Isomorphism and solid solutions among Ag- and Au-selenides
NASA Astrophysics Data System (ADS)
Palyanova, Galina A.; Seryotkin, Yurii V.; Kokh, Konstantin A.; Bakakin, Vladimir V.
2016-09-01
Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag2-xAuxSe with a step of х=0.25 (0≤х≤2) to 1050 °С and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag2Se - Ag1.94Au0.06Se, fischesserite Ag3AuSe2 - Ag3.2Au0.8Se2 and gold selenide AuSe - Au0.94Ag0.06Se. Solid solutions and AgAuSe phases were added to the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe.
Isomorphism and solid solutions among Ag- and Au-selenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palyanova, Galina A.; Seryotkin, Yurii V.; Novosibirsk State University
Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag{sub 2−x}Au{sub x}Se with a step of x=0.25 (0≤x≤2) to 1050 °C and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag{sub 2}Se – Ag{sub 1.94}Au{sub 0.06}Se, fischesserite Ag{sub 3}AuSe{sub 2} - Ag{sub 3.2}Au{sub 0.8}Se{sub 2} and gold selenide AuSe - Au{sub 0.94}Ag{sub 0.06}Se. Solid solutions and AgAuSe phases were added tomore » the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe. - Highlights: • Au-Ag selenides were synthesized. • Limited Ag-Au isomorphism in the selenides is affected by structural features. • Some new phases were introduced to the phase diagram Ag-Au-Se.« less
Kinetics of transformation of deformation processed gold-matrix composite
NASA Astrophysics Data System (ADS)
Wongpreedee, Kageeporn
Gold matrix Ḏeformation-processed M&barbelow;etal M&barbelow;etal C&barbelow;omposites (DMMC) have been developed that have better strength and conductivity than conventional gold alloys. However, DMMC possess metastable two-phase microstructures, and their strength and conductivity decrease after prolonged exposure to elevated temperatures. The kinetics of the transformation from the metastable two-phase microstructure to the equilibrium single-phase solid solution is of interest. This document describes a study of the elevated temperature stability of Au DMMC's and the relationship between microstructure and resistivity of three compositions: Au-7 vol %Ag, Au-14 vol %Ag, and Au-vol 7%Pt. DMMC samples were prepared by a powder metallurgy technique and mechanical processes. The smallest final diameter of these wires was 120 mum. Avrami and Arrhenius relations were used to evaluate the kinetic transformation. The extensive deformation used to produce these composites reshaped the initially equi-axed powder particles into a nanofilamentary composite. Electrical resistivity measurements were used to determine the degree of transformation from the initial metastable nano-filamentary composite to the equilibrium solid solution condition. These measurements indicated that this transformation in Au-14 at%Ag, Au-7 at %Ag Au and Au-7 at %Pt DMMC wires proceeded with activation energies of 141, 156, and 167 kJ/mol, respectively. It is thought that these empirically determined activation energies differ from those determined in single crystal, planar interface Au-Ag and Au-Pt diffusion couples due to chemical potential, surface curvature, and strain effects. The DMMC systems reach the equilibrium solid solution condition faster than single crystal, planar interface systems for two reasons: (1) far more defects (dislocations, grain boundaries, vacancies from non-conservative dislocation motion, etc.) are present in the Au-Ag and Au-Pt DMMC composites, and (2) the small radius of curvature of the Ag and Pt filaments increases the chemical potential for diffusion in the DMMC.
Jiang, Xiaochun; Chen, Kun; Wang, Jing; Shao, Kang; Fu, Tao; Shao, Feng; Lu, Donglian; Liang, Jiangong; Foda, M Frahat; Han, Heyou
2013-06-21
A new electrochemical immunosensor based on solid-state voltammetry was fabricated for the detection of Escherichia coli (E. coli) by using graphene oxide-Ag nanoparticle composites (P-GO-Ag) as labels. To construct the platform, Au nanoparticles (AuNPs) were first self-assembled on an Au electrode surface through cysteamine and served as an effective matrix for antibody (Ab) attachment. Under a sandwich-type immunoassay format, the analyte and the probe (P-GO-Ag-Ab) were successively captured onto the immunosensor. Finally, the bonded AgNPs were detected through a solid-state redox process in 0.2 M of KCl solution. Combining the advantages of the high-loading capability of graphene oxide with promoted electron-transfer rate of AuNPs, this immunosensor produced a 26.92-fold signal enhancement compared with the unamplified protocol. Under the optimal conditions, the immunosensor exhibited a wide linear dependence on the logarithm of the concentration of E. coli ranging from 50 to 1.0 × 10(6) cfu mL(-1) with a detection limit of 10 cfu mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor E. coli in lake water with satisfactory results.
NASA Astrophysics Data System (ADS)
Xu, Dapeng; Zhang, Song; Yang, Wei; Chen, Jian
2017-10-01
Centimeter level AgCuAu composite nanowires were prepared by a solid-state ionics method under a direct current electric field (DCEF) using fast ionic conductor RbAg4I5 films and vacuum thermal evaporation method. The surface morphology and chemical composition of the AuAgCu composite nanowires were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), respectively. Raman enhancement performance of the AgCuAu composite nanowires substrates was detected by Rhodamine 6G (R6G) aqueous solutions as probe molecules. Long-range order and short-range order AgCuAu composite nanowires with the length of 1 cm were prepared. The nanowires were bamboo-shaped with high surface roughness and the diameters of nanowires ranged from 60 to 100 nm. The molar ratio of Ag:Cu:Au in composite nanowires is 15:2:1. The intrinsic Raman peaks of 10-16 mol/L R6G at 612, 773, 1125, 1182, 1307, 1361, 1418, 1506, 1545, 1575, 1597, 1650 cm-1 are all present when AgCuAu composite nanowires were used as the SERS substrates.
Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores
NASA Astrophysics Data System (ADS)
Spiridonov, E. M.; Kulagov, E. A.; Serova, A. A.; Kulikova, I. M.; Korotaeva, N. N.; Sereda, E. V.; Tushentsova, I. N.; Belyakov, S. N.; Zhukov, N. N.
2015-09-01
The undeformed ore-bearing intrusions of the Noril'sk ore field (NOF) cut through volcanic rocks of the Late Permian-Early Triassic trap association folded in brachysynclines. Due to the nonuniform load on the roof of intrusive bodies, most sulfide melts were squeezed, up to the tops of ore-bearing intrusions; readily fusible Ni-Fe-Cu sulfide melts were almost completely squeezed. In our opinion, not only one but two stages of mineralization developed at the Noril'sk deposits: (i) syntrap magmatic and (ii) epigenetic post-trap metamorphic-hydrothermal. All platinum-group minerals (PGM) and minerals of gold are metasomatic in the Noril'sk ores. They replaced sulfide solid solutions and exsolution structures. All types of PGM and Au minerals occur in the ores, varying in composition from pyrrhotite to chalcopyrite, talnakhite, mooihoekite, and rich in galena; they are localized in the inner and outer contact zones and differ only in the quantitative proportions of ore minerals. The aureoles of PGM and Au-Ag minerals are wider than the contours of sulfide bodies and coincide with halos of fluid impact on orebodies and adjacent host rocks. The pneumatolytic PGM and Au-Ag minerals are correlated in abundance with the dimensions of sulfide bodies. Their amounts are maximal in veins of late fusible ore composed of eutectic PbS ss and iss intergrowths, as well as at their contacts. The Pd and Pt contents in eutectic sulfide ores of NOF are the world's highest. In the process of noble-metal mineral formation, the fluids supply Pd, Pt, Au, As, Sb, Sn, Bi, and a part of Te, whereas Fe, Ni, Cu, Pb, Ag, Rh, a part of Te and Pd are leached from the replaced sulfide minerals. The pneumatolytic PGM of the early stage comprises Pd and Pt intermetallic compounds enriched in Au along with Pd-Pt-Fe-Ni-Cu-Sn-Pb(As) and (Pd,Pt,Au)(Sn,Sb,Bi,Te,As) solid solutions. Pneumatolytic PGM and Au minerals of the middle stage are products of solid-phase transformation and recrystallization of early PGM in combination with the newly formed mineral species Sb-paolovite-insizwaite-geversite-maslovite, niggliite, tetraferroplatinum, rustenburgite-atokite-zvyagintsevite, moncheite, majakite, plumbopalladinite, polarite in association with altaite. The late minerals of the middle stage include stannopalladinite, tatianaite-taimyrite, Ag-Pd-Pt tetraauricupride, and cuproauride. PGM and Au-Ag minerals of the late stage are represented by sobolevskite-sudburyite-kotulskite, maslovite-michenerite, low-Sb paolovite, hessite, cabriite, Au-Ag minerals with fineness of 870-003, froodite, Sb-free insizwaite, Bi-free geversite, and Sb-free niggliite. Electrum and küstelite in PGM aggregates are not zoned. Crystals of Au-Ag minerals that grow over PGM minerals are smoothly zoned. Their zoning may be direct (crystal margins are enriched in Ag), inverse, oscillatory, and complex. Despite favorable annealing conditions, exsolution structures are not identified in Au-Ag minerals from the Noril'sk ores. Sperrylite—the latest of pneumatolytic PGM—occurs as metacrysts up to 14 cm in size. Sperrylite, which replaces high-Sb minerals, contains up to 11 wt % Sb. Pneumatolytic noble-metal minerals originated under the effect of the fluids released during crystallization of sulfide melts in an extremely reductive setting and at extremely low fS2; temperature drops from ~450 to ~350°C. Metamorphic-hydrothermal Ag mineralization (native silver, Hg-silver, sulfides and selenides, chalcopyrite-lenaite solid solutions, argentopentlandite), Pd mineralization (vysotskite, palladoarsenide, vincentite, Sb-free Ag-paolovite, malyshevite, native palladium), and Pt mineralization (kharaelakhite, cooperite, native platinum) develop in those parts of orebodies that are affected by low-grade metamorphism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Loughlin, E. J.; Kelly, S. D.; Kemner, K. M.
Green rusts are mixed Fe{sup II}/Fe{sup III} hydroxides that are found in many suboxic environments where they are believed to play a central role in the biogeochemical cycling of iron. X-ray absorption fine structure analysis of hydroxysulfate green rust suspensions spiked with aqueous solutions of AgCH{sub 3}COO, AuCl{sub n}(OH){sub 4-n}, CuCl{sub 2}, or HgCl{sub 2} showed that Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} were readily reduced to Ag{sup 0}, Au{sup 0}, Cu{sup 0}, and Hg{sup 0}. Imaging of the resulting solids from the Ag{sup I}-, Au{sup III}-, and Cu{sup II}-amended green rust suspensions by transmission electron microscopymore » indicated the formation of submicron-sized particles of Ag{sup 0}, Au{sup 0}, and Cu{sup 0}. The facile reduction of Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} to Ag{sup 0}, Au{sup 0}, Cu{sup 0}, and Hg{sup 0}, respectively, by green rust suggests that the presence of green rusts in suboxic soils and sediments can have a significant impact on the biogeochemistry of silver, gold, copper, and mercury, particularly with respect to their mobility.« less
Dzimitrowicz, Anna; Jamroz, Piotr; Nyk, Marcin; Pohl, Pawel
2016-04-06
A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO₃ solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system.
Dzimitrowicz, Anna; Jamroz, Piotr; Nyk, Marcin; Pohl, Pawel
2016-01-01
A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO3 solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system. PMID:28773393
XPS and Ag L3-edge XANES characterization of silver and silver-gold sulfoselenides
NASA Astrophysics Data System (ADS)
Mikhlin, Yuri L.; Pal'yanova, Galina A.; Tomashevich, Yevgeny V.; Vishnyakova, Elena A.; Vorobyev, Sergey A.; Kokh, Konstantin A.
2018-05-01
Gold and silver sulfoselenides are of interest as materials with high ionic conductivity and promising magnetoresistive, thermoelectric, optical, and other physico-chemical properties, which are strongly dependent on composition and structure. Here, we applied X-ray photoelectron spectroscopy and Ag L3 X-ray absorption near-edge structure (XANES) to study the electronic structures of low-temperature compounds and solid solutions Ag2SxSe1-x (0 < x < 1), AgAuS, and Ag3AuSxSe2-x (x = 0, 1, 2). Upon substitution of Se with S, a steady increase in the positive charge at Ag(I) sites and only minor changes in the local charge at chalcogen atoms were found from the photoelectron Ag 3d, S 2p, Se 3d, and Ag M4,5VV Auger spectra. The intensity of the Ag L3-edge peak, which is known to correlate with hole counts in the Ag 4d shell having a formal d10 configuration, was enhanced by 20-25% from Ag2Se to Ag2S and from Ag3AuSe2 to Ag3AuS2. The effect of gold is more pronounced, and the number of Ag d holes and the negative charge of S and Se notably decreased for Au-containing compounds; in particular, the Ag L3-edge peak is about 35% lower for AgAuS relative to Ag2S. At the same time, the Au 4f binding energy and, therefore, charge at Au(I) sites increase with increasing S content due to the transfer of electron density from Au to Ag atoms. It was concluded that the effects mainly originate from shortening of the metal-chalcogen and especially the Ausbnd Ag interatomic distances in substances having similar coordination geometry.
Coinage metal complexes of 2-diphenylphosphino-3-methylindole.
Koshevoy, Igor O; Shakirova, Julia R; Melnikov, Alexei S; Haukka, Matti; Tunik, Sergey P; Pakkanen, Tapani A
2011-08-21
Coordination of P,N indolyl-phosphine ligands to Au(I), Ag(I) and Cu(I) metal ions under weakly basic conditions results in easy deprotonation of the indolyl N-H function and effective formation of a family of homo- and heterobimetallic complexes MM'(PPh(2)C(9)H(7)N)(2) (M = M' = Au (2), Ag (5); M = Au, M' = Cu (3), Ag (4)). The latter (4) exists as an inseparable mixture of four different complexes, which are in equilibrium driven by slow dynamics. The reaction of silver(I) and copper(I) ions with PPh(2)(C(9)H(8)N) affords a rare tetranuclear Z-shaped cluster Ag(2)Cu(2)(PPh(2)C(9)H(7)N)(4) (6), which exhibits red luminescence in solid state (650 nm) and a weak dual emission in solution with the main component in the near-IR region (746 nm). This journal is © The Royal Society of Chemistry 2011
Silver flip chip interconnect technology and solid state bonding
NASA Astrophysics Data System (ADS)
Sha, Chu-Hsuan
In this dissertation, fluxless transient liquid phase (TLP) bonding and solid state bonding between thermal expansion mismatch materials have been developed using Ag-In binary systems, pure Au, Ag, and Cu-Ag composite. In contrast to the conventional soldering process, fluxless bonding technique eliminates any corrosion and contamination problems caused by flux. Without flux, it is possible to fabricate high quality joints in large bonding areas where the flux is difficult to clean entirely. High quality joints are crucial to bonding thermal expansion mismatch materials since shear stress develops in the bonded pair. Stress concentration at voids in joints could increases breakage probability. In addition, intermetallic compound (IMC) formation between solder and underbump metallurgy (UBM) is essential for interconnect joint formation in conventional soldering process. However, the interface between IMC and solder is shown to be the weak interface that tends to break first during thermal cycling and drop tests. In our solid state bonding technique, there is no IMC involved in the bonding between Au to Au, Ag and Cu, and Ag and Au. All the reliability issues related to IMC or IMC growth is not our concern. To sum up, ductile bonding media, such as Ag or Au, and proper metallic layered structure are utilized in this research to produce high quality joints. The research starts with developing a low temperature fluxless bonding process using electroplated Ag/In/Ag multilayer structures between Si chip and 304 stainless steel (304SS) substrate. Because the outer thin Ag layer effectively protects inner In layer from oxidation, In layer dissolves Ag layer and joints to Ag layer on the to-be-bonded Si chip when temperature reaches the reflow temperature of 166ºC. Joints consist of mainly Ag-rich Ag-In solid solution and Ag2In. Using this fluxless bonding technique, two 304SS substrates can be bonded together as well. From the high magnification SEM images taken at cross-section, there is no void or gap observed. The new bonding technique presented should be valuable in packaging high power electronic devices for high temperature operations. It should also be useful to bond two 304SS parts together at low bonding temperature of 190ºC. Solid state bonding technique is then introduced to bond semiconductor chips, such as Si, to common substrates, such as Cu or alumina, using pure Ag and Au at a temperature matching the typical reflow temperature used in packaging industries, 260°C. In bonding, we realize the possibilities of solid state bonding of Au to Au, Au to Ag, and Ag to Cu. The idea comes from that Cu, Ag, and Au are located in the same column on periodic table, meaning that they have similar electronic configuration. They therefore have a better chance to share electrons. Also, the crystal lattice of Cu, Ag, and Au is the same, face-centered cubic. In the project, the detailed bonding mechanism is beyond the scope and here we determine the bonding by the experimental result. Ag is chosen as the joint material because of its superior physical properties. It has the highest electrical and thermal conductivities among all metals. It has low yield strength and is relatively ductile. Au is considered as well because its excellent ductility and fatigue resistance. Thus, the Ag or Au joints can deform to accommodate the shear strain caused by CTE mismatch between Si and Cu. Ag and Au have melting temperatures higher than 950°C, so the pure Ag or Au joints are expected to sustain in high operating temperature. The resulting joints do not contain any intermetallic compound. Thus, all reliability issues associated with intermetallic growth in commonly used solder joints do not exist anymore. We finally move to the applications of solid state Ag bonding in flip chip interconnects design. At present, nearly all large-scale integrated circuit (IC) chips are packaged with flip-chip technology. This means that the chip is flipped over and the active (front) side is connected to the package using a large number of tiny solder joints, which provide mechanical support, electrical connection, and heat conduction. For chip-to-package level interconnects, a challenge is the severe mismatch in coefficient of thermal expansion (CTE) between chips and package substrates. The interconnect material thus needs to be compliant to deal with the CTE mismatch. At present, nearly all flip-chip interconnects in electronic industries are made of lead-free Sn-based solders. Soft solders are chosen due to high ductility, low yield strength, relatively low melting temperature, and reasonably good electrical and thermal conductivities. In the never ending scaling down trend, more and more transistors are placed on the same Si chip size. This results in larger pin-out numbers and smaller solder joints. According to International Technology Roadmap for Semiconductors (ITRS), by 2018, the pitch in flip-chip interconnects will become smaller than 70mum for high performance applications. Two problems occur. The first is increase in shear strain. The aspect ratio of flip-chip joints is constrained to 0.7 because it goes through molten phase in the reflow process. Therefore, smaller joints become shorter as well, resulting in larger shear strain arising from CTE mismatch between Si chips and package substrates. The second is increase in stress in the joints. Since intermetallic (IMC) thickness in the joint does not scale down with joint size, ratio of IMC thickness to joint height increases. This further enlarges the shear stress because the IMC does not deform as the soft solder does to accommodate CTE mismatch. In this research, the smallest dimension we achieve for Ag flip chip interconnect joint is 15mum in diameter. The ten advantages of Ag flip chip interconnect technology can be identified as (a) High electrical conductivity, 7.7 times of that of Pb-free solders, (b) High thermal conductivity, 5.2 times of that of Pb-free solders, (c) Completely fluxless, (d) No IMCs; all reliability issues associated with IMC and IMC growth do not exist, (e) Ag is very ductile and can manage CTE mismatch between chips and packages, (f) Ag joints can sustain at very high operation temperature because Ag has high melting temperature of 961°C, (g) No molten phase involved; the bump can better keep its shape and geometry, (h) No molten phase involved; bridging of adjacent bumps is less likely to occur, i. Aspect ratio of bumps can be made greater than 1, (j) The size of the bumps is only limited by the lithographic process. Cu-Ag composite flip chip interconnect joints is developed based on three reasons. The first is lower material cost. The second is to strengthen the columns because the yield strength of Cu is 6 times of that of Ag. The third is to avoid possible Ag migration between Ag electrodes under voltage at temperatures above 250°C. This Cu-Ag composite design presents a solution in the path to the scale down roadmap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru; Markova, Tat’jana, E-mail: patriot-rf@mail.ru
2016-01-15
The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.
Nanoporous Au structures by dealloying Au/Ag thermal- or laser-dewetted bilayers on surfaces
NASA Astrophysics Data System (ADS)
Ruffino, F.; Torrisi, V.; Grillo, R.; Cacciato, G.; Zimbone, M.; Piccitto, G.; Grimaldi, M. G.
2017-03-01
Nanoporous Au attracts great technological interest and it is a promising candidate for optical and electrochemical sensors. In addition to nanoporous Au leafs and films, recently, interest was focused on nanoporous Au micro- and nano-structures on surfaces. In this work we report on the study of the characteristics of nanoporous Au structures produced on surfaces. We developed the following procedures to fabricate the nanoporous Au structures: we deposited thin Au/Ag bilayers on SiO2 or FTO (fluorine-doped tin oxide) substrates with thickness xAu and xAg of the Au and Ag layers; we induced the alloying and dewetting processes of the bilayers by furnace annealing processes of the bilayers deposited on SiO2 and by laser irradiations of the bilayers deposited on FTO; the alloying and dewetting processes result in the formation of AuxAgy alloy sub-micron particles being x and y tunable by xAu and xAg. These particles are dealloyed in HNO3 solution to remove the Ag atoms. We obtain, so, nanoporous sub-micron Au particles on the substrates. Analyzing the characteristics of these particles we find that: a) the size and shape of the particles depend on the nature of the dewetting process (solid-state dewetting on SiO2, molten-state dewetting on FTO); b) the porosity fraction of the particles depends on how the alloying process is reached: about 32% of porosity for the particles fabricated by the furnace annealing at 900 °C, about 45% of porosity for the particles fabricated by the laser irradiation at 0.5 J/cm2, in both cases independently on the Ag concentration in the alloy; c) After the dealloying process the mean volume of the Au particles shrinks of about 39%; d) After an annealing at 400 °C the nanoporous Au particles reprise their initial volume while the porosity fraction is reduced. Arguments to justify these behaviors are presented.
A general soft-enveloping strategy in the templating synthesis of mesoporous metal nanostructures.
Fang, Jixiang; Zhang, Lingling; Li, Jiang; Lu, Lu; Ma, Chuansheng; Cheng, Shaodong; Li, Zhiyuan; Xiong, Qihua; You, Hongjun
2018-02-06
Metal species have a relatively high mobility inside mesoporous silica; thus, it is difficult to introduce the metal precursors into silica mesopores and suppress the migration of metal species during a reduction process. Therefore, until now, the controlled growth of metal nanocrystals in a confined space, i.e., mesoporous channels, has been very challenging. Here, by using a soft-enveloping reaction at the interfaces of the solid, liquid, and solution phases, we successfully control the growth of metallic nanocrystals inside a mesoporous silica template. Diverse monodispersed nanostructures with well-defined sizes and shapes, including Ag nanowires, 3D mesoporous Au, AuAg alloys, Pt networks, and Au nanoparticle superlattices are successfully obtained. The 3D mesoporous AuAg networks exhibit enhanced catalytic activities in an electrochemical methanol oxidation reaction. The current soft-enveloping synthetic strategy offers a robust approach to synthesize diverse mesoporous metal nanostructures that can be utilized in catalysis, optics, and biomedicine applications.
NASA Astrophysics Data System (ADS)
Bhukta, Anjan; Bagarti, Trilochan; Guha, Puspendu; Ravulapalli, Sathyavathi; Satpati, Biswarup; Rakshit, Bipul; Maiti, Paramita; Parlapalli, Venkata Satyam
2017-10-01
The reconstructed vicinal (high index) silicon surfaces, such as, Si (5 5 12) composes row-like structures that can be used as templates for growing aligned nanowires. By using a sub-monolayers of Ag, prior to Au deposition on reconstructed Si (5 512) surface, intermixing of Au and Ag, enhancement of aspect ratio of bimetallic Au-Ag nanowires with tunable morphology is reported. This is attributed to a combined effect of pre-grown Ag strips as nucleation centers for incoming Au ad-atoms and anisotropic Au-Ag intermixing. To achieve optimum conditions for the growth of larger aspect ratio Au-Ag nanostructures, the growth kinetics have been studied by varying growth and annealing temperatures. At ≈400 °C, the Ag diffused into silicon substrate and the inter-diffusion found to inhibit the formation of Au-Ag bimetallic nanostructures. Controlled experiments under ultra-high vacuum condition in a molecular beam epitaxy system and in-situ scanning tunneling microscopy measurements along with ex-situ scanning transmission and secondary electron microscopy measurements have been carried out to understand the bimetallic nanostructure growth. Kinetic Monte Carlo (KMC) simulations based on kinematics of ad-atoms on an anisotropic template with a solid on solid model in which the relative ratios of binding energies (that are obtained from the Density Functional Theory) have been used and the KMC simulations results agree with the experimental observations. Advantage of having bimetallic structures as effective substrates for Surface enhanced Raman spectroscopy application is demonstrated by detecting Rhodamine 6 G (R6G) molecule at the concentration of 10-7M.
Biosynthesis and stabilization of Au and Au Ag alloy nanoparticles by fungus, Fusarium semitectum
NASA Astrophysics Data System (ADS)
Dasaratrao Sawle, Balaji; Salimath, Basavaraja; Deshpande, Raghunandan; Dhondojirao Bedre, Mahesh; Krishnamurthy Prabhakar, Belawadi; Venkataraman, Abbaraju
2008-09-01
Crystallized and spherical-shaped Au and Au-Ag alloy nanoparticles have been synthesized and stabilized using a fungus, F . semitectum in an aqueous system. Aqueous solutions of chloroaurate ions for Au and chloroaurate and Ag+ ions (1 : 1 ratio) for Au-Ag alloy were treated with an extracellular filtrate of F . semitectum biomass for the formation of Au nanoparticles (AuNP) and Au-Ag alloy nanoparticles (Au-AgNP). Analysis of the feasibility of the biosynthesized nanoparticles and core-shell alloy nanoparticles from fungal strains is particularly significant. The resultant colloidal suspensions are highly stable for many weeks. The obtained Au and Au-Ag alloy nanoparticles were characterized by the surface plasmon resonance (SPR) peaks using a UV-vis spectrophotometer, and the structure, morphology and size were determined by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Possible optoelectronics and medical applications of these nanoparticles are envisaged.
NASA Astrophysics Data System (ADS)
Wang, Jingyun; Zhang, Lei; Huang, Youju; Dandapat, Anirban; Dai, Liwei; Zhang, Ganggang; Lu, Xuefei; Zhang, Jiawei; Lai, Weihua; Chen, Tao
2017-01-01
The probe materials play a significant role in improving the detection efficiency and sensitivity of lateral-flow immunochromatographic test strip (ICTS). Unlike conventional ICTS assay usually uses single-component, solid gold nanoparticles as labeled probes, in our present study, a bimetallic, hollow Au-Ag nanoparticles (NPs) labeled ICTS was successfully developed for the detection of clenbuterol (CLE). The hollow Au-Ag NPs with different Au/Ag mole ratio and tunable size were synthesized by varying the volume ratio of [HAuCl4]:[Ag NPs] via the galvanic replacement reaction. The surface of hollow Ag-Au NPs was functionalized with 11-mercaptoundecanoic acid (MUA) for further covalently bonded with anti-CLE monoclonal antibody. Overall size of the Au-Ag NPs, size of the holes within individual NPs and also Au/Ag mole ratio have been systematically optimized to amplify both the visual inspection signals and the quantitative data. The sensitivity of optimized hollow Au-Ag NPs probes has been achieved even as low as 2 ppb in a short time (within 15 min), which is superior over the detection performance of conventional test strip using Au NPs. The optimized hollow Au-Ag NPs labeled test strip can be used as an ideal candidate for the rapid screening of CLE in food samples.
Corrosion resistance evaluation of Pd-free Ag-Au-Pt-Cu dental alloys.
Fujita, Takeshi; Shiraishi, Takanobu; Takuma, Yasuko; Hisatsune, Kunihiro
2011-01-01
The corrosion resistance of nine experimental Pd-free Ag-Au-Pt-Cu dental alloys in a 0.9% NaCl solution was investigated using cyclic voltammetry (CV), optical microscopy, and scanning electron microscopy (SEM). CV measurements revealed that the breakdown potential (E(bd)) and zero current potential (E(zc)) increased with increasing Au/(Au+Ag) atomic ratio. Thus, the Au/(Au+Ag) atomic ratio, but not the Cu content, influenced the corrosion resistance of Ag-Au-Pt-Cu alloys. After the forward scan of CV, both optical and scanning electron microscope images showed that in all the experimental alloys, the matrix phase was corroded but not the second phase. From corrosion resistance viewpoint, the Ag-Au-Pt-Cu alloys seemed to be suitable for clinical application.
PHOTONICS AND NANOTECHNOLOGY Laser synthesis and modification of composite nanoparticles in liquids
NASA Astrophysics Data System (ADS)
Tarasenko, N. V.; Butsen, A. V.
2010-12-01
The works devoted to the formation and modification of nanoparticles using laser ablation of solid targets in liquids are reviewed. Several approaches to implement laser ablation in liquids, aimed at synthesising nanoparticles of complex composition, are considered: direct laser ablation of a target of corresponding composition, laser ablation of a combined target composed of two different metals, laser irradiation of a mixture of two or more colloidal solutions, and laser ablation in reactive liquids. The properties of two-component bimetallic systems (Ag — Cu, Ag — Au), semiconductor nanocrystals (ZnO, CdSe), chalcopyrite nanoparticles, and doped oxide nanoparticles (ZnO:Ag, Gd2O2:Tb3+) formed as a result of single- and double-pulse laser ablation in different liquids (water, ethanol, acetone, solutions of polysaccharides) are discussed.
NASA Astrophysics Data System (ADS)
Parthiban, P.; Sakar, M.; Balakumar, S.
2013-02-01
We report the evolution of Ag/Au triangular nanoframes from nano core/shell of Ag/Au and their surface enhanced Raman scattering (SERS) properties. The Ag/Au prismatic core/shell nanostructures were synthesized using chemical reduction method. It was observed that, on the addition of excess gold chloride (HAuCl4) solution, the morphology of nano core/shell was changed to alloy like triangular nanoframes. Accordingly, a shift was found towards higher wavelengths in the UV-Visible absorption peaks of Ag/Au nanoframes compare to Ag/Au nano core/shell. Consequently, the SERS effect of these Ag/Au anisotropic nanostructures were studied on methylene blue. The Ag/Au alloy like prismatic nanoframes showed improved SERS effect than that of prismatic core/shell nanostructures. The experimental findings were revealed that the improved SERS effect could be resulted from the enhanced surface plasmon resonance (SPR) due to the alloy like construction of Ag/Au system.
Velmurugan, Palanivel; Lee, Sang-Myeong; Cho, Min; Park, Jung-Hee; Seo, Sang-Ki; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek
2014-10-01
We present a simple, eco-friendly synthesis of silver and gold nanoparticles using a natural polymer pine gum solution as the reducing and capping agent. The pine gum solution was combined with silver nitrate (AgNO3) or a chloroauric acid (HAuCl4) solution to produce silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), respectively. The reaction process was simple; formation of the nanoparticles was achieved by autoclaving the silver and gold ions with the pine gum. UV-Vis spectra showed surface plasmon resonance (SPR) for silver and gold nanoparticles at 432 and 539 nm, respectively. The elemental forms of AgNPs and AuNPs were confirmed by energy-dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FTIR) showed the biomolecules present in the pine gum, AgNPs, and AuNPs. Transmission electron microscopy (TEM) images showed the shape and size of AgNPs and AuNPs. The crystalline nature of synthesized AgNPs and AuNPs was confirmed by X-ray crystallography [X-ray diffraction (XRD)]. Application of synthesized AgNPs onto cotton fabrics and leather, in order to evaluate their antibacterial properties against odor- or skin infection-causing bacteria, is also discussed. Among the four tested bacteria, AgNP-coated cotton fabric and leather samples displayed excellent antibacterial activity against Brevibacterium linens.
NASA Astrophysics Data System (ADS)
Hazarika, Moushumi; Sonowal, Shashanka; Saikia, Indranirekha; Boruah, Purna K.; Das, Manash R.; Tamuly, Chandan
2017-09-01
Au-Ag-In-rGO nanocomposite was synthesized using fruit extract of Zanthoxylum rhetsa which is an eco-friendly, simple and green method. It was characterized by UV-visible, FT-IR, XRD, XPS, EDX, TEM technique. The antioxidant capacity of the nanocomposite was evaluated in presence of AgNO3, HAuCl4 and InCl3 solution respectively at 25 °C. The results showed significant antioxidant activity in presence of 1 × 10-5 mM AgNO3 solution. The antibacterial activity of Au-Ag-In-rGO nanoparticles was carried out against the gram -ve bacteria Pseudomonas aeruginosa, Escherichia coli and gram +ve bacteria Staphylococcus aureus and Bacillus cereus. The bacterial growth kinetics was studied. The bacterial strain E. coli and S. aureus showed complete inhibition at concentration 100 µg ml-1. The activity is more effective in case of Au-Ag-In-rGO compared to GO.
Macaskie, L E; Creamer, N J; Essa, A M M; Brown, N L
2007-03-01
A new approach is described for the recovery of precious metals (PMs: Au, Pd and Ag) with >99% efficiency from aqueous solution utilising biogas produced during the aerobic growth of Klebsiella pneumoniae. Gold was recovered from electronic scrap leachate ( approximately 95%) by this method, with some selectivity against Cu. The recovered PM solids all contained metal and sulphur as determined by energy dispersive X-ray microanalysis (EDX). X-ray powder diffraction analysis (XRD) showed no crystalline metal sulphur compounds but a crystalline palladium amine was recorded. Silver was recovered as a sulphide (found by EDX), carbonate and oxide (found by XRD). EDX analysis of the Au-precipitate showed mainly gold and sulphur, with some metallic Au(0) detected by XRD. The gold compound was shock-sensitive; upon grinding it detonated to leave a sooty black deposit.
Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung
2013-11-08
We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ~56 nm and diameter ~12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.
NASA Astrophysics Data System (ADS)
Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung
2013-11-01
We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.
Azizpoor Fard, M; Rabiee Kenaree, A; Boyle, P D; Ragogna, P J; Gilroy, J B; Corrigan, J F
2016-02-21
Ferrocene-based phosphines constitute an important auxiliary ligand in inorganic chemistry. Utilizing the (ferrocenylethyl)phosphines (FcCH2CH2)3-nHnP (Fc = ferrocenyl; n = 2, 1; n = 1, 2; n = 0, 3) the synthesis of a series of coordination complexes [(FcCH2CH2)3-nHnPCuCl]4 (n = 2, 1-CuCl; n = 0, 3-CuCl), [(FcCH2CH2)2HPCuCl] (2-CuCl), {[(FcCH2CH2)H2P]2AgCl}2 (1-AgCl), [(FcCH2CH2)2HPAgCl] (2-AgCl), [(FcCH2CH2)3PAgCl]4 (3-AgCl), [(FcCH2CH2)3PM(OAc)]4 (M = Cu, 3-CuOAc M = Ag, 3-AgOAc), [(FcCH2CH2)3-nHnPAuCl] (n = 1, 2-AuCl; n = 0, 3-AuCl), via the reaction between the free phosphine and MX (M = Cu, Ag and Au; X = Cl, OAc), is described. The reaction between the respective phosphine with a suspension of metal-chloride or -acetate in a 1 : 1 ratio in THF at ambient temperature affords coordinated phosphine-coinage metal complexes. Varying structural motifs are observed in the solid state, as determined via single crystal X-ray analysis of 1-CuCl, 3-CuCl, 1-AgCl, 3-AgCl, 3-CuOAc, 3-AgOAc, 2-AuCl and 3-AuCl. Complexes 1-CuCl and 3-CuCl are tetrameric Cu(i) cubane-like structures with a Cu4Cl4 core, whereas silver complexes with primary and tertiary phosphine reveal two different structural types. The structure of 1-AgCl, unlike the rest, displays the coordination of two phosphines to each silver atom and shows a quadrangle defined by two Ag and two Cl atoms. In contrast, 3-AgCl is distorted from a cubane structure via elongation of one of the ClAg distances. 3-CuOAc and 3-AgOAc are isostructural with step-like cores, while complexes 2-AuCl and 3-AuCl reveal a linear geometry of a phosphine gold(i) chloride devoid of any aurophilic interactions. All of the complexes were characterized in solution by multinuclear (1)H, (13)C{(1)H} and (31)P NMR spectroscopic techniques; the redox chemistry of the series of complexes was examined using cyclic voltammetry. This class of complexes has been found to exhibit one reversible Fe(ii)/Fe(iii) oxidation couple, suggesting the absence of electronic communication between the ferrocenyl units on individual phosphine ligands as well as between different phosphines on the polymetallic cores.
Metal nanoparticles of Ag, Au, Pt, and Pd were prepared in aqueous solutions via a rapid microwave-assisted green method using beet juice, an abundant sugar-rich agricultural produce, served as both a reducing and a capping reagent. The Ag nanoparticles with capping prepared by b...
Shankara Narayanan, Jeyaraman; Bhuvana, Mohanlal; Dharuman, Venkataraman
2014-08-15
Cationic N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium propane (DOTAP) liposome is spherically sandwiched in gold nanoparticle (abbreviated as sDOTAP-AuNP) onto a gold electrode surface. The sDOTAP-AuNP is applied for electrochemical label free DNA sensing and Escherichia coli cell transfection for the first time. Complementary target (named as hybridized), non-complementary target (un-hybridized) and single base mismatch target (named as SMM) hybridized surfaces are discriminated sensitively and selectively in presence of [Fe(CN)6](3-/4-). Double strand specific intercalator methylene blue in combination with [Fe(CN)6](3-) is used to enhance target detection limit down to femtomolar concentration. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV) techniques are used for characterizing DNA sensing. High Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) techniques are used to confirm the spherical nature of the sDOTAP-AuNP-DNA composite in solution and on the solid surface. DNA on the sDOTAP-ssDNA is transferred by potential stripping method (+0.2V (Ag/AgCl)) into buffer solution containing E. coli cells. The transfection is confirmed by the contrast images for the transfected and non-transfected cell from Confocal Laser Scanning Microscopy (CLSM). The results demonstrate effectiveness of the electrochemical DNA transfection method developed and could be applied for other cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Fabrication of Porous Ag/TiO2/Au Coatings with Excellent Multipactor Suppression
Wu, Duoduo; Ma, Jianzhong; Bao, Yan; Cui, Wanzhao; Hu, Tiancun; Yang, Jing; Bai, Yuanrui
2017-01-01
Porous Ag/TiO2/Au coatings with excellent multipactor suppression were prepared by fabrication of porous Ag surface through two-step wet chemical etching, synthesis of TiO2 coatings by electroless-plating-like solution deposition and deposition of Au coatings via electroless plating. Porous structure of Ag surface, TiO2 coatings on porous Ag surface and Au coatings on porous Ag/TiO2 surface were verified by field-emission scanning electron microscopy, the composition and crystal type of TiO2 coatings was characterized by X-ray photoelectron spectroscopy and X-ray diffraction. Secondary electron yield (SEY) measurement was used to monitor the SEY coefficient of the porous Ag coatings and Ag/TiO2/Au coatings. The as-obtained porous Ag coatings were proved exhibiting low SEY below 1.2, and the process was highly reproducible. In addition, the porous Ag/TiO2/Au coatings showed excellent multipactor suppression with the SEY 1.23 and good environmental stability. It is worth mentioning that the whole preparation process is simple and feasible, which would provide a promising application in RF devices. PMID:28281546
First Principles Calculations of Transition Metal Binary Alloys: Phase Stability and Surface Effects
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Shimizu, Koji; Kishida, Ryo; Kojima, Kazuki; Linh, Nguyen Hoang; Nakanishi, Hiroshi; Kasai, Hideaki
2017-06-01
The phase stability and surface effects on binary transition metal nano-alloy systems were investigated using density functional theory-based first principles calculations. In this study, we evaluated the cohesive and alloying energies of six binary metal alloy bulk systems that sample each type of alloys according to miscibility, i.e., Au-Ag and Pd-Ag for the solid solution-type alloys (SS), Pd-Ir and Pd-Rh for the high-temperature solid solution-type alloys (HTSS), and Au-Ir and Ag-Rh for the phase-separation (PS)-type alloys. Our results and analysis show consistency with experimental observations on the type of materials in the bulk phase. Varying the lattice parameter was also shown to have an effect on the stability of the bulk mixed alloy system. It was observed, particularly for the PS- and HTSS-type materials, that mixing gains energy from the increasing lattice constant. We furthermore evaluated the surface effects, which is an important factor to consider for nanoparticle-sized alloys, through analysis of the (001) and (111) surface facets. We found that the stability of the surface depends on the optimization of atomic positions and segregation of atoms near/at the surface, particularly for the HTSS and the PS types of metal alloys. Furthermore, the increase in energy for mixing atoms at the interface of the atomic boundaries of PS- and HTSS-type materials is low enough to overcome by the gain in energy through entropy. These, therefore, are the main proponents for the possibility of mixing alloys near the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com; Qi, Yingying; Zhang, Fu-Shen
Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercriticalmore » water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.« less
Korchev, A S; Shulyak, T S; Slaten, B L; Gale, W F; Mills, G
2005-04-28
Illumination of air-free aqueous solutions containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol) with 350 nm light results in benzophenone ketyl radicals of the polyketone. The polymer radicals form with a quantum yield 0.02 and decay with a second-order rate constant 6 orders of magnitude lower than that of typical alpha-hydroxy radicals. Evidence is presented that the polymeric benzophenone ketyl radicals reduce Ag+, Cu2+, and AuCl4- to metal particles of nanometer dimensions. Decreases in the reduction rates with increasing Ag(I), Cu(II), and Au(III) concentrations are explained using a kinetic model in which the metal ions quench the excited state of the polymeric benzophenone groups, which forms the macromolecular radicals. Quenching is fastest for Ag+, whereas Cu2+ and AuCl4- exhibit similar rate constants. Particle formation becomes more complex as the number of equivalents needed to reduce the metal ions increases; the Au(III) system is an extreme case where the radical reactions operate in parallel with secondary light-initiated and thermal reduction channels. For each metal ion, the polymer-initiated photoreactions produce crystallites possessing distinct properties, such as a very strong plasmon in the Ag case or the narrow size distribution exhibited by Au particles.
NASA Astrophysics Data System (ADS)
De Vos, Caroline; Baneton, Joffrey; Witzke, Megan; Dille, Jean; Godet, Stéphane; Gordon, Michael J.; Mohan Sankaran, R.; Reniers, François
2017-03-01
A comparative study of the reduction of aqueous silver (Ag) and gold (Au) salts to colloidal Ag and Au nanoparticles, respectively, by a gaseous, cathodic, atmospheric-pressure microplasma electrode is presented. The resulting nanoparticles (NPs) were characterized by ultraviolet-visible (UV-vis) absorption spectroscopy and transmission electron microscopy (TEM), and the aqueous solution composition before and after experiments was determined by ionic conductivity, electrochemical potential, and/or UV-vis absorption measurements. TEM showed that Ag and Au NPs were spherical and non-agglomerated when synthesized in the presence of a stabilizer, polyvinyl alcohol. The charge injected by the plasma was correlated to the maximum intensity in the absorbance spectra which in turn depends on the nanoparticle concentration. Separately, the charge injected was correlated to the metal cation concentration. Ag and Au reduction rates were found to be directly proportional to the charge injected, independent of plasma current and process time. Differences in the mechanism for Ag and Au reduction were also observed, and solution species generated by the plasma and their role in the reduction process (e.g. H2O2, electrons) is discussed.
Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures
NASA Astrophysics Data System (ADS)
Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon
2018-05-01
In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd150 nm/Ag80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks ( 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from 510 to 475 nm along with the decreased average size of alloy nanostructures.
NASA Astrophysics Data System (ADS)
Chen, Jun-Liang; Yang, Pei-Chia; Wu, Tsunghsueh; Lin, Yang-Wei
2018-06-01
Innovative dual detection methods for mercury(II) ions (Hg(II)) have been developed based on the formation of gold nanostructures (AuNSs) following the addition of mercury-containing solution to a mixture containing an optimized amount of Au(III), H2O2, HCl, and silver nanoparticles (AgNPs). In the absence of Hg(II), the addition of Au(III), H2O2, and HCl to the AgNP solution changes the solution's color from yellow to red, and the absorption peak shifts from 400 to 526 nm, indicating the dissolution of AgNPs and the formation of gold nanoparticles (AuNPs). Because of the spontaneous redox reaction of Hg(II) toward AgNPs, the change in the amount of remaining AgNP seed facilitates the generation of irregular AuNSs, resulting in changes in absorption intensity and shifting the peak within the range from 526 to 562 nm depending on the concentration of Hg(II). Under optimal conditions, the limit of detection (LOD) for Hg(II) at a signal-to-noise ratio (S/N) of 3 was 0.3 μM. We further observed that AgNP-assisted catalytic formation of Au nanomaterials deposited on a surface enhanced Raman scattering active substrate significantly reduced the Raman signal of 4-mercaptobenzoic acid, dependent on the Hg(II) concentration. A linear relationship was observed in the range 0.1 nM-100 μM with a LOD of 0.05 nM (S/N 3.0). As a simple, accurate and precise method, this SERS-based assay has demonstrated its success in determining levels of Hg(II) in real water samples.
Lee, Habeom; Hong, Sukjoon; Lee, Jinhwan; Suh, Young Duk; Kwon, Jinhyeong; Moon, Hyunjin; Kim, Hyeonseok; Yeo, Junyeob; Ko, Seung Hwan
2016-06-22
Stretchable and transparent electronics have steadily attracted huge attention in wearable devices. Although Ag nanowire is the one of the most promising candidates for transparent and stretchable electronics, its electrochemical instability has forbidden its application to the development of electrochemical energy devices such as supercapacitors. Here, we introduce a highly stretchable and transparent supercapacitor based on electrochemically stable Ag-Au core-shell nanowire percolation network electrode. We developed a simple solution process to synthesize the Ag-Au core-shell nanowire with excellent electrical conductivity as well as greatly enhanced chemical and electrochemical stabilities compared to pristine Ag nanowire. The proposed core-shell nanowire-based supercapacitor still possesses fine optical transmittance and outstanding mechanical stability up to 60% strain. The Ag-Au core-shell nanowire can be a strong candidate for future wearable electrochemical energy devices.
NASA Astrophysics Data System (ADS)
Pokrovski, Gleb S.; Roux, Jacques; Ferlat, Guillaume; Jonchiere, Romain; Seitsonen, Ari P.; Vuilleumier, Rodolphe; Hazemann, Jean-Louis
2013-04-01
The molecular structure and stability of species formed by silver in aqueous saline solutions typical of hydrothermal settings were quantified using in situ X-ray absorption spectroscopy (XAS) measurements, quantum-chemical modeling of near-edge absorption spectra (XANES) and extended fine structure spectra (EXAFS), and first-principles molecular dynamics (FPMD). Results show that in nitrate-bearing acidic solutions to at least 200 °C, silver speciation is dominated by the hydrated Ag+ cation surrounded by 4-6 water molecules in its nearest coordination shell with mean Ag-O distances of 2.32 ± 0.02 Å. In NaCl-bearing acidic aqueous solutions of total Cl concentration from 0.7 to 5.9 mol/kg H2O (m) at temperatures from 200 to 450 °C and pressures to 750 bar, the dominant species are the di-chloride complex AgCl2- with Ag-Cl distances of 2.40 ± 0.02 Å and Cl-Ag-Cl angle of 160 ± 10°, and the tri-chloride complex AgCl32- of a triangular structure and mean Ag-Cl distances of 2.60 ± 0.05 Å. With increasing temperature, the contribution of the tri-chloride species decreases from ˜50% of total dissolved Ag in the most concentrated solution (5.9m Cl) at 200 °C to less than 10-20% at supercritical temperatures for all investigated solutions, so that AgCl2- becomes by far the dominant Ag-bearing species at conditions typical of hydrothermal-magmatic fluids. Both di- and tri-chloride species exhibit outer-sphere interactions with the solvent as shown by the detection, using FPMD modeling, of H2O, Cl-, and Na+ at distances of 3-4 Å from the silver atom. The species fractions derived from XAS and FPMD analyses, and total AgCl(s) solubilities, measured in situ in this work from the absorption edge height of XAS spectra, are in accord with thermodynamic predictions using the stability constants of AgCl2- and AgCl32- from Akinfiev and Zotov (2001) and Zotov et al. (1995), respectively, which are based on extensive previous AgCl(s) solubility measurements. These data are thus recommended for chemical equilibrium calculations in mineral-fluid systems above 200 °C. In contrast, our data disagree with SUPCRT-based datasets for Ag-Cl species, which predict large fractions of high-order chloride species, AgCl32- and AgCl43- in high-temperature saline fluids. Comparisons of the structural and stability data of Ag-Cl species derived in this study with those of their Au and Cu analogs suggest that molecular-level differences amongst the chloride complexes such as geometry, dipole moment, distances, and resulting outer-sphere interactions with the solvent may account, at least partly, for the observed partitioning of Au, Ag and Cu in vapor-brine and fluid-melt systems. In hydrothermal environments dominated by fluid-rock interactions, the contrasting affinity of these metals for sulfur ligands and the differences both in chemistry and stability of their main solid phases (Ag sulfides, Cu-Fe sulfides, and native Au) largely control the concentration and distribution of these metals in their economic deposits.
Behnamfard, Ali; Salarirad, Mohammad Mehdi; Veglio, Francesco
2013-11-01
A novel hydrometallurgical process was proposed for selective recovery of Cu, Ag, Au and Pd from waste printed circuit boards (PCBs). More than 99% of copper content was dissolved by using two consecutive sulfuric acid leaching steps in the presence of H2O2 as oxidizing agents. The solid residue of 2nd leaching step was treated by acidic thiourea in the presence of ferric iron as oxidizing agent and 85.76% Au and 71.36% Ag dissolution was achieved. The precipitation of Au and Ag from acidic thiourea leachate was investigated by using different amounts of sodium borohydride (SBH) as a reducing agent. The leaching of Pd and remained gold from the solid reside of 3rd leaching step was performed in NaClO-HCl-H2O2 leaching system and the effect of different parameters was investigated. The leaching of Pd and specially Au increased by increasing the NaClO concentration up to 10V% and any further increasing the NaClO concentration has a negligible effect. The leaching of Pd and Au increased by increasing the HCl concentration from 2.5 to 5M. The leaching of Pd and Au were endothermic and raising the temperature had a positive effect on leaching efficiency. The kinetics of Pd leaching was quite fast and after 30min complete leaching of Pd was achieved, while the leaching of Au need a longer contact time. The best conditions for leaching of Pd and Au in NaClO-HCl-H2O2 leaching system were determined to be 5M HCl, 1V% H2O2, 10V% NaClO at 336K for 3h with a solid/liquid ratio of 1/10. 100% of Pd and Au of what was in the chloride leachate were precipitated by using 2g/L SBH. Finally, a process flow sheet for the recovery of Cu, Ag, Au and Pd from PCB was proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.
The extraction characteristic of Au-Ag from Au concentrate by thiourea solution
NASA Astrophysics Data System (ADS)
Kim, Bongju; Cho, Kanghee; On, Hyunsung; Choi, Nagchoul; Park, Cheonyoung
2013-04-01
The cyanidation process has been used commercially for the past 100 years, there are ores that are not amenable to treatment by cyanide. Interest in alternative lixiviants, such as thiourea, halogens, thiosulfate and malononitrile, has been revived as a result of a major increase in gold price, which has stimulated new developments in extraction technology, combined with environmental concern. The Au extraction process using the thiourea solvent has many advantages over the cyanidation process, including higher leaching rates, faster extraction time and less than toxicity. The purpose of this study was investigated to the extraction characteristic of Au-Ag from two different Au concentrate (sulfuric acid washing and roasting) under various experiment conditions (thiourea concentration, pH of solvent, temperature) by thiourea solvent. The result of extraction experiment showed that the Au-Ag extraction was a fast extraction process, reaching equilibrium (maximum extraction rate) within 30 min. The Au-Ag extraction rate was higher in the roasted concentrate than in the sulfuric acid washing. The higher the Au-Ag extraction rate (Au - 70.87%, Ag - 98.12%) from roasted concentrate was found when the more concentration of thiourea increased, pH decreased and extraction temperature increased. This study informs extraction method basic knowledge when thiourea was a possibility to eco-/economic resources of Au-Ag utilization studies including the hydrometallurgy.
Surface tension estimation of high temperature melts of the binary alloys Ag-Au
NASA Astrophysics Data System (ADS)
Dogan, Ali; Arslan, Hüseyin
2017-11-01
Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.
Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon
2018-05-16
In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd 150 nm /Ag 80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks (~ 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from ~ 510 to ~ 475 nm along with the decreased average size of alloy nanostructures.
El-Naggar, Mehrez E; Shaheen, Tharwat I; Fouda, Moustafa M G; Hebeish, Ali A
2016-01-20
Herein, we present a new approach for the synthesis of gold nanoparticles (AuNPs) individually and as bimetallic core-shell nanoparticles (AgNPs-AuNPs). The novelty of the approach is further maximized by using curdlan (CRD) biopolymer to perform the dual role of reducing and capping agents and microwave-aided technology for affecting the said nanoparticles with varying concentrations in addition to those affected by precursor concentrations. Thus, for preparation of AuNPs, curdlan was solubilized in alkali solution followed by an addition of tetrachloroauric acid (HAuCl4). The curdlan solution containing HAuCl4 was then subjected to microwave radiation for up to 10 min. The optimum conditions obtained with the synthesis of AuNPs were employed for preparation of core-shell silver-gold nanoparticles by replacing definite portion of HAuCl4 with an equivalent portion of silver nitrate (AgNO3). The portion of AgNO3 was added initially and allowed to be reduced by virtue of the dual role of curdlan under microwave radiation. The corresponding portion of HAuCl4 was then added and allowed to complete the reaction. Characterization of AuNPs and AgNPs-AuNPs core-shell were made using UV-vis spectra, TEM, FTIR, XRD, zeta potential, and AFM analysis. Accordingly, strong peaks of the colloidal particles show surface plasmon resonance (SPR) at maximum wavelength of 540 nm, proving the formation of well-stabilized gold nanoparticles. TEM investigations reveal that the major size of AuNPs formed at different Au(+3)concentration lie below 20 nm with narrow size distribution. Whilst, the SPR bands of AgNPs-AuNPs core-shell differ than those obtained from original AgNPs (420 nm) and AuNPs (540 nm). Such shifting due to SPR of Au nanoshell deposited onto AgNPs core was significantly affected by the variation of bimetallic ratios applied. TEM micrographs show variation in contrast between dark silver core and the lighter gold shell. Increasing the ratio of silver ions leads to significant decrease in zeta potential of the formed bimetallic core-shell. FT-IR discloses the interaction between CRD and metal nanoparticles, which could be the question of reducing and stabilizing metal and bimetallic nanoparticles. XRD patterns assume insufficient difference for the AuNPs and AgNPs-AuNPs core-shell samples due to close lattice constants of Ag and Au. Based on AFM, AuNPs and AgNPs-AuNPs core-shell exhibited good monodispersity with spherical particles possessing different sizes in the studied samples. The average sizes of both metal and bimetallic core-shell were found to be 52 and 45 nm, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
An Atomically Precise Au10 Ag2 Nanocluster with Red-Near-IR Dual Emission.
Lei, Zhen; Guan, Zong-Jie; Pei, Xiao-Li; Yuan, Shang-Fu; Wan, Xian-Kai; Zhang, Jin-Yuan; Wang, Quan-Ming
2016-08-01
A red-near-IR dual-emissive nanocluster with the composition [Au10 Ag2 (2-py-C≡C)3 (dppy)6 ](BF4 )5 (1; 2-py-C≡C is 2-pyridylethynyl, dppy=2-pyridyldiphenylphosphine) has been synthesized. Single-crystal X-ray structural analysis reveals that 1 has a trigonal bipyramidal Au10 Ag2 core that contains a planar Au4 (2-py-C≡C)3 unit sandwiched by two Au3 Ag(dppy)3 motifs. Cluster 1 shows intense red-NIR dual emission in solution. The visible emission originates from metal-to-ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3 Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2-pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time-dependent density functional theory (TD-DFT) calculation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Zhongmin; Li, Xiaojuan; Liang, Haijun; Ning, Jingliang; Zhou, Zhide; Li, Guiyin
2017-10-01
In this study, a novel bio-adsorbent (PT-GO) was prepared by functionalization persimmon tannin (PT) with graphene oxide (GO) and the effective adsorption behaviors of Au 3+ , Pd 2+ and Ag + ions from aqueous solution was investigated. The PT-GO was characterized by Fourier transform infrared spectrometer (FTIR), scanning electronic microscope (SEM), thermogravimetric analysis (TGA) and Zeta potential. Many influence factors such as pH value, bio-adsorbent dosage, initial concentration of metal ions and contact time were optimized. The maximum adsorption capacity for Au 3+ , Pd 2+ and Ag + was 1325.09mg/g, 797.66mg/g and 421.01mg/g, respectively. The equilibrium isotherm for the adsorption of Au 3+ and Ag + on PT-GO were found to obey the Langmuir model, while the Freundlich model fitted better for Pd 2+ . The adsorption process of Au 3+ , Pd 2+ presented relatively fast adsorption kinetics with pseudo-second-order equation as the best fitting model, while the pseudo-first-order kinetic model was suitable for describing the adsorption of Ag + . Combination of ion exchange, electrostatic interaction and physical adsorption was the mechanism for adsorption of Au 3+ , Pd 2+ and Ag + onto PT-GO bio-adsorbent. Therefore, the PT-GO bio-adsorbent would be an ideal adsorbent for removal of precious metal ions and broaden the potential applications of persimmon tannin in environmental research. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Noda, Yuta; Asaka, Toru; Fudouzi, Hiroshi; Hayakawa, Tomokatsu
2018-03-01
To examine the optical responses of surface-enhanced Raman scattering (SERS) for tuned plasmonic nanoparticles, triangular Ag-coated Au (Au@Ag) nanoprisms with different sizes were separately synthesized, which were well controlled in their size (edge-length) and localized surface plasmon resonance (LSPR) wavelength (69.0 ± 8.4 to 173.8 ± 25.6 nm in size and 662-943 nm in LSPR wavelength). The mechanism of Ag shell formation on the Au nanoprisms was also studied with scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS). The Au@Ag nanoprisms were immobilized by covering a colloidal solution containing the nanoprisms with silicone oil and evaporating the solvent in the oil (oil-coating method) so as to form a layer of accumulated plasmonic Au@Ag nanoprisms that had LSPR peak wavelengths tuned from 839 to 1182 nm. The accumulation conditions were analyzed by field-emission scanning electron microscopy (FE-SEM) and a Raman mapping technique. The Au@Ag nanoprisms under excitation at 632.8 nm exhibited higher SERS signals of rhodamine 6G, and SERS-mapped images of the novel immobilized films were obtained at different magnifications. It was concluded that accumulated Au@Ag nanoprisms undergoing tip-planar interconnections could produce enhanced local fields, resulting in higher SERS signals.
