keV first harmonic photon energy regime. Much effort has been invested in predicting and modeling the XFEL photon source properties at the undulator exit; however, as most LCLS experiments are ultimately dependent on the beam focal spot properties it is equally as important to understand the XFEL beam at the endstations where the experiments are performed. Here, we use newly available precision surface metrology data from actual LCLS mirrors combined with a scalar diffraction model to predict the LCLS beam properties in the experiment chambers.

  16. The Mn₄Ca photosynthetic water-oxidation catalyst studied by simultaneous X-ray spectroscopy and crystallography using an X-ray free-electron laser.

    PubMed

    Tran, Rosalie; Kern, Jan; Hattne, Johan; Koroidov, Sergey; Hellmich, Julia; Alonso-Mori, Roberto; Sauter, Nicholas K; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yano, Junko; Yachandra, Vittal K

    2014-07-17

    The structure of photosystem II and the catalytic intermediate states of the Mn₄CaO₅ cluster involved in water oxidation have been studied intensively over the past several years. An understanding of the sequential chemistry of light absorption and the mechanism of water oxidation, however, requires a new approach beyond the conventional steady-state crystallography and X-ray spectroscopy at cryogenic temperatures. In this report, we present the preliminary progress using an X-ray free-electron laser to determine simultaneously the light-induced protein dynamics via crystallography and the local chemistry that occurs at the catalytic centre using X-ray spectroscopy under functional conditions at room temperature.

  17. The Mn₄Ca photosynthetic water-oxidation catalyst studied by simultaneous X-ray spectroscopy and crystallography using an X-ray free-electron laser.

    PubMed

    Tran, Rosalie; Kern, Jan; Hattne, Johan; Koroidov, Sergey; Hellmich, Julia; Alonso-Mori, Roberto; Sauter, Nicholas K; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yano, Junko; Yachandra, Vittal K

    2014-07-17

    The structure of photosystem II and the catalytic intermediate states of the Mn₄CaO₅ cluster involved in water oxidation have been studied intensively over the past several years. An understanding of the sequential chemistry of light absorption and the mechanism of water oxidation, however, requires a new approach beyond the conventional steady-state crystallography and X-ray spectroscopy at cryogenic temperatures. In this report, we present the preliminary progress using an X-ray free-electron laser to determine simultaneously the light-induced protein dynamics via crystallography and the local chemistry that occurs at the catalytic centre using X-ray spectroscopy under functional conditions at room temperature. PMID:24914152

  18. Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source (LCLS) X-ray free electron laser.

    PubMed

    Barty, Anton; Soufli, Regina; McCarville, Tom; Baker, Sherry L; Pivovaroff, Michael J; Stefan, Peter; Bionta, Richard

    2009-08-31

    The first X-ray free electron laser (XFEL) at keV energies will be the Linac Coherent Light Source (LCLS), located at the SLAC National Accelerator Laboratory. Scheduled to begin operation in 2009, this first-of-a-kind X-ray source will produce ultra-short X-ray pulses of unprecedented brightness in the 0.8 to 8 keV first harmonic photon energy regime. Much effort has been invested in predicting and modeling the XFEL photon source properties at the undulator exit; however, as most LCLS experiments are ultimately dependent on the beam focal spot properties it is equally as important to understand the XFEL beam at the endstations where the experiments are performed. Here, we use newly available precision surface metrology data from actual LCLS mirrors combined with a scalar diffraction model to predict the LCLS beam properties in the experiment chambers. PMID:19724548

  19. X-ray laser-induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene.

    PubMed

    Abbey, Brian; Dilanian, Ruben A; Darmanin, Connie; Ryan, Rebecca A; Putkunz, Corey T; Martin, Andrew V; Wood, David; Streltsov, Victor; Jones, Michael W M; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G; Nugent, Keith A; Quiney, Harry M

    2016-09-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration.

  20. X-ray laser-induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene.

    PubMed

    Abbey, Brian; Dilanian, Ruben A; Darmanin, Connie; Ryan, Rebecca A; Putkunz, Corey T; Martin, Andrew V; Wood, David; Streltsov, Victor; Jones, Michael W M; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G; Nugent, Keith A; Quiney, Harry M

    2016-09-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076

  1. Membrane protein structural biology using X-ray free electron lasers.

    PubMed

    Neutze, Richard; Brändén, Gisela; Schertler, Gebhard F X

    2015-08-01

    Membrane protein structural biology has benefitted tremendously from access to micro-focus crystallography at synchrotron radiation sources. X-ray free electron lasers (XFELs) are linear accelerator driven X-ray sources that deliver a jump in peak X-ray brilliance of nine orders of magnitude and represent a disruptive technology with potential to dramatically change the field. Membrane proteins were amongst the first macromolecules to be studied with XFEL radiation and include proof-of-principle demonstrations of serial femtosecond crystallography (SFX), the observation that XFEL data can deliver damage free crystallographic structures, initial experiments towards recording structural information from 2D arrays of membrane proteins, and time-resolved SFX, time-resolved wide angle X-ray scattering and time-resolved X-ray emission spectroscopy studies. Conversely, serial crystallography methods are now being applied using synchrotron radiation. We believe that a context dependent choice of synchrotron or XFEL radiation will accelerate progress towards novel insights in understanding membrane protein structure and dynamics.

  2. Short-wavelength soft-x-ray laser pumped in double-pulse single-beam non-normal incidence

    SciTech Connect

    Zimmer, D.; Ros, D.; Guilbaud, O.; Habib, J.; Kazamias, S.; Zielbauer, B.; Bagnoud, V.; Ecker, B.; Aurand, B.; Kuehl, T.; Hochhaus, D. C.; Neumayer, P.

    2010-07-15

    We demonstrated a 7.36 nm Ni-like samarium soft-x-ray laser, pumped by 36 J of a neodymium:glass chirped-pulse amplification laser. Double-pulse single-beam non-normal-incidence pumping was applied for efficient soft-x-ray laser generation. In this case, the applied technique included a single-optic focusing geometry for large beam diameters, a single-pass grating compressor, traveling-wave tuning capability, and an optimized high-energy laser double pulse. This scheme has the potential for even shorter-wavelength soft-x-ray laser pumping.

  3. Time-resolved Soft X-Ray Imaging (SXRI) diagnostic for use at the NIF and OMEGA lasers (version 2)

    SciTech Connect

    Schneider, M B; Holder, J P; James, D L; Bruns, H C; Celeste, J R; Compton, S; Costa, R L; Ellis, A D; Emig, J A; Hargrove, D; Kalantar, D H; MacGowan, B J; Power, G D; Sorce, C; Rekow, V; Widmann, K; Young, B K; Young, P E; Garcia, O F; McKenney, J; Haugh, M; Goldin, F; MacNeil, L P; Cone, K

    2006-07-21

    The soft x-ray imager (SXRI) built for the first experiments at the National Ignition Facility (NIF) has four soft x-ray channels and one hard x-ray channel. The SXRI is a snout that mounts to a four strip gated imager. This produces four soft x-ray images per strip, which can be separated in time by {approx}60psec. Each soft x-ray channel consists of a mirror plus a filter. The diagnostic was used to study x-ray burnthrough of hot hohlraum targets at the NIF and OMEGA lasers. The SXRI snout design and issues involved in selecting the desired soft x-ray channels are discussed.

  4. Applications of X-ray lasers utilizing plasmas that are only a few times ionised

    SciTech Connect

    Nilsen, J; Scofield, J H

    2004-06-09

    With the advent of tabletop X-ray lasers that operate at high repetition rate more emphasis is being put on finding useful applications for these lasers. The 14.7 nm Ni-like Pd X-ray laser at Lawrence Livermore National Laboratory is being used to do many interferometer experiments. As detailed quantitative comparisons are done between experiments and code simulations it is clear that some of the assumptions used to analyze the experiments need to be modified as one explores plasmas that are only a few times ionized. In the case of aluminium plasmas that have been analyzed with interferometers there has been some unusual behavior where the fringe lines bend the wrong way. In this work we will discuss how the index of refraction for aluminium is far more complicated than generally assumed because there are significant contributions to the index from the continuum and line structure of the bound electrons that can dominate the free electron contribution and even cause the index to be greater than one. We will also discuss some potential applications of the high repetition rate Ne-like Ar X-ray laser at 46.9 nm. In particular we will present modeling that shows how the Ar laser could be used to modify the absorption coefficient of a helium plasma and allow one to study the kinetics of plasmas with very low temperatures of a few eV. We will also discuss frequency doubling of the 46.9 nm laser.

  5. kHz femtosecond laser-plasma hard X-ray and fast ion source

    NASA Astrophysics Data System (ADS)

    Thoss, A.; Korn, G.; Richardson, M. C.; Faubel, M.; Stiel, H.; Voigt, U.; Siders, C. W.; Elsaesser, T.

    2002-04-01

    We describe the first demonstration of a new stable, kHz femtosecond laser-plasma source of hard x-ray continuum and Kα emission using a thin liquid metallic jet target. kHz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot-to-shot and is debris-free. We have solved this requirement with the use of a fine (10-30 μm diameter) liquid metal jet target that provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We will show hard x-ray spectra recorded from liquid Ga targets that show the generation of the 9.3 keV and 10.3 keV, Kα and Kβ lines superimposed on a multi-keV Bremsstrahlung continuum. This source was generated by a 50fs duration, 1 kHz, 2W, high intensity Ti:Sapphire laser. We will discuss the extension of this source to higher powers and higher repetition rates, providing harder x-ray emission, with the incorporation of pulse-shaping and other techniques to enhance the x-ray conversion efficiency. Using the same liquid target technology, we have also demonstrated the generation of forward-going sub-MeV protons from a 10 μm liquid water target at 1 kHz repetition rates. kHz sources of high energy ions will find many applications in time-resolved particle interaction studies, as well as lead to the efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors both in the forward and backward directions up to energies of ~500 keV. As the intensity of compact high repetition-rate lasers sources increase, we can expect improvements in the energy, conversion efficiency and directionality to occur. The impact of these developments on a number of fields will be discussed. As compact

  6. Modelling of transient Ni-like silver X-ray lasers

    NASA Astrophysics Data System (ADS)

    Benredjem, D.; Dubau, J.; Guilbaud, O.; Klisnick, A.; Möller, C.

    2007-10-01

    We have modelled an experiment performed at the LULI facility (Ecole Polytechnique, Palaiseau, France). This experiment was devoted to the measurement of the temporal coherence of the transient Ni-like silver X-ray laser at the wavelength of 13.9 nm. In population kinetics studies of saturated lasers, it is necessary to account for the interaction between the X-ray laser electric field and the lasing ions. To this end, we have used the Maxwell-Bloch formalism in the paraxial approximation. The Zeeman sublevels ( JM) associated with the lower lasing level ( J = 1) are not identically affected by the X-ray laser field. As a result, their populations are different. However, elastic collisions between free electrons and lasing ions have the opposite effect: they tend to restore equilibrium between the sublevel populations. Therefore, elastic collision rates obtained in the distorted wave approximation have been included in the rate equations. Refraction of the X-ray beam, due to electron density gradients, is taken into account by using a ray-trace code which works as a post-processor of the hydro-code EHYBRID. We have checked that the Voigt profile is a good approximation for lasing lines in Ni-like ions. This allowed us to implement a subroutine calculating the Voigt profile in the Maxwell-Bloch code. Whilst the FWHM of the spontaneous emission profile is 12 mÅ, the amplified X-ray line shows a smaller width of ˜3 mÅ. This is known as the gain narrowing effect. We notice the saturation of the line-width for a propagation length of 2-3 mm. Comparison with experiment is discussed.

  7. Convex crystal x-ray spectrometer for laser plasma experiments

    SciTech Connect

    May, M.; Heeter, R.; Emig, J.

    2004-10-01

    Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC.

  8. Interferometric studies of laser-created plasmas using compact soft x-ray lasers

    SciTech Connect

    Dunn, J; Nilsen, J; Moon, S; Keenan, R; Jankowska, E; Maconi, M C; Hammarsten, E C; Filevich, J; Hunter, J R; Smith, R F; Shlyaptsev, V; Rocca, J J

    2003-12-04

    We summarize results of several successful dense plasma diagnostics experiments realized by combining two different kinds of table-top soft x-ray lasers with an amplitude division interferometer based on diffraction grating beam splitters. In the first set of experiments this robust high throughput diffraction grating interferometer (DGI) was used with a 46.9 nm portable capillary discharge laser to study the dynamics of line focus and point focus laser-created plasmas. The measured electron density profiles, which differ significantly from those expected from a classical expansion, unveil important two-dimensional effects of the dynamics of these plasmas. A second DGI customized to operate in combination with a 14.7 nm Ni-like Pd transient gain laser was used to perform interferometry of line focus laser-created plasmas with picosecond time resolution. These measurements provide valuable new benchmarks for complex hydrodynamic codes and help bring new understanding of the dynamics of dense plasmas. The instrumentation and methodology we describe is scalable to significantly shorter wavelengths, and constitutes a promising scheme for extending interferometry to the study of very dense plasmas such as those investigated for inertial confinement fusion.

  9. Enhanced output of soft X-ray lasers using double slab targets

    SciTech Connect

    Moreno, J.C.; Nilsen, J.; Chandler, E.

    1994-06-01

    Double slab neon-like niobium soft x-ray laser experiments have been performed using the Nova laser. The two slabs have their front surfaces facing in opposite directions with either a 300 {mu}m planar separation between them. Separate laser beams irradiate each slab with an intensity on target of 1.3 {times} 10{sup 14} W/cm{sup 2}. Best coupling was observed using a 300 {mu}m separation. The angular divergence of the laser is measured for single slab and double slab configurations. Comparisons to numerical models are discussed.

  10. Convex Crystal X-ray Spectrometer for Laser Plasma Experiments

    SciTech Connect

    May, M; Heeter, R; Emig, J

    2004-04-15

    Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC. Work supported by U. S. DoE/UC LLNL contract W-7405-ENG-48

  11. Optimal main pulse angle for different preplasma conditions in transient collisionally pumped x-ray lasers.

    PubMed

    Ursescu, Daniel; Zielbauer, Bernhard; Kuehl, Thomas; Neumayer, Paul; Pert, Geoff

    2007-04-01

    The effects of the incidence angle of the main pump (MP) pulse in non-normal pumping geometry and the influence of the MP duration are investigated experimentally and theoretically for a transient collisionally pumped (TCE) x-ray laser in Ni-like Zr at 45 degrees and 72 degrees incidence angle on the target. The way they transfer to the x-ray laser output depends on the preplasma conditions, most notably on the average ionization distribution at the arrival of the MP. Moreover, contrary to previous grazing incidence pumping results, it is found that the shortest attainable MP maximizes the output. Modeling of the experimental results is performed with EHYBRID code. The results are important for scaling high repetition-rate non-normal incidence pumped lasers to sub- 10nm wavelengths.

  12. Soft x-ray power diagnostic improvements at the Omega Laser Facility

    SciTech Connect

    Sorce, C.; Schein, J.; Weber, F.; Widmann, K.; Campbell, K.; Dewald, E.; Turner, R.; Landen, O.; Jacoby, K.; Torres, P.; Pellinen, D.

    2006-10-15

    Soft x-ray power diagnostics are essential for evaluating high temperature laser plasma experiments. The Dante soft x-ray spectrometer, a core diagnostic for radiation flux and temperature measurements of Hohlraums, installed on the Omega Laser Facility at the Laboratory for Laser Energetics has recently undergone a series of upgrades. Work performed at Brookhaven National Laboratory for the development of the National Ignition Facility (NIF) Dante spectrometer enables the Omega Dante to offer a total of 18 absolutely calibrated channels in the energy range from 50 eV to 20 keV. This feature provides Dante with the capability to measure higher, NIF relevant, radiation temperatures with increased accuracy including a differentiation of higher energy radiation such as the Au M and L bands. Diagnostic monitoring using experimental data from directly driven Au spherical shots is discussed.

  13. Kinetic effects and nonlinear heating in intense x-ray-laser-produced carbon plasmas.

    PubMed

    Sentoku, Y; Paraschiv, I; Royle, R; Mancini, R C; Johzaki, T

    2014-11-01

    The x-ray laser-matter interaction for a low-Z material, carbon, is studied with a particle-in-cell code that solves the photoionization and x-ray transport self-consistently. Photoionization is the dominant absorption mechanism and nonthermal photoelectrons are produced with energy near the x-ray photon energy. The photoelectrons ionize the target rapidly via collisional impact ionization and field ionization, producing a hot plasma column behind the laser pulse. The radial size of the heated region becomes larger than the laser spot size due to the kinetic nature of the photoelectrons. The plasma can have a temperature of more than 10 000 K (>1eV), an energy density greater than 10^{4} J/cm^{3}, an ion-ion Coulomb coupling parameter Γ≥1, and electron degeneracy Θ≥1, i.e., strongly coupled warm dense matter. By increasing the laser intensity, the plasma temperature rises nonlinearly from tens of eV to hundreds of eV, bringing it into the high energy density matter regime. The heating depth and temperature are also controllable by changing the photon energy of the incident laser light.

  14. Imaging single cells in a beam of live cyanobacteria with an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2015-02-11

    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.

  15. Open data set of live cyanobacterial cells imaged using an X-ray laser

    PubMed Central

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R.N.C.; Hantke, Max F.; DePonte, Daniel P.; Seibert, M. Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A.; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H.; Larsson, Daniel S.D.; Barty, Anton; Martin, Andrew V.; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D.; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W.; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N. Duane; Chapman, Henry N.; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-01-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences. PMID:27479514

  16. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    SciTech Connect

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  17. High-Energy Density science with an ultra-bright x-ray laser

    NASA Astrophysics Data System (ADS)

    Glenzer, Siegfried

    2015-11-01

    This talk will review recent progress in high-energy density physics using the world's brightest x-ray source, the Linac Coherent Light Source, SLAC's free electron x-ray laser. These experiments investigate laser-driven matter in extreme conditions where powerful x-ray scattering and imaging techniques have been applied to resolve ionic interactions at atomic (Ångstrom) scale lengths and to visualize the formation of dense plasma states. Major research areas include dynamic compression experiments of solid targets to determine structural properties and to discover and characterize phase transitions at mega-bar pressures. A second area studies extreme fields produced by high-intensity radiation where fundamental questions of laboratory plasmas can be related to cosmological phenomena. Each of these areas takes advantage of the unique properties of the LCLS x-ray beam. They include small foci for achieving high intensity or high spatial resolution, high photon flux for dynamic structure factor measurements in single shots, and high spectral bandwidth to resolve plasmon (Langmuir) waves or ion acoustic waves in dense plasmas. We will further describe new developments of ultrafast pump-probe technique at high repetition rates. These include studies on dense cryogenic hydrogen that have begun providing fundamental insights into the physical properties of matter in extreme conditions that are important for astrophysics, fusion experiments and generation of radiation sources. This work was supported by DOE Office of Science, Fusion Energy Science under FWP 100182.

  18. Analysis of neon soft x-ray spectra from short-pulse laser-produced plasmas

    SciTech Connect

    Abare, A.C.; Keane, C.J.; Crane, J.K.; DaSilva, L.B.; Lee, R.W.; Perry, M.D.; Falcone, R.W.

    1993-04-01

    We report preliminary results from the analysis of streaked soft x-ray neon spectra obtained from the interaction of a picosecond Nd:glass laser with a gas jet target. In these experiments streaked spectra show prompt harmonic emission followed by longer time duration soft x-ray line emission. The majority of the line emission observed was found to originate from Li- and Be-like Ne and the major transitions in the observed spectra have been identified. Li-like emission lines were observed to decay faster in time than Be-like transitions, suggesting that recombination is taking place. Line ratios of n=4-2 and n=3-2 transitions supported the view that these lines were optically thin and thick, respectively. The time history of Li-like Ne 2p-4d and 2p-3d lines is in good agreement with a simple adiabatic expansion model coupled to a time dependent collisional-radiative code. Further x-ray spectroscopic analysis is underway which is aimed at diagnosing plasma conditions and assessing the potential of this recombining neon plasma as a quasi-steady-state recombination x-ray laser medium.

  19. Open data set of live cyanobacterial cells imaged using an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max F; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N Duane; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-08-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.