Transport and Reactivity of Engineered Nanoparticles in Partially Saturated Porous Media
NASA Astrophysics Data System (ADS)
Dror, I.; Yecheskel, Y.; Berkowitz, B.
2015-12-01
Engineered nanoparticles (ENPs) are being produced in increasing amounts and have numerous applications in a variety of products and industrial processes. The same properties that make these substances so appealing may also cause them to act as persistent and toxic pollutants. The post-use release of ENPs to the environment is inevitable and soil appears to be one of the largest sinks of these potential contaminants. To date, despite the significant attention that ENP behavior in the environment has received, only a few studies have considered the fate and transport of ENPs in partially saturated systems. Here, we report measurements on the transport and fate of three commonly used ENPs - silver (Ag), gold (Au) and zinc oxide (ZnO) - in partially saturated porous media. The results show that ENP interactions with the solid matrix and solution components affect the fate of the ENPs and their transport. The negatively charged ENPs (AgNPs and AuNPs) are shown to be mobile in sand (which is also negatively charged) under various conditions, including water saturation levels and inlet concentration, with transport behavior resembling conservative tracer movement. Various aging scenarios were considered and the interaction of AgNPs with sulfides, chlorides, and calcium ions, all of which are known to interact and change AgNP properties, are shown to affect AgNP fate; however, in some cases, the changed particles remained suspended in solution and mobile. The positively charged ZnO showed very low mobility, but when humic acid was present in the inlet solution, interactions leading to enhanced mobility were observed. The presence of humic acid also changes ENP size and surface charge, transforming them to negatively charged larger aggregates that can be transported through the sand. Finally, remobilization of particles that were retained in the porous media was also demonstrated for ZnO ENPs, indicating possible release of entrapped ENPs upon changes in solution chemistry.
NASA Astrophysics Data System (ADS)
AL-Adilee, Khalid J.; Abass, Ahmed K.; Taher, Ali M.
2016-03-01
A new heterocyclic thiazolylazo dye ligand, 2- [bar2-(4, 5- dimethyl thiazolyl) azo ] -4-Ethoxy Phenol (DMeTAEP), (LH) was synthesized by the diazotization of 4.5-dimethyl thiazolylazonium chloride and coupling with 4- Ethoxy phenol in alkaline alcoholic solution under suitable optimized experimental conditions to yield a new azo dye ligand. The structure of ligand and its complexes was prepared from Co(III), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Ag (I) and Au(III) ions. They confirmed by XRD, SEM, (TG-DTG) thermal analysis, 1H-NMR,UV-visb, mass and FT-IR spectroscopic methods, elemental analysis, atomic absorption, magnetic susceptibility and molar conductance. The mole ratio [M: L], it was also studied which was 1:1 for Ag (I) and Au (III) complexes and 1:2 The rest of the metal complexes. The isolated solid complexes are found to have the general formula [M (L)2 ] Cln.mH2O, where n = 1, m = 0 when M = Co (III) and n = 0, m = 1 when M = Ni (II), and Hg(II) while n = 0 and m = 0 when M = Cu (II), Zn (II), Cd (II) and ]ML (H2O)] of Ag(I) - complex but Au(III)-complex structural formula was [Au(L)Cl] Cl conductivity measurements for prepared complexes showed 1:1 electrolyte for Co(III(and Au(III) complexes and non - electrolyte the rest of complexes. The spectral and analytical data revealed that this ligand behaves as a tridentate chelating agent and coordination number of all metal ions were found to be six except for Ag (I) and Au (III) which was four. The activities of complexes were examined as sensitizers in the photocatalytic reaction of p-nitro aniline (PNA) which is used as a model of water pollutants.
Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen
2015-07-01
Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Plasmonic nanostructures for surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Jiang, Ruiqian
In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a AgCN based plating solution was used to replace Cu shell to form Au/Ag core-shell nanoparticles. These two plasmonic nanostructures were tested as substrates for Raman spectroscopy. It demonstrated that these plasmonic nanostructures could enhance Raman signal from the molecules on their surface. The results indicate that these plasmonic nanostructures could be utilized in many fields, such as such as biological and environmental sensors.
Youssef, Ahmed M; Abdel-Aziz, Mohamed S; El-Sayed, Samah M
2014-08-01
Chitosan-silver (CS-Ag) and Chitosan-gold (CS-Au) nanocomposites films were synthesized by a simple chemical method. A local bacterial isolate identified as Bacillus subtilis ss subtilis was found to be capable to synthesize both silver nanoparticles (Ag-NP) and gold nanoparticles (Au-NP) from silver nitrate (AgNO3) and chloroauric acid (AuCl(4-)) solutions, respectively. The biosynthesis of both Ag-NP and Au-NP characterize using UV/vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and then added to chitosan by different ratios (0.5, 1 and 2%). The prepared chitosan nanocomposites films were characterize using UV, XRD, SEM and TEM. Moreover, the antibacterial activity of the prepared films was evaluated against gram positive (Staphylococcus aureus) and gram negative bacteria (Pseudomonas aerugenosa), fungi (Aspergillus niger) and yeast (Candida albicans). Therefore, these materials can be potential used as antimicrobial agents in packaging applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis and Characterization of Two Component Alloy Nanoparticles
NASA Astrophysics Data System (ADS)
Tabatabaei, Salomeh
Alloying is an old trick used to produce new materials by synergistically combining at least two components. New developments in nanoscience have enabled new degrees of freedom, such as size, solubility and concentration of the alloying element to be utilized in the design of the physical properties of alloy nanoparticles (ANPs). ANPs as multi-functional materials have applications in catalysis, biomedical technologies and electronics. Phase diagrams of ANPs are very little known and may not represent that of bulk picture, furthermore, ANPs with different crystallite orientation and compositions could remain far from equilibrium. Here, we studied the synthesis and stability of Au-Sn and Ag-Ni ANPs with chemical reduction method at room temperature. Due to the large difference in the redox potentials of Au and Sn, co-reduction is not a reproducible method. However, two step successive reductions was found to be more reliable to generate Au-Sn ANPs which consists of forming clusters in the first step (either without capping agent or with weakly coordinated surfactant molecules) and then undergoing a second reduction step in the presence of another metal salt. Our observation also showed that capping agents (Cetrimonium bromide or (CTAB)) and Polyacrylic acid (PAA)) play a key role in the alloying process and shorter length capping agent (PAA) may facilitate the diffusion of individual components and thus enabling better alloying. Different molar ratios of Sn and Au precursors were used to study the effect of alloying elements on the melting point and the crystalline structures and melting points were determined by various microscopy and spectroscopy techniques and differential scanning calorimetry (DSC). A significant depression (up to150°C) in the melting transition was observed for the Au-Sn ANPs compared to the bulk eutectic point (Tm 280°C) due to the size and shape effect. Au-Sn ANPs offer a unique set of advantages as lead-free solder material which can reflow at lower temperatures leading to lower thermal stresses in adjacent electronic components during the manufacturing process, offering better thermal and mechanical properties suitable for high temperature electronic applications. The second system studied here is Ag-Ni ANPs and electron microscopy and spectroscopy confirm the formation of Ag0.5Ni0.5 ANPs with cubic structure, stable up to125°C. Atomic size and crystalline structure have less effect on the alloy formation process at the nanoscale; therefore, metals with limited solubility in bulk could form solid solutions at the nanoscale. Ag and Ni are immiscible in both solid and liquid states due to the large lattice mismatch and thermodynamically, the formation of core-shell structures is favoured. The effect of capping agents on the alloying was also studied here. Polyvinyl alcohol (PVA) with shorter length shows Ag-Ni ANPs with higher content of Ni compared to sodium citrate; the systems lead to the formation of Ag, Ag2O2 and Ag0.5Ni 0.5 ANPs. The study of multi-component nanoparticle systems could shed light into the various parameters that affect stability of structure and phases, which could be quite distinct from their bulk counterparts.
Wu, Yiren; Su, Dong; Qin, Dong
2017-02-22
Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yiren; Su, Dong; Qin, Dong
Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less
Pell, Thomas P; Wilson, David J D; Skelton, Brian W; Dutton, Jason L; Barnard, Peter J
2016-07-18
A new synthetic methodology has been developed for the preparation of heterobimetallic group 11 and group 12 complexes of a symmetrical bis-NHC "pincer" ligand. The synthetic route involved the initial preparation of a mononuclear [Au(NHC)2](+) complex with pendent imidazole moieties on the NHC ligands. Subsequent alkylation of the imidazole groups with Et3OBF4 and metalation with a second metal ion (Ag(I) or Hg(II)) provided two heterobimetallic complexes. Four homobimetallic (Cu(I)2, Ag(I)2, Au(I)2, and Hg(II)2) complexes of the same bis-NHC "pincer" ligand were also prepared. The homobimetallic Cu(I)2, Au(I)2, and Hg(II)2 complexes and heterobimetallic Au(I)-Ag(I) and Au(I)-Hg(II) complexes and the synthetic intermediates for the heterobimetallic complexes were characterized by X-ray crystallography. These X-ray structures show that the bimetallic complexes adopt "twisted" conformations in the solid state, supporting short M···M interactions. Crystalline samples of the homobimetallic Ag(I)2 and Au(I)2 and heterobimetallic Au(I)-Ag(I) and Au(I)-Hg(II) complexes were emissive at room temperature and at 77 K. The geometries of the synthesized complexes were optimized at the M06-L/def2-SVP level of theory, and the electronic nature of the M···M interactions for all synthesized complexes was investigated using natural bond orbital (NBO) calculations.
Korchev, A S; Konovalova, T; Cammarata, V; Kispert, L; Slaten, L; Mills, G
2006-01-03
The present study is centered on the processes involved in the photochemical generation of nanometer-sized Ag particles via illumination at 350 nm of aqueous solutions and cross linked films containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol). Optical and electron paramagnetic resonance experiments, including electron nuclear double resonance data, proved conclusively that the photogenerated chromophore exhibiting a band with lambda(max) = 565 nm is an alpha-hydroxy aromatic (ketyl) radical of the polymeric ketone. This reducing species was produced by illumination of either solutions or films, but the radical lifetime extended from minutes in the fluid phase to hours in the solid. Direct evidence is presented that this long-lived chromophore reduces Ag(I), Cu(II), and Au(III) ions in solution. A rate constant of k = 1.4 x 10(3) M(-)(1) s(-)(1) was obtained for the reduction of Ag(+) by the ketyl radical from the post-irradiation formation of Ag crystallites. FTIR results confirmed that the photoprocess yielding polymeric ketyl radicals involves a reaction between the macromolecules. The photochemical oxidation of the polymeric alcohol, as well as the formation of light-absorbing macromolecular products and polyols, indicates that the sulfonated polyketone experienced transformations similar to those encountered during illumination of the benzophenone/2-propanol system.
Chen, Mian; Yang, Lei; Zhang, Lan; Han, Yong; Lu, Zheng; Qin, Gaowu; Zhang, Erlin
2017-06-01
In this research, Ti-Ag alloys were prepared by powder metallurgy, casting and heat treatment method in order to investigate the effect of Ag compound particles on the bio-corrosion, the antibacterial property and the cell biocompatibility. Ti-Ag alloys with different sizes of Ag or Ag-compounds particles were successfully prepared: small amount of submicro-scale (100nm) Ti 2 Ag precipitates with solid solution state of Ag, large amount of nano-scale (20-30nm) Ti 2 Ag precipitates with small amount of solid solution state of Ag and micro-scale lamellar Ti 2 Ag phases, and complete solid solution state of Ag. The mechanical tests indicated that both nano/micro-scale Ti 2 Ag phases had a strong dispersion strengthening ability and Ag had a high solid solution strengthening ability. Electrochemical results shown the Ag content and the size of Ag particles had a limited influence on the bio-corrosion resistance although nano-scale Ti 2 Ag precipitates slightly improved corrosion resistance. It was demonstrated that the nano Ag compounds precipitates have a significant influence on the antibacterial properties of Ti-Ag alloys but no effect on the cell biocompatibility. It was thought that both Ag ions release and Ti 2 Ag precipitates contributed to the antibacterial ability, in which nano-scale and homogeneously distributed Ti 2 Ag phases would play a key role in antibacterial process. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yuan; Audétat, Andreas
2012-11-01
The partitioning of 15 major to trace metals between monosulfide solid solution (MSS), sulfide liquid (SL) and mafic silicate melt (SM) was determined in piston-cylinder experiments performed at 1175-1300 °C, 1.5-3.0 GPa and oxygen fugacities ranging from 3.1 log units below to 1.0 log units above the quartz-fayalite-magnetite fO2 buffer, which conditions are representative of partial melting in the upper mantle in different tectonic settings. The silicate melt was produced by partial melting of a natural, amphibole-rich mantle source rock, resulting in hydrous (˜5 wt% H2O) basanitic melts similar to low-degree partial melts of metasomatized mantle, whereas the major element composition of the starting sulfide (˜52 wt% Fe; 39 wt% S; 7 wt% Ni; 2 wt% Cu) was similar to the average composition of sulfides in this environment. SL/SM partition coefficients are high (≥100) for Au, Ni, Cu, Ag, Bi, intermediate (1-100) for Co, Pb, Sn, Sb (±As, Mo), and low (≤1) for the remaining elements. MSS/SM partition coefficients are generally lower than SL/SM partition coefficients and are high (≥100) for Ni, Cu, Au, intermediate (1-100) for Co, Ag (±Bi, Mo), and low (≤1) for the remaining elements. Most sulfide-silicate melt partition coefficients vary as a function of fO2, with Mo, Bi, As (±W) varying by a factor >10 over the investigated fO2 range, Sb, Ag, Sn (±V) varying by a factor of 3-10, and Pb, Cu, Ni, Co, Au, Zn, Mn varying by a factor of 3-10. The partitioning data were used to model the behavior of Cu, Au, Ag, and Bi during partial melting of upper mantle and during fractional crystallization of primitive MORB and arc magmas. Sulfide phase relationships and comparison of the modeling results with reported Cu, Au, Ag, and Bi concentrations from MORB and arc magmas suggest that: (i) MSS is the dominant sulfide in the source region of arc magmas, and thus that Au/Cu ratios in the silicate melt and residual sulfides may decrease with increasing degree of partial melting, (ii) both MSS and sulfide liquid are precipitated during fractional crystallization of MORB, and (iii) fractional crystallization of arc magmas is strongly dominated by MSS.
Noble metal nanoparticle-decorated TiO2 nanobelts for enhanced photocatalysis
NASA Astrophysics Data System (ADS)
He, Haiyan; Yang, Ping; Jia, Changchao; Miao, Yanping; Zhao, Jie; Du, Yingying
2014-07-01
TiO2 nanobelts have been fabricated through a hydrothermal method and subsequently sulfuric-acid-corrosion-treated for a rough surface. Noble metal nanoparticles such as Ag and Au were deposited on the coarse surface of TiO2 nanobelts via a coprecipitation procedure. Ag-TiO2 nanobelts were prepared in ethanolic solution contained silver nitrate (AgNO3) and sodium hydroxide (NaOH). Au-TiO2 nanobelts were obtained in chloroauric acid (HAuCl4) using sodium borohydride (NaBH4) as the reductant. It is confirmed by the results of XRD patterns together with the SEM images that the composite of noble metal and TiO2 nanobelts were obtained successfully and the Ag or Au nanoparticles were well-dispersed on the TiO2 nanobelts. Moreover, the as-prepared Ag and Au nanoparticle-decorated TiO2 nanobelts represent an enhanced photocatalytic activity compared with pure TiO2 nanobelts, which is due to the fact that the Ag and Au nanoparticles on the surface of TiO2 nanobelts act as sinks for the photogenerated electrons and promote the separation of the electrons and holes.
A colorimetric assay for measuring iodide using Au@Ag core-shell nanoparticles coupled with Cu(2+).
Zeng, Jingbin; Cao, Yingying; Lu, Chun-Hua; Wang, Xu-Dong; Wang, Qianru; Wen, Cong-Ying; Qu, Jian-Bo; Yuan, Cunguang; Yan, Zi-Feng; Chen, Xi
2015-09-03
Au@Ag core-shell nanoparticles (NPs) were synthesized and coupled with copper ion (Cu(2+)) for the colorimetric sensing of iodide ion (I(-)). This assay relies on the fact that the absorption spectra and the color of metallic core-shell NPs are sensitive to their chemical ingredient and dimensional core-to-shell ratio. When I(-) was added to the Au@Ag core-shell NPs-Cu(2+) system/solution, Cu(2+) can oxidize I(-) into iodine (I2), which can further oxidize silver shells to form silver iodide (AgI). The generated Au@AgI core-shell NPs led to color changes from yellow to purple, which was utilized for the colorimetric sensing of I(-). The assay only took 10 min with a lowest detectable concentration of 0.5 μM, and it exhibited excellent selectivity for I(-) over other common anions tested. Furthermore, Au@Ag core-shell NPs-Cu(2+) was embedded into agarose gels as inexpensive and portable "test strips", which were successfully used for the semi-quantitation of I(-) in dried kelps. Copyright © 2015 Elsevier B.V. All rights reserved.
Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua
2011-11-01
A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.
NASA Astrophysics Data System (ADS)
Meng, Xuan; Shibayama, Tamaki; Yu, Ruixuan; Takayanagi, Shinya; Watanabe, Seiichi
2013-08-01
Ag-Au bimetallic nanospheroids with tunable localized surface plasmon resonance (LSPR) were synthesized by 100 keV Ar-ion irradiation of 30 nm Ag-Au bimetallic films deposited on SiO2 glass substrates. A shift of the LSPR peaks toward shorter wavelengths was observed up to an irradiation fluence of 1.0 × 1017 cm-2, and then shifted toward the longer wavelength because of the increase of fragment volume under ion irradiation. Further control of LSPR frequency over a wider range was realized by modifying the chemical components. The resulting LSPR frequencies lie between that of the pure components, and an approximate linear shift of the LSPR toward the longer wavelength with the Au concentration was achieved, which is in good agreement with the theoretical calculations based on Gans theory. In addition, the surface morphology and compositions were examined with a scanning electron microscope equipped with an energy dispersive spectrometer, and microstructural characterizations were performed using a transmission electron microscope. The formation of isolated photosensitive Ag-Au nanospheroids with a FCC structure partially embedded in the SiO2 substrate was confirmed, which has a potential application in solid-state devices.
Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu
2017-01-01
The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to deposit the Au-Ag triangle hexagonal periodic nanoparticle arrays. The SEM images showed that as the single-layer PS nanosphere mask was well controlled, the thermal evaporation could deposit the Au-Ag triangle hexagonal nanoparticle arrays with a higher quality than the other two methods. PMID:28772741
Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu
2017-04-03
The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to deposit the Au-Ag triangle hexagonal periodic nanoparticle arrays. The SEM images showed that as the single-layer PS nanosphere mask was well controlled, the thermal evaporation could deposit the Au-Ag triangle hexagonal nanoparticle arrays with a higher quality than the other two methods.
Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles
NASA Astrophysics Data System (ADS)
de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.
2010-04-01
Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.
Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles.
de Julián Fernández, C; Mattei, G; Paz, E; Novak, R L; Cavigli, L; Bogani, L; Palomares, F J; Mazzoldi, P; Caneschi, A
2010-04-23
Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO(2) matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.
Specific composition of native silver from the Rogovik Au-Ag deposit, Northeastern Russia
NASA Astrophysics Data System (ADS)
Kravtsova, R. G.; Tauson, V. L.; Palyanova, G. A.; Makshakov, A. S.; Pavlova, L. A.
2017-09-01
The first data on native silver from the Rogovik Au-Ag deposit in northeastern Russia are presented. The deposit is situated in central part of the Okhotsk-Chukchi Volcanic Belt (OCVB) in the territory of the Omsukchan Trough, unique in its silver resources. Native silver in the studied ore makes up finely dispersed inclusions no larger than 50 μm in size, which are hosted in quartz; fills microfractures and interstices in association with küstelite, electrum, acanthite, silver sulfosalts and selenides, argyrodite, and pyrite. It has been shown that the chemical composition of native silver, along with its typomorphic features, is a stable indication of the various stages of deposit formation and types of mineralization: gold-silver (Au-Ag), silver-base metal (Ag-Pb), and gold-silver-base metal (Au-Ag-Pb). The specificity of native silver is expressed in the amount of trace elements and their concentrations. In Au-Ag ore, the following trace elements have been established in native silver (wt %): up to 2.72 S, up to 1.86 Au, up to 1.70 Hg, up to 1.75 Sb, and up to 1.01 Se. Native silver in Ag-Pb ore is characterized by the absence of Au, high Hg concentrations (up to 12.62 wt %), and an increase in Sb, Se, and S contents; the appearance of Te, Cu, Zn, and Fe is notable. All previously established trace elements—Hg, Au, Sb, Se, Te, Cu, Zn, Fe, and S—are contained in native silver of Au-Ag-Pb ore. In addition, Pb appears, and silver and gold amalgams are widespread, as well as up to 24.61 wt % Hg and 11.02 wt % Au. Comparison of trace element concentrations in native silver at the Rogovik deposit with the literature data, based on their solubility in solid silver, shows that the content of chalcogenides (S, Se, Te) exceeds saturated concentrations. Possible mechanisms by which elevated concentrations of these elements are achieved in native silver are discussed. It is suggested that the appearance of silver amalgams, which is unusual for Au-Ag mineralization not only in the Omsukchan Trough, but also in OCVB as a whole, is caused by superposition of the younger Dogda-Erikit Hg-bearing belt on the older Ag-bearing Omsukchan Trough. In practice, the results can be used to determine the general line of prospecting and geological exploration at objects of this type.
NASA Astrophysics Data System (ADS)
Yallappa, S.; Manjanna, J.; Dhananjaya, B. L.
2015-02-01
A green chemistry approach for the synthesis of Au, Ag and Au-Ag alloy nanoparticles (NPs) using the corresponding metal precursors and Jasminum sambac leaves extract as both reducing and capping media, under microwave irradiation, is reported. During the formation, as expected, the reaction mixture shows marginal decrease in pH and an increase in solution potential. The formation of NPs is evident from their surface plasmon resonance (SPR) peak observed at ∼555 nm for Au, ∼435 nm for Ag and ∼510 nm for Au-Ag alloy. The XRD pattern shows fcc structure while the FTIR spectra indicate the presence of plant residues adsorbed on these NPs. Such a bio-capping of NPs is characterized by their weight loss, ∼35% due to thermal degradation of biomass, as observed in TG analysis. The colloidal dispersion of NPs is stable for about 6 weeks. The near spherical shape of NPs (ϕ20-50 nm) is observed by FE-SEM/TEM images and EDAX gives the expected elemental composition. Furthermore, these NPs showed enhanced antimicrobial activity (∼1-4-fold increase in zone of inhibition) in combination with antimicrobials against test strains. Thus, the phytosynthesized NPs could be used as effective growth inhibitors for various microorganisms.
Wang, Di; Ma, Huihui; Chu, Chunxiao; Hao, Jingcheng; Liu, Hong-Guo
2013-07-15
Composite thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) decorated with Au or Ag nanoclusters and nanoparticles were fabricated at the interfaces of chloroform solution of PS-b-P2VP and aqueous solutions of HAuCl4 or AgNO3. Transmission electron microscopy (TEM) investigations indicated that large area of a single-layer honeycomb structure was formed, which is composed of polygons (most of them are hexagons) whose walls look like spindles with the length of several hundreds of nanometers. Large amount of Au or Ag nanoparticles are embedded in the walls and the undersides of the honeycomb structures. The formation of these novel composite structures was attributed to the adsorption of block copolymer molecules and inorganic species of AuCl4(-) and Ag(+) ions at the liquid-liquid interface, the combination of the polymer molecules and the inorganic ions, and the self-assembly of the composite molecules. After UV-light irradiation and KBH4 aqueous solution treatment, the inorganic species were reduced completely, as confirmed by UV-vis spectra and X-ray photoelectron spectra. These composite films exhibited high catalytic activities for the reduction of 4-nitrophenol (4-NP) by KBH4 in aqueous solutions. Copyright © 2013 Elsevier Inc. All rights reserved.
Iyer, R Indira; Panda, Tapobrata
2018-08-01
The potential of callus cultures and field-grown organs of pumpkin (Cucurbita maxima) for the biosynthesis of nanoparticles of the noble metals gold and silver has been investigated. Biosynthesis of AuNPs (gold nanoparticles) and AgNPs (silver nanoparticles) was obtained with flowers of C. maxima but not with pulp and seeds. With callus cultures established in MS-based medium the biogenesis of both AuNPs and AgNPs could be obtained. At 65 °C the biogenesis of AuNPs and AgNPs by callus extracts was enhanced. The AuNPs and AgNPs have been characterized by UV-visible spectroscopy, TEM, DLS and XRD. Well-dispersed nanoparticles, which exhibited a remarkable diversity in size and shape, could be visualized by TEM. Gold nanoparticles were found to be of various shapes, viz., rods, triangles, star-shaped particles, spheres, hexagons, bipyramids, discoid particles, nanotrapezoids, prisms, cuboids. Silver nanoparticles were also of diverse shapes, viz., discoid, spherical, elliptical, triangle-like, belt-like, rod-shaped forms and cuboids. EDX analysis indicated that the AuNPs and AgNPs had a high degree of purity. The surface charges of the generated AuNPs and AgNPs were highly negative as indicated by zeta potential measurements. The AuNPs and AgNPs exhibited remarkable stability in solution for more than four months. FTIR studies indicated that biomolecules in the callus extracts were associated with the biosynthesis and stabilisation of the nanoparticles. The synthesized AgNPs could catalyse degradation of methylene blue and exhibited anti-bacterial activity against E. coli DH5α. There is no earlier report of the biosynthesis of nanoparticles by this plant species. Callus cultures of Cucurbita maxima are effective alternative resources of biomass for synthesis of nanoparticles.
Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue
2018-07-20
This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO 3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO 3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer-Emmett-Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO 3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5-20 nm) were well distributed on the surface of the nanobelts. The UV-vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO 3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min -1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO 3 nanocomposites, the 3% (molar ratio) Au decorated AgVO 3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min -1 ) was almost two times higher than that of the pure AgVO 3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.
NASA Astrophysics Data System (ADS)
Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue
2018-07-01
This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer–Emmett–Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5–20 nm) were well distributed on the surface of the nanobelts. The UV–vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min‑1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO3 nanocomposites, the 3% (molar ratio) Au decorated AgVO3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min‑1) was almost two times higher than that of the pure AgVO3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.
Different growth regimes in InP nanowire growth mediated by Ag nanoparticles.
Oliveira, D S; Zavarize, M; Tizei, L H G; Walls, M; Ospina, C A; Iikawa, F; Ugarte, D; Cotta, M A
2017-12-15
We report on the existence of two different regimes in one-step Ag-seeded InP nanowire growth. The vapor-liquid-solid-mechanism is present at larger In precursor flows and temperatures, ∼500 °C, yielding high aspect ratio and pure wurtzite InP nanowires with a semi-spherical metal particle at the thin apex. Periodic diameter oscillations can be achieved under extreme In supersaturations at this temperature range, showing the presence of a liquid catalyst. However, under lower temperatures and In precursor flows, large diameter InP nanowires with mixed wurtzite/zincblende segments are obtained, similarly to In-assisted growth. Chemical composition analysis suggest that In-rich droplet formation is catalyzed at the substrate surface via Ag nanoparticles; this process might be facilitated by the sulfur contamination detected in these nanoparticles. Furthermore, part of the original Ag nanoparticle remains solid and is embedded inside the actual catalyst, providing an in situ method to switch growth mechanisms upon changing In precursor flow. Nevertheless, our Ag-seeded InP nanowires exhibit overall optical emission spectra consistent with the observed structural properties and similar to Au-catalyzed InP nanowires. We thus show that Ag nanoparticles may be a suitable replacement for Au in InP nanowire growth.
Dau, Thuy Minh; Asamoah, Benjamin Darko; Belyaev, Andrey; Chakkaradhari, Gomathy; Hirva, Pipsa; Jänis, Janne; Grachova, Elena V; Tunik, Sergey P; Koshevoy, Igor O
2016-09-28
A potentially tridentate hemilabile ligand, PPh2-C6H4-PPh(O)-C6H4-PPh2 (P(3)O), has been used for the construction of a family of bimetallic complexes [MM'(P(3)O)2](2+) (M = M' = Cu (1), Ag (2), Au (3); M = Au, M' = Cu (4)) and their mononuclear halide congeners M(P(3)O)Hal (M = Cu (5-7), Ag (8-10)). Compounds 1-10 have been characterized in the solid state by single-crystal X-ray diffraction analysis to reveal a variable coordination mode of the phosphine-oxide group of the P(3)O ligand depending on the preferable number of coordination vacancies on the metal center. According to the theoretical studies, the interaction of the hard donor P[double bond, length as m-dash]O moiety with d(10) ions becomes less effective in the order Cu > Ag > Au. 1-10 exhibit room temperature luminescence in the solid state, and the intensity and energy of emission are mostly determined by the nature of metal atoms. The photophysical characteristics of the monometallic species were compared with those of the related compounds M(P(3))Hal (11-16) with the non-oxidized ligand P(3). It was found that in the case of the copper complexes 5-7 the P(3)O hybrid ligand introduces effective non-radiative pathways of the excited state relaxation leading to poor emission, while for the silver luminophores the P[double bond, length as m-dash]O group leads mainly to the modulation of luminescence wavelength.
NASA Astrophysics Data System (ADS)
Tani, Tadaaki; Uchida, Takayuki
2015-06-01
Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst’s equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix.
Pruneanu, Stela; Biris, Alexandru R; Pogacean, Florina; Lazar, Diana Mihaela; Ardelean, Stefania; Watanabe, Fumyia; Dervishi, Enkeleda; Biris, Alexandru S
2012-11-12
This work is the first presentation of the synthesis of few-layer graphene decorated with gold and silver nanoparticles (Gr-Au-Ag) by chemical vapor deposition over a catalytic system formed of bimetallic Au-Ag nanoclusters supported on MgO and with methane used as the source of carbon. The sheetlike morphology of the graphene nanostructures, with mean sizes in the range of hundreds of nanometers, was observed by high-resolution electron microscopy. The distinctive feature found in all the samples was the regular rectangular or square shapes. This multi-component organic-inorganic nanomaterial was used to modify a platinum substrate and subsequently employed for the detection of carbamazepine, an anti-convulsion drug. UV/Vis spectroscopy revealed that a strong hypochromism occurred over time, after mixing solutions of graphene-Au-Ag with carbamazepine. This can be attributed to π-π stacking between the aromatic groups of the two compounds. Linear sweep voltammetry (LCV) provided evidence that the modified platinum substrate presented a significant electrocatalytic reaction toward the oxidation of carbamazepine. The intensity of the current was found to increase by up to 2.5 times, and the oxidation potential shifted from +1.5 to +1.35 V(Ag/AgCl) in comparison with the unmodified electrode. Electrochemical impedance spectroscopy (EIS) was further used to thoroughly assess the activity of the platinum electrode that was modified by the deposition of the Gr-Au-Ag composites in the presence of various concentrations of carbamazepine. The experimental EIS records were used for the generation of an equivalent electrical circuit, based on the charge-transfer resistance (R(ct)), Warburg impedance (Z(D)), solution resistance (R(s)), and a constant phase element (CPE) that characterizes the non-ideal interface capacitive responses. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nimmagadda, Rajesh; Venkatasubbaiah, K.
2017-06-01
The present study investigates the laminar forced convection flow of single walled carbon nanotube (SWCNT), gold (Au), aluminum oxide (Al2O3), silver (Ag) and hybrid (Al2O3 + Ag) nanofluids (HyNF) in a wide rectangular micro-channel at low Reynolds numbers. The heat transfer characteristics of de-ionized (DI) water and SWCNT nanofluid with different nanoparticle volume concentrations have been experimental studied. Furthermore, numerical study has also been carried out to investigate the flow and heat transfer characteristics of DI water, SWCNT, Au, Al2O3, Ag and HyNF at different Reynolds numbers with different nanoparticle volume concentrations and particle diameters. The numerical study consider the effects of both inertial and viscous forces by solving the full Navier-Stokes equations at low Reynolds numbers. A two dimensional conjugate heat transfer multiphase mixture model has been developed and used for numerical study. A significant enhancement in the average Nusselt number is observed both experimentally and numerically for nanofluids. The study presents four optimized combinations of nanofluids (1 vol% SWCNT and 1 vol% Au with d_p = 50 nm), (2 vol% SWCNT and 3 vol% Au with d_p = 70 nm), (3 vol% Al2O3 and 2 vol% Au with d_p = 70 nm) as well as (3 vol% HyNF (2.4% Al2O3 + 0.6% Ag) and 3 vol% Au with d_p = 50 nm) that provides a better switching option in choosing efficient working fluid with minimum cost based on cooling requirement. The conduction phenomenon of the solid region at bottom of the micro-channel is considered in the present investigation. This phenomenon shows that the interface temperature between solid and fluid region increases along the length of the channel. The present results has been validated with the experimental and numerical results available in the literature.
Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.
Rao, V Kesava; Radhakrishnan, T P
2015-06-17
Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF.
NASA Astrophysics Data System (ADS)
Kang, Fei; Hou, Xiangshu; Xu, Kun
2015-10-01
Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core-shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H2O2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core-shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum.
Vita, Francesco; Boccia, Alice; Marrani, Andrea G; Zanoni, Robertino; Rossi, Francesca; Arduini, Arturo; Secchi, Andrea
2015-10-19
A series of lipophilic gold nanoparticles (AuNPs) circa 5 nm in diameter and having a mixed organic layer consisting of 1-dodecanethiol and 1-(11-mercaptoundecyl) pyridinium bromide was synthesised by reacting tetraoctylammonium bromide stabilised AuNPs in toluene with different mixtures of the two thiolate ligands. A bidentate ω-alkylthiolate calix[4]arene derivative was instead used as a functional protecting layer on AgNPs of approximately 3 nm. The functionalised nanoparticles were characterised by transmission electron microscopy (TEM), and by UV/Vis and X-ray photoelectron spectroscopy (XPS). Recognition of the pyridinium moieties loaded on the AuNPs by the calix[4]arene units immobilised on the AgNPs was demonstrated in solution of weakly polar solvents by UV/Vis titrations and DLS measurements. The extent of Au-AgNPs aggregation, shown through the low-energy shift of their surface plasmon bands (SPB), was strongly dependent on the loading of the pyridinium moieties present in the organic layer of the AuNPs. Extensive aggregation between dodecanethiol-capped AuNPs and the Ag calix[4]arene-functionalised NPs was also promoted by the action of a simple N-octyl pyridinium difunctional supramolecular linker. This linker can interdigitate through its long fatty tail in the organic layer of the dodecanethiol-capped AuNPs, and simultaneously interact through its pyridinium moiety with the calix[4]arene units at the surface of the modified AgNPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis and Catalytic Activity of Pluronic Stabilized Silver-Gold Bimetallic Nanoparticles.
Holden, Megan S; Nick, Kevin E; Hall, Mia; Milligan, Jamie R; Chen, Qiao; Perry, Christopher C
2014-01-01
In this report, we demonstrate a rapid, simple, and green method for synthesizing silver-gold (Ag-Au) bimetallic nanoparticles (BNPs). We used a novel modification to the galvanic replacement reaction by suspending maltose coated silver nanoparticles (NPs) in ≈ 2% aqueous solution of EO 100 PO 65 EO 100 (Pluronic F127) prior to HAuCl 4 addition. The Pluronic F127 stabilizes the BNPs, imparts biocompatibility, and mitigates the toxicity issues associated with other surfactant stabilizers. BNPs with higher Au:Ag ratios and, subsequently, different morphologies were successfully synthesized by increasing the concentration of gold salt added to the Ag NP seeds. These BNPs have enhanced catalytic activities than typically reported for monometallic Au or Ag NPs (∼ 2-10 fold) of comparable sizes in the sodium borohydride reduction of 4-nitrophenol. The 4-nitrophenol reduction rates were highest for partially hollow BNP morphologies.
Two phase microstructure for Ag-Ni nanowires
NASA Astrophysics Data System (ADS)
Srivastava, Chandan; Rai, Rajesh Kumar
2013-03-01
In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of ˜200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase.
Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.
Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael
2017-10-11
Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.
Liu, Peng; Song, Ke; Zhang, Dongju; Liu, Chengbu
2012-05-01
The detailed mechanisms of catalytic CO oxidation over Au(2)(-) and AuAg(-) dimers, which represent the simplest models for monometal Au and bimetallic Au-Ag nanoparticles, have been studied by performing density functional theory calculations. It is found that both Au(2)(-) and AuAg(-) dimers catalyze the reaction according to the similar mono-center Eley-Rideal mechanism. The catalytic reaction is of the multi-channel and multi-step characteristic, which can proceed along four possible pathways via two or three elementary steps. In AuAg(-), the Au site is more active than the Ag site, and the calculated energy barrier values for the rate-determining step of the Au-site catalytic reaction are remarkably smaller than those for both the Ag-site catalytic reaction and the Au(2)(-) catalytic reaction. The better catalytic activity of bimetallic AuAg(-) dimer is attributed to the synergistic effect between Au and Ag atom. The present results provide valuable information for understanding the higher catalytic activity of Au-Ag nanoparticles and nanoalloys for low-temperature CO oxidation than either pure metallic catalyst.
Antitumor Activity of Alloy and Core-Shell-Type Bimetallic AgAu Nanoparticles
NASA Astrophysics Data System (ADS)
Shmarakov, Igor; Mukha, Iuliia; Vityuk, Nadiia; Borschovetska, Vira; Zhyshchynska, Nelya; Grodzyuk, Galyna; Eremenko, Anna
2017-05-01
Nanoparticles (NPs) of noble metals, namely gold and silver, remain promising anticancer agents capable of enhancing current surgery- and chemotherapeutic-based approaches in cancer treatment. Bimetallic AgAu composition can be used as a more effective agent due to the synergetic effect. Among the physicochemical parameters affecting gold and silver nanoparticle biological activity, a primary concern relates to their size, shape, composition, charge, etc. However, the impact of metal components/composition as well as metal topological distribution within NPs is incompletely characterized and remains to be further elucidated and clarified. In the present work, we tested a series of colloidal solutions of AgAu NPs of alloy and core-shell type for an antitumor activity depending on metal molar ratios (Ag:Au = 1:1; 1:3; 3:1) and topological distribution of gold and silver within NPs (AucoreAgshell; AgcoreAushell). The efficacy at which an administration of the gold and silver NPs inhibits mouse Lewis lung carcinoma (LLC) growth in vivo was compared. The data suggest that in vivo antitumor activity of the studied NPs strongly depends on gold and silver interaction arising from their ordered topological distribution. NPs with Ag core covered by Au shell were the most effective among the NPs tested towards LLC tumor growth and metastasizing inhibition. Our data show that among the NPs tested in this study, AgcoreAushell NPs may serve as a suitable anticancerous prototype.
All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures.
Yang, Huayan; Wang, Yu; Huang, Huaqi; Gell, Lars; Lehtovaara, Lauri; Malola, Sami; Häkkinen, Hannu; Zheng, Nanfeng
2013-01-01
Noble metal nanoparticles stabilized by organic ligands are important for applications in assembly, site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, molecular recognition and molecular electronics, and catalysis. Here we report crystal structures and theoretical analysis of three Ag44(SR)30 and three Au12Ag32(SR)30 intermetallic nanoclusters stabilized with fluorinated arylthiols (SR=SPhF, SPhF2 or SPhCF3). The nanocluster forms a Keplerate solid of concentric icosahedral and dodecahedral atom shells, protected by six Ag2(SR)5 units. Positive counterions in the crystal indicate a high negative charge of 4(-) per nanoparticle, and density functional theory calculations explain the stability as an 18-electron superatom shell closure in the metal core. Highly featured optical absorption spectra in the ultraviolet-visible region are analysed using time-dependent density functional perturbation theory. This work forms a basis for further understanding, engineering and controlling of stability as well as electronic and optical properties of these novel nanomaterials.
Highly Efficient SERS Nanowire/Ag Composites
2007-01-01
Ga2O3 nanowires was performed by the vapor- liquid-solid (VLS) growth in a tube furnace, using Si(100) and Si(111) substrates and a 20 nm Au film3. Ga...Rhodamine 6G/methanol and DNT/methanol dilutions. The Ga2O3 /Ag nanowire composite substrates are shown in Figure 1a. As can be seen, they consist of a...significant improvement over nanosphere-type SERS substrates. Conclusion: Randomly oriented Ga2O3 /Ag nanowire networks have been formed and we
Cheng, C H; Huang, H Y; Talite, M J; Chou, W C; Yeh, J M; Yuan, C T
2017-12-15
Colloidal nano-materials, such as quantum dots (QDs) have been applied to light-conversion nano-phosphors due to their unique tunable emission. However, most of the QDs involve toxic elements and are synthesized in a hazardous solvent. In addition, conventional QD nano-phosphors with a small Stokes shift suffered from reabsorption losses and aggregation-induced quenching in the solid state. Here, we demonstrate a facile, matrix-free method to prepare eco-friendly nano-phosphors with a large Stokes shift based on aqueous thiolate-stabilized gold nanoclusters (GSH-AuNCs) with simple surface modifications. Our method is just to drop GSH-AuNCs solution on the aluminum foil and then surface-modified AuNCs (Al-GSH-AuNCs) can be spontaneously precipitated out of the aqueous solution. Compared with pristine GSH-AuNCs in solution, the Al-GSH-AuNCs exhibit enhanced solid-state PL quantum yields, lengthened PL lifetime, and spectral blue shift, which can be attributed to the aggregation-induced emission enhancement facilitated by surface modifications. Such surface-treatment induced aggregation of AuNCs can restrict the surface-ligand motion, leading to the enhancement of PL properties in the solid state. In addition, the Al-GSH-AuNCs nano-phosphors with a large Stokes shift can mitigate the aggregation-induced PL quenching and reabsorption losses, which would be potential candidates for "green" nano-phosphors. Copyright © 2017 Elsevier Inc. All rights reserved.
Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response
NASA Astrophysics Data System (ADS)
Khlebtsov, Boris N.; Liu, Zhonghui; Ye, Jian; Khlebtsov, Nikolai G.
2015-12-01
Recent studies have conclusively shown that the plasmonic properties of Au nanorods can be finely controlled by Ag coating. Here, we investigate the effect of asymmetric silver overgrowth of Au nanorods on their extinction and surface-enhanced Raman scattering (SERS) properties for colloids and self-assembled monolayers. Au@Ag core/shell cuboids and dumbbells were fabricated through a seed-mediated anisotropic growth process, in which AgCl was reduced by use of Au nanorods with narrow size and shape distribution as seeds. Upon tailoring the reaction rate, monodisperse cuboids and dumbbells were synthesized and further transformed into water-soluble powders of PEGylated nanoparticles. The extinction spectra of AuNRs were in excellent agreement with T-matrix simulations based on size and shape distributions of randomly oriented particles. The multimodal plasmonic properties of the Au@Ag cuboids and dumbbells were investigated by comparing the experimental extinction spectra with finite-difference time-domain (FDTD) simulations. The SERS efficiencies of the Au@Ag cuboids and dumbbells were compared in two options: (1) individual SERS enhancers in colloids and (2) self-assembled monolayers formed on a silicon wafer by drop casting of nanopowder solutions mixed with a drop of Raman reporters. By using 1,4-aminothiophenol Raman reporter molecules, the analytical SERS enhancement factor (AEF) of the colloidal dumbbells was determined to be 5.1×106, which is an order of magnitude higher than the AEF=4.0×105 for the cuboids. This difference can be explained by better fitting of the dumbbell plasmon resonance to the excitation laser wavelength. In contrast to the colloidal measurements, the AEF=5×107 of self-assembled cuboid monolayers was almost twofold higher than that for dumbbell monolayers, as determined with rhodamine 6G Raman reporters. According to TEM data and electromagnetic simulations, the better SERS response of the self-assembled cuboids is due to uniform packing and more efficient generation of electromagnetic hot spots, as compared to the dumbbell monolayers.
Barnes, S.-J.; Cox, R.A.; Zientek, M.L.
2006-01-01
Concentrations of Ag, Au, Cd, Co, Re, Zn and Platinum-group elements (PGE) have been determined in sulfide minerals from zoned sulfide droplets of the Noril'sk 1 Medvezky Creek Mine. The aims of the study were; to establish whether these elements are located in the major sulfide minerals (pentlandite, pyrrhotite, chalcopyrite and cubanite), to establish whether the elements show a preference for a particular sulfide mineral and to investigate the model, which suggests that the zonation in the droplets is caused by the crystal fractionation of monosulfide solid solution (mss). Nickel, Cu, Ag, Re, Os, Ir, Ru, Rh and Pd, were found to be largely located in the major sulfide minerals. In contrast, less than 25% of the Au, Cd, Pt and Zn in the rock was found to be present in these sulfides. Osmium, Ir, Ru, Rh and Re were found to be concentrated in pyrrhotite and pentlandite. Palladium and Co was found to be concentrated in pentlandite. Silver, Cd and Zn concentrations are highest in chalcopyrite and cubanite. Gold and platinum showed no preference for any of the major sulfide minerals. The enrichment of Os, Ir, Ru, Rh and Re in pyrrhotite and pentlandite (exsolution products of mss) and the low levels of these elements in the cubanite and chalcopyrite (exsolution products of intermediate solid solution, iss) support the mss crystal fractionation model, because Os, Ir, Ru, Rh and Re are compatible with mss. The enrichment of Ag, Cd and Zn in chalcopyrite and cubanite also supports the mss fractionation model these minerals are derived from the fractionated liquid and these elements are incompatible with mss and thus should be enriched in the fractionated liquid. Gold and Pt do not partition into either iss or mss and become sufficiently enriched in the final fractionated liquid to crystallize among the iss and mss grains as tellurides, bismithides and alloys. During pentlandite exsolution Pd appears to have diffused from the Cu-rich portion of the droplet into pentlandite. ?? Springer-Verlag 2006.
Organized one dimensional nanomaterials: From preparations to applications
NASA Astrophysics Data System (ADS)
Wen, Xiaogang
This thesis is mainly concerned with the development of organized one dimensional (1D) nanomaterials and their applications. We have synthesized Ag2S, Cu2S nanowires, Fe2O3 nanobelt and nanowire arrays and ZnO nanobelt arrays from corresponding metal substrate respectively via gas solid reaction methods under different growth conditions. The effect of various parameters including temperature, reaction time, composition of gas, surface pre-oxidation, size of source materials etc. on the growth of metal oxide/sulfide 1D nanostructure have been studied systemically. The size and morphology of these 1D nanomaterials could be rationally controlled by adjusting the growth conditions. A tip growth mechanism has been confirmed based our results. The properties including PL, Raman, field effect transistors, and field emission of these materials have been measured. Cu(OH)2 nanoribbons have been synthesized by a solution solid reaction method using Cu and Cu2S nanowires as precursors. Cu(OH) 2 nanoribbons can form well-aligned arrays on Cu substrate. Low temperature facilitate the formation of Cu(OH)2 nanoribbon arrays. Reaction conditions affect the morphology, crystal structure, even composition of the products much. CuO nanorod arrays of several nm in diameter could be synthesis in changed condition. Cu(OH)2 nanoribbon arrays are good sacrifice template for synthesizing other Cu-based 1D nanomaterials. It has been converted to CuO, Cu2O, Cu8S9, Cu etc. 1D nanostructure through different physical and chemical reaction process. Au/Cu2S core/sheath nanowires have been synthesized in solution phase via a simple template-induced redox deposition process, after removing the Cu2S template, Au nanotubes have been formed. The photoelectrochemistry (PEC) properties of it have been studied. Ag dendritic nanostructures have been prepared via solution reaction. We have revealed that the stem, branch, and sub-branch grow along <100>, <111> and <100> directions, respectively. Such a preferential growth pattern along <100> and <111> alternately lead to the formation of the Ag nanodendrites. In another development, we have synthesized unltrathin Zn nanowires (<5nm) by a vapor transport method. Small molecules are induced into the gas phase as capping reagents. In this process, the small molecules serve as capping reagents or templates to confine the lateral growth and facilitate the formation of ultrathin 1D nanostructures. (Abstract shortened by UMI.)
Kim, Manuela Leticia; Tudino, Mabel Beatríz
2010-08-15
Several studies involving the physicochemical interaction of three silica based hybrid mesoporous materials with metal ions of the group IB have been performed in order to employ them for preconcentration purposes in the determination of traces of Cu(II), Ag(I) and Au(III). The three solids were obtained from mesoporous silica functionalized with 3-aminopropyl (APS), 3-mercaptopropyl (MPS) and N-[2-aminoethyl]-3-aminopropyl (NN) groups, respectively. Adsorption capacities for Au, Cu and Ag were calculated using Langmuir's isotherm model and then, the optimal values for the retention of each element onto each one of the solids were found. Physicochemical data obtained under thermodynamic equilibrium and under kinetic conditions - imposed by flow through experiments - allowed the design of simple analytical methodologies where the solids were employed as fillings of microcolumns held in continuous systems coupled on-line to an atomic absorption spectrometry. In order to control the interaction between the filling and the analyte at short times (flow through conditions) and thus, its effect on the analytical signal and the presence of interferences, the initial adsorption velocities were calculated using the pseudo second order model. All these experiments allowed the comparison of the solids in terms of their analytical behaviour at the moment of facing the determination of the three elements. Under optimized conditions mainly given by the features of the filling, the analytical methodologies developed in this work showed excellent performances with limits of detection of 0.14, 0.02 and 0.025 microg L(-1) and RSD % values of 3.4, 2.7 and 3.1 for Au, Cu and Ag, respectively. A full discussion of the main findings on the interaction metal ions/fillings will be provided. The analytical results for the determination of the three metals will be also presented. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shah, Kwok Wei; Sreethawong, Thammanoon; Liu, Shu-Hua; Zhang, Shuang-Yuan; Tan, Li Sirh; Han, Ming-Yong
2014-09-01
Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields.Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03306j
Exploration of new methods for growing Ag films on Au(111) studied by ARPES
NASA Astrophysics Data System (ADS)
Luh, Dah-An; Cheng, Cheng-Maw; Tsai, Chi-Ting; Tsuei, Ku-Ding
2007-03-01
Ag/Au(111) thin films have attracted lots of interests as a model system in the past decades. Ag and Au are lattice-matched, and thin Ag films of very high quality are expected to grow on Au(111). However, the intermixing between Ag and Au at elevated temperatures has been a major concern during the growth of Ag films on the Au(111) surface. In many previous studies, Ag was deposited on the Au(111) surface at near room temperature to avoid the intermixing problem. Investigating the results from these studies, the Ag films on Au(111) grown by this recipe still show clear thickness variation. This thickness variation may result from Ag-Au intermixing or film roughening during the process of room temperature deposition. We are revisiting this classical model system with new growth methods. Our goal is to find growth methods that will stop the intermixing between Ag and Au and reduce the variation in the thickness of Ag films. Preliminary results from our study will be presented in this poster.
Chen, Tao; Yang, Sha; Chai, Jinsong; Song, Yongbo; Fan, Jiqiang; Rao, Bo; Sheng, Hongting; Yu, Haizhu; Zhu, Manzhou
2017-01-01
We report the first noble metal nanocluster with a formula of Au4Ag13(DPPM)3(SR)9 exhibiting crystallization-induced emission enhancement (CIEE), where DPPM denotes bis(diphenylphosphino)methane and HSR denotes 2,5-dimethylbenzenethiol. The precise atomic structure is determined by x-ray crystallography. The crystalline state of Au4Ag13 shows strong luminescence at 695 nm, in striking contrast to the weak emission of the amorphous state and hardly any emission in solution phase. The structural analysis and the density functional theory calculations imply that the compact C–H⋯π interactions significantly restrict the intramolecular rotations and vibrations and thus considerably enhance the radiative transitions in the crystalline state. Because the noncovalent interactions can be easily modulated via varying the chemical environments, the CIEE phenomenon might represent a general strategy to amplify the fluorescence from weakly (or even non-) emissive nanoclusters. PMID:28835926
Laccase/AuAg Hybrid Glucose Microfludic Fuel Cell
NASA Astrophysics Data System (ADS)
López-González, B.; Cuevas-Muñiz, F. M.; Guerra-Balcázar, M.; Déctor, A.; Arjona, N.; Ledesma-García, J.; Arriaga, L. G.
2013-12-01
In this work a hybrid microfluidic fuel cell was fabricated and evaluated with a AuAg/C bimetallic material for the anode and an enzymatic cathode. The cathodic catalyst was prepared adsorbing laccase and ABTS on Vulcan carbon (Lac-ABTS/C). This material was characterized by FTIR-ATR, the results shows the presence of absorption bands corresponding to the amide bounds. The electrochemical evaluation for the materials consisted in cyclic voltammetry (CV). The glucose electrooxidation reaction in AuAg/C occurs around - 0.3 V vs. NHE. Both electrocatalytic materials were placed in a microfluidic fuel cell. The fuel cell was fed with PBS pH 5 oxygen saturated solution in the cathodic compartment and 5 mM glucose + 0.3 M KOH in the anodic side. Several polarization curves were performed and the maximum power density obtained was 0.3 mWcm-2 .
Bootharaju, Megalamane S; Joshi, Chakra P; Parida, Manas R; Mohammed, Omar F; Bakr, Osman M
2016-01-18
Synthesis of atom-precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18](-) cluster (SR: thiolate) using a pure [Ag25(SR)18](-) cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag(25-x)Au(x)(SR)18](-), x=1-8. Mass spectrometry and crystallography of [Ag24Au(SR)18](-) reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single-atom level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Fangxu; Zhao, Qiang; Xu, Chunhui; Zou, Ye; Dong, Huanli; Zheng, Yonggang; Hu, Wenping
2016-09-01
The switching riddle of AgTCNQ is shown to be caused by the solid electrolyte mechanism. Both factors of bulk phase change and contact issue play key roles in the efficient work of the devices. An effective strategy is developed to locate the formation/disruption of Ag conductive filaments using the planar asymmetric configuration of Au/AgTCNQ/AlOx /Al. These novel electrochemical metallization memories demonstrate many promising properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wei, Chao; Xu, Min-Min; Fang, Cong-Wei; Jin, Qi; Yuan, Ya-Xian; Yao, Jian-Lin
2017-03-01
Traditional "sandwich" structure immunoassay is mainly based on the self-assembly of "antibody on solid substrate-antigen-antibody with nanotags" architectures, and the sensitivity of this strategy is critically depended on the surface enhanced Raman scattering (SERS) activities and stability of nanotags. Therefore, the rational design and fabrication on the SERS nanotags attracts the common interests to the bio-related detecting and imaging. Herein, silica encapsulated Au with mercaptobenzoic acid (MBA) core-shell nanoparticles (Au-MBA@SiO2) are fabricated instead of the traditional naked Au or Ag nanoparticles for the SERS-based immunoassay on human and mouse IgG antigens. The MBA molecules facilitate the formation of continuous pinhole-free silica shell and are also used as SERS labels. The silica shell is employed to protect MBA labels and to isolate Au core from the ambient solution for blocking the aggregation. This shell also played the similar role to BSA in inhibiting the nonspecific bindings, which allowed the procedures for constructing "sandwich" structures to be simplified. All of these merits of the Au-MBA@SiO2 brought the high performance in the related immunoassay. Benefiting from the introduction of silica shell to encapsulate MBA labels, the detection sensitivity was improved by about 1- 2 orders of magnitude by comparing with the traditional approach based on naked Au-MBA nanoparticles. This kind of label-embedded core-shell nanoparticles could be developed as the versatile nanotags for the bioanalysis and bioimaging.
Plasmon-enhanced versatile optical nonlinearities in a Au-Ag-Au multi-segmental hybrid structure.
Yao, Lin-Hua; Zhang, Jun-Pei; Dai, Hong-Wei; Wang, Ming-Shan; Zhang, Lu-Man; Wang, Xia; Han, Jun-Bo
2018-06-27
A Au-Ag-Au multi-segmental hybrid structure has been synthesized by using an electrodeposition method based on an anodic aluminum oxide (AAO) membrane. The third-order optical nonlinearities, second harmonic generation (SHG) and photoluminescence (PL) properties containing ultrafast supercontinuum generation and plasmon mediated thermal emission have been investigated. Significant optical enhancements have been obtained near surface plasmon resonance wavelength in all the abovementioned nonlinear processes. Comparative studies between the Au-Ag-Au multi-segmental hybrid structure and the corresponding single-component Au and Ag hybrid structures demonstrate that the Au-Ag-Au multi-segmental hybrid structure has much larger optical nonlinearities than its counterparts. These results demonstrate that the Au-Ag-Au hybrid structure is a promising candidate for applications in plasmonic devices and enhancement substrates.
Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho
2016-03-28
We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ∼80% at 550 nm and sheet resistance of 18 Ω sq(-1). Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.
Bowen, Richard J; Navarro, Maribel; Shearwood, Anne-Marie J; Healy, Peter C; Skelton, Brian W; Filipovska, Aleksandra; Berners-Price, Susan J
2009-12-28
The 1 : 2 adducts of copper(I) halides with 1,2-bis(2-pyridylphosphino)ethane (d2pype) have been synthesized and solution properties characterized by variable temperature (1)H, (31)P and (65)Cu NMR spectroscopy. Single-crystal structure determinations for the chloride, bromide and iodide complexes show these to crystallize from acetonitrile in the triclinic space group P1 as isostructural centrosymmetric dimers [(d2pype)Cu(mu-d2pype)(2)Cu(d2pype)]X(2).(solvent) with a approximately 12.6, b approximately 12.7, c approximately 15.3 A, alpha approximately 84, beta approximately 67, gamma approximately 84 degrees. In contrast to the analogous AuCl:2(d2pype) and AgNO(3):2(d2pype) adducts, in solution these CuX:2(d2pype) adducts (where X = Cl, Br and I) exist almost exclusively as bis-chelated monomeric [Cu(d2pype)(2)]X; evidence for an equilibrium between monomeric and dimeric forms is detected only for the CuCl adduct in methanol. Cytotoxicity studies in two human breast cancer lines and two matched liver progenitor cell lines indicate that [Cu(d2pype)(2)]Cl is non selectively toxic to both non-tumourigenic and tumourigenic cells. However, the analogous Au(I) compound [Au(d2pype)(2)]Cl, is toxic to highly tumourigenic cells and more selective in its toxicity to tumourigenic cells compared to non-tumourigenic cells. The significance of these results to the further development of selective, mitochondria-targeted, Au(I) antitumour complexes is discussed.
Belyaev, Andrey; Eskelinen, Toni; Dau, Thuy Minh; Ershova, Yana Yu; Tunik, Sergey P; Melnikov, Alexei S; Hirva, Pipsa; Koshevoy, Igor O
2018-01-26
The series of cyanide-bridged coordination polymers [(P 2 )CuCN] n (1), [(P 2 )Cu{M(CN) 2 }] n (M=Cu 3, Ag 4, Au 5) and molecular tetrametallic clusters [{(P 4 )MM'(CN)} 2 ] 2+ (MM'=Cu 2 6, Ag 2 7, AgCu 8, AuCu 9, AuAg 10) were obtained using the bidentate P 2 and tetradentate P 4 phosphane ligands (P 2 =1,2-bis(diphenylphosphino)benzene; P 4 =tris(2-diphenylphosphinophenyl)phosphane). All title complexes were crystallographically characterized to reveal a zig-zag chain arrangement for 1 and 3-5, whereas 6-10 possess metallocyclic frameworks with different degree of metal-metal bonding. The d 10 -d 10 interactions were evaluated by the quantum theory of atoms in molecules (QTAIM) computational approach. The photophysical properties of 1-10 were investigated in the solid state and supported by theoretical analysis. The emission of compounds 1 and 3-5, dominated by metal-to-ligand charge transfer (MLCT) transitions located within {CuP 2 } motifs, is compatible with thermally activated delayed fluorescence (TADF) behaviour and a small energy gap between the T 1 and S 1 excited states. The luminescence characteristics of 6-10 are strongly dependent on the composition of the metal core; the emission band maxima vary in the range 484-650 nm with quantum efficiency reaching 0.56 (6). The origin of the emission for 6-8 and 10 at room temperature is assigned to delayed fluorescence. AuCu cluster 9, however, exhibits only phosphorescence that corresponds to theoretically predicted large value ΔE(S 1 -T 1 ). DFT simulation highlights a crucial impact of metallophilic bonding on the nature and energy of the observed emission, the effect being greatly enhanced in the excited state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhanced catalyst activity by decorating of Au on Ag@Cu2O nanoshell
NASA Astrophysics Data System (ADS)
Chen, Lei; Liu, Maomao; Zhao, Yue; Kou, Qiangwei; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Yang, Jinghai; Jung, Young Mee
2018-03-01
We successfully synthesized Au-decorated Ag@Cu2O heterostructures via a simple galvanic replacement method. As the Au precursor concentration increased, the density of the Au nanoparticles (NPs) on the Ag@Cu2O surface increased, which changed the catalytic activity of the Ag@Cu2O-Au structure. The combination of Au, Ag, and Cu2O exhibited excellent catalytic properties, which can further effect on the catalyst activity of the Ag@Cu2O-Au structure. In addition, the proposed Ag@Cu2O-Au nanocomposite was used to transform the organic, toxic pollutant, 4-nitrophenol (4-NP), into its nontoxic and medicinally important amino derivative via a catalytic reduction to optimize the material performance. The proposed Au-decorated Ag@Cu2O exhibited excellent catalytic activity, and the catalytic reduction time greatly decreased (5 min). Thus, three novel properties of Ag@Cu2O-Au, i.e., charge redistribution and transfer, adsorption, and catalytic reduction of organic pollutants, were ascertained for water remediation. The proposed catalytic properties have potential applications for photocatalysis and localized surface plasmon resonance (LSPR)- and peroxidase-like catalysis.
Pani, Alok; Lee, Joong Hee; Yun, Soon-Ii
2016-01-01
The increasing use of nanoparticles and nanocomposite in pharmaceutical and processed food industry have increased the demand for nontoxic and inert metallic nanostructures. Chemical and physical method of synthesis of nanostructures is most popular in industrial production, despite the fact that these methods are labor intensive and/or generate toxic effluents. There has been an increasing demand for rapid, ecofriendly and relatively cheaper synthesis of nanostructures. Here, we propose a strategy, for one-minute green synthesis of AgNPs and a one-pot one-minute green synthesis of Au-Ag nanocomposite, using Melia azedarach bark aqueous extract as reducing agent. The hydrothermal mechanism of the autoclave technology has been successfully used in this study to accelerate the nucleation and growth of nano-crystals. The study also presents high antimicrobial potential of the synthesized nano solutions against common food and water born pathogens. The multistep characterization and analysis of the synthesized nanomaterial samples, using UV-visible spectroscopy, ICP-MS, FT-IR, EDX, XRD, HR-TEM and FE-SEM, also reveal the reaction dynamics of AgNO3, AuCl3 and plant extract in synthesis of the nanoparticles and nanocomposite. The antimicrobial effectiveness of the synthesized Au-Ag nanocomposite, with high gold to silver ratio, reduces the dependency on the AgNPs, which is considered to be environmentally more toxic than the gold counterpart. We hope that this new strategy will change the present course of green synthesis. The rapidity of synthesis will also help in industrial scale green production of nanostructures using Melia azedarach.
NASA Astrophysics Data System (ADS)
Yu, Xu; Cheng, Gong; Zheng, Si-Yang
2016-05-01
In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min-1 (R2 = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn’t show much decrease of the catalytic capability.
Alternatives for joining Si wafers to strain-accommodating Cu for high-power electronics
NASA Astrophysics Data System (ADS)
Faust, Nicholas; Messler, Robert W.; Khatri, Subhash
2001-10-01
Differences in the coefficients of thermal expansion (CTE) between silicon wafers and underlying copper electrodes have led to the use of purely mechanical dry pressure contacts for primary electrical and thermal connections in high-power solid-state electronic devices. These contacts are limited by their ability to dissipate I2R heat from within the device and by their thermal fatigue life. To increase heat dissipation and effectively deal with the CTE mismatch, metallurgical bonding of the silicon to a specially-structured, strain-accommodating copper electrode has been proposed. This study was intended to seek alternative methods for and demonstrate the feasibility of bonding Si to structured Cu in high-power solid-state devices. Three different but fundamentally related fluxless approaches identified and preliminarily assessed were: (1) conventional Sn-Ag eutectic solder; (2) a new, commercially-available active solder based on the Sn-Ag eutectic; and (3) solid-liquid interdiffusion bonding using the Au-In system. Metallurgical joints were made with varying quality levels (according to nonde-structive ultrasonic C-scan mapping, SEM, and electron microprobe) using each approach. Mechanical shear testing resulted in cohesive failure within the Si or the filler alloys. The best approach, in which eutectic Sn-Ag solder in pre-alloyed foil form was employed on Si and Cu substrates metallized (from the substrate outward) with Ti, Ni and Au, exhibited joint thermal conduction 74% better than dry pressure contacts.
Wang, Ai-Qin; Chang, Chun-Ming; Mou, Chung-Yuan
2005-10-13
We report a novel Au-Ag alloy catalyst supported on mesoporous aluminosilicate Au-Ag@MCM prepared by a one-pot synthesis procedure, which is very active for low-temperature CO oxidation. The activity was highly dependent on the hydrogen pretreatment conditions. Reduction at 550-650 degrees C led to high activity at room temperature, whereas as-synthesized or calcined samples did not show any activity at the same temperature. Using various characterization techniques, such as XRD, UV-vis, XPS, and EXAFS, we elucidated the structure and surface composition change during calcination and the reduction process. The XRD patterns show that particle size increased only during the calcination process on those Ag-containing samples. XPS and EXAFS data demonstrate that calcination led to complete phase segregation of the Au-Ag alloy and the catalyst surface is greatly enriched with AgBr after the calcination process. However, subsequent reduction treatment removed Br- completely and the Au-Ag alloy was formed again. The surface composition of the reduced Au-Ag@MCM (nominal Au/Ag = 3/1) was more enriched with Ag, with the surface Au/Ag ratio being 0.75. ESR spectra show that superoxides are formed on the surface of the catalyst and its intensity change correlates well with the trend of catalytic activity. A DFT calculation shows that CO and O2 coadsorption on neighboring sites on the Au-Ag alloy was stronger than that on either Au or Ag. The strong synergism in the coadsorption of CO and O2 on the Au-Ag nanoparticle can thus explain the observed synergetic effect in catalysis.
Beiraghi, Asadollah; Shokri, Masood; Seidi, Shahram; Godajdar, Bijan Mombani
2015-01-09
A new centrifuge-less dispersive liquid-liquid microextraction technique based on application of magnetomotive room temperature dicationic ionic liquid followed by electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of trace amount of gold and silver in water and ore samples, for the first time. Magnetic ionic liquids not only have the excellent properties of ionic liquids but also exhibit strong response to an external magnetic field. These properties provide more advantages and potential application prospects for magnetic ionic liquids than conventional ones in the fields of extraction processes. In this work, thio-Michler's ketone (TMK) was used as chelating agent to form Ag/Au-TMK complexes. Several important factors affecting extraction efficiency including extraction time, rate of vortex agitator, pH of sample solution, concentration of the chelating agent, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) were 3.2 and 7.3ngL(-1) with the preconcentration factors of 245 and 240 for Au and Ag, respectively. The precision values (RSD%, n=7) were 5.3% and 5.8% at the concentration level of 0.05μgL(-1) for Au and Ag, respectively. The relative recoveries for the spiked samples were in the acceptable range of 96-104.5%. The results demonstrated that except Hg(2+), no remarkable interferences are created by other various ions in the determination of Au and Ag, so that the tolerance limits (WIon/WAu or Ag) of major cations and anions were in the range of 250-1000. The validated method was successfully applied for the analysis of Au and Ag in some water and ore samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kourmouli, Angeliki; Valenti, Marco; van Rijn, Erwin; Beaumont, Hubertus J. E.; Kalantzi, Olga-Ioanna; Schmidt-Ott, Andreas; Biskos, George
2018-03-01
The use of disc diffusion susceptibility tests to determine the antibacterial activity of engineered nanoparticles (ENPs) is questionable because their low diffusivity practically prevents them from penetrating through the culture media. In this study, we investigate the ability of such a test, namely the Kirby-Bauer disc diffusion test, to determine the antimicrobial activity of Au and Ag ENPs having diameters from 10 to 40 nm on Escherichia coli cultures. As anticipated, the tests did not show any antibacterial effects of Au nanoparticles (NPs) as a result of their negligible diffusivity through the culture media. Ag NPs on the other hand exhibited a strong antimicrobial activity that was independent of their size. Considering that Ag, in contrast to Au, dissolves upon oxidation and dilution in aqueous solutions, the apparent antibacterial behavior of Ag NPs is attributed to the ions they release. The Kirby-Bauer method, and other similar tests, can therefore be employed to probe the antimicrobial activity of ENPs related to their ability to release ions rather than to their unique size-dependent properties. [Figure not available: see fulltext.
Plasmonic Photovoltaic Cells with Dual-Functional Gold, Silver, and Copper Half-Shell Arrays.
Wu, Ling; Kim, Gyu Min; Nishi, Hiroyasu; Tatsuma, Tetsu
2017-09-12
Solid-state photovoltaic cells based on plasmon-induced charge separation (PICS) have attracted growing attention during the past decade. However, the power conversion efficiency (PCE) of the previously reported devices, which are generally loaded with dispersed metal nanoparticles as light absorbers, has not been sufficiently high. Here we report simpler plasmonic photovoltaic cells with interconnected Au, Ag, and Cu half-shell arrays deposited on SiO 2 @TiO 2 colloidal crystals, which serve both as a plasmonic light absorber and as a current collector. The well-controlled and easily prepared plasmonic structure allows precise comparison of the PICS efficiency between different plasmonic metal species. The cell with the Ag half-shell array has higher photovoltaic performance than the cells with Au and Cu half-shell arrays because of the high population of photogenerated energetic electrons, which gives a high electron injection efficiency and suppressed charge recombination probability, achieving the highest PCE among the solid-state PICS devices even without a hole transport layer.
Pogacean, Florina; Biris, Alexandru R; Coros, Maria; Lazar, Mihaela Diana; Watanabe, Fumiya; Kannarpady, Ganesh K; Al Said, Said A Farha; Biris, Alexandru S; Pruneanu, Stela
2014-01-01
In this paper, we present a novel approach for the electrochemical detection of S-captopril based on graphene AuAg nanostructures used to modify an Au electrode. Multi-layer graphene (Gr) sheets decorated with embedded bimetallic AuAg nanoparticles were successfully synthesized catalytically with methane as the carbon source. The two catalytic systems contained 1.0 wt% Ag and 1.0 wt% Au, while the second had a larger concentration of metals (1.5 wt% Ag and 1.5 wt% Au) and was used for the synthesis of the Gr-AuAg-1 and Gr-AuAg-1.5 multicomponent samples. High-resolution transmission electron microscopy analysis indicated the presence of graphene flakes that had regular shapes (square or rectangular) and dimensions in the tens to hundreds of nanometers. We found that the size of the embedded AuAg nanoparticles varied between 5 and 100 nm, with the majority being smaller than 20 nm. Advanced scanning transmission electron microscopy studies indicated a bimetallic characteristic of the metallic clusters. The resulting Gr-AuAg-1 and Gr-AuAg-1.5 samples were used to modify the surface of commonly used Au substrates and subsequently employed for the direct electrochemical oxidation of S-captopril. By comparing the differential pulse voltammograms recorded with the two modified electrodes at various concentrations of captopril, the peak current was determined to be well-defined, even at relatively low concentration (10−5 M), for the Au/Gr-AuAg-1.5 electrode. In contrast, the signals recorded with the Au/Gr-AuAg-1 electrode were poorly defined within a 5×10−6 to 5×10−3 M concentration range, and many of them overlapped with the background. Such composite materials could find significant applications in nanotechnology, sensing, or nanomedicine. PMID:24596464
Microhardness and In Vitro Corrosion of Heat-Treated Mg–Y–Ag Biodegradable Alloy
Vlček, Marián; Lukáč, František; Kudrnová, Hana; Smola, Bohumil; Stulíková, Ivana; Luczak, Monika; Szakács, Gábor; Hort, Norbert; Willumeit-Römer, Regine
2017-01-01
Magnesium alloys are promising candidates for biodegradable medical implants which reduce the necessity of second surgery to remove the implants. Yttrium in solid solution is an attractive alloying element because it improves mechanical properties and exhibits suitable corrosion properties. Silver was shown to have an antibacterial effect and can also enhance the mechanical properties of magnesium alloys. Measurements of microhardness and electrical resistivity were used to study the response of Mg–4Y and Mg–4Y–1Ag alloys to isochronal or isothermal heat treatments. Hardening response and electrical resistivity annealing curves in these alloys were compared in order to investigate the effect of silver addition. Procedures for solid solution annealing and artificial aging of the Mg–4Y–1Ag alloy were developed. The corrosion rate of the as-cast and heat-treated Mg–4Y–1Ag alloy was measured by the mass loss method. It was found out that solid solution heat treatment, as well artificial aging to peak hardness, lead to substantial improvement in the corrosion properties of the Mg–4Y–1Ag alloy. PMID:28772414
Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions.
Lien, Chia-Wen; Chen, Ying-Chieh; Chang, Huan-Tsung; Huang, Chih-Ching
2013-09-07
In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs) to develop OR, AND, INHIBIT, and XOR logic gates through regulation of the enzyme-like activity of Au NPs. In the presence of various metal ions (Ag(+), Bi(3+), Pb(2+), Pt(4+), and Hg(2+)), we found that Au NPs (13 nm) exhibited peroxidase-, oxidase-, or catalase-like activity. After Ag(+), Bi(3+), or Pb(2+) ions had been deposited on the Au NPs, the particles displayed strong peroxidase-like activity; on the other hand, they exhibited strong oxidase- and catalase-like activities after reactions with Ag(+)/Hg(2+) and Hg(2+)/Bi(3+) ions, respectively. The catalytic activities of these Au NPs arose mainly from the various oxidation states of the surface metal atoms/ions. Taking advantage of this behavior, we constructed multiplex logic operations-OR, AND, INHIBIT, and XOR logic gates-through regulation of the enzyme-like activity after the introduction of metal ions into the Au NP solution. When we deposited Hg(2+) and/or Bi(3+) ions onto the Au NPs, the catalase-like activities of the Au NPs were strongly enhanced (>100-fold). Therefore, we could construct an OR logic gate by using Hg(2+)/Bi(3+) as inputs and the catalase-like activity of the Au NPs as the output. Likewise, we constructed an AND logic gate by using Pt(4+) and Hg(2+) as inputs and the oxidase-like activity of the Au NPs as the output; the co-deposition of Pt and Hg atoms/ions on the Au NPs was responsible for this oxidase-like activity. Competition between Pb(2+) and Hg(2+) ions for the Au NPs allowed us to develop an INHIBIT logic gate-using Pb(2+) and Hg(2+) as inputs and the peroxidase-like activity of the Au NPs as the output. Finally, regulation of the peroxidase-like activity of the Au NPs through the two inputs Ag(+) and Bi(3+) enabled us to construct an XOR logic gate.
Kéri, Albert; Kálomista, Ildikó; Ungor, Ditta; Bélteki, Ádám; Csapó, Edit; Dékány, Imre; Prohaska, Thomas; Galbács, Gábor
2018-03-01
In this study, the information that can be obtained by combining normal and high resolution single particle ICP-MS (spICP-MS) measurements for spherical bimetallic nanoparticles (BNPs) was assessed. One commercial certified core-shell Au-Ag nanoparticle and three newly synthesized and fully characterized homogenous alloy Au-Ag nanoparticle batches of different composition were used in the experiments as BNP samples. By scrutinizing the high resolution spICP-MS signal time profiles, it was revealed that the width of the signal peak linearly correlates with the diameter of nanoparticles. It was also observed that the width of the peak for same-size nanoparticles is always significantly larger for Au than for Ag. It was also found that it can be reliably determined whether a BNP is of homogeneus alloy or core-shell structure and that, in the case of the latter, the core comprises of which element. We also assessed the performance of several ICP-MS based analytical methods in the analysis of the quantitative composition of bimetallic nanoparticles. Out of the three methods (normal resolution spICP-MS, direct NP nebulization with solution-mode ICP-MS, and solution-mode ICP-MS after the acid dissolution of the nanoparticles), the best accuracy and precision was achieved by spICP-MS. This method allows the determination of the composition with less than 10% relative inaccuracy and better than 3% precision. The analysis is fast and only requires the usual standard colloids for size calibration. Combining the results from both quantitative and structural analyses, the core diameter and shell thickness of core-shell particles can also be calculated. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn
2014-03-15
Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electricmore » field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.« less
Effect of ablation time on femtosecond laser synthesis of Au- Ag colloidal nanoalloys
NASA Astrophysics Data System (ADS)
Hidayah, A. N.; Triyono, D.; Herbani, Y.; Isnaeni; Suliyanti, M. M.
2018-03-01
Au-Ag nanoalloys have been synthesized by laser irradiation technique. First, Au and Ag nanoparticles were prepared from Au and Ag pure metal (99.9%) ablated using an 800 nm femtosecond laser in distilled water. Using the same laser, Au and Ag nanoparticle with 1:1 ratio were subsequently mixed and irradiated with various irradiation time, i.e. 0, 5, 20, and 35 minutes. We varied the ablation time for each metal nanoparticles, i.e. 25 minutes and 1 hour to see its effect on the production of nanoalloys in the subsequent irradiation. Au-Ag nanoalloys were characterized and analyzed using transmission electron microscope and UV-Vis spectrophotometry. The result shows that Au-Ag nanoalloys were already formed in 20 minutes irradiation, either for the sample ablated for 25 minutes or 1 hour. The result of TEM shows that the size of Au-Ag nanoalloys prepared from 1 hour ablation was around 15.03 nm.
Karthika, Viswanathan; Arumugam, Ayyakannu; Gopinath, Kasi; Kaleeswarran, Periyannan; Govindarajan, Marimuthu; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Benelli, Giovanni
2017-02-01
In the present study, we focused on a quick and green method to fabricate Ag, Au and Ag/Au alloy nanoparticles (NPs) using the bark extract of Guazuma ulmifolia L. Green synthesized metal NPs were characterized using different techniques, including UV-Vis spectroscopy, FT-IR, XRD, AFM and HR-TEM analyses. The production of Ag, Au and Ag/Au alloy NPs was observed monitoring color change from colorless to brown, followed by pink and dark brown, as confirmed by UV-Vis spectroscopy characteristic peaks at 436, 522 and 510nm, respectively. TEM shed light on the spherical shapes of NPs with size ranges of 10-15, 20-25 and 10-20nm. Biosynthesized NPs showed good catalytic activity reducing two organic dyes, 4-nitrophenol (4-NP) and Congo red (CR). UV-vis spectroscopy, fluorescence, circular dichroism spectroscopy and viscosity analyses were used to investigate the NP binding with calf thymus DNA. The binding constant of NPs with DNA calculated in UV-Vis absorption studies were 1.18×10 4 , 1.83×10 4 and 2.91×10 4 M -1 , respectively, indicating that NPs were able to bind DNA with variable binding affinity: Ag/Au alloy NPs>Ag NPs>Au NPs. Ag/Au alloy NPs also showed binding activity to bovine serum albumin (BSA) over the other NPs. Ag and Ag/Au alloy NPs exhibited good antimicrobial activity on 14 species of microbial pathogens. In addition, the cytotoxic effects of Ag/Au alloy NPs were studied on human cervical cancer cells (HeLa) using MTT assay. Overall, our work showed the promising potential of bark-synthesized Ag and Ag/Au alloy NPs as cheap sources to develop novel and safer photocatalytic, antimicrobial and anticancer agents. Copyright © 2017. Published by Elsevier B.V.
Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.
Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia
2014-11-07
In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.
Surface plasmon resonances in liquid metal nanoparticles
NASA Astrophysics Data System (ADS)
Ershov, A. E.; Gerasimov, V. S.; Gavrilyuk, A. P.; Karpov, S. V.
2017-06-01
We have shown significant suppression of resonant properties of metallic nanoparticles at the surface plasmon frequency during the phase transition "solid-liquid" in the basic materials of nanoplasmonics (Ag, Au). Using experimental values of the optical constants of liquid and solid metals, we have calculated nanoparticle plasmonic absorption spectra. The effect was demonstrated for single particles, dimers and trimers, as well as for the large multiparticle colloidal aggregates. Experimental verification was performed for single Au nanoparticles heated to the melting temperature and above up to full suppression of the surface plasmon resonance. It is emphasized that this effect may underlie the nonlinear optical response of composite materials containing plasmonic nanoparticles and their aggregates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orza, Anamaria; Wu, Hui; Li, Yuancheng
Purpose: To develop a core/shell nanodimer of gold (core) and silver iodine (shell) as a dual-modal contrast-enhancing agent for biomarker targeted x-ray computed tomography (CT) and photoacoustic imaging (PAI) applications. Methods: The gold and silver iodine core/shell nanodimer (Au/AgICSD) was prepared by fusing together components of gold, silver, and iodine. The physicochemical properties of Au/AgICSD were then characterized using different optical and imaging techniques (e.g., HR- transmission electron microscope, scanning transmission electron microscope, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, Z-potential, and UV-vis). The CT and PAI contrast-enhancing effects were tested and then compared with a clinically used CT contrast agentmore » and Au nanoparticles. To confer biocompatibility and the capability for efficient biomarker targeting, the surface of the Au/AgICSD nanodimer was modified with the amphiphilic diblock polymer and then functionalized with transferrin for targeting transferrin receptor that is overexpressed in various cancer cells. Cytotoxicity of the prepared Au/AgICSD nanodimer was also tested with both normal and cancer cell lines. Results: The characterizations of prepared Au/AgI core/shell nanostructure confirmed the formation of Au/AgICSD nanodimers. Au/AgICSD nanodimer is stable in physiological conditions for in vivo applications. Au/AgICSD nanodimer exhibited higher contrast enhancement in both CT and PAI for dual-modality imaging. Moreover, transferrin functionalized Au/AgICSD nanodimer showed specific binding to the tumor cells that have a high level of expression of the transferrin receptor. Conclusions: The developed Au/AgICSD nanodimer can be used as a potential biomarker targeted dual-modal contrast agent for both or combined CT and PAI molecular imaging.« less
The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation.
Klitzke, Sondra; Metreveli, George; Peters, Andre; Schaumann, Gabriele E; Lang, Friederike
2015-12-01
Nanoparticles enter soils through various pathways. In the soil, they undergo various interactions with the solution and the solid phase. We tested the following hypotheses using batch experiments: i) the colloidal stability of Ag NP increases through sorption of soil-borne dissolved organic matter (DOM) and thus inhibits aggregation; ii) the presence of DOM suppresses Ag oxidation; iii) the surface charge of Ag NP governs sorption onto soil particles. Citrate-stabilized and bare Ag NPs were equilibrated with (colloid-free) soil solution extracted from a floodplain soil for 24h. Nanoparticles were removed through centrifugation. Concentrations of free Ag ions and DOC, the specific UV absorbance at a wavelength of 254 nm, and the absorption ratio α254/α410 were determined in the supernatant. Nanoparticle aggregation was studied using time-resolved dynamic light scattering (DLS) measurement following the addition of soil solution and 1.5mM Ca(2+) solution. To study the effect of surface charge on the adsorption of Ag NP onto soil particles, bare and citrate-stabilized Ag NP, differing in the zeta potential, were equilibrated with silt at a solid-to-solution ratio of 1:10 and an initial Ag concentration range of 30 to 320 μg/L. Results showed that bare Ag NPs sorb organic matter, with short-chained organic matter being preferentially adsorbed over long-chained, aromatic organic matter. Stabilizing effects of organic matter only come into play at higher Ag NP concentrations. Soil solution inhibits the release of Ag(+) ions, presumably due to organic matter coatings. Sorption to silt particles was very similar for the two particle types, suggesting that the surface charge does not control Ag NP sorption. Besides, sorption was much lower than in comparable studies with sand and glass surfaces. Copyright © 2014. Published by Elsevier B.V.
Nomiya, K; Noguchi, R; Ohsawa, K; Tsuda, K; Oda, M
2000-03-01
Two isomeric gold(I)-triphenylphosphine complexes with nitrogen-containing heterocycles, [Au(L)(PPh3) (HL = pyrazole (1), imidazole (2)) were isolated as colorless cubic crystals for 1 and colorless plate crystals for 2, respectively. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction. These complexes were also fully characterized by complete elemental analyses, thermogravimetric/differential thermal analyses (TG/DTA) and FT-IR in the solid state and by solution NMR (31P, 1H and 13C) spectroscopy and molecular weight measurements in acetone solution. These complexes consisted of a monomeric 2-coordinate AuNP core both in the solid state and in solution. The molecular structures of 1 and 2 were compared with those of related gold(I) complexes, [Au(1,2,3-triz)(PPh3)] (3, Htriz = triazole), [Au(1,2,4-triz)(PPh3)]2 (4) as a dimer through a gold(I)-gold(I) bond in the solid state, and [Au(tetz)(PPh3)] (5, Htetz = tetrazole). Selective and effective antimicrobial activities against two gram-positive bacteria (B. subtilis, S. aureus) and modest activities against one yeast (C. albicans) found in these gold(I) complexes 1-4 are noteworthy, in contrast to poor activities observed in the corresponding silver(I) complexes.
Carbon Dioxide Gas Sensors and Method of Manufacturing and Using Same
NASA Technical Reports Server (NTRS)
Liu, Chung Chiun (Inventor); Ward, Benjamin J. (Inventor); Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor)
2011-01-01
A gas sensor includes a substrate and a pair of interdigitated metal electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, and Os. The electrodes each include an upper surface. A first solid electrolyte resides between the interdigitated electrodes and partially engages the upper surfaces of the electrodes. The first solid electrolyte is selected from the group consisting of NASICON, LISICON, KSICON, and .beta.''-Alumina (beta prime-prime alumina in which when prepared as an electrolyte is complexed with a mobile ion selected from the group consisting of Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+ or Ba.sup.2+). A second electrolyte partially engages the upper surfaces of the electrodes and engages the first solid electrolyte in at least one point. The second electrolyte is selected from the group of compounds consisting of Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+ or Ba.sup.2+ ions or combinations thereof.
Amperometric Sensor for Detection of Chloride Ions.
Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene
2008-09-15
Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO₃, a solution of AgNO₃ and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO₃, solution of AgNO₃ and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM.
Sameni, Soheila; Jeunesse, Catherine; Matt, Dominique; Toupet, Loïc
2009-10-12
The first diphosphines based on a double calixarene, namely 1,4 (or 1,3)-bis-(5-diphenylphosphino-25,26,27,28-tetrapropoxycalix[4]aren-17-yl)benzene (L(2), L(3)) were each prepared in four steps starting from 5,17-dibromo-25,26,27,28-tetrapropoxycalix[4]arene. Upon reaction of L(2) with [Au(tht)(thf)]BF(4), (tht = C(4)H(8)S) a rigid metallo-capsule was quantitatively formed, which adopts an oblique form owing to the distinct nature of the spacers linking the two calixarene half-spheres. In the solid state, the 1,4-substituted phenylene linker is turned towards the gold ion, suggesting the existence of weak bonding interactions between two aromatic CH protons of this ring and the metal centre (AuH =2.67 A). In contrast to this gold complex, the related silver complex shows dynamic behaviour in solution, the exchange between two enantiomeric oblique forms being facilitated by the greater stereochemical flexibility of Ag(I) vs. Au(I). A heteronuclear (109)Ag{(1)H} HMQC experiment established strong correlations between the CH protons of the phenylene linker and the (109)Ag ion. Dynamic behaviour similar to that observed for the silver complex was further observed in trans-[PtCl(2)L(2)], a chelate complex that could be obtained quantitatively from L(2) and [PtCl(2)(PhCN)(2)]. The intended formation of a chelate complex leading to a capsule with an endo-oriented metal centre was achieved by reacting L(3) with [Pd(allyl)(thf)(2)]BF(4). The complex thus formed constitutes the first organometallic transition metal complex embedded in a cavity with large portals. Binding of [RuCl(2)(p-cymene)] to L(2) and L(3) resulted in self-compacting bimetallic complexes in which each calixarene basket entraps a Ru(p-cymene) unit, thereby forming molecules occupying a minimal volume.
Tunable random lasing behavior in plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Yadav, Ashish; Zhong, Liubiao; Sun, Jun; Jiang, Lin; Cheng, Gary J.; Chi, Lifeng
2017-01-01
Random lasing is desired in plasmonics nanostructures through surface plasmon amplification. In this study, tunable random lasing behavior was observed in dye molecules attached with Au nanorods (NRs), Au nanoparticles (NPs) and Au@Ag nanorods (NRs) respectively. Our experimental investigations showed that all nanostructures i.e., Au@AgNRs, AuNRs & AuNPs have intensive tunable spectral effects. The random lasing has been observed at excitation wavelength 532 nm and varying pump powers. The best random lasing properties were noticed in Au@AgNRs structure, which exhibits broad absorption spectrum, sufficiently overlapping with that of dye Rhodamine B (RhB). Au@AgNRs significantly enhance the tunable spectral behavior through localized electromagnetic field and scattering. The random lasing in Au@AgNRs provides an efficient coherent feedback for random lasers.
Facile synthesis of "green" gold nanocrystals using cynarin in an aqueous solution
NASA Astrophysics Data System (ADS)
Katircioğlu, Zeynep; Şakalak, Hüseyin; Ulaşan, Mehmet; Gören, Ahmet Ceyhan; Yavuz, Mustafa Selman
2014-11-01
Herein we describe a water-based protocol that generates Au nanoparticles (AuNPs) by mixing aqueous solutions of HAuCl4 and cynarin (a natural product extract from artichoke leaf). Based on the observations from 1H NMR spectrum of AuNPs, a polyol oxidation mechanism by metal ions which eventually results in AuNPs formation, is proposed. Basically, the aromatic alcohol groups (1,2-benzenediol) of cynarin are oxidized to α-hydroxy ketone intermediate product, and then further oxidized to the vicinal diketone final product while the Au3+ ions are reduced to its atomic form (Au0) which leads the generation of Au nanoparticles. This new protocol has also been employed to prepare multiply twinned Pd nanoparticles and Ag cubical aggregates. Due to exclusion of organic solvent, surfactant, or stabilizer for all these synthesis, this protocol may provide a simple, versatile, and environmentally benign route to fabricate noble-metal nanoparticles having various compositions and morphologies.
Shape-engineering substrate-based plasmonic nanomaterials
NASA Astrophysics Data System (ADS)
Gilroy, Kyle D.
The advancement of next generation technologies is reliant on our ability to engineer matter at the nanoscale. Since the morphological features of nanomaterials dictate their chemical and physical properties, a significant effort has been put forth to develop syntheses aimed at fine tuning their size, shape and composition. This massive effort has resulted in a maturing colloidal chemistry containing an extensive collection of morphologies with compositions nearly spanning the entire transition of the periodic table. While colloidal nanoparticles have opened the door to promising applications in fields such as cancer theranostics, drug delivery, catalysis and sensing; the synthetic protocols for the placement of nanomaterials on surfaces, a requisite for chip-based devices, are ill-developed. This dissertation serves to address this limitation by highlighting a series of syntheses related to the design of substrate-based nanoparticles whose size, shape and composition are controllably engineered to a desired endpoint. The experimental methods are based on a template-mediated approach which sees chemical modifications made to prepositioned thermally assembled metal nanostructures which are well bonded to a sapphire substrate. The first series of investigations will highlight synthetic routes utilizing galvanic replacement reactions, where the prepositioned templates are chemically transformed into hollow nanoshells. Detailed studies are provided highlighting discoveries related to (i) hollowing, (ii) defect transfer, (iii) strain induction, (iv) interdiffusion, (v) crystal structure and (vi) the localized surface plasmon resonance (LSPR). The second series of investigations, based on heterogeneous nucleation, have Au templates serve as nucleation sites for metal atoms arriving in either the solution- or vapor phase. The solution-phase heterogeneous nucleation of Ag on Au reveals that chemical kinetics (injection rate & precursor concentration) can be used to control the nature of how Ag atoms grow on the Au template. It was discovered that (i) slow kinetics leads to an anisotropic growth mode (heterodimeric structures), (ii) fast kinetics causes a very uniform deposition (Au-Ag coreshell morphology, or Au Ag) and (iii) medium kinetics produces structures with an intermediate morphology (truncated octahedron). In the second case, where the nucleation event is carried out at high temperatures, the Ag vapor is sourced from a sublimating foil onto adjacent Au templates. This process drives the composition and morphology from a Au Wulff-shape to a homogeneous Au-Ag nanoprism. By tracking over time the (i) morphological features, (ii) LSPR and (iii) composition; insights into the fundamental atomic scale growth mechanisms are elucidated. Overall, substrate-based template-mediated syntheses have proven to be an effective route for directing growth pathways toward a desired endpoint giving rise to an impressive new group of complex substrate-based nanostructures with asymmetric, core-shell and hollowed morphologies. While this dissertation is focused heavily on the development of synthetic procedures aimed at generating substrate-based plasmonic nanomaterials, the last chapter will serve to highlight a series of on-going studies aimed at defining these nanomaterials as highly effective heterogeneous catalysts. Several examples are shown including (i) nanoparticle films synthesize via sputter deposition, (ii) mechanically induced nanotexturing of bulk copper foils, (iii) ultra-small AuPd nanoparticles synthesized via pulse laser, (iv) substrate-based AuCu nanoprisms and (v) the Wulff in a Cage Morphology.
Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej
2018-03-15
One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl 4 - and Ag + ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej
2018-03-01
One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl4- and Ag+ ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate).
Yang, Xiang-Jun; Wang, Shi-Xiong; Zou, An-Qin; Chen, Jing; Guo, Hong
2014-02-01
Trialkyphosphine oxides (TRPO) was successfully used for the impregnation of D3520 resin to prepare an extractant-impregnated resin (EIR). Solid extraction of Au(I) from alkaline cyanide solution was studied using this extractant-impregnated resin (EIR), with addition of cetyltrimethylammonium bromide (CTMAB), directly into the aurous aqueous phase in advance. The mechanism of solid extraction was further investigated by means of FTIR, XPS and SEM. The column separation studies have shown that cationic surfactant CTMAB played a key role in the solid phase extraction, and the resin containing TRPO were effective for the extraction of gold when the molar ratio of CTMAB: Au( I ) reached 1:1. FTIR spectroscopy of gold loaded EIR showed that the frequency of C[triple bond]N stretching vibration was at 2144 cm(-1), and the frequency of P=O stretching vibration shifted to lower frequency from 1153 to 1150 cm(-1). The XPS spectrum of N(1s), Au(4f7/2) and Au(4f5/2) sugges- ted that the coordination environment of gold did not change before and after extraction, and gold was still as the form of Au (CN)2(-) anion exiting in the loaded resin; O(1s) spectrum showed that the chemically combined water significantly increased after solid extraction from 30.74% to 42.34%; Comparing to the P(2p) spectrum before and after extraction, the binding energy increased from 132. 15 to 132. 45 eV, indicating there maybe existing hydrogen-bond interaction between P=O and water molecule, such as P=O...H-O-H. The above results obtained established that in the solid extraction process, the hydrophobic ion association [CTMA+ x Au(CN)] diffused from the bulk solution into the pores of the EIR, and then be solvated by TRPO adsorbed in the pores through hydrogen bonding bridged by the water molecules.
Seeded Nanowire and Microwire Growth from Lithium Alloys.
Han, Sang Yun; Boebinger, Matthew G; Kondekar, Neha P; Worthy, Trevor J; McDowell, Matthew T
2018-06-06
Although vapor-liquid-solid (VLS) growth of nanowires from alloy seed particles is common in various semiconductor systems, related wire growth in all-metal systems is rare. Here, we report the spontaneous growth of nano- and microwires from metal seed particles during the cooling of Li-rich bulk alloys containing Au, Ag, or In. The as-grown wires feature Au-, Ag-, or In-rich metal tips and LiOH shafts; the results indicate that the wires grow as Li metal and are converted to polycrystalline LiOH during and/or after growth due to exposure to H 2 O and O 2 . This new process is a simple way to create nanostructures, and the findings suggest that metal nanowire growth from alloy seeds is possible in a variety of systems.
Synthesis and antimicrobial activity of gold/silver-tellurium nanostructures.
Chang, Hsiang-Yu; Cang, Jinshun; Roy, Prathik; Chang, Huan-Tsung; Huang, Yi-Cheng; Huang, Chih-Ching
2014-06-11
Gold-tellurium nanostructures (Au-Te NSs), silver-tellurium nanostructures (Ag-Te NSs), and gold/silver-tellurium nanostructures (Au/Ag-Te NSs) have been prepared through galvanic reactions of tellurium nanotubes (Te NTs) with Au(3+), Ag(+), and both ions, respectively. Unlike the use of less environmentally friendly hydrazine, fructose as a reducing agent has been used to prepare Te NTs from TeO2 powders under alkaline conditions. The Au/Ag-Te NSs have highly catlaytic activity to convert nonfluorescent Amplex Red to form fluorescent product, revealing their great strength of generating reactive oxygen species (ROS). Au/Ag-Te NSs relative to the other two NSs exhibit greater antimicrobial activity toward the growth of E. coli, S. enteritidis, and S. aureus; the minimal inhibitory concentration (MIC) values of Au/Ag-Te NSs were much lower (>10-fold) than that of Ag-Te NSs and Au-Te NSs. The antibacterial activity of Au/Ag-Te NSs is mainly due to the release of Ag(+) ions and Te-related ions and also may be due to the generated ROS which destroys the bacteria membrane. In vitro cytotoxicity and hemolysis analyses have revealed their low toxicity in selected human cell lines and insignificant hemolysis in red blood cells. In addition, inhibition zone measurements using a Au/Ag-Te NSs-loaded konjac jelly film have suggested that it has great potential in practial application such as wound dressing for reducing bacterial wound infection. Having great antibacterial activitiy and excellent biocompatibility, the low-cost Au/Ag-Te NSs hold great potential as effective antimicrobial drugs.
NASA Astrophysics Data System (ADS)
Wu, Yuan-Yun
In this dissertation, fluxless silver (Ag)-indium (In) binary system bonding and Ag solid-state bonding are used between different bonded pairs which have large thermal expansion coefficient (CTE) mismatch and flip-chip interconnect bonding application. In contrast to the conventional soldering process, fluxless bonding technique eliminates contamination and reliability problems caused by flux to fabricate high quality joints. There are two section are reported. In the first section, the reactions of Ag-In binary system are presented. In the second section, the high melting temperature, thermal and electrical conductivity joint materials bonding by either Ag-In binary system bonding or solid-state bonding processes for different bonded pairs and flip-chip application are designed, developed, and reported. Our group have studied Ag-In system for several years and developed the bonding processes successfully. However, the detailed reactions of Ag and In were seldom studied. To design a proper bonding structure, it is necessary to understand the reaction between Ag and In. The systematic experiments were performed to investigate these reactions. A 40 um Ag layer was electroplated on copper (Cu) substrates, followed by indium layers of 1, 3, 5, 10, and 15 um, respectively. The samples were annealed at 180 °C in 0.1 torr vacuum. For samples with In thickness less than 5 mum, the joint compositions are Ag2In only (1 um) or AgIn2, Ag2In, and Ag solid solution (Ag) after annealing. No indium is identified. For 10 and 15 um thick In samples, In covers almost over the entire sample surface after annealing. Later, an Ag layer was annealed at 450 °C for 3 hours to grow Ag grains, followed by plating 10 um In and annealing at 180 °C. By annealing Ag before plating In, more In is kept in the structure during annealing at 180 °C. Based on above results, for those designs with In thinner than 5 um, the Ag layer needs to be annealed, prior to In plating in order to make a successful bonding. In this section, we further studied the Ag-In bonding and solid-state bonding for different bonded pairs and flip-chip application. For the silicon (Si) and aluminum (Al) pair, Al has been used as the material for interconnect pads on the ICs. However, its high CTE (23 x 10-6/°C) and non-solderable property limit its applications in electronic products. To overcome these problems, a fluxless Ag-In bonding was developed. Al was deposited Cr/Cu layer on the surface by E-beam evaporator to make it solderable. 15 um of Ag and 8 um of In were sequentially plated on the Al substrates and 15 um of Ag was on Si chips with Cr/Au coating layer. The bonding was performed at 180 °C in 0.1 torr vacuum. The joint consists of Ag/(Ag)/Ag2In/(Ag)/Ag. The joint can achieve a solidus temperature of beyond 600 °C. From shear test results, the shear strengths far exceed the requirement in MIL-STD-883H. Al is not considered as a favorable substrate material because it is not solderable and has a high CTE. The new method presented in this thesis seems to have surmounted these two challenges. Since Ag2In is weak inside the joint in Ag-In system, an annealed process was used to convert the joints into Ag solid solution (Ag) to increase the joint strength and ductility. Two copper (Cu) substrates were bonded at 180 °C without flux. Bonding samples were annealed at 200 °C for 1,000 hours (first design) and at 250 °C for 350 hours (second design), respectively. Scanning electron microscope with energy dispersive X-ray (EDX) analysis results indicate that the joint of the first design is an alloy of mostly (Ag) with micron-size Ag2In and Ag3In regions, and that of second design has converted to a single (Ag) phase. Shear test results show that the breaking forces far exceed the requirement in MIL-STD-883H. The joint solidus temperatures are 600 °C and 800 °C for the first and second designs, respectively. The research results have shown that high-strength and high temperature joints can be manufactured using fluxless low temperature processes with the Ag-In system and are valuable in developing high temperature package. (Abstract shortened by UMI.).
Lim, Su Pei; Lim, Yee Seng; Pandikumar, Alagarsamy; Lim, Hong Ngee; Ng, Yun Hau; Ramaraj, Ramasamy; Bien, Daniel Chia Sheng; Abou-Zied, Osama K; Huang, Nay Ming
2017-01-04
In the present investigation, gold-silver@titania (Au-Ag@TiO 2 ) plasmonic nanocomposite materials with different Au and Ag compositions were prepared using a simple one-step chemical reduction method and used as photoanodes in high-efficiency dye-sensitized solar cells (DSSCs). The Au-Ag incorporated TiO 2 photoanode demonstrated an enhanced solar-to-electrical energy conversion efficiency of 7.33%, which is ∼230% higher than the unmodified TiO 2 photoanode (2.22%) under full sunlight illumination (100 mW cm -2 , AM 1.5G). This superior solar energy conversion efficiency was mainly due to the synergistic effect between the Au and Ag, and their surface plasmon resonance effect, which improved the optical absorption and interfacial charge transfer by minimizing the charge recombination process. The influence of the Au-Ag composition on the overall energy conversion efficiency was also explored, and the optimized composition with TiO 2 was found to be Au 75 -Ag 25 . This was reflected in the femtosecond transient absorption dynamics in which the electron-phonon interaction in the Au nanoparticles was measured to be 6.14 ps in TiO 2 /Au 75 :Ag 25 , compared to 2.38 ps for free Au and 4.02 ps for TiO 2 /Au 100 :Ag 0 . The slower dynamics indicates a more efficient electron-hole separation in TiO 2 /Au 75 :Ag 25 that is attributed to the formation of a Schottky barrier at the interface between TiO 2 and the noble metal(s) that acts as an electron sink. The significant boost in the solar energy conversion efficiency with the Au-Ag@TiO 2 plasmonic nanocomposite showed its potential as a photoanode for high-efficiency DSSCs.
NASA Astrophysics Data System (ADS)
Han, Shuhua; Zhou, Guangju; Fu, Yunzhi; Ma, Ying; Xu, Li; Zou, Chao; Chen, Wei; Yang, Yun; Huang, Shaoming
2015-12-01
We report the synthesis of high quality trimetallic Au/Ag/Pt nanorings (TAAPNs) by using Au/Ag alloy decahedra (AAAD) as templates. The alloying effect and AgCl-directing growth have been investigated in detail during the formation of TAAPN. It was found that the doping of Ag in AAAD changes the surrounding environment of Au atoms and decreases the oxidization reduction potential (ORP) of [AuCl2]-/Au because of the alloying effect, resulting in the dissolved O2 molecules that serve as an effective etchant for oxidizing Au to Au(i). Ascorbic acid (AA) and chloroplatinic acid (H2PtCl6) are weak acids which can accelerate the etching by increasing the concentration of H+. The AgCl selectively absorbs on {100} of the decahedra and induces the preferential deposition of H2PtCl6 here via their complexing interaction. AA reduces Pt(iv) and Ag(i) to atoms which grow on {100} facets. The formed Pt/Ag layer changes the etching direction from along [100] to [111] and generates the TAAPN. Besides, it has been noted that the TAAPNs exhibit good Surface Enhanced Raman Scattering (SERS) performance.We report the synthesis of high quality trimetallic Au/Ag/Pt nanorings (TAAPNs) by using Au/Ag alloy decahedra (AAAD) as templates. The alloying effect and AgCl-directing growth have been investigated in detail during the formation of TAAPN. It was found that the doping of Ag in AAAD changes the surrounding environment of Au atoms and decreases the oxidization reduction potential (ORP) of [AuCl2]-/Au because of the alloying effect, resulting in the dissolved O2 molecules that serve as an effective etchant for oxidizing Au to Au(i). Ascorbic acid (AA) and chloroplatinic acid (H2PtCl6) are weak acids which can accelerate the etching by increasing the concentration of H+. The AgCl selectively absorbs on {100} of the decahedra and induces the preferential deposition of H2PtCl6 here via their complexing interaction. AA reduces Pt(iv) and Ag(i) to atoms which grow on {100} facets. The formed Pt/Ag layer changes the etching direction from along [100] to [111] and generates the TAAPN. Besides, it has been noted that the TAAPNs exhibit good Surface Enhanced Raman Scattering (SERS) performance. Electronic supplementary information (ESI) available: The synthesis of pure Au decahedra, electrochemical measurements, other TEM images, HAADF images, EDS patterns, UV-vis spectra of products prepared under other conditions. See DOI: 10.1039/c5nr05531h
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, C G; Denison, A B; Weber, M H
We employed the two detector coincident Doppler Broadening Technique (coPAS) to investigate Ag, Au and Ag/Au alloy quantum dots of varying sizes which were deposited in thin layers on glass slides. The Ag quantum dots range from 2 to 3 nm in diameter, while the Ag/Au alloy quantum dots exhibit Ag cores of 2 nm and 3 nm and Au shells of varying thickness. We investigate the possibility of positron confinement in the Ag core due to positron affinity differences between Ag and Au. We describe the results and their significance to resolving the issue of whether positrons annihilate withinmore » the quantum dot itself or whether surface and positron escape effects play an important role.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briggs, Beverly D.; Palafox-Hernandez, J. Pablo; Li, Yue
Materials-binding peptides represent a unique avenue towards controlling the shape and size of nanoparticles (NPs) grown under aqueous conditions. Here, employing a bionanocombinatorics approach, two such materials-binding peptides were linked at either end of a photoswitchable spacer, forming a multi-domain materials-binding molecule to control the in situ synthesis and organization of Ag and Au NPs under ambient conditions. These multi-domain molecules retained the peptides’ ability to nucleate, grow, and stabilize Ag and Au NPs in aqueous media. Disordered co-assemblies of the two nanomaterials were observed by TEM imaging of dried samples after sequential growth of the two metals, and showedmore » a clustering behavior that was not observed without both metals and the linker molecules. While TEM evidence indicated the formation of AuNP/AgNP assemblies upon drying, SAXS analysis indicated that no extended assemblies existed in solution, suggesting that sample drying plays an important role in facilitating NP clustering. Molecular simulations and experimental data revealed tunable materials-binding based upon the isomerization state of the photoswitchable unit and metal employed. This work is a first step in generating externally actuated biomolecules with specific material-binding properties that could be used as the building blocks to achieve multi-material switchable NP assemblies.« less
Three reversible states controlled on a gold monoatomic contact by the electrochemical potential
NASA Astrophysics Data System (ADS)
Kiguchi, Manabu; Konishi, Tatsuya; Hasegawa, Kouta; Shidara, Satoshi; Murakoshi, Kei
2008-06-01
Conductance of a Au monoatomic contact was investigated under the electrochemical potential control. The Au contact showed three different behaviors depending on the potential: 1G0 (G0=2e2/h) , 0.5G0 , and not-well-defined values below 1G0 were shown when the potential of the contact was kept at -0.6V (double layer potential), -1.0V (hydrogen evolution potential), and 0.8 V (oxide formation potential) versus Ag/AgCl in 0.1M Na2SO4 solution, respectively. These three reversible states and their respective conductances could be fully controlled by the electrochemical potential. These changes in the conductance values are discussed based on the proposed structure models of hydrogen adsorbed and oxygen incorporated on a Au monoatomic contact.
Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces
NASA Astrophysics Data System (ADS)
Ambrosio, M. J.; Thumm, U.
2018-04-01
Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Liqin; Crew, Elizabeth; Yan, Hong
The ability to detect and intervene in DNA assembly, disassembly, and enzyme cutting processes in a solution phase requires effective signal transduction and stimulus response. This report demonstrates a novel bifunctional strategy for the creation of this ability using gold- and silver-coated MnZn ferrite nanoparticles (MZF@Au or MZF@Ag) that impart magnetic and surfaceenhanced Raman scattering (SERS) functionalities to these processes. The double-stranded DNA linkage of labeled gold nanoparticles with MZF@Au (or MZF@Ag) produces interparticle "hot-spots" for real-time SERS monitoring of the DNA assembly, disassembly, or enzyme cutting processes, during which the magnetic component provides an effective means for intervention inmore » the solution. The unique combination of the nanoprobes functionalities serves a new paradigm for the design of functional nanoprobes in biomolecular recognition and intervention.« less
Photoelectron spectroscopic and computational study of (M-CO2)- anions, M = Cu, Ag, Au
NASA Astrophysics Data System (ADS)
Zhang, Xinxing; Lim, Eunhak; Kim, Seong K.; Bowen, Kit H.
2015-11-01
In a combined photoelectron spectroscopic and computational study of (M-CO2)-, M = Au, Ag, Cu, anionic complexes, we show that (Au-CO2)- forms both the chemisorbed and physisorbed isomers, AuCO 2- and Au-(CO2), respectively; that (Ag-CO2)- forms only the physisorbed isomer, Ag-(CO2); and that (Cu-CO2)- forms only the chemisorbed isomer, CuCO 2- . The two chemisorbed complexes, AuCO 2- and CuCO 2- , are covalently bound, formate-like anions, in which their CO2 moieties are significantly reduced. These two species are examples of electron-induced CO2 activation. The two physisorbed complexes, Au-(CO2) and Ag-(CO2), are electrostatically and thus weakly bound.
Heat generation and stability of a plasmonic nanogold system
NASA Astrophysics Data System (ADS)
Ni, Yuan; Kan, Caixia; Gao, Qi; Wei, Jingjing; Xu, Haiying; Wang, Changshun
2016-02-01
The surface plasmon resonance (SPR) of Au nanostructures can be precisely tuned in the visible to near-infrared (vis-NIR) region with the size and morphology. The photothermal effect induced by the SPR can raise the temperature of Au nanostructures and the surrounding matrix under external illumination. In this work, hollow Au nanostructures such as nanoboxes and nanorings with a tunable SPR in the region of 650-1100 nm were obtained by a replacement reaction between HAuCl4 and the as-prepared Ag nanostructures as the sacrificed templates. Compared with the solid Au nanorods, studies on the photothermal conversion and stability of hollow Au nanostructures were systematically carried out with the assistance of the near-infrared (NIR) lasers available. Under NIR laser irradiation, the temperatures of the colloidal Au nanostructures increased rapidly from ~30 °C to ~65 °C. Combining the experimental results with a finite-different time-domain (FDTD) numerical simulation, the heat generation of different Au nanostructures was investigated. With the consideration of the concentration of the Au nanostructures, it is indicated that hollow Au nanostructures are superior to solid Au nanorods in photothermal conversion. On increasing the NIR laser power (3 W), Au nanorods undergo a shape deformation from nanorods to spherical nanoparticles, while the SPR and morphology of hollow Au nanoboxes and nanorings maintain high stability, promising to be candidates for nanoheaters. This work provides a standard to design optimized plasmonic nanoheaters.
Influence of the Metal-MoS2 interface on MoS2 Transistor Performance
NASA Astrophysics Data System (ADS)
Yuan, Hui; Cheng, Guangjun; Hight Walker, Angela; You, Lin; Kopanski, Joseph J.; Li, Qiliang; Richter, Curt A.
2015-03-01
We compare the electrical characteristics of MoS2 field-effect transistors (FETS) with Ag source/drain contacts with transistors with Ti contacts, and we demonstrate that the metal-MoS2 interface is crucial to the final device performance. The topography of 5nm Au/5nm Ag (contact layer) and 5nm Au/5nm Ti metal films deposited onto mono- and few-layer MoS2 was characterized by using scanning electron microscopy and atomic force microscopy. The surface morphology of the Au/Ti films on MoS2 shows a rough, dewetting pattern while Au/Ag forms smooth, dense films. These smoother and denser Au/Ag contacts lead to improved carrier transport efficiency. FETs with Ag contacts show more than 60 times higher on-state current and a steeper subthreshold slope. Raman spectroscopy of MoS2 covered with Au/Ag or Au/Ti films revealed that the contact layer is Ag or Ti, respectively. In addition, there is a dramatic difference in the heat transfer between the MoS2 and the two metals: while laser heating is observed in Au/Ti covered MoS2, no heating effects are seen in Au/Ag covered MoS2. It is reasonable to conclude that the smoother and denser Ag contact leads to higher carrier transport efficiency and contributes to the improved thermal properties.
NASA Astrophysics Data System (ADS)
Wang, Huiqiao; Liu, Jinbin; Wu, Xuan; Tong, Zhonghua; Deng, Zhaoxiang
2013-05-01
Water-dispersible two-dimensional (2D) assemblies of Au@Ag core-shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO@Au nanosheets (namely GO@Au@Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au@Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au@Ag nanoparticles. The antibacterial efficacy of GO@Au@Ag is less sensitive to the existence of Cl-, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO@Au@Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials.
Zhang, Hui-Min; Fan, Zheng; Xu, Wei; Feng, Xiao; Wu, Zu-Cheng
2017-09-15
The recovery of heavy metals from aqueous solutions or e-wastes is of upmost importance. Retrieval of Au, Ag, and Cu with electricity generation through building an ethanol-metal coupled redox fuel cells (CRFCs) is demonstrated. The cell was uniquely assembled on PdNi/C anode the electro-oxidation of ethanol takes place to give electrons and then go through the external circuit reducing metal ions to metallic on the cathode, metals are recovered. Taking an example of removal of 100mgL -1 gold in 0.5M HAc-NaAc buffer solution as the catholyte, 2.0M ethanol in 1.0M alkaline solution as the anolyte, an open circuit voltage of 1.4V, more than 96% of gold removal efficiency in 20h, and equivalent energy production of 2.0kWhkg -1 of gold can be readily achieved in this system. When gold and copper ions coexist, it was confirmed that metallic Cu is formed on the cathodic electrode later than metallic Au formation by XPS analysis. Thus, this system can achieve step by step electrodeposition of gold and copper while the two metal ions coexisting. This work develops a new approach to retrieve valuable metals from aqueous solution or e-wastes. Copyright © 2017 Elsevier B.V. All rights reserved.
Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation.
Liu, Jun-Hong; Wang, Ai-Qin; Chi, Yu-Shan; Lin, Hong-Ping; Mou, Chung-Yuan
2005-01-13
Au-Ag alloy nanoparticles supported on mesoporous aluminosilicate have been prepared by one-pot synthesis using hexadecyltrimethylammonium bromide (CTAB) both as a stabilizing agent for nanoparticles and as a template for the formation of mesoporous structure. The formation of Au-Ag alloy nanoparticles was confirmed by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, and transmission electron microscopy (TEM). Although the Au-Ag alloy nanoparticles have a larger particle size than the monometallic gold particles, they exhibited exceptionally high activity in catalysis for low-temperature CO oxidation. Even at a low temperature of 250 K, the reaction rate can reach 8.7 x 10(-6) mol.g(cat.)(-1).s(-1) at an Au/Ag molar ratio of 3/1. While neither monometallic Au@MCM-41 nor Ag@MCM-41 shows activity at this temperature, the Au-Ag alloy system shows a strongly synergistic effect in high catalytic activity. In this alloy system, the size effect is no longer a critical factor, whereas Ag is believed to play a key role in the activation of oxygen.
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Yuan, Biao; Clukay, Christopher J.; Grabill, Christopher N.; Heinrich, Helge; Bhattacharya, Aniket; Kuebler, Stephen M.
2012-02-01
We report on the quantitative analysis of electrolessly deposited Au and Ag nanoparticles (NPs) on SU8 polymer with the help of High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) in tilt series. Au NPs act as nucleating agents for the electroless deposition of silver. Au NPs were prepared by attachingAu^3+cations to amine functionalized SU8 polymeric surfaces and then reducing it with aqueous NaBH4. The nanoscale morphology of the deposited NPs on the surface of polymer has been studied from the dark field TEM cross sectional images. Ag NPs were deposited on the cross-linked polymeric surface from a silver citrate solution reduced by hydroquinone. HAADF-STEM enables us to determine the distances between the NPs and their exact locations at and near the surface. The particle distribution, sizes and densities provide us with the data necessary to control the parameters for the development of the electroless deposition technique for emerging nanoscale technologies.