  20. First set of gated x-ray imaging diagnostics for the Laser Megajoule facility.

    PubMed

    Rosch, R; Trosseille, C; Caillaud, T; Allouche, V; Bourgade, J L; Briat, M; Brunel, P; Burillo, M; Casner, A; Depierreux, S; Gontier, D; Jadaud, J P; Le Breton, J P; Llavador, P; Loupias, B; Miquel, J L; Oudot, G; Perez, S; Raimbourg, J; Rousseau, A; Rousseaux, C; Rubbelynck, C; Stemmler, P; Troussel, P; Ulmer, J L; Wrobel, R; Beauvais, P; Pallet, M; Prevot, V

    2016-03-01

    The Laser Megajoule (LMJ) facility located at CEA/CESTA started to operate in the early 2014 with two quadruplets (20 kJ at 351 nm) focused on target for the first experimental campaign. We present here the first set of gated x-ray imaging (GXI) diagnostics implemented on LMJ since mid-2014. This set consists of two imaging diagnostics with spatial, temporal, and broadband spectral resolution. These diagnostics will give basic measurements, during the entire life of the facility, such as position, structure, and balance of beams, but they will also be used to characterize gas filled target implosion symmetry and timing, to study x-ray radiography and hydrodynamic instabilities. The design requires a vulnerability approach, because components will operate in a harsh environment induced by neutron fluxes, gamma rays, debris, and shrapnel. Grazing incidence x-ray microscopes are fielded as far as possible away from the target to minimize potential damage and signal noise due to these sources. These imaging diagnostics incorporate microscopes with large source-to-optic distance and large size gated microchannel plate detectors. Microscopes include optics with grazing incidence mirrors, pinholes, and refractive lenses. Spatial, temporal, and spectral performances have been measured on x-ray tubes and UV lasers at CEA-DIF and at Physikalisch-Technische Bundesanstalt BESSY II synchrotron prior to be set on LMJ. GXI-1 and GXI-2 designs, metrology, and first experiments on LMJ are presented here. PMID:27036783

  1. Analysis of neon soft x-ray spectra from short-pulse laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Abare, Amber C.; Keane, Christopher J.; Crane, John K.; Da Silva, Luiz B.; Lee, Richard W.; Perry, Michael D.; Falcone, Roger W.

    1993-07-01

    We report preliminary results from the analysis of streaked soft x-ray neon spectra obtained from the interaction of a picosecond Nd:glass laser with a gas jet target. In these experiments streaked spectra show prompt harmonic emission followed by longer time duration soft x-ray line emission. The majority of the line emission observed was found to originate from Li- and Be-like Ne and the major transitions in the observed spectra have been identified. Li-like emission lines were observed to decay faster in time than Be-like transitions, suggesting that recombination is taking place. Line ratios of n equals 4 - 2 and n equals 3 - 2 transitions supported the view that these lines were optically thin and thick, respectively. The time history of Li-like Ne 2p-4d and 2p-3d lines is in good agreement with a simple adiabatic expansion model coupled to a time dependent collisional-radiative code. Further x-ray spectroscopic analysis is underway which is aimed at diagnosing plasma conditions and assessing the potential of this recombining neon plasma as a quasi-steady-state recombination x-ray laser medium.

  2. First set of gated x-ray imaging diagnostics for the Laser Megajoule facility

    NASA Astrophysics Data System (ADS)

    Rosch, R.; Trosseille, C.; Caillaud, T.; Allouche, V.; Bourgade, J. L.; Briat, M.; Brunel, P.; Burillo, M.; Casner, A.; Depierreux, S.; Gontier, D.; Jadaud, J. P.; Le Breton, J. P.; Llavador, P.; Loupias, B.; Miquel, J. L.; Oudot, G.; Perez, S.; Raimbourg, J.; Rousseau, A.; Rousseaux, C.; Rubbelynck, C.; Stemmler, P.; Troussel, P.; Ulmer, J. L.; Wrobel, R.; Beauvais, P.; Pallet, M.; Prevot, V.

    2016-03-01

    The Laser Megajoule (LMJ) facility located at CEA/CESTA started to operate in the early 2014 with two quadruplets (20 kJ at 351 nm) focused on target for the first experimental campaign. We present here the first set of gated x-ray imaging (GXI) diagnostics implemented on LMJ since mid-2014. This set consists of two imaging diagnostics with spatial, temporal, and broadband spectral resolution. These diagnostics will give basic measurements, during the entire life of the facility, such as position, structure, and balance of beams, but they will also be used to characterize gas filled target implosion symmetry and timing, to study x-ray radiography and hydrodynamic instabilities. The design requires a vulnerability approach, because components will operate in a harsh environment induced by neutron fluxes, gamma rays, debris, and shrapnel. Grazing incidence x-ray microscopes are fielded as far as possible away from the target to minimize potential damage and signal noise due to these sources. These imaging diagnostics incorporate microscopes with large source-to-optic distance and large size gated microchannel plate detectors. Microscopes include optics with grazing incidence mirrors, pinholes, and refractive lenses. Spatial, temporal, and spectral performances have been measured on x-ray tubes and UV lasers at CEA-DIF and at Physikalisch-Technische Bundesanstalt BESSY II synchrotron prior to be set on LMJ. GXI-1 and GXI-2 designs, metrology, and first experiments on LMJ are presented here.

  3. Imaging single cells in a beam of live cyanobacteria with an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2015-01-01

    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential. PMID:25669616

  4. Fragmentation of clusters and recombination induced by intense and ultrashort x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Timneanu, N.; Iwan, B.; Andreasson, J.; Bergh, M.; Seibert, M.; Bostedt, C.; Schorb, S.; Thomas, H.; Rupp, D.; Gorkhover, T.; Adolph, M.; Möller, T.; Helal, A.; Hoffmann, K.; Kandadai, N.; Keto, J.; Ditmire, T.

    2013-05-01

    Understanding the ultrafast dynamics of matter under extreme conditions is relevant for structural studies and plasma physics with X-ray lasers. We used the pulses from free-electron lasers (FLASH in Hamburg and LCLS in Stanford) to trigger X-ray induced explosions in atomic atoms (Xe) and molecular clusters (CH4 and CD4). The explosion dynamics depends on cluster size and the intensity of the X-ray pulse, and a transition from Coulomb explosion to hydrodynamic expansion is expected with increasing size and increasing pulse intensity. In methane clusters experiments at FLASH, the time-of-flight spectrometry shows the appearance of molecular adducts which are the result of molecular recombination between ions and molecules. The recombination depends on the cluster size and the expansion mechanism and becomes significant in larger clusters. In Xenon cluster experiments at the LCLS, measurements of the ion charge states in clusters suggest a formation of Xe nanoplasma which expands hydrodynamically. The dominance of low charge states of Xe is due to three-body recombination processes involving electron and Xe ions, and it depends on the X-ray intensity and nanoplasma formation.

  5. Single mimivirus particles intercepted and imaged with an X-ray laser.

    PubMed

    Seibert, M Marvin; Ekeberg, Tomas; Maia, Filipe R N C; Svenda, Martin; Andreasson, Jakob; Jönsson, Olof; Odić, Duško; Iwan, Bianca; Rocker, Andrea; Westphal, Daniel; Hantke, Max; DePonte, Daniel P; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Coppola, Nicola; Aquila, Andrew; Liang, Mengning; White, Thomas A; Martin, Andrew; Caleman, Carl; Stern, Stephan; Abergel, Chantal; Seltzer, Virginie; Claverie, Jean-Michel; Bostedt, Christoph; Bozek, John D; Boutet, Sébastien; Miahnahri, A Alan; Messerschmidt, Marc; Krzywinski, Jacek; Williams, Garth; Hodgson, Keith O; Bogan, Michael J; Hampton, Christina Y; Sierra, Raymond G; Starodub, Dmitri; Andersson, Inger; Bajt, Saša; Barthelmess, Miriam; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Kirian, Richard; Hunter, Mark; Doak, R Bruce; Marchesini, Stefano; Hau-Riege, Stefan P; Frank, Matthias; Shoeman, Robert L; Lomb, Lukas; Epp, Sascha W; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Schmidt, Carlo; Foucar, Lutz; Kimmel, Nils; Holl, Peter; Rudek, Benedikt; Erk, Benjamin; Hömke, André; Reich, Christian; Pietschner, Daniel; Weidenspointner, Georg; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Schlichting, Ilme; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Chapman, Henry N; Hajdu, Janos

    2011-02-01

    X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.

  6. Probing Ice Nucleation in "No Man's Land" with Ultrafast X-ray Laser at LCLS

    NASA Astrophysics Data System (ADS)

    Laksmono, H.; Sellberg, J.; McQueen, T.; Huang, C.; Loh, D.; Sierra, R.; Hampton, C.; Starodub, D.; Nordlund, D.; Beye, M.; Deponte, D.; Martin, A.; Barty, A.; Feldkamp, J.; Boutet, S.; Williams, G.; Bogan, M. J.; Nilsson, A.

    2012-12-01

    Aside from being one of the most fascinating substances due to many anomalous physical properties in liquid phase, and many forms of amorphous and crystalline solid phases, water is one of the most important substance for life, environment, and industry. Despite tremendous effort to understand water, there is a region known as "no man's land" where water is not well understood due to rapid crystallization complicating experimental studies. Understanding phase transition of supercooled water near and within this region is important to predict cloud properties in atmosphere, as well as the phases of water in the interstellar space. To date, there are only a few experiments performed that study phase transitions near and within "no man's land", and thus our understanding is still limited. Recent development of an ultrafast, ultrabright X-ray laser at the Linac Coherent Light Source (LCLS) enables researchers to probe matter in high resolution by taking snapshots with femtosecond long x-ray pulses. Here we present our ongoing effort to understand phase transition within "no man's land" from our recent wide angle X-ray scattering experiment using a specialized setup to take advantage the ultrafast X-ray laser at LCLS.

  7. Single mimivirus particles intercepted and imaged with an X-ray laser

    PubMed Central

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R. N. C.; Svenda, Martin; Andreasson, Jakob; Jönsson, Olof; Odić, Duško; Iwan, Bianca; Rocker, Andrea; Westphal, Daniel; Hantke, Max; DePonte, Daniel P.; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Coppola, Nicola; Aquila, Andrew; Liang, Mengning; White, Thomas A.; Martin, Andrew; Caleman, Carl; Stern, Stephan; Abergel, Chantal; Seltzer, Virginie; Claverie, Jean-Michel; Bostedt, Christoph; Bozek, John D.; Boutet, Sébastien; Miahnahri, A. Alan; Messerschmidt, Marc; Krzywinski, Jacek; Williams, Garth; Hodgson, Keith O.; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Andersson, Inger; Bajt, Saša; Barthelmess, Miriam; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Kirian, Richard; Hunter, Mark; Doak, R. Bruce; Marchesini, Stefano; Hau-Riege, Stefan P.; Frank, Matthias; Shoeman, Robert L.; Lomb, Lukas; Epp, Sascha W.; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Schmidt, Carlo; Foucar, Lutz; Kimmel, Nils; Holl, Peter; Rudek, Benedikt; Erk, Benjamin; Hömke, André; Reich, Christian; Pietschner, Daniel; Weidenspointner, Georg; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Schlichting, Ilme; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Chapman, Henry N.; Hajdu, Janos

    2014-01-01

    X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions1–4. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma1. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval2. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source5. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies. PMID:21293374

  8. Imaging single cells in a beam of live cyanobacteria with an X-ray laser

    NASA Astrophysics Data System (ADS)

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R. N. C.; Hantke, Max; Deponte, Daniel P.; Seibert, M. Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F. Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H.; Larsson, Daniel S. D.; Barty, Anton; Martin, Andrew V.; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D.; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N.; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2015-02-01

    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.

  9. Single mimivirus particles intercepted and imaged with an X-ray laser.

    PubMed

    Seibert, M Marvin; Ekeberg, Tomas; Maia, Filipe R N C; Svenda, Martin; Andreasson, Jakob; Jönsson, Olof; Odić, Duško; Iwan, Bianca; Rocker, Andrea; Westphal, Daniel; Hantke, Max; DePonte, Daniel P; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Coppola, Nicola; Aquila, Andrew; Liang, Mengning; White, Thomas A; Martin, Andrew; Caleman, Carl; Stern, Stephan; Abergel, Chantal; Seltzer, Virginie; Claverie, Jean-Michel; Bostedt, Christoph; Bozek, John D; Boutet, Sébastien; Miahnahri, A Alan; Messerschmidt, Marc; Krzywinski, Jacek; Williams, Garth; Hodgson, Keith O; Bogan, Michael J; Hampton, Christina Y; Sierra, Raymond G; Starodub, Dmitri; Andersson, Inger; Bajt, Saša; Barthelmess, Miriam; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Kirian, Richard; Hunter, Mark; Doak, R Bruce; Marchesini, Stefano; Hau-Riege, Stefan P; Frank, Matthias; Shoeman, Robert L; Lomb, Lukas; Epp, Sascha W; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Schmidt, Carlo; Foucar, Lutz; Kimmel, Nils; Holl, Peter; Rudek, Benedikt; Erk, Benjamin; Hömke, André; Reich, Christian; Pietschner, Daniel; Weidenspointner, Georg; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Schlichting, Ilme; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Chapman, Henry N; Hajdu, Janos

    2011-02-01

    X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies. PMID:21293374

  10. Open data set of live cyanobacterial cells imaged using an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max F; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N Duane; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-01-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences. PMID:27479514

  11. Diffusion of Ag into organic semiconducting materials: a combined analytical study using transmission electron microscopy and X-ray reflectivity.

    PubMed

    Fladischer, Stefanie; Neuhold, Alfred; Kraker, Elke; Haber, Thomas; Lamprecht, Bernhard; Salzmann, Ingo; Resel, Roland; Grogger, Werner

    2012-10-24

    This study shows that the morphology of organic/metal interfaces strongly depends on process parameters and the involved materials. The interface between organic n-type blocking layer materials and the top Ag cathode within an organic photodiode was investigated. Ag was deposited on either amorphous tris-8-hydroxyquinolinato-aluminum (Alq(3)) or crystalline 4,7-diphenyl-1,10-phenanthroline (Bphen) using different deposition techniques such as electron beam deposition, ion beam sputtering, and vacuum thermal evaporation at various deposition rates. The interfaces were studied by transmission electron microscopy and X-ray reflectivity. It was found that Bphen does not show any Ag diffusion no matter which deposition technique was used, whereas the Ag diffusion into Alq(3) depends on the deposition technique and the deposition rate. The highest amount of Ag diffusion into Alq(3) occurred by using thermal vacuum deposition at low deposition rates.

  12. Diffusion of Ag into organic semiconducting materials: a combined analytical study using transmission electron microscopy and X-ray reflectivity.

    PubMed

    Fladischer, Stefanie; Neuhold, Alfred; Kraker, Elke; Haber, Thomas; Lamprecht, Bernhard; Salzmann, Ingo; Resel, Roland; Grogger, Werner

    2012-10-24

    This study shows that the morphology of organic/metal interfaces strongly depends on process parameters and the involved materials. The interface between organic n-type blocking layer materials and the top Ag cathode within an organic photodiode was investigated. Ag was deposited on either amorphous tris-8-hydroxyquinolinato-aluminum (Alq(3)) or crystalline 4,7-diphenyl-1,10-phenanthroline (Bphen) using different deposition techniques such as electron beam deposition, ion beam sputtering, and vacuum thermal evaporation at various deposition rates. The interfaces were studied by transmission electron microscopy and X-ray reflectivity. It was found that Bphen does not show any Ag diffusion no matter which deposition technique was used, whereas the Ag diffusion into Alq(3) depends on the deposition technique and the deposition rate. The highest amount of Ag diffusion into Alq(3) occurred by using thermal vacuum deposition at low deposition rates. PMID:23027799

  13. High resolution two-dimensional near field images of neon-like soft x- ray lasers

    SciTech Connect

    Moreno, J.C.; Nilsen, J.; Li, Y; Lu, P.; Fill, E.E.

    1996-06-01

    We discuss high resolution two-dimensional near-field images of the neon-like nickel and germanium X-ray laser. The Asterix iodine laser, using a prepulse 5.23 ns before the main pulse, was used to irradiate slab targets. Our imaging diagnostic consisted of a concave multilayer mirror that imaged the X-ray laser line (with a magnification of ten) onto a backside illuminated X-ray CCD detector. A great deal of structure was observed in the near field images, particularly in the J=0-1 emission. We observed a large difference in the spatial dependence of the J=0-1 and J=2-1 lines of germanium, with the J=2-1 emission peaking farther away from the original target surface. The prepulse level was varied and observed to have a significant effect on the spatial dependence of the germanium and nickel laser lines. A larger prepulse moved the peak emission farther away from the target surface. These measurements are generally consistent with hydrodynamic simulations coupled with atomic kinetics.

  14. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    PubMed

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-04-19

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  15. DNA strand breaks induced by soft X-ray pulses from a compact laser plasma source

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Wiechec, Anna; Wachulak, Przemyslaw; Ayele, Mesfin Getachew; Lekki, Janusz; Kwiatek, Wojciech M.; Bartnik, Andrzej; Davídková, Marie; Vyšín, Luděk; Juha, Libor; Pina, Ladislav; Fiedorowicz, Henryk

    2016-03-01

    Application of a compact laser plasma source of soft X-rays in radiobiology studies is demonstrated. The source is based on a laser produced plasma as a result of irradiation of a double-stream gas puff target with nanosecond laser pulses from a commercially available Nd:YAG laser. The source allows irradiation of samples with soft X-ray pulses in the "water window" spectral range (wavelength: 2.3-4.4 nm; photon energy: 280-560 eV) in vacuum or a helium atmosphere at very high-dose rates and doses exceeding the kGy level. Single-strand breaks (SSB) and double-strand breaks (DBS) induced in DNA plasmids pBR322 and pUC19 have been measured. The different conformations of the plasmid DNA were separated by agarose gel electrophoresis. An exponential decrease in the supercoiled form with an increase in linear and relaxed forms of the plasmids has been observed as a function of increasing photon fluence. Significant difference between SSB and DSB in case of wet and dry samples was observed that is connected with the production of free radicals in the wet sample by soft X-ray photons and subsequent affecting the plasmid DNA. Therefore, the new source was validated to be useful for radiobiology experiments.

  16. Correspondence between laser coupling and x-ray flux measurements in a NIF hohlraum

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; Divol, L.; Landen, O.; Lepape, S.; Michel, P.; Ralph, J.; Town, R. P. J.; Widmann, K.; Moore, A.

    2014-10-01

    We describe a simple model relating measurements of the hohlraum x-ray emission (DANTE) to the coupled (incident less backscattered) laser power in NIF indirect drive hohlraum experiments. The model was motivated by observing that the measured x-ray emission showed a lag in rise corresponding to a measured reduction in laser coupling due to backscatter. Two adjustable scalar parameters (a coupling efficiency and a time-scale) in the model are determined for each experiment. Comparing these parameters for different hohlraum gas-fill, ablator, pulse-length, and laser power conditions provides insight into the hohlraum behavior and performance. In some cases, the model can be inverted to estimate the backscatter loss using the measured hohlraum x-ray emission time-history and delivered laser power. We will describe the model and compare the adjustable parameters between different hohlraum platforms. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  17. Injector-Amplifier Design for Tabletop Ne-Like X-Ray Lasers

    SciTech Connect

    Dunn, J; Osterheld, A L; Ya Faenov, A; Pikuz, T A; Shlyaptsev, V N

    2002-10-07

    We report new results using the LLNL COMET laser to evaluate the effectiveness of different target architectures to improve the output and characteristics of the transient x-ray laser scheme. Surprising observations were found when the laser line focus irradiating a single slab Cr or Fe target was divided into two or three distinct plasma column sections with millimeter scale gaps between each plasma. The Ne-like 3p {sup 1}S{sub 0} {yields} 3s {sup 1}P{sub 1} 28.5 nm and 25.5 nm x-ray laser lines, for Cr and Fe, respectively, were improved in beam divergence, by 2-3 times, and peak intensity, by up to one order of magnitude, when compared with a single plasma column of the same length or longer. This was contrary to expectations since these large-scale inhomogeneities introduced along the plasma, as well as attenuation from the cold plasma at the end of each section, would be detrimental to the x-ray propagation and amplification. Instead an injector-amplifier (IA) type process appears to be at work where the plasma gaps may be beneficially modifying the ray propagation and coupling through the high Ne-like ion gain regions. We present results showing the output of the amplifier stage with increasing length for the IA targets together with beam deflection and divergence measurements.