NASA Astrophysics Data System (ADS)
Zhai, Yanling; Zhu, Zhijun; Lu, Xiaolin; Zhou, H. Susan
2016-10-01
The direct ethanol fuel cell is an emerging energy conversion device for which palladium is considered as the one of the most effective components for anode catalyst, however, its widespread application has been still limited by the activity and durability of the anode catalyst. In this work, AuPd alloy networks (NWs) are synthesized using H2PdCl4 and HAuCl4 as precursors reduced by NaBH4 in the presence of sodium citrate (SC). The results reveal that SC plays significant role in network structure, resulting in the enhanced electrocatalytic activity of the catalyst. This self-supported AuPd NWs catalyst exhibits much higher electrochemical catalytic activity than commercial Pd/C catalyst toward ethanol electrooxidation in alkaline solution. Significantly, AuPd NWs catalyst shows extremely high durability at the beginning of the chronoamperometry test, and as high as 49% of the mass current density (1.41 A/mgPd) remains after 4000 s current-time test at -0.3 V (vs. Ag/AgCl) in N2-saturated KOH-ethanol solution. This strategy provides a facile method for the preparation of alloy networks with high electrochemical activity, and can be potentially expanded to a variety of electrochemical applications.
Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don
2015-12-01
Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.
NASA Astrophysics Data System (ADS)
Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don
2015-12-01
Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.
Azzam, Eid M S; Eshaq, Gh; Rabie, A M; Bakr, A A; Abd-Elaal, Ali A; El Metwally, A E; Tawfik, Salah M
2016-08-01
In the present study, chitosan assembled on gold and silver nanoparticles were prepared and characterized by UV-vis, TEM, EDX and DLS techniques. The nanocomposites chitosan (Ch)/clay, chitosan (Ch)/AgNPs/clay and chitosan (Ch)/AuNPs/clay were prepared by solution mixing method and characterized by FTIR, XRD, and SEM techniques. The adsorption of copper(II) ions onto the prepared hybrid composites from an aqueous solution using batch adsorption was examined. The results showed that benefiting from the surface property of clay, the abundant amino and hydroxyl functional groups of chitosan, the adsorbent provides adequate and versatile adsorption for the Cu(II) ions under investigation. The batch adsorption experiments showed that the adsorption of the Cu(II) is considerably dependent on pH of milieu, the amount of adsorbent, and contact time. Batch adsorption studies revealed that the adsorption capacity of Cu(II) increased with increase in initial concentration and contact time with optimum pH in the range around neutral. The maximum uptake of Cu(II) ions by (Ch)/AgNPs/clay composite was found to be 181.5mg/g. The adsorption efficiency of Cu(II) ions by prepared (Ch)/AgNPs/clay and (Ch)/AuNPs/clay is bigger than that the individual chitosan (Ch)/clay composite which clarifies the role of metal nanoparticles in enhancement the adsorption characters. The study suggests that the (Ch)/AgNPs/clay hybrid composite is a promising nano-adsorbent for the removal of Cu(II) ions from aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Jiuxing; Zhu, Zhi; Zhu, Bingqing; Ma, Yanli; Lin, Bingqian; Liu, Rudi; Song, Yanling; Lin, Hui; Tu, Song; Yang, Chaoyong
2016-08-02
Due to its large enhancement effect, nanostructure-based surface-enhanced Raman scattering (SERS) technology had been widely applied for bioanalysis and cell imaging. However, most SERS nanostructures suffer from poor signal reproducibility, which hinders the application of SERS nanostructures in quantitative detection. We report an etching-assisted approach to synthesize SERS-active plasmonic nanoparticles with 1 nm interior nanogap for multiplex quantitative detection and cancer cell imaging. Raman dyes and methoxy poly(ethylene glycol) thiol (mPEG-SH) were attached to gold nanoparticles (AuNPs) to prepare gold cores. Next, Ag atoms were deposited on gold cores in the presence of Pluronic F127 to form a Ag shell. HAuCl4 was used to etch the Ag shell and form an interior nanogap in Au@AgAuNPs, leading to increased Raman intensity of dyes. SERS intensity distribution of Au@AgAuNPs was found to be more uniform than that of aggregated AuNPs. Finally, Au@AgAuNPs were used for multiplex quantitative detection and cancer cell imaging. With the advantages of simple and rapid preparation of Au@AgAuNPs with highly uniform, stable, and reproducible Raman intensity, the method reported here will widen the applications of SERS-active nanoparticles in diagnostics and imaging.
Yoo, Hyojong; Jang, Min Hoon
2013-08-07
One-dimensional (1D) gold (Au) bipyramids are successfully synthesized through a facile seed-mediated method using cetyltrimethylammonium chloride (CTAC), Au seed nanoparticles, Ag(+) ions, and ascorbic acid. The length and optical properties of the synthesized Au bipyramids are controlled with precision by varying the amount of salicylate anions (Sal(-)) added during the synthesis. The micelles formed from CTA(+)-Sal(-) mixtures in aqueous solutions act as effective templates for the size-controlled synthesis of 1D nanocrystals.
Structure-conserving spontaneous transformations between nanoparticles
NASA Astrophysics Data System (ADS)
Krishnadas, K. R.; Baksi, Ananya; Ghosh, Atanu; Natarajan, Ganapati; Pradeep, Thalappil
2016-11-01
Ambient, structure- and topology-preserving chemical reactions between two archetypal nanoparticles, Ag25(SR)18 and Au25(SR)18, are presented. Despite their geometric robustness and electronic stability, reactions between them in solution produce alloys, AgmAun(SR)18 (m+n=25), keeping their M25(SR)18 composition, structure and topology intact. We demonstrate that a mixture of Ag25(SR)18 and Au25(SR)18 can be transformed to any arbitrary alloy composition, AgmAun(SR)18 (n=1-24), merely by controlling the reactant compositions. We capture one of the earliest events of the process, namely the formation of the dianionic adduct, (Ag25Au25(SR)36)2-, by electrospray ionization mass spectrometry. Molecular docking simulations and density functional theory (DFT) calculations also suggest that metal atom exchanges occur through the formation of an adduct between the two clusters. DFT calculations further confirm that metal atom exchanges are thermodynamically feasible. Such isomorphous transformations between nanoparticles imply that microscopic pieces of matter can be transformed completely to chemically different entities, preserving their structures, at least in the nanometric regime.
Liao, Xue; Chen, Yanhua; Qin, Meihong; Chen, Yang; Yang, Lei; Zhang, Hanqi; Tian, Yuan
2013-12-15
In this paper, Au-Ag-Au double shell nanoparticles were prepared based on the reduction of the metal salts HAuCl4 and AgNO3 at the surface of seed particles. Due to the synergistic effect between Au and Ag, the hybrid nanoparticles are particularly stable and show excellent performances on the detection of 2-mercapto-1-methylimidazole (methimazole). The binding of target molecule at the surface of Au-Ag-Au double shell nanoparticles was demonstrated based on both localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectra. The LSPR intensity is directly proportional to the methimazole concentration in the range of 0.10-3.00×10(-7) mol L(-1). The SERS spectrum can be applied in identification of methimazole molecule. The LSPR coupled with SERS based on the Au-Ag-Au double shell nanoparticles would be very attractive for the quantitative determination and qualitative analysis of the analytes in medicines. © 2013 Elsevier B.V. All rights reserved.
MICROWAVE-ASSISTED SYNTHESIS OF NOBLE NANOSTRUCTURES
Microwave-assisted (MW) spontaneous reduction of noble metal salts, silver (Ag), gold (Au), platinum (Pt) and palladium (Pd) is reported using sugar solutions such as -D glucose, sucrose and maltose, etc. to generate nanomaterials. These MW-assisted reactions, conducted in aqueo...
Application of gold compositional analyses to mineral exploration in the United States
Antweiler, J.C.; Campbell, W.L.
1977-01-01
Native gold is a mineral composed of Au, Ag and Cu in solid solution and it usually contains one or more trace metals as lattice impurities, as mineral inclusions, in grain boundaries or in surface coatings. Alloy proportions of Au, Ag and Cu, together with certain other elements, can be thought of as constituting a gold "signature". Gold is associated with a great variety of ore deposits and has characteristic signatures for each of several types of ore deposits. Signatures for gold derived from igneous-metamorphic, hypothermal, mesothermal and epithermal deposits reflect conditions of ore formation by their content of Ag, Cu and characteristic associated elements. At higher temperatures of ore formation, gold has low Ag and high Cu content, and Bi and Pb are the most abundant trace elements. But at lower temperatures of ore formation, Ag is high, Cu is low, and Pb is the most abundant trace element. The same trend in gold signatures is observable in gold mining districts, such as Central City, Colorado, where zoning as shown by mineral assemblages indicates ore deposition at progressively lower temperatures as the distance from a central high-temperature zone increases. The signatures of gold may be useful in searching for porphyry Cu deposits. Signatures from Butte (Montana), Mineral Park (Arizona) and Cala Abajo (Puerto Rico), on the basis of limited sampling, are similar and distinctive. They are characterized by a similar assemblage of trace elements and are relatively high in both Ag and Cu. Another application of gold compositional data is in tracing placer gold to its bedrock source. For example, the Ag content of placer gold in the Tarryall district of Colorado differed from that of nearly all of the bedrock sources of gold found by early prospectors. However, one lightly prospected area peripheral to the Tertiary quartz monzonite stock at Montgomery Gulch contains gold with a Ag content similar to that of the placer gold. This area is the most likely source of the gold in the productive placers and may be a potential exploration target. Gold signatures may be useful in prospecting for metals other than gold. Several metals of low crustal abundance - notably Sn, W, Mo and the Pt group metals - are detected in analyses of some gold samples and may indicate economic deposits of these metals. ?? 1977.
Amperometric Sensor for Detection of Chloride Ions†
Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene
2008-01-01
Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO3, a solution of AgNO3 and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO3, solution of AgNO3 and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM. PMID:27873832
Fan, Jiqiang; Song, Yongbo; Chai, Jinsong; Yang, Sha; Chen, Tao; Rao, Bo; Yu, Haizhu; Zhu, Manzhou
2016-08-18
We report the observation of new doping behavior in Au36-xAgx(SR)24 nanoclusters (NCs) with x = 1 to 8. The atomic arrangements of Au and Ag atoms are determined by X-ray crystallography. The new gold-silver bimetallic NCs share the same framework as that of the homogold counterpart, i.e. possessing an fcc-type Au28 kernel, four dimeric AuAg(SR)3 staple motifs and twelve simple bridging SR ligands. Interestingly, all the Ag dopants in the Au36-xAgx(SR)24 NCs are selectively incorporated into the surface motifs, which is in contrast to the previously reported Au-Ag alloy structures with the Ag dopants preferentially displacing the core gold atoms. This distinct doping behavior implies that the previous assignments of an fcc Au28 core with four dimers and 12 bridging thiolates for Au36(SR)24 are more justified than other assignments of core vs. surface motifs. The UV-Vis adsorption spectrum of Au36-xAgx(SR)24 is almost the same as that of Au36(SR)24, indicating that the Ag dopants in the motifs do not change the optical properties. The similar UV-Vis spectra are further confirmed by TD-DFT calculations. DFT also reveals that the energies of the HOMO and LUMO of the motif-doped AuAg alloy NC are comparable to those of the homogold Au36 NC, indicating that the electronic structure is not disturbed by the motif Ag dopants. Overall, this study reveals a new silver-doping mode in alloy NCs.
Wu, Aimin; Li, Jing; Liu, Baodan; Yang, Wenjin; Jiang, Yanan; Liu, Lusheng; Zhang, Xinglai; Xiong, Changmin; Jiang, Xin
2017-02-21
(GaN) 1-x (ZnO) x solid solution has attracted extensive attention due to its feasible band-gap tunability and excellent photocatalytic performance in overall water splitting. However, its potential application in the photodegradation of organic pollutants and environmental processing has rarely been reported. In this study, we developed a rapid synthesis process to fabricate porous (GaN) 1-x (ZnO) x solid solution with a tunable band gap in the range of 2.38-2.76 eV for phenol photodegradation. Under visible-light irradiation, (GaN) 0.75 (ZnO) 0.25 solid solution achieved the highest photocatalytic performance compared to other (GaN) 1-x (ZnO) x solid solutions with x = 0.45, 0.65 and 0.85 due to its higher redox capability and lower lattice deformation. Slight Ag decoration with a content of 1 wt% on the surface of the (GaN) 0.75 (ZnO) 0.25 solid solution leads to a significant enhancement in phenol degradation, with a reaction rate eight times faster than that of pristine (GaN) 0.75 (ZnO) 0.25 . Interestingly, phenol in aqueous solution (10 mg L -1 ) can also be completely degraded within 60 min, even under the direct exposure of sunlight irradiation. The photocurrent response indicates that the enhanced photocatalytic activity of (GaN) 0.75 (ZnO) 0.25 /Ag is directly induced by the improved transfer efficiency of the photogenerated electrons at the interface. The excellent phenol degradation performance of (GaN) 1-x (ZnO) x /Ag further broadens their promising photocatalytic utilization in environmental processing, besides in overall water splitting for hydrogen production.
Interaction of metal layers with polycrystalline Si
NASA Technical Reports Server (NTRS)
Nakamura, K.; Olowolafe, J. O.; Lau, S. S.; Nicolet, M.-A.; Mayer, J. W.; Shima, R.
1976-01-01
Solid-phase reactions of metal films deposited on 0.5-micron-thick polycrystalline layers of Si grown by chemical vapor deposition at 640 C were investigated by MeV He-4 backscattering spectrometry, glancing angle X-ray diffraction, and SEM observations. For the metals Al, Ag, and Au, which form simple eutectics, heat treatment at temperatures below the eutectic results in erosion of the poly-Si layer and growth of Si crystallites in the metal film. Crystallite formation is observed at temperatures exceeding 550 C for Ag, at those exceeding 400 C for Al, and at those exceeding 200 C for Au films. For Pd, Ni, and Cr, heat treatment results in silicide formation. The same initial silicides (Pd2Si, Ni2Si, and CrSi2), are formed at similar temperatures on single-crystal substrates.
Lu, Chun-Yaung; Voter, Arthur F; Perez, Danny
2014-01-28
Deposition of solid material from solution is ubiquitous in nature. However, due to the inherent complexity of such systems, this process is comparatively much less understood than deposition from a gas or vacuum. Further, the accurate atomistic modeling of such systems is computationally expensive, therefore leaving many intriguing long-timescale phenomena out of reach. We present an atomistic/continuum hybrid method for extending the simulation timescales of dynamics at solid/liquid interfaces. We demonstrate the method by simulating the deposition of Ag on Ag (001) from solution with a significant speedup over standard MD. The results reveal specific features of diffusive deposition dynamics, such as a dramatic increase in the roughness of the film.
Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications.
Luo, Zhentao; Zheng, Kaiyuan; Xie, Jianping
2014-05-25
Gold and silver nanoclusters or Au/Ag NCs with core sizes smaller than 2 nm have been an attractive frontier of nanoparticle research because of their unique physicochemical properties such as well-defined molecular structure, discrete electronic transitions, quantized charging, and strong luminescence. As a result of these unique properties, ultrasmall size, and good biocompatibility, Au/Ag NCs have great potential for a variety of biomedical applications, such as bioimaging, biosensing, antimicrobial agents, and cancer therapy. In this feature article, we will first discuss some critical biological considerations, such as biocompatibility and renal clearance, of Au/Ag NCs that are applied for biomedical applications, leading to some design criteria for functional Au/Ag NCs in the biological settings. According to these biological considerations, we will then survey some efficient synthetic strategies for the preparation of protein- and peptide-protected Au/Ag NCs with an emphasis on our recent contributions in this fast-growing field. In the last part, we will highlight some potential biomedical applications of these protein- and peptide-protected Au/Ag NCs. It is believed that with continued efforts to understand the interactions of biomolecule-protected Au/Ag NCs with the biological systems, scientists can largely realize the great potential of Au/Ag NCs for biomedical applications, which could finally pave their way towards clinical use.
Ferbonink, G F; Rodrigues, T S; Dos Santos, D P; Camargo, P H C; Albuquerque, R Q; Nome, R A
2018-05-29
In this study, we investigated hollow AgAu nanoparticles with the goal of improving our understanding of the composition-dependent catalytic activity of these nanoparticles. AgAu nanoparticles were synthesized via the galvanic replacement method with controlled size and nanoparticle compositions. We studied extinction spectra with UV-Vis spectroscopy and simulations based on Mie theory and the boundary element method, and ultrafast spectroscopy measurements to characterize decay constants and the overall energy transfer dynamics as a function of AgAu composition. Electron-phonon coupling times for each composition were obtained from pump-power dependent pump-probe transients. These spectroscopic studies showed how nanoscale surface segregation, hollow interiors and porosity affect the surface plasmon resonance wavelength and fundamental electron-phonon coupling times. Analysis of the spectroscopic data was used to correlate electron-phonon coupling times to AgAu composition, and thus to surface segregation and catalytic activity. We have performed all-atom molecular dynamics simulations of model hollow AgAu core-shell nanoparticles to characterize nanoparticle stability and equilibrium structures, besides providing atomic level views of nanoparticle surface segregation. Overall, the basic atomistic and electron-lattice dynamics of core-shell AgAu nanoparticles characterized here thus aid the mechanistic understanding and performance optimization of AgAu nanoparticle catalysts.
Zhang, Yuanyuan; Jiang, Hui; Wang, Xuemei
2015-04-22
In this study, we have developed a label-free, dual functional detection strategy for highly selective and sensitive determination of aqueous Ag(+) and Hg(2+) by using cytidine stabilized Au NCs and AuAg NCs as fluorescent turn-on and turn off probes, respectively. The Au NCs and AuAg NCs showed a remarkably rapid response and high selectivity for Ag(+) and Hg(2+) over other metal ions, and relevant detection limit of Ag(+) and Hg(2+) is ca. 10 nM and 30 nM, respectively. Importantly, the fluorescence enhanced Au NCs by doping Ag(+) can be conveniently reusable for the detection of Hg(2+) based on the corresponding fluorescence quenching. The sensing mechanism was based on the high-affinity metallophilic Hg(2+)-Ag(+) interaction, which effectively quenched the fluorescence of AuAg NCs. Furthermore, these fluorescent nanoprobes could be readily applied to Ag(+) and Hg(2+) detection in environmental water samples, indicating their possibility to be utilized as a convenient, dual functional, rapid response, and label-free fluorescence sensor for related environmental and health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
Study of Sn and SnAgCu Solders Wetting Reaction on Ni/Pd/Au Substrates
NASA Astrophysics Data System (ADS)
Liu, C. Y.; Wei, Y. S.; Lin, E. J.; Hsu, Y. C.; Tang, Y. K.
2016-12-01
Wetting reactions of pure Sn and Sn-Ag-Cu solder balls on Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates were investigated. The (Au, Pd)Sn4 phase formed in the initial interfacial reaction between pure Sn and Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates. Then, the initially formed (Au, Pd)Sn4 compound layer either dissolved or spalled into the molten Sn solder with 3 s of reflowing. The exposed Ni under-layer reacted with Sn solder and formed an interfacial Ni3Sn4 compound. We did not observe spalling compound in the Sn-Ag-Cu case, either on the thin Au (100 Å) or the thick Au (1000 Å) substrates. This implies that the Cu content in the Sn-Ag-Cu solder can efficiently suppress the spalling effect and really stabilize the interfacial layer. Sn-Ag-Cu solder has a better wetting than that of the pure Sn solder, regardless of the Au thickness of the Au/Pd/Ni substrate. For both cases of pure Sn and Sn-Ag-Cu, the initial wetting (<3-s reflowing) on the thin Au (100 Å) substrate is better than that of the thick Au (1000 Å) substrate. Over 3-s reflowing, the wetting on the thicker Au layer (1000 Å) substrate becomes better than the wetting on the thinner Au layer (100 Å) substrate.
Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions
NASA Astrophysics Data System (ADS)
Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi
2018-05-01
A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.
NASA Astrophysics Data System (ADS)
Huang, H. Y.; Cai, K. B.; Chang, L. Y.; Chen, P. W.; Lin, T. N.; Lin, C. A. J.; Shen, J. L.; Talite, M. J.; Chou, W. C.; Yuan, C. T.
2017-09-01
Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in ‘green photonics’. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing ‘green’ LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for ‘green’ LSCs by further enhancing solid-state PL-QYs.
Huang, H Y; Cai, K B; Chang, L Y; Chen, P W; Lin, T N; Lin, C A J; Shen, J L; Talite, M J; Chou, W C; Yuan, C T
2017-09-15
Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in 'green photonics'. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing 'green' LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for 'green' LSCs by further enhancing solid-state PL-QYs.
NASA Astrophysics Data System (ADS)
Addanki, Satish; Nedumaran, D.
2017-07-01
Core-Shell nanostructures play a vital role in the sensor field owing to their performance improvements in sensing characteristics and well-established synthesis procedures. These nanostructures can be ingeniously tuned to achieve tailored properties for a particular application of interest. In this work, an Ag-Au core-shell thin film nanoislands with APTMS (3-Aminopropyl trimethoxysilane) and PVA (Polyvinyl alcohol) binding agents was modeled, synthesized and characterized. The simulation results were used to fabricate the sensor through chemical route. The results of this study confirmed that the APTMS based Ag-Au core-shell thin film nanoislands offered a better performance over the PVA based Ag-Au core-shell thin film nanoislands. Also, the APTMS based Ag-Au core-shell thin film nanoislands exhibited better sensitivity towards ozone sensing over the other types, viz., APTMS/PVA based Au-Ag core-shell and standalone Au/Ag thin film nanoislands.
NASA Astrophysics Data System (ADS)
Santhanalakshmi, J.; Venkatesan, P.
2011-02-01
Mono metallic (Au, Ag, Pd) and bimetallic (Au-Ag, Ag-Pd, Au-Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au-Ag = 9.2, Ag-Pd = 9.6, Au-Pd = 9.4 nm) are characterized by UV-Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Jiang, Shou Zhen; Yang, Cheng; Li, Chong Hui; Huo, Yan Yan; Liu, Xiao Yun; Liu, Ai Hua; Wei, Qin; Gao, Sai Sai; Gao, Xing Guo; Man, Bao Yuan
2016-05-01
A novel and efficient surface enhanced Raman scattering (SERS) substrate has been presented based on Gold@silver/pyramidal silicon 3D substrate (Au@Ag/3D-Si). By combining the SERS activity of Ag, the chemical stability of Au and the large field enhancement of 3D-Si, the Au@Ag/3D-Si substrate possesses perfect sensitivity, homogeneity, reproducibility and chemical stability. Using R6G as probe molecule, the SERS results imply that the Au@Ag/3D-Si substrate is superior to the 3D-Si, Ag/3D-Si and Au/3D-Si substrate. We also confirmed these excellent behaviors in theory via a commercial COMSOL software. The corresponding experimental and theoretical results indicate that our proposed Au@Ag/3D-Si substrate is expected to develop new opportunities for label-free SERS detections in biological sensors, biomedical diagnostics and food safety.
A first principles study on the electronic origins of silver segregation at the Ag-Au (111) surface
NASA Astrophysics Data System (ADS)
Hoppe, Sandra; Müller, Stefan
2017-12-01
The special electronic structure of gold gives rise to many interesting phenomena, such as its color. The surface segregation of the silver-gold system has been the subject of numerous experimental and theoretical studies, yielding conflicting results ranging from strong Ag surface enrichment to Au surface segregation. Via a combined approach of density functional theory (DFT) and statistical physics, we have analyzed the segregation at the Ag-Au (111) surface with different Ag bulk concentrations. Interestingly, we observe a moderate Au surface segregation, which is due to a charge transfer from the less electronegative Ag to Au. Canonical Monte Carlo simulations suggest that the calculated concentration profile with a Au-enriched surface layer remains stable up to higher temperatures. However, the presence of adsorbed oxygen reverses the segregation behavior and leads to strong Ag enrichment of the surface layer.
Generalized stacking fault energies of alloys.
Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente
2014-07-02
The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.
Enhancement of Thermoelectric Properties in SnTe with (Ag, In) Co-Doping
NASA Astrophysics Data System (ADS)
Li, J. Q.; Yang, N.; Li, S. M.; Li, Y.; Liu, F. S.; Ao, W. Q.
2018-01-01
A lead-free SnTe compound shows good electrical property but high thermal conductivity, resulting in a low figure-of-merit ZT. We present a significant enhancement of the thermoelectric properties of p-type SnTe with (Ag, In) co-doping. The Ag and In co-doped Sn1-2 x Ag x In x Te ( x = 0.00, 0.01, 0.02, 0.03, 0.04 and 0.05) are prepared by melting, quenching and spark plasma sintering. A homogeneous NaCl-type SnTe-based solid solution forms in the alloys at low Ag and In content ( x ≤ 0.02), while a AgInTe2 minor secondary phase precipitates for higher x. Similar to In doping, the introduction of Ag and In at Sn sites in SnTe considerably increases the Seebeck coefficient and power factor by creating resonant levels near the Fermi energy. In addition, the Ag and In solute atoms in the SnTe-based solid solution and the minor secondary phase AgInTe2 enhance phonon scattering and thus significantly reduce the carrier and lattice thermal conductivity. Ag and In co-doping shows a collective advantage on the overall thermoelectric performance of SnTe or In-doped SnTe. A maximum ZT of 1.23 at 873 K and average ZT of 0.58 can be obtained in the alloy Sn1-2 x Ag x In x Te with x = 0.03.
Structure and optical properties of silica-supported Ag-Au nanoparticles.
Barreca, Davide; Gasparotto, Alberto; Maragno, Cinzia; Tondello, Eugenio; Gialanella, Stefano
2007-07-01
Bimetallic Ag-Au nanoparticles are synthesized by sequential deposition of Au and Ag on amorphous silica by Radio Frequency (RF)-sputtering under mild conditions. Specimens are thoroughly characterized by a multi-technique approach, aimed at investigating the system properties as a function of the Ag/Au content, as well as the evolution induced by ex-situ annealing under inert (N2) or reducing (4% H2/N2) atmospheres. The obtained results demonstrate the possibility to obtain Ag-Au alloyed nanoparticles with controllable size, shape, structure, and dispersion under mild conditions, so that the optical properties can be finely tuned as a function of the synthesis and thermal treatment conditions.
NASA Astrophysics Data System (ADS)
Xie, Xiaobin; Gao, Guanhui; Kang, Shendong; Lei, Yanhua; Pan, Zhengyin; Shibayama, Tamaki; Cai, Lintao
2017-06-01
Being able to precisely control the morphologies of noble metallic nanostructures is of essential significance for promoting the surface-enhanced Raman scattering (SERS) effect. Herein, we demonstrate an overgrowth strategy for synthesizing Au @ M (M = Au, Ag, Pd, Pt) core-shell heterogeneous nanocrystals with an orientated structural evolution and highly improved properties by using Au nanorods as seeds. With the same reaction condition system applied, we obtain four well-designed heterostructures with diverse shapes, including Au concave nanocuboids (Au CNs), Au @ Ag crystalizing face central cube nanopeanuts, Au @ Pd porous nanocuboids and Au @ Pt nanotrepangs. Subsequently, the exact overgrowth mechanism of the above heterostructural building blocks is further analysed via the systematic optimiziation of a series of fabrications. Remarkably, the well-defined Au CNs and Au @ Ag nanopeanuts both exhibit highly promoted SERS activity. We expect to be able to supply a facile strategy for the fabrication of multimetallic heterogeneous nanostructures, exploring the high SERS effect and catalytic activities.
NASA Astrophysics Data System (ADS)
Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing
2017-07-01
The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.
Fabrication and surface-enhanced Raman scattering (SERS) of Ag/Au bimetallic films on Si substrates
NASA Astrophysics Data System (ADS)
Wang, Chaonan; Fang, Jinghuai; Jin, Yonglong; Cheng, Mingfei
2011-11-01
Ag films on Si substrates were fabricated by immersion plating and served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement reaction. The formation procedure of films on the surface of Si was studied by scanning electron microscopy (SEM), which revealed Ag films with island and dendritic morphologies experienced novel structural evolution process during galvanic replacement reaction, and nanostructures with holes were produced within the resultant Ag/Au bimetallic films. SERS activity both of sacrificial Ag films and resultant Ag/Au bimetallic films was investigated by using crystal violet as an analyte. It has been shown that SERS signals increased with the process of galvanic substitution and reached intensity significantly stronger than that obtained from pure Ag films.
NASA Astrophysics Data System (ADS)
Shen, Mao; Chen, Suqing; Jia, Wenping; Fan, Guodong; Jin, Yanxian; Liang, Huading
2016-12-01
In this paper, we reported a novel hierarchical porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres with a highly photocatalytic activity and magnetically separable properties. The synthesis method is included of a Fe3O4 magnetic embedded Ag core (Ag@Fe3O4), an interlayer of carbon modified by PEI to form sufficient amounts of amine functional groups (Ag@Fe3O4@C-PEI), the grafting of Au nanoparticles on the surface of Ag@Fe3O4@C-PEI (Ag@Fe3O4@C-Au), and an ordered porous TiO2 structured shell. As an example of the applications, the photocatalytic activities of the samples were investigated by the reduction of Rhodamine B (RhB) under visible-light irradiation. The results show that the porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres display higher adsorption and photocatalytic activities compared to the pure porous TiO2 and Ag@Fe3O4@C@TiO2 microspheres, which are attributed to the local surface plasmon resonance (LSPR) by the Ag and Au nanoparticles and the high specific surface area.
NASA Astrophysics Data System (ADS)
Roqué Rosell, Josep; Portillo Serra, Joaquim; Aiglsperger, Thomas; Plana-Ruiz, Sergi; Trifonov, Trifon; Proenza, Joaquín A.
2018-02-01
In the present work, a lamella from an Au-Ag aggregate found in Ni-laterites has been examined using Transmission Electron Microscope to produce a series of Precision Electron Diffraction (PED) patterns. The analysis of the structural data obtained, coupled with Energy Dispersive X-ray microanalysis, made it possible to determine the orientation of twinned native gold growing on the Au-Ag aggregate. The native Au crystal domains are found to have grown at the outermost part of the aggregate whereas the inner core of the aggregate is an Au-Ag alloy (∼4 wt% Ag). The submicron structural study of the natural occurring Au aggregate points to the mobilization and precipitation of gold in laterites and provides insights on Au aggregates development at supergene conditions. This manuscript demonstrates the great potential of electron crystallographic analysis, and in particular, PED to study submicron structural features of micron sized mineral aggregates by using the example of a gold grain found in a Ni-laterite deposits.
NASA Astrophysics Data System (ADS)
Gao, Mao
The formation of a one micron thick layer of an intermetallic compound between a solder alloy and a metallic substrate generally constitutes a good solder joint in an electronic device. However, if the compound grows too thick, and/or if multiple intermetallic compounds form, poor solder joint reliability may result. Thus significant interest has been focused on intermetallic compound phase selection and growth kinetics at such solder/metal interfaces. The present study focuses on one such specific problem, the formation and growth of intermetallic compounds at near eutectic Sn-Ag-Cu solder alloy/Ni interfaces. Sn-3.0Ag-0.5Cu solder was reflowed on Au/Ni substrates, resulting in the initial formation and growth of (CuNi)6Sn 5 at Sn-3.0Ag-0.5Cu /Ni interfaces. (NiCu)3Sn4 formed between the (CuNi)6Sn5 and the Ni substrate when the concentration of Cu in the liquid SnAgCu solder decreased to a critical value which depended upon temperature: 0.37, 0.31 and 0.3(wt.%) at reflow temperatures of 260°C, 245°C and 230°C respectively. The growth rate of (CuNi)6Sn5 was found to be consistent with extrapolations of a diffusion limited growth model formulated for lower temperature, solid state diffusion couples. The long range diffusion of Cu did not limit growth rates. The spalling of (CuNiAu)6Sn5 from (NiCu)3 Sn4 surfaces during reflow was also examined. When the Cu concentration in the solder decreased to approximately 0.28wt.%, the (Cu,Ni,Au) 6Sn5 was observed to spall. Compressive stress in (CuNiAu) 6Sn5 and weak adhesion between (CuNiAu)6Sn 5 and (NiCu)3Sn4 was found to cause this effect.
Effect of Spin Multiplicity in O2 Adsorption and Dissociation on Small Bimetallic AuAg Clusters.
García-Cruz, Raúl; Poulain, Enrique; Hernández-Pérez, Isaías; Reyes-Nava, Juan A; González-Torres, Julio C; Rubio-Ponce, A; Olvera-Neria, Oscar
2017-08-17
To dispose of atomic oxygen, it is necessary the O 2 activation; however, an energy barrier must be overcome to break the O-O bond. This work presents theoretical calculations of the O 2 adsorption and dissociation on small pure Au n and Ag m and bimetallic Au n Ag m (n + m ≤ 6) clusters using the density functional theory (DFT) and the zeroth-order regular approximation (ZORA) to explicitly include scalar relativistic effects. The most stable Au n Ag m clusters contain a higher concentration of Au with Ag atoms located in the center of the cluster. The O 2 adsorption energy on pure and bimetallic clusters and the ensuing geometries depend on the spin multiplicity of the system. For a doublet multiplicity, O 2 is adsorbed in a bridge configuration, whereas for a triplet only one O-metal bond is formed. The charge transfer from metal toward O 2 occupies the σ* O-O antibonding natural bond orbital, which weakens the oxygen bond. The Au 3 ( 2 A) cluster presents the lowest activation energy to dissociate O 2 , whereas the opposite applies to the AuAg ( 3 A) system. In the O 2 activation, bimetallic clusters are not as active as pure Au n clusters due to the charge donated by Ag atoms being shared between O 2 and Au atoms.
NASA Astrophysics Data System (ADS)
Zhuravkova, T. V.; Palyanova, G. A.; Kravtsova, R. G.
2015-07-01
The chemical compositions of acanthite, naumannite, and associated ore minerals have been studied from the samples of polychronous Au-Ag ores at the Rogovik deposit. The following admixtures have been detected: S in naumannite (0-2.9 wt %), Se in acanthite (0-7.45 wt %), argyrodite (~4.8 wt %), and galena (~3.1 wt %), and Fe in sphalerite (~1.2 wt %). The physicochemical parameters of ore formation have been reconstructed on the basis of mineralogical and geochemical data and thermodynamic calculations. Eh-pH (25°C, 1 bar), log fO2-pH, log fS2- T, log fSe2- T, and log fS2-log fSe2 (100-300°C, 1-300 bars) diagrams for the Ag-S-Se-H2O system with the stability fields of Ag sulfoselenides Ag2S1- x Se x of various composition (step x = 0.25, where 0 ≤ x ≤ 1) have been calculated for the first time. It has been established that Ag sulfoselenides of the naumannite series from polychronous ores of the Rogovik deposit precipitated below 70-133°C under reductive conditions (log fO2 =-65…-50) from near-neutral solutions containing elevated Se and relatively lowered S. It has been established that Ag sulfoselenides of acanthite series were formed later then naumannite but in the same range of log fO2 values at temperatures below 110-177°C from solutions with high S concentration and relatively lowered concentration of Se. The complex composition of the studied Au-Ag ores, whose characteristic feature is extremely variable mineralogy, is confirmed.
Wang, Chongwen; Gu, Bing; Liu, Qiqi; Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi
2018-01-01
Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe 3 O 4 @Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe 3 O 4 @Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe 3 O 4 @Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0-11.0), a short assay time (<30 min), and a low detection limit (5×10 2 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli , Gram-positive bacterium Staphylococcus aureus , and methicillin-resistant S. aureus . This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis.
Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi
2018-01-01
Background Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. Methods We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe3O4@Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe3O4@Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe3O4@Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. Results The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0–11.0), a short assay time (<30 min), and a low detection limit (5×102 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli, Gram-positive bacterium Staphylococcus aureus, and methicillin-resistant S. aureus. Conclusion This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis. PMID:29520142
Wang, Jiale; de Freitas, Isabel C; Alves, Tiago V; Ando, Romulo A; Fang, Zebo; Camargo, Pedro H C
2017-05-29
In hybrid materials containing plasmonic nanoparticles such as Au and Ag, charge-transfer processes from and to Au or Ag can affect both activities and selectivity in plasmonic catalysis. Inspired by the widespread utilization of commercial Si wafers in surface-enhanced Raman spectroscopy (SERS) studies, we investigated herein the effect of the native SiO 2 layer on Si wafers over the surface plasmon resonance (SPR)-mediated activities of the Au and Ag nanoparticles (NPs). We prepared SERS-active plasmonic comprised of Au and Ag NPs deposited onto a Si wafer. Here, two kinds of Si wafers were employed: Si with a native oxide surface layer (Si/SiO 2 ) and Si without a native oxide surface layer (Si). This led to Si/SiO 2 /Au, Si/SiO 2 /Ag, Si/Au, and Si/Ag NPs. The SPR-mediated oxidation of p-aminothiophenol (PATP) to p,p'-dimercaptoazobenzene (DMAB) was employed as a model transformation. By comparing the performances and band structures for the Si/Au and Si/Ag relative to Si/SiO 2 /Au and Si/SiO 2 /Ag NPs, it was found that the presence of a SiO 2 layer was crucial to enable higher SPR-mediated PATP to DMAB conversions. The SiO 2 layer acts to prevent the charge transfer of SPR-excited hot electrons from Au or Ag nanoparticles to the Si substrate. This enabled SPR-excited hot electrons to be transferred to adsorbed O 2 molecules, which then participate in the selective oxidation of PATP to DMAB. In the absence of a SiO 2 layer, SPR-excited hot electrons are preferentially transferred to Si instead of adsorbed O 2 molecules, leading to much lower PATP oxidation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Xu, Jian-Fang; Luo, Shi-Yi; Liu, Guo-Kun
2015-05-01
In order to explore the key role of surface plasmon resonance (SPR) and active 3O2 for the chemical transformation to 4,4-dimercaptoazobenzene (DMAB) from p-aminothiophenol (PATP) adsorbed on Ag or Au NPs, we systematically investigated the laser wavelength and temperature dependent surface-enhanced Raman spectra of PATP capped Ag and Au NPs. DMAB can be easily observed at the 514.5 nm laser for Ag NPs but at the 632.8 nm laser for Au NPs, indicating that a suitable energy level is necessary for the formation of DMAB. The tendency is consistent with the wavelength dependent SPR properties of Ag or Au NPs accordingly. With the energy provided by annealing, the transformation of PATP to DMAB is much easier on Ag NPs at a lower temperature, and more DMAB can be observed at the same temperature, compared to the case of Au NPs under the same condition. It is mainly due to the active 3O2 on Ag surfaces could be more easily formed than that on Au surfaces.
Charge transfer process at the Ag/MPH/TiO2 interface by SERS: alignment of the Fermi level.
Zhang, Xiaolei; Sui, Huimin; Wang, Xiaolei; Su, Hongyang; Cheng, Weina; Wang, Xu; Zhao, Bing
2016-11-02
A nanoscale metal-molecule-semiconductor assembly (Ag/4-mercaptophenol/TiO 2 ) has been fabricated over Au nanoparticle (NP) films as a model to study the interfacial charge transfer (CT) effects involved in Ag/MPH/TiO 2 . Due to the interaction between Au NPs and Ag NPs, some distinct differences occur in the SERS spectra. We also measured the SERS of Ag/MPH (4-mercaptophenol), Ag/MPH/TiO 2 , and Au/Ag/MPH/TiO 2 assemblies at excitation wavelengths of 477, 514, 532, 633, and 785 nm. We found that the changes in the CT process, caused by the introduction of TiO 2 and Au, can be reflected in SERS. Then in combination with other detection methods, we proposed a possible CT process involved in the Ag/MPH, Ag/MPH/TiO 2 , and Au/Ag/MPH/TiO 2 assemblies. A Pt/Ag/MPH/TiO 2 assembly was also constructed to verify our proposed CT mechanism. This work not only provides more details about CT between metal-molecule-semiconductor interfaces but also aids in constructing nanoscale models to study interfacial problems with the SERS technique.
Graphene-bimetallic nanoparticle composites with enhanced electro-catalytic detection of bisphenol A
NASA Astrophysics Data System (ADS)
Pogacean, Florina; Biris, Alexandru R.; Socaci, Crina; Coros, Maria; Magerusan, Lidia; Rosu, Marcela-Corina; Lazar, Mihaela D.; Borodi, Gheorghe; Pruneanu, Stela
2016-12-01
This study brings for the first time novel knowledge about the synthesis by catalytic chemical vapor deposition with induction heating of graphene-bimetallic nanoparticle composites (Gr-AuCu and Gr-AgCu) and their morphological and structural characterization by transmission electron microscopy, Raman spectroscopy, and x-ray powder diffraction. Gold electrodes modified with the obtained materials exhibit an enhanced electro-catalytic effect towards one of the most encountered estrogenic disruptive chemicals, bisphenol A (BPA). The BPA behavior in varying pH solutions was investigated using the electrochemical quartz crystal microbalance, which allowed the accurate determination of the number of molecules involved in the oxidation process. The modified electrodes promote the oxidation of BPA at significantly lower potentials (0.66 V) compared to bare gold (0.78 V). In addition, the peak current density recorded with such electrodes greatly exceeded that obtained with bare gold (e.g. one order of magnitude larger, for a Au/Gr-AgCu electrode). The two modified electrodes have low detection limits, of 1.31 × 10-6 M and 1.91 × 10-6 M for Au/Gr-AgCu and Au/Gr-AuCu, respectively. The bare gold electrode has a higher detection limit of 5.1 × 10-6 M. The effect of interfering species (e.g. catechol and 3-nitrophenol) was also investigated. Their presence influenced not only the BPA peak potential, but also the peak current. With both modified electrodes, no peak currents were recorded below 3 × 10-5 M BPA.
Flip chip bumping technology—Status and update
NASA Astrophysics Data System (ADS)
Juergen Wolf, M.; Engelmann, Gunter; Dietrich, Lothar; Reichl, Herbert
2006-09-01
Flip chip technology is a key driver for new complex system architectures and high-density packaging, e.g. sensor or pixel devices. Bumped wafers/dice as key elements become very important in terms of general availability at low cost, high yield and quality level. Today, different materials, e.g. Au, Ni, AuSn, SnAg, SnAgCu, SnCu, etc., are used for flip chip interconnects and different bumping approaches are available. Electroplating is the technology of choice for high-yield wafer bumping for small bump sizes and pitches. Lead-free solder bumps require an increase in knowledge in the field of under bump metallization (UBM) and the interaction of bump and substrate metallization, the formation and growth of intermetallic compounds (IMCs) during liquid- and solid-phase reactions. Results of a new bi-layer UBM of Ni-Cu which is especially designed for small-sized lead-free solder bumps will be discussed.
Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection.
Zhao, Yuan; Yang, Yaxin; Cui, Linyan; Zheng, Fangjie; Song, Qijun
2018-05-26
In this work, a novel and facile electrochemical sensor is reported for the highly selective and sensitive detection of dissolved hydrogen sulfide (H 2 S), attributing to the redox reaction between Au@Ag core-shell nanoparticles (Au@Ag NPs) and H 2 S. Electroactive Au@Ag NPs not only possess excellent conductivity, but exhibit great electrochemical reactivity at 0.26 V due to the electrochemical oxidation from Ag° to Ag + . In the presence of H 2 S, the Ag shell of Au@Ag NPs can be oxidized to Ag 2 S, resulting in the decrease of differential pulse voltammetry (DPV) peak at 0.26 V. The electrochemical sensor exhibits a wide linear response range from 0.1 nM to 500 nM. The limit of detection (LOD) for H 2 S is as low as 0.04 nM. The developed sensor shows significant prospects in the study of pathological processes related to the mechanism of H 2 S production. Copyright © 2018. Published by Elsevier B.V.
Kim, Kang-Pil; Hwang, Dae-Kue; Woo, Sung-Ho; Kim, Dae-Hwan
2018-09-01
The Ag nanowire (NW) + Au nanoparticle (NP)-embedded TiO2 photoelectrodes were adopted for conventional planar TiO2-based Sb2S3 hybrid solar cells to improve the cell efficiency. Compared to conventional planar TiO2-based Sb2S3 hybrid solar cells, the Ag NW + Au NP/TiO2-based Sb2S3 hybrid solar cells exhibited an improvement of approximately 40% in the cell efficiency due to the significant increase in both Jsc and Voc. These enhanced Jsc and Voc were attributed to the increased surface area, charge-collection efficiency, and light absorption by embedding the Ag NWs + Au NPs composite. The Ag NW + Au NP/TiO2-based Sb2S3 hybrid solar cells showed the highest efficiency of 2.17%, demonstrating that the Ag NW + Au NP-embedded TiO2 photoelectrode was a suitable photoelectrode structure to improve the power conversion efficiency in the Sb2S3 hybrid solar cells.
NASA Astrophysics Data System (ADS)
Singh, Akansha; Majumder, Chiranjib; Sen, Prasenjit
2018-03-01
Catalytic efficiency of gas phase and alumina-supported bimetallic AgnAum (n + m = 2 - 4) alloy clusters is studied using density functional methods As a pre-requite, adsorption of O2 and CO molecules, and co-adsorption of both molecules on these clusters are studied in detail. O2 and CO are co-adsorbed on nearby sites on the gas phase tetramer clusters Ag2Au2 and Ag3Au. But their catalytic efficiency is hindered by large barriers (1.55 eV and 1.44 eV, respectively) to the breaking of Osbnd O bond. Among the deposited clusters, Ag2Au and AgAu2 have O2 and CO co-adsorbed on nearby locations. Of these two, Ag2Au has a lower kinetic barrier for subsequent CO2 formation. Thus Ag2Au looks the most promising candidate.
Zhao, Yuan; Yang, Dong; Li, Xiyu; Liu, Yu; Hu, Xiang; Zhou, Dianfa; Lu, Yalin
2017-01-19
We report a novel graphene-metal hybrid system by introducing monolayer graphene between gold nanoparticles (Au NPs) and silver nanohole (Ag NH) arrays. The design incorporates three key advantages to promote the surface-enhanced Raman scattering (SERS) sensing capacity: (i) making full use of the single-atomic feature of graphene for generating uniform sub-nanometer spaces; (ii) maintaining the bottom layer of Ag nanoarrays with an ordered manner for facilitating the transfer of graphene films and assembly of the top layer of Au NPs; (iii) integrating the advantages of the strong plasmonic effect of Ag, the chemical stability of Au, as well as the mechanical flexibility and biological compatibility of graphene. In this configuration, the plasmonic properties can be fine-tuned by separately optimizing the horizontal or vertical gaps between the metal NPs. Exactly, sub-20 nm spaces between the horizontally patterned Ag tips constructed by adjacent Ag NHs, and sub-nanometer scale graphene gaps between the vertically distributed Au NP-Ag NH have been achieved. Finite element numerical simulations demonstrate that the multi-dimensional plasmonic couplings (including the Au NP-Au NP, Au NP-Ag NH and Ag NH-Ag NH couplings) promote for the hybrid platform an electric field enhancement up to 137 times. Impressively, the as-prepared 3D Au NP-graphene-Ag NH array hybrid structure manifests ultrahigh SERS sensitivity with a detection limit of 10 -13 M for R6G molecules, as well as good reproducibility and stability. This work represents a step towards high-performance SERS substrate fabrication, and opens up a new route for graphene-plasmonic hybrids in SERS applications.
NASA Astrophysics Data System (ADS)
Bonacic-Koutecky, Vlasta; Burda, Jaroslav; Mitric, Roland; Ge, Maofa; Zampella, Giuseppe; Fantucci, Piercarlo
2002-08-01
Bimetallic silver-gold clusters offer an excellent opportunity to study changes in metallic versus "ionic" properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun 3[less-than-or-equal](m+n)[less-than-or-equal]5 clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8 have 3D forms in contrast to Au8 which assumes planar structure. At the density functional level of theory we have shown that this is due to participation of d electrons in bonding of pure Aun clusters while s electrons dominate bonding in pure Agm as well as in bimetallic clusters. In fact, Aun clusters remain planar for larger sizes than Agm and AgnAun clusters. Segregation between two components in bimetallic systems is not favorable, as shown in the example of Ag5Au5 cluster. We have found that the structures of bimetallic clusters with 20 atoms Ag10Au10 and Ag12Au8 are characterized by negatively charged Au subunits embedded in Ag environment. In the latter case, the shape of Au8 is related to a pentagonal bipyramid capped by one atom and contains three exposed negatively charged Au atoms. They might be suitable for activating reactions relevant to catalysis. According to our findings the charge transfer in bimetallic clusters is responsible for formation of negatively charged gold subunits which are expected to be reactive, a situation similar to that of gold clusters supported on metal oxides.
Liou, Yen-Chen Maggie; Yang, Jyisy; Fasasi, Ayuba; Griffiths, Peter R
2011-05-01
The catalytic activity of silver nanoparticles (AgNPs) on a germanium substrate is reported. Para-nitrothiophenol (pNTP) that had been adsorbed on this substrate is converted to p-aminothiophenol (pATP) under very mild reaction conditions, such as simply soaking in water. The AgNPs may be formed either by physical vapor deposition or by electroless deposition from a solution of silver nitrate. Analogous reactions were not observed on copper nanoparticles on germanium or AgNPs on silicon or zinc selenide even though very slow conversion of pNTP to pATP was observed with Au nanoparticles (AuNPs) on Ge under controlled reaction conditions. The effects of factors that could influence the catalytic reaction were examined; these included the particle size of the AgNPs, reaction temperature, concentration and chemical nature of other ions present in the solution, the pH of the water, and the nature of the substrate. The reaction rate was approximately independent of the particle size for AgNPs between 50 and 150 nm in diameter. Increasing the temperature accelerates the reaction significantly; at temperatures above 40 °C, the adsorbed pNTP is completely converted by water within five minutes. Not surprisingly, the reaction rate was increased as the pH of the solution was decreased, as the reduction of each nitro group to an amino group requires six protons. The presence of Br(-) and I(-) ions accelerated the reaction to the point that even at 4 °C, the conversion of the nitro group was still observable, while solutions containing chloride ions had to be heated to 40 °C before their effect became apparent. Apparently, Br(-) and I(-) ions remove the oxide layer from the surface of the germanium substrate, facilitating transfer of electrons from the germanium to the nitro group of the pNTP.
Electrocatalysis of the HER in acid and alkaline media
Danilovic, Nemanja; Subbaraman, Ram; Strmcnik, Dusan; ...
2013-01-01
Trends in the HER are studied on selected metals (M= Cu, Ag, Au, Pt, Ru, Ir, Ti) in acid and alkaline environments. Here, we found that with the exception of Pt, Ir and Au, due to high coverage by spectator species on non-noble metal catalysts, experimentally established positions of Cu , Ag, Ru and Ti in the observed volcano relations are still uncertain. We also found that while in acidic solutions the M-Hupd binding energy most likely is controlling the activity trends, the trends in activity in alkaline solutions are controlled by a delicate balance between two descriptors: the M-Hadmore » interaction as well as the energetics required to dissociate water molecules. We confirm the importance of the second descriptor by introducing bifunctional catalysts such as M modified by Ni(OH); e.g. while the latter serves to enhance catalytic decomposition of water, the metal sites are required for collecting and recombining the produced hydrogen intermediates.« less
Zhang, Jiawei; Winget, Sarah A.; Wu, Yiren; ...
2016-01-26
In this paper, we report a facile synthesis of Ag@Au concave cuboctahedra by titrating aqueous HAuCl4 into a suspension of Ag cuboctahedra in the presence of ascorbic acid (AA), NaOH, and poly(vinylpyrrolidone) (PVP) at room temperature. Initially, the Au atoms derived from the reduction of Au 3+ by AA are conformally deposited on the entire surface of a Ag cuboctahedron. Upon the formation of a complete Au shell, however, the subsequently formed Au atoms are preferentially deposited onto the Au{100} facets, resulting in the formation of a Ag@Au cuboctahedron with concave structures at the sites of {111} facets. The concavemore » cuboctahedra embrace excellent SERS activity that is more than 70-fold stronger than that of the original Ag cuboctahedra at an excitation wavelength of 785 nm. The concave cuboctahedra also exhibit remarkable stability in the presence of an oxidant such as H 2O 2 because of the protection by a complete Au shell. These two unique attributes enable in-situ SERS monitoring of the reduction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) by NaBH4 through a 4,4'-dimercaptoazobenzene ( trans-DMAB) intermediate and the subsequent oxidation of 4-ATP back to trans-DMAB upon the introduction of H 2O 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiawei; Winget, Sarah A.; Wu, Yiren
In this paper, we report a facile synthesis of Ag@Au concave cuboctahedra by titrating aqueous HAuCl4 into a suspension of Ag cuboctahedra in the presence of ascorbic acid (AA), NaOH, and poly(vinylpyrrolidone) (PVP) at room temperature. Initially, the Au atoms derived from the reduction of Au 3+ by AA are conformally deposited on the entire surface of a Ag cuboctahedron. Upon the formation of a complete Au shell, however, the subsequently formed Au atoms are preferentially deposited onto the Au{100} facets, resulting in the formation of a Ag@Au cuboctahedron with concave structures at the sites of {111} facets. The concavemore » cuboctahedra embrace excellent SERS activity that is more than 70-fold stronger than that of the original Ag cuboctahedra at an excitation wavelength of 785 nm. The concave cuboctahedra also exhibit remarkable stability in the presence of an oxidant such as H 2O 2 because of the protection by a complete Au shell. These two unique attributes enable in-situ SERS monitoring of the reduction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) by NaBH4 through a 4,4'-dimercaptoazobenzene ( trans-DMAB) intermediate and the subsequent oxidation of 4-ATP back to trans-DMAB upon the introduction of H 2O 2.« less
NASA Astrophysics Data System (ADS)
Gould, Anna L.; Catlow, C. Richard A.; Logsdail, Andrew J.
2018-02-01
Density functional theory calculations have been performed to investigate the use of CO as a probe molecule for the determination of the structure and composition of Au, Ag and AuAg nanoparticles. For very small nanoclusters (x = 1 - 5), the CO vibrational frequencies can be directly correlated to CO adsorption strength, whereas larger 147-atom nanoparticles show a strong energetic preference for CO adsorption at a vertex position but the highest wavenumbers are for the bridge positions. We also studied CO adsorption on Au and Ag (100) and (111) surfaces, for a 1 monolayer coverage, which proves to be energetically favourable on atop only and bridge positions for Au (100) and atop for Ag (100); vibrational frequencies of the CO molecules red-shift to lower wavenumbers as a result of increased metal coordination. We conclude that CO vibrational frequencies cannot be solely relied upon in order to obtain accurate compositional analysis, but we do propose that elemental rearrangement in the core@shell nanoclusters, from Ag@Au (or Au@Ag) to an alloy, would result in a shift in the CO vibrational frequencies that indicate changes in the surface composition. Contribution to the Topical Issue "Shaping Nanocatalysts", edited by Francesca Baletto, Roy L. Johnston, Jochen Blumberger and Alex Shluger.Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80280-7
Manshina, A. A.; Grachova, E. V.; Povolotskiy, A. V.; Povolotckaia, A. V.; Petrov, Y. V.; Koshevoy, I. O.; Makarova, A. A.; Vyalikh, D. V.; Tunik, S. P.
2015-01-01
In the present work an efficient approach of the controlled formation of hybrid Au–Ag–C nanostructures based on laser-induced transformation of organometallic supramolecular cluster compound is suggested. Herein the one-step process of the laser-induced synthesis of hybrid multi-yolk-shell Au-Ag@a-C:H nanoparticles which are bimetallic gold-silver subnanoclusters dispersed in nanospheres of amorphous hydrogenated a-C:H carbon is reported in details. It has been demonstrated that variation of the experimental parameters such as type of the organometallic precursor, solvent, deposition geometry and duration of laser irradiation allows directed control of nanoparticles’ dimension and morphology. The mechanism of Au-Ag@a-C:H nanoparticles formation is suggested: the photo-excitation of the precursor molecule through metal-to-ligand charge transfer followed by rupture of metallophilic bonds, transformation of the cluster core including red-ox intramolecular reaction and aggregation of heterometallic species that results in the hybrid metal/carbon nanoparticles with multi-yolk-shell architecture formation. It has been found that the nanoparticles obtained can be efficiently used for the Surface-Enhanced Raman Spectroscopy label-free detection of human serum albumin in low concentration solution. PMID:26153347
Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films
NASA Astrophysics Data System (ADS)
Oh, Yoonseok; Lee, Jeeyoung; Lee, Myeongkyu
2018-03-01
We here show that Ag-Au bimetallic nanoparticles (NPs) can be produced by dewetting an Ag/Au bilayer film coated on glass using a nanosecond-pulsed laser beam. Elemental analysis revealed that the obtained bimetallic NPs are Ag-Au alloys, with two elements well mixed over the whole volume of the particle. The composition of the produced particles was controllable by changing the relative thickness of each layer. The localized surface plasmon resonance (LSPR) peak was red-shifted with an increasing Au content and the LSPR wavelength could be tuned from 415 to 525 nm by varying the alloy composition. A film area of several square centimeters could be transformed into Ag-Au NPs by a single laser pulse of 6 ns duration. This study provides a facile and scalable route to prepare bimetallic NPs for plasmonic and other applications.
Structure formation in Ag-X (X = Au, Cu) alloys synthesized far-from-equilibrium
NASA Astrophysics Data System (ADS)
Elofsson, V.; Almyras, G. A.; Lü, B.; Garbrecht, M.; Boyd, R. D.; Sarakinos, K.
2018-04-01
We employ sub-monolayer, pulsed Ag and Au vapor fluxes, along with deterministic growth simulations, and nanoscale probes to study structure formation in miscible Ag-Au films synthesized under far-from-equilibrium conditions. Our results show that nanoscale atomic arrangement is primarily determined by roughness build up at the film growth front, whereby larger roughness leads to increased intermixing between Ag and Au. These findings suggest a different structure formation pathway as compared to the immiscible Ag-Cu system for which the present study, in combination with previously published data, reveals that no significant roughness is developed, and the local atomic structure is predominantly determined by the tendency of Ag and Cu to phase-separate.
One-Step Synthesis of Au-Ag Nanowires through Microorganism-Mediated, CTAB-Directed Approach.
Xu, Luhang; Huang, Dengpo; Chen, Huimei; Jing, Xiaoling; Huang, Jiale; Odoom-Wubah, Tareque; Li, Qingbiao
2018-05-28
Synthesis and applications of one dimensional (1D) metal nanostructures have attracted much attention. However, one-step synthesis of bimetallic nanowires (NWs) has remained challenging. In this work, we developed a microorganism-mediated, hexadecyltrimethylammonium bromide (CTAB)-directed (MCD) approach to synthesize closely packed and long Au-Ag NWs with the assistance of a continuous injection pump. Characterization results confirmed that the branched Au-Ag alloy NWs was polycrystalline. And the Au-Ag NWs exhibited a strong absorbance at around 1950 nm in the near-infrared (NIR) region, which can find potential application in NIR absorption. In addition, the Au-Ag NWs showed excellent surface-enhanced Raman scattering (SERS) enhancement when 4-mercaptobenzoic acid (MBA) and rhodamine 6G (R6G) were used as probe molecules.