  18. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator

    PubMed Central

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron–betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators. PMID:24026068

  19. Imaging live cell in micro-liquid enclosure by X-ray laser diffraction

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Joti, Yasumasa; Shibuya, Akemi; Song, Changyong; Kim, Sangsoo; Tono, Kensuke; Yabashi, Makina; Tamakoshi, Masatada; Moriya, Toshiyuki; Oshima, Tairo; Ishikawa, Tetsuya; Bessho, Yoshitaka; Nishino, Yoshinori

    2014-01-01

    Emerging X-ray free-electron lasers with femtosecond pulse duration enable single-shot snapshot imaging almost free from sample damage by outrunning major radiation damage processes. In bioimaging, it is essential to keep the sample close to its natural state. Conventional high-resolution imaging, however, suffers from severe radiation damage that hinders live cell imaging. Here we present a method for capturing snapshots of live cells kept in a micro-liquid enclosure array by X-ray laser diffraction. We place living Microbacterium lacticum cells in an enclosure array and successively expose each enclosure to a single X-ray laser pulse from the SPring-8 Angstrom Compact Free-Electron Laser. The enclosure itself works as a guard slit and allows us to record a coherent diffraction pattern from a weakly-scattering submicrometre-sized cell with a clear fringe extending up to a 28-nm full-period resolution. The reconstructed image reveals living whole-cell structures without any staining, which helps advance understanding of intracellular phenomena.

  20. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    PubMed Central

    Golovin, G.; Banerjee, S.; Liu, C.; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; Seller, P.; Umstadter, D.

    2016-01-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays. PMID:27090440

  1. Theory of x-ray absorption by laser-dressed atoms

    SciTech Connect

    Buth, Christian; Santra, Robin

    2007-03-15

    An ab initio theory is devised for the x-ray photoabsorption cross section of atoms in the field of a moderately intense optical laser (800 nm, 10{sup 13} W/cm{sup 2}). The laser dresses the core-excited atomic states, which introduces a dependence of the cross section on the angle between the polarization vectors of the two linearly polarized radiation sources. We use the Hartree-Fock-Slater approximation to describe the atomic many-particle problem in conjunction with a nonrelativistic quantum-electrodynamic approach to treat the photon-electron interaction. The continuum wave functions of ejected electrons are treated with a complex absorbing potential that is derived from smooth exterior complex scaling. The solution to the two-color (x-ray plus laser) problem is discussed in terms of a direct diagonalization of the complex symmetric matrix representation of the Hamiltonian. Alternative treatments with time-independent and time-dependent non-Hermitian perturbation theories are presented that exploit the weak interaction strength between x rays and atoms. We apply the theory to study the photoabsorption cross section of krypton atoms near the K edge. A pronounced modification of the cross section is found in the presence of the optical laser.

  2. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    PubMed

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-01-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays. PMID:27090440

  3. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator.

    PubMed

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron-betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators.

  4. Improved energy coupling into the gain region of the Ni-like Pd transient collisional x-ray laser

    SciTech Connect

    Smith, R; Dunn, J; Filevich, J; Moon, S; Nilsen, J; Keenan, R; Shlyaptsev, V; Rocca, J; Hunter, J; Shepherd, R; Booth, R; Marconi, M

    2004-10-05

    We present within this paper a series of experiments, which yield new observations to further our understanding of the transient collisional x-ray laser medium. We use the recently developed technique of picosecond x-ray laser interferometry to probe the plasma conditions in which the x-ray laser is generated and propagates. This yields two dimensional electron density maps of the plasma taken at different times relative to the peak of the 600ps plasma-forming beam. In another experimental campaign, the output of the x-ray laser plasma column is imaged with a spherical multilayer mirror onto a CCD camera to give a two-dimensional intensity map of the x-ray laser output. Near-field imaging gives insights into refraction, output intensity and spatial mode structure. Combining these images with the density maps gives an indication of the electron density at which the x-ray laser is being emitted at (yielding insights into the effect of density gradients on beam propagation). Experimental observations coupled with simulations predict that most effective coupling of laser pump energy occurs when the duration of the main heating pulse is comparable to the gain lifetime ({approx}10ps for Ni-like schemes). This can increase the output intensity by more than an order of magnitude relative to the case were the same pumping energy is delivered within a shorter heating pulse duration (< 3ps). We have also conducted an experiment in which the output of the x-ray laser was imaged onto the entrance slit of a high temporal resolution streak camera. This effectively takes a one-dimensional slice of the x-ray laser spatial profile and sweeps it in time. Under some conditions we observe rapid movement of the x-ray laser ({approx} 3 {micro}m/ps) towards the target surface.

  5. Measurements of laser generated soft X-ray emission from irradiated gold foils

    NASA Astrophysics Data System (ADS)

    Davis, J. S.; Frank, Y.; Raicher, E.; Fraenkel, M.; Keiter, P. A.; Klein, S. R.; Drake, R. P.; Shvarts, D.

    2016-11-01

    Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  6. Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies

    SciTech Connect

    Jo, Wonhyuk; Lee, Sooheyong; Eom, Intae; Landahl, Eric C.

    2014-12-15

    The ability to synchronize a femtosecond laser to x-ray pulses is crucial for performing ultrafast time-resolved x-ray scattering experiments at synchrotrons. Conventionally, the task has been achieved by locking a harmonic frequency of the laser oscillator to the storage ring master radio-frequency (RF). However, when the frequency mismatch between the two sources cannot be compensated by small adjustments to the laser cavity length, synchronization to a harmonic frequency requires modifying the optical components of the laser system. We demonstrate a novel synchronization scheme, which is a flexible alternative for synchronizing these two sources operating at arbitrarily different frequencies. First, we find the greatest common divisor (GCD) of the two frequencies that is still within the limited tuning range of the laser cavity length. The GCD is generated by dividing down from the storage ring RF, and is separately multiplied up to provide a feedback signal for synchronizing the laser cavity. Unique to our scheme, the GCD also serves as a harmonic RF source for the laser amplifier such that only laser oscillator pulses at fixed integer multiples of the storage ring RF are selected for amplification and delivery to experiments. Our method is implemented at the Photon Test Facility beamline of Pohang Light Source where timing-jitter less than 4 ps (r.m.s.) is measured using a new shot-to-shot method.

  7. Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies

    NASA Astrophysics Data System (ADS)

    Jo, Wonhyuk; Lee, Sooheyong; Eom, Intae; Landahl, Eric C.

    2014-12-01

    The ability to synchronize a femtosecond laser to x-ray pulses is crucial for performing ultrafast time-resolved x-ray scattering experiments at synchrotrons. Conventionally, the task has been achieved by locking a harmonic frequency of the laser oscillator to the storage ring master radio-frequency (RF). However, when the frequency mismatch between the two sources cannot be compensated by small adjustments to the laser cavity length, synchronization to a harmonic frequency requires modifying the optical components of the laser system. We demonstrate a novel synchronization scheme, which is a flexible alternative for synchronizing these two sources operating at arbitrarily different frequencies. First, we find the greatest common divisor (GCD) of the two frequencies that is still within the limited tuning range of the laser cavity length. The GCD is generated by dividing down from the storage ring RF, and is separately multiplied up to provide a feedback signal for synchronizing the laser cavity. Unique to our scheme, the GCD also serves as a harmonic RF source for the laser amplifier such that only laser oscillator pulses at fixed integer multiples of the storage ring RF are selected for amplification and delivery to experiments. Our method is implemented at the Photon Test Facility beamline of Pohang Light Source where timing-jitter less than 4 ps (r.m.s.) is measured using a new shot-to-shot method.

  8. Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies.

    PubMed

    Jo, Wonhyuk; Lee, Sooheyong; Eom, Intae; Landahl, Eric C

    2014-12-01

    The ability to synchronize a femtosecond laser to x-ray pulses is crucial for performing ultrafast time-resolved x-ray scattering experiments at synchrotrons. Conventionally, the task has been achieved by locking a harmonic frequency of the laser oscillator to the storage ring master radio-frequency (RF). However, when the frequency mismatch between the two sources cannot be compensated by small adjustments to the laser cavity length, synchronization to a harmonic frequency requires modifying the optical components of the laser system. We demonstrate a novel synchronization scheme, which is a flexible alternative for synchronizing these two sources operating at arbitrarily different frequencies. First, we find the greatest common divisor (GCD) of the two frequencies that is still within the limited tuning range of the laser cavity length. The GCD is generated by dividing down from the storage ring RF, and is separately multiplied up to provide a feedback signal for synchronizing the laser cavity. Unique to our scheme, the GCD also serves as a harmonic RF source for the laser amplifier such that only laser oscillator pulses at fixed integer multiples of the storage ring RF are selected for amplification and delivery to experiments. Our method is implemented at the Photon Test Facility beamline of Pohang Light Source where timing-jitter less than 4 ps (r.m.s.) is measured using a new shot-to-shot method.

  9. Initial experimentation with in-line holography x-ray phase-contrast imaging with an ultrafast laser-based x-ray source

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Kincaid, Russell; Servol, Marina; Kieffer, Jean-Claude; Nesterets, Yakov; Gureyev, Tim; Stevenson, Andrew; Wilkins, Steve; Ye, Hongwei; Lipson, Edward; Toth, Remy; Pogany, Andrew; Coman, Ioana

    2007-03-01

    We have investigated experimentally and theoretically the imaging performance of our newly constructed in-line holography x-ray phase-contrast imaging system with an ultrafast laser-based x-ray source. Projection images of nylon fibers with diameters in the 10-330 μm range were obtained using an ultrafast (100 Hz, 28 fs, 40 mJ) laser-based x-ray source with Mo and Ta targets and Be filter, and Gaussian spatial-intensity distribution (FWHMS = 5 μm). A cooled CCD camera (24 μm pitch) with a Gd IIOS II screen coupled via 1:1 optical taper was used (FWHMD = 50 μm). We have investigated nylon-fiber image quality vs. imaging setup geometry and x-ray spectra. The following parameters were evaluated: contrast, signal-to-noise ratio (SNR), resolution, and sampling. In addition, we performed theoretical simulation of image formation for the same objects but within a wide range of geometrical parameters. The rigorous wave-optical formalism was used for modeling of the free-space propagation of x-rays from the object plane to the detector, and the "projection approximation" was used. We found reasonable agreement between predictions of our analytical model and the experiments. We conclude that: a) Optimum magnification maximizing contrast and SNR is almost independent of the source-to-detector (R) distance and depends strongly on the diameter of the fiber. b) The corresponding maximum values of the contrast and SNR are almost linear with respect to R; the optimum magnification decreases with fiber diameter. c) The minimum diameter of fiber defines the minimum source-to-object distance R I if R is fixed and the object is moved.

  10. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    PubMed

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy. PMID:25832284

  11. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy

    SciTech Connect

    Mantouvalou, Ioanna; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Kanngießer, Birgit; Witte, Katharina; Jung, Robert; Stiel, Holger; Sandner, Wolfgang

    2015-03-15

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  12. Claudio Pellegrini and the World’s First Hard X-ray Free-Electron Laser

    SciTech Connect

    Pellegrini, Claudio

    2015-10-20

    President Obama welcomed SLAC's Claudio Pellegrini inside the Oval Office on Tuesday morning as a recipient of the Enrico Fermi Award, one of the highest honors the U.S. government can give to a scientist. Pellegrini, a visiting scientist and consulting professor at SLAC and distinguished professor emeritus at the University of California, Los Angeles, received the award for research that aided in the development of X-ray free-electron lasers (XFELs) including SLAC's Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility that started up in 2009. Here, Pellegrini describes his efforts that contributed to the realization of SLAC’s Linac Coherent Light Source, the world’s first hard X-ray free-electron laser.

  13. Calibration of X-ray spectrometers for opacity experiments at the Orion laser facility (invited)

    NASA Astrophysics Data System (ADS)

    Bentley, C.; Allan, P.; Brent, K.; Bruce, N.; Hoarty, D.; Meadowcroft, A.; Percival, J.; Opie, C.

    2016-11-01

    Accurately calibrated and characterised x-ray diagnostics are a key requirement in the fielding of experiments on the Orion laser where absolute measurements of x-ray emission are used to underpin the validity of models of emissivity and opacity. Diffraction crystals are used in spectrometers on Orion to record the dispersed spectral features emitted by the laser produced plasma to obtain a measurement of the plasma conditions. The ability to undertake diffraction crystal calibrations supports the successful outcome of these Orion experiments. This paper details the design and commissioning of a system to undertake these calibrations in the energy range 2.0 keV to approximately 8.5 keV. Improvements to the design are detailed which will extend the commissioned range of energies to below 1 keV.

  14. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngießer, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  15. Efficient multi-keV x-ray generation from a high-Z target irradiated with a clean ultra-short laser pulse.

    PubMed

    Zhang, Z; Nishikino, M; Nishimura, H; Kawachi, T; Pirozhkov, A S; Sagisaka, A; Orimo, S; Ogura, K; Yogo, A; Okano, Y; Ohshima, S; Fujioka, S; Kiriyama, H; Kondo, K; Shimomura, T; Kanazawa, S

    2011-02-28

    Kα line emissions from Mo and Ag plates were experimentally studied using clean, ultrahigh-intensity femtosecond laser pulses. The absolute yields of Kα x-rays at 17 keV from Mo and 22 keV from Ag were measured as a function of the laser pulse contrast ratio and irradiation intensity. Significantly enhanced Kα yields were obtained for both Mo and Ag by employing high contrast ratios and irradiances. Conversion efficiencies of 4.28×10⁻⁵/sr for Mo and 4.84×10⁻⁵/sr for Ag, the highest values obtained to date, were demonstrated with contrast ratios in the range 10⁻¹⁰ to 10⁻¹¹.

  16. Data acquisition system for X-ray free-electron laser experiments at SACLA

    PubMed Central

    Joti, Yasumasa; Kameshima, Takashi; Yamaga, Mitsuhiro; Sugimoto, Takashi; Okada, Kensuke; Abe, Toshinori; Furukawa, Yukito; Ohata, Toru; Tanaka, Ryotaro; Hatsui, Takaki; Yabashi, Makina

    2015-01-01

    A data acquisition system for X-ray free-electron laser experiments at SACLA has been developed. The system has been designed for reliable shot-to-shot data storage with a high data stream greater than 4 Gbps and massive data analysis. Configuration of the system and examples of prompt data analysis during experiments are presented. Upgrade plans for the system to extend flexibility are described. PMID:25931070

  17. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    SciTech Connect

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-02-15

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10{sup −12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  18. Characteristics of radiation safety for synchrotron radiation and X-ray free electron laser facilities.

    PubMed

    Asano, Yoshihiro

    2011-07-01

    Radiation safety problems are discussed for typical electron accelerators, synchrotron radiation (SR) facilities and X-ray free electron laser (XFEL) facilities. The radiation sources at the beamline of the facilities are SR, including XFEL, gas bremsstrahlung and high-energy gamma ray and photo-neutrons due to electron beam loss. The radiation safety problems for each source are compared by using 8 GeV class SR and XFEL facilities as an example.

  19. Ultrafast laser-induced melting and ablation studied by time-resolved diffuse X-ray scattering

    NASA Astrophysics Data System (ADS)

    Nicoul, M.; Quirin, F.; Lindenberg, A. M.; Barty, A.; Fritz, D. M.; Zhu, D.; Lemke, H.; Chollet, M.; Reis, D. A.; Chen, J.; Ghimire, S.; Trigo, M.; Fuchs, M.; Gaffney, K. J.; Larsson, J.; Becker, T.; Meyer, S.; Payer, T.; Heringdorf, F. Meyer zu; Horn von Hoegen, M.; Jerman, M.; Sokolowski-Tinten, K.

    2013-03-01

    Time-resolved diffuse X-ray scattering with 50 fs, 9.5 keV X-ray pulses from the Linear Coherent Light Source was used to study the structural dynamics in materials undergoing rapid melting and ablation after fs laser excitation.

  20. Coherence Properties of Individual Femtosecond Pulses of an X-Ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Vartanyants, I. A.; Singer, A.; Mancuso, A. P.; Yefanov, O. M.; Sakdinawat, A.; Liu, Y.; Bang, E.; Williams, G. J.; Cadenazzi, G.; Abbey, B.; Sinn, H.; Attwood, D.; Nugent, K. A.; Weckert, E.; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J. J.; Schlotter, W. F.; Messerschmidt, M.; Lüning, J.; Acremann, Y.; Heimann, P.; Mancini, D. C.; Joshi, V.; Krzywinski, J.; Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S.; Peele, A. G.; Feng, Y.; Krupin, O.; Moeller, S.; Wurth, W.

    2011-09-01

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in “diffract-and-destroy” mode. We determined a coherence length of 17μm in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  1. Nanosecond laser pulse heating of a platinum surface studied by pump-probe X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Shayduk, Roman; Vonk, Vedran; Arndt, Björn; Franz, Dirk; Strempfer, Jörg; Francoual, Sonia; Keller, Thomas F.; Spitzbart, Tobias; Stierle, Andreas

    2016-07-01

    We report on the quantitative determination of the transient surface temperature of Pt(110) upon nanosecond laser pulse heating. We find excellent agreement between heat transport theory and the experimentally determined transient surface temperature as obtained from time-resolved X-ray diffraction on timescales from hundred nanoseconds to milliseconds. Exact knowledge of the surface temperature's temporal evolution after laser excitation is crucial for future pump-probe experiments at synchrotron storage rings and X-ray free electron lasers.

  2. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    NASA Astrophysics Data System (ADS)

    Bondarenko, S. V.; Garanin, Sergey G.; Zhidkov, N. V.; Pinegin, A. V.; Suslov, N. A.

    2012-01-01

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 — 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s — 2p transitions in Al atoms and the 2p — 3d transitions in Ge atoms are presented.

  3. Direct and secondary nuclear excitation with x-ray free-electron lasers

    SciTech Connect

    Gunst, Jonas; Wu, Yuanbin Kumar, Naveen; Keitel, Christoph H.; Pálffy, Adriana

    2015-11-15

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic theoretical model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of {sup 93}Mo, or it can be negligible, as it is the case for the 14.4 keV Mössbauer transition in {sup 57}Fe. These findings are most relevant for future nuclear quantum optics experiments at x-ray free electron laser facilities.

  4. X-ray diffraction in the pulsed laser heated diamond anvil cell

    SciTech Connect

    Goncharov, Alexander F.; Prakapenka, Vitali B.; Struzhkin, Viktor V.; Kantor, Innokenty; Rivers, Mark L.; Dalton, D. Allen

    2010-11-19

    We have developed in situ x-ray synchrotron diffraction measurements of samples heated by a pulsed laser in the diamond anvil cell at pressure up to 60 GPa. We used an electronically modulated 2-10 kHz repetition rate, 1064-1075 nm fiber laser with 1-100 {micro}s pulse width synchronized with a gated x-ray detector (Pilatus) and time-resolved radiometric temperature measurements. This enables the time domain measurements as a function of temperature in a microsecond time scale (averaged over many events, typically more than 10,000). X-ray diffraction data, temperature measurements, and finite element calculations with realistic geometric and thermochemical parameters show that in the present experimental configuration, samples 4 {micro}m thick can be continuously temperature monitored (up to 3000 K in our experiments) with the same level of axial and radial temperature uniformities as with continuous heating. We find that this novel technique offers a new and convenient way of fine tuning the maximum sample temperature by changing the pulse width of the laser. This delicate control, which may also prevent chemical reactivity and diffusion, enables accurate measurement of melting curves, phase changes, and thermal equations of state.

  5. X-ray diffraction in the pulsed laser heated diamond anvil cell

    SciTech Connect

    Goncharov, Alexander F.; Struzhkin, Viktor V.; Dalton, D. Allen; Prakapenka, Vitali B.; Kantor, Innokenty; Rivers, Mark L.

    2010-11-15

    We have developed in situ x-ray synchrotron diffraction measurements of samples heated by a pulsed laser in the diamond anvil cell at pressure up to 60 GPa. We used an electronically modulated 2-10 kHz repetition rate, 1064-1075 nm fiber laser with 1-100 {mu}s pulse width synchronized with a gated x-ray detector (Pilatus) and time-resolved radiometric temperature measurements. This enables the time domain measurements as a function of temperature in a microsecond time scale (averaged over many events, typically more than 10 000). X-ray diffraction data, temperature measurements, and finite element calculations with realistic geometric and thermochemical parameters show that in the present experimental configuration, samples 4 {mu}m thick can be continuously temperature monitored (up to 3000 K in our experiments) with the same level of axial and radial temperature uniformities as with continuous heating. We find that this novel technique offers a new and convenient way of fine tuning the maximum sample temperature by changing the pulse width of the laser. This delicate control, which may also prevent chemical reactivity and diffusion, enables accurate measurement of melting curves, phase changes, and thermal equations of state.