NASA Astrophysics Data System (ADS)
Zeng, Yiyu; Ye, Zhizhen; Lu, Bin; Dai, Wei; Pan, Xinhua
2016-04-01
Vertically aligned ZnO nanowires (NWs) were grown on a fluorine-doped tin-oxide-coated glass substrate by a hydrothermal method. Au nanoparticles were well dispersed in the mixed solution of ethanol and deionized water. A simple self-powered ultraviolet detector based on solid-liquid heterojunction was fabricated, utilizing ZnO NWs as active photoanode and such prepared mixed solution as electrolyte. The introduction of Au nanoparticles results in considerable improvements in the responsivity and sensitivity of the device compared with the one using deionized water as electrolyte, which is attributed to the enhanced light harvesting by Au nanoparticles.
NASA Astrophysics Data System (ADS)
Sree Satya Bharati, Moram; Byram, Chandu; Soma, Venugopal R.
2018-03-01
Herein we present results from our detailed studies on the fabrication of Ag@Au and Cu@Au alloy nanoparticles (NPs) using the femtosecond laser ablation in liquid technique. The NPs were obtained by ablating the pure Ag, Cu targets (bulk) in HAuCl4 (5 mM) solution. The absorption properties of the obtained NPs colloids were characterized using UV-Visible absorption spectrometer and their size, shape, and crystallinity were investigated using the XRD, FESEM and TEM techniques. The fabricated NPs were utilized for sensing of explosive molecules such as 2, 4, 6-trinitrophenol (PA), 2, 4-dinitrotoluene (DNT) and a common dye methylene blue (MB) using the surface enhanced Raman spectroscopy (SERS) technique. The detection limit in terms of weight was as low as few nano-grams in the case of nitroaromatic explosive compounds (PA, DNT) and few picograms in the case of a common dye molecule (MB). Typical enhancement factors achieved were estimated to be 104, 105 and 107, respectively, for PA, DNT, and MB. The significance of the present work lies in exploring the performance of the prepared NPs being used as SERS substrates for explosives detection using a portable Raman instrument. Such capability enables one to carry the spectrometer to the point of interest in the field and evaluate any hazardous samples within a short period of time.
Veronelli, Mattia; Dechert, Sebastian; Demeshko, Serhiy; Meyer, Franc
2015-07-20
Two ferrocene derivatives with appended pyrazole substituents, namely, 1,1'-bis(5-methyl-1H-pyrazol-3-yl)ferrocene (H2LH) and 1,1'-bis(5-trifluoromethyl-1H-pyrazol-3-yl)ferrocene (H2LF), were synthesized. In solid state they form distinct H-bonded dimers with orthogonal (H2LH, C2 symmetry) or antiparallel (H2LF, C2h symmetry) arrangement of the two ferrocene/pyrazole hybrid molecules. Supramolecular dimerization was also detected in solution at low temperatures, though diffusion-ordered spectroscopy and variable-temperature NMR spectroscopy revealed several dynamic processes. Redox potentials of the ferrocene derivatives are affected by the nature of the pyrazole substituent (Me, CF3). In their deprotonated form [LR]2-, both ferrocene/pyrazole hybrids serve as ligands and form oligonuclear CuI, AgI, and AuI complexes that were identified by matrix-assisted laser desorption ionization mass spectrometry. X-ray crystallography revealed the structures of Cu6L3H and Ag6L3F, which both contain two parallel and eclipsed [M(μ-pz)]3 metallamacrocycles (M = Cu, Ag) linked by three ferrocene units. MI···MI distances between the two triangular M3N6 decks are shorter in Ag6L3F (3.28-3.30 vs 3.44-3.51 Å in the case of Cu6L3H), indicating substantial intramolecular closed-shell Ag(d10)-Ag(d10) interactions. However, Cu6L3H features close intermolecular Cu···Cu contacts as short as 3.37 Å. Mössbauer data for both the ligands and complexes were collected, and electrochemical properties were measured; preliminary luminescence data are reported.
Baek, Se-Woong; Park, Garam; Noh, Jonghyeon; Cho, Changsoon; Lee, Chun-Ho; Seo, Min-Kyo; Song, Hyunjoon; Lee, Jung-Yong
2014-04-22
In this report, we propose a metal-metal core-shell nanocube (NC) as an advanced plasmonic material for highly efficient organic solar cells (OSCs). We covered an Au core with a thin Ag shell as a scattering enhancer to build Au@Ag NCs, which showed stronger scattering efficiency than Au nanoparticles (AuNPs) throughout the visible range. Highly efficient plasmonic organic solar cells were fabricated by embedding Au@Ag NCs into an anodic buffer layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and the power conversion efficiency was enhanced to 6.3% from 5.3% in poly[N-9-hepta-decanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71-butyric acid methyl ester (PC70BM) based OSCs and 9.2% from 7.9% in polythieno[3,4-b]thiophene/benzodithiophene (PTB7):PC70BM based OSCs. The Au@Ag NC plasmonic PCDTBT:PC70BM-based organic solar cells showed 2.2-fold higher external quantum efficiency enhancement compared to AuNPs devices at a wavelength of 450-700 nm due to the amplified plasmonic scattering effect. Finally, we proved the strongly enhanced plasmonic scattering efficiency of Au@Ag NCs embedded in organic solar cells via theoretical calculations and detailed optical measurements.
Substrate-Based Noble-Metal Nanomaterials: Shape Engineering and Applications
NASA Astrophysics Data System (ADS)
Hajfathalian, Maryam
Nanostructures have potential for use in state-of-the-art applications such as sensing, imaging, therapeutics, drug delivery, and electronics. The ability to fabricate and engineer these nanoscale materials is essential for the continued development of such devices. Because the morphological features of nanomaterials play a key role in determining chemical and physical properties, there is great interest in developing and improving methods capable of controlling their size, shape, and composition. While noble nanoparticles have opened the door to promising applications in fields such as imaging, cancer targeting, photothermal treatment, drug delivery, catalysis and sensing, the synthetic processes required to form these nanoparticles on surfaces are not well-developed. Herein is a detailed account on efforts for adapting established solution-based seed-mediated synthetic protocols to structure in a substrate-based platform. These syntheses start by (i) defining heteroepitaxially oriented nanostructured seeds at site-specific locations using lithographic or directed-assembly techniques, and then (ii) transforming the seeds using either a solution or vapor phase processing route to activate kinetically- or thermodynamically-driven growth modes, to arrive at nanocrystals with complex and useful geometries. The first series of investigations highlight synthesis-routes based on heterogeneous nucleation, where templates serve as nucleation sites for metal atoms arriving in the vapor phase. In the first research direction, the vapor-phase heterogeneous nucleation of Ag on Au was carried out at high temperatures, where the Ag vapor was sourced from a sublimating foil onto adjacent Au templates. This process transformed both the composition and morphology of the initial Au Wulff-shaped nanocrystals to a homogeneous AuAg nanoprism. In the second case, the vapor-phase heterogeneous nucleation of Cu atoms on Au nanocrystal templates was investigated by placing a Cu foil next to Au templates and heating, which caused the Cu atoms from the foil to sublimate from the foil and heterogeneously nucleation on the surface of the immobilized Au seeds. This process caused the composition and morphology of the Au Wulff-shape to transform into a homogeneous AuCu nanotriangle. Lastly, we characterized the morphological features and composition, optical properties, and also the catalytic and photocatalytic performance toward hydrogenation of 4-nitrophenolate. The second series of investigations highlight synthetic routes utilizing competencies of substrate-based techniques with colloidal chemistry. We have demonstrated two substrate-based syntheses yielding bimetallic nanostructures where shape control was achieved through (i) facet-selective capping agents and (ii) additive and subtractive process. In the first case a citrate-based cubic structure has been synthesized in the presence or absence of ascorbic acid and the role of each has been considered in shape control. Reactions were carried out in which Ag+ ions were reduced onto substrate-immobilized Ag, Au, Pd, and Pt seeds. It was discovered that for syntheses lacking ascorbic acid, citrate acts as both the capping and the reducing agent, resulting in a robust nanocube growth mode; however, when ascorbic acid was included in these syntheses, then the growth mode reverted to one that advances the octahedral geometry. The conclusion of these results was that citrate, or one of its oxidation products, selectively caps (100) facets, but where this capability was compromised by ascorbic acid. In the second case, galvanic replacement reactions have been carried out on immobilized cubic and Wulff structures to create the substrate-based nanoshells and nanocages, where the prepositioned templates were chemically transformed into hollow structures. In this novel research, Wulff-shaped templates of Au, Pt, or Pd, formed through the dewetting of ultrathin films, were first transformed into core?shell structures through the reduction of Ag+ ions onto their surface and then further transformed through the galvanic replacement of Ag with Au. Detailed studies were provided highlighting discoveries related to (i) alloying, (ii) dealloying, (iii) hollowing, (iv) crystal structure and (vi) the localized surface plasmon resonance (LSPR). Overall, a series of synthetic strategies based on physical and chemical vapor deposition were devised and validated to achieve novel substrate- based nanomaterials with different shapes and compositions for a variety of applications such as sensing, plasmonics, catalysis, and photocatalysis. The novel research in this dissertation also takes advantage of competencies of substrate-based techniques with colloidal chemistry and, brings this rich and exciting chemistry and its associated functionalities to the substrate surface.
NASA Astrophysics Data System (ADS)
Wang, Ning; Zhang, Di; Deng, Xinyu; Sun, Ying; Wang, Xinghua; Ma, Pinyi; Song, Daqian
2018-02-01
Herein we report a novel polydopamine-silver nanoparticle-polydopamine-gold (PDA-AgNPs-PDA-Au) film based surface plasmon resonance (SPR) biosensor for horse IgG detection. The PDA-AgNPs-PDA-Au film sensing platform was built on Au-film via layer-by-layer self-assembly. Ag ion was reduced in situ to AgNPs in presence of PDA. The top PDA layer can prevent AgNPs from being oxidized and connect with antibody via Schiff alkali reaction directly. The morphology and thickness of the modified gold film were characterized using scanning electron microscope and Talystep. Experimental results show that the PDA-AgNPs-PDA-Au film sensing platform is stable, regenerative and sensitive for horse IgG detection. The detection limit of horse IgG obtained with the present biosensor is 0.625 μg mL- 1, which is 2-fold and 4-fold lower than that obtained with biosensor based on PDA modified Au film and conventional biosensor based on MPA, respectively. Furthermore, when challenged to real serum samples, our sensor exhibited excellent specificity to horse IgG, suggesting its potential for industrial application.
Continuous-flow biosynthesis of Au-Ag bimetallic nanoparticles in a microreactor
NASA Astrophysics Data System (ADS)
Liu, Hongyu; Huang, Jiale; Sun, Daohua; Odoom-Wubah, Tareque; Li, Jun; Li, Qingbiao
2014-11-01
Herein, a microfluidic biosynthesis of Au-Ag bimetallic nanoparticle (NP) in a tubular microreactor, based on simultaneous reduction of HAuCl4 and AgNO3 precursors in the presence of Cacumen Platycladi ( C. Platycladi) extract was studied. The flow velocity profile was numerically analyzed with computational fluid dynamics. Au-Ag bimetallic NPs with Ag/Au molar ratios of 1:1 and 2:1 were synthesized, respectively. The alloy formation, morphology, structure, and size were investigated by UV-Vis spectra analysis, transmission electron microscopy (TEM), high resolution TEM, scanning TEM, and energy-dispersive X-ray analysis. In addition, the effects of volumetric flow rate, reaction temperature, and concentration of C. Platycladi extract and NaOH on the properties of the as-synthesized Au-Ag bimetallic NPs were investigated. The results indicated that these factors could not only affect the molar ratios of the two elements in the Au-Ag bimetallic NPs, but also affect particle size which can be adjusted from 3.3 to 5.6 nm. The process was very rapid and green, since a microreactor was employed with no additional synthetic reagents used. This work is anticipated to provide useful parameters for continuous-flow biosynthesis of bimetallic NPs in microreactors.
NASA Astrophysics Data System (ADS)
Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon
2018-06-01
In this work, a systematic study on the fabrication of ternary AgPdAu alloy nanoparticles (NPs) on c-plane sapphire (0001) is presented and the corresponding structural and optical characteristics are demonstrated. The metallic trilayers of various thicknesses and deposition orders are annealed in a controlled manner (400 °C to 900 °C) to induce the solid-state dewetting that yields the various structural configurations of AgPdAu alloy NPs. The dewetting of relatively thicker trilayers (15 nm) is gradually progressed with void nucleation, growth, and coalescence, isolated NP formation, and shape transformation, along with the temperature control. For 6 nm thickness, owing to the sufficient dewetting of trilayers along with enhanced diffusion, dense and small spherical alloy NPs are fabricated. Depending on the specific growth condition, the surface diffusion and interdiffusion of metal atoms, surface and interface energy minimization, Rayleigh instability, and equilibrium configuration are correlated to describe the fabrication of ternary alloy NPs. Ternary alloy NPs exhibit morphology-dependent ultraviolet-visible-near infrared (UV-VIS-NIR) reflectance properties such as the inverse relationship of average reflectance with the surface coverage, absorption enhancement in specific regions, and reflectance maxima in UV and NIR regions. In addition, Raman spectra depict the six active phonon modes of sapphires and their intensity and position modulation by the alloy NPs.
Yu, Yong; Geng, Junlong; Ong, Edward Yong Xi; Chellappan, Vijila; Tan, Yen Nee
2016-10-01
This paper reports a novel synthesis approach of bovine serum albumin (BSA) protein-templated ultrasmall (<2 nm) Ag nanocluster (NC) with strong singlet oxygen generation capacity for photodynamic therapy (PDT). An atomically precise BSA-Ag 13 NC (i.e., 13 Ag atoms per cluster) is successfully synthesized for the first time by using NaOH-dissolved NaBH 4 solution as the controlling reducing agent. The ubiquitous size of BSA-Ag 13 NC results in unique behaviors of its photoexcited states as characterized by the ultrafast laser spectroscopy using time-correlated single photon counting and transient absorption techniques. In particular, triply excited states can be largely present in the excited BSA-Ag 13 NC and readily sensitized molecular oxygen to produce singlet oxygen ( 1 O 2 ) with a high quantum efficiency (≈1.26 using Rose Bengal as a standard). This value is much higher than its Au analogue (i.e., ≈0.07 for BSA-Au 25 NC) and the commonly available photosensitizers. Due to the good cellular uptake and inherent biocompatibility imparted by the surface protein, BSA-Ag 13 NC can be applied as an effective PDT agent in generating 1 O 2 to kill cancer cell as demonstrated in this study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biomimetics with a self-assembled monolayer of catalytically active tethered isoalloxazine on Au.
Calvo, Ernesto J; Rothacher, M Silvina; Bonazzola, Cecilia; Wheeldon, Ian R; Salvarezza, Roberto C; Vela, Maria Elena; Benitez, Guillermo
2005-08-16
A new biomimetic nanostructured electrocatalyst comprised of a self-assembled monolayer (SAM) of flavin covalently attached to Au by reaction of methylformylisoalloxazine with chemisorbed cysteamine is introduced. Examinations by Fourier transform infrared spectroscopy and scanning tunneling microscopy (STM) show that the flavin molecules are oriented perpendicular to the surface with a 2 nm separation between flavin molecules. As a result of the contrast observed in the STM profiles between areas only covered by unreacted cysteamine and those covered by flavin-cysteamine moieties, it can be seen that the flavin molecules rise 0.7 nm above the chemisorbed cysteamines. The SAM flavin electrocatalyst undergoes fast electron transfer with the underlying Au and shows activity toward the oxidation of enzymatically active beta-NADH at pH 7 and very low potential (-0.2 V vs Ag/AgCl), a requirement for use in an enzymatic biofuel cell, and a 100-fold increase in activity with respect to the collisional reaction in solution.
Smith, Reginald W; Zhu, Xiaohe; Tunnicliffe, Mark C; Smith, Timothy J N; Misener, Lowell; Adamson, Josee
2002-10-01
It is now well known that the diffusion coefficient (D) measured in a laboratory in low earth orbit (LEO) is less than the corresponding value measured in a terrestrial laboratory. However, all LEO laboratories are subject to transient accelerations (g-jitter) superimposed on the steady reduced gravity environment of the space platform. In measurements of the diffusion coefficients for dilute binary alloys of Pb-(Ag, Au,Sb), Sb-(Ga,In), Bi-(Ag,Au,Sb), Sn-(Au,Sb), Al-(Fe, Ni,Si), and In-Sb in which g-jitter was suppressed, it was found that D proportional to T (temperature) if g-jitter was suppressed, rather than D proportional to T(2) as observed by earlier workers with g-jitter present. Furthermore, when a forced g-jitter was applied to a diffusion couple, the value measured for D increased. The significance of these results is reviewed in the light of recent work in which ab initio molecular dynamics simulations predicted a D proportional to T relationship.
Chiriki, Siva; Jindal, Shweta; Bulusu, Satya S
2017-10-21
For understanding the structure, dynamics, and thermal stability of (AgAu) 55 nanoalloys, knowledge of the composition-temperature (c-T) phase diagram is essential due to the explicit dependence of properties on composition and temperature. Experimentally, generating the phase diagrams is very challenging, and therefore theoretical insight is necessary. We use an artificial neural network potential for (AgAu) 55 nanoalloys. Predicted global minimum structures for pure gold and gold rich compositions are lower in energy compared to previous reports by density functional theory. The present work based on c-T phase diagram, surface area, surface charge, probability of isomers, and Landau free energies supports the enhancement of catalytic property of Ag-Au nanoalloys by incorporation of Ag up to 24% by composition in Au nanoparticles as found experimentally. The phase diagram shows that there is a coexistence temperature range of 70 K for Ag 28 Au 27 compared to all other compositions. We propose the power spectrum coefficients derived from spherical harmonics as an order parameter to calculate Landau free energies.
Enhancing the ag precipitation by surface mechanical attrition treatment on Cu-Ag alloys
NASA Astrophysics Data System (ADS)
Liu, Jiabin; Zhang, Lehao; Liu, Jingjing; Huang, Liuyi; Gu, Hao; Fang, Youtong; Meng, Liang; Zhang, Jian
2016-09-01
The influence of surface mechanical attrition treatment (SMAT) on Ag precipitation in Cu-Ag alloys was investigated. Cu-6 wt% Ag was melt, cold rolled and solution treated to be Cu-Ag solid solution, which was either aged at 250 and 350 °C for 24 h directly or SMAT-ed before aging. Ag precipitates were hard be found in the directly aged Cu-Ag sample while they were observed clearly in the SMAT-ed counterpart at 250 °C. The Ag precipitates formed in the surface layer by SMAT are much coarser than those in the un-SMAT-ed sample. It is obvious that the precipitating behavior of Ag was promoted significantly by SMAT approach. A large number of defects were generated by SMAT and they were acting as fast atomic diffusion channels that facilitated the atomic diffusion of Ag.
NASA Astrophysics Data System (ADS)
Radmard, Kaikhosrov; Zamanian, Hassan; Hosseinzadeh, Mohamad Reza; Khalaji, Ahmad Ahmadi
2017-12-01
Situated about 130 km northeast of Tabriz (northwest Iran), the Mazra'eh Shadi deposit is in the Arasbaran metallogenic belt (AAB). Intrusion of subvolcanic rocks, such as quartz monzodiorite-diorite porphyry, into Eocene volcanic and volcano-sedimentary units led to mineralisation and alteration. Mineralisation can be subdivided into a porphyry system and Au-bearing quartz veins within andesite and trachyandesite which is controlled by fault distribution. Rock samples from quartz veins show maximum values of Au (17100 ppb), Pb (21100 ppm), Ag (9.43ppm), Cu (611ppm) and Zn (333 ppm). Au is strongly correlated with Ag, Zn and Pb. In the Au-bearing quartz veins, factor group 1 indicates a strong correlation between Au, Pb, Ag, Zn and W. Factor group 2 indicates a correlation between Cu, Te, Sb and Zn, while factor group 3 comprises Mo and As. Based on Spearman correlation coefficients, Sb and Te can be very good indicator minerals for Au, Ag and Pb epithermal mineralisation in the study area. The zoning pattern shows clearly that base metals, such as Cu, Pb, Zn and Mo, occur at the deepest levels, whereas Au and Ag are found at higher elevations than base metals in boreholes in northern Mazra'eh Shadi. This observation contrasts with the typical zoning pattern caused by boiling in epithermal veins. At Mazra'eh Shadi, quartz veins containing co-existing liquid-rich and vapour-rich inclusions, as strong evidence of boiling during hydrothermal evolution, have relatively high Au grades (up to 813 ppb). In the quartz veins, Au is strongly correlated with Ag, and these elements are in the same group with Fe and S. Mineralisation of Au and Ag is a result of pyrite precipitation, boiling of hydrothermal fluids and a pH decrease.
NASA Astrophysics Data System (ADS)
Cocker, Helen A.; Mauk, Jeffrey L.; Rabone, Stuart D. C.
2013-02-01
The 7.1 Ma Broken Hills adularia-sericite Au-Ag deposit is currently the only producing rhyolite-hosted epithermal deposit in the Hauraki Goldfield of New Zealand. The opaque minerals include pyrite, electrum, acanthite (Ag2S), sphalerite, and galena, which are common in other adularia-sericite epithermal deposits in the Hauraki Goldfield and elsewhere worldwide. Broken Hills ores also contain the less common minerals aguilarite (Ag4SeS), naumannite (Ag2Se), petrovskaite (AuAgS), uytenbogaardtite (Ag3AuS2), fischesserite (Ag3AuSe2), an unnamed silver chloride (Ag2Cl), and unnamed Ag ± Au minerals. Uytenbogaardtite and petrovskaite occur with high-fineness electrum. Broken Hills is the only deposit in the Hauraki Goldfield where uytenbogaardtite and petrovskaite have been identified, and these phases appear to have formed predominantly from unmixing of a precursor high-temperature phase under hypogene conditions. Supergene minerals include covellite, chalcocite, Au-rich electrum, barite, and a variety of iron oxyhydroxide minerals. Uytenbogaardtite can form under supergene and hypogene conditions, and textural relationships between uytenbogaardtite and associated high-fineness electrum may be similar in both conditions. Distinguishing the likely environment of formation rests principally on identification of other supergene minerals and documenting their relationships with uytenbogaardtite. The presence of aguilarite, naumannite, petrovskaite, and fischesserite at Broken Hills reflects a Se-rich mineral assemblage. In the Hauraki Goldfield and the western Great Basin, USA, Se-rich minerals are more abundant in provinces that are characterized by bimodal rhyolite-andesite volcanism, but in other epithermal provinces worldwide, the controls on the occurrences of Se-bearing minerals remain poorly constrained, in spite of the unusually high grades associated with many Se-rich epithermal deposits.
Wang, Xuefeng; Andrews, Lester; Brosi, Felix; Riedel, Sebastian
2013-01-21
The reactions of laser-ablated Au, Ag, and Cu atoms with F(2) in excess argon and neon gave new absorptions in the M-F stretching region of their IR spectra, which were assigned to metal-fluoride species. For gold, a Ng-AuF bond was identified in mixed neon/argon samples. However, this bonding was much weaker with AgF and CuF. Molecules MF(2) and MF(3) (M=Au, Ag, Cu) were identified from the isotopic distribution of the Cu and Ag atoms, comparison of the frequencies for three metal fluorides, and theoretical frequency calculations. The AuF(5) molecule was characterized by its strongest stretching mode and theoretical frequency calculations. Additional evidence was observed for the formation of the Au(2) F(6) molecule. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Xihua; Wu, Kechen; Snijders, Jaap G; Lin, Chensheng
2003-01-27
A series of trinuclear metal clusters MS4(M'PPh3)2(M'PPh3) (M = Mo, W; M' = Cu, Ag, Au) have been studied using the density functional theory (DFT) method. The static polarizabilities and hyperpolarizabilities of the model clusters have been calculated using the finite-field (F-F) method. The model clusters, divided into two groups, are alike in the structure of two fragments of rhombic units M-(mu-S)2-M' (M = Mo, W; M' = Cu, Ag, Au), perpendicular to each other, which are joined by sharing the bridge metal M. It is the charge transfer from one of these moieties to the other in these characteristic sulfido-transitional metal cores that is responsible for the polarizabilities and hyperpolarizabilities. This kind of electronic delocalization, different from that of the planar pi-system, is interesting and warrants further investigation. The structural effects on properties are important. In these models, considerable third-order nonlinearities are exhibited. The element substitution effect of Mo and W is weak, while that of Cu and Ag is relatively substantial. An overall order is gamma xxxx(Mo-Ag) > gamma xxxx(W-Ag) > gamma xxxx(Mo-Au) > gamma xxxx(W-Au) > gamma xxxx (Mo-Cu) > gamma xxxx(W-Cu) and gamma av(Mo-Ag) approximately gamma av(W-Ag) > gamma av(Mo-Au) approximately gamma av(W-Au) approximately gamma av (Mo-Cu) approximately gamma av(W-Cu).
Stabilization of superionic α-Agl at room temperature in a glass matrix
NASA Astrophysics Data System (ADS)
Tatsumisago, Masahiro; Shinkuma, Yoshikane; Minami, Tsutomu
1991-11-01
SINCE the discovery1 that the high-temperature phase of silver iodide (α-AgI) has an ionic conductivity comparable to that of the best liquid electrolytes, solid electrolytes have attracted wide interest. Possible applications of these materials range from solid-state batteries to electrochromic displays and sensors2. Although α-AgI displays conductivities of more than 10 S cm-1 (ref. 3), owing to the almost liquid-like mobility of Ag+ ions, the crystal transforms below 147 °C to the β-phase with a conductivity of only ~10-5 S cm-1 at room temperature. Efforts to achieve good conductivities at lower temperatures have focused on the addition of a second component to AgI to form solid solutions or new compounds such as RbAg4I5 and Ag2HgI4 (refs 4-7). Here we report our success in depressing the α-->β transformation temperature so as to stabilize α-AgI itself at room temperature. We use a melt-quenching technique to prepare crystallites of α-AgI frozen into a silver borate glass matrix. The quenched material showed diffraction peaks characteristic of α-AgI and displayed ionic conductivities of about 10-1 S cm-1. Further development of these glass/crystal composites may make the high ionic conductivity of α-AgI available for room-temperature solid-state applications.
NASA Astrophysics Data System (ADS)
Zhu, Jian; Xu, Zai-jie; Weng, Guo-jun; Zhao, Jing; Li, Jian-jun; Zhao, Jun-wu
2018-07-01
In this report, Ag-dielectric-Au three-layered nanoshells with controlled inner core size were synthesized. The fluorescence emission of the rhodamine 6G (R6G) could be quenched by the three-layered nanoshells distinctly. What's more, the fluorescence quenching efficiency could be further improved by tuning the etching of inner Ag nanosphere. The maximum fluorescence quenching efficiency is obtained when the separate layer just appears between the inner Ag core and the outer Au shell. Whereas the fluorescence quenching efficiency is weakened when no gaps take place around the inner Ag core or the separate layer is too thick and greater than 13 nm. The fluorescence quenching properties of the Ag-dielectric-Au three-layered nanoshells with different initial sizes of the Ag nanoparticles are also studied. The maximum fluorescence quenching efficiency is obtained when the three-layered nanoshells are synthesized based on the Ag nanoparticles with 60 nm, which is better than others two sizes (42 and 79 nm). Thus we believe that the size of initial Ag nanospheres also greatly affects the optimized fluorescence quenching efficiency. These results about fluorescence quenching properties of Ag-dielectric-Au three-layered nanoshells present a potential for design and fabrication of fluorescence nanosensors based on tuning the geometry of the inner core and the separate layer.
NASA Astrophysics Data System (ADS)
Akiyoshi, Kazutaka; Saito, Koichiro; Tatsuma, Tetsu
2016-10-01
Plasmon-induced charge separation (PICS), in which an energetic electron is injected from a plasmonic nanoparticle (NP) to a semiconductor on contact, is often inhibited by a protecting agent adsorbed on the NP. We addressed this issue for an Ag nanocube-TiO2 system by coating it with a thin Au layer or by inserting the Au layer between the nanocubes (NCs) and TiO2. Both of the electrodes exhibit much higher photocurrents due to PICS than the electrodes without the Au film or the Ag NCs. These photocurrent enhancements can be explained in terms of PICS with accelerated electron transfer, in which electron injection from the Ag NCs or Ag@Au core-shell NCs to TiO2 is promoted by the Au film, or PICS enhanced by a nanoantenna effect, in which the electron injection from the Au film to TiO2 is enhanced by optical near field generated by the Ag NC.
Hu, Qiufen; Chen, Xiubin; Yang, Xiangjun; Huang, Zhangjie; Chen, Jing; Yang, Guangyu
2006-04-01
A new chromogenic reagent, 5-(2-hydroxy-5-nitrophenylazo)thiorhodanine (HNATR) was synthesized. A highly sensitive, selective and rapid method for the determination microg l(-1) level of Au(III) based on the rapid reaction of Au(III) with HNATR and the solid phase extraction of the colored complex with a reversed phase polymer-based C(18) cartridge have been developed. The HNATR reacted with Au(III) to form a red complex of a molar ratio 1:2 (Au(III) to HNATR) in the presence of 0.05 - 0.5 mol l(-1) of phosphoric acid solution and emulsifier-OP medium. This complex was enriched by the solid phase extraction with a polymer-based C(18) cartridge. The enrichment factor of 100 was achieved. The molar absorptivity of the complex is 1.37 x 10(5) l mol(-1) cm(-1) at 520 nm in the measured solution. The system obeys Beer's law in the range of 0.01 - 3 microg ml(-1). The relative standard deviation for eleven replicates sample of 0.5 microg l(-1) level is 2.18%. The detection limit, based on the three times of standard deviation is 0.02 microg l(-1) in the original sample. This method was applied to the determination of gold in water and ore with good results.
NASA Astrophysics Data System (ADS)
Heinz, M.; Dubiel, M.; Meinertz, J.; Ihlemann, J.; Hoell, A.
2017-02-01
In this study, plasmonic Au and Au/Ag nanostructures in soda-lime-silicate glasses have been generated by means of ArF-excimer laser irradiation (193 nm) below the ablation threshold of the glass. For this purpose pure and silver/sodium ion-exchanged float glasses have been coated by gold and then irradiated by the laser. The formation of Au and Au/Ag nanoparticles could be verified by the surface plasmon resonances between 420 and 620 nm, which were obtained by optical spectroscopy. Both, pure Au and Ag particles as well as bimetallic Au/Ag nanoparticles, could be observed by means of small angle X-ray scattering experiments. These results demonstrate that such procedures enable the spaceselected generation of plasmonic nanostructures in glass surfaces by excimer laser irradiation.
Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo
2013-10-01
Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lu, Haiyan; Yson, Renante; Ford, James; Tracy, Henry J.; Carrier, Alora B.; Keller, Aaron; Mullin, Jerome L.; Poissan, Michelle J.; Sawan, Samuel; Patterson, Howard H.
2007-07-01
We report on the heterobimetallic system, Tb[Ag xAu 1- x(CN) 2] 3 ( x = 0 → 1), in which sensitization of terbium luminescence occurs by energy transfer from [Ag xAu 1- x(CN) 2] - donor excited states. The donor states have energies which are tunable and dependent on the Ag/Au stoichiometric ratio. We report on their use as donor systems with Tb(III) ions as acceptor ions in energy transfer studies. Luminescence results show that the mixed metal dicyanides with the higher silver loading have a better energy transfer efficiency than the pure Ag(CN)2- and Au(CN)2- donors. The better energy transfer efficiency is due to the greater overlap between the donor emission and acceptor excitation.
Pulse laser ablation of Au, Ag, and Cu metal targets in liquid for nanoparticle production
NASA Astrophysics Data System (ADS)
Herbani, Y.; Irmaniar; Nasution, R. S.; Mujtahid, F.; Masse, S.
2018-03-01
We have fabricated metal and oxide nanoparticles using pulse laser ablation of Au, Ag, and Cu metal targets immersed in water. While laser ablation of Au and Ag targets in water produced metal nanoparticles which were stable for a month even without any dispersant, we found CuO nanoparticles for Cu target due to rapid oxidation of Cu in water resulted in its poor stability. Au, Ag, and CuO nanoparticles production were barely identified by naked eyes for their distinctive colour of red, yellow, and dark green colloidal suspensions, respectively. It was also verified using UV-Vis spectrometer that Au, Ag, and CuO colloidal nanoparticles have their respective surface plasmon resonance at 520, 400, and 620 nm. TEM observation showed that particle sizes for all the fabricated nanoparticles were in the range of 20 – 40 nm with crystalline structures.
Studies on plasmon characteristics and the local density of states of Au and Ag based nanoparticles
NASA Astrophysics Data System (ADS)
Vinod, M.; Biju, V.; Gopchandran, K. G.
2016-01-01
Knowledge about the conductive properties and the local density of states of chemically pure Au, Ag, Ag@Au core-shell and Au-Ag bimetallic nanoparticles is technologically important. Herein, the I-V characteristics and the density of states derived from scanning tunneling microscopy measurements made under atmospheric conditions is reported. The nanoparticles in thin film form used in this study were prepared by laser ablation in water followed by drop and evaporation. The morphology of the surface of the nanostructures was observed from optimizing tunneling current in each case. The monometallic Au and Ag particles shows almost similar current characteristics as well as discrete energy states but the slope of I-V characteristics was different for bimetallic structures. An attempt has also been made to compare the current measurements done in the nanoscale with the surface plasmon characteristics.
Thermodynamic Optimization of the Ag-Bi-Cu-Ni Quaternary System: Part I, Binary Subsystems
NASA Astrophysics Data System (ADS)
Wang, Jian; Cui, Senlin; Rao, Weifeng
2018-07-01
A comprehensive literature review and thermodynamic optimization of the phase diagrams and thermodynamic properties of the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary systems are presented. CALculation of PHAse Diagrams (CALPHAD)-type thermodynamic optimization was carried out to reproduce all available and reliable experimental phase equilibrium and thermodynamic data. The modified quasichemical model was used to model the liquid solution. The compound energy formalism was utilized to describe the Gibbs energies of all terminal solid solutions and intermetallic compounds. A self-consistent thermodynamic database for the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary subsystems of the Ag-Bi-Cu-Ni quaternary system was developed. This database can be used as a guide for research and development of lead-free solders.
Thermodynamic Optimization of the Ag-Bi-Cu-Ni Quaternary System: Part I, Binary Subsystems
NASA Astrophysics Data System (ADS)
Wang, Jian; Cui, Senlin; Rao, Weifeng
2018-05-01
A comprehensive literature review and thermodynamic optimization of the phase diagrams and thermodynamic properties of the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary systems are presented. CALculation of PHAse Diagrams (CALPHAD)-type thermodynamic optimization was carried out to reproduce all available and reliable experimental phase equilibrium and thermodynamic data. The modified quasichemical model was used to model the liquid solution. The compound energy formalism was utilized to describe the Gibbs energies of all terminal solid solutions and intermetallic compounds. A self-consistent thermodynamic database for the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary subsystems of the Ag-Bi-Cu-Ni quaternary system was developed. This database can be used as a guide for research and development of lead-free solders.
NASA Astrophysics Data System (ADS)
Jing, Jian-Ying; Wang, Qi; Wang, Bo-Tao
2018-07-01
In this paper, the carbon nanotubes (CNTs)-deposited Au film photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor (CNTs/Au-PCF sensor) and CNTs-deposited Ag film PCF SPR sensor (CNTs/Ag-PCF sensor) were developed and utilized to conduct a series of experiments for the refractive index sensing characteristics study of the CNTs-deposited SPR sensors. The PCF, spliced between two sections of multimode fibers (MMFs), was coated with a metal (Au or Ag) film and then deposited with CNTs for further sensing. CNTs coating can enhance the confined electric field intensity surrounding the sensing layer, making the SPR sensor more sensitive to the changes in the ambient medium. Compared with conventional Au film PCF SPR sensor (Au-PCF sensor), the sensitivity of CNTs/Au-PCF sensor increases by 1016.09 nm/RIU. Compared with conventional Ag film PCF SPR sensor (Ag-PCF sensor), the sensitivity of CNTs/Ag-PCF sensor increases by 709.22 nm/RIU. Therefore, we find that CNTs have a more significant effect on the Au-PCF sensor than the Ag-PCF sensor. The experimental measurements results agreed well with the simulation results. Furthermore, CNTs have high surface-to-volume ratio and extremely excellent biocompatibility. Bovine serum albumin (BSA) was employed as the target analyte to evaluate the feasibility of the CNTs/Au-PCF sensor for the detection of biomolecules, and the sensor exhibits higher sensitivity (8.18 nm/(mg/mL)), lower limit of detection (LOD) (2.5 μg/mL), and faster response time (8 s) than the Au-PCF sensor. Such CNTs-deposited SPR sensors with high sensitivities and fast response present highly promising potential for application in the field of biochemistry.
NASA Astrophysics Data System (ADS)
Majzlan, Juraj; Berkh, Khulan; Kiefer, Stefan; Koděra, Peter; Fallick, Anthony E.; Chovan, Martin; Bakos, František; Biroň, Adrián; Ferenc, Štefan; Lexa, Jaroslav
2018-02-01
In this contribution, we report new data on mineralogy, alteration patterns, geochemistry, fluid properties and source of fluids for the deposit Nová Baňa, one of the smaller epithermal deposits in the Middle Miocene Štiavnica andesite stratovolcano (Western Carpathians, Slovakia). Ore veins and the associated rocks were studied in samples from outcrops and old mines, grab samples, and bore holes from the central part of the deposit (ore structures Althandel, Jozef, Jakub, Vavrinec), northern part (Freischurf), SE part (Gupňa) and SW part (Šibeničný vrch). Pervasive hydrothermal alteration transformed the rock-forming minerals into a mixture of adularia and fine-grained quartz, with lesser amount of pyrite, Ti oxides and Fe oxides. This assemblage was further altered to omnipresent interstratified illite/smectite that was used in this study as a geothermometer, corroborating the results from the fluid inclusion work. Ore minerals comprise predominantly pyrite, sphalerite, galena but all sulfides are relatively sparse in the samples studied. Minerals of precious metals are electrum, Ag-tetrahedrite, acanthite, members of the polybasite-pearceite and pyrargyrite-proustite solid solution, and rare miargyrite, Hg-Ag tetrahedrite, and diaphorite. In the central part, we have found also some stibnite. In the SE part of the deposit, acanthite, uytenbogaardtite, and petrovskaite occur and seem to be related to supergene enrichment of the ores. In bulk ore samples, Zn usually dominates over Pb and Cu. The average Ag:Au ratio for the entire deposit is 64:1. The concentrations of precious metals in the grab samples reach maxima of 50 ppm Au and 570 ppm Ag in the SE part and 116 ppm Au and 1110 ppm Ag in the central part of the deposit. Fluid inclusions show signs of trapping of a heterogeneous fluid. In the central, northern and SE parts of the deposit, homogenization temperatures of 190-260 °C and consistently low salinities of <5 wt% NaCl eq were recorded. In the SW part, primary fluid inclusions gave homogenization temperatures of 160-180 °C and similar low salinities. The secondary inclusions, however, show salinities up to 24 wt% NaCl eq., interpreted as fluid boiling almost to dryness. Isotopic composition of quartz and clay minerals is recalculated to fluid composition of -5.6 to -0.6 ‰ δ18Ofluid and -80 to -36 ‰ δDfluid, indicating mixed character of hydrothermal fluids falling between the compositions of magmatic and meteoric waters, with predominance of meteoric waters. Assuming hydrostatic pressure in the fluids, the measured data suggest paleodepths of ore formation of 50-170 m in the SW part of the ore deposit, 130-420 m in the SE and N parts, and a range of 120-470 m for the central part. These observations, comparison with other epithermal deposits in the Central Slovak volcanic field, and additional data from published literature show that Nová Baňa is a low- to intermediate sulfidation epithermal deposit, genetically associated to late rhyolitic volcanic activity in this area.
2007-02-01
January 2007; published online 27 February 2007" Surface-enhanced Raman spectroscopy !SERS" was performed on Ga2O3 /Ag and ZnO/Ag nanowires, which were... Ga2O3 nanowires was performed by the vapor-liquid-solid !VLS" growth mechanism,12,13 using Si!100" and Si!111" substrates14 and a 20 nm Au film. Ga...nm line of an Ar ion laser was used as the excitation source. The VLS growth resulted in Ga2O3 wires with a large number of crossings, as shown in Fig
NASA Astrophysics Data System (ADS)
Byram, Chandu; Moram, Sree Sathya Bharathi; Soma, Venugopal Rao
2018-04-01
In this paper, we present the results from fabrication studies of Ag, Au, and Ag-Au alloy nanoparticles (NPs) using picosecond laser ablation technique in the presence of liquid media. The alloy formation in the NPs was confirmed from UV-Visible measurements. The shape and crystallinity of NPs were investigated by using high resolution transmission electron microscopy (HRTEM), selected area diffraction pattern (SAED) and energy dispersive spectroscopy (EDS). The SERS effect of fabricated NPs was tested with methylene blue and an explosive molecule (ammonium perchlorate) using a portable Raman spectrometer and achieved EFs of ˜106.
Theoretical analysis of bimetallic nanorod dimer biosensors for label-free molecule detection
NASA Astrophysics Data System (ADS)
Das, Avijit; Talukder, Muhammad Anisuzzaman
2018-02-01
In this work, we theoretically analyze a gold (Au) core within silver (Ag) shell (Au@Ag) nanorod dimer biosensor for label-free molecule detection. The incident light on an Au@Ag nanorod strongly couples to localized surface plasmon modes, especially around the tip region. The field enhancement around the tip of a nanorod or between the tips of two longitudinally aligned nanorods as in a dimer can be exploited for sensitive detection of biomolecules. We derive analytical expressions for the interactions of an Au@Ag nanorod dimer with the incident light. We also study the detail dynamics of an Au@Ag nanorod dimer with the incident light computationally using finite difference time domain (FDTD) technique when core-shell ratio, relative position of the nanorods, and angle of incidence of light change. We find that the results obtained using the developed analytical model match well with that obtained using FDTD simulations. Additionally, we investigate the sensitivity of the Au@Ag nanorod dimer, i.e., shift in the resonance wavelength, when a target biomolecule such as lysozyme (Lys), human serum albumin (HSA), anti-biotin (Abn), human catalase (CAT), and human fibrinogen (Fb) protein molecules are attached to the tips of the nanorods.
Third-order optical nonlinearity studies of bilayer Au/Ag metallic films
NASA Astrophysics Data System (ADS)
Mezher, M. H.; Chong, W. Y.; Zakaria, R.
2016-05-01
This paper presents nonlinear optical studies of bilayer metallic films of gold (Au) and silver (Ag) on glass substrate prepared using electron beam evaporation. The preparation of Au and Ag nanoparticles (NPs) on the substrate involved the use of electron beam deposition, then thermal annealing at 600 °C and 270 °C, respectively, to produce a randomly distributed layer of Au and a layer of Ag NPs. Observation of field-effect scanning electron microscope images indicated the size of the NPs. Details of the optical properties related to peak absorption of surface plasmon resonance of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear absorption and nonlinear refraction of the fabricated NP layers. The third-order nonlinear refractive index coefficients for Au and Ag are (-9.34 and -1.61) × 10-11 cm2 W-1 given lower n 2, in comparison with bilayer (Au and Ag) NPs at -1.24 × 10-10 cm2 W-1. The results show bilayer NPs have higher refractive index coefficients thus enhance the nonlinearity effects.
Gupta, Vinod Kumar; Atar, Necip; Yola, Mehmet Lütfi; Eryılmaz, Merve; Torul, Hilal; Tamer, Uğur; Boyacı, Ismail Hakkı; Ustündağ, Zafer
2013-09-15
This study represents a novel template demonstration of a glucose biosensor based on mercaptophenyl boronic acid (MBA) terminated Ag@AuNPs/graphene oxide (Ag@AuNPs-GO) nanomaterials. The nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) method. The TEM image shows that Ag@AuNPs in the nanocomposite is in the range of diameters of 10-20 nm. The nanocomposite was used for the determination of glucose through the complexation between boronic acid and diol groups of glucose. Thus, a novel glucose biosensor was further fabricated by immobilizing glucose oxidase (GOD) into MBA terminated Ag@AuNPs-GO nanocomposite film (MBA-Ag@AuNPs-GO). The linearity range of glucose was obtained as 2-6mM with detection limit of 0.33 mM. The developed biosensor was also applied successfully for the determination of glucose in blood samples. The concentration value of glucose in blood samples was calculated to be 1.97±0.002 mM from measurements repeated for six times. Copyright © 2013 Elsevier Inc. All rights reserved.
Gold core@silver semishell Janus nanoparticles prepared by interfacial etching
NASA Astrophysics Data System (ADS)
Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei
2016-07-01
Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface. Electronic supplementary information (ESI) available: Additional TEM, UV-vis, XPS, and electrochemical data. See DOI: 10.1039/c6nr03368g
Lee, Chang-Seuk; Yu, Su Hwan; Kim, Tae Hyun
2017-01-01
Here, we introduce the preparation of the hybrid nanocomposite-modified electrode consisting of reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) using the one-step electrochemical method, allowing for the simultaneous and individual detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). RGO/AuNPs nanocomposite was formed on a glassy carbon electrode by the co-reduction of GO and Au3+ using the potentiodynamic method. The RGO/AuNPs nanocomposite-modified electrode was produced by subjecting a mixed solution of GO and Au3+ to cyclic sweeping from −1.5 V to 0.8 V (vs. Ag/AgCl) at a scan rate 10 mV/s for 3 cycles. The modified electrode was characterized by scanning electron microscopy, Raman spectroscopy, contact angle measurement, electrochemical impedance spectroscopy, and cyclic voltammetry. Voltammetry results confirm that the RGO/AuNPs nanocomposite-modified electrode has high catalytic activity and good resolution for the detection of DA, AA, and UA. The RGO/AuNPs nanocomposite-modified electrode exhibits stable amperometric responses for DA, AA, and UA, respectively, and its detection limits were estimated to be 0.14, 9.5, and 25 μM. The modified electrode shows high selectivity towards the determination of DA, AA, or UA in the presence of potentially active bioelements. In addition, the resulting sensor exhibits many advantages such as fast amperometric response, excellent operational stability, and appropriate practicality. PMID:29301209
Robust Synthesis of Ciprofloxacin-Capped Metallic Nanoparticles and Their Urease Inhibitory Assay.
Nisar, Muhammad; Khan, Shujaat Ali; Qayum, Mughal; Khan, Ajmal; Farooq, Umar; Jaafar, Hawa Z E; Zia-Ul-Haq, Muhammad; Ali, Rashid
2016-03-25
The fluoroquinolone antibacterial drug ciprofloxacin (cip) has been used to cap metallic (silver and gold) nanoparticles by a robust one pot synthetic method under optimized conditions, using NaBH₄ as a mild reducing agent. Metallic nanoparticles (MNPs) showed constancy against variations in pH, table salt (NaCl) solution, and heat. Capping with metal ions (Ag/Au-cip) has significant implications for the solubility, pharmacokinetics and bioavailability of fluoroquinolone molecules. The metallic nanoparticles were characterized by several techniques such as ultraviolet visible spectroscopy (UV), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) methods. The nanoparticles synthesized using silver and gold were subjected to energy dispersive X-ray tests in order to show their metallic composition. The NH moiety of the piperazine group capped the Ag/Au surfaces, as revealed by spectroscopic studies. The synthesized nanoparticles were also assessed for urease inhibition potential. Fascinatingly, both Ag-cip and Au-cip NPs exhibited significant urease enzyme inhibitory potential, with IC50 = 1.181 ± 0.02 µg/mL and 52.55 ± 2.3 µg/mL, compared to ciprofloxacin (IC50 = 82.95 ± 1.62 µg/mL). MNPs also exhibited significant antibacterial activity against selected bacterial strains.
NASA Astrophysics Data System (ADS)
Talite, M. J. A.; Lin, H. T.; Jiang, Z. C.; Lin, T. N.; Huang, H. Y.; Heredia, E.; Flores, A.; Chao, Y. C.; Shen, J. L.; Lin, C. A. J.; Yuan, C. T.
2016-08-01
Luminescent gold nanoclusters (AuNCs) with good biocompatibility have gained much attention in bio-photonics. In addition, they also exhibit a unique photo-physical property, namely thermally activated delayed fluorescence (TADF), by which both singlet and triplet excitons can be harvested. The combination of their non-toxic material property and unique TADF behavior makes AuNCs biocompatible nano-emitters for bio-related light-emitting devices. Unfortunately, the TADF emission is quenched when colloidal AuNCs are transferred to solid states under ambient environment. Here, a facile, low-cost and effective method was used to generate efficient and stable TADF emissions from solid AuNCs under ambient environment using polyvinyl alcohol as a solid matrix. To unravel the underlying mechanism, temperature-dependent static and transient photoluminescence measurements were performed and we found that two factors are crucial for solid TADF emission: small energy splitting between singlet and triplet states and the stabilization of the triplet states. Solid TADF films were also deposited on the flexible plastic substrate with patterned structures, thus mitigating the waveguide-mode losses. In addition, we also demonstrated that warm white light can be generated based on a co-doped single emissive layer, consisting of non-toxic, solution-processed TADF AuNCs and fluorescent carbon dots under UV excitation.
Celania, Chris; Smetana, Volodymyr; Provino, Alessia; ...
2017-12-19
Twenty new ternary representatives of the Gd 14Ag 51 structure type have been synthesized within the R-Au-M family (R = Y, La–Nd, Sm–Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi) using solid state synthesis techniques. The list of post transition metals (M) involved in the formation of this type of structure could be augmented by five new representatives. All compounds crystallize in the hexagonal space group P6/m (#175) with the unit cell ranges of a = 12.3136(2)–12.918(1) Å and c = 8.9967(3)–9.385(1) Å, and incorporate different degrees of Au/M mixing. The involvement of themore » post transition element in the structure varies from one to another compound both qualitatively and quantitatively. A rather significant phase width can be expected for the majority of compounds, however, not without exclusions. The distribution of the post transition metals within the structure has been analyzed via single crystal X-ray diffraction. While the positional disorder of one near-origin Au position is expectable for all compounds due to steric reasons, two specimens show an obvious deviation from the others including another Au position split along the c axis. Lastly, possible factors affecting this behavior are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celania, Chris; Smetana, Volodymyr; Provino, Alessia
Twenty new ternary representatives of the Gd 14Ag 51 structure type have been synthesized within the R-Au-M family (R = Y, La–Nd, Sm–Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi) using solid state synthesis techniques. The list of post transition metals (M) involved in the formation of this type of structure could be augmented by five new representatives. All compounds crystallize in the hexagonal space group P6/m (#175) with the unit cell ranges of a = 12.3136(2)–12.918(1) Å and c = 8.9967(3)–9.385(1) Å, and incorporate different degrees of Au/M mixing. The involvement of themore » post transition element in the structure varies from one to another compound both qualitatively and quantitatively. A rather significant phase width can be expected for the majority of compounds, however, not without exclusions. The distribution of the post transition metals within the structure has been analyzed via single crystal X-ray diffraction. While the positional disorder of one near-origin Au position is expectable for all compounds due to steric reasons, two specimens show an obvious deviation from the others including another Au position split along the c axis. Lastly, possible factors affecting this behavior are discussed.« less
INVESTIGATION OF DENSITY EFFECT IN SOLIDS AND GASES.
electron-positron pair production by 150 MeV electrons. (5) Investiga tion of the density effect in C, Al, Fe, Cu, Ni, Ag, Ta, and Au. (Author)...This report describes the results obtained for the following experiments: (1) The pressure dependence of ionization by relativistic elec trons. (2...Ionization by relativistic particles in helium-hydrogen gas mixtures. (3) Investiga tion of the operation of secondary emission monitors. (4) Direct
NASA Astrophysics Data System (ADS)
Isab, Anvarhusein A.; Wazeer, Mohamed I. M.
2006-09-01
Complexation of Ag + with captopril, 1-[(2 S)-3-mercapto-2-methylpropionyl]- L-proline, has been studied by 1H and 13C-NMR spectroscopy. The equilibrium constants for the trans to cis isomers of captopril bound to Ag + were measured by 1H NMR spectroscopy. It is observed that the trans isomer of the drug binds more strongly to Ag + between pH 5 and 8, as shown by the broadening of the trans isomer's resonances in 13C NMR spectra on complexation. A monodentate complexation of the trans captopril with Ag + via the thiol site is proposed based on the solid-state NMR and IR data. A superior antimicrobial activity is exhibited by the Cap-Ag(I) complex compared to captopril ligand itself against Heterotrotropic Plate Counts (HPC), Pseudomonas aeruginosa and Fecal streptococcus bacteria.
SERS activity studies of Ag/Au bimetallic films prepared by galvanic replacement
NASA Astrophysics Data System (ADS)
Wang, Chaonan; Fang, Jinghuai; Jin, Yonglong
2012-10-01
Ag films on Si substrates were fabricated by immersion plating, which served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement method. SEM images displayed that the sacrificial Ag films presenting island morphology experienced interesting structural evolution process during galvanic replacement reaction, and nano-scaled holes were formed in the resultant bimetallic films. SERS measurements using crystal violet as an analyte showed that SERS intensities of bimetallic films were enhanced significantly compared with that of pure Ag films and related mechanisms were discussed. Immersion plating experiment carried out on Ag films on PEN substrates fabricated by photoinduced reduction method further confirmed that galvanic replacement is an easy method to fabricate Ag/Au bimetallic and a potential approach to improve the SERS performance of Ag films.
NASA Astrophysics Data System (ADS)
Zbrzezny, Adam R.
Near-eutectic Sn-Ag-Cu (SAC) solders are currently considered as major lead-free replacement candidates for Sn-Pb eutectic alloys in microelectronics applications. In this thesis, the microstructural thermal stability including recrystallization, grain growth behavior, Pb and Au contamination effects and interaction of the SAC solder with Cu and Ni substrates were investigated. The true eutectic composition of the Sn-Ag-Cu alloy was verified to be Sn3.5Ag0.9Cu wt.%, and the eutectic melting temperature was determined to be 217.4 +/- 0.8°C. The system was classified as belonging to faceting (Cu6Sn5)-faceting (Ag3Sn)-nonfaceting (Sn matrix) ternary eutectic. The most significant consequence of Pb contamination was the formation of a quaternary eutectic phase (Sn-Ag-Cu-Pb) with a melting point at 176°C. Similarly, the presence of gold in the SAC alloy led to a development of a new quaternary phase (Sn-Ag-Cu-Au) melting at 204°C. Prolonged aging of SAC-4 wt.% Au on nickel resulted in the deposition of a new, previously unreported, intermetallic (IMC) layer, ((Au1-xCUx)6Sn 5, 15 wt.% of Au) on top of the existing (Cu1-yNi y)6Sn5 layer. The interfacial products that formed during soldering to copper were Cu6Sn5 and Cu3Sn. Soldering to nickel resulted in the formation of one layer, (Cu1-yNiy) 6Sn5, which was different from the expected Ni3Sn 4 layer. A small copper content in the SAC solder (0.7 wt.%) was sufficient to promote this thermodynamic shift. Intermetallic growth on Cu during solid state aging was established to be bulk diffusion controlled. The IMC layers in the SAC system grew at a slower rate than in the Sn-Pb system. It was found that the reliability of SAC solder joints on copper was considerably better than on nickel due to copper enrichment during reflow and subsequent Cu6Sn5 intermetallic precipitation. Enhanced copper and silver diffusion followed by tin recrystallization and grain growth, cavity nucleation and subsequent micro-crack linkage formed the framework of a proposed microstructural model of solder degradation mechanisms under cyclic creep conditions. A multilayer diffusion model of the SAC/Cu couple was proposed and employed for predicting intermetallic layer growth kinetics. In general, the calculated IMC thicknesses for short and intermediate aging times were in reasonable agreement with the experimental data.
Sanyal, Udishnu; Jagirdar, Balaji R
2012-12-03
A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.
Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure
NASA Astrophysics Data System (ADS)
Zhu, Zhu; Chen, Feng; Xu, Chunxiang; Yang, Guangcan; Zhu, Ye; Luo, Zhaoxu
2017-12-01
Monitoring the nucleation and growth of nanomaterials is a key technique for material synthesis design and control. An efficient fabrication method can be realized deeply understanding the growth mechanisms. Here, noble metal nanostructures, gold (Au) nanoparticles, silver nanostructures (Ag nanoparticles/Ag nanowires) and gold-silver alloy nanoparticles were prepared in a facile method at room temperature. The growth processes of the Au nanoparticles, Ag nanowires and Au-Ag alloy nanoparticles can be monitored real-timely through the ultraviolet visible absorption (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is found that the whole formation involved Digestive ripening and Ostwald ripening cooperative mechanism. Furthermore, the self-assembly growth is noticed in the oriented attachment of precursor Ag monomers into nanowires under the same synthetic conditions without external templates or rigorous conditions. This result can provide a platform to discover the underlying growth mechanism of wet-chemistry methods for metal nanostructure fabrication.
Gold nanocages: synthesis, properties, and applications.
Skrabalak, Sara E; Chen, Jingyi; Sun, Yugang; Lu, Xianmao; Au, Leslie; Cobley, Claire M; Xia, Younan
2008-12-01
Noble-metal nanocages comprise a novel class of nanostructures possessing hollow interiors and porous walls. They are prepared using a remarkably simple galvanic replacement reaction between solutions containing metal precursor salts and Ag nanostructures prepared through polyol reduction. The electrochemical potential difference between the two species drives the reaction, with the reduced metal depositing on the surface of the Ag nanostructure. In our most studied example, involving HAuCl(4) as the metal precursor, the resultant Au is deposited epitaxially on the surface of the Ag nanocubes, adopting their underlying cubic form. Concurrent with this deposition, the interior Ag is oxidized and removed, together with alloying and dealloying, to produce hollow and, eventually, porous structures that we commonly refer to as Au nanocages. This approach is versatile, with a wide range of morphologies (e.g., nanorings, prism-shaped nanoboxes, nanotubes, and multiple-walled nanoshells or nanotubes) available upon changing the shape of the initial Ag template. In addition to Au-based structures, switching the metal salt precursors to Na(2)PtCl(4) and Na(2)PdCl(4) allows for the preparation of Pt- and Pd-containing hollow nanostructures, respectively. We have found that changing the amount of metal precursor added to the suspension of Ag nanocubes is a simple means of tuning both the composition and the localized surface plasmon resonance (LSPR) of the metal nanocages. Using this approach, we are developing structures for biomedical and catalytic applications. Because discrete dipole approximations predicted that the Au nanocages would have large absorption cross-sections and because their LSPR can be tuned into the near-infrared (where the attenuation of light by blood and soft tissue is greatly reduced), they are attractive materials for biomedical applications in which the selective absorption of light at great depths is desirable. For example, we have explored their use as contrast enhancement agents for both optical coherence tomography and photoacoustic tomography, with improved performance observed in each case. Because the Au nanocages have large absorption cross-sections, they are also effective photothermal transducers; thus, they might provide a therapeutic effect through selective hyperthermia-induced killing of targeted cancer cells. Our studies in vitro have illustrated the feasibility of applying this technique as a less-invasive form of cancer treatment.