  6. X-ray diffraction in the pulsed laser heated diamond anvil cell

    SciTech Connect

    Goncharov, Alexander F.; Prakapenka, Vitali B.; Struzhkin, Viktor V.; Kantor, Innokenty; Rivers, Mark L.; Dalton, D. Allen

    2010-11-03

    We have developed in situ x-ray synchrotron diffraction measurements of samples heated by a pulsed laser in the diamond anvil cell at pressure up to 60 GPa. We used an electronically modulated 2–10 kHz repetition rate, 1064–1075 nm fiber laser with 1–100 μs pulse width synchronized with a gated x-ray detector (Pilatus) and time-resolved radiometric temperature measurements. This enables the time domain measurements as a function of temperature in a microsecond time scale (averaged over many events, typically more than 10,000). X-ray diffraction data, temperature measurements, and finite element calculations with realistic geometric and thermochemical parameters show that in the present experimental configuration, samples 4 μm thick can be continuously temperature monitored (up to 3000 K in our experiments) with the same level of axial and radial temperature uniformities as with continuous heating. We find that this novel technique offers a new and convenient way of fine tuning the maximum sample temperature by changing the pulse width of the laser. This delicate control, which may also prevent chemical reactivity and diffusion, enables accurate measurement of melting curves, phase changes, and thermal equations of state.

  7. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    DOE PAGES

    Golovin, G.; Banerjee, S.; Liu, C.; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; Seller, P.; et al

    2016-04-19

    Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense lasermore » probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.« less

  8. Direct and secondary nuclear excitation with x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Gunst, Jonas; Wu, Yuanbin; Kumar, Naveen; Keitel, Christoph H.; Pálffy, Adriana

    2015-11-01

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic theoretical model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of 93Mo, or it can be negligible, as it is the case for the 14.4 keV Mössbauer transition in 57Fe. These findings are most relevant for future nuclear quantum optics experiments at x-ray free electron laser facilities.

  9. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    SciTech Connect

    Stafford, David

    2009-01-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  10. Kilohertz sources of hard x rays and fast ions with femtosecond laser plasmas

    NASA Astrophysics Data System (ADS)

    Thoss, A.; Richardson, M.; Korn, G.; Faubel, M.; Stiel, H.; Vogt, U.; Elsaesser, T.

    2003-01-01

    We demonstrate a new, stable, kilohertz femtosecond laser plasma source of hard-x-ray continuum and Kα emission that uses a microscopic liquid jet target that is continuous and debris free. Plasmas produced by ultrashort (50-fs) intense laser pulses from a fine (10-30-μm diameter) liquid Ga jet emit bright 9.3- and 10.3-keV Kα and Kβ lines superimposed on a multikilovolt bremmstrahlung continuum. Kilohertz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high-intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot to shot and debris free. Our target provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We show the hard-x-ray spectrum described above. The source was generated by a 50-fs-duration, 1-kHz, 2-W, high-intensity Ti:sapphire laser. Using the same technology, we also generate forward-going sub-mega-electron-volt (sub-MeV) protons from a 10-μm liquid water target at 1-kHz repetition rates. Kilohertz sources of high-energy ions will find many applications in time-resolved particle interaction studies and will lead to efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors in both the forward and the backward directions up to energies of ~500 keV. As the intensity of compact high-repetition-rate lasers sources increases, we can expect improvements in the energy, conversion efficiency, and directionality to occur. The effect of these developments is discussed. As compact, high-repetition-rate femtosecond laser technology reaches focused intensities of ~1019 W/cm2, many new applications of high-repetition-rate hard-x-ray and MeV ion sources will become practical.

  11. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    EPA Science Inventory

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  12. Time-Domain X-ray Diffraction in the Pulsed Laser Heated Diamond Anvil Cell

    NASA Astrophysics Data System (ADS)

    Prakapenka, V.; Goncharov, A. F.; Struzhkin, V.; Kantor, I.; Rivers, M. L.; Dalton, D. A.

    2011-12-01

    We have developed in situ x-ray synchrotron diffraction measurements of samples heated by a pulsed laser in the diamond anvil cell (DAC) at pressure up to 100 GPa and 3500 K. We used an electronically modulated 2-10 kHz repetition rate, 1064-1075 nm fiber laser with 1-100 microseconds pulse width synchronized with a gated x-ray detector (Pilatus) and time resolved radiometric temperature measurements. For the special APS hybrid mode, the measurements were also synchronized with a 500 ns long bunch carrying 88% of the ring current. This setup enables time domain measurements as a function of temperature in a micrometers time scale (averaged over many events, typically more than 10,000). X-ray diffraction data, temperature measurements, and finite element calculations with realistic geometric and thermochemical parameters show that in the present experimental configuration samples 4 micrometers thick can be continuously temperature monitored (up to 3000 K in our experiments) with the same level of axial and radial temperature uniformity as with continuous heating. We find that this novel technique offers a new and convenient way of fine tuning the maximum sample temperature by changing the pulse width of the laser. We will show examples of studies of the melting, thermal equation of state, and chemical reactivity. We acknowledge support from NSF EAR-0842057, DOE/ NNSA (CDAC), and EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DESC0001057. X-ray diffraction measurements were performed at GSECARS (APS) supported by DOE Contract No.W-31-109- Eng-38.

  13. A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.

    PubMed

    Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D

    2015-01-01

    X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk. PMID:26756414

  14. A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.

    PubMed

    Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D

    2015-01-01

    X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.

  15. Femtosecond laser-driven intense Cu K α X-ray source with a novel film target driver

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Choi, Il Woo; Sohn, Ik-Bu; Lee, Kitae; Shim, Gyu Il; Jeong, Young Uk; Han, Byung Heon; Ryu, Woo Je; Kim, Ha-Na; Cha, Hyungki

    2015-09-01

    A laser-induced intense Ka hard X-ray source was developed by using a novel copper film target and a 27-TW femtosecond laser system. A specially designed pinhole camera was employed to measure the X-ray photon flux, X-ray energy spectrum, and X-ray source image. By adapting a single photon counting method, we estimated the photon number in the full width at half maximum (FWHM) spectral region to be 1.74 × 109 photons/sr for 8.05-keV Cu Ka X-rays. The shape of the X-ray source was matched well with that of the focused laser beam on the target. By provision of a lengthy copper film of 50 m with a thickness of 50 µm, the novel copper film target is capable of long time operation of more than 27 hours at a repetition rate of 10 Hz. The hard X-ray source is suitable for applications in single-shot X-ray contrast imaging or in ultrafast pump-probe analyses of material structures.

  16. A bright attosecond x-ray pulse train generation in a double-laser-driven cone target

    NASA Astrophysics Data System (ADS)

    Hu, Li-Xiang; Yu, Tong-Pu; Shao, Fu-Qiu; Luo, Wen; Yin, Yan

    2016-06-01

    By using full three-dimensional particle-in-cell and Monte Carlo simulations, we investigate the generation of a high-brightness attosecond x-ray pulse train in a double-laser-driven cone target. The scheme makes use of two lasers: the first high-intensity laser with a laser peak intensity 1.37 × 1020 W/cm2 irradiates the cone and produces overdense attosecond electron bunches; the second counterpropagating weakly relativistic laser with a laser peak intensity 4.932 × 1017 W/cm2 interacts with the produced electron bunches and a bright x-ray pulse train is generated by Thomson backscattering of the second laser off the attosecond electron bunches. It is shown that the photon flux rises by 5 times using the cone target as compared with a normal channel. Meanwhile, the x-ray peak brightness increases significantly from 1.4 × 1021/(s mm2 mrad2 0.1 keV) to 6.0 × 1021/(s mm2 mrad2 0.1 keV), which is much higher than that of the Thomson x-ray source generated from traditional accelerators. We also discuss the influence of the laser and target parameters on the x-ray pulse properties. This compact bright x-ray source may have diverse applications, e.g., the study of electric dynamics and harmonics emission in the atomic scale.

  17. Coherent X-ray and laser spectroscopy measurements of diffusion in concentrated alpha-crystallin solutions

    NASA Astrophysics Data System (ADS)

    Karunaratne, V. N. C.

    The mammalian eye lens is composed of a concentrated solution of water soluble proteins called crystallins. Alpha-crystallin, the most abundant protein found in the lens, plays a crucial role in maintaining lens transparency and lens accommodation. However, alpha-crystallins along with other ocular proteins suffer from irreversible processes such as oxidation. One cause of oxidation is radiation-induced radical formation which alters the inter-molecular interactions, thereby degrading the normal function of ocular proteins. The main goal of this thesis is to quantify molecular scale dynamics of concentrated solutions of alpha-crystallins using coherent X-rays and visible laser light. I believe a detailed analysis of the dynamics pertaining to alpha-crystallin will provide the foundation to understand molecular scale mechanisms that lead to conditions like cataract and presbyopia. I explore the dynamics of concentrated alpha-crystallin solutions by measuring diffusive motion over a range of length scales using Dynamic light scattering (DLS) and X-ray photon correlation spectroscopy (XPCS). To a certain extent, the dynamical properties of crystallins obtained in this manner are consistent with established theories in colloidal physics. However, there are some deviations, which I will address in this thesis. In terms of X-ray data, I employed a new, efficient photon correlation technique to obtain the best possible signal, furthermore this technique is embedded in a stand-alone software program that has the ability to provide real time results, quickly and efficiently with the help of high performance computing resources available at Northern Illinois University (NIU). The technique has potential to be used by the coherent X-ray spectroscopy community in the future. In addition, by using X-ray scattering data, I probe potential modifications and or damage effects on alpha-crystallins due to radiation exposure. The damage analysis methodology described in this thesis

  18. Synchrotron-based in situ soft X-ray microscopy of Ag corrosion in aqueous chloride solution

    NASA Astrophysics Data System (ADS)

    Bozzini, B.; D'Urzo, L.; Gianoncelli, A.; Kaulich, B.; Kiskinova, M.; Prasciolu, M.; Tadjeddine, A.

    2009-09-01

    In this paper we report an in situ X-ray microscopy study of a model metal electrochemistry system, incorporating faradaic reactivity: the anodic corrosion and cathodic electrodeposition of Ag in aqueous systems. The information at sub-μm scale about morpho-chemical evolution of the electrified interface, provided by this novel electroanalytical approach fosters fundamental understanding of important issues concerning material fabrication and stability, which are crucial in developing the next generation electrochemical technologies, such as fuel cells and biosensors. The key methodology challenge faced in this pilot electrochemical experiments is combining a three-electrode configuration and wet environment, which required metal electrodes suitable for transmitting soft X-rays and a sealed cell allowing working in high vacuum. This has been solved via lithographic fabrication route fabricating 75 nm thick Ag electrodes and using Si3N4 membranes as X-ray windows and electrode support. Imaging in the STXM mode with phase contrast allowed us to monitor the corrosion morphologies and metal outgrowth features. Localised thickness variation and the build-up of reaction products of electron density different from that of the starting material have been detected with high sensitivity.

  19. An X-ray Imaging System for Hard-to-Reach Facility Diagnosis Using Femtosecond Laser-Plasma

    NASA Astrophysics Data System (ADS)

    Oishi, Yuji; Nayuki, Takuya; Nakajima, Chikahito; Fujii, Takashi; Zhidkov, Alexei; Nemoto, Koshichi

    2010-04-01

    For hard-to-reach facility diagnosis, a radiographic testing system that consists of a compact laser-plasma X-ray (LPX) generator and a compact X-ray imaging sensor is shown to be competitive to that based on the isotope imaging. A 1-mm-thick CsI charge-coupled device (CCD) sensor supplied with a cooling system was developed to tolerate a long X-ray exposition. Even without optimization of X-ray yield from a Ta thin film irradiated by 230 mJ, 70 fs laser pulses, clear X-ray images of a SUS304 pipe (outer diameter 34 mm with 4.5 mm thickness) with an elbow were produced.

  20. X-ray laser studies using plasmas created by optical field ionization

    SciTech Connect

    Krushelnick, K.M.; Tighe, W.; Suckewer, S.

    1995-01-01

    X-ray laser experiments involving the creation of fast recombining plasmas by optical field ionization of preformed targets were conducted. A nonlinear increase in the intensity of the 13.5nm Lyman-{alpha} line in Li III with the length of the target plasma was observed but only for distances less than the laser confocal parameter and for low plasma electron temperatures. Multiphoton pumping of resonant atomic transitions was also examined and the process of multiphoton ionization of FIII was found to be more probable than multiphoton excitation.

  1. X-ray spectroscopy of laser-heated CF2-foils

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Bock, R.; Faenov, Anatoly Y.; Hoffmann, D. H. H.; Pikuz, Tatiana A.; Pirzadeh, P.; Rosmej, Frank B.; Rosmej, O.; Roth, M.; Seelig, Wolfgang; Suess, W.; Tauschwitz, A.

    2001-04-01

    At the Z6 experimental area of the Gsesellshaft fur Schwerionenforschung in Darmstadt experiments with the nhelix laser facility were carried out to determine the plasma parameter sch as temperature, degree of ionization and expansion dynamics for laser heated targets, which are used for the ion beam-plasma-interaction experimental series. Spatially resolved x-ray spectroscopy with spherically bent mica crystals showed well collimated jets of He- and H-like ions emerging out of the front and rear surface of the target with energies in the MeV range.

  2. Gain dynamics in quickly ionized plasma for seeded operated soft x-ray lasers.

    PubMed

    Guilbaud, O; Cojocaru, G V; Li, L; Delmas, O; Ungureanu, R G; Banici, R A; Kazamias, S; Cassou, K; Neveu, O; Demailly, J; Baynard, E; Pittman, M; Le Marec, A; Klisnick, A; Zeitoun, Ph; Ursescu, D; Ros, D

    2015-10-15

    Harmonic seeded operation of a neon-like titanium plasma-based soft x-ray laser is described. The plasma amplifier is pumped with a variation of the grazing incidence technique involving a fast and localized ionization step. We discuss its effect on gain dynamics by measuring the amplifying factor as a function of the delay between pump pulse and harmonic seed. Two different regimes are pointed out, following the pumping scheme used. For one of them, a delay in the gain generation compared with the pumping laser pulse is observed. PMID:26469617

  3. Phase-matched generation of coherent soft and hard X-rays using IR lasers

    DOEpatents

    Popmintchev, Tenio V.; Chen, Ming-Chang; Bahabad, Alon; Murnane, Margaret M.; Kapteyn, Henry C.

    2013-06-11

    Phase-matched high-order harmonic generation of soft and hard X-rays is accomplished using infrared driving lasers in a high-pressure non-linear medium. The pressure of the non-linear medium is increased to multi-atmospheres and a mid-IR (or higher) laser device provides the driving pulse. Based on this scaling, also a general method for global optimization of the flux of phase-matched high-order harmonic generation at a desired wavelength is designed.

  4. Cautionary note concerning the CuSO4 X-ray laser. [alternative to lasing action

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Mark, H.

    1973-01-01

    For the so far unconfirmed lasing action claimed by Kepros et al. (1972) to have been obtained by focusing a 1.06-micron radiation of a q-switched Nd(3+) glass laser to a small cylindrical volume inside a CuSO4-doped gelatin medium supported between two glass plates, an alternate explanation is proposed that does not depend on the assumption of laser action in copper. The proposed explanation shows how collimated X-ray beams might be created under the experimental conditions described by Kepros et al.

  5. Single-particle structure determination by X-ray free-electron lasers: Possibilities and challenges.

    PubMed

    Hosseinizadeh, A; Dashti, A; Schwander, P; Fung, R; Ourmazd, A

    2015-07-01

    Single-particle structure recovery without crystals or radiation damage is a revolutionary possibility offered by X-ray free-electron lasers, but it involves formidable experimental and data-analytical challenges. Many of these difficulties were encountered during the development of cryogenic electron microscopy of biological systems. Electron microscopy of biological entities has now reached a spatial resolution of about 0.3 nm, with a rapidly emerging capability to map discrete and continuous conformational changes and the energy landscapes of biomolecular machines. Nonetheless, single-particle imaging by X-ray free-electron lasers remains important for a range of applications, including the study of large "electron-opaque" objects and time-resolved examination of key biological processes at physiological temperatures. After summarizing the state of the art in the study of structure and conformations by cryogenic electron microscopy, we identify the primary opportunities and challenges facing X-ray-based single-particle approaches, and possible means for circumventing them.

  6. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    DOE PAGES

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; et al

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore » based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less

  7. Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates

    PubMed Central

    David, C.; Gorelick, S.; Rutishauser, S.; Krzywinski, J.; Vila-Comamala, J.; Guzenko, V. A.; Bunk, O.; Färm, E.; Ritala, M.; Cammarata, M.; Fritz, D. M.; Barrett, R.; Samoylova, L.; Grünert, J.; Sinn, H.

    2011-01-01

    A growing number of X-ray sources based on the free-electron laser (XFEL) principle are presently under construction or have recently started operation. The intense, ultrashort pulses of these sources will enable new insights in many different fields of science. A key problem is to provide x-ray optical elements capable of collecting the largest possible fraction of the radiation and to focus into the smallest possible focus. As a key step towards this goal, we demonstrate here the first nanofocusing of hard XFEL pulses. We developed diamond based Fresnel zone plates capable of withstanding the full beam of the world's most powerful x-ray laser. Using an imprint technique, we measured the focal spot size, which was limited to 320 nm FWHM by the spectral band width of the source. A peak power density in the focal spot of 4×1017 W/cm2 was obtained at 70 fs pulse length. PMID:22355576

  8. Investigation of self-filtering unstable resonator for soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Ghani-Moghadam, G.; Farahbod, A. H.

    2016-07-01

    In this paper, it is proposed that the self-filtering unstable resonator (SFUR) is suitable for soft x-ray lasers which have active medium with a short-gain-lifetime. In order to evaluate the idea, we have analyzed the self-filtering unstable resonator in two dimensions with Ne-like Fe soft x-ray active medium for transitions 2p5 3 p → 2p5 3 s and 3d9 4 d → 3d9 4 p at 25.5 nm. The role of field-limiting aperture in mode propagation has been shown. Moreover, beam quality factor M2 has been calculated and output mode behavior studied and compared with a plane-parallel (PP) resonator of equal length. The calculations indicate that the M2 factor in SFUR resonator is smaller than PP resonator and therefore output beam divergence is lower and the mode quality is much better. It is expected that a high quality beam of soft x-ray laser with brightness of the order 1013 W / cm2 sr and energy more than 10 nJ may be achievable with a properly designed diffraction-filtered unstable resonator.

  9. Hard x-ray production from high intensity laser solid interactions

    SciTech Connect

    Sefcik, J. A., LLNL

    1998-06-03

    Intense laser (> 10{sup 21} W/cm{sup 2}) driven hard x-ray sources offer a new alternative to conventional electron accelerator bremsstrahlung sources. These laser driven sources offer considerable simplicity in design and cost advantage for multiple axis views and have the potential for much higher spatial and temporal resolution than is achievable with accelerator sources We have begun a series of experiments using the Petawatt Laser system at LLNL to determine the potential of these sources for radiography applications Absolutely calibrated spectra extending to 20 MeV and high resolution radiographs through a {rho}r{>=}150 gm/cm{sup 2} have been obtained The physics of these sources and the scaling relationships and laser technology required to provide the dose levels necessary for radiography applications will be discussed Diagnostics of the laser produced electrons and photons will be addressed

  10. Aerosol Imaging with a Soft X-ray Free Electron Laser

    SciTech Connect

    Bogan, Michael J.; Boutet, Sebastien; Chapman, Henry N.; Marchesini, Stefano; Barty, Anton; Benner, W.Henry Rohner, Urs; Frank, Matthias; Hau-Riege, Stefan P.; Bajt, Sasa; Woods, Bruce; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; Schulz, Joachim; /DESY

    2011-08-22

    Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10{sub 12} photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

  11. Hard x-ray generation by low energy, tightly focused laser pulses

    NASA Astrophysics Data System (ADS)

    Takano, K.; Nemoto, K.; Nayuki, T.; Oishi, Y.; Fujii, T.; Zhidkov, A.; Hotta, E.; Todoriki, M.; Hasegawa, S.

    2008-06-01

    The interaction of λ2 laser pulses with plasma is studied to scale the high-field physics from high power laser systems to low-energy, high-repetition-rate lasers. For this purpose, 20mJ, 40fs Ti:sapphire laser pulses were focused in a spot of 2.2×2.3μm2 with a maximum intensity of I ˜1019W/cm2. Efficient generations of energetic electrons (˜1MeV) and hard x-rays with energies of over 100keV were obtained by irradiating the low-energy, tightly focused laser pulses on a massive Cu target.