Gold Nanocages: Synthesis, Properties, and Applications
SKRABALAK, SARA E.; CHEN, JINGYI; SUN, YUGANG; LU, XIANMAO; AU, LESLIE; COBLEY, LAIRE M.; XIA, YOUNAN
2008-01-01
Conspectus Noble-metal nanocages represent a novel class of nanostructures with hollow interiors and porous walls. They are prepared using the remarkably simple galvanic replacement reaction between solutions containing metal precursor salts and Ag nanostructures prepared by polyol reduction. The electrochemical potential difference between the two species drives the reaction, with the reduced metal depositing on the surface of the Ag nanostructure. In our most studied example involving HAuCl4 as the metal precursor, the resultant Au epitaxially deposits on the surface of the Ag nanocubes, adopting their cubic structure. Concurrent with this deposition, the interior Ag is oxidized and removed, together with alloying and dealloying, to produce hollow and eventually porous structures that we commonly refer to as Au nanocages. This approach has proven versatile, with a wide range of morphologies – including nanorings, prism-shaped nanoboxes, nanotubes, and multiple-walled nanoshells or nanotubes – being produced by changing the shape of the initial Ag template. Besides Au-based structures, Pt- and Pd-containing hollow nanostructures have been prepared by switching the metal salt precursors to Na2PtCl4 or Na2PdCl4, respectively. Additionally, we have found it easy to tune both the composition and localized surface plasmon resonance (LSPR) of the metal nanocages by simply changing the amount of metal precursor added to the suspension of Ag nanocubes. In this way, we are developing these structures for biomedical and catalytic applications. As the Au nanocages are predicted by discrete dipole approximations (DDA) to have large absorption cross-sections and their LSPR can be tuned into the near-infrared where the attenuation of light by blood and soft tissue is greatly reduced, they are attractive for biomedical applications in which the selective absorption of light at great depths is desirable. For example, we have explored their use as contrast enhancement agents for both optical coherence tomography (OCT) and photoacoustic tomography (PAT), with improvements being observed in each case. As the Au nanocages have large absorption cross-sections, they are also effective photothermal transducers, which when targeted to cancer cells could provide a therapeutic effect by selectively killing them by hyperthermia. Our in vitro work illustrates the feasibility of this technique as a less invasive form of cancer treatment. PMID:18570442
Yin, Ping; Xu, Qiang; Qu, Rongjun; Zhao, Guifang; Sun, Yanzhi
2010-01-15
A novel inorganic-organic composite material silica gel microspheres encapsulated by imidazole functionalized polystyrene (SG-PS-azo-IM) has been synthesized and characterized. This composite material was used to investigate the adsorption of Cr(III), Mn(II), Fe(III), Ni(II), Cu(II), Zn(II), Hg(II), Pb(II), Pd(II), Pt(II), Ag(I), and Au(III) from aqueous solutions, and the research results displayed that SG-PS-azo-IM has the highest adsorption capacity for Au(III). Langmuir and Freundlich isotherm models were applied to analyze the experimental data, the best interpretation for the experimental data was given by the Langmuir isotherm equation, and the maximum adsorption capacity for Au(III) is 1.700 mmol/g. The adsorption selectivity, the dynamic adsorption and desorption properties of SG-PS-azo-IM for Au(III) have also been studied. The results showed that SG-PS-azo-IM had excellent adsorption for Au(III) in four binary ions system, especially in the systems of Au(III)-Zn(II) and Au(III)-Cu(II), and almost Au(III) could be desorbed with the eluent solution of 0.5% thiourea in 1 mol/L HCl. Moreover, this novel composite material was used to preconcentrate Au(III) before its determination by flame atomic adsorption spectrometry. In the initial concentration range of 0.10-0.20 microg/mL, multiple of enrichment could reach 5.28. Thus, silica gel encapsulated by polystyrene coupling with imidazole (SG-PS-azo-IM) is favorable and useful for the removal of transition metal ions, and the high adsorption capacity makes it a good promising candidate material for Au(III) removal.
Martensitic transformations in Ag-Au bimetallic core-shell nanoalloys
NASA Astrophysics Data System (ADS)
Chen, Fuyi; Johnston, Roy L.
2008-01-01
Combining the Gupta potential and bond order analysis in a molecular dynamics simulation, a martensitic transformation is observed in the 147-atom AucoreAgshell nanostructure at 328K. The response time for this transformation is about 7ps at 350K. In pure gold clusters, it was previously thought that a similar solid-to-solid transformation is a prelude to melting transitions. In the present case, atomic pathway snapshots show that the heating energy is used to overcome the energy barrier for initiating the spontaneous process. The subsequent twist-deformation propagation and termination are clearly observed.
NASA Astrophysics Data System (ADS)
Purusottam Reddy, B.; Mallikarjuna, K.; Narasimha, G.; Park, Si-Hyun
2017-08-01
Bio-based green nanotechnology aims to characterize compounds from natural sources and establish efficient routes for the preparation of nontoxic materials that have applicability in biodegradable and biocompatible devices. The present study has investigated the use of Plectranthus amboinicus leaf extracts as reducing and capping materials for the green fabrication of silver, gold, and silver-gold (Ag, Au, and Ag/Au) metal and bimetallic nanoparticles. The catalytic behavior of these phyto-inspired nanoparticles was then assessed in terms of the reduction of 4-nitrophenol. Transmission electron microscopy was used to investigate the shape, morphology, distribution, and diameter of the phytomolecules capped with Ag, Au, and Ag/Au metal nanoparticles. The nature of the crystallinity of the nanoparticles was studied by small area electron diffraction (SAED) and x-ray diffraction analysis (XRD), and Fourier transform infrared (FTIR) spectroscopy was used to study the reduction and stabilizing involvement of the phyto-organic moieties in aqueous medium. The phyto-inspired Ag and Ag/Au nanoparticles demonstrated good antibacterial properties toward Gram-negative Escherichia coli and Pseudomonas spp. and Gram-positive Bacillus spp. and Staphylococcus spp. microorganisms using the well diffusion method. Notably, the Ag nanoparticles were shown to possess effective antibacterial properties.
Wetting reaction of Sn-Ag based solder systems on Cu substrates plated with Au and/or Pd layer
NASA Astrophysics Data System (ADS)
Liu, C. Y.; Li, Jian; Vandentop, G. J.; Choi, W. J.; Tu, K. N.
2001-05-01
The wetting behavior of SnAg based Pb-free solders on Cu and Cu substrates plated with Au, Pd, and Au/Pd thin films have been studied. The wetting angle and kinetics of interfacial reaction were measured. The Au-plated substrates exhibit better wetting than the Pd-plated substrates. In the case of SnAg on Pd-plated Cu, SEM observation revealed that the solder cap was surrounded by an innerring of Cu-Sn compound and an outer ring of Pd-Sn compound. This implies that the molten SnAg solder had removed the Pd and wetted the Cu directly in the equilibrium state. The effects of pre-doping Cu in the SnAg solder on wetting behavior were also investigated. We found that wettability decreases with increasing Cu content in the solder. We also observed that the SnAgCu solders have a lower Cu consumption rate than the SnAg solder.
2011-01-01
In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO) were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future. PMID:21982417
NASA Astrophysics Data System (ADS)
Divi, Srikanth; Agrahari, Gargi; Ranjan Kadulkar, Sanket; Kumar, Sanjeet; Chatterjee, Abhijit
2017-12-01
Capturing segregation behavior in metal alloy nanoparticles accurately using computer simulations is contingent upon the availability of high-fidelity interatomic potentials. The embedded atom method (EAM) potential is a widely trusted interatomic potential form used with pure metals and their alloys. When limited experimental data is available, the A-B EAM cross-interaction potential for metal alloys AxB 1-x are often constructed from pure metal A and B potentials by employing a pre-defined ‘mixing rule’ without any adjustable parameters. While this approach is convenient, we show that for AuPt, NiPt, AgAu, AgPd, AuNi, NiPd, PtPd and AuPd such mixing rules may not even yield the correct alloy properties, e.g., heats of mixing, that are closely related to the segregation behavior. A general theoretical formulation based on scaling invariance arguments is introduced that addresses this issue by tuning the mixing rule to better describe alloy properties. Starting with an existing pure metal EAM potential that is used extensively in literature, we find that the mixing rule fitted to heats of mixing for metal solutions usually provides good estimates of segregation energies, lattice parameters and cohesive energy, as well as equilibrium distribution of metals within a nanoparticle using Monte Carlo simulations. While the tunable mixing rule generally performs better than non-adjustable mixing rules, the use of the tunable mixing rule may still require some caution. For e.g., in Pt-Ni system we find that the segregation behavior can deviate from the experimentally observed one at Ni-rich compositions. Despite this the overall results suggest that the same approach may be useful for developing improved cross-potentials with other existing pure metal EAM potentials as well. As a further test of our approach, mixing rule estimated from binary data is used to calculate heat of mixing in AuPdPt, AuNiPd, AuPtNi, AgAuPd and NiPtPd. Excellent agreement with experiments is observed for AuPdPt.
Equilibrium composition of interphase boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wynblatt, P.
1990-01-01
Two modeling approaches have been used to investigate segregation effects at interphase boundaries. The first approach is based on the nearest neighbor bond model, used in conjunction with the regular solution approximation, and is an extension of an earlier framework developed to address segregation phenomena at free surfaces. In order to model a semicoherent interphase boundary, we have employed a second modeling approach, based on Monte Carol simulation, in conjunction with the embedded atom method (EAM). The EAM is a powerful new method for describing interatomic interactions in metallic systems. It includes certain many-body interactions that depend on the localmore » environment of an atom. The Monte Carol approach has been applied to semicoherent interphase boundaries in Cu-Ag-Au alloys dilute in Au. These alloys consist of coexisting Cu-rich and Ag-rich phases, which differ in lattice constant by about 12%, such that good matching across in interface occurs when nine structural units of the Cu-rich phase are opposed to eight structural units of the Ag-rich phase. Thus far, interfaces with two different orientations have been studied: {l brace}001{r brace}-Cu//{l brace}001{r brace}-Ag, {l angle}110{r angle}-Cu//{l angle}110{r angle}-Ag; and {l brace}111{r brace}-Cu//{l brace}111{r brace}-Ag, {l angle}110{r angle}-Cu//{l angle}110{r angle}-Ag. These two interfaces will be referred to as the (001) and (111) interphase boundaries, for short. 18 refs.« less
3D morphology of Au and Au@Ag nanobipyramids
NASA Astrophysics Data System (ADS)
Burgin, Julien; Florea, Ileana; Majimel, Jérôme; Dobri, Adam; Ersen, Ovidiu; Tréguer-Delapierre, Mona
2012-02-01
The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance.The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11454b
Nickel-Silver Monotectic in Alumina Crucible for Use with Contact Thermometry
NASA Astrophysics Data System (ADS)
Gotoh, M.; Dedyulin, S. N.
2017-07-01
Previously, the authors have published work describing a pure Ni fixed point within alumina crucibles. The success of this study stimulated working with the Ni-Ag monotectic point in alumina crucibles. Similar to eutectic points, the Ni-Ag monotectic temperature is an invariant point but it differs from a eutectic reaction in such a way that the monotectic phase change takes place from Ni-Ag liquid solution to Ni-Ag solid solution and Ag rich Ni-Ag liquid solution. In the phase diagram references, the Ni-Ag monotectic phase transition temperature is assigned to be about 20°C below the pure Ni melting/freezing point. As is the case for pure Ni, mechanical stability is one of the concerns. Therefore, proper cell design is necessary to avoid breakage of the alumina crucible. The techniques used for the fabrication and measurement of the pure Ni cell were applied to the Ni-Ag cell as well. The cells have been successfully fabricated and the temperature measurement at the fixed point was carried out for more than 20 thermal cycles in total. A Pt/Pd thermocouple was used to measure the temperature and was calibrated from the tin point to the gold point to measure the ITS-90. Freezing plateaus are realized with the technique of "recurrent offset freezing method with reserved solid". The duration of each freezing plateau is a minimum of 30 min. The monotectic transformation temperature for the best performed cell is determined as 1428.27°C with a combined uncertainty of ±0.06°C ({k}=1).
Thermo-responsive PNIPAM-metal hybrids: An efficient nanocatalyst for the reduction of 4-nitrophenol
NASA Astrophysics Data System (ADS)
Satapathy, Smith Sagar; Bhol, Prachi; Chakkarambath, Aswathy; Mohanta, Jagdeep; Samantaray, Kunal; Bhat, Suresh K.; Panda, Subhendu K.; Mohanty, Priti S.; Si, Satyabrata
2017-10-01
Micron size thermoresponsive cross-linked polymeric microgels of poly(N-isopropylacrylamide) (PNIPAM) are used as "microreactor" for embedding metal nanoparticles of different shapes. Using a simple and robust method, we have synthesized various polymer-metal hybrid nanostructures incorporated with Au nanorods (AuNR), Au nanospheres (AuNS) and Ag nanospheres (AgNS). These hybrid nanostructures have been characterized by transmission electron microscope (TEM), UV-vis spectroscopy, dynamic light scattering (DLS) and static light scattering (SLS) followed by their catalytic activity. TEM studies directly confirmed the mondispersity of synthesized hybrid microgels and stability of the embedded metal nanoparticles within the microgels. Optical studies confirmed the presence of respective absorption bands that correspond to AuNS, AgNS and AuNR respectively. Extensive DLS studies demonstrated that although these hybrid microgels preserve their thermoresponsive properties, i.e their hydrodynamic radius decreased with increasing temperature, their thermosensitivity were comparatively lesser than pure PNIPAM microgels. Combining with studies using static light scattering, we further found that AuNS and AgNS were inhomogeneously distributed within microgels where the majority of the nanoparticles present within the loosely cross-linked shell. On the other hand AuNR were distributed more homogeneously within the microgels. Catalytic performance of various nanostructures loaded onto PNIPAM microgel beads were evaluated by studying the catalytic reduction of 4-nitrophenol. Complete catalytic conversion using AgNS occurred in ∼30 min with a first-order rate constant of 0.159 min-1 having a 7 min induction period. On the other hand no induction period was observed for AuNS and AuNR and the reaction completed in 3-4 min with a first-order rate constant of 1.607 min-1 and 1.627 min-1 respectively. Further, PNIPAM-AuNS and PNIPAM-AuNR possess better catalytic activity as well as recyclability compared to that of PNIPAM-AgNS.
Synthesis of gold and silver nanoparticles using purified URAK.
Deepak, Venkataraman; Umamaheshwaran, Paneer Selvam; Guhan, Kandasamy; Nanthini, Raja Amrisa; Krithiga, Bhaskar; Jaithoon, Nagoor Meeran Hasika; Gurunathan, Sangiliyandi
2011-09-01
This study aims at developing a new eco-friendly process for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using purified URAK. URAK is a fibrinolytic enzyme produced by Bacillus cereus NK1. The enzyme was purified and used for the synthesis of AuNPs and AgNPs. The enzyme produced AgNPs when incubated with 1 mM AgNO3 for 24 h and AuNPs when incubated with 1 mM HAuCl4 for 60 h. But when NaOH was added, the synthesis was rapid and occurred within 5 min for AgNPs and 12 h for AuNPs. The synthesized nanoparticles were characterized by a peak at 440 nm and 550 nm in the UV-visible spectrum. TEM analysis showed that AgNPs of the size 60 nm and AuNPs of size 20 nm were synthesized. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical. FT-IR showed that protein was responsible for the synthesis of the nanoparticles. This process is highly simple, versatile and produces AgNPs and AuNPs in environmental friendly manner. Moreover, the synthesized nanoparticles were found to contain immobilized enzyme. Also, URAK was tested on RAW 264.7 macrophage cell line and was found to be non-cytotoxic until 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.
Mechanical properties and grindability of experimental Ti-Au alloys.
Takahashi, Masatoshi; Kikuchi, Masafumi; Okuno, Osamu
2004-06-01
Experimental Ti-Au alloys (5, 10, 20 and 40 mass% Au) were made. Mechanical properties and grindability of the castings of the Ti-Au alloys were examined. As the concentration of gold increased to 20%, the yield strength and the tensile strength of the Ti-Au alloys became higher without markedly deteriorating their ductility. This higher strength can be explained by the solid-solution strengthening of the a titanium. The Ti-40%Au alloy became brittle because the intermetallic compound Ti3Au precipitated intensively near the grain boundaries. There was no significant difference in the grinding rate and grinding ratio among all the Ti-Au alloys and the pure titanium at any speed.
Study of the effects of MeV Ag, Cu, Au, and Sn implantation on the optical properties of LiNbO3
NASA Technical Reports Server (NTRS)
Williams, E. K.; Ila, D.; Sarkisov, S.; Curley, M.; Poker, D. B.; Hensley, D. K.; Borel, C.
1998-01-01
The authors present the results of characterization of linear absorption and nonlinear refractive index of Au, Ag, Cu and Sn ion implantation into LiNbO3. Ag was implanted at 1.5 MeV to fluences of 2 to 17 x 17(exp 16)/sq cm at room temperature. Au and Cu were implanted to fluences of 5 to 20 x 10(exp 16)/sq cm at an energy of 2.0 MeV. Sn was implanted to a fluence of 1.6 x 10(exp 17)/sq cm at 160 kV. Optical absorption spectrometry indicated an absorption peak for the Au implanted samples after heat treatment at 1,000 C at approx. 620 nm. The Ag implanted samples absorption peaks shifted from approx. 450 nm before heat treatment to 550 nm after 500 C for 1h. Heat treatment at 800 C returned the Ag implanted crystals to a clear state. Cu nanocluster absorption peaks disappears at 500 C. No Sn clusters were observed by optical absorption or XRD. The size of the Ag and Au clusters as a function of heat treatment were determined from the absorption peaks. The Ag clusters did not change appreciably in size with heat treatment. The Au clusters increased from 3 to 9 nm diameter upon heat treatment at 1000 C. TEM analysis performed on a Au implanted crystal indicated the formation of Au nanocrystals with facets normal to the c-axis. Measurements of the nonlinear refractive indices were carried out using the Z-scan method with a tunable dye laser pumped by a frequency doubled mode-locked Nd:YAG laser. The dye laser had a 4.5 ps pulse duration time and 76 MHz pulse repetition rate (575 nm).
Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Mohammad
2016-11-01
Prunella vulgaris L. (P. vulgaris) is an important medicinal plant with a wide range of antiviral properties. Traditionally, it is known as self-heal because of its faster effects on wound healing. It is commonly known as a natural antiseptic due to the presence of various polyphenols. There is lack of research efforts on its propagation and production of bioactive compounds under field and in vitro conditions. In this study, the effects of different ratios (1:2, 1:3, 2:1, and 3:1) of silver (Ag) and gold (Au) nanoparticles (NPs) alone or in combination with naphthalene acetic acid (NAA) were investigated for callus culture development and production of secondary metabolites. The Ag (30 μg l -1 ), AgAu (1:2), and AgAu (2:1) NPs in combination with NAA (2.0 mg l -1 ) enhanced callus proliferation (100 %) as compared to the control (95 %). Among the different NPs tested, AuNPs with or without NAA produced higher biomass in log phases (35-42 days) of growth kinetics. Furthermore, AgAu (1:3) and AuNPs alone enhanced total protein content (855 μg-BSAE/mg-fresh weight (FW)), superoxide dismutase (0.54 nM/min/mg-FW), and peroxidase (0.39 nM/min/mg-FW) enzymes in callus cultures. The AgAuNPs (1:3) in combination with NAA induced maximum accumulation of phenolics (TPC 9.57 mg/g-dry weight (DW)) and flavonoid (6.71 mg/g-DW) content. Moreover, AgAuNPs (3:1) without NAA enhanced antioxidant activity (87.85 %). This study provides the first evidence of NP effect on callus culture development and production of natural antioxidants in P. vulgaris.
NASA Astrophysics Data System (ADS)
Wang, Li; Wang, Jiku; Ni, Pengjuan; Li, Zhuang
2015-03-01
We demonstrated a biomimetic green synthesis of bimetallic Au-Ag nanoparticles (NPs) on graphene nanosheets (GNs). The spherical protein, ferritin (Fr), was bound onto GNs and served as the template for the synthesis of GN/Au-Ag nanohybrids. The created GN/Au-Ag nanohybrids were further utilized to fabricate a non-enzymatic amperometric biosensor for the sensitive detection of hydrogen peroxide (H2O2), and this biosensor displayed high performances to determine H2O2 with a detection limit of 20.0 × 10-6 M and a linear detection range from 2.0 μM to 7.0 mM.
Silica coatings formed on noble dental casting alloy by the sol-gel dipping process.
Yoshida, K; Tanagawa, M; Kamada, K; Hatada, R; Baba, K; Inoi, T; Atsuta, M
1999-08-01
The sol-gel dipping process, in which liquid silicon alkoxide is transformed into the solid silicon-oxygen network, can produce a thin film coating of silica (SiO2). The features of this method are high homogeneity and purity of the thin SiO2 film and a low sinter temperature, which are important in preparation of coating films that can protect from metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface characteristics of the dental casting silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy coated with a thin SiO2 film by the sol-gel dipping process. The SiO2 film bonded strongly (over 40 MPa) to Ti-implanted Ag-Pd-Cu-Au alloy substrate as demonstrated by a pull test. Hydrophobilization of Ti-implanted/SiO2-coated surfaces resulted in a significant increase of the contact angle of water (80.5 degrees) compared with that of the noncoated alloy specimens (59.3 degrees). Ti-implanted/SiO2-coated specimens showed the release of many fewer metallic ions (192 ppb/cm2) from the substrate than did noncoated specimens (2,089 ppb/cm2). The formation of a thin SiO2 film by the sol-gel dipping process on the surface of Ti-implanted Ag-Pd-Cu-Au alloy after casting clinically may be useful for minimizing the possibilities of the accumulation of dental plaque and metal allergies caused by intraoral metal restorations.
Zhang, Tianle; Drouin, Marc; Harvey, Pierre D.
1999-11-01
The title compound is prepared from the direct reaction of Pt(2)(dba)(3) (dba = dibenzylideneacetone) and [Au(PPh(3))(2)](PF(6)) in the presence of 1,8-diisocyano-p-methane (dmb), with Pt(2)(dmb)(2)Cl(2), [Pt(4)(dmb)(4)(PPh(3))(2)](PF(6))(2), and (PPh(3))AuCl being formed as parallel products. X-ray crystallography reveals the presence of a quasi-linear PPh(3)Au-AuPPh(3) fragment encapsulated inside a "Pt(2)(dmb)(2)(2+)" ring which is axially coordinated with two PPh(3) ligands. The d(AuAu) is 2.5977(6) Å and is indicative of a strong Au-Au single bond. The IR nu(CN) data reveal that the Pt oxidation state is I, which places the Au oxidation state at 0. The PtAu distances are 2.8422(5) and 2.8082(5) Å. The Raman-active nu(Au(2)), nu(PtAu) (b(2g) + a(g)), nu(PtP), nu(AuP), and nu(PtC) are found at 121.2, approximately 100, 85.5, 162.1, 183.1, and 457.2, and 440.9 cm(-)(1), respectively. The PtAu (0.67 mdyn Å(-)(1)) and Au(2) (1.21 mdyn Å(-)(1)) force constants (F) confirm the presence of medium PtAu and strong Au(2) bonding interactions. The absorption spectra are characterized by strong bands at lambda(max) (epsilon, M(-1) cm(-1)) at 316 (32 300), 366 (37 800), and 418 nm (21 500) and lower intensity features at 516 (2860) and 655 nm (834). The cluster is luminescent at low temperatures (solid and frozen glasses), and in the solid state at room temperature, and exhibits an emission band at approximately 875 nm, and an emission lifetime, tau(e), of 4.4 +/- 0.4 ns (solvent = butyronitrile, T = 77 K).
Formation of gold and silver nanostructures within polyvinylpyrollidone (PVP) gel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan Caixia, E-mail: cxkan@nuaa.edu.c; Wang Changshun; Zhu Jiejun
2010-04-15
Study on reduction of Au(III) and Ag(I) and the formation of Au and Ag nanostructures was performed on the gels of metal precursor and PVP polymer mixture. Some comparing samples were prepared for better understanding the role of reactants on the reduction of metal ions and further growth of nanocrystals. The results suggest that, in addition to its function of generating stable colloids, PVP not only has a reducing effect on metal ions, but also acts as a crystal growth modifier. At low temperatures, the reducing effect of PVP is strong on Ag(I) ions in AgNO{sub 3}, while the reductionmore » of complex Au(III) ions in HAuCl{sub 4} is slow, involving two steps of Au(III)->Au(I)->Au. In the study of temperature disturbance on crystal growth, Au nanoplates of new and well-defined star shape were observed. The differences in the size and shape of nanoparticles are discussed from the colloid chemistry. - Graphical abstract: If a temperature difference was introduced to the gel of Au{sup 3+}(H{sub 2}O)-PVP, large sized Au nanoplates with new and well-defined star shape were observed.« less
Kim, Da Hye; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo
2009-07-07
This report on the solid-to-liquid transition region of an Ag-Pd bimetallic nanocluster is based on a constant energy microcanonical ensemble molecular dynamics simulation combined with a collision method. By varying the size and composition of an Ag-Pd bimetallic cluster, we obtained a complete solid-solution type of binary phase diagram of the Ag-Pd system. Irrespective of the size and composition of the cluster, the melting temperature of Ag-Pd bimetallic clusters is lower than that of the bulk state and rises as the cluster size and the Pd composition increase. Additionally, the slope of the phase boundaries (even though not exactly linear) is lowered when the cluster size is reduced on account of the complex relations of the surface tension, the bulk melting temperature, and the heat of fusion. The melting of the cluster initially starts at the surface layer. The initiation and propagation of a five-fold icosahedron symmetry is related to the sequential melting of the cluster.
Yan, Yuting; Liu, Qian; Wang, Kun; Jiang, Ling; Yang, Xingwang; Qian, Jing; Dong, Xiaoya; Qiu, Baijing
2013-12-07
This work reports a novel strategy to amplify the electrochemiluminescence (ECL) signal of peroxydisulfate solution based on the Au nanoparticle decorated reduced graphene oxide (Au NP-RGO), and further an ECL biosensor for sensitive and selective detection of dopamine (DA) was constructed. Due to the synergistic amplification of Au NPs and RGO, the ECL signal of peroxydisulfate solution on the Au NP-RGO modified electrode was about 5-fold enhanced compared to that of the bare electrode with the ECL onset potential positively shifted from -1.2 V to -0.9 V. More interestingly, the ECL intensity of peroxydisulfate solution increased with the increase of DA concentration, based on which an ECL biosensor for DA determination was fabricated. The as-prepared solid-state ECL DA sensor showed a wide linear response of 0.02-40 μM with a detection limit of 6.7 nM (S/N = 3). Moreover, we expect this work would open up a new field in the application of peroxydisulfate solution ECL for highly sensitive bioassays.
Yolk@Shell Nanoarchitectures with Bimetallic Nanocores-Synthesis and Electrocatalytic Applications.
Guiet, Amandine; Unmüssig, Tobias; Göbel, Caren; Vainio, Ulla; Wollgarten, Markus; Driess, Matthias; Schlaad, Helmut; Polte, Jörg; Fischer, Anna
2016-10-10
In the present paper, we demonstrate a versatile approach for the one-pot synthesis of metal oxide yolk@shell nanostructures filled with bimetallic nanocores. This novel approach is based on the principles of hydrophobic nanoreactor soft-templating and is exemplified for the synthesis of various AgAu NP @tin-rich ITO (AgAu@ITO TR ) yolk@shell nanomaterials. Hydrophobic nanoreactor soft-templating thereby takes advantage of polystyrene-block-poly(4-vinylpiridine) inverse micelles as two-compartment nanoreactor template, in which the core and the shell of the micelles serve as metal and metal oxide precursor reservoir, respectively. The composition, size and number of AuAg bimetallic nanoparticles incorporated within the ITO TR yolk@shell can easily be tuned. The conductivity of the ITO TR shell and the bimetallic composition of the AuAg nanoparticles, the as-synthesized AuAg NP @ITO TR yolk@shell materials could be used as efficient electrocatalysts for electrochemical glucose oxidation with improved onset potential when compared to their gold counterpart.
Hupf, Emanuel; Kather, Ralf; Vogt, Matthias; Lork, Enno; Mebs, Stefan; Beckmann, Jens
2016-11-07
The previously reported bis(6-diphenylphosphinoacenaphth-5-yl)mercury (1) was used as ligand for the preparation of the copper(I) complexes, 1·CuCl and [1·Cu(NCMe)]BF 4 , which were characterized by multinuclear NMR spectroscopy and X-ray crystallography. DFT calculations employing topological analysis of the electron and electron pair densities within the AIM and ELI-D space-partitioning schemes revealed significant metallophilic Hg···Cu interactions. Evaluation of noncovalent bonding aspects according to the noncovalent interaction (NCI) index was applied not only for the Cu complexes 1·CuCl and [1·Cu(NCMe)]BF 4 but also for the previously reported Ag and Au complexes, namely, [1·MCl] (M = Ag, Au) and [1·M(NCMe) n ] + (M = Ag, n = 2; M = Au, n = 0), and facilitated the assignment of attractive dispersive Hg···M interactions with the Hg···Cu contacts being comparable to the Hg···Ag but weaker than the Hg···Au interactions. The localization of the attractive noncovalent bonding regions increases in the order Cu < Ag < Au.
Study on surface-enhanced Raman scattering efficiency of Ag core-Au shell bimetallic nanoparticles
NASA Astrophysics Data System (ADS)
Dong, Xiao; Gu, Huaimin; Kang, Jian; Yuan, Xiaojuan
2009-08-01
In this article, the relationship between the states of Ag core-Au shell (core-shell) nanoparticles (NP) and the intensity of Raman scattering of analytes dissolved in the water and adsorbed on the NP was studied. The core-shell NP were synthesised by coating Au layers over Ag seeds by the method of "seed-growth". To highlight the advantage of the core-shell NP, Ag colloid and Au colloid were chosen for contrasting. The analyte that were chosen for this testing were methylene blue (MB) for the reason that MB has very strong signal in surface-enhanced Raman scattering (SERS). The SERS activity of optimalizing states of Ag and Au colloids were compared with that of core-shell NP when MB was used as analyte. In this study, sodium chloride, sodium sulfate and sodium nitrate were used as aggregating agents for Ag, Au colloids and core-shell NP, because anions have a strong influence on the SERS efficiency and the stability of colloids. The results indicate that core-shell NP can obviously enhance the SERS of MB. The aim of this study is to prove that compared with the metal colloid, the core-shell NP is a high efficiency SERS active substrate.
Chen, Nannan; Guo, Wenjing; Lin, Zhixiang; Wei, Qiaohua; Chen, Guonan
2018-08-01
A specific and label-free "on-off-on" luminescence biosensor based on a novel heterometallic cluster [Ag 6 Au 6 (ethisterone) 12 ]-estrogen receptor α (Ag 6 Au 6 Eth-ERα) aggregation utilizing graphene oxide (GO) as a quencher to lead a small background signal was firstly constructed to detect immunoglobulin G (IgG) with a simple process and high selectivity. The efficient photoluminescent (PL) Ag 6 Au 6 Eth-ERα aggregation is strongly quenched by GO. In the presence of IgG, the PL of this system will be restored, and perceivable by human eyes under UV lamp excitation (365 nm). The quenching mechanism of GO on Ag 6 Au 6 Eth-ERα and enhancement mechanism of IgG on Ag 6 Au 6 Eth-ERα-GO were investigated in detail. Under the optimum conditions, the biosensor for high sensitive IgG detection expressed a wider linear range of 0.0078-10 ng/mL and a lower detection limit of 0.65 pg/mL with good stability and repeatability, which provided a new approach for label-free IgG detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Adrowski, Michael J.; Mason, W. Roy
1997-03-26
Electronic absorption and 7.0 T magnetic circular dichroism (MCD) spectra in the UV-vis region, 1.6 to approximately 4.0 &mgr;m(-)(1) (1 &mgr;m(-)(1) = 10(4) cm(-)(1)) are reported for [Pd(AuPPh(3))(8)](NO(3))(2) and [Pt(AuPPh(3))(8)](NO(3))(2) in acetonitrile solutions at room temperature. The MCD spectra are better resolved than the absorption spectra and consist of both A and B terms. The spectra are interpreted in terms of D(4)(d)() skeletal geometry and MO's that are approximated by 5s and 6s orbitals for Pd and Pt/Au atoms, respectively. The lowest energy excited configurations and states are attributed to intraframework (IF) Au(8)(2+) transitions. Evidence is also presented for Pt 5d --> Au 6s transitions in the MCD spectra for Pt(AuPPh(3))(8)(2+). Acetonitrile solution absorption and MCD spectra for the related Pt-centered cluster complexes [Pt(CO)(AuPPh(3))(8)](NO(3))(2), [Pt(AuP(p-tolyl)(3))(8)](NO(3))(2), [Pt(CuCl)(AuPPh(3))(8)](NO(3))(2), [Pt(AgNO(3))(AuPPh(3))(8)](NO(3))(2), [Pt(Hg)(2)(AuPPh(3))(8)](NO(3))(2), [Pt(HgCl)(2)(AuPPh(3))(8)](BF(4))(2), and [Pt(HgNO(3))(2)(AuPPh(3))(8)](BF(4))(2) are also reported and interpreted within the context of the model developed for the M(AuPPh(3))(8)(2+) complexes.
Setyono, Daisy; Valiyaveettil, Suresh
2016-01-25
Paper, a readily available renewable resource, comprises of interwoven cellulosic fibers, which can be functionalized to develop interesting low-cost adsorbent material for water purification. In this study, polyethyleneimine (PEI)-functionalized paper was used for the removal of hazardous pollutants such as Au and Ag nanoparticles, Cr(VI) anions, Ni(2+), Cd(2+), and Cu(2+) cations from spiked water samples. Compared to untreated paper, the PEI-coated paper showed significant improvement in adsorption capacities toward the pollutants investigated in this study. Kinetics, isotherm models, pH, and desorption studies were carried out to study the adsorption mechanism of pollutants on the adsorbent surface. Adsorption of pollutants was better described by pseudo-second order kinetics and Langmuir isotherm model. Maximum adsorption of anionic pollutants was achieved at pH 5 while that of cations was at pH>6. Overall, the PEI-functionalized paper showed interesting Langmuir adsorption capacities for heavy metal ions such as Cr(VI) (68 mg/g), Ni(2+) (208 mg/g), Cd(2+) (370 mg/g), and Cu(2+) (435 mg/g) ions at neutral pH. In addition, the modified paper was also used to remove Ag-citrate (79 mg/g), Ag-PVP (46 mg/g), Au-citrate (30 mg/g), Au-PVP (17 mg/g) nanoparticles from water. Desorption of NPs from the adsorbent was done by washing with 2 M HCl or thiourea solution, while heavy metal ions were desorbed using 1 M NaOH or HNO3 solution. The modified paper retained its extraction efficiencies upon desorption of pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Lianfeng; Li, Jonathan; Zakharov, Dmitri
Using in situ transmission electron microscopy that spatially and temporally resolves the evolution of the atomic structure in the surface and subsurface regions, we Find that the surface segregation of Au atoms in a Cu(Au) solid solution results in the nucleation and growth of a (2 × 1) missing-row reconstructed, half-unit-cell thick L1 2 Cu 3Au(110) surface alloy. Our in situ electron microscopy observations and atomistic simulations demonstrate that the (2 × 1) reconstruction of the Cu 3Au(110) surface alloy remains as a stable surface structure as a result of the favored Cu-Au diatom configuration.
NASA Astrophysics Data System (ADS)
Tardani, Daniele; Reich, Martin; Deditius, Artur P.; Chryssoulis, Stephen; Sánchez-Alfaro, Pablo; Wrage, Jackie; Roberts, Malcolm P.
2017-05-01
Over the past few decades several studies have reported that pyrite hosts appreciable amounts of trace elements which commonly occur forming complex zoning patterns within a single mineral grain. These chemical zonations in pyrite have been recognized in a variety of hydrothermal ore deposit types (e.g., porphyry Cu-Mo-Au, epithermal Au deposits, iron oxide-copper-gold, Carlin-type and Archean lode Au deposits, among others), showing, in some cases, marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au, Ag)-depleted zones and As-(Au, Ag)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. In this study, we report a comprehensive trace element database of pyrite from the Tolhuaca Geothermal System (TGS) in southern Chile, a young and active hydrothermal system where fewer pyrite growth rims and mineralization events are present and the reservoir fluid (i.e. ore-forming fluid) is accessible. We combined the high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capacity of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a ∼1 km drill hole that crosses the argillic (20-450 m) and propylitic (650-1000 m) alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, As and Cu are the most abundant with concentrations that vary from sub-ppm levels to a few wt.% (i.e., up to ∼5 wt.% As, ∼1.5 wt.% Cu). Detailed wavelength-dispersive spectrometry (WDS) X-ray maps and SIMS depth vs. isotope concentration profiles reveal that pyrites from the TGS are characterized by chemical zoning where the studied elements occur in different mineralogical forms. Arsenic and Co occur as structurally bound elements in pyrite, Cu and Au in pyrite can occur as both solid solution and submicron-sized particles of chalcopyrite and native Au (or Au tellurides), respectively. Pyrites from the deeper propylitic zone do not show significant zonation and high Cu-(Co)-As concentrations correlate with each other. In contrast, well-developed zonations were detected in pyrite from the shallow argillic alteration zone, where Cu(Co)-rich, As-depleted cores alternate with Cu(Co)-depleted, As-rich rims. These microanalytical data were contrasted with chemical data of fluid inclusions in quartz and calcite veins (high Cu/As ratios) and borehole fluid (low Cu/As ratios) reported at the TGS, showing a clear correspondence between Cu and As concentrations in pyrite-forming fluids and chemical zonation in pyrite. These observations provide direct evidence supporting the selective partitioning of metals into pyrite as a result of changes in ore-forming fluid composition, most likely due to separation of a single-phase fluid into a low-density vapor and a denser brine, capable of fractionating Cu and As.
Ma, Jin-Liang; Yin, Bin-Cheng; Le, Huynh-Nhu; Ye, Bang-Ce
2015-06-17
We have developed a label-free method for sequence-specific DNA detection based on surface plasmon enhanced energy transfer (SPEET) process between fluorescent DNA/AgNC string and gold nanoparticles (AuNPs). DNA/AgNC string, prepared by a single-stranded DNA template encoded two emitter-nucleation sequences at its termini and an oligo spacer in the middle, was rationally designed to produce bright fluorescence emission. The proposed method takes advantage of two strategies. The first one is the difference in binding properties of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) toward AuNPs. The second one is SPEET process between fluorescent DNA/AgNC string and AuNPs, in which fluorescent DNA/AgNC string can be spontaneously adsorbed onto the surface of AuNPs and correspondingly AuNPs serve as "nanoquencher" to quench the fluorescence of DNA/AgNC string. In the presence of target DNA, the sensing probe hybridized with target DNA to form duplex DNA, leading to a salt-induced AuNP aggregation and subsequently weakened SPEET process between fluorescent DNA/AgNC string and AuNPs. A red-to-blue color change of AuNPs and a concomitant fluorescence increase were clearly observed in the sensing system, which had a concentration dependent manner with specific DNA. The proposed method achieved a detection limit of ∼2.5 nM, offering the following merits of simple design, convenient operation, and low experimental cost because of no chemical modification, organic dye, enzymatic reaction, or separation procedure involved.
Prabaharan, G; Barik, S P; Kumar, B
2016-06-01
A hydrometallurgical process for recovering the total metal values from waste monolithic ceramic capacitors was investigated. The process parameters such as time, temperature, acid concentration, hydrogen peroxide concentration and other reagents (amount of zinc dust and sodium formate) were optimized. Base metals such as Ba, Ti, Sn, Cu and Ni are leached out in two stages using HCl in stage 1 and HCl with H2O2 in stage 2. More than 99% of leaching efficiency for base metals (Cu, Ni, Ba, Ti and Sn) was achieved. Precious metals such as Au and Pd are leached out using aquaregia and nitric acid was used for the leaching of Ag. Base metals (Ba, Ti, Sn, Cu and Ni) are recovered by selective precipitation using H2SO4 and NaOH solution. In case of precious metals, Au and Pd from the leach solution were precipitated out using sodium metabisulphite and sodium formate, respectively. Sodium chloride was used for the precipitation of Ag from leach solution. Overall recovery for base metals and precious metals are 95% and 92%, respectively. Based on the results of the present study, a process flow diagram was proposed for commercial application. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A surface enhanced Raman scattering (SERS) immunoassay for antibody detection in serum is described in the present work. The developed assay is conducted in solution and utilizes Au nanoparticles coated with the envelope (E) protein of West Nile Virus (WNV) as the SERS-active substrate and malachite...
Melting curve of metals Cu, Ag and Au under pressure
NASA Astrophysics Data System (ADS)
Tam, Pham Dinh; Hoc, Nguyen Quang; Tinh, Bui Duc; Tan, Pham Duy
2016-01-01
In this paper, the dependence of the melting temperature of metals Cu, Ag and Au under pressure in the interval from 0 kbar to 40 kbar is studied by the statistical moment method (SMM). This dependence has the form of near linearity and the calculated slopes of melting curve are 3.9 for Cu, 5.7 for Ag and 6 for Au. These results are in good agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Jiang, Tao; Wang, Xiaolong; Zhou, Jun
2017-12-01
A facial two-step reduction method was proposed to synthesize four-layer gold-silver-polymer-silver (Au@Ag@PSPAA@Ag) core-shell nanomushrooms (NMs) with inbuilt Raman molecule. The surface-enhanced Raman scattering (SERS) intensity of 4MBA adhered on the surface of Au core gradually increased with the modification of middle Ag shell and then Ag mushroom cap due to the formation of two kinds of ultra-small interior nanogap. Compared with the initial Au nanoparticles, the SERS enhancement ratio of the Au@Ag@PSPAA@Ag NMs approached to nearly 40. The novel core-shell NMs also exhibited homogeneous SERS signals for only one sample and reproducible signals for 10 different samples, certified by the low relative standard deviation values of less than 10% and 15% for the character peaks of 4-mercaptobenzoic acid, respectively. Such a novel four-layer core-shell nanostructure with reliable SERS performance has great potential application in quantitative SERS-based immunoassay.
NASA Astrophysics Data System (ADS)
Kudo, M.; Aimoto, K.; Sunagawa, Y.; Kato, N.; Aoyagi, S.; Iida, S.; Sanada, N.
2008-12-01
The usefulness of the usage of cluster primary ion source together with an Ag substrate and detection of Ag cationized molecular ions was studied from the standpoint to realize high sensitivity TOF-SIMS analysis of organic materials. Although secondary ions from polymer thin films on a Si substrate can be detected in a higher sensitivity with Au 3+ cluster primary ion compared with Ga + ion bombardment, it was clearly observed that the secondary ion intensities from samples on an Ag substrate showed quite a different tendency from that on Si. When monoatomic primary ions, e.g., Au + and Ga +, were used for the measurement of the sample on an Ag substrate, [M+Ag] + ions (M corresponds to polyethylene glycol molecule) were detected in a high sensitivity. On the contrary, when Au 3+ was used, no intensity enhancement of [M+Ag] + ions was observed. The acceleration energy dependence of the detected secondary ions implies the different ionization mechanisms on the different substrates.
Copper(I), silver(I) and gold(I) halide complexes with the dithioformamidinium dihalides
NASA Astrophysics Data System (ADS)
Peyronel, Giorgio; Malavasi, Wanda; Pignedoli, Anna
Some copper(I), silver(I) and gold(I) halide complexes with the dithioformamidinium dihalides (Tu 2X 2) were prepared and studied by infrared spectroscopy and conductometry: 3CuX.2Tu 2X 2(XCl,I), CuBr.Tu 2Br 2, 4CuBr.3.5Tu 2Br 2.MeOH, 2CuBr.Tu 2Br 2.0.66EtOH, 3CuI.2Tu 2I 2, 2AgCl.2.5Tu 2Cl 2, 3AgCl.2Tu 2Cl 2.0.5EtOH, 3AgCl.Tu 2Cl 2, 2AgBr.2Tu 2Br 2.0.5Tu 2(NO 3) 2.H 2O, AgBr.Tu 2Br 2, 4AgBr.Tu 2Br 2, 4AgI.0.5Tu 2I 2.EtOH, AuCl.1.5Tu 2Cl 2, 4AuCl.3.5Tu 2Cl 2.2DMF, AuBr.4Tu 2Br 2, AuBr.2Tu 2Br 2.1.5DMF, AuI.5Tu 2I 2, AuI.Tu 2I 2. A decrease of the ν(NH), δ(NH 2) and ν(CN 2) frequencies and an increase of the ν(CS) frequencies indicate an N-coordination of the dithioformamidinium cation to the metal ions; ν(MN) and ν(MX) frequencies are tentatively assigned in the far-infrared spectra.
NASA Astrophysics Data System (ADS)
Hubenthal, Frank; Ziegler, Torsten; Hendrich, Christian; Träger, Frank
2004-03-01
For many applications like surface enhanced Raman scattering in which the optical field enhancement associated with surface plasmon excitation is exploited, tunability of this collective resonance over a wide range is required. For this purpose we have prepared Ag/Au core shell and Ag/Au alloyed nanoparticles with different shell thicknesses and different percentages of the two metals. The nanoparticles were made by subsequent deposition of Ag and Au atoms on dielectric substrates followed by diffusion and nucleation or heat treatment. Depending on the Au shell thickness the plasmon frequency can be tuned, e.g. from 2.8 eV (442 nm) to 2.1 eV (590 nm). Annealing of the core-shell nanoparticles causes a shift of the resonance frequency to 2.6 eV. Theoretical modelling allows us to attribute this observation to the production of alloyed nanoparticles. Possible application of the Ag/Au nanoparticles will be discussed.
NASA Astrophysics Data System (ADS)
Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi
2012-12-01
We have performed the first-principles calculations about the superconducting transition temperature Tc of hole-doped delafossite CuAlO2, AgAlO2 and AuAlO2. Calculated Tc are about 50 K (CuAlO2), 40 K (AgAlO2) and 3 K(AuAlO2) at maximum in the optimum hole-doping concentration. The low Tc of AuAlO2 is attributed to the weak electron-phonon interaction caused by the low covalency and heavy atomic mass.
NASA Astrophysics Data System (ADS)
Repstock, Alexander; Voudouris, Panagiotis; Zeug, Manuela; Melfos, Vasilios; Zhai, Mingguo; Li, Hongzhong; Kartal, Tamara; Matuszczak, Julia
2016-02-01
Fahlore-group minerals in Oligocene magmatic-hydrothermal deposits from the central and eastern Rhodope area, Bulgaria and Greece (e.g. porphyry-epithermal systems at Pagoni Rachi, Maronia and Kassiteres-Sapes, polymetallic epithermal high- and intermediate-sulfidation veins at Kirki, Perama Hill, Mavrokoryfi, Pefka, Zvezdel-Pcheloyad and Madzharovo, skarn-carbonate replacement deposits at Laki, Davidkovo, Madan, Enyovche and intrusion-related deposits at Kimmeria), cover the whole range of the tetrahedrite-tennantite solid solution series and are dominated by zincian and ferroan varieties reflecting deposition from Zn-(and Fe)-rich fluids. The majority of the studied fahlores are "normal" fully-substituted with Cu (+Ag) close to 10 apfu. However, high-sulfidation epithermal deposits in Greece contain "Cu-excess" tetrahedrite-tennantite; those with extreme high Cu-excess > Fe + Zn occur in transitional high- to intermediate-sulfidation systems, whereas low "Cu-excess" tetrahedrite-tennantite with Zn > Cu-excess + Fe and Fe > Cu-excess + Zn are part of tellurides-bearing intermediate-sulfidation assemblages. The epithermal St. Demetrios and Pefka deposits display the most Cu-rich tetrahedrites (11.039 apfu Cu) and tennantite (11.784 apfu Cu) worldwide. Although Ag substitutes for Cu in the structure of Ag-rich tetrahedrite in several deposits, freibergite with 6.800 apfu Ag occurs only at Mavrokoryfi; in particular, the cadmian freibergite at Mavrokoryfi is the second finding of this variety worldwide. Tellurium-bearing fahlore varieties occur in association with enargite/luzonite and native gold in high-sulfidation ore assemblages. Tetravalent tellurium substitutes for trivalent As and Sb in goldfieldite and Te-rich tennantite and tetrahedrite at Mavrokoryfi, Perama Hill, St. Demetrios and Pefka deposits. Goldfieldite at Mavrokoryfi and Perama Hill is remarkably Te-rich (up to 3.766 apfu and 3.711 apfu Te, respectively), with total metal content of 10.591 apfu and are the closest natural occurrence to the theoretical synthetic endmember Cu10Te4S13. The telluride-bearing fahlores in several epithermal deposits in Greece do not represent decomposition products of early goldfieldite. They are possibly the result of a new influx of Te-rich magmatic volatiles in the system. Decreasing Te (and Cu)-content in tetrahedrite-tennantite solid solution series reflects an evolution from initial high-T, high-sulfidation, oxidizing conditions, towards lower-T and lower-sulfidation, more reduced conditions with time. Fahlores, although they are minor constituents in the studied mineralization types, are carriers of Ag (and Au in goldfieldite) and may be used as an exploration tool, since they are closely associated with either native gold, gold-silver tellurides or Ag-sulfosalts.
Dissociative adsorption of water on Au/MgO/Ag(001) from first principles calculations
NASA Astrophysics Data System (ADS)
Nevalaita, J.; Häkkinen, H.; Honkala, K.
2015-10-01
The molecular and dissociative adsorption of water on a Ag-supported 1 ML, 2 ML and 3 ML-a six atomic layer-thick MgO films with a single Au adatom is investigated using density functional theory calculations. The obtained results are compared to a bulk MgO(001) surface with an Au atom. On thin films the negatively charged Au strengthens the binding of the polar water molecule due to the attractive Au-H interaction. The adsorption energy trends of OH and H with respect to the film thickness depend on an adsorption site. In the case OH or H binds atop Au on MgO/Ag(001), the adsorption becomes more exothermic with the increasing film thickness, while the reverse trend is seen when the adsorption takes place on bare MgO/Ag(001). This behavior can be explained by different bonding mechanisms identified with the Bader analysis. Interestingly, we find that the rumpling of the MgO film and the MgO-Ag interface distance correlate with the charge transfer over the thin film and the interface charge, respectively. Moreover, we employ a modified Born-Haber-cycle to analyze the effect of film thickness to the adsorption energy of isolated Au and OH species on MgO/Ag(001). The analysis shows that the attractive Coulomb interaction between the negatively charged adsorbate and the positive MgO-Ag-interface does not completely account for the weaker binding with increasing film thickness. The redox energy associated with the charge transfer from the interface to the adsorbate is more exothermic with the increasing film thickness and partly compensates the decrease in the attractive Coulomb interaction.
Antireflective coating for AgBr-TlI and AgBr-TlBr0.46I0.54 solid solution crystals
NASA Astrophysics Data System (ADS)
Korsakov, Alexandr; Salimgareev, Dmitrii; Lvov, Alexandr; Zhukova, Liya
2016-12-01
We researched the process of ultraviolet (UV) irradiation for the crystals of AgBr-TlI and AgBr-TlBr0.46I0.54 systems. It was found that on the surface of irradiated crystals, the film is formed and film grain size depends on exposure time and crystal composition. This film proved to gain the transmission by reducing the reflection from its surface within the 8.0-27.0 μm range.
NASA Astrophysics Data System (ADS)
Muñoz, Francisco; Romero, Aldo H.; Mejía-López, Jose; Morán-López, J. L.
2012-03-01
A theoretical investigation of the adsorption of Mn single atoms and dimers on the (111) surface of Cu, Ag, and Au, within the framework of the density functional theory, is presented. First, the bulk and the clean (111) surface electronic structures are calculated, with results that agree well with previous reports. To understand the adatom-substrate interaction, also the electronic characteristics of the free Mn dimer are determined. Then, the electronic structure of the Mn adatom, chemisorbed on four different surface geometries, is analyzed for the three noble metals. It is found that the most stable geometry, in all three cases, Cu, Ag, and Au, occurs when the Mn atom is chemisorbed on threefold coordinated sites. For the dimer, the lowest-energy configuration corresponds to the molecule lying parallel to the surface. In the three noble metals, the geometry corresponds to both atoms chemisorbed in threefold coordinated sites, but with different local symmetry. It is also found that the magnetic configuration with the lowest energy corresponds to the antiferromagnetic arrangement of Mn atoms, with individual magnetic moments close to 5μB. The ferromagnetic and antiferromagnetic solutions, in the case of a Ag substrate, are close in energy. It is also found that in this case the Mn2 molecule is chemisorbed with very similar energy on various geometries. To study the dynamical motion of the dimer components, we calculated the potential energy barriers for the Mn motion in the various surfaces. In contrast to Cu and Au, this leads to the conclusion that on Ag the Mn dimer moves relatively freely.
NASA Astrophysics Data System (ADS)
Zhai, Yong; Li, Fumin; Ling, Lanyun; Chen, Chong
2016-10-01
In this work, the Ag2S nanocrystalline thin films are deposited on ITO glass via molecular precursor decomposition (MPD) method and newly developed HRTD method for organic solar cells (ITO/Ag2S/P3HT:PCBM/MoO3/Au) as an electron selective layer and a light absorption material. The surface morphology, structure characterization, and optical property of the Ag2S films prepared by these two methods were compared and the effect of the prepared Ag2S film on the device performance is investigated. It is found that the Ag2S films prepared by HRTD method have lower roughness and better uniformity than the corresponding films prepared by the MPD method. In addition, a more effective and rapid transporting ability for the electrons and holes in the ITO/Ag2S(HRTD, n)/P3HT:PCBM/MoO3/Au cells is found, which reduces the charge recombination, and thus, improves the device performance. The highest efficiency of 3.21% achieved for the ITO/Ag2S(HRTD, 50)/P3HT:PCBM/MoO3/Au cell is 93% higher than that of the ITO/Ag2S(MPD, 2)/P3HT:PCBM/MoO3/Au cell.
Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee
2015-10-08
This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.
Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee
2015-01-01
This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients. PMID:28793599
Udayabhaskar, R; Mangalaraja, R V; Manikandan, D; Arjunan, V; Karthikeyan, B
2012-12-01
Optical properties of silver, gold and bimetallic (Au:Ag) nanocomposite polymer films which are prepared by chemical method have been reported. The experimental data was correlated with the theoretical calculations using Mie theory. We adopt small change in the theoretical calculations of bimetallic/mixed particle nanocomposite and the theory agrees well with the experimental data. Polyvinylpyrrolidone (PVP) was used as reducing and capping agent. Fourier transform infrared spectroscopy (FTIR) study reveals the presence of different functional groups, the possible mechanism that leads to the formation of nanoparticles by using PVP alone as reducing agent. Optical absorption spectra of Ag and Au nanocomposite polymers show a surface plasmon resonance (SPR) band around 430 and 532 nm, respectively. Thermal annealing effect on the prepared samples at 60 °C for different time durations result in shift of SPR band maximum and varies the full width at half maximum (FWHM). Absorption spectra of Au:Ag bimetallic films show bands at 412 and 547 nm confirms the presence of Ag and Au nanoparticles in the composite. Copyright © 2012 Elsevier B.V. All rights reserved.
Gold core@silver semishell Janus nanoparticles prepared by interfacial etching.
Chen, Limei; Deming, Christopher P; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei
2016-08-14
Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.
Site Preference of Ternary Alloying Additions to AuTi
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.
2006-01-01
Atomistic modeling of the site substitution behavior of several alloying additions, namely. Na, Mg, Al, Si. Sc, V, Cr, Mn. Fe, Co, Ni, Cu, Zn, Y, Zr. Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, and Pt in B2 TiAu is reported. The 30 elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice. Results of large scale simulations are also presented, distinguishing between additions that remain in solution from those that precipitate a second phase.
NASA Astrophysics Data System (ADS)
Badawi, Ali; Mostafa, Nasser Y.; Al-Hosiny, Najm M.; Merazga, Amar; Albaradi, Ateyyah M.; Abdel-Wahab, F.; Atta, A. A.
2018-06-01
The photovoltaic performance of silver sulfide (Ag2S) quantum dots-sensitized solar cells (QDSSCs) using different concentrations (0, 0.05, 0.1, 0.3 and 0.5 wt.%) of plasmonic Au nanoparticles (NPs)/titania (TiO2) electrodes has been investigated. Ag2S quantum dots (QDs) were adsorbed onto the Au NPs/titania electrodes using the successive ionic layer adsorption and reaction (SILAR) deposition technique. The morphological properties of the Au NPs and the prepared titania electrodes were characterized using transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The energy-dispersive X-ray (EDX) spectra of the bare titania and Ag2S QDs-sensitized titania electrodes were recorded. The optical properties of the prepared Ag2S QDs-sensitized titania electrodes were measured using a UV-visible spectrophotometer. The estimated energy band gap of Ag2S QDs-sensitized titania electrodes is 1.96 eV. The photovoltaic performance of the assembled Ag2S QDSSCs was measured under 100 mW/cm2 solar illumination. The optimal photovoltaic parameters were obtained as follows: open circuit voltage Voc = 0.50 V, current density Jsc = 3.18 mA/cm2, fill factor (FF) = 0.35 and energy conversion efficiency η = 0.55% for 0.3 wt.% of Au NPs/titania electrode. These results are attributed to the enhancement in the absorption and decrease in the electron-hole pairs recombination rate. The open circuit voltage decay (OCVD) measurements of the assembled Ag2S QDSSCs were measured. The calculated electron lifetime (τ) in Ag2S QDSSCs with Au NPs/titania electrodes is at least one order of magnitude more than that with bare titania electrode. The cut-on-cut-off cycles of the solar illumination measurements show the rapid sensitivity and good reproducibility of the assembled Ag2S QDSSCs.
NASA Astrophysics Data System (ADS)
Bineli Betsi, Thierry; Ponce, Miguel; Chiaradia, Massimo; Ulianov, Alex; Camacho, Alfredo
2017-12-01
The genesis of the Au-Ag mineralization at Rio Blanco in the Cordillera Occidental (Western Cordillera) of southwest of Ecuador is here constrained. This was done by investigating the temporal and by inference the genetic relationship between the Au-Ag mineralization and the spatially associated magmatic host rocks using zircon U-Pb [chemical abrasion (CA) IDTIMS and laser ablation (LA) ICPMS] and adularia 40Ar/39Ar geochronology. Whereas volcanics hosting the Au-Au mineralization range in age from 37.35 ± 0.30 to 33.09 ± 0.20 Ma (Late Eocene-Early Oligocene), the spatially associated intrusions are of at least two discontinuous phases of magmatism and these include: (i) Late Eocene intrusions that range in age from 35.77 ± 0.19 to 36.03 ± 0.19 Ma, and; (ii) Miocene intrusions of 15.58 ± 0.04 Ma. The 40Ar/39Ar age of adularia from a Bonanza Au (334 g/t)-Ag (2060 g/t)-bearing epithermal vein is bracketed between 14.3 and 14.9 Ma. The temporal relationship between adularia and by inference mineralization and the spatially associated rocks therefore rules out any temporal link between the Late Eocene-Early Oligocene Rio Blanco Formation, but rather favors a possible genetic relationship between the Rio Blanco Au-Ag mineralization and the Miocene intrusions. The determined Rio Blanco Au-Ag mineralization age is consistent with the established Oligocene-Miocene period of ore deposits in Ecuador and coincides with the extensional tectonic event, which developed intramontane basins in southern Ecuador.
NASA Astrophysics Data System (ADS)
Ioannidis, Andronique; Facci, John S.; Abkowitz, Martin A.
1998-08-01
Injection efficiency from evaporated Au contacts on a molecularly doped polymer (MDP) system has been previously observed to evolve from blocking to ohmic over time. In the present article this contact forming phenomenon is analyzed in detail. The initially blocking nature of the Au contact is in contrast with that expected from the relative workfunctions of Au and of the polymer which suggest Au should inject holes efficiently. It is also in apparent contrast to a differently prepared interface of the same materials. The phenomenon is not unique to this interface, having been confirmed also for evaporated Ag and mechanically made liquid Hg contacts on the same MDP. The MDP is a disordered solid state solution of electroactive triarylamine hole transporting TPD molecules in a polycarbonate matrix. The trap-free hole-transport MDP provides a model system for the study of metal/polymer interfaces by enabling the use of a recently developed technique that gives a quantitative measure of contact injection efficiency. The technique combines field-dependent steady state injection current measurements at a contact under test with time-of-flight (TOF) mobility measurements made on the same sample. In the present case, MDP films were prepared with two top vapor-deposited contacts, one of Au (test contact) and one of Al (for TOF), and a bottom carbon-loaded polymer electrode which is known to be ohmic for hole injection. The samples were aged at various temperatures below the glass transition of the MDP (85 °C) and the evolution of current versus field and capacitance versus frequency behaviors are followed in detail over time and analyzed. Control measurements ensure that the evolution of the electrical properties is due to the Au/polymer interface behavior and not the bulk. All evaporated Au contacts eventually achieved ohmic injection. The evaporated Au/MDP interface was also investigated by transmission electron microscopy as a function of time and showed no evidence of Au interdiffusion in the MDP layer, remaining abrupt to within ˜10 Å over the course of the evolution in injection efficiency. Mechanisms related to Au penetration into the MDP are therefore unlikely. Rapid sequence data acquisition enabled the detection of two main processes in the injection evolution. The evolving injection efficiency is very well fit by two exponentials, enabling the characterization of time and temperature dependence of the evolution processes.
Lee, Hyun A; Castro-Aceituno, Veronica; Abbai, Ragavendran; Moon, Seong Soo; Kim, Yeon-Ju; Simu, Shakina Yesmin; Yang, Deok Chun
2018-03-29
The water extract of Anemarrhena asphodeloides, the traditional oriental medicinal plant, mediated the eco-friendly synthesis of silver nanoparticles (Aa-AgNPs) and gold nanoparticles (Aa-AuNPs). First, its therapeutic rhizome was powdered prior to water extraction and then silver, gold nanoparticles were synthesized. Aa-AgNPs and Aa-AuNPs were found to be spherical, face-centred cubic nanocrystals with a Z-average hydrodynamic diameter of 190 and 258 nm, respectively. In addition, proteins and aromatic biomolecules were the plausible players associated with the production and stabilization of Aa-AgNPs; instead, phenolic compounds were responsible for the synthesis and stability of Aa-AuNPs. In vitro cytotoxic analysis revealed that up to 50 μg.mL -1 concentration Aa-AuNPs did not exhibit any toxicity on 3T3-L1, HT29 and MCF7 cell lines, while being specifically cytotoxic to A549 cell line. On the contrary, Aa-AgNPs displayed a significantly higher toxicity in comparison to Aa-AuNPs in all cell lines specially MCF7 cell line. Since cancer cells were more sensitive to Aa-Au/AgNPs treatments, further evaluation was done in order to determine their anticancer potential. Reactive oxygen species (ROS) generation was not affected by Aa-AuNPs, on the other hand, Aa-AgNPs treatment exhibited a higher potential to induce oxidative stress in A549 cells than HT29 and MCF7 cells. In addition, Aa-Ag/AuNPs reduced cell migration in A549 cells at 10 and 50 μg.mL -1 , respectively. So far, this is the only report uncovering the ability of A. asphodeloides to synthesize silver and gold nanoparticles with anticancer potential and also indirectly enabling its large-scale utilization with value addition.
Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals
NASA Astrophysics Data System (ADS)
Vikentyev, I. V.
2015-07-01
Au speciation in sulfides (including "invisible" Au), which mostly controls the loss of Au during ore dressing, is discussed. Modern methods of analysis of Au speciation, with discussion of limitations by locality and sensitivity, are reviewed. The results of sulfide investigation by the methods of scanning and transmission electron microscopy, mass spectrometric analysis with laser ablation (LA-ICP-MS), the thermochemical method (study of ionic Au speciation), and automated "quantitative mineralogy," are demonstrated for weakly metamorphosed VHMS deposits of the Urals (Galkinsk and Uchaly). Significant content of Au is scattered in sulfides, such as pyrite, chalcopyrite, and sphalerite, with quantitative predomination of pyrite. The portion of such "invisible" gold ranges from <10% (Galkinsk deposit) to 85% (Uchaly deposit). Major part of "invisible" gold occurs as micron- to nanoscale particles of Au minerals. The portion of gold structurally bound in pyrite lattice (from the bulk concentration of Au in pyrite) is estimated to be from few % (the Galkinsk deposit) to 20-25% (the Uchaly deposit). The presence of As and Sb in pyrite and sphalerite, as well as other trace elements (Te, Co, Mn, Cu, Hg, and Ag in both as well as Fe in sphalerite) stimulates the incorporation of Au in sulfide, but mostly in defect-associated, not isomorphic form. Micron particles of Ag sulfosalts (pyrargyrite, freibergite, stephanite, polybasite, pyrostilpnite, argentotetrahedrite, pearceite, proustite), Au-Ag alloys (from gold of high fineness to küstelite), Ag and Au-Ag tellurides (hessite, empressite, calaverite), and occasional Au-Ag sulfides (petrovskaite, uytenbogaardtite) were registered in the areas of Au enrichment of both deposits; selenotelluride (kurilite) particles were found on the Galkinsk deposit. Nanoscale (1-50 nm) native gold (spherical and disk-shaped particles, flakes) with a monocrystal diffraction pattern of some particles and a ring diffraction pattern of other particles was registered in the ores of these deposits by the methods of transmission electron microscopy. The low degree (or absence) of metamorphic recrystallization results in (1) predomination of thin intergrowths of sulfides, which is the main reason for the bad concentration of ores (especially for the Galkinsk deposit) and (2) the high portion of "invisible" gold in the massive sulfide ores, which explains the low yield of Au in copper and zinc concentrates, since it is lost in tailings with predominating pyrite.
NASA Astrophysics Data System (ADS)
Liu, Wei; Repo, Eveliina; Heikkilä, Mikko; Leskelä, Markku; Sillanpää, Mika
2010-10-01
Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), ξ-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH2OH·HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H2PtCl6 to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.
Liu, Wei; Repo, Eveliina; Heikkilä, Mikko; Leskelä, Markku; Sillanpää, Mika
2010-10-01
Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), xi-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH(2)OH.HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H(2)PtCl(6) to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.
Wang, Dandan; Markus, Josua; Kim, Yeon-Ju; Wang, Chao; Jiménez Pérez, Zuly Elizabeth; Ahn, Sungeun; Aceituno, Verónica Castro; Mathiyalagan, Ramya; Yang, Deok Chun
2016-01-01
A rapid biological synthesis of multifunctional gold nanoparticle (AuNp) and monodisperse silver nanoparticle (AgNp) was achieved by an aqueous extract of black Panax ginseng Meyer root. The physicochemical transformation into black ginseng (BG) greatly enhanced the pharmacological activities of white ginseng and its minor ginsenoside content. The optimal temperature conditions and kinetics of bioreduction were investigated. Formation of BG-AuNps and BG-AgNps was verified by ultraviolet–visible spectrophotometry at 548 and 412 nm, respectively. The biosynthesized BG-AgNps were spherical and monodisperse with narrow distribution, while BG-AuNps were icosahedral-shaped and moderately polydisperse. Synthesized nanoparticles exhibited long-term stability in buffers of pH 7.0–8.0 and biological media (5% bovine serum albumin) at an ambient temperature and at 37°C. BG-AgNps showed effective antibacterial activity against Escherichia coli and Staphylococcus aureus. BG-AuNps and BG-AgNps demonstrated increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals. In addition, BG-AuNps and BG-AgNps were nontoxic to HaCaT and MCF-7 cells; the latter showed no cytotoxicity at concentrations lower than 10 µg/mL. At higher concentrations, BG-AgNps exhibited apparent apoptotic activity in MCF-7 breast cancer cell line through reactive oxygen species generation and nuclear fragmentation. PMID:28008248
Atomically Visualizing Elemental Segregation-Induced Surface Alloying and Restructuring
Zou, Lianfeng; Li, Jonathan; Zakharov, Dmitri; ...
2017-12-01
Using in situ transmission electron microscopy that spatially and temporally resolves the evolution of the atomic structure in the surface and subsurface regions, we Find that the surface segregation of Au atoms in a Cu(Au) solid solution results in the nucleation and growth of a (2 × 1) missing-row reconstructed, half-unit-cell thick L1 2 Cu 3Au(110) surface alloy. Our in situ electron microscopy observations and atomistic simulations demonstrate that the (2 × 1) reconstruction of the Cu 3Au(110) surface alloy remains as a stable surface structure as a result of the favored Cu-Au diatom configuration.
Zidki, Tomer; Cohen, Haim; Meyerstein, Dan
2010-10-21
Ag(0) and Au(0) nanoparticles suspended in dilute aqueous solutions containing (CH(3))(2)SO are photochemically unstable. The light source of a diode-array spectrophotometer induces, within less than a minute, particle growth and aggregation. The results indicate that this process is triggered by UV light absorption by the (CH(3))(2)SO.
Recovery of critical and value metals from mobile electronics enabled by electrochemical processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedd E. Lister; Peiming Wang; Andre Anderko
2014-10-01
Electrochemistry-based schemes were investigated as a means to recover critical and value metals from scrap mobile electronics. Mobile electronics offer a growing feedstock for replenishing value and critical metals and reducing need to exhaust primary sources. The electrorecycling process generates oxidizing agents at an anode to dissolve metals from the scrap matrix while reducing dissolved metals at the cathode. The process uses a single cell to maximize energy efficiency. E vs pH diagrams and metals dissolution experiments were used to assess effectiveness of various solution chemistries. Following this work, a flow chart was developed where two stages of electrorecycling weremore » proposed: 1) initial dissolution of Cu, Sn, Ag and magnet materials using Fe+3 generated in acidic sulfate and 2) final dissolution of Pd and Au using Cl2 generated in an HCl solution. Experiments were performed using a simulated metal mixture equivalent to 5 cell phones. Both Cu and Ag were recovered at ~ 97% using Fe+3 while leaving Au and Pd intact. Strategy for extraction of rare earth elements (REE) from dissolved streams is discussed as well as future directions in process development.« less
NASA Astrophysics Data System (ADS)
Saunders, J. A.; Unger, D. L.; Kamenov, G. D.; Fayek, M.; Hames, W. E.; Utterback, W. C.
2008-09-01
Epithermal deposits with bonanza Au-Ag veins in the northern Great Basin (NGB) are spatially and temporally associated with Middle Miocene bimodal volcanism that was related to a mantle plume that has now migrated to the Yellowstone National Park area. The Au-Ag deposits formed between 16.5 and 14 Ma, but exhibit different mineralogical compositions, the latter due to the nature of the country rocks hosting the deposits. Where host rocks were primarily of meta-sedimentary or granitic origin, adularia-rich gold mineralization formed. Where glassy rhyolitic country rocks host veins, colloidal silica textures and precious metal-colloid aggregation textures resulted. Where basalts are the country rocks, clay-rich mineralization (with silica minerals, adularia, and carbonate) developed. Oxygen isotope data from quartz (originally amorphous silica and gels) from super-high-grade banded ores from the Sleeper deposit show that ore-forming solutions had δ 18O values up to 10‰ heavier than mid-Miocene meteoric water. The geochemical signature of the ores (including their Se-rich nature) is interpreted here to reflect a mantle source for the “epithermal suite” elements (Au, Ag, Se, Te, As, Sb, Hg) and that signature is preserved to shallow crustal levels because of the similar volatility and aqueous geochemical behavior of the “epithermal suite” elements. A mantle source for the gold in the deposits is further supported by the Pb isotopic signature of the gold ores. Apparently the host rocks control the mineralization style and gangue mineralogy of ores. However, all deposits are considered to have derived precious metals and metalloids from mafic magmas related to the initial emergence of the Yellowstone hotspot. Basalt-derived volatiles and metal(loid)s are inferred to have been absorbed by meteoric-water-dominated geothermal systems heated by shallow rhyolitic magma chambers. Episodic discharge of volatiles and metal(loid)s from deep basaltic magmas mixed with heated meteoric water to create precious metal ore-forming fluids. Colloidal nanoparticles of Au-Ag alloy (electrum), naumannite (Ag2Se), silica, and adularia, likely nucleated at depth, traveled upward, and deposited where they grew large enough to aggregate along vein walls. Silica and gold colloids have been reported in hot springs from Yellowstone National Park, suggesting that such processes may continue to some extent to the present. However, it is possible that the initial development of the mantle plume led to a major but short-lived “distillation” process which led to the mid-Miocene bonanza ore-forming event.
The fourth crystallographic closest packing unveiled in the gold nanocluster crystal
NASA Astrophysics Data System (ADS)
Gan, Zibao; Chen, Jishi; Wang, Juan; Wang, Chengming; Li, Man-Bo; Yao, Chuanhao; Zhuang, Shengli; Xu, An; Li, Lingling; Wu, Zhikun
2017-03-01
Metal nanoclusters have recently attracted extensive interest not only for fundamental scientific research, but also for practical applications. For fundamental scientific research, it is of major importance to explore the internal structure and crystallographic arrangement. Herein, we synthesize a gold nanocluster whose composition is determined to be Au60S6(SCH2Ph)36 by using electrospray ionization mass spectrometry and single crystal X-ray crystallography (SCXC). SCXC also reveals that Au60S6(SCH2Ph)36 consists of a fcc-like Au20 kernel protected by a pair of giant Au20S3(SCH2Ph)18 staple motifs, which contain 6 tetrahedral-coordinate μ4-S atoms not previously reported in the Au-S interface. Importantly, the fourth crystallographic closest-packed pattern, termed 6H left-handed helical (6HLH) arrangement, which results in the distinct loss of solid photoluminescence of amorphous Au60S6(SCH2Ph)36, is found in the crystals of Au60S6(SCH2Ph)36. The solvent-polarity-dependent solution photoluminescence is also demonstrated. Overall, this work provides important insights about the structure, Au-S bonding and solid photoluminescence of gold nanoclusters.
Molecular oxygen adsorption and dissociation on Au12M clusters with M = Cu, Ag or Ir
NASA Astrophysics Data System (ADS)
Jiménez-Díaz, Laura M.; Pérez, Luis A.
2018-03-01
In this work, we present a density functional theory study of the structural and electronic properties of isolated neutral clusters of the type Au12M, with M = Cu, Ag, or Ir. On the other hand, there is experimental evidence that gold-silver, gold-copper and gold-iridium nanoparticles have an enhanced catalytic activity for the CO oxidation reaction. In order to address these phenomena, we also performed density functional calculations of the adsorption and dissociation of O2 on these nanoparticles. Moreover, to understand the effects of Cu, Ag, and Ir impurity atoms on the dissociation of O2, we also analyze this reaction in the corresponding pure gold cluster. The results indicate that the substitution of one gold atom in a Au13 cluster by Ag, Cu or Ir diminishes the activation energy barrier for the O2 dissociation by nearly 1 eV. This energy barrier is similar for Au12Ag and Au12Cu, whereas for Au12Ir is even lower. These results suggest that the addition of other transition metal atoms to gold nanoclusters can enhance their catalytic activity towards the CO oxidation reaction, independently of the effect that the substrate could have on supported nanoclusters.
Doping of the step-edge Si chain: Ag on a Si(557)-Au surface
NASA Astrophysics Data System (ADS)
Krawiec, M.; Jałochowski, M.
2010-11-01
Structural and electronic properties of monatomic Ag chains on the Au-induced, highly ordered Si(557) surface are investigated by scanning tunneling microscopy (STM)/spectroscopy and first-principles density functional theory (DFT) calculations. The STM topography data show that a small amount of Ag (0.25 ML) very weakly modifies the one-dimensional structure induced by Au atoms. However, the bias-dependent STM topography and spectroscopy point to the importance of the electronic effects in this system, which are further corroborated by the DFT calculations. The obtained results suggest that Ag atoms act as electron donors leaving the geometry of the surface almost unchanged.
Cathcart, Nicole; Chen, Jennifer I L; Kitaev, Vladimir
2018-01-16
Stability and precise control over functional properties of metal nanoparticles remain a challenge for the realization of prospective applications. Our described process of shell formation and rebuilding can address both these challenges. Template silver nanoparticles (AgNPs) stabilized by poly(styrenesulfonate) are first transformed with gold deposition, after which the resulting shell rebuilds with the replaced silver. The shell formation and rebuilding are accompanied by large shifts in localized surface plasmon resonance (LSPR) peak position, which enables LSPR tuning in a range from 470 to 800 nm. Furthermore, chemical stability of Au-AgNPs is significantly improved compared to AgNPs due to gold stability. Silver templates of different shapes and sizes were demonstrated to transform to AuAg composite NPs to further extend the accessible LSPR range tuning. Stabilization of template AgNPs with poly(styrenesulfonate), in contrast to commonly used poly(vinylpyrrolidone), was found to be a key factor for shell rebuilding. The developed Au-AgNPs were shown to be advantageous for surface plasmon resonance (SPR) detection and surface-enhanced Raman spectroscopy (SERS) owing to their tunable LSPR and enhanced stability.
Vapochromic Behaviour of M[Au(CN)2]2-Based Coordination Polymers (M = Co, Ni)
Lefebvre, Julie; Korčok, Jasmine L.; Katz, Michael J.; Leznoff, Daniel B.
2012-01-01
A series of M[Au(CN)2]2(analyte)x coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(μ-OH2)[Au(CN)2]2 yielded visible vapochromic responses for M = Co but not M = Ni; the IR νCN spectral region changed in every case. A single crystal structure of Zn[Au(CN)2]2(DMSO)2 revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)2] in DMSO yielded the isostructural Ni[Au(CN)2]2(DMSO)2 product. Co[Au(CN)2]2(DMSO)2 and M[Au(CN)2]2(DMF)2 (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH2)[Au(CN)2]2 and from DMSO or DMF solution synthesis. Co[Au(CN)2]2(pyridine)4 is generated via vapour absorption by Co(μ-OH2)[Au(CN)2]2; the analogous Ni complex is synthesized by immersion of Ni(μ-OH2)[Au(CN)2]2 in 4% aqueous pyridine. Similar immersion of Co(μ-OH2)[Au(CN)2]2 yielded Co[Au(CN)2]2(pyridine)2, which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(μ-OH2)[Au(CN)2]2 was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)2]2 was prepared by dehydration of Co(μ-OH2)[Au(CN)2]2 at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate. PMID:22737031
Geochemistry of the Patricia Zn-Pb-Ag Deposit (paguanta, NE Chile)
NASA Astrophysics Data System (ADS)
Chinchilla Benavides, D.; Merinero Palomares, R.; Piña García, R.; Ortega Menor, L.; Lunar Hernández, R.
2013-12-01
The Patricia Zn-Pb-Ag ore deposit is located within the Paguanta mining project, situated at the northern end of the Andean Oligocene Porphyry Copper Belt of Chile. The sulfide mineralization occurs as W-E oriented veins hosted in volcanic rocks, mainly andesite (pyroclastic, ash and lavas), of Upper Cretaceous to Middle Tertiary age. The ore mineralogy (obtained by EMPA analyses) comprises in order of abundance, pyrite, sphalerite (5.5 - 10.89 wt % Fe, 9.8-19 % molar FeS and 0.52 wt % Cd), galena, arsenopyrite, chalcopyrite and Ag-bearing sulfosalts. The veins show a zoned and banded internal structure with pyrite at the edges and sphalerite in the center. The Ag occurs mostly as Ag-Cu-Sb sulfosalts, in order of abundance: series freibergite - argentotennantite -polybasite and stephanite. Other minor Ag phases such as argentite, pyrargirite and diaphorite were also identified. These Ag phases are typically associated with the base-metal sulfides. Freibergite occurs filling voids within sphalerite, chalcopyrite and at the contact between sphalerite and galena. Polybasite, stephanite, pyrargirite and argentite are mostly in close association with freibergite. In the case of diaphorite, it commonly occurs filling voids between galena crystals or as inclusions within galena. Some minor Ag-bearing sulfosalts are also identified between pyrite crystals. The alteration minerals are dominated by chlorite, illite and kaolinite. The gangue minerals consist of quartz and carbonates identified by XRD as kutnahorite. We obtained linear correlation statistically significant only for Ag, As Au, Cd, Cu, Pb, Sb and Zn and therefore we generated an enhanced scatter plot matrix of these elements. Bulk rock analyses (ICP/MS and XRF) of drill cores show that Ag is strongly and positively correlated with Pb and As, moderately with Cd, Sb, Au and Zn and weakly with Cu, while Au is moderately and positively correlated with Ag, As, Cd, Sb and Zn and weakly with Cu and Pb. These results are consistent with bulk rock analyses of selected and mineralized samples were similar correlations have been obtained. Ag positive correlations indicate that the formation of Ag-bearing minerals is mainly associated with galena, arsenopyrite and sphalerite occurrence. Au positive correlations indicate that this element occurs in close relationship with Ag-bearing minerals, arsenopyrite and sphalerite. The weak correlation between Cu and Ag and Au indicate that the formation of chalcopyrite is not related with the main stages of Ag-Au mineralization. The main conclusion of this study is that geochemical analyses along drill cores that cut mineralization confirm that the occurrence of Ag and Au in the Paguanta deposit is associated with the formation of galena, arsenopyrite and sphalerite. This study also confirm previous conclusions suggesting that the Patricia Pb-Zn-Ag ore deposit probably represents an example of epithermal mineralization of intermediate sulfidation state, with periods of lower sulfidation state during sphalerite deposition.
Structure modeling and manufacturing PCFs for the range of 2-25 μm
NASA Astrophysics Data System (ADS)
Lvov, Alexandr; Salimgareev, Dmitrii; Korsakov, Michail; Korsakov, Alexandr; Zhukova, Liya
2017-11-01
Photostable and flexible materials transparent at the wide spectral range are necessary for the development of optical fiber units. Solid solutions of silver and monadic thallium halides are the most suitable crystal media for this purpose. The goal of our research was the search of optimum structure for the fibers with a single mode operation and a rather large core diameter. We modelled fiber structures (solid-core, hollow-core, active-core PCF) with various ratio of inserts diameters and increments between the inserts, basing on two crystal systems: AgCl-AgBr and AgBr-TlI. Then we chose the single mode fiber structure and manufactured it by means of extrusion.
Quantum and Classical Plasmonic Phenomena in Nanoparticle Arrays
NASA Astrophysics Data System (ADS)
Govorov, Alexander; Besteiro, Lucas; Khosravi Khorashad, Larousse; Kong, Xiang-Tian; Roller, Eva-Maria; Liedl, Tim
Using both classical and quantum approaches, we model plasmonic phenomena in nanoparticle (NP) dimers and trimers. Using a model of three nanoparticles, we propose a mechanism of non-dissipative and ultrafast plasmon passage assisted by hot spots. For this, the NP trimer should include two Au-NPs and one Ag-NP. In the Au-Ag-Au trimer, the two Au-plasmons become coupled via the virtual plasmon of the Ag-NP. The efficient and ultra-fast passage of the Au-plasmons assisted by the virtual Ag-plasmon only becomes possible when the inter-NP gaps in the trimer are small. In this coupling regime, the inter-NP gap regions become plasmonic hot spots that greatly enhance the plasmonic passage effect. At this moment, the plasmonic passage phenomenon was already observed experimentally using optical spectroscopy and the DNA-origami NP complexes. Other systems of our interest were a NP dimer and a nanostar with plasmonic hot spots. For those systems, we predict strong enhancement of the generation of energetic (hot) carriers.
Controlling Shape and Plasmon Resonance of Pt-Etched Au@Ag Nanorods.
Ye, Rongkai; Zhang, Yanping; Chen, Yuyu; Tang, Liangfeng; Wang, Qiong; Wang, Qianyu; Li, Bishan; Zhou, Xuan; Liu, Jianyu; Hu, Jianqiang
2018-05-22
Pt-based catalysts with novel structure have attracted great attention due to their outstanding performance. In this work, H 2 PtCl 6 was used as both precursor and etching agent to realize the shape-controlled synthesis of Pt-modified Au@Ag nanorods (NRs). During the synthesis, the as-prepared Ag shell played a crucial role in both protecting the Au NRs from being etched away by PtCl 6 2- and leading to an unusual growth mode of Pt component. The site-specified etching and/or growth depended on the concentration of H 2 PtCl 6 , where high-yield core-shell structure or dumbbell-like structure could be obtained. The shape-controlled synthesis also led to a tunable longitudinal surface plasmon resonance from ca. 649 to 900 nm. Meanwhile, the core-shell Pt-modified Au@Ag NRs showed approximately 4-fold enhancement in catalytic reduction reaction of p-nitrophenol than that of the Au NRs, suggesting the great potential for photocatalytic reaction.
NASA Astrophysics Data System (ADS)
Barcaro, Giovanni; Sementa, Luca; Fortunelli, Alessandro; Stener, Mauro
2015-04-01
A recent paper in this journal reported the synthesis and characterization via electrospray ionization mass spectroscopy and UV-vis spectroscopy of (Au-Ag)144(SR)60 alloy nanomolecules with different compositions, ranging from 1 : 0 to 1 : 0.75 Au : Ag ratios. The UV-vis spectra of such systems were found to exhibit absorption peaks at 310 nm, 425 nm and 560 nm, interpreted as reminiscent of the silver surface plasmon resonance band due to simple atomic replacement of Au by Ag atoms in a fixed structural framework. On the basis of a comparison of experimentally observed and theoretically simulated optical absorption spectra, we conclude that the experimental situation must be more complicated, and that further work is needed to achieve atomistic insight into these fascinating systems.
Seyhan, Merve; Kucharczyk, William; Yarar, U Ecem; Rickard, Katherine; Rende, Deniz; Baysal, Nihat; Bucak, Seyda; Ozisik, Rahmi
2017-01-01
The structure and properties of nanocomposites of poly(ethylene oxide), with Ag and Au nanoparticles, surface modified with a 1:1 (by volume) oleylamine/oleic acid mixture, were investigated via transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), infrared spectroscopy, dynamic mechanical analysis, and static mechanical testing. Results indicated that there was more oleylamine on Ag nanoparticles but more oleic acid on Au nanoparticles. This difference in surfactant populations on each nanoparticle led to different interfacial interactions with poly(ethylene oxide) and drastically influenced the glass transition temperature of these two nanocomposite systems. Almost all other properties were found to correlate strongly with dispersion and distribution state of Au and Ag nanoparticles, such that the property in question changed direction at the onset of agglomeration. PMID:28461744
Noble metal nanostructures for double plasmon resonance with tunable properties
NASA Astrophysics Data System (ADS)
Petr, M.; Kylián, O.; Kuzminova, A.; Kratochvíl, J.; Khalakhan, I.; Hanuš, J.; Biederman, H.
2017-02-01
We report and compare two vacuum-based strategies to produce Ag/Au materials characterized by double plasmon resonance peaks: magnetron sputtering and method based on the use of gas aggregation sources (GAS) of nanoparticles. It was observed that the double plasmon resonance peaks may be achieved by both of these methods and that the intensities of individual localized surface plasmon resonance peaks may be tuned by deposition conditions. However, in the case of sputter deposition it was necessary to introduce a separation dielectric interlayer in between individual Ag and Au nanoparticle films which was not the case of films prepared by GAS systems. The differences in the optical properties of sputter deposited bimetallic Ag/Au films and coatings consisted of individual Ag and Au nanoparticles produced by GAS is ascribed to the divers mechanisms of nanoparticles formation.
Sanzó, Gabriella; Taurino, Irene; Antiochia, Riccarda; Gorton, Lo; Favero, Gabriele; Mazzei, Franco; De Micheli, Giovanni; Carrara, Sandro
2016-12-01
Au nanocorals are grown on gold screen-printed electrodes (SPEs) by using a novel and simple one-step electrodeposition process. Scanning electron microscopy was used for the morphological characterization. The devices were assembled on a three-electrode SPE system, which is flexible and mass producible. The electroactive surface area, determined by cyclic voltammetry in sulphuric acid, was found to be 0.07±0.01cm(2) and 35.3±2.7cm(2) for bare Au and nanocoral Au, respectively. The nanocoral modified SPEs were used to develop an enzymatic glucose biosensor based on H2O2 detection. Au nanocoral electrodes showed a higher sensitivity of 48.3±0.9μA/(mMcm(2)) at +0.45V vs Ag|AgCl compared to a value of 24.6±1.3μA/(mMcm(2)) at +0.70V vs Ag|AgCl obtained with bare Au electrodes. However, the modified electrodes have indeed proven to be extremely powerful for the direct detection of glucose with a non-enzymatic approach. The results confirmed a clear peak observed by using nanocoral Au electrode even in the presence of chloride ions at physiological concentration. Amperometric study carried out at +0.15V vs Ag|AgCl in the presence of 0.12M NaCl showed a linear range for glucose between 0.1 and 13mM. Copyright © 2016. Published by Elsevier B.V.
Favi, Pelagie Marlene; Valencia, Mariana Morales; Elliott, Paul Robert; Restrepo, Alejandro; Gao, Ming; Huang, Hanchen; Pavon, Juan Jose; Webster, Thomas Jay
2015-12-01
Metallic nanoparticles (such as gold and silver) have been intensely studied for wound healing applications due to their ability to be easily functionalized, possess antibacterial properties, and their strong potential for targeted drug release. In this study, rod-shaped silver nanorods (AgNRs) and gold nanorods (AuNRs) were fabricated by electron beam physical vapor deposition (EBPVD), and their cytotoxicity toward human skin fibroblasts were assessed and compared to sphere-shaped silver nanospheres (AgNSs) and gold nanospheres (AuNSs). Results showed that the 39.94 nm AgNSs showed the greatest toxicity with fibroblast cells followed by the 61.06 nm AuNSs, ∼556 nm × 47 nm (11.8:1 aspect ratio) AgNRs, and the ∼534 nm × 65 nm (8.2:1 aspect ratio) AuNRs demonstrated the least amount of toxicity. The calculated IC50 (50% inhibitory concentration) value for the AgNRs exposed to fibroblasts was greater after 4 days of exposure (387.3 μg mL(-1)) compared to the AgNSs and AuNSs (4.3 and 23.4 μg mL(-1), respectively), indicating that these spherical metallic nanoparticles displayed a greater toxicity to fibroblast cells. The IC50 value could not be measured for the AuNRs due to an incomplete dose response curve. The reduced cell toxicity with the presently developed rod-shaped nanoparticles suggests that they may be promising materials for use in numerous biomedical applications. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bozack, M. J.
2004-11-01
We report the observation of real-time, in situ, wetting and spreading dynamics for 57Bi-42Sn-1Ag solder paste on Ni-Au surfaces during melting in a scanning electron microscope. The 57Bi-42Sn-1Ag is a low melting (139 °C) Pb-free eutectic alloy currently under consideration by automobile manufacturers for use in instrument displays. We find that, while there is excellent wetting of 57Bi-42Sn-1Ag solder paste on Ni-Au, there is almost no spreading. A large amount of Bi segregates to the surface of 57Bi-42Sn-1Ag solder balls during the sintering process. At melting, excessive flux outgassing and pooling are observed, several melted solder balls float on top of the flux, and substantial elemental segregation occurs during the first minutes of wetting. Neither Ni nor Au fully intermixes throughout the alloy at the interface within seconds of wetting. Bi does not move outward with the expanding alloy front. This combination of detrimental effects forms voids in the solder paste, contributes to low reliability of solder joints, and complicates the materials science at the solder-substrate interface as shown by Auger electron spectroscopy. Reliability work in progress (3000 cycles) shows that 57Bi-42Sn-1Ag on Ni-Au is less reliable than eutectic Sn-37Pb on Ni-Au for 2512 chip resistors cycled from -40 to 125 °C.
NASA Astrophysics Data System (ADS)
Łapsa, Joanna; Onderka, Bogusław
2016-08-01
The thermodynamic properties of liquid Ag-Sb-Sn alloys were obtained through use of the drop solution calorimetric method and electromotive force (emf) measurements of galvanic cells with a yttria stabilized zirconia (YSZ) solid electrolyte. The experiments were carried out along Ag0.25Sb0.75, Ag0.5Sb0.5 and Ag0.75Sb0.25 sections of the ternary system in the temperature range from 973 K to 1223 K. From the measured emf, the tin activity in liquid solutions of Ag-Sb-Sn was determined for the first time. The partial and integral enthalpy of mixing were determined from calorimetric measurements at two temperatures. These measurements were performed along two cross-sections: Sb0.5Sn0.5 at 912 K and 1075 K, and Ag0.75Sb0.25 at 1075 K. Both experimental data sets were used to find ternary interaction parameters by applying the Redlich-Kister-Muggianu model of the substitutional solution. Consequently, the set of parameters describing the thermodynamic properties of the liquid phase was derived.
Nano-scaled Pt/Ag/Ni/Au contacts on p-type GaN for low contact resistance and high reflectivity.
Kwon, Y W; Ju, I C; Kim, S K; Choi, Y S; Kim, M H; Yoo, S H; Kang, D H; Sung, H K; Shin, K; Ko, C G
2011-07-01
We synthesized the vertical-structured LED (VLED) using nano-scaled Pt between p-type GaN and Ag-based reflector. The metallization scheme on p-type GaN for high reflectance and low was the nano-scaled Pt/Ag/Ni/Au. Nano-scaled Pt (5 A) on Ag/Ni/Au exhibited reasonably high reflectance of 86.2% at the wavelength of 460 nm due to high transmittance of light through nano-scaled Pt (5 A) onto Ag layer. Ohmic behavior of contact metal, Pt/Ag/Ni/Au, to p-type GaN was achieved using surface treatments of p-type GaN prior to the deposition of contact metals and the specific contact resistance was observed with decreasing Pt thickness of 5 A, resulting in 1.5 x 10(-4) ohms cm2. Forward voltages of Pt (5 A)/Ag/Ni contact to p-type GaN showed 4.19 V with the current injection of 350 mA. Output voltages with various thickness of Pt showed the highest value at the smallest thickness of Pt due to its high transmittance of light onto Ag, leading to high reflectance. Our results propose that nano-scaled Pt/Ag/Ni could act as a promising contact metal to p-type GaN for improving the performance of VLEDs.
Mao, Fang; Taher, Mamoun; Kryshtal, Oleksandr; Kruk, Adam; Czyrska-Filemonowicz, Aleksandra; Ottosson, Mikael; Andersson, Anna M; Wiklund, Urban; Jansson, Ulf
2016-11-09
A combinatorial approach is applied to rapidly deposit and screen Ag-Al thin films to evaluate the mechanical, tribological, and electrical properties as a function of chemical composition. Ag-Al thin films with large continuous composition gradients (6-60 atom % Al) were deposited by a custom-designed combinatorial magnetron sputtering system. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and four-point electrical resistance screening were employed to characterize the chemical composition, structure, and physical properties of the films in a time-efficient way. For low Al contents (<13 atom %), a highly (111)-textured fcc phase was formed. At higher Al contents, a (002)-textured hcp solid solution phase was formed followed by a fcc phase in the most Al-rich regions. No indication of a μ phase was observed. The Ag-Al films with fcc-Ag matrix is prone to adhesive material transfer leading to a high friction coefficient (>1) and adhesive wear, similar to the behavior of pure Ag. In contrast, the hexagonal solid solution phase (from ca. 15 atom %Al) exhibited dramatically reduced friction coefficients (about 15% of that of the fcc phase) and dramatically reduced adhesive wear when tested against the pure Ag counter surface. The increase in contact resistance of the Ag-Al films is limited to only 50% higher than a pure Ag reference sample at the low friction and low wear region (19-27 atom %). This suggests that a hcp Ag-Al alloy can have a potential use in sliding electrical contact applications and in the future will replace pure Ag in specific electromechanical applications.
Growth of periodic nano-layers of nano-crystals of Au, Ag, Cu by ion beam
NASA Technical Reports Server (NTRS)
Smith, Cydale C.; Zheng, B.; Muntele, C. I.; Muntele, I. C.; Ila, D.
2005-01-01
Multilayered thin films of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/, were grown by deposition. We have previously shown that MeV ion Bombardment of multi-nano-layers of SiO2/AU+ SiO2/ produces Au nanocrystals in the AU+ SiO2 layers. An increased number of nano-layers followed by MeV ion bombardment produces a wide optical absorption band, of which its FWHM depends on the number of nano-layers of SiO2/AU+ SiO2/. We have successfully repeated this process for nano-layers of SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/. In this work we used 5 MeV Si as the post deposition bombardment ion and monitored the location as well as the optical absorption's FWHM for each layered structure using Optical Absorption Photospectrometry. The concentration and location of the metal nano-crystals were measured by Rutherford Backscattering Spectrometry. We will report on the results obtained for nano-layered structures produced by post deposition bombardment of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/ layered systems as well as the results obtained from a system containing a periodic combination of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/.
Interconnect mechanisms in microelectronic packaging
NASA Astrophysics Data System (ADS)
Roma, Maria Penafrancia C.
Global economic, environmental and market developments caused major impact in the microelectronics industry. Astronomical rise of gold metal prices over the last decade shifted the use of copper and silver alloys as bonding wires. Environmental legislation on the restriction of the use of Pb launched worldwide search for lead-free solders and platings. Finally, electrical and digital uses demanded smaller, faster and cheaper devices. Ultra-fine pitch bonding, decreasing bond wire sizes and hard to bond substrates have put the once-robust stitch bond in the center of reliability issues due to stitch bond lift or open wires .Unlike the ball bond, stitch bonding does not lead to intermetallic compound formation but adhesion is dependent on mechanical deformation, interdiffusion, solid solution formation, void formation and mechanical interlocking depending on the wire material, bond configuration, substrate type , thickness and surface condition. Using Au standoff stitch bonds on NiPdAu plated substrates eliminated stitch bond lift even when the Au and Pd layers are reduced. Using the Matano-Boltzmann analysis on a STEM (Scanning Transmission Analysis) concentration profile the interdiffusion coefficient is measured to be 10-16 cm 2/s. Wire pull strength data showed that the wire pull strength is 0.062N and increases upon stress testing. Meanwhile, coating the Cu wire with Pd, not only increases oxidation resistance but also improved adhesion due to the formation of a unique interfacial adhesion layers. Adhesion strength as measured by pull showed the Cu wire bonded to Ag plated Cu substrate (0.132N) to be stronger than the Au wire bonded on the same substrate (0.124N). Ag stitch bonded to Au is predicted to be strong but surface modification made the adhesion stronger. However, on the Ag ball bonded to Al showed multiple IMC formation with unique morphology exposed by ion milling and backscattered scanning electron microscopy. Adding alloying elements in the Ag wire alloy showed differences in adhesion strength and IMC formation. Bond strength by wire pull testing showed the 95Ag alloy with higher values while shear bond testing showed the 88Ag higher bond strength. Use of Cu pillars in flip chips and eutectic bonding in wafer level chip scale packages are direct consequences of diminishing interconnect dimension as a result of the drive for miniaturization. The combination of Cu-Sn interdiffusion, Kirkendall mechanism and heterogeneous vacancy precipitation are the main causes of IMC and void formation in Cu pillar - Sn solder - Cu lead frame sandwich structure. However, adding a Ni barrier agent showed less porous IMC layer as well as void formation as a result of the modified Cu and Sn movement well as the void formation. Direct die to die bonding using Al-Ge eutectic bonds is necessary when 3D integration is needed to reduce the footprint of a package. Hermeticity and adhesion strength are a function of the Al/Ge thickness ratio, bonding pressure, temperature and time. Scanning Electron Microscope (SEM) and Focused Ion Beam (FIB) allowed imaging of interfacial microstructures, porosity, grain morphology while Scanning Transmission Electron microscope (STEM) provided diffusion profile and confirmed interdiffusion. Ion polishing technique provided information on porosity and when imaged using backscattered mode, grain structure confirmed mechanical deformation of the bonds. Measurements of the interfacial bond strength are made by wire pull tests and ball shear tests based on existing industry standard tests. However, for the Al-Ge eutectic bonds, no standard strength is available so a test is developed using the stud pull test method using the Dage 4000 Plus to yield consistent results. Adhesion strengths of 30-40 MPa are found for eutectic bonded packages however, as low as 20MPa was measured in low temperature bonded areas.
Singh, Priyanka; Pandit, Santosh; Garnæs, Jørgen; Tunjic, Sanja; Mokkapati, Venkata RSS; Sultan, Abida; Thygesen, Anders; Mackevica, Aiga; Mateiu, Ramona Valentina; Daugaard, Anders Egede; Baun, Anders; Mijakovic, Ivan
2018-01-01
Background Cannabis sativa (hemp) is a source of various biologically active compounds, for instance, cannabinoids, terpenes and phenolic compounds, which exhibit antibacterial, antifungal, anti-inflammatory and anticancer properties. With the purpose of expanding the auxiliary application of C. sativa in the field of bio-nanotechnology, we explored the plant for green and efficient synthesis of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs). Methods and results The nanoparticles were synthesized by utilizing an aqueous extract of C. sativa stem separated into two different fractions (cortex and core [xylem part]) without any additional reducing, stabilizing and capping agents. In the synthesis of AuNPs using the cortex enriched in bast fibers, fiber-AuNPs (F-AuNPs) were achieved. When using the core part of the stem, which is enriched with phenolic compounds such as alkaloids and cannabinoids, core-AuNPs (C-AuNPs) and core-AgNPs (C-AgNPs) were formed. Synthesized nanoparticles were character-ized by UV–visible analysis, transmission electron microscopy, atomic force microscopy, dynamic light scattering, Fourier transform infrared, and matrix-assisted laser desorption/ionization time-of-flight. In addition, the stable nature of nanoparticles has been shown by thermogravimetric analysis and inductively coupled plasma mass spectrometry (ICP-MS). Finally, the AgNPs were explored for the inhibition of Pseudomonas aeruginosa and Escherichia coli biofilms. Conclusion The synthesized nanoparticles were crystalline with an average diameter between 12 and 18 nm for F-AuNPs and C-AuNPs and in the range of 20–40 nm for C-AgNPs. ICP-MS analysis revealed concentrations of synthesized nanoparticles as 0.7, 4.5 and 3.6 mg/mL for F-AuNPs, C-AuNPs and C-AgNPs, respectively. Fourier transform infrared spectroscopy revealed the presence of flavonoids, cannabinoids, terpenes and phenols on the nanoparticle surface, which could be responsible for reducing the salts to nanoparticles and further stabilizing them. In addition, the stable nature of synthesized nanoparticles has been shown by thermogravimetric analysis and ICP-MS. Finally, the AgNPs were explored for the inhibition of P. aeruginosa and E. coli biofilms. The nanoparticles exhibited minimum inhibitory concentration values of 6.25 and 5 µg/mL and minimum bactericidal concentration values of 12.5 and 25 µg/mL against P. aeruginosa and E. coli, respectively.
Ultrafast dynamics in atomic clusters: analysis and control.
Bonacić-Koutecký, Vlasta; Mitrić, Roland; Werner, Ute; Wöste, Ludger; Berry, R Stephen
2006-07-11
We present a study of dynamics and ultrafast observables in the frame of pump-probe negative-to-neutral-to-positive ion (NeNePo) spectroscopy illustrated by the examples of bimetallic trimers Ag2Au-/Ag2Au/Ag2Au+ and silver oxides Ag3O2-/Ag3O2/Ag3O2+ in the context of cluster reactivity. First principle multistate adiabatic dynamics allows us to determine time scales of different ultrafast processes and conditions under which these processes can be experimentally observed. Furthermore, we present a strategy for optimal pump-dump control in complex systems based on the ab initio Wigner distribution approach and apply it to tailor laser fields for selective control of the isomerization process in Na3F2. The shapes of pulses can be assigned to underlying processes, and therefore control can be used as a tool for analysis.
NASA Astrophysics Data System (ADS)
Kaskow, Iveta; Decyk, Piotr; Sobczak, Izabela
2018-06-01
The goal of this work was to use ZnO as a support for gold and copper (Au-Cu system) or gold and silver (Au-Ag system) and comparison of the effect of copper and silver on the properties of gold and its activity in glycerol oxidation with oxygen in the liquid phase. The samples prepared were fully characterized by XRD, TEM techniques and UV-vis, XPS, ESR spectroscopic methods. It was found that the introduction of copper and silver changed the electronic state of gold loaded on ZnO by the electron transfer between metals. Three different metallic gold species were identified in calcined catalysts: (Au°)δ- (Au-ZnO), (Au°)η- (AuCu-ZnO) and (Au°)γ- (AuAg-ZnO), where δ-,η-,γ- indicate a different partial negative charge on metallic gold and γ > δ > η. The results showed that (Au°)η- centers (metallic gold with the lowest negative charge) formed on AuCu-ZnO were the most active in glycerol oxidation. The increase in the negative charge on metallic gold loaded on AuAg-ZnO reduced the gold activity in silver containing sample. The glyceric acid adsorption and desorption rate influenced the selectivity of the catalysts.
NASA Astrophysics Data System (ADS)
Xia, Hongbo; Wu, Suli; Bi, Jiajie; Zhang, Shufen
2017-11-01
Here a simple and effective method was explored to fabricate M/TiO2 (M = Ag, Au) composites, which required neither pre-treatment of TiO2 nor any additives as reducing agent. Using amorphous TiO2 spheres functionalized with SH groups as starting materials, the noble metallic ions (Ag, Au) can be adsorbed by TiO2 due to their special affinity with SH groups, which is beneficial to the uniform dispersion of metallic ions on the surface of TiO2. Then the adsorbed ions were reduced to form noble metal nanoparticles by heating process (95 °C) directly without additive as reduction agent. Meanwhile, the amorphous TiO2 was transformed into anatase phase during the heating process. Thus, the transformation of TiO2 along with the reduction of noble metallic ions (Ag, Au) was simultaneously carried out by heating. The XRD patterns proved the formation of anatase TiO2 after heating. The characterizations of XPS and TEM proved the formation of Ag and Au nanoparticles on the surface of TiO2. The element mapping indicated that Ag nanoparticles are dispersed uniformly on the surface of TiO2. The photocatalytic activity of the composites has been investigated by the degradation of methyl orange under visible light irradiation. The results showed that when Ag/TiO2 (2.8 wt%) was used as photocatalyst, about 98% of the MO molecules were degraded in 70 min.
Bunge, Scott D.; Boyle, Timothy J.
2005-08-16
A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..
Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells
NASA Astrophysics Data System (ADS)
Cacha, Brian Joseph Gonda
Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).
NASA Astrophysics Data System (ADS)
Dror, I.; Stepka, Z.; Berkowitz, B.
2016-12-01
As a consequence of their growing use in a range of electronic and industrial applications, increasing amounts of technology critical elements (TCEs) are being released to the environment. Currently, little is known about their fate and potential environmental impact. We report here on the adsorption of TCEs on sand and soil in the presence of selected nanoparticles (NPs). TCEs were tested within three different mixtures containing (i) rare earth elements (REEs), (ii) Ge, Pd, Ru and Ir together with Mo, Sb, Sn and Ti, and (iii) In, Sc, Th, Y and Yb together with a variety of other metals. The NPs examined for their suspending properties were: Al2O3, SiO2, CeO2, ZnO, Ag, Au, carbon dots and montmorillonite. Each NP was examined with each TCE solution mixture separately and with added humic acid. A clear difference was observed between REEs (and In, Sc), and the other TCEs. All REEs (and In, Sc) completely adsorb on soil and sand. For sand and soil, the presence of most NPs, alone, does not increase TCE concentrations in solution. For sand, addition of humic acid, with or without NPs, yields approximately the same increase in TCE concentration in solution (>80%). For soil solutions, presence of both NPs and humic acid increases TCE concentrations up to 500% more than any other combination tested, yielding 20% of added TCE amount. The other TCEs tested (mixtures (ii) and (iii)) adsorb less strongly to soil and sand, and unlike the REEs no general trend can be identified. For Al2O3, SiO2, CeO2, ZnO, carbon dots and montmorillonite, the increased concentrations of TCEs in the presence of NPs and humic acid were similar. This indicates that the observed effect depends on the presence of NPs and their surface coating rather than on the type of NP. Ag and Au NPs, however, reduce adsorption of TCEs to sand even when humic acid is absent. For example, Ag NPs reduce adsorption of REEs by >90% and Au NPs by 10%. For REEs, increased solution concentrations are correlated directly to humic acid concentration, with and without NPs in suspension, while for other TCEs, humic acid concentration within the tested range has no effect. This work demonstrates that a combination of NPs and humic acid has the potential to serve as a vehicle for TCE transport in the soil-water environment.
Synthesis and characterization of Ag+ ion conducting glassy electrolytes
NASA Astrophysics Data System (ADS)
Chandra, Angesh; Bhatt, Alok; Chandra, Archana
2013-07-01
Synthesis and characterization of new Ag+ ion conducting glassy systems: x[0.75AgI:0.25AgC1]: (1 - x)[Ag2O:P2O5], where 0.1 < x < 1 in molar weight fraction, are reported. The present glassy electrolytes have been synthesized by melt-quench technique using a high-speed twin roller-quencher. An alternate host salt: "quenched [0.75AgI:0.25AgC1] mixed system/solid solution", has been used in place of the traditional host AgI. The compositional dependence conductivity studies on the glassy systems: x[0.75AgI:0.25AgC1]:(1 - x)[Ag2O:P2O5] as well as xAgI:(1 - x)[Ag2O:P2O5] prepared identically, indicated that the composition at x = 0.75 exhibited the highest room temperature conductivity (σ ~ 5.5 x 10-3 S cm-1). The composition: 0.75[0.75AgI:0.25AgC1]:0.25[Ag2O:P2O5] has been referred to as optimum conducting composition (OCC). The some basic ion transport parameters viz. ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n), ionic drift velocity (vd), ion transference number (tion) and activation energy (Ea) values have been characterized with the help of various experimental techniques. A solid state battery was fabricated and its basic cell parameters calculated.
Geochemistry of placer gold, Koyukuk-Chandalar mining district, Alaska
Mosier, E.L.; Cathrall, J.B.; Antweiler, J.C.; Tripp, R.B.
1989-01-01
The Koyukuk-Chandalar mining district of the Brooks Range mineral belt in north-central Alaska contains numerous placer gold deposits but few known lode gold sources. Gold grains, collected from 46 placer localities and 6 lode gold sites in the district, were analyzed for Ag and 37 trace elements utilizing direct current-arc optical emission spectroscopy. When possible, several measurements were made on each sample and averaged. Gold content was calculated by the summation of the 38 elements determined and subtracting from 100. The objectives of our study were to characterize the deposits by defining the type and number of distinct geochemical characteristics for the Au, to determine relationships of Au in placer deposits to possible lode sources (placer and lode), to identify possible primary sources of placer gold, and to study processes of placer formation. Interpretation of results emphasize that the Au grains are almost invariably ternary (Au-Ag-Cu) alloys. The average Cu content is 0.040% and the average Ag content and fineness [(Au/Au+Ag)??1,000] are 10.5% and 893 parts per thousand, respectively, for the 46 placer localities. Six geochemically distinct types of placer gold can be identified in the Koyukuk-Chandalar mining district based on Ag and Cu values. One type with an average Ag content of 21.2%, an average Cu content of 0.007%, and 786 average fineness is found only in the eastern part of the district. Placer gold grains that have an average Ag content of 6.0%, an average Cu content of 0.276%, and 940 average fineness were found in the western part of the district. Four intermediate types generally occur in order across the district. Variations in the chemistry of the placer gold can be related to variable depositional environments at the primary gold sources. Placer gold geochemistry is important in determining the origin and depositional environment of the primary Au sources and could add to the knowledge of the thermal history of the southcentral Brooks Range. ?? 1989.
NASA Astrophysics Data System (ADS)
Borges, Joel; Ferreira, Catarina G.; Fernandes, João P. C.; Rodrigues, Marco S.; Proença, Manuela; Apreutesei, Mihai; Alves, Eduardo; Barradas, Nuno P.; Moura, Cacilda; Vaz, Filipe
2018-05-01
Thin films containing monometallic (Ag,Au) and bimetallic (Ag–Au) noble nanoparticles were dispersed in TiO2, using reactive magnetron sputtering and post-deposition thermal annealing. The influence of metal concentration and thermal annealing in the (micro)structural evolution of the films was studied, and its correlation with the localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) behaviours was evaluated. The Ag/TiO2 films presented columnar to granular microstructures, developing Ag clusters at the surface for higher annealing temperatures. In some cases, the films presented dendrite-type fractal geometry, which led to an almost flat broadband optical response. The Au/TiO2 system revealed denser microstructures, with Au nanoparticles dispersed in the matrix, whose size increased with annealing temperature. This microstructure led to the appearance of LSPR bands, although some Au segregation to the surface hindered this effect for higher concentrations. The structural results of the Ag–Au/TiO2 system suggested the formation of bimetallic Ag–Au nanoparticles, which presence was supported by the appearance of a single narrow LSPR band. In addition, the Raman spectra of Rhodamine-6G demonstrated the viability of these systems for SERS applications, with some indication that the Ag/TiO2 system might be preferential, contrasting to the notorious behaviour of the bimetallic system in terms of LSPR response.
From isosuperatoms to isosupermolecules: new concepts in cluster science
NASA Astrophysics Data System (ADS)
Liu, Liren; Li, Pai; Yuan, Lan-Feng; Cheng, Longjiu; Yang, Jinlong
2016-06-01
As an extension of the superatom concept, a new concept ``isosuperatom'' is proposed, reflecting the physical phenomenon that a superatom cluster can take multiple geometrical structures with their electronic structures topologically invariant. The icosahedral and cuboctahedral Au135+ units in the Au25(SCH2CH2Ph)18-, Au23(SC6H11)16- and Au24(SAdm)16 nanoclusters are found to be examples of this concept. Furthermore, two isosuperatoms can combine to form a supermolecule. For example, the structure of the {Ag32(DPPE)5(SC6H4CF3)24}2- nanocluster can be understood well in terms of a Ag2212+ supermolecule formed by two Ag138+ isosuperatoms. On the next level of complexity, various combinations of isosuperatoms can lead to supermolecules with different geometrical structures but similar electronic structures, i.e., ``isosupermolecules''. We take two synthesized nanoclusters Au20(PPhpy2)10Cl42+ and Au30S(StBu)18 to illustrate two Au206+ isosupermolecules. The proposed concepts of isosuperatom and isosupermolecule significantly enrich the superatom concept, give a new framework for understanding a wide range of nanoclusters, and open a new door for designing assembled materials.As an extension of the superatom concept, a new concept ``isosuperatom'' is proposed, reflecting the physical phenomenon that a superatom cluster can take multiple geometrical structures with their electronic structures topologically invariant. The icosahedral and cuboctahedral Au135+ units in the Au25(SCH2CH2Ph)18-, Au23(SC6H11)16- and Au24(SAdm)16 nanoclusters are found to be examples of this concept. Furthermore, two isosuperatoms can combine to form a supermolecule. For example, the structure of the {Ag32(DPPE)5(SC6H4CF3)24}2- nanocluster can be understood well in terms of a Ag2212+ supermolecule formed by two Ag138+ isosuperatoms. On the next level of complexity, various combinations of isosuperatoms can lead to supermolecules with different geometrical structures but similar electronic structures, i.e., ``isosupermolecules''. We take two synthesized nanoclusters Au20(PPhpy2)10Cl42+ and Au30S(StBu)18 to illustrate two Au206+ isosupermolecules. The proposed concepts of isosuperatom and isosupermolecule significantly enrich the superatom concept, give a new framework for understanding a wide range of nanoclusters, and open a new door for designing assembled materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01998f
NASA Astrophysics Data System (ADS)
Gholamali, Hediyeh; Shafiekhani, Azizollah; Darabi, Elham; Elahi, Seyed Mohammad
2018-03-01
Atomic force microscopy (AFM) images give valuable information about surface roughness of thin films based on the results of power spectral density (PSD) through the fast Fourier transform (FFT) algorithms. In the present work, AFM data are studied for silver and gold nanoparticles (Ag NPs a-C: H and Au NPs a-C: H) embedded in amorphous hydrogenated carbon films and co-deposited on glass substrate via of RF-Sputtering and RF-Plasma Enhanced Chemical Vapor Deposition methods. Here, the working gas is acetylene and the targets are Ag and Au. While time and power are constant, the only variable parameter in this study is initial pressure. In addition, the crystalline structure of Ag NPs a-C: H and Au NPs a-C: H are studied using X-ray diffraction (XRD). UV-visible spectrophotometry will also investigate optical properties and localized surface plasmon resonance (LSPR) of samples.
Gomes, Janaina F; Garcia, Amanda C; Ferreira, Eduardo B; Pires, Cleiton; Oliveira, Vanessa L; Tremiliosi-Filho, Germano; Gasparotto, Luiz H S
2015-09-07
In this report we present new insights into the formation mechanism of Ag, Au and AgAu nanoparticles with alcohols, aldehydes and ketones in alkaline medium at room temperature. We selected methanol, ethanol, glycerol, formaldehyde, acetaldehyde and acetone to demonstrate their capability of reducing gold and silver ions under the above-mentioned conditions. We showed that the particles are also formed with potassium tert-butoxide in the absence of hydroxides. Our results strongly suggest that alkoxides, formed from any molecule containing a hydroxyl or a functional group capable of generating them in alkaline medium, are the actual and universal reducing agent of silver and gold ions, in opposition to the currently accepted mechanisms. The universality of the reaction mechanism proposed in this work may impact on the production of noble nanoparticles with simple chemicals normally found in standard laboratories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haynes, Alyssa S.; Liu, Te-Kun; Frazer, Laszlo
We synthesized the barium/strontium solid solution sequence Ba 6-xSr x[Ag( 4-y)Sn( y/4)](SnS 4) 4 for nonlinear optical (NLO) applications in the infrared (IR) via a flux synthesis route. All title compounds are isotypic, crystallizing in the cubic space group Imore » $$\\bar{_4}$$ 3d and are composed of a three-dimensional (3D) anionic framework of alternating corner-sharing SnS 4 and AgS 4 tetrahedra charge balanced by Ba and Sr. The shrinkage of Ba/Sr-S bond lengths causes the tetrahedra in the anionic framework to become more distorted, which results in a tunable band gap from 1.58 to 1.38 eV with increasing x values. The performance of the barium limit (x=0) is also superior to that of Sr (x=6), but surprisingly second harmonic generation (SHG) of the solid solution remains strong and is insensitive to the value of x over the range 0-3.8. Results show that the non-type-I phase-matched SHG produced by these cubic chalcogenides display intensities higher than the benchmark AgGaSe 2 from 600 to 1000 nm.« less
Embedded atom method potential for studying mechanical properties of binary Cu–Au alloys
NASA Astrophysics Data System (ADS)
Gola, Adrien; Pastewka, Lars
2018-07-01
We present an embedded atom method (EAM) potential for the binary Cu–Au system. The unary phases are described by two well-tested unary EAM potentials for Cu and Au. We fitted the interaction between Cu and Au to experimental properties of the binary intermetallic phases Cu3Au, CuAu and CuAu3. Particular attention has been paid to reproducing stacking fault energies in order to obtain a potential suitable for studying deformation in this binary system. The resulting energies, lattice constant, elastic properties and melting points are in good agreement with available experimental data. We use nested sampling to show that our potential reproduces the phase boundaries between intermetallic phases and the disordered face-centered cubic solid solution. We benchmark our potential against four popular Cu–Au EAM parameterizations and density-functional theory calculations.
Padil, Vinod Vellora Thekkae; Černík, Miroslav
2015-04-28
In the present work, nanofibre membranes composed of polyvinyl alcohol (PVA) and a natural gum karaya (GK) hydrocolloid were prepared using electrospinning. The electrospun membranes of PVA/GK were cross-linked with heat treatment and later methane plasma was used to obtain a hydrophobic membrane. The morphology, characterization and adsorption ability of P-NFM was assessed using scanning electron microscopy, UV-vis spectroscopy, ATR-FTIR techniques, water contact angle and ICP-MS analytical methods. The membrane was employed for the extraction of nanoparticles (Ag, Au, Pt, CuO and Fe3O4) from water. The nanoparticle extraction kinetic and adsorption isotherm perform the pseudo-second-order model and Langmuir isotherm model, respectively. The adsorption capacities of the membrane for the removal of NPs from water diverge in the order Pt>Au>Ag>CuO>Fe3O4. The high adsorption efficiency for the removal of NPs from water was compared with an untreated membrane. Physisorption, functional group interactions, complexation reactions between metal/metal oxide nanoparticles with various functional groups present in NFM and modified surface properties such as the balance of hydrophilicity/hydrophobicity, surface free energy, and the high surface area of the plasma treated membrane were possible mechanisms of NPs adsorption onto NFM. The regeneration and reusability were tested in five consecutive adsorption/desorption cycles. Copyright © 2015 Elsevier B.V. All rights reserved.
Enhancement of Au-Ag-Te contents in tellurium-bearing ore minerals via bioleaching
NASA Astrophysics Data System (ADS)
Choi, Nag-Choul; Cho, Kang Hee; Kim, Bong Ju; Lee, Soonjae; Park, Cheon Young
2018-03-01
The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals (such as pyrite, chalcopyrite, sphalerite and galena) in combination with tellurium-bearing minerals (hessite, sylvanite and Tellurobismuthite) were studied. Indigenous microbes from mine drainage were isolated and identified as Acidithiobacillus ferrooxidans, which were used in bioleaching after adaption to copper. The effect of the microbial adaption on the bioleaching performance was then compared with the results produced by the non-adaptive process. The microbial adaption enhanced the Au-Ag-Te contents in biological leaching of tellurium-bearing ore minerals. This suggests that bioleaching with adapted microbes can be used both as a pretreatment and in the main recovery processes of valuable metals.
NASA Astrophysics Data System (ADS)
Wang, Zhaoxu; Liu, Yi; Zheng, Baishu; Zhou, Fengxiang; Jiao, Yinchun; Liu, Yuan; Ding, XunLei; Lu, Tian
2018-05-01
Intermolecular interaction of XH2P...MY (X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F, Cl, Br, I) complexes was investigated by means of an ab initio method. The molecular interaction energies are in the order Ag < Cu < Au and increased with the decrease of RP...M. Interaction energies are strengthened when electron-donating substituents X connected to XH2P, while electron-withdrawing substituents produce the opposite effect. The strongest P...M bond was found in CH3H2P...AuF with -70.95 kcal/mol, while the weakest one was found in NO2H2P...AgI with -20.45 kcal/mol. The three-center/four-electron (3c/4e) resonance-type of P:-M-:Y hyperbond was recognized by the natural resonance theory and the natural bond orbital analysis. The competition of P:M-Y ↔ P-M:Y resonance structures mainly arises from hyperconjugation interactions; the bond order of bP-M and bM-Y is in line with the conservation of the idealized relationship bP-M + bM-Y ≈ 1. In all MF-containing complexes, P-M:F resonance accounted for a larger proportion which leads to the covalent characters for partial ionicity of MF. The interaction energies of these Cu/Ag/Au complexes are basically above the characteristic values of the halogen-bond complexes and close to the observed strong hydrogen bonds in ionic hydrogen-bonded species.
Investigation of the wett-ability of various pure metals and alloys and beryllium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilliland, Ralph Gerald
1963-06-13
Thesis submitted to University of Tennessee, Knoxville. Activities in a program to determine the wetting behavior of pure metals such as Au, Ag, Ge, Al, and Cu on solid Be are reported. Results of similar investigations of binary alloys such as Be--Ti, Be-Zr, and Be--Pd are also included. The contact angles of the molten metals on Be as a function of temperature, exposure time, and atmosphere were measured. The solid-liquid interfacial reactions occurring as a function of test temperature and atmosphere were investigated, and the liquid- vapor and internal surface tensions for those systems in which interfacial reactions did notmore » appear to occur were calculated.« less
NASA Astrophysics Data System (ADS)
Jang, Gyoung Gug
The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are consistent with optical feature of CF-EL and BI-EL films. The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages of conventional EL plating, such as no continuous process and low deposition rate, using continuous process and controllable deposition rate. Throughout this work, dynamic morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The characterization suggests that four previously unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform morphology formation under controlled hydraulic conditions. A method to achieve the time-resolved optical profile of EL Au plating was devised and provided a new transitional EL Au film growth model which validated mass transfer model prediction of the deposited thickness of ≤100 nm thin films. As a part of the project, validation of mass transfer model, a spectrophotometric method for quantitative analysis of metal ion is developed that improves the limit of detection comparable to conventional instrumental analysis. The present work suggests that modeling, fabrication and characterization of this novel CF-EL plating method is performed to achieve an ultimate purpose: developing a reliable, inexpensive wet chemical process for controlled metal thin film and nanostructure fabrication.
Transient liquid phase bonding of titanium-, iron- and nickel-based alloys
NASA Astrophysics Data System (ADS)
Rahman, A. H. M. Esfakur
The operating temperature of land-based gas turbines and jet engines are ever-increasing to increase the efficiency, decrease the emissions and minimize the cost. Within the engines, complex-shaped parts experience extreme temperature, fatigue and corrosion conditions. Ti-based, Ni-based and Fe-based alloys are commonly used in gas turbines and jet engines depending on the temperatures of different sections. Although those alloys have superior mechanical, high temperature and corrosion properties, severe operating conditions cause fast degradation and failure of the components. Repair of these components could reduce lifecycle costs. Unfortunately, conventional fusion welding is not very attractive, because Ti reacts very easily with oxygen and nitrogen at high temperatures, Ni-based superalloys show heat affected zone (HAZ) cracking, and stainless steels show intergranular corrosion and knife-line attack. On the other hand, transient liquid phase (TLP) bonding method has been considered as preferred joining method for those types of alloys. During the initial phase of the current work commercially pure Ti, Fe and Ni were diffusion bonded using commercially available interlayer materials. Commercially pure Ti (Ti-grade 2) has been diffusion bonded using silver and copper interlayers and without any interlayer. With a silver (Ag) interlayer, different intermetallics (AgTi, AgTi2) appeared in the joint centerline microstructure. While with a Cu interlayer eutectic mixtures and Ti-Cu solid solutions appeared in the joint centerline. The maximum tensile strengths achieved were 160 MPa, 502 MPa, and 382 MPa when Ag, Cu and no interlayers were used, respectively. Commercially pure Fe (cp-Fe) was diffusion bonded using Cu (25 m) and Au-12Ge eutectic interlayer (100 microm). Cu diffused predominantly along austenite grain boundaries in all bonding conditions. Residual interlayers appeared at lower bonding temperature and time, however, voids were observed in the joint centerline at higher joining temperature and time. Dispersed Au-rich particles were observed in the base metal near interface. The highest ultimate tensile strengths obtained for the bonded Fe were 291+/-2 MPa using a Cu interlayer at 1030°C for 10 h and 315+/-4 MPa using a Au-12Ge interlayer at 950°C for 15 h. Commercially pure Ni (cp-Ni) was diffusion bonded using a Al, Au-12Ge or Cu interlayer. The formation of intermetallics could not be avoided when Al interlayer was used. Even though no intermetallics were obtained with Au-12Ge or Cu interlayer, appreciable strength of the joint was not found. Next, the simple bonding systems were modeled numerically. It is hoped that the simple models can be extended for higher order alloys. The modeling of TLP joint means to come up with a mathematical model which can predict the concentration profiles of diffusing species. The concentration dependence of diffusivity in a multi-component diffusion system makes it complicated to predict the concentration profiles of diffusing species. The so-called chemical diffusivity can be expressed as a function of thermodynamic and kinetic data. DICTRA software can calculate the concentration profiles using appropriate mobility and thermodynamic data. It can also optimize the diffusivity data using experimental diffusivity data. Then the optimized diffusivity data is stored as mobility data which is a linear function of temperature. In this work, diffusion bonding of commercially pure Ni using Cu interlayers is reported. The mobility parameters of Ni-Cu alloy binary systems were optimized using DICTRA/Thermocalc software from the available self-, tracer and chemical diffusion coefficients. The optimized mobility parameters were used to simulate concentration profiles of Ni-Cu diffusion joints using DICTRA/Thermocalc software. The calculated and experimental concentration profiles agreed well at 1100 °C. This method could not be extended for higher order alloys because of the lack of appropriate thermodynamic and kinetic database. In the third phase industrially important alloys such as SS 321, Inconel 718 and Ti-6Al-4V were diffusion bonded. Diffusion bonded SS 321 with Au-12Ge interlayer provided the best microstructure when bonded in either vacuum or argon at 1050°C for 20 h and cooled in air. The maximum strength obtained of the joint was 387+/-4 MPa bonded in vacuum at 1050°C for 20 h and cooled in air. The microstructure of joint centerline of diffusion bonded Inconel 718 using Au-12Ge interlayer at 1050°C for 15 h and cooled in air consisted of residual interlayer (1.3-2.5 microm). The residual interlayer was disappeared by increasing the bonding time by 5 h, however, pores appeared in the joint centerline. As a result, the strength obtained for bonded Inconel 718 was much lower than that of the base alloy. The joint centerline microstructure of bonded Ti-6Al-4V using Cu interlayer was free of intermetallics and solid solution of Cu and base alloy. The strength of the joint is yet to be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ting; Mukherjee, Rupam; Ovchinnikova, Olga S.
Hybrid perovskites, as emerging multifunctional semiconductors, have demonstrated dual electronic/ionic conduction properties. Here, we report a metal/ion interaction induced p-i-n junction across slightly n-type doped MAPbI 3 single crystals with Au/MAPbI 3/Ag configuration based on interface dependent Seebeck effect, Hall effect and time-of-flight secondary ion mass spectrometry analysis. The organic cations (MA +) interact with Au atoms, forming positively charged coordination complexes at Au/MAPbI 3 interface, whereas iodine anions (I –) can react with Ag contacts, leading to interfacial ionic polarization. Such metal/ion interactions establish a p-doped region near the Au/MAPbI 3 interface due to the formation of MA +more » vacancies, and an n-doped region near the Ag/MAPbI 3 interface due to formation of I – vacancies, consequently forming a p-i-n junction across the crystal in Au/MAPbI 3/Ag configuration. Therefore, the metal/ion interaction plays a role in determining the surface electronic structure and semiconducting properties of hybrid perovskites.« less
Wu, Ting; Mukherjee, Rupam; Ovchinnikova, Olga S.; ...
2017-11-17
Hybrid perovskites, as emerging multifunctional semiconductors, have demonstrated dual electronic/ionic conduction properties. Here, we report a metal/ion interaction induced p-i-n junction across slightly n-type doped MAPbI 3 single crystals with Au/MAPbI 3/Ag configuration based on interface dependent Seebeck effect, Hall effect and time-of-flight secondary ion mass spectrometry analysis. The organic cations (MA +) interact with Au atoms, forming positively charged coordination complexes at Au/MAPbI 3 interface, whereas iodine anions (I –) can react with Ag contacts, leading to interfacial ionic polarization. Such metal/ion interactions establish a p-doped region near the Au/MAPbI 3 interface due to the formation of MA +more » vacancies, and an n-doped region near the Ag/MAPbI 3 interface due to formation of I – vacancies, consequently forming a p-i-n junction across the crystal in Au/MAPbI 3/Ag configuration. Therefore, the metal/ion interaction plays a role in determining the surface electronic structure and semiconducting properties of hybrid perovskites.« less
NASA Astrophysics Data System (ADS)
Pedersen, K.; Kristensen, T. B.; Pedersen, T. G.; Morgen, P.; Li, Z.; Hoffmann, S. V.
2002-05-01
Thin noble metal films (Ag, Au and Cu) on Si (111) have been investigated by optical second-harmonic generation (SHG) in combination with synchrotron radiation photoemission spectroscopy. The valence band spectra of Ag films show a quantization of the sp-band in the 4-eV energy range from the Fermi level down to the onset of the d-bands. For Cu and Au the corresponding energy range is much narrower and quantization effects are less visible. Quantization effects in SHG are observed as oscillations in the signal as a function of film thickness. The oscillations are strongest for Ag and less pronounced for Cu, in agreement with valence band photoemission spectra. In the case of Au, a reacted layer floating on top of the Au film masks the observation of quantum well levels by photoemission. However, SHG shows a well-developed quantization of levels in the Au film below the reacted layer. For Ag films, the relation between film thickness and photon energy of the SHG resonances indicates different types of resonances, some of which involve both quantum well and substrate states.
Facile SILAR approach to air-stable naked silver and gold nanoparticles supported by alumina.
Stamplecoskie, Kevin G; Manser, Joseph S
2014-10-22
A synthetically convenient and scalable SILAR (successive ion layer adsorption and reaction) method is used to make air-stable films of silver and gold nanoparticles supported on alumina scaffolds. This solution-based deposition technique yields particles devoid of insulating capping agents or ligands. The optical properties of the nanoparticle films were investigated using femtosecond transient absorption spectroscopy. A linear absorption arising from intraband excitation (775 nm laser pulse) is seen only for Au nanoparticles at low intensity. However, both Au and Ag particles exhibit plasmon resonance responses at high excitation intensity via two photon absorption of the 775 nm pump pulse. The difference in optical response to near-IR laser excitation is rationalized based on the known density of states for each metal. To demonstrate the potential applications of these films, alumina-supported Ag nanoparticles were utilized as substrates for surface enhanced Raman spectroscopy, resulting in a 65-fold enhancement in the Raman signal of the probe molecule rhodamine 6G. The exceptional stability and scalability of these SILAR films opens the door for further optical and photocatalytic studies and applications, particularly with ligand-free Ag nanoparticles that typically oxidize under ambient conditions. Additionally, isolating plasmonic and interband electronic excitations in stable AgNP under visible light irradiation could enable elucidation of the mechanisms that drive noble metal-assisted photocatalytic processes.
Transport of soil-aged silver nanoparticles in unsaturated sand.
Kumahor, Samuel K; Hron, Pavel; Metreveli, George; Schaumann, Gabriele E; Klitzke, Sondra; Lang, Friederike; Vogel, Hans-Jörg
2016-12-01
Engineered nanoparticles released into soils may be coated with humic substances, potentially modifying their surface properties. Due to their amphiphilic nature, humic coating is expected to affect interaction of nanoparticle at the air-water interface. In this study, we explored the roles of the air-water interface and solid-water interface as potential sites for nanoparticle attachment and the importance of hydrophobic interactions for nanoparticle attachment at the air-water interface. By exposing Ag nanoparticles to soil solution extracted from the upper soil horizon of a floodplain soil, the mobility of the resulting "soil-aged" Ag nanoparticles was investigated and compared with the mobility of citrate-coated Ag nanoparticles as investigated in an earlier study. The mobility was determined as a function of hydrologic conditions and solution chemistry using column breakthrough curves and numerical modeling. Specifically, we compared the mobility of both types of nanoparticles for different unsaturated flow conditions and for pH=5 and pH=9. The soil-aged Ag NP were less mobile at pH=5 than at pH=9 due to lower electrostatic repulsion at pH=5 for both types of interfaces. Moreover, the physical flow field at different water contents modified the impact of chemical forces at the solid-water interface. An extended Derjaguin-Landau-Verwey-Overbeek (eDLVO) model did not provide satisfactory explanation of the observed transport phenomena unlike for the citrate-coated case. For instance, the eDLVO model assuming sphere-plate geometry predicts a high energy barrier (>90 kT) for the solid-water interface, indicating that nanoparticle attachment is less likely. Furthermore, retardation through reversible sorption at the air-water interface was probably less relevant for soil-aged nanoparticles than for citrate-coated nanoparticles. An additional cation bridging mechanism and straining within the flow field may have enhanced nanoparticle retention at the solid-water interface. The results indicate that the mobility of engineered Ag nanoparticles is sensitive to solution chemistry, especially pH and the concentration of multivalent cations, and to the unsaturated flow conditions influencing particle interaction at biogeochemical interfaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Transport of soil-aged silver nanoparticles in unsaturated sand
NASA Astrophysics Data System (ADS)
Kumahor, Samuel K.; Hron, Pavel; Metreveli, George; Schaumann, Gabriele E.; Klitzke, Sondra; Lang, Friederike; Vogel, Hans-Jörg
2016-12-01
Engineered nanoparticles released into soils may be coated with humic substances, potentially modifying their surface properties. Due to their amphiphilic nature, humic coating is expected to affect interaction of nanoparticle at the air-water interface. In this study, we explored the roles of the air-water interface and solid-water interface as potential sites for nanoparticle attachment and the importance of hydrophobic interactions for nanoparticle attachment at the air-water interface. By exposing Ag nanoparticles to soil solution extracted from the upper soil horizon of a floodplain soil, the mobility of the resulting ;soil-aged; Ag nanoparticles was investigated and compared with the mobility of citrate-coated Ag nanoparticles as investigated in an earlier study. The mobility was determined as a function of hydrologic conditions and solution chemistry using column breakthrough curves and numerical modeling. Specifically, we compared the mobility of both types of nanoparticles for different unsaturated flow conditions and for pH = 5 and pH = 9. The soil-aged Ag NP were less mobile at pH = 5 than at pH = 9 due to lower electrostatic repulsion at pH = 5 for both types of interfaces. Moreover, the physical flow field at different water contents modified the impact of chemical forces at the solid-water interface. An extended Derjaguin-Landau-Verwey-Overbeek (eDLVO) model did not provide satisfactory explanation of the observed transport phenomena unlike for the citrate-coated case. For instance, the eDLVO model assuming sphere-plate geometry predicts a high energy barrier (> 90 kT) for the solid-water interface, indicating that nanoparticle attachment is less likely. Furthermore, retardation through reversible sorption at the air-water interface was probably less relevant for soil-aged nanoparticles than for citrate-coated nanoparticles. An additional cation bridging mechanism and straining within the flow field may have enhanced nanoparticle retention at the solid-water interface. The results indicate that the mobility of engineered Ag nanoparticles is sensitive to solution chemistry, especially pH and the concentration of multivalent cations, and to the unsaturated flow conditions influencing particle interaction at biogeochemical interfaces.
NASA Astrophysics Data System (ADS)
Al-Kamal, Ahmed Kamal
Nanostructured powders of TiO2 and Ag-doped TiO2 are synthesized by a novel pulsed-laser process that combines laser ablation of a silver (Ag) disc with laser decomposition of a titanium tetra-isopropoxide (TTIP) solution. Nanoparticles are formed by rapid condensation of vaporized species in the plasma plume generated by the high power laser, resulting in the formation of rapidly quenched Ag-doped TiO2 nanoparticles that have far-from-equilibrium or metastable structures. The uniqueness of the new ablation process is that it is a one-step process, in contrast to the two-step process developed by previous researchers in the field. Moreover, its ability to synthesize an extended-solid solution phase of Ag in TiO 2 may also be unique. The present work implies that other oxide phases, such as Al2O3, MgO and MgAl2O4, can be doped with normally insoluble metals, such as Pt and Ir, thus opening new opportunities for catalytic applications. Again, there is the prospect of being able to synthesize nanopowders of diamond, c-BN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor. A wet-chemistry method is also investigated, which has much in common with that adopted by previous workers in the field. However, photo-voltaic properties do not measure up to expectations based on published data. A possible explanation is that the selected Ag concentrations are too high, so that recombination of holes and electrons occurs via a quantum-tunneling mechanism reduces photo-activity. Future work, therefore, will investigate lower concentrations of Ag dopant in TiO2, while also examining the effects of metastable states, including extended solid solution, amorphous, and semi-crystalline structures.
Plasmon Mapping in Au@Ag Nanocube Assemblies
2014-01-01
Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag core–shell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles. PMID:25067991
Optical spectroscopy of arrays of Ag-Au nanoparticles obtained by vacuum-thermal evaporation
NASA Astrophysics Data System (ADS)
Gromov, D. G.; Mel'nikov, I. V.; Savitskii, A. I.; Trifonov, A. Yu.; Redichev, E. N.; Astapenko, V. A.
2017-03-01
The possibility of creating irregular arrays of bimetallic Ag-Au nanoparticles is investigated. The ability to manipulate their optical properties based on the simple engineering processes of thermal spraying followed by low-temperature annealing is demonstrated.
NASA Astrophysics Data System (ADS)
Manoto, Sello L.; Oluwole, David O.; Malabi, Rudzani; Maphanga, Charles; Ombinda-Lemboumba, Saturnin; Nyokong, Tebello; Mthunzi-Kufa, Patience
2017-02-01
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality for the treatment of neoplastic and non-neoplastic diseases. In PDT of cancer, irradiation with light of a specific wavelength leads to activation of a photosensitizer which results in generation of reactive oxygen species (ROS) which induces cell death. Many phthalocyanine photosensitizers are hydrophobic and insoluble in water, which limits their therapeutic efficiency. Consequently, advanced delivery systems and strategies are needed to improve the effectiveness of these photosensitizers. Nanoparticles have shown promising results in increasing aqueous solubility, bioavailability, stability and delivery of photosensitizers to their target. This study investigated the photodynamic activity of zinc monocarboxyphenoxy phthalocyanine (ZnMCPPc) conjugated to gold silver (AuAg) nanoparticles in melanoma cancer cells. The photodynamic activity of ZnMCPPc conjugated to AuAg nanoparticles were evaluated using cellular morphology, viability, proliferation and cytotoxicity. Untreated cells showed no changes in cellular morphology, proliferation and cytotoxicity. However, photoactivated ZnMCPPc conjugated to AuAg nanoparticles showed changes in cell morphology and a dose dependent decrease in cellular viability, proliferation and an increase in cell membrane damage. The ZnMCPPc conjugated to AuAg nanoparticles used in this study was highly effective in inducing cell death of melanoma cancer cells.
Wojcieszak, D; Mazur, M; Kalisz, M; Grobelny, M
2017-02-01
In this work influence of copper, silver and gold additives on structural and surface properties of biologically active thin films based on titanium have been described. Coatings were prepared by magnetron sputtering method. During each process metallic discs (targets) - Ti and the additive (Cu, Ag or Au) were co-sputtered in argon atmosphere. Structural investigation of as-deposited coatings was performed with the aid of XRD and SEM/EDS method. It was found that all prepared thin films were homogenous. Addition of Cu, Ag and Au resulted in nanocrystalline structure. Moreover, influence of these additives on hardness and antibacterial activity of titanium coatings was also studied. Ti-Cu, Ti-Ag and Ti-Au films had lower hardness as-compared to Ti. According to AAS results the difference of their activity was related to the ion migration process. It was found that Ti-Ag and Ti-Au coatings had biocidal effect related to direct contact of their surface with microorganisms. In the case of Ti-Cu antimicrobial activity had direct and indirect nature due to efficient ion migration process from the film surface to the surrounding environment. Functional features of coatings such as wettability and corrosion resistance were also examined and included in the comprehensive analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Cho, Eun-Min; Singh, Dheeraj K; Ganbold, Erdene-Ochir; Dembereldorj, Uuriintuya; Jang, Seok-Won; Kim, Doseok; Choo, Jaebum; Kim, Sehun; Lee, Cheol Min; Yang, Sung Ik; Joo, Sang-Woo
2014-01-01
Surface-enhanced Raman scattering (SERS) of an antifungal reagent, myclobutanil (MCB), was performed on Au and Ag nanoparticles (NPs) to estimate the drug-release behaviors in fungal cells. A density functional theory (DFT) calculation was introduced to predict a favorable binding site of MCB to either the Ag or Au atom. Myclobutanil was presumed to bind more strongly to Au than to Ag in their most stable, optimized geometries of the N4 atom in its 1,2,4-triazole unit binding to the metal atom. Strong intensities were observed in the Ag SERS spectra only at acidic pH values, whereas the most prominent peaks in the Au SERS spectra of MCB matched quite well with those of 1,2,4-triazole regardless of pH conditions. The Raman spectral intensities of the MCB-assembled Ag and Au NPs decreased after treatment with either potato dextrose agar (PDA) or glutathione (GSH). Darkfield microscopy and confocal SERS were performed to analyze the MCB-assembled metal NPs inside Penicillium digitatum fungal cells. The results suggested that MCB was released from the metal NPs in the intracellular GSH in the fungi because we observed only fungal cell peaks.
Jiang, Xiumei; Wang, Liming; Ji, Yinglu; Tang, Jinglong; Tian, Xin; Cao, Mingjing; Li, Jingxuan; Bi, Shuying; Wu, Xiaochun; Chen, Chunying; Yin, Jun-Jie
2017-03-01
As a widely used nanomaterial in daily life, silver nanomaterials may cause great concern to female reproductive system as they are found to penetrate the blood-placental barrier and gain access to the ovary. However, it is largely unknown about how silver nanomaterials influence ovarian physiology and functions such as hormone production. This study performs in vitro toxicology study of silver nanomaterials, focusing especially on cytotoxicity and steroidogenesis and explores their underlying mechanisms. This study exposes primary rat granulosa cells to gold nanorod core/silver shell nanostructures (Au@Ag NRs), and compares outcomes with cells exposed to gold nanorods. The Au@Ag NRs generate more reactive oxygen species and reduce mitochondrial membrane potential and less production of adenosine triphosphate. Au@Ag NRs promote steroidogenesis, including progesterone and estradiol, in a time- and dose-dependent manner. Chemical reactivity and transformation of Au@Ag NRs are then studied by electron spin resonance spectroscopy and X-ray absorption near edge structure, which analyze the generation of free radical and intracellular silver species. Results suggest that both particle-specific activity and intracellular silver ion release of Au@Ag NR contribute to the toxic response of granulosa cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Atomic structure of water/Au, Ag, Cu and Pt atomic junctions.
Li, Yu; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu
2017-02-08
Much progress has been made in understanding the transport properties of atomic-scale conductors. We prepared atomic-scale metal contacts of Cu, Ag, Au and Pt using a mechanically controllable break junction method at 10 K in a cryogenic vacuum. Water molecules were exposed to the metal atomic contacts and the effect of molecular adsorption was investigated by electronic conductance measurements. Statistical analysis of the electronic conductance showed that the water molecule(s) interacted with the surface of the inert Au contact and the reactive Cu ant Pt contacts, where molecular adsorption decreased the electronic conductance. A clear conductance signature of water adsorption was not apparent at the Ag contact. Detailed analysis of the conductance behaviour during a contact-stretching process indicated that metal atomic wires were formed for the Au and Pt contacts. The formation of an Au atomic wire consisting of low coordination number atoms leads to increased reactivity of the inert Au surface towards the adsorption of water.
Lai, Samuel Kin-Man; Cheng, Yu-Hong; Tang, Ho-Wai; Ng, Kwan-Ming
2017-08-09
Systematically controlling heat transfer in the surface-assisted laser desorption/ionization (SALDI) process and thus enhancing the analytical performance of SALDI-MS remains a challenging task. In the current study, by tuning the metal contents of Ag-Au alloy nanoparticle substrates (AgNPs, Ag55Au45NPs, Ag15Au85NPs and AuNPs, ∅: ∼2.0 nm), it was found that both SALDI ion-desorption efficiency and heat transfer can be controlled in a wide range of laser fluence (21.3 mJ cm -2 to 125.9 mJ cm -2 ). It was discovered that ion detection sensitivity can be enhanced at any laser fluence by tuning up the Ag content of the alloy nanoparticle, whereas the extent of ion fragmentation can be reduced by tuning up the Au content. The enhancement effect of Ag content on ion desorption was found to be attributable to the increase in laser absorption efficiency (at 355 nm) with Ag content. Tuning the laser absorption efficiency by changing the metal composition was also effective in controlling the heat transfer from the NPs to the analytes. The laser-induced heating of Ag-rich alloy NPs could be balanced or even overridden by increasing the Au content of NPs, resulting in the reduction of the fragmentation of analytes. In the correlation of experimental measurement with molecular dynamics simulation, the effect of metal composition on the dynamics of the ion desorption process was also elucidated. Upon increasing the Ag content, it was also found that phase transition temperatures, such as melting, vaporization and phase explosion temperature, of NPs could be reduced. This further enhanced the desorption of analyte ions via phase-transition-driven desorption processes. The significant cooling effect on the analyte ions observed at high laser fluence was also determined to be originated from the phase explosion of the NPs. This study revealed that the development of alloy nanoparticles as SALDI substrates can constitute an effective means for the systematic control of ion-desorption efficiency and the extent of heat transfer, which could potentially enhance the analytical performance of SALDI-MS.
Nanoshell-Enhanced Raman Spectroscopy on a Microplate for Staphylococcal Enterotoxin B Sensing.
Wang, Wenbin; Wang, Weiwei; Liu, Liqiang; Xu, Liguang; Kuang, Hua; Zhu, Jianping; Xu, Chuanlai
2016-06-22
A sensitive surface-enhanced Raman scattering (SERS) immunosensor based on the Au nanoparticle (Au NP) shell structure was developed to detect staphylococcal enterotoxin B (SEB) on a microplate. Au NPs modified with 4-nitrothiophenol (4-NTP) and coated with Ag shell of controlled thickness at 6.6 nm exhibited excellent SERS intensity and were used as signal reporters in the detection of SEB. The engaged 4-NTP allowed the significant electromagnetic enhancement between Au NPs and the Ag shell and prevented the dissociation of the Raman reporter. More importantly, 4-NTP-differentiated SERS signals between the sample and microplate. The SERS-based immunosensor had a limit of detection of 1.3 pg/mL SEB. Analysis of SEB-spiked milk samples revealed that the developed method had high accuracy. Therefore, the SERS-encoded Au@Ag core-shell structure-based immunosensor is promising for the detection of biotoxins, pathogens, and environmental pollutants.
NASA Astrophysics Data System (ADS)
Jang, Yunseok; Jo, Jeongdai; Woo, Kyoohee; Lee, Seung-Hyun; Kwon, Sin; Kim, Kwang-Young; Kang, Dongwoo
2017-05-01
We propose a method to fabricate a supercapacitor for smart textiles using silver (Ag) nanoparticle (NP) ink, simple spray patterning systems, and intense pulsed light (IPL) sintering systems. The Ag NP current collectors provided as high conductivity as the metal current collectors. The spray patterning technique is useful for fabricating supercapacitors because it is simple, fast, and cheap. IPL systems reduced the sintering temperature of Ag NPs and prevented thermal damage to the textiles during the Ag NP sintering process. The two-dimensional (2D) all-solid state fabric supercapacitor with an interdigitated configuration, developed here, exhibited a specific capacitance of 25.7 F/g and an energy density of 1.5 Wh/kg at a power density of 64.3 W/kg. These results support the utility of our proposed method in the development of energy textiles.
NASA Astrophysics Data System (ADS)
Chaliyawala, Harsh A.; Purohit, Zeel; Khanna, Sakshum; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit
2018-05-01
We report an alternative approach to fabricate the vertically aligned aperiodic Si nanowire arrays by controlling the diameter of the Ag nanoparticles and tuneable ultrasonic removal. The process begins by sputtering the Ag thin film (t=5 nm) on the Si/SiO2 substrates. Followed by Ag thin film, annealed for various temperature (T=300°C, 400°C, 500°C and 600°C) to selectively achieve a high density, well-spaced and diameter controlled Ag nanoparticles (AgNPs) on the Si/SiO2 substrates. The sacrificial layer of AgNPs size indicates the controlled diameter of the Si nanowire arrays. Image J analysis for various annealed samples gives an indication of the high density, uniformity and equal distribution of closely packed AgNPs. Furthermore, the AgNPs covered with Au/Pd mesh (5 nm) as a template, was removed by ultrasonication in the etchant solution for several times in different intervals of preparation. The conventional and facile metal assisted electroless etching approach was finally employed to fabricate the vertically aperiodic sub-50 nm SiNWAs, can be applicable to various nanoscale opto-electronic applications.
NASA Astrophysics Data System (ADS)
Hu, Xiaoye; Zheng, Peng; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Han, Fangming; Huang, Zhulin; Li, Zhongbo; Wang, Zhaoming; Wu, Nianqiang
2016-09-01
An ordered array of hierarchically-structured core-nanosphere@space-layer@shell-nanoparticles has been fabricated for surface-enhanced Raman scattering (SERS) detection. To fabricate this hierarchically-structured chip, a long-range ordered array of Au/Ag-nanospheres is first patterned in the nano-bowls on the planar surface of ordered nanoporous anodic titanium oxide template. A ultra-thin alumina middle space-layer is then conformally coated on the Au/Ag-nanospheres, and Ag-nanoparticles are finally deposited on the surface of the alumina space-layer to form an ordered array of Au/Ag-nanosphere@Al2O3-layer@Ag-nanoparticles. Finite-difference time-domain simulation shows that SERS hot spots are created between the neighboring Ag-nanoparticles. The ordered array of hierarchical nanostructures is used as the SERS-substrate for a trial detection of methyl parathion (a pesticide) in water and a limit of detection of 1 nM is reached, indicating its promising potential in rapid monitoring of organic pollutants in aquatic environment.
Ligand-protected gold clusters: the structure, synthesis and applications
NASA Astrophysics Data System (ADS)
Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.
2015-11-01
Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.
Yang, Xi; Wang, Shanshan; Ghiviriga, Ion; ...
2015-05-19
A novel synthetic method to create gold based metallo–oligomers/polymers via the combination of inorganic click (iClick) with intermolecular aurophilic interactions is demonstrated. Complexes [PEt 3Au] 4(μ-N 3C 2C 6H 5) (1) and [PPhMe 2Au] 43C 2C 6H 5) (2) and {[PEt 3Au] 4[(μ-N 3C 2) 2-9,9-dihexyl-9H-fluorene]} n (8) have been synthesized via iClick. The tetranuclear structures of 1 and 2, induced by aurophilic bonding, are confirmed in the solid state through single crystal X-ray diffraction experiments and in solution via variable temperature NMR spectroscopy. The extended 1D structure of 8 is constructed by aurophilic induced self-assembly. 1H DOSY NMR analysismore » reveals that the aurophilic bonds in 1, 2, and 8 are retained in the solution phase. The degree of polymerization within complex 8 is temperature and concentration dependent, as determined by 1H DOSY NMR. The complex 8 is a rare example of a solution stable higher ordered structure linked by aurophilic interactions.« less
NASA Astrophysics Data System (ADS)
Korani, Aazam; Salimi, Abdollah; Hadadzadeh, Hasan
2015-05-01
Here, [Ni(phendion) (phen)]Cl2 complex, (phendion and phen are 1,10-phenanthroline-5,6-dione and 5-amino-1, 10-phenanthrolin) covalently attached onto carboxyl functionalized multi walls carbon nanotube modified glassy carbon electrode (GCE/MWCNTs-COOH) using solid phase interactions and combinatorial approaches.The attached [Ni(phendion) (phen)]Cl2 complex displays a surface controlled electrode process and it acts as an effective redox mediator for electrocatalytic oxidation of dihydronicotinamide adenine dinucleotide (NADH) at reduced overpotentials. With co-immobilization of glucose dehydrogenase enzyme (GDH) by crosslinking an effective biocatalyst for glucose oxidation designed. The onset potential and current density are -0.1 V versus Ag/AgCl electrode and 0.550 mA cm-2, which indicate the applicability of the proposed system as an efficient bioanode for biofuel cell (BFC) design. A GCE/MWCNTs modified with electrodeposited gold nanoparticles (AuNPs) as a platform for immobilization of bilirubin oxidase (BOD) and the prepared GCE/MWCNTs/AuNPs/BOD biocathode exhibits an onset potential of 0.56 V versus Ag/AgCl. The performance of the fabricated bioanode and biocathode in a membraneless enzyme based glucose/O2 biofuel cell is evaluated. The open circuit voltage of the cell and maximum current density are 520 mV and 0.233 mA cm-2, respectively, while maximum power density of 40 μWcm-2 achieves at voltage of 280 mV with stable output power after 24 h continues operation.
NASA Astrophysics Data System (ADS)
Markus, Josua; Wang, Dandan; Kim, Yeon-Ju; Ahn, Sungeun; Mathiyalagan, Ramya; Wang, Chao; Yang, Deok Chun
2017-01-01
A facile synthesis and biological applications of silver (DH-AgNps) and gold nanoparticles (DH-AuNps) mediated by the aqueous extract of Angelicae Pubescentis Radix (Du Huo) are explored. Du Huo is a medicinal root belonging to Angelica pubescens Maxim which possesses anti-inflammatory, analgesic, and antioxidant properties. The absorption spectra of nanoparticles in varying root extract and metal ion concentration, pH, reaction temperatures, and time were recorded by ultraviolet-visible (UV-Vis) spectroscopy. The presence of DH-AgNps and DH-AuNps was confirmed from the surface plasmon resonance intensified at 414 and 540 nm, respectively. Field emission transmission electron micrograph (FE-TEM) analysis revealed the formation of quasi-spherical DH-AgNps and spherical icosahedral DH-AuNps. These novel DH-AgNps and DH-AuNps maintained an average crystallite size of 12.48 and 7.44 nm, respectively. The biosynthesized DH-AgNps and DH-AuNps exhibited antioxidant activity against 2,2-diphenyl-1-picrylhydrzyl (DPPH) radicals and the former exhibited antimicrobial activity against clinical pathogens including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica. The expected presence of flavonoids, sesquiterpenes, and phenols on the nanoparticle surface were conjectured to grant protection against aggregation and free radical scavenging activity. DH-AgNps and DH-AuNps were further investigated for their cytotoxic properties in RAW264.7 macrophages for their potential application as drug carriers to sites of inflammation. In conclusion, this green synthesis is favorable for the advancement of plant mediated nano-carriers in drug delivery systems, cancer diagnostic, and medical imaging.
NASA Astrophysics Data System (ADS)
Dauthal, Preeti; Mukhopadhyay, Mausumi
2013-01-01
In-vitro free radical scavenging activity of biosynthesized gold (Au-NPs) and silver (Ag-NPs) nanoparticles was investigated in the present study. Natural precursor Prunus armeniaca (apricot) fruit extract was used as a reducing agent for the nanoparticle synthesis. The free radical scavenging activity of the nanoparticles were observed by modified 1,1'-diphynyl-2-picrylhydrazyl, DPPH and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), ABTS assay. The synthesized nanoparticles were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectroscopy, and fourier transform infrared spectroscopy (FTIR). Appearance of optical absorption peak at 537 nm (2.20 keV) and 435 nm (3 keV) within 0.08 and 0.5 h of reaction time was confirmed the presence of metallic Au and Ag nanoclusters, respectively. Nearly spherical nanoparticles with majority of particle below 20 nm (TEM) for both Au-NPs and Ag-NPs were synthesized. XRD pattern confirmed the existence of pure nanocrystalline Au-NPs while few additional peaks in the vicinity of fcc silver-speculated crystallization of metalloproteins of fruit extract on the surface of the Ag-NPs and vice versa. FTIR spectra was supported the role of amino acids of protein/enzymes of fruit extract for synthesis and stabilization of nanoparticles. Dose-dependent scavenging activity was observed for Au-NPs and Ag-NPs in both DPPH and ABTS in-vitro assay. 50 % scavenging activity for DPPH were 11.27 and 16.18 mg and for ABTS 3.40 and 7.12 mg with Au-NPs and Ag-NPs, respectively.
NASA Astrophysics Data System (ADS)
Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu
2009-06-01
Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag2-PATP and PATP-Au2) and the two junctions (Ag2-PATP-Au2 and Au2-PATP-Ag2) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 102. We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S1 electronic transition energy of complexes and junctions. Ag2-PATP-Au2 and Au2-PATP-Ag2 junctions yield higher Raman intensities than those of Ag2-PATP and PATP-Au2 complexes, especially for b2 modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.
Lallawmawma, H; Sathishkumar, Gnanasekar; Sarathbabu, Subburayan; Ghatak, Souvik; Sivaramakrishnan, Sivaperumal; Gurusubramanian, Guruswami; Kumar, Nachimuthu Senthil
2015-11-01
Silver and gold nanoparticles of Jasminum nervosum L. had unique optical properties such as broad absorbance band in the visible region of the electromagnetic spectrum. Characterization of the nanoparticles using UV spectrophotometer, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy confirmed that the particles were silver (AgNPs) and gold (AuNPs) ranging between 4-22 and 2-20 nm with an average particles size of 9.4 and 10 nm, respectively. AgNPs and AuNPs of J. nervosum had high larvicidal activity on the filarial and arboviral vector, Culex quinquefasciatus, than the leaf aqueous extract. Observed lethal concentrations (LC50 and LC95) against the third instar larvae were 57.40 and 144.36 μg/ml for AgNPs and 82.62 and 254.68 μg/ml for AuNPs after 24 h treatment, respectively. The lethal time to kill 50% of C. quinquefasciatus larvae were 2.24 and 4.51 h at 150 μg/ml of AgNPs and AuNPs, respectively, while in the case of aqueous leaf extract of J. nervosum it was 9.44 h at 500 μg/ml (F 2,14 = 397.51, P < 0.0001). The principal component analysis plot presented differential clustering of the aqueous leaf extract, AgNP and AuNPs in relation to lethal dose and lethal time. It is concluded from the present findings that the biosynthesised AgNPs and AuNPs using leaf aqueous extract of J. nervosum could be an environmentally safer nanobiopesticide, and provided potential larvicidal effect on C. quinquefasciatus larvae which could be used for prevention of several dreadful diseases.
Liu, Hui; Shen, Mingwu; Zhao, Jinglong; Guo, Rui; Cao, Xueyan; Zhang, Guixiang; Shi, Xiangyang
2012-06-01
In this study, amine-terminated generation 5 poly(amidoamine) dendrimers were used as templates or stabilizers to synthesize dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy nanoparticles (NPs) with different gold atom/silver atom/dendrimer molar ratios with the assistance of sodium borohydride reduction chemistry. Following a one-step acetylation reaction to transform the dendrimer terminal amines to acetyl groups, a series of dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs with terminal acetyl groups were formed. The formed Au-Ag alloy NPs before and after acetylation reaction were characterized using different techniques. We showed that the optical property and the size of the bimetallic NPs were greatly affected by the metal composition. At the constant total metal atom/dendrimer molar ratio, the size of the alloy NPs decreased with the gold content. The formed Au-Ag alloy NPs were stable at different pH (pH 5-8) and temperature (4-50°C) conditions. X-ray absorption coefficient measurements showed that the attenuation of the binary NPs was dependent on both the gold content and the surface modification. With the increase of gold content in the binary NPs, their X-ray attenuation intensity was significantly enhanced. At a given metal composition, the X-ray attenuation intensity of the binary NPs was enhanced after acetylation. Cytotoxicity assays showed that after acetylation, the cytocompatibility of Au-Ag alloy NPs was significantly improved. With the controllable particle size and optical property, metal composition-dependent X-ray attenuation characteristics, and improved cytocompatibility after acetylation, these dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs should have a promising potential for CT imaging and other biomedical applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Lee, Jiwon; Zhang, Qianpeng; Park, Seungyoung; Choe, Ayoung; Fan, Zhiyong; Ko, Hyunhyub
2016-01-13
Plasmonic systems based on particle-film plasmonic couplings have recently attracted great attention because of the significantly enhanced electric field at the particle-film gaps. Here, we introduce a hybrid plasmonic architecture utilizing combined plasmonic effects of particle-film gap plasmons and silver film over nanosphere (AgFON) substrates. When gold nanoparticles (AuNPs) are assembled on AgFON substrates with controllable particle-film gap distances, the AuNP-AgFON system supports multiple plasmonic couplings from interparticle, particle-film, and crevice gaps, resulting in a huge surface-enhanced Raman spectroscopy (SERS) effect. We show that the periodicity of AgFON substrates and the particle-film gaps greatly affects the surface plasmon resonances, and thus, the SERS effects due to the interplay between multiple plasmonic couplings. The optimally designed AuNP-AgFON substrate shows a SERS enhancement of 233 times compared to the bare AgFON substrate. The ultrasensitive SERS sensing capability is also demonstrated by detecting glutathione, a neurochemical molecule that is an important antioxidant, down to the 10 pM level.
Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Rossberg, D.; Hentschel, M.
2015-08-17
Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that (100) faceting planes of the equilibrated particles are enriched with Ni and (111) faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observedmore » phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.« less
Kim, Jinwoon; Oh, Seo Yeong; Shukla, Shruti; Hong, Seok Bok; Heo, Nam Su; Bajpai, Vivek K; Chun, Hyang Sook; Jo, Cheon-Ho; Choi, Bong Gill; Huh, Yun Suk; Han, Young-Kyu
2018-06-01
This study aimed to develop a more sensitive method for the detection of hepatitis B surface antigen (HBsAg) using heteroassembled gold nanoparticles (AuNPs). A single layered localized surface plasmon resonance (LSPR) chip format was developed with antigen-antibody reaction-based detection symmetry using AuNPs, which detected HBsAg at 10 pg/mL. To further improve the detection limit, a modified detection format was fabricated by fixing a secondary antibody (to form a heteroassembled sandwich format) to the AuNP monolayer, which enhanced the detection sensitivity by about 100 times. The developed heteroassembled AuNPs sandwich-immunoassay LSPR chip format was able to detect as little as 100 fg/mL of HBsAg within 10-15 min. In addition, the heteroassembled AuNPs sandwich-immunoassay LSPR chip format did not show any non-specific binding to other tested antigens, including alpha fetoprotein (AFP), C-reactive protein (CRP), and prostate-specific antigen (PSA). These findings confirm that the proposed detection strategy of heteroassembled AuNPs sandwich-immunoassay LSPR chip format may provide a new platform for early diagnosis of various human diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Synthesis of multimetallic nanoparticles by seeded methods
NASA Astrophysics Data System (ADS)
Weiner, Rebecca Gayle
This dissertation focuses on the synthesis of metal nanocrystals (NCs) by seeded methods, in which preformed seeds serve as platforms for growth. Metal NCs are of interest due to their tunable optical and catalytic properties, which arise from their composition and crystallite size and shape. Moreover, multimetallic NCs are potentially multifunctional due to the integration of the properties of each metal within one structure. However, such structures are difficult to synthesize with structural definition due to differences in precursor reduction rates and the size-dependent solubility of bimetallic phases. Seed-mediated co-reduction (SMCR) is a method developed in the Skrabalak Laboratory that couples the advantages of a seeded method with co-reduction methods to achieve multimetallic nanomaterials with defined shape and architecture. This approach was originally demonstrated in a model Au-Pd system in which Au and Pd precursors were simultaneously reduced to deposit metal onto shape-controlled Au or Pd NC seeds. Using SMCR, uniformly branched core shell Au Au-Pd and Pd Au-Pd NCs were synthesized, with the shape of the seeds directing the symmetry of the final structures. By varying the seed shape and the temperature at which metal deposition occurs, the roles of adatom diffusion and seed shape on final NC morphology were decoupled. Moreover, by selecting seeds of a composition (Ag) different than the depositing metals (Au and Pd), trimetallic nanostructures are possible, including shape-controlled Ag Au-Pd NCs and hollow Au-Pd-Ag nanoparticles (NPs). The latter architecture arises through galvanic replacement. Shape-controlled core shell NCs with trimetallic shells are also possible by co-reducing three metal precursors (Ag, Au, and Pd) with shape-controlled Au seeds; for example, convex octopods, concave cubes, and truncated octahedra were achieved in this initial demonstration and was enabled by varying the ratio of Ag to Au/Pd in the overgrowth step as well as reaction pH. Ultimately, the final multimetallic nanostructure depends on the kinetics of metal deposition as well as seed composition, shape, reactivity, and crystallinity. In elucidating the roles of these parameters in nanomaterial synthesis, the rational design of new functional NCs becomes possible, which capitalize on the unique optical and catalytic properties of structurally defined multimetallic structures. In fact, branched Au-Pd NCs with high symmetry were found to be effective refractive index-based hydrogen sensors.
Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang
2014-01-01
The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 109) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 107 and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones. PMID:24514430
Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang
2014-02-11
The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 10(9)) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 10(7) and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones.
Pham, Xuan-Hung; Hahm, Eunil; Kim, Tae Han; Kim, Hyung-Mo; Lee, Sang Hun; Lee, Yoon-Sik; Jeong, Dae Hong; Jun, Bong-Hyun
2017-06-23
In this study, we prepared adenosine triphosphate (ATP) encapsulated liposomes, and assessed their applicability for the surface enhanced Raman scattering (SERS)-based assays with gold-silver alloy (Au@Ag)-assembled silica nanoparticles (NPs; SiO₂@Au@Ag). The liposomes were prepared by the thin film hydration method from a mixture of l-α-phosphatidylcholine, cholesterol, and PE-PEG2000 in chloroform; evaporating the solvent, followed by hydration of the resulting thin film with ATP in phosphate-buffered saline (PBS). Upon lysis of the liposome, the SERS intensity of the SiO₂@Au@Ag NPs increased with the logarithm of number of ATP-encapsulated liposomes after lysis in the range of 8 × 10⁶ to 8 × 10 10 . The detection limit of liposome was calculated to be 1.3 × 10 -17 mol. The successful application of ATP-encapsulated liposomes to SiO₂@Au@Ag NPs based SERS analysis has opened a new avenue for Raman label chemical (RCL)-encapsulated liposome-enhanced SERS-based immunoassays.
Effect of (Ag, Sn) Doping on the Structure and Optical Properties of Au Nanocluster
NASA Astrophysics Data System (ADS)
Balu, Radhakrishnan; Karna, Shashi
2014-03-01
Noble metal nanoclusters (NCs) consisting of a few to 35 atoms in size in the sub 2 nm range dimension are considered to be nontoxic as opposed to nanoparticles that are cytotoxic. Also, due to the quantum confinement of electrons, these NCs exhibit atom-like energy spectrum and display fluorescent properties useful in a wide range of applications, including medical diagnosis. The unique features of NCs such as size-tunable optical properties, intense fluorescence in the visible, and biocompatibility have stimulated an active area of investigation of noble metal NCs comprised of Au, Ag, Cu, and Pt. Furthermore, the electronic properties of nanoclusters can be modified by combining them with other elements. In this study, we consider the space-filled configuration of Au32 NC and investigate the effects of Ag and Sn atom incorporation on geometry and electronic spectrum. Our study suggests that Ag and Sn doping of Au32 NC red-shifts the absorption maximum and also reduces the oscillator strength.
Amin, Alaa S
2010-12-01
A highly sensitive, selective and rapid method for the determination μg L(-1) level of Au(III) based on the rapid reaction of Au(III) with 2,3-dichloro-6-(3-carboxy-2-hydroxy-1-naphthylazo)quinoxaline (DCHNAQ) and the solid phase extraction of the colored complex with a reversed phase polymer-based C18 cartridge have been developed. The DCHNAQ reacted with Au(III) to form a violet complex of a molar ratio 3:1 [DCHNAQ to Au(III)] in the presence of 5.0 M of phosphoric acid solution and Triton X-100 medium. This complex was enriched by the solid phase extraction with a polymer-based C18 cartridge. The enrichment factor of 100 was achieved. The molar absorptivity of the complex is 2.73×10(5) l mol(-1) cm(-1) at 633 nm in the measured solution. The system obeys Beer's law in the range of 0.02-1.30 μg ml(-1), whereas the optimum concentration ranges obtained from Ringbom plot was 0.08-1.24 μg ml(-1). The relative standard deviation for ten replicates sample of 0.6 μg ml(-1) level is 1.28%. The detection and quantification limits, are 6.1 and 19.5 ng ml(-1) in the original sample. This method was applied to the determination of gold in water, jewel and ore samples with good results comparing to the GFAAS method. Copyright © 2010 Elsevier B.V. All rights reserved.
Cheng, Fangrui; Xia, Zhiguo; Molokeev, Maxim S; Jing, Xiping
2015-11-07
Double molybdate scheelite-type solid-solution phosphors Li1-xAgxLu1-y(MoO4)2:yEu(3+) were synthesized by the solid state reaction method, and their crystal structures and luminescence properties were investigated in detail. The composition modulation and structural evolution of this series of samples were studied and the selected AgEu(MoO4)2, AgLu(MoO4)2, LiLu(MoO4)2 and LiEu(MoO4)2 phases were analyzed based on the Rietveld refinement. Depending on the variation of the Li/Ag ratio in Li1-xAgxLu1-y(MoO4)2:yEu(3+) phosphors, the difference in the luminescence properties of Li1-xAgxLu1-y(MoO4)2:yEu(3+) phosphors was ascribed to two factors, one reason could be assigned to the coupling effect and the nonradiative transition between the energy levels of LixAg1-xLu(MoO4)2 matrices and the activator Eu(3+), another could be due to the near ultraviolet energy absorption and transmission efficiency between the charge-transfer (CT) band of O(2-)-Mo(6+) and the 4f → 4f emissive transitions of Eu(3+). The ultraviolet-visible diffuse reflection spectra (UV-vis DRS) and Raman spectra analysis were also used to verify the above mechanism.
NASA Astrophysics Data System (ADS)
Li, Aike; Tang, Lijuan; Song, Dan; Song, Shanshan; Ma, Wei; Xu, Liguang; Kuang, Hua; Wu, Xiaoling; Liu, Liqiang; Chen, Xin; Xu, Chuanlai
2016-01-01
A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL-1 with the limit of detection (LOD) of 0.48 pg mL-1. The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection.A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL-1 with the limit of detection (LOD) of 0.48 pg mL-1. The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08372a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeno, Keith
2016-10-21
During Run 16 the Tandem was used as the Gold pre-injector for a brief time so that RHIC could continue running while EBIS was down for repairs. Given the time constraints, the setup was largely derived from the EBIS Au setup. The EBIS Au setup used a 4:2:1 bunch merge in the Booster and a 12:6:2 bunch merge in the AGS.1 This note will describe the Tandem Au setup and compare it to that used for EBIS Au. The bunch merge in the Booster for Tandem Au did not work well, and it seems likely that the performance would’ve beenmore » significantly better if it did. An AGS type 6:3:1 merge in the Booster is described which might improve matters.2 Somewhat speculative estimates for the AGS bunch intensity and emittance, if that merge were successful in reducing the Booster extraction emittance to EBIS Au levels, are also given for several potential setups. Using 6 Booster loads from the Tandem, the AGS bunch intensity at extraction reached about 2.5e9 ions with a longitudinal emittance (ε) of about 0.59 eV·s/n.3 Using 12 Booster loads from EBIS, the peak bunch intensity and ε was about 3.1e9 ions and 0.75 eV·s/n, respectively. A 6.4 sec supercycle was used for both at the time, but the Tandem Au supercycle (barring any potential issues with Tandem) could probably have been reduced to about 4.6 sec.« less
NASA Astrophysics Data System (ADS)
Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago
2015-08-01
Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made. Electronic supplementary information (ESI) available: The SERS spectra of ThT on A-E samples are provided at two different excitations: 532 and 785 nm (Fig. S1). See DOI: 10.1039/c5nr02819a
Carbon dot-Au(i)Ag(0) assembly for the construction of an artificial light harvesting system.
Jana, Jayasmita; Aditya, Teresa; Pal, Tarasankar
2018-03-06
Artificial light harvesting systems (LHS) with inorganic counterparts are considered to be robust as well as mechanistically simple, where the system follows the donor-acceptor principle with an unchanged structural pattern. Plasmonic gold or silver nanoparticles are mostly chosen as inorganic counterparts to design artificial LHS. To capitalize on its electron accepting capability, Au(i) has been considered in this work for the synergistic stabilization of a system with intriguingly fluorescing silver(0) clusters produced in situ. Thus a stable fluorescent Au(i)Ag(0) assembly is generated with electron accepting capabilities. On the other hand, carbon dots have evolved as new fluorescent probes due to their unique physicochemical properties. Utilizing the simple electronic behavior of carbon dots, an electronic interaction between the fluorescent Au(i)Ag(0) and a carbon dot has been investigated for the construction of a new artificial light harvesting system. This coinage metal assembly allows surface energy transfer where it acts as an acceptor, while the carbon dot behaves as a good donor. The energy transfer efficiency has been calculated experimentally to be significant (81.3%) and the Au(i)Ag(0)-carbon dot assembly paves the way for efficient artificial LHS.
Hajian, Reza; Yusof, Nor Azah; Faragi, Tayebe; Shams, Nafiseh
2014-01-01
In this paper, the electrochemical behavior of myricetin on a gold nanoparticle/ethylenediamine/multi-walled carbon-nanotube modified glassy carbon electrode (AuNPs/en/MWCNTs/GCE) has been investigated. Myricetin effectively accumulated on the AuNPs/en/MWCNTs/GCE and caused a pair of irreversible redox peaks at around 0.408 V and 0.191 V (vs. Ag/AgCl) in 0.1 mol L−1 phosphate buffer solution