  12. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    DOE PAGES

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; KAIST, Daejeon; Cupane, Antonio; et al

    2015-04-02

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations withmore » a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.« less

  13. Generation of large-bandwidth x-ray free-electron-laser pulses

    NASA Astrophysics Data System (ADS)

    Saa Hernandez, Angela; Prat, Eduard; Bettoni, Simona; Beutner, Bolko; Reiche, Sven

    2016-09-01

    X-ray free-electron lasers (XFELs) are modern research tools in disciplines such as biology, material science, chemistry, and physics. Besides the standard operation that aims at minimizing the bandwidth of the produced XFEL radiation, there is a strong scientific demand to produce large-bandwidth XFEL pulses for several applications such as nanocrystallography, stimulated Raman spectroscopy, and multiwavelength anomalous diffraction. We present a self-consistent method that maximizes the XFEL pulse bandwidth by systematically maximizing the energy chirp of the electron beam at the undulator entrance. This is achieved by optimizing the compression scheme and the electron distribution at the source in an iterative back-and-forward tracking. Start-to-end numerical simulations show that a relative bandwidth of 3.25% full-width can be achieved for the hard x-ray pulses in the SwissFEL case.

  14. Saturable Absorption of an X-Ray Free-Electron-Laser Heated Solid-Density Plasma

    NASA Astrophysics Data System (ADS)

    Wark, J. S.; Rackstraw, D. S.; Ciricosta, O.; Vinko, S. M.; Burian, T.; Chalupsky, J.; Hajkova, V.; Juha, L.; Barbrel, B.; Engelhorn, K.; Cho, B.-I.; Chung, H.-K.; Dakovski, G.; Krzywinski, J.; Heimann, P.; Holmes, M.; Turner, J.; Lee, R. W.; Toleikis, S.; Zastrau, U.

    2015-11-01

    High-intensity ~1017 Wcm-2, short duration (100 fsec) x-ray pulses from the LCLS x-ray free-electron laser, with photon energies ranging from below to above the K-edge of cold Al (1560 eV), are used to generate and probe a solid-density aluminum plasma. The photon-energy-dependent transmission of the heating beam is studied through the use of a photodiode. Saturable absorption is observed, with the resulting transmission differing significantly from the cold case, with the increased transmission being due to the K-edge energy of the dominant ion species shifting in time as the solid-density target is heated, in good agreement with atomic-kinetics simulations.

  15. Sorting algorithms for single-particle imaging experiments at X-ray free-electron lasers.

    PubMed

    Bobkov, S A; Teslyuk, A B; Kurta, R P; Gorobtsov, O Yu; Yefanov, O M; Ilyin, V A; Senin, R A; Vartanyants, I A

    2015-11-01

    Modern X-ray free-electron lasers (XFELs) operating at high repetition rates produce a tremendous amount of data. It is a great challenge to classify this information and reduce the initial data set to a manageable size for further analysis. Here an approach for classification of diffraction patterns measured in prototypical diffract-and-destroy single-particle imaging experiments at XFELs is presented. It is proposed that the data are classified on the basis of a set of parameters that take into account the underlying diffraction physics and specific relations between the real-space structure of a particle and its reciprocal-space intensity distribution. The approach is demonstrated by applying principal component analysis and support vector machine algorithms to the simulated and measured X-ray data sets.

  16. Single-shot measurements of plasmons in compressed diamond with an x-ray laser

    SciTech Connect

    Gamboa, E. J.; Fletcher, L. B.; Lee, H. J.; Galtier, E.; Gauthier, M.; Granados, E.; Hastings, J. B.; Glenzer, S. H.; Zastrau, U.; MacDonald, M. J.; Vorberger, J.; Gericke, D. O.

    2015-05-15

    Strong plasmon resonances characteristics of electron density fluctuations have recently been observed in dynamically compressed diamond for the first time at the Linac Coherent Light Source. These experiments observe the forward scattering spectra from 8 keV x-ray pulses at record peak brightness to probe laser-compressed diamond foils at the Matter in Extreme Conditions instrument. We demonstrate single-shot measurements of the x-ray scattering spectrum, which are sensitive to the temperatures and densities of the compressed samples. The inferred values from the inelastic scattering are compared to simulations, finding good agreement with the temperature and demonstrating the need to include solid state effects in the modeling of the plasmon oscillation.

  17. Undulator beamline optimization with integrated chicanes for X-ray free-electron-laser facilities.

    PubMed

    Prat, Eduard; Calvi, Marco; Ganter, Romain; Reiche, Sven; Schietinger, Thomas; Schmidt, Thomas

    2016-07-01

    An optimization of the undulator layout of X-ray free-electron-laser (FEL) facilities based on placing small chicanes between the undulator modules is presented. The installation of magnetic chicanes offers the following benefits with respect to state-of-the-art FEL facilities: reduction of the required undulator length to achieve FEL saturation, improvement of the longitudinal coherence of the FEL pulses, and the ability to produce shorter FEL pulses with higher power levels. Numerical simulations performed for the soft X-ray beamline of the SwissFEL facility show that optimizing the advantages of the layout requires shorter undulator modules than the standard ones. This proposal allows a very compact undulator beamline that produces fully coherent FEL pulses and it makes possible new kinds of experiments that require very short and high-power FEL pulses. PMID:27359133

  18. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    SciTech Connect

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; KAIST, Daejeon; Cupane, Antonio; Cammarata, Marco

    2015-04-02

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations with a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.

  19. Simulation Studies of the X-Ray Free-Electron Laser Oscillator

    SciTech Connect

    Lindberg, R. R.; Shyd'ko, Y.; Kim, K.-J; Fawley, W. M.

    2009-08-14

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include transverse effects and realistic Bragg crystal properties with the two-dimensional code GINGER. In the present cases considered the radiation divergence is much narrower than the crystal acceptance, and the numerical algorithm can be simplified by ignoring the finite angular bandwidth of the crystal. In this regime GINGER shows that the saturated x-ray pulses have 109 photons and are nearly Fourier-limited with peak powers in excess of 1 MW. Wealso include preliminary results for a four-mirror cavity that can be tuned in wavelength over a few percent, with future plans to incorporate the full transverse response of the Bragg crystals into GINGER to more accurately model this tunable source.

  20. Sensing the wavefront of x-ray free-electron lasers using aerosol spheres

    SciTech Connect

    Loh, N.Duane; Starodub, Dimitri; Lomb, Lukas; Hampton, Christina Y.; Martin, Andrew V.; Sierra, Raymond G.; Barty, Anton; Aquila, Andrew; Schulz, Joachim; Steinbrener, Jan; Shoeman, Robert L.; Kassemeyer, Stephan; Bostedt, Christoph; Bozek, John; Epp, Sascha W.; Erk, Benjamin; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Rudek, Benedikt; Foucar, Lutz

    2014-04-22

    Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10 21 W/m2 can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wave-front sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, the paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.

  1. Compression of X-ray Free Electron Laser Pulses to Attosecond Duration

    PubMed Central

    Sadler, James D.; Nathvani, Ricky; Oleśkiewicz, Piotr; Ceurvorst, Luke A.; Ratan, Naren; Kasim, Muhammad F.; Trines, Raoul M. G. M.; Bingham, Robert; Norreys, Peter A.

    2015-01-01

    State of the art X-ray Free Electron Laser facilities currently provide the brightest X-ray pulses available, typically with mJ energy and several hundred femtosecond duration. Here we present one- and two-dimensional Particle-in-Cell simulations, utilising the process of stimulated Raman amplification, showing that these pulses are compressed to a temporally coherent, sub-femtosecond pulse at 8% efficiency. Pulses of this type may pave the way for routine time resolution of electrons in nm size potentials. Furthermore, evidence is presented that significant Landau damping and wave-breaking may be beneficial in distorting the rear of the interaction and further reducing the final pulse duration. PMID:26568520

  2. Compression of X-ray Free Electron Laser Pulses to Attosecond Duration.

    PubMed

    Sadler, James D; Nathvani, Ricky; Oleśkiewicz, Piotr; Ceurvorst, Luke A; Ratan, Naren; Kasim, Muhammad F; Trines, Raoul M G M; Bingham, Robert; Norreys, Peter A

    2015-01-01

    State of the art X-ray Free Electron Laser facilities currently provide the brightest X-ray pulses available, typically with mJ energy and several hundred femtosecond duration. Here we present one- and two-dimensional Particle-in-Cell simulations, utilising the process of stimulated Raman amplification, showing that these pulses are compressed to a temporally coherent, sub-femtosecond pulse at 8% efficiency. Pulses of this type may pave the way for routine time resolution of electrons in nm size potentials. Furthermore, evidence is presented that significant Landau damping and wave-breaking may be beneficial in distorting the rear of the interaction and further reducing the final pulse duration. PMID:26568520

  3. Breakthrough: X-ray Laser Captures Atoms and Molecules in Action

    ScienceCinema

    Bergmann, Uwe

    2016-07-12

    The Linac Coherent Light Source at SLAC is the world's most powerful X-ray laser. Just two years after turning on in 2009, breakthrough science is emerging from the LCLS at a rapid pace. A recent experiment used the X-rays to create and probe a 2-million-degree piece of matter in a controlled way for the first time-a significant leap toward understanding the extreme conditions found in the hearts of stars and giant planets, and a finding which could further guide research into nuclear fusion, the mechanism that powers the sun. Upcoming experiments will investigate the fundamental, atomic-scale processes behind such phenomena as superconductivity and magnetism, as well as peering into the molecular workings of photosynthesis in plants.

  4. Sensing the wavefront of x-ray free-electron lasers using aerosol spheres.

    PubMed

    Loh, N Duane; Starodub, Dmitri; Lomb, Lukas; Hampton, Christina Y; Martin, Andrew V; Sierra, Raymond G; Barty, Anton; Aquila, Andrew; Schulz, Joachim; Steinbrener, Jan; Shoeman, Robert L; Kassemeyer, Stephan; Bostedt, Christoph; Bozek, John; Epp, Sascha W; Erk, Benjamin; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Rudek, Benedikt; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Hauser, Guenter; Holl, Peter; Pedersoli, Emanuele; Liang, Mengning; Hunter, Mark S; Gumprecht, Lars; Coppola, Nicola; Wunderer, Cornelia; Graafsma, Heinz; Maia, Filipe R N C; Ekeberg, Tomas; Hantke, Max; Fleckenstein, Holger; Hirsemann, Helmut; Nass, Karol; White, Thomas A; Tobias, Herbert J; Farquar, George R; Benner, W Henry; Hau-Riege, Stefan; Reich, Christian; Hartmann, Andreas; Soltau, Heike; Marchesini, Stefano; Bajt, Sasa; Barthelmess, Miriam; Strueder, Lothar; Ullrich, Joachim; Bucksbaum, Philip; Frank, Matthias; Schlichting, Ilme; Chapman, Henry N; Bogan, Michael J

    2013-05-20

    Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10(21) W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.

  5. Time-resolved imaging using x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Barty, Anton

    2010-10-01

    The ultra-intense, ultra-short x-ray pulses provided by x-ray free electron laser (XFEL) sources are ideally suited to time-resolved studies of structural dynamics with spatial resolution from nanometre to atomic length scales and a temporal resolution of 10 fs or less. With enough photons in a single pulse to enable single-shot measurements and short enough pulses to freeze atomic motion, researchers now have a new window into the time evolution ultrafast phenomena that are intrinsically not cyclic in nature. In this paper we recap some of the key time-resolved imaging experiments performed at FLASH and look ahead to a new generation of experiments at higher resolution using a new generation of new XFEL sources that are only just becoming available.

  6. Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser.

    PubMed

    Caleman, Carl; Tîmneanu, Nicuşor; Martin, Andrew V; Jönsson, H Olof; Aquila, Andrew; Barty, Anton; Scott, Howard A; White, Thomas A; Chapman, Henry N

    2015-01-26

    In structural determination of crystalline proteins using intense femtosecond X-ray lasers, damage processes lead to loss of structural coherence during the exposure. We use a nonthermal description for the damage dynamics to calculate the ultrafast ionization and the subsequent atomic displacement. These effects degrade the Bragg diffraction on femtosecond time scales and gate the ultrafast imaging. This process is intensity and resolution dependent. At high intensities the signal is gated by the ionization affecting low resolution information first. At lower intensities, atomic displacement dominates the loss of coherence affecting high-resolution information. We find that pulse length is not a limiting factor as long as there is a high enough X-ray flux to measure a diffracted signal.

  7. Generation of subterawatt-attosecond pulses in a soft x-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; Marcus, Gabriel

    2016-08-01

    We propose a novel scheme to generate attosecond soft x rays in a self-seeded free-electron laser (FEL) suitable for enabling attosecond spectroscopic investigations. A time-energy chirped electron bunch with additional sinusoidal energy modulation is adopted to produce a short seed pulse through a self-seeding monochromator. This short seed pulse, together with high electron current spikes and a cascaded delay setup, enables a high-efficiency FEL with a fresh bunch scheme. Simulations show that using the Linac Coherent Light Source (LCLS) parameters, soft x-ray pulses with a FWHM of 260 attoseconds and a peak power of 0.5 TW can be obtained. This scheme also has the feature of providing a stable central wavelength determined by the self-seeding monochromator.

  8. Sensing the wavefront of x-ray free-electron lasers using aerosol spheres.

    PubMed

    Loh, N Duane; Starodub, Dmitri; Lomb, Lukas; Hampton, Christina Y; Martin, Andrew V; Sierra, Raymond G; Barty, Anton; Aquila, Andrew; Schulz, Joachim; Steinbrener, Jan; Shoeman, Robert L; Kassemeyer, Stephan; Bostedt, Christoph; Bozek, John; Epp, Sascha W; Erk, Benjamin; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Rudek, Benedikt; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Hauser, Guenter; Holl, Peter; Pedersoli, Emanuele; Liang, Mengning; Hunter, Mark S; Gumprecht, Lars; Coppola, Nicola; Wunderer, Cornelia; Graafsma, Heinz; Maia, Filipe R N C; Ekeberg, Tomas; Hantke, Max; Fleckenstein, Holger; Hirsemann, Helmut; Nass, Karol; White, Thomas A; Tobias, Herbert J; Farquar, George R; Benner, W Henry; Hau-Riege, Stefan; Reich, Christian; Hartmann, Andreas; Soltau, Heike; Marchesini, Stefano; Bajt, Sasa; Barthelmess, Miriam; Strueder, Lothar; Ullrich, Joachim; Bucksbaum, Philip; Frank, Matthias; Schlichting, Ilme; Chapman, Henry N; Bogan, Michael J

    2013-05-20

    Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10(21) W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging. PMID:23736456

  9. Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser.

    PubMed

    Caleman, Carl; Tîmneanu, Nicuşor; Martin, Andrew V; Jönsson, H Olof; Aquila, Andrew; Barty, Anton; Scott, Howard A; White, Thomas A; Chapman, Henry N

    2015-01-26

    In structural determination of crystalline proteins using intense femtosecond X-ray lasers, damage processes lead to loss of structural coherence during the exposure. We use a nonthermal description for the damage dynamics to calculate the ultrafast ionization and the subsequent atomic displacement. These effects degrade the Bragg diffraction on femtosecond time scales and gate the ultrafast imaging. This process is intensity and resolution dependent. At high intensities the signal is gated by the ionization affecting low resolution information first. At lower intensities, atomic displacement dominates the loss of coherence affecting high-resolution information. We find that pulse length is not a limiting factor as long as there is a high enough X-ray flux to measure a diffracted signal. PMID:25835880

  10. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    NASA Astrophysics Data System (ADS)

    Blagoev, K.; Grozeva, M.; Malcheva, G.; Neykova, S.

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893-972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts.

  11. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk; Vyšín, Luděk; Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M.; Pina, Ladislav; Davídková, Marie; Juha, Libor

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray "water window" spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280-540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 103 photons/μm2/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms' sensitivity to pulsed radiation in the "water window", where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET - Linear Energy Transfer) and dose-rate effects in radiobiology.

  12. Note: Diagnosing femtosecond laser-solid interactions with monochromatic K{sub {alpha}} imager and x-ray pinhole camera

    SciTech Connect

    Lin, X. X.; Li, Y. T.; Liu, F.; Du, F.; Wang, S. J.; Chen, L. M.; Zhang, L.; Zheng, Y.; Liu, X.; Liu, X. L.; Wang, Z. H.; Ma, J. L.; Wei, Z. Y.; Liu, B. C.; Zhang, J.

    2011-03-15

    An x-ray pinhole camera and a monochromatic K{sub {alpha}} imager are used to measure the interactions of intense femtosecond laser pulses with Cu foil targets. The two diagnostics give different features in the spot size and the laser energy scaling, which are resulted from different physical processes. Under our experimental conditons, the K{sub {alpha}} emission is mainly excited by the fast electrons transporting inside the cold bulk target. In contrast, the x-ray pinhole signals are dominated by the broadband thermal x-ray emission from the hot plasma at the front target surface.

  13. Note: Diagnosing femtosecond laser-solid interactions with monochromatic Kα imager and x-ray pinhole camera.

    PubMed

    Lin, X X; Li, Y T; Liu, F; Liu, B C; Du, F; Wang, S J; Chen, L M; Zhang, L; Zheng, Y; Liu, X; Liu, X L; Wang, Z H; Ma, J L; Wei, Z Y; Zhang, J

    2011-03-01

    An x-ray pinhole camera and a monochromatic K(α) imager are used to measure the interactions of intense femtosecond laser pulses with Cu foil targets. The two diagnostics give different features in the spot size and the laser energy scaling, which are resulted from different physical processes. Under our experimental conditions, the K(α) emission is mainly excited by the fast electrons transporting inside the cold bulk target. In contrast, the x-ray pinhole signals are dominated by the broadband thermal x-ray emission from the hot plasma at the front target surface.

  14. Note: Diagnosing femtosecond laser-solid interactions with monochromatic Kα imager and x-ray pinhole camera.

    PubMed

    Lin, X X; Li, Y T; Liu, F; Liu, B C; Du, F; Wang, S J; Chen, L M; Zhang, L; Zheng, Y; Liu, X; Liu, X L; Wang, Z H; Ma, J L; Wei, Z Y; Zhang, J

    2011-03-01

    An x-ray pinhole camera and a monochromatic K(α) imager are used to measure the interactions of intense femtosecond laser pulses with Cu foil targets. The two diagnostics give different features in the spot size and the laser energy scaling, which are resulted from different physical processes. Under our experimental conditions, the K(α) emission is mainly excited by the fast electrons transporting inside the cold bulk target. In contrast, the x-ray pinhole signals are dominated by the broadband thermal x-ray emission from the hot plasma at the front target surface. PMID:21456806

  15. Four-channel X-ray microscope for plasma investigations on the Sokol-P laser facility

    SciTech Connect

    Vikhlyaev, D A; Gavrilov, D S; Kakshin, A G; Potapov, A V; Safronov, K V

    2011-03-31

    The design, assembly, and alignment of a Kirkpatrick - Baez X-ray microscope are described. A technique for the experimental evaluation of the resolving power of the microscope is outlined. This microscope permits obtaining simultaneous images of laser target plasmas in narrow energy regions belonging to the 0.3 - 1.5-keV X-ray range with a resolution of {approx}2 {mu}m. (interaction of laser radiation with matter)

  16. Electrochemically adsorbed Pb on Ag (111) studied with grazing- incidence x-ray scattering

    SciTech Connect

    Kortright, J.B.; Ross, P.N.; Melroy, O.R.; Toney, M.F.; Borges, G.L.; Samant, M.G.

    1989-04-01

    Grazing-incidence x-ray scattering studies of the evolution of electrochemically deposited layers of lead on silver (111) as a function of applied electrochemical potential are presented. Measurements were made with the adsorbed layers in contact with solution in a specially designed sample cell. The observed lead structures are a function of the applied potential and range from an incommensurate monolayer, resulting from underpotential deposition, to randomly oriented polycrystalline bulk lead, resulting from lower deposition potentials. These early experiments demonstrate the ability of in situ x-ray diffraction measurements to determine structures associated with electrochemical deposition. 6 refs., 4 figs.

  17. Development of laser cladding system with process monitoring by x-ray imaging

    NASA Astrophysics Data System (ADS)

    Terada, Takaya; Yamada, Tomonori; Nishimura, Akihiko

    2014-02-01

    We have been developing a new laser cladding system to repair the damages of parts in aging plants. It consists of some devices which are a laser torch, composite-type optical fiber, QCW fiber laser and etc. All devices are installed in a mobile rack, so we can carry it to plants, laboratories or anywhere we want to use. We should irradiate the work with the best accuracy of laser beam and filler wire in laser cladding. A composite-type optical fiberscope is useful. This fiberscope was composed of a center fiber for beam delivery surrounded by 20000 fibers for visible image delivery. Thus it always keeps target on center of gun-sight. We succeeded to make a line laser cladding on an inside wall of 1-inch tube by our system. Before this success, we solved two serious problems which are the contamination of optics and the deformation of droplet. Observing laser cladding process by X-ray imaging with Spring-8 synchrotron radiation, we found that the molten pool depth was formed to be under a hundred micrometers for 10 milliseconds. A Quasi-CW fiber laser with 1 kW was employed for a heat source to generate the shallow molten pool. The X-ray shadowgraph clarified that a molten droplet was formed at the edge of a wire up to a millimeter size. It grew up if the wire didn't contact with the tube wall in initial state. Here we succeeded to measure the thermo-electromotive force voltage between a wire and a tube metal to confirm whether both came in contact. We propose to apply the laser cladding technology to the maintenance of aging industrial plants and nuclear facilities.

  18. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    SciTech Connect

    WANG,X.J.; MURPHY,J.B.; YU,L.H.; FAATZ,B.; HUANG,Z.; REICHE,S.; ZOLOTOREV,M.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherence of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).

  19. Ordered many-electron motions in atoms and x-ray lasers. [Subpicosecond ultraviolet laser radiation

    SciTech Connect

    Rhodes, C.K.

    1986-01-01

    Subpicosecond ultraviolet laser technology is enabling the exploration of nonlinear atomic interactions with electric field strengths considerably in excess of an atomic unit. As this regime is approached, experiments studying multiple ionization, photoelectron energy spectra, and harmonically produced radiation all exhibit strong nonlinear coupling. Peak total energy transfer rates on the order of approx.2 x 10/sup -4/ W/atom have been observed at an intensity of approx.10/sup 16/ W/cm/sup 2/, and it is expected that energy transfer rates approaching approx.0.1 to 1 W/atom will occur under more extreme conditions for which the ultraviolet electric field E is significantly greater than e/a/sub 0//sup 2/. In this high intensity regime, a wide range of new nonlinear phenomena will be open to study. These will include the possibility of ordered driven motions in atoms, molecules, and plasmas, mechanisms involving collisions, and relativistic processes such as electron-positron pair production. An understanding of these physical interactions may provide a basis for the generation of stimulated emission in the x-ray range. 100 refs., 8 figs.

  20. Experimental studies of X-ray emission physics and hydrodynamics using short wavelength lasers

    NASA Astrophysics Data System (ADS)

    Goldstone, P. D.; Casperson, D. E.; Cobble, J. A.; Coggeshall, S. V.; Gomez, C. C.; Hauer, A.; Kyrala, G. A.; Lee, P. H. Y.; Mead, W. C.; Schappert, G. T.

    Several experimental efforts are currently under way at Low Alamos to study issues of importance for inertial confinement fusion with short wavelength lasers. These issues include the physics of X-ray conversion and the dynamics of short-wavelength laser interaction with high-Z plasmas; filamentation and self-focusing processes; and the growth of instabilities in laser-driven implosions. Most of these experiments are being pursued in collaboration with other laboratories, notably the University of Rochester and Lawrence Livermore National Laboratory. In addition, we are undertaking basic studies of the interaction of both atomic systems and solids with ultra-intense (approximately 10 to the minus 17th W/sq cm) subpicosecond lasers at Los Alamos. These experiments explore the response of atomic systems to strong fields, multiphoton excitation, and transient phenomena in dense plasmas.

  1. Generation of strongly coupled Xe cluster nanoplasmas by low intensive soft x-ray laser irradiation

    SciTech Connect

    Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Kawachi, T.

    2012-07-11

    A seeding gas jet including Xe clusters was irradiated with a laser-driven plasma soft x-ray laser pulse ({lambda}=13.9 nm, {approx}7 ps, {<=}5 Multiplication-Sign 10{sup 9} W/cm{sup 2}), where the laser photon energy is high enough to ionize 4d core electrons. In order to clarify how the innershell ionization followed by the Auger electron emission is affected under the intense laser irradiation, the electron energy distribution was measured. Photoelectron spectra showed that the peak position attributed to 4d hole shifted to lower energy and the spectral width was broadened with increasing cluster size. Moreover, the energy distribution exhibited that a strongly coupled cluster nanoplasma with several eV was generated.

  2. X-ray scattering measurements of laser-driven shock compressed plastic and deuterated plastic targets

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Fletcher, Luke; Ravasio, Alessandra; Döppner, Tilo; Glenzer, Siegfried; HED science Collaboration

    2015-03-01

    The study of materials under extreme conditions, i.e., high energy density, has gathered enormous scientific interest in various domains from inertial confinement fusion to planetary physics. The material response of plastic to shock and its behavior is important because of its common use as an ablator in inertial confinement fusion experiments. In this study, simultaneous measurements of spectrally and wavenumber resolved x-ray scattering emission from laser-shock compressed plastic foils allow us to study the structural transition from a polymer to a liquid-like state. The 527 nm, 2 GW laser system available at the MEC station of the LCLS facility has been used to compress CH and CD foils using laser-driven shocks. 40 to 57 μm thick CH and CD targets were compressed using 3 ns square pulses with total laser energy of 6 J per beam. A drive intensity of 3x1013 W/cm2 on each irradiated surface was used to generate high-pressure shock waves into the sample, while 8 keV x-rays from LCLS was used to probe the target.

  3. X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments

    NASA Astrophysics Data System (ADS)

    Harmand, M.; Ravasio, A.; Mazevet, S.; Bouchet, J.; Denoeud, A.; Dorchies, F.; Feng, Y.; Fourment, C.; Galtier, E.; Gaudin, J.; Guyot, F.; Kodama, R.; Koenig, M.; Lee, H. J.; Miyanishi, K.; Morard, G.; Musella, R.; Nagler, B.; Nakatsutsumi, M.; Ozaki, N.; Recoules, V.; Toleikis, S.; Vinci, T.; Zastrau, U.; Zhu, D.; Benuzzi-Mounaix, A.

    2015-07-01

    Taking advantage of the new opportunities provided by x-ray free electron laser (FEL) sources when coupled to a long laser pulse as available at the Linear Coherent Light Source (LCLS), we have performed x-ray absorption near-edge spectroscopy (XANES) of laser shock compressed iron up to 420 GPa (±50 ) and 10 800 K (±1390 ). Visible diagnostics coupled with hydrodynamic simulations were used to infer the thermodynamical conditions along the Hugoniot and the release adiabat. A modification of the pre-edge feature at 7.12 keV in the XANES spectra is observed above pressures of 260 GPa along the Hugoniot. Comparing with ab initio calculations and with previous laser-heated diamond cell data, we propose that such changes in the XANES pre-edge could be a signature of molten iron. This interpretation then suggests that iron is molten at pressures and temperatures higher than 260 GPa (±29 ) and 5680 K (±700 ) along the principal Fe Hugoniot.

  4. X-ray and EUV micro-imaging systems for laser ICF diagnostics

    NASA Astrophysics Data System (ADS)

    Yi, S.; Mu, B.; Wang, X.; Huang, W.; Li, J.; Wang, Z.

    2013-10-01

    Plasma imaging diagnostics plays an important role for laser ICF. Based on the urgent need to carry out high-resolution, high-throughput plasma diagnostics, grazing-incidence X-ray Kirkpatrick-Baez (KB) microscopes and normal-incidence EUV Schwarzschild imaging system were developed. The X-ray multilayer KB microscopes were successfully been applied in the physics experiments of SGII laser facility. Combined with streaked camera, the Mo-backlit implosion flow line of hollow Carbon-Hydrogen (CH) spherical target was obtained in SGII. The 4.75keV single-channel and four-channel KB microscopes were also developed for self-emission and short-pulse backlit imaging diagnostic of CH cylindrical target. In addition, according to the need of ultra-short laser pulse plasma diagnostics, the Schwarzschild imaging system working at 68eV was researched, and the physical experiments of hot electron transport with Schwarzschild imaging system were performed in SILEX-I laser facility.

  5. 32.8-nm X-ray laser produced in a krypton cluster jet

    SciTech Connect

    Ivanova, E P; Vinokhodov, A Yu

    2013-12-31

    We have interpreted the well-known experimental quantum yield data for a 32.8-nm X-ray laser operating at the 3d{sup 9}4d (J = 0) – 3d{sup 9}4p (J = 1) transition of Kr{sup 8+} with the use of gaseous krypton or a krypton cluster jet. Proceeding from our model we propose a novel scheme for the 32.8-nm laser produced in a krypton cluster jet. The quantum yield is shown to saturate for a plasma length of ∼300 μm, a krypton ion density n{sub Kr} ∼ (4 – 9) × 10{sup 19} cm{sup -3}, and an electron temperature Te ∼ 5000 eV. In this case, the energy conversion coefficient amounts to ∼5 × 10{sup -3} of the pump pulse energy. We propose the experimental setup for producing a highefficiency subpicosecond X-ray laser in a krypton cluster jet. (lasers)

  6. Multiple pulse thermal damage thresholds of materials for x-ray free electron laser optics investigated with an ultraviolet laser

    SciTech Connect

    Hau-Riege, Stefan P.; London, Richard A.; Bionta, Richard M.; Soufli, Regina; Ryutov, Dmitri; Shirk, Michael; Baker, Sherry L.; Smith, Patrick M.; Nataraj, Pradeep

    2008-11-17

    Optical elements to be used for x-ray free electron lasers (XFELs) must withstand multiple high-fluence pulses. We have used an ultraviolet laser to study the damage of two candidate materials, crystalline Si and B{sub 4}C-coated Si, emulating the temperature profile expected to occur in optics exposed to XFEL pulses. We found that the damage threshold for 10{sup 5} pulses is {approx}20% to 70% lower than the melting threshold.

  7. Structural biology at the European X-ray free-electron laser facility.

    PubMed

    Altarelli, Massimo; Mancuso, Adrian P

    2014-07-17

    The European X-ray free-electron laser (XFEL) facility, under construction in the Hamburg region, will provide high-peak brilliance (greater than 10(33) photons s(-1) mm(-2) mrad(-2) per 0.1% BW), ultrashort pulses (approx. 10 fs) of X-rays, with a high repetition rate (up to 27 000 pulses s(-1)) from 2016 onwards. The main features of this exceptional X-ray source, and the instrumentation developments necessary to exploit them fully, for application to a variety of scientific disciplines, are briefly summarized. In the case of structural biology, that has a central role in the scientific case of this new facility, the instruments and ancillary laboratories that are being planned and built within the baseline programme of the European XFEL and by consortia of users are also discussed. It is expected that the unique features of the source and the advanced features of the instrumentation will allow operation modes with more efficient use of sample materials, faster acquisition times, and conditions better approaching feasibility of single molecule imaging.

  8. Dynamic Ultra-Bright X-ray Laser Scattering from Isochorically Heated Cryogenic Hydrogen

    NASA Astrophysics Data System (ADS)

    Fletcher, Luke; High Energy Density Collaboration

    2015-11-01

    Recent x-ray scattering experiments performed at the MEC end-station of the LCLS, have demonstrated novel plasma measurements of the electron temperature, pressure, and density by simultaneous high-resolution angularly and spectrally resolved x-ray scattering from shock-compressed materials in the warm dense regime. Such measurements provide the structural properties relating the microscopic quantities in terms of thermodynamic properties using first-principles calculations. These studies have led us on a path where we create conditions with increasing temperatures and pressures to explore the high-energy density phase space. Specifically, we have begun experiments on hot and dense hydrogen plasmas producing energetic proton beams that find applications in fusion research and astrophysical phenomena. For our experiments with the 25 TW short pulse laser we apply repetition rates and pulse widths with a good match to the LCLS x-ray beam capabilities allowing pump-probe experiments with ultrahigh temporal resolution with very high data throughput with shot rates of up to 5 Hz. In this talk we will discuss our recent measurements that have resolved the ultrafast structural response of hydrogen to intense heating.

  9. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    DOE PAGES

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; et al

    2016-04-12

    Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less

  10. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser.

    PubMed

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie

    2015-07-01

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup. PMID:26144230

  11. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser.

    PubMed

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie

    2015-07-01

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  12. Hard x-ray transmission crystal spectrometer at the OMEGA-EP laser facilitya)

    NASA Astrophysics Data System (ADS)

    Seely, J. F.; Szabo, C. I.; Feldman, U.; Hudson, L. T.; Henins, A.; Audebert, P.; Brambrink, E.

    2010-10-01

    The transmission crystal spectrometer (TCS) is approved for taking data at the OMEGA-EP laser facility since 2009 and will be available for the OMEGA target chamber in 2010. TCS utilizes a Cauchois type cylindrically bent transmission crystal geometry with a source to crystal distance of 600 mm. Spectral images are recorded by image plates in four positions, one IP on the Rowland circle and three others at 200, 400, and 600 mm beyond the Rowland circle. An earlier version of TCS was used at LULI on experiments that determined the x-ray source size from spectral line broadening on one IP positioned behind the Rowland circle. TCS has recorded numerous backlighter spectra at EP for point projection radiography and for source size measurements. Hard x-ray source size can be determined from the source broadening of both K shell emission lines and from K absorption edges in the bremsstrahlung continuum, the latter being a new way to measure the spatial extent of the hard x-ray bremsstrahlung continuum.

  13. Hard x-ray transmission crystal spectrometer at the OMEGA-EP laser facility.

    PubMed

    Seely, J F; Szabo, C I; Feldman, U; Hudson, L T; Henins, A; Audebert, P; Brambrink, E

    2010-10-01

    The transmission crystal spectrometer (TCS) is approved for taking data at the OMEGA-EP laser facility since 2009 and will be available for the OMEGA target chamber in 2010. TCS utilizes a Cauchois type cylindrically bent transmission crystal geometry with a source to crystal distance of 600 mm. Spectral images are recorded by image plates in four positions, one IP on the Rowland circle and three others at 200, 400, and 600 mm beyond the Rowland circle. An earlier version of TCS was used at LULI on experiments that determined the x-ray source size from spectral line broadening on one IP positioned behind the Rowland circle. TCS has recorded numerous backlighter spectra at EP for point projection radiography and for source size measurements. Hard x-ray source size can be determined from the source broadening of both K shell emission lines and from K absorption edges in the bremsstrahlung continuum, the latter being a new way to measure the spatial extent of the hard x-ray bremsstrahlung continuum. PMID:21034000

  14. Femtosecond Diffractive Imaging with a Soft-X-Ray Free-Electron Laser

    SciTech Connect

    Chapman, Henry N.; Barty, Anton: AUTHOR = Bogan, Michael J.; Boutet, Sebastian; Frank, Matthias; Hau-Riege, Stefan P.; Marchesini, Stefano; Woods, Bruce W.; Bajt, Sasa; Benner, W.Henry; London, Richard A.; Plonjes, Elke; Kuhlmann, Marion; Treusch, Rolf; Dusterer, Stefan; Tschentscher, Thomas; Schneider, Jochen R.; Spiller, Eberhard; Moller, Thomas; Bostedt, Christoph; Hoener, Matthias; Shapiro, David A.; /UC, Davis /SLAC /Uppsala U. /LLNL, Livermore /Uppsala U. /Uppsala U. /SLAC /Uppsala U.

    2010-10-07

    Theory predicts that with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus, or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft X-ray free-electron laser. An intense 25 fs, 4 x 10{sup 13} W/cm{sup 2} pulse, containing 10{sup 12} photons at 32 nm wavelength, produced a coherent diffraction pattern from a nano-structured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling, shows no measurable damage, and extends to diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one.

  15. Femtosecond Diffractive Imaging with a Soft-X-ray Free-Electron Laser

    SciTech Connect

    Chapman, H N; Barty, A; Bogan, M; Boutet, S; Frank, M; Hau-Riege, S P; Marchesini, S; Woods, B; Bajt, S; Benner, W H; London, R; Ploenjes-Palm, E; Kuhlmann, M; Treusch, R; Dusterer, S; Tschentscher, T; Schneider, J; Spiller, E; Moller, T; Bostedt, C; Hoener, M; Shapiro, D; Hodgson, K O; der Spoel, D v; Burmeister, F; Bergh, M; Caleman, C; Huldt, G; Seibert, M; Maia, F; Lee, R; Szoke, A; Timneanu, N; Hajdu, J

    2006-03-13

    Theory predicts that with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus, or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft X-ray free-electron laser. An intense 25 fs, 4 x 10{sup 13} W/cm{sup 2} pulse, containing 10{sup 12} photons at 32 nm wavelength, produced a coherent diffraction pattern from a nano-structured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling, shows no measurable damage, and extends to diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one.

  16. Development of a Laser-Produced Plasma X-ray source for Phase-Contrast Radiography of DT Ice layers

    SciTech Connect

    Izumi, N; Dewald, E; Kozioziemski, B; Landen, O L; Koch, J A

    2008-07-21

    Refraction enhanced x-ray phase contrast imaging is crucial for characterization of deuterium-tritium (DT) ice layer roughness in optically opaque inertial confinement fusion capsules. To observe the time development of DT ice roughness over {approx} second timescales, we need a bright x-ray source that can produce an image faster than the evolution of the ice surface roughness. A laser produced plasma x-ray source is one of the candidates that can meet this requirement. We performed experiments at the Janus laser facility at Lawrence Livermore National Laboratory and assessed the characteristics of the laser produced plasma x-ray source as a potential backlight for in situ target characterization.

  17. Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hormes, J.; Roy, A.; Bovenkamp, G.-L.; Simon, K.; Kim, C.-Y.; Börste, N.; Gai, S.

    2013-04-01

    We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA-ICP-MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile—the most stable form of TiO2—but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds.

  18. X-ray free-electron lasers: Scientific goals and machine implications

    NASA Astrophysics Data System (ADS)

    Arthur, John

    2001-07-01

    Free electron lasers are now being designed which will operate at wavelengths down to about 1. [1] The physics of the high-gain, single pass FEL process requires extremely bright electron pulses in the 10-20 GeV range. This electron brightness should be achievable using an RF-photocathode source and a linear accelerator, such as the initial acceleration stage of a TeV-range linear electron-positron collider. The x-ray FEL radiation produced will have unique properties. In particular: • The FEL peak intensity and peak brightness will be many orders of magnitude higher than can be produced by any other source. • The pulse length will be less than 1 picosecond, orders of magnitude shorter than can be achieved with any other bright source such as a synchrotron. • The FEL radiation will have full transverse coherence and a degeneracy parameter (photons/coherence volume) equal to 109 or more. No other source can produce hard x-radiation with a degeneracy parameter significantly greater than 1. These properties offer the chance to study chemical, biological, and condensed matter dynamical processes with sub-picosecond time resolution and angstrom spatial resolution. [2] The high peak power of the FEL radiation (greater than 1014W/cm2) could be used to create precisely-controlled chemical and structural modifications inside samples. There is also the possibility that nonlinear x-ray interactions could be used to give increased resolution for spectroscopic studies, to greatly expand the parameter space for atomic physics studies, and to permit new fundamental tests of quantum mechanics. The exploration of these new x-ray techniques will require considerable development, not only in technical areas such as optics and detectors, but also in understanding the basic physics of the interaction of very intense x-radiation with matter. A large collaboration of US institutions is now conducting preliminary research and development in these areas, with the intention of

  19. Demonstration experiment of a laser synchrotron source for tunable, monochromatic x-rays at 500 eV

    SciTech Connect

    Ting, A.; Fischer, R.; Fisher, A.

    1995-12-31

    A Laser Synchrotron Source (LSS) was proposed to generate short-pulsed, tunable x-rays by Thomson scattering of laser photons from a relativistic electron beam. A proof-of-principle experiment was performed to generate x-ray photons of 20 eV. A demonstration experiment is being planned and constructed to generate x-ray photons in the range of {approximately}500 eV. Laser photons of {lambda}=1.06 {mu}m are Thomson backscattered by a 4.5 MeV electron beam which is produced by an S-band RF electron gun. The laser photons are derived from either (i) a 15 Joules, 3 nsec Nd:glass laser, (ii) the uncompressed nsec: pulse of the NRL table-top terawatt (T{sup 3}) laser, or (iii) the compressed sub-picosec pulse of the T{sup 3} laser. The RF electron gun is being constructed with initial operation using a thermionic cathode. It will be upgraded to a photocathode to produce high quality electron beams with high current and low emittance. The x-ray pulse structure consists of {approximately}10 psec within an envelope of a macropulse whose length depends on the laser used. The estimated x-ray photon flux is {approximately}10{sup 18} photons/sec, and the number of photons per macropulse is {approximately}10{sup 8}. Design parameters and progress of the experiment will be presented.

  20. X-ray spectral diagnostics of laser harmonic generation in the interaction of relativistic femtosecond laser pulses with clusters

    NASA Astrophysics Data System (ADS)

    Faenov, A. Ya; Oks, E.; Dalimier, E.; Skobelev, I. Yu; Pikuz, S. A.; Pikuz, T. A.; Zhvaniya, I. A.; Fukuda, Y.; Andreev, A.; Koga, J.; Sakaki, H.; Kotaki, H.; Pirozhkov, A. S.; Hayashi, Y.; Kawachi, T.; Kando, M.; Kondo, K.; Zhidkov, A. G.; Kodama, R.

    2016-04-01

    It is shown that the production of X-ray emission spectra in the interaction of high-intensity laser radiation with cluster targets may be affected by the bichromatic oscillating electric field arising from the generation of the second harmonic of laser radiation. A technique is proposed for diagnosing harmonic generation in laser - cluster interactions using the spectral line profiles of multiply charged helium ions. The efficiency of second harmonic generation at a laser intensity of 3 × 1018 W cm-2 is shown to amount to about 2%.

  1. Parameterization of x-ray production in laser-produced plasmas

    SciTech Connect

    Peek, J.M.

    1980-10-01

    A simple and algebraically tractable model is developed for the efficiency of x-ray production in a certain spectral region by laser driven plasmas. The model is used as a interpolation/extrapolation device for experimental and theoretical results from three different target concepts. These tests indicate that it is of use in its intended capacity. Certain relationships between independent parameters and scaling laws also result from this construction. Most notable among these is the prediction that the efficiency for producing line radiation in a certain narrow energy range scales like the inverse square of this energy.

  2. X-ray free electron lasers motivate bioanalytical characterization of protein nanocrystals: serial femtosecond crystallography.

    PubMed

    Bogan, Michael J

    2013-04-01

    Atomic resolution structures of large biomacromolecular complexes can now be recorded at room temperature from crystals with submicrometer dimensions using intense femtosecond pulses delivered by the world's largest and most powerful X-ray machine, a laser called the Linac Coherent Light Source. Abundant opportunities exist for the bioanalytical sciences to help extend this revolutionary advance in structural biology to the ultimate goal of recording molecular-movies of noncrystalline biomacromolecules. This Feature will introduce the concept of serial femtosecond crystallography to the nonexpert, briefly review progress to date, and highlight some potential contributions from the analytical sciences. PMID:23517430

  3. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

    SciTech Connect

    Carlsten, Bruce E.; Barnes, Cris W.; Bishofberger, Kip A.; Duffy, Leanne D.; Heath, Cynthia E.; Marksteiner, Quinn R.; Nguyen, Dinh Cong; Russell, Steven J.; Ryne, Robert D.; Sheffield, Richard L.; Simakov, Evgenya I.; Yampolsky, Nikolai A.

    2011-01-01

    The proposed Matter-Radiation Interactions in Extremes (MaRIE) facility at the Los Alamos National Laboratory will include a 50-keV X-Ray Free-Electron Laser (XFEL), a significant extension from planned and existing XFEL facilities. To prevent an unacceptably large energy spread arsing from energy diffusion, the electron beam energy should not exceed 20 GeV, which puts a significant constraint on the beam emittance. A 100-pC baseline design is presented along with advanced technology options to increase the photon flux and to decrease the spectral bandwidth through pre-bunching the electron beam.

  4. X-ray absorption study of pulsed laser deposited boron nitride films

    SciTech Connect

    Chaiken, A.; Terminello, L.J.; Wong, J.; Doll, G.L.; Sato, T.

    1994-02-02

    B and N K-edge x-ray absorption spectroscopy measurements have been performed on three BN thin films grown on Si substrates using ion- assisted pulsed laser deposition. Comparison of the films` spectra to those of several single-phase BN powder standards shows that the films consist primarily of sp{sup 2} bonds. Other features in the films`s spectra suggest the presence of secondary phases, possibly cubic or rhombohedral BN. Films grown at higher deposition rates and higher ion-beam voltages are found to be more disordered, in agreement with previous work.

  5. Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser

    PubMed Central

    Lomb, Lukas; Barends, Thomas R. M.; Kassemeyer, Stephan; Aquila, Andrew; Epp, Sascha W.; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Rudek, Benedikt; Rolles, Daniel; Rudenko, Artem; Shoeman, Robert L.; Andreasson, Jakob; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J.; Bostedt, Christoph; Bozek, John D.; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; DePonte, Daniel P.; Doak, R. Bruce; Ekeberg, Tomas; Fleckenstein, Holger; Fromme, Petra; Gebhardt, Maike; Graafsma, Heinz; Gumprecht, Lars; Hampton, Christina Y.; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M.; Hunter, Mark S.; Kabsch, Wolfgang; Kimmel, Nils; Kirian, Richard A.; Liang, Mengning; Maia, Filipe R. N. C.; Meinhart, Anton; Marchesini, Stefano; Martin, Andrew V.; Nass, Karol; Reich, Christian; Schulz, Joachim; Seibert, M. Marvin; Sierra, Raymond; Soltau, Heike; Spence, John C. H.; Steinbrener, Jan; Stellato, Francesco; Stern, Stephan; Timneanu, Nicusor; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; White, Thomas A.; Wunderer, Cornelia; Chapman, Henry N.; Ullrich, Joachim; Strüder, Lothar; Schlichting, Ilme

    2013-01-01

    X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects. PMID:24089594

  6. Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser.

    PubMed

    Lomb, Lukas; Barends, Thomas R M; Kassemeyer, Stephan; Aquila, Andrew; Epp, Sascha W; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Rudek, Benedikt; Rolles, Daniel; Rudenko, Artem; Shoeman, Robert L; Andreasson, Jakob; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Bozek, John D; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Deponte, Daniel P; Doak, R Bruce; Ekeberg, Tomas; Fleckenstein, Holger; Fromme, Petra; Gebhardt, Maike; Graafsma, Heinz; Gumprecht, Lars; Hampton, Christina Y; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M; Hunter, Mark S; Kabsch, Wolfgang; Kimmel, Nils; Kirian, Richard A; Liang, Mengning; Maia, Filipe R N C; Meinhart, Anton; Marchesini, Stefano; Martin, Andrew V; Nass, Karol; Reich, Christian; Schulz, Joachim; Seibert, M Marvin; Sierra, Raymond; Soltau, Heike; Spence, John C H; Steinbrener, Jan; Stellato, Francesco; Stern, Stephan; Timneanu, Nicusor; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; White, Thomas A; Wunderer, Cornelia; Chapman, Henry N; Ullrich, Joachim; Strüder, Lothar; Schlichting, Ilme

    2011-12-01

    X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects.

  7. Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Lomb, Lukas; Barends, Thomas R. M.; Kassemeyer, Stephan; Aquila, Andrew; Epp, Sascha W.; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Rudek, Benedikt; Rolles, Daniel; Rudenko, Artem; Shoeman, Robert L.; Andreasson, Jakob; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J.; Bostedt, Christoph; Bozek, John D.; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Deponte, Daniel P.; Doak, R. Bruce; Ekeberg, Tomas; Fleckenstein, Holger; Fromme, Petra; Gebhardt, Maike; Graafsma, Heinz; Gumprecht, Lars; Hampton, Christina Y.; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M.; Hunter, Mark S.; Kabsch, Wolfgang; Kimmel, Nils; Kirian, Richard A.; Liang, Mengning; Maia, Filipe R. N. C.; Meinhart, Anton; Marchesini, Stefano; Martin, Andrew V.; Nass, Karol; Reich, Christian; Schulz, Joachim; Seibert, M. Marvin; Sierra, Raymond; Soltau, Heike; Spence, John C. H.; Steinbrener, Jan; Stellato, Francesco; Stern, Stephan; Timneanu, Nicusor; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; White, Thomas A.; Wunderer, Cornelia; Chapman, Henry N.; Ullrich, Joachim; Strüder, Lothar; Schlichting, Ilme

    2011-12-01

    X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects.

  8. Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser.

    PubMed

    Lomb, Lukas; Barends, Thomas R M; Kassemeyer, Stephan; Aquila, Andrew; Epp, Sascha W; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Rudek, Benedikt; Rolles, Daniel; Rudenko, Artem; Shoeman, Robert L; Andreasson, Jakob; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Bozek, John D; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Deponte, Daniel P; Doak, R Bruce; Ekeberg, Tomas; Fleckenstein, Holger; Fromme, Petra; Gebhardt, Maike; Graafsma, Heinz; Gumprecht, Lars; Hampton, Christina Y; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M; Hunter, Mark S; Kabsch, Wolfgang; Kimmel, Nils; Kirian, Richard A; Liang, Mengning; Maia, Filipe R N C; Meinhart, Anton; Marchesini, Stefano; Martin, Andrew V; Nass, Karol; Reich, Christian; Schulz, Joachim; Seibert, M Marvin; Sierra, Raymond; Soltau, Heike; Spence, John C H; Steinbrener, Jan; Stellato, Francesco; Stern, Stephan; Timneanu, Nicusor; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; White, Thomas A; Wunderer, Cornelia; Chapman, Henry N; Ullrich, Joachim; Strüder, Lothar; Schlichting, Ilme

    2011-12-01

    X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects. PMID:24089594

  9. Characterization of intense laser-produced fast electrons using hard x-rays via bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Sawada, H.; Sentoku, Y.; Bass, A.; Griffin, B.; Pandit, R.; Beg, F.; Chen, H.; McLean, H.; Link, A. J.; Patel, P. K.; Ping, Y.

    2015-11-01

    Energy distribution of high-power, short-pulse laser produced fast electrons was experimentally and numerically studied using high-energy bremsstrahlung x-rays. The hard x-ray photons and escaping electrons from various metal foils, irradiated by the 50 TW Leopard laser at Nevada Terawatt Facility, were recorded with a differential filter stack spectrometer that is sensitive to photons produced by mainly 0.5-2 MeV electrons and an electron spectrometer measuring >2 MeV electrons. The experimental bremsstrahlung and the slope of the measured escaped electrons were compared with an analytic calculation using an input electron spectrum estimated with the ponderomotive scaling. The result shows that the electron spectrum entering a Cu foil could be continuous single slope with the slope temperature of ˜1.5 MeV in the detector range. The experiment and analytic calculation were then compared with a 2D particle-in-cell code, PICLS, including a newly developed radiation transport module. The simulation shows that a two-temperature electron distribution is generated at the laser interaction region, but only the hot component of the fast electrons flow into the target during the interaction because the low energy electron component is trapped by self-generated magnetic field in the preformed plasma. A significant amount of the photons less than 100 keV observed in the experiment could be attributed to the low energy electrons entering the foil a few picoseconds later after the gating field disappears.

  10. Study of x-ray radiation from a laser wakefield accelerator

    SciTech Connect

    Leurent, V.; Pollock, B. B.; Michel, P.; Divol, L.; Doeppner, T.; Glenzer, S. H.; Palastro, J. P.; Froula, D. H.; Clayton, C. E.; Joshi, C.; Marsh, K. A.; Pak, A.; Ralph, J.; Wang, T. L.; Tynan, G.

    2009-01-22

    A Laser Wakefield Accelerator (LWFA) is under development at Lawrence Livermore National Laboratory (LLNL) to produce electron bunches with GeV class energy and energy spreads of a few-percent. The interaction of a high power (200 TW), short pulse (50 fs) laser with neutral He gas can generate quasi-monoenergetic electron beams at energies up to 1 GeV [1]. The laser pulse can be self-guided over 1 cm overcoming the limitation of vacuum diffraction. X-ray betatron radiation is emitted while the accelerated electrons undergo oscillations in the wakefield electrostatic field. Here we present electron spectra measurements with a two screen spectrometer allowing to measure both the electron energy and the transverse deflection at the plasma exit. We have measured monoenergetic electron beams above 300 MeV. Furthermore a forward directed x-ray beam is observed. Preliminary measurements of the spectrum are in reasonable agreement with the calculated betatron spectrum in the synchrotron asymptotic limit using the measured electron beam parameters.

  11. Coherent x-rays driven by ultrashort-pulse lasers: generation, application, and prospects

    NASA Astrophysics Data System (ADS)

    Kapteyn, Henry C.

    2016-05-01

    Ultrashort laser pulses represent an ideal starting point for frequency conversion of light to almost any wavelength from the THz to x-rays. High-harmonic upconversion (HHG) is a unique process enabled by the combined strong field laser field and the few-cycle pulse duration of a femtosecond laser pulse. HHG makes it possible to generate coherent light in the spectral region from the vacuum-UV into the x-ray region at sub-nm wavelengths. HHG sources are now finding increasingly diverse application for both science and technology, in topics ranging from basic studies of atomic processes, to materials dynamics revealed through time and angle-resolved photoemission. Furthermore, the coherent nature of the HHG process makes possible unprecedented control over light in a new region of the spectrum, making it possible to, for example, control the polarization state and spectral bandwidth, creating the most complex time-domain waveforms ever measured and characterized. Here we review recent work, as well as efforts at commercial implementation of HHG sources.

  12. ULTRA-SHORT X-RAY RADIATION COMING FROM A LASER WAKEFIELD ACCELERATOR

    SciTech Connect

    Leurent, V; Michel, P; Clayton, C E; Pollock, B; Doeppner, T; Wang, T L; Ralph, J; Pak, A; Joshi, C; Tynan, G; Divol, L; Palastro, J P; Glenzer, S H; Froula, D H

    2008-06-17

    A Laser Wakefield Accelerator (LWFA) is under development at Lawrence Livermore National Laboratory (LLNL) to produce electron bunches with GeV class energy and energy spreads of a few-percent. The ultimate goal is to provide a bright and compact photon source for high energy density physics. The interaction of a high power (200 TW), short pulse (50 fs) laser with neutral He gas can generate quasi-monoenergetic electrons beams at energies up to 1 GeV [1]. The laser pulse can be self-guided over a dephasing length of 1 cm (for a plasma density of 1.5 x 10{sup 18} cm{sup -3}) overcoming the limitation of vacuum diffraction. Betatron radiation is emitted while the accelerated electrons undergo oscillations in the wakefield electrostatic field. Here we present electron spectrum measurements with a two screen spectrometer allowing to fix the ambiguities due to unknown angle at the plasma exit. We have measured monoenergetic electron beams at energies around 110 MeV. Furthermore a forward directed x-ray beam is observed. The peak energy of the measured synchrotron spectrum is reconstructed based on the energy deposited after different sets of filters, assuming x-ray radiation described in the synchrotron asymptotic limit (SAL) and is found around 6 keV.

  13. X-ray laser beam propagation in double-foil targets

    NASA Astrophysics Data System (ADS)

    Boswell, B.; Shvarts, D.; Boehly, T.; Yaakobi, B.

    1990-02-01

    Refraction effects on the gain of an x-ray laser propagating in a convex (lateral) plasma density profile have been studied previously. Here the corresponding case of concave density profile is studied theoretically. Experimentally, the convex profile is obtained by irradiating a single (exploding) foil target; the concave case can be realized by various two-beam irradiation configurations. Such geometries have been studied experimentally at the Laboratory for Laser Energetics (LLE) [SPIE Proceedings (SPIE, Bellingham, WA, 1987), Vol. 831, Paper 40, p. 283; Paper 42, p. 305]. The concave profile has a waveguiding effect on the propagation of the x-ray laser and can reduce the deleterious effects of refraction. The output power, its dependence on the length of the amplifying medium, and its angular distribution are studied and compared with the convex profile case. An amplifier mode (in which a collimated beam is incident on an amplifying medium) is compared with an amplified spontaneous emission mode (where spontaneous emission sources exist throughout the amplifying medium).

  14. Damage-resistant single-pulse optics for x-ray free electron lasers

    SciTech Connect

    Hau-Riege, S; London, R; Bogan, M; Chapman, H; Bergh, M

    2007-04-27

    Short-pulse ultraviolet and x-ray free electron lasers of unprecedented peak brightness are in the process of revolutionizing physics, chemistry, and biology. Optical components for these new light sources have to be able to withstand exposure to the extremely high-fluence photon pulses. Whereas most optics have been designed to stay intact for many pulses, it has also been suggested that single-pulse optics that function during the pulse but disintegrate on a longer timescale, may be useful at higher fluences than multiple-pulse optics. In this paper we will review damage-resistant single-pulse optics that recently have been demonstrated at the FLASH soft-x-ray laser facility at DESY, including mirrors, apertures, and nanolenses. It was found that these objects stay intact for the duration of the 25-fs FLASH pulse, even when exposed to fluences that exceed the melt damage threshold by fifty times or more. We present a computational model for the FLASH laser-material interaction to analyze the extent to which the optics still function during the pulse. Comparison to experimental results obtained at FLASH shows good quantitative agreement.

  15. Evolution of Elastic X-ray Scattering in Laser-Shocked Warm Dense Li

    SciTech Connect

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C; Brown, C; Constantin, C; Glenzer, S H; Khattak, F; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-06-02

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4 ns long laser pulses. Separate 1 ns long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-{alpha} photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120{sup o} using a HOPG crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state {bar Z}, and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  16. Table-top transient collisional excitation x-ray laser research at LLNL: Status June 1997

    SciTech Connect

    Dunn, J., LLNL

    1997-07-01

    This is a status report of transient collisional excitation x-ray laser experiments at LLNL during June 1997 that have the advantage of being conducted on a table-top. Two laser drivers with modest energy {approximately}6 J are used in the scheme: a long {approximately}1 ns pulse to preform and ionize the plasma followed by a short {approximately}1 ps pulse to produce the excitation and population inversion. The beams are co-propagated and focused using a combination of a cylindrical lens and paraboloid to a line of {approximately}70 {micro}m x 12.5 mm dimensions. High repetition rates approaching 1 shot/3 min. allow typically in excess of 50 target shots in a day. Various slab targets have been irradiated and we report preliminary results for x-ray laser gain in 3p-3s J=0-1 Ne-like Ti and Fe transitions where gains as high as 24 cm{sup -1} and gL products of {approximately}15 have been observed.

  17. Mesoscale morphology of airborne core-shell nanoparticle clusters: x-ray laser coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Pedersoli, E.; Loh, N. D.; Capotondi, F.; Y Hampton, C.; Sierra, R. G.; Starodub, D.; Bostedt, C.; Bozek, J.; Nelson, A. J.; Aslam, M.; Li, S.; Dravid, V. P.; Martin, A. V.; Aquila, A.; Barty, A.; Fleckenstein, H.; Gumprecht, L.; Liang, M.; Nass, K.; Schulz, J.; White, T. A.; Coppola, N.; Bajt, S.; Barthelmess, M.; Graafsma, H.; Hirsemann, H.; Wunderer, C.; Epp, S. W.; Erk, B.; Rudek, B.; Rudenko, A.; Foucar, L.; Kassemeyer, S.; Lomb, L.; Rolles, D.; Shoeman, R. L.; Steinbrener, J.; Hartmann, R.; Hartmann, A.; Hauser, G.; Holl, P.; Kimmel, N.; Reich, C.; Soltau, H.; Weidenspointner, G.; Benner, W. H.; Farquar, G. R.; Hau-Riege, S. P.; Hunter, M. S.; Ekeberg, T.; Hantke, M.; Maia, F. R. N. C.; Tobias, H. J.; Marchesini, S.; Frank, M.; Strüder, L.; Schlichting, I.; Ullrich, J.; Chapman, H. N.; Bucksbaum, P. H.; Kiskinova, M.; Bogan, M. J.

    2013-08-01

    Unraveling the complex morphology of functional materials like core-shell nanoparticles and its evolution in different environments is still a challenge. Only recently has the single-particle coherent diffraction imaging (CDI), enabled by the ultrabright femtosecond free-electron laser pulses, provided breakthroughs in understanding mesoscopic morphology of nanoparticulate matter. Here, we report the first CDI results for Co@SiO2 core-shell nanoparticles randomly clustered in large airborne aggregates, obtained using the x-ray free-electron laser at the Linac Coherent Light Source. Our experimental results compare favourably with simulated diffraction patterns for clustered Co@SiO2 nanoparticles with ˜10 nm core diameter and ˜30 nm shell outer diameter, which confirms the ability to resolve the mesoscale morphology of complex metastable structures. The findings in this first morphological study of core-shell nanomaterials are a solid base for future time-resolved studies of dynamic phenomena in complex nanoparticulate matter using x-ray lasers.

  18. X-ray optical system for imaging laser plumes with a spatial resolution of up to 70 nm

    NASA Astrophysics Data System (ADS)

    Nechai, A. N.; Pestov, A. E.; Polkovnikov, V. N.; Salashchenko, N. N.; Toropov, M. N.; Chkhalo, N. I.; Tsybin, N. N.; Shcherbakov, A. V.

    2016-04-01

    We consider an X-ray optical system which permits obtaining laser plume images at a wavelength of 13.5 nm with a resolution of up to 70 nm. The X-ray optical system comprises an X-ray Schwarzschild objective made up of two aspherical multilayer mirrors, a scintillator (YAG : Ce ceramics), which converts X-rays to the visible radiation, and a visible-optical system, which images the scintillator surface onto a CCD camera. The spatial resolution of the system is limited by the resolution of the optical system (0.7 μm) and the magnification (10×) of the X-ray objective and is as high as 70 nm. The effect of Schwarzschild objective mirror shapes on the spatial resolution is analysed. The profile of concave mirror aspherisation is considered, which provides the attainment of the diffraction-limited quality of the objective. Data are given for the quantum efficiency of the system at a wavelength of 13.5 nm. We describe the experimental test bench intended for studying the developed X-ray optical system and outline the first experimental data which illustrate its efficiency. Owing to the natural division into the 'X-ray' and 'visible' parts, the optical system under discussion permits an easy change of the magnification and the field of view without realigning the X-ray optical elements. The wavelength may be varied in a range between 3 and 40 nm by changing the multilayer mirrors.

  19. A New Gated X-Ray Detector for the Orion Laser Facility

    SciTech Connect

    Clark, David D.; Aragonez, Robert J.; Archuleta, Thomas N.; Fatherley, Valerie E.; Hsu, Albert H.; Jorgenson, H. J.; Mares, Danielle; Oertel, John A.; Oades, Kevin; Kemshall, Paul; Thomas, Philip; Young, Trevor; Pederson, Neal

    2012-08-08

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from the what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  20. A new gated x-ray detector for the Orion laser facility

    NASA Astrophysics Data System (ADS)

    Clark, David D.; Aragonez, Robert; Archuleta, Thomas; Fatherley, Valerie; Hsu, Albert; Jorgenson, Justin; Mares, Danielle; Oertel, John; Oades, Kevin; Kemshall, Paul; Thomas, Phillip; Young, Trevor; Pederson, Neal

    2012-10-01

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  1. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Sundqvist, Chantal

    2016-07-01

    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article, we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at an x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experiment.

  2. Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays

    SciTech Connect

    Leemans, W.P.; Esarey, E.; van Tilborg, J.; Michel, P.A.; Schroeder, C.B.; Toth, Cs.; Geddes, C.G.R.; Shadwick, B.A.

    2004-10-01

    Electron beam based radiation sources provide electromagnetic radiation for countless applications. The properties of the radiation are primarily determined by the properties of the electron beam. Compact laser driven accelerators are being developed that can provide ultra-short electron bunches (femtosecond duration) with relativistic energies reaching towards a GeV. The electron bunches are produced when an intense laser interacts with a dense plasma and excites a large amplitude plasma density modulation (wakefield) that can trap background electrons and accelerate them to high energies. The short pulse nature of the accelerated bunches and high particle energy offer the possibility of generating radiation from one compact source that ranges from coherent terahertz to gamma rays. The intrinsic synchronization to a laser pulse and unique character of the radiation offers a wide range of possibilities for scientific applications. Two particular radiation source regimes are discussed: Coherent terahertz emission and x-ray emission based on betatron oscillations and Thomson scattering.

  3. Impact of observed hyperfine splitting on X-ray laser gain

    SciTech Connect

    Nilsen, J.; Koch, J.A.; Scofield, J.H.; MacGowan, B.J.; Moreno, J.C.; Da Silva, L.B.

    1993-11-01

    Line broadening mechanisms play an important role in determining the gain of X-ray laser transitions. Typically Doppler broadening is the primary mechanism which determines the linewidth of these transitions. However, the authors present cases where the hyperfine effect is the dominant line broadening mechanism. Studying laser lines, which tend to have gain narrowed linewidths, enables one to observe these dramatic hyperfine effects which would be difficult to observe in opacity or Stark broadened lines. In this work the authors report the observation of hyperfine splitting on an X-ray laser transition and discuss how hyperfine splitting has a major impact on the laser gain. In the experiments they measure the lineshape of the 3p {yields} 3s, J = 0 {yields} 1 transition in neon-like niobium and zirconium and observe a 28 m{angstrom} splitting between the two largest hyperfine components in the niobium(Z=41) line at 145.9{angstrom}, in good agreement with theory. In zirconium(Z=40), no splitting is observed since the hyperfine effect is proportional to the nuclear moment, and zirconium has zero nuclear moment, as is typical for even-Z elements. The hyperfine effect is shown to effect transitions which have a 2p{sub 1/2} vacancy in the closed neon-like core much more than those with a 2p{sub 3/2} vacancy. A comparison of the neon-like niobium laser spectrum with that of zirconium shows a dramatic reduction in the relative intensity of the niobium laser lines with the 2p{sub 1/2} vacancy. The authors also report the unusual behavior noticed recently in low-Z neon-like X-ray lasers in which ions with odd Z lase poorly, if at all, relative to ions with even Z. The hyperfine effect is shown to have a substantial impact on the gain of the low-Z and helps explain their poor performance.

  4. Development of a low debris x-ray backlighter source via laser irradiation of a cluster gas medium

    NASA Astrophysics Data System (ADS)

    Lowe, Hazel; Patankar, Siddarth; Giltrap, Samuel; Stuart, Nicholas; Robinson, Timothy; Gumbrell, Edward; Smith, Roland; Imperial College Team; AWE Collaboration

    2015-11-01

    X-ray backlighter sources, typically based on laser irradiated solid targets, are of great importance for radiography of transient plasmas produced in high power laser-target interactions. Here we report on the development of an atomic cluster gas based x-ray source and assess its viability for x-ray point projection imaging motivated by the debris free, high repetition rate nature of laser-cluster gas interactions. The dependence on cluster size and atomic number of the anisotropic radial x-ray distribution, 100 μm x-ray source size and multi-keV free electron temperatures produced by the interaction of a 1TW short pulse (500fs), high contrast laser system operating at 1054nm with high density Ar, Kr and Xe cluster gas media have been investigated. Previously, when propagated through a large (10mm) volume cluster gas medium at 1017 atoms/cc, >95% of the laser energy contained in a short pulse was absorbed launching a strong, radiative cylindrical blast wave. At 1019 atoms/cc, the absorption of the laser energy by the cluster gas medium was high (>85%). However, optical probing at 2 ω showed that the laser energy was predominantly absorbed at the edge of the gas volume where the energy absorbed per unit length rapidly changed over a scale length of 2mm launching a radiative, elliptical blast wave.

  5. Enhanced x-ray emissions from Au-Gd mixture targets ablated by a high-power nanosecond laser

    SciTech Connect

    Dong, Yunsong; Shang, Wanli; Yang, Jiamin Zhang, Lu; Zhang, Wenhai; Li, Zhichao; Guo, Liang; Zhan, Xiayu; Du, Huabing; Deng, Bo; Pu, Yikang

    2014-01-28

    As an important x-ray source, enhancement of x-ray emissions from laser-produced plasmas is imperative for various applications. High-Z Au-Gd mixture targets are proposed to enhance the laser to x-ray conversion efficiency compared to pure Au target. In the experiments, a 1 ns frequency-tripled (351 nm wavelength) laser light was used to obtain an intensity of 3×10{sup 14} W/cm{sup 2} on the targets. The x-ray spectra, total absolute x-ray emissions of all space, M-band fraction and backscattering from pure Au and Au-Gd mixture have been measured, respectively. It is shown that the absolute laser to x-ray conversion efficiency for the Au-Gd mixture containing 60% gold by atom is 47.7%, which has a 15% enhancement compared with that of the pure Au target. The experimental results are consistent with the radiation hydrodynamic simulations.

  6. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-01-01

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  7. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-01-01

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge. PMID:24786694

  8. Nonlinear delayed symmetry breaking in a solid excited by hard x-ray free electron laser pulses

    SciTech Connect

    Ferrer, A.; Johnson, J. A. Mariager, S. O.; Grübel, S.; Staub, U.; Huber, T.; Trant, M.; Johnson, S. L.; Zhu, D.; Chollet, M.; Robinson, J.; Lemke, H. T.; Ingold, G.; Beaud, P.; Milne, C.

    2015-04-13

    We have studied the ultrafast changes of electronic states in bulk ZnO upon intense hard x-ray excitation from a free electron laser. By monitoring the transient anisotropy induced in an optical probe beam, we observe a delayed breaking of the initial c-plane symmetry of the crystal that lasts for several picoseconds. Interaction with the intense x-ray pulses modifies the electronic state filling in a manner inconsistent with a simple increase in electronic temperature. These results may indicate a way to use intense ultrashort x-ray pulses to investigate high-energy carrier dynamics and to control certain properties of solid-state materials.

  9. Imaging the heterogeneity of mineral surface reactivity using Ag(I) and synchrotron X-ray microscopy

    SciTech Connect

    Amonette, James E.; Heald, Steve M.; Russell, Colleen K.

    2003-10-01

    Microscopic-scale imaging of reduced zones on the surfaces of minerals can be achieved by reaction with dilute Ag(I) solutions and subsequent analysis using synchrotron X-ray microscopy (XRM) above the Ag K-edge (25.5 keV). The principal reductant is Fe(II), but other reductants such as sulfide may contribute. Reduced zones may exist instrinsically, as in the structure of biotite and augite, or may be generated by reaction with chemical agents such as dithionite or treatment with sulfate-reducing bacteria (SRB). We demonstrate the method on flakes of specular hematite and biotite, as well as on thin sections of different rocks (arfvedsonitic granite, oolitic hematite, diabase, and quartz conglomerate) treated with SRB, and discuss possible artifacts that can occur. To our knowledge, this is the only microscopic technique that can image Fe(II) zones on the surface of an Fe-bearing mineral with monolayer sensitivity.

  10. Single-molecule imaging with longer X-ray laser pulses

    PubMed Central

    Martin, Andrew V.; Corso, Justine K.; Caleman, Carl; Timneanu, Nicusor; Quiney, Harry M.

    2015-01-01

    During the last five years, serial femtosecond crystallography using X-ray laser pulses has been developed into a powerful technique for determining the atomic structures of protein molecules from micrometre- and sub-micrometre-sized crystals. One of the key reasons for this success is the ‘self-gating’ pulse effect, whereby the X-ray laser pulses do not need to outrun all radiation damage processes. Instead, X-ray-induced damage terminates the Bragg diffraction prior to the pulse completing its passage through the sample, as if the Bragg diffraction were generated by a shorter pulse of equal intensity. As a result, serial femtosecond crystallography does not need to be performed with pulses as short as 5–10 fs, but can succeed for pulses 50–100 fs in duration. It is shown here that a similar gating effect applies to single-molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of the average structure separately to the diffraction from statistical fluctuations of the structure due to damage (‘damage noise’). The results suggest that sub-nanometre single-molecule imaging with 30–50 fs pulses, like those produced at currently operating facilities, should not yet be ruled out. The theory presented opens up new experimental avenues to measure the impact of damage on single-particle diffraction, which is needed to test damage models and to identify optimal imaging conditions. PMID:26594374

  11. Saturable absorption of an x-ray free-electron-laser heated solid-density aluminum plasma.

    PubMed

    Rackstraw, D S; Ciricosta, O; Vinko, S M; Barbrel, B; Burian, T; Chalupský, J; Cho, B I; Chung, H-K; Dakovski, G L; Engelhorn, K; Hájková, V; Heimann, P; Holmes, M; Juha, L; Krzywinski, J; Lee, R W; Toleikis, S; Turner, J J; Zastrau, U; Wark, J S

    2015-01-01

    High-intensity x-ray pulses from an x-ray free-electron laser are used to heat and probe a solid-density aluminum sample. The photon-energy-dependent transmission of the heating beam is studied through the use of a photodiode. Saturable absorption is observed, with the resulting transmission differing significantly from the cold case, in good agreement with atomic-kinetics simulations.

  12. Resonant Auger Decay of Molecules in Intense X-Ray Laser Fields: Light-Induced Strong Nonadiabatic Effects

    SciTech Connect

    Cederbaum, Lorenz S.; Chiang, Ying-Chih; Demekhin, Philipp V.; Moiseyev, Nimrod

    2011-03-25

    The resonant Auger process is studied in intense x-ray laser fields. It is shown that the dressing of the initial and decaying states by the field leads to coupled complex potential surfaces which, even for diatomic molecules, possess intersections at which the nonadiabatic couplings are singular. HCl is studied as an explicit showcase example. The exact results differ qualitatively from those without rotations. A wealth of nonadiabatic phenomena is expected in decay processes in intense x-ray fields.

  13. Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) for application in science and technology

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Wachulak, Przemysław; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Mirosław; Adjei, Daniel; Ahad, Inam Ul; Ayele, Mesfin G.; Fok, Tomasz; Szczurek, Anna; Torrisi, Alfio; Wegrzyński, Łukasz; Fiedorowicz, Henryk

    2015-05-01

    Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) developed in our laboratory for application in various areas of technology and science are presented. The sources are based on a laser-irradiated gas puff target approach. The targets formed by pulsed injection of gas under high-pressure are irradiated with nanosecond laser pulses from Nd:YAG lasers. We use commercial lasers generating pulses with time duration from 1ns to 10ns and energies from 0.5J to 10J at 10Hz repetition rate. The gas puff targets are produced using a double valve system equipped with a special nozzle to form a double-stream gas puff target which secures high conversion efficiency without degradation of the nozzle. The use of a gas puff target instead of a solid target makes generation of laser plasmas emitting soft x-rays and EUV possible without target debris production. The sources are equipped with various optical systems, including grazing incidence axisymmetric ellipsoidal mirrors, a "lobster eye" type grazing incidence multi-foil mirror, and an ellipsoidal mirror with Mo/Si multilayer coating, to collect soft x-ray and EUV radiation and form the radiation beams. In this paper new applications of these sources in various fields, including soft x-ray and EUV imaging in nanoscale, EUV radiography and tomography, EUV materials processing and modification of polymer surfaces, EUV photoionization of gases, radiobiology and soft x-ray contact microscopy are reviewed.

  14. Proposed Laser-driven, Dielectric Microstructure Few-cm Long Undulator for Attosecond Coherent X-rays

    SciTech Connect

    Plettner, T; Byer, R.L.; /Stanford U., Ginzton Lab.

    2011-09-16

    This article presents the concept of an all-dielectric laser-driven undulator for the generation of coherent X-rays. The proposed laser-driven undulator is expected to produce internal deflection forces equivalent to a several-Tesla magnetic field acting on a speed-of-light particle. The key idea for this laser-driven undulator is its ability to provide phase synchronicity between the deflection force and the electron beam for a distance that is much greater than the laser wavelength. The potential advantage of this undulator is illustrated with a possible design example that assumes a small laser accelerator which delivers a 2 GeV, 1 pC, 1 kHz electron bunch train to a 10 cm long, 1/2 mm period laser-driven undulator. Such an undulator could produce coherent X-ray pulses with {approx}10{sup 9} photons of 64 keV energy. The numerical modeling for the expected X-ray pulse shape was performed with GENESIS, which predicts X-ray pulse durations in the few-attosecond range. Possible applications for nonlinear electromagnetic effects from these X-ray pulses are briefly discussed.

  15. Imaging X-ray crystal spectrometer for laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Gamboa, E. J.; Montgomery, D. S.; Hall, I. M.; Drake, R. P.

    2011-04-01

    X-ray Thomson scattering (XRTS) is a powerful technique for measuring state variables in dense plasmas. In this paper, we report on the development of a one-dimensional imaging spectrometer for use in characterizing spatially nonuniform, dense plasmas using XRTS. Diffraction of scattered x-rays from a toroidally curved crystal images along a one-dimensional spatial profile while simultaneously spectrally resolving along the other. An imaging spectrometer was fielded at the Trident laser at Los Alamos National Laboratory, yielding a FWHM spatial resolution of < 25 μm, spectral resolution of 4 eV, spectral range of 350 eV, and spatial range of > 3 mm. A geometrical analysis is performed yielding a simple analytical expression for the throughput of the imaging spectrometer scheme. The SHADOW code is used to perform a ray tracing analysis on the spectrometer fielded at the Trident Laser Facility understand the alignment tolerances on the spatial and spectral resolutions. The analytical expression for the throughput was found to agree well with the results from the ray tracing.

  16. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    PubMed

    Kang, Yanyong; Zhou, X Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Ke, Jiyuan; Tan, M H Eileen; Zhang, Chenghai; Moeller, Arne; West, Graham M; Pascal, Bruce D; Van Eps, Ned; Caro, Lydia N; Vishnivetskiy, Sergey A; Lee, Regina J; Suino-Powell, Kelly M; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie E; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P; Katritch, Vsevolod; Gurevich, Vsevolod V; Griffin, Patrick R; Hubbell, Wayne L; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2015-07-30

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.

  17. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    SciTech Connect

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Ke, Jiyuan; Tan, M. H. Eileen; Zhang, Chenghai; Moeller, Arne; West, Graham M.; Pascal, Bruce D.; Van Eps, Ned; Caro, Lydia N.; Vishnivetskiy, Sergey A.; Lee, Regina J.; Suino-Powell, Kelly M.; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A.; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie E.; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S.; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P.; Katritch, Vsevolod; Gurevich, Vsevolod V.; Griffin, Patrick R.; Hubbell, Wayne L.; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2015-07-22

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.

  18. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    DOE PAGES

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; et al

    2015-07-22

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotationmore » between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.« less

  19. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    PubMed Central

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Ke, Jiyuan; Eileen Tan, M. H.; Zhang, Chenghai; Moeller, Arne; West, Graham M.; Pascal, Bruce; Van Eps, Ned; Caro, Lydia N.; Vishnivetskiy, Sergey A.; Lee, Regina J.; Suino-Powell, Kelly M.; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A.; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P.; Katritch, Vsevolod; Gurevich, Vsevolod V.; Griffin, Patrick R.; Hubbell, Wayne L.; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2015-01-01

    G protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signaling to numerous G protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly, in which rhodopsin uses distinct structural elements, including TM7 and Helix 8 to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotation between the N- and C- domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signaling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology. PMID:26200343

  20. Laser/x-ray coupling in the first NIF beryllium implosions

    NASA Astrophysics Data System (ADS)

    Wilson, D. C.; Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Kyrala, G. A.; Perry, T. S.; Batha, S.; Callahan, D. A.; Dewald, E. L.; Jones, O.; Hinkel, D. E.; Hurricane, O. A.; Izumi, N.; Macphee, A. G.; Milovich, J. L.; Ralph, J. E.; Rygg, J. R.; Schneider, M. B.; Strozzi, D. J.; Thomas, C. A.; Tommasini, R.

    2015-11-01

    The x-ray flux driving a capsule is currently overestimated in standard Hydra high-flux model (Rosen et al., HEDP 7,180 (2011)) calculations of gas-filled hohlraums. Jones et al. (Phys. Plasmas,19,056315 (2012)) introduced time dependent multipliers to reduce the laser drive and achieve an appropriate radiation drive on NIF capsules. Using shock velocities from VISAR capsule experiments, symmetry capsule implosion times with truncated laser pulses, and time dependent DANTE X-ray flux measurements from 1D and 2D convergent ablator implosions, we derived a set of time dependent flux multipliers for the first NIF cryogenically layered beryllium capsule implosion. The similarity between these multipliers for both plastic and beryllium capsules suggests that they are primarily correcting for improper modeling of the hohlraum physics, with possibly some residual contribution from capsule modeling deficiencies. Using Lasnex we have adjusted hohlraum physics and resolution in an attempt to model these implosions without drive multipliers. This work was funded by the US Department of Energy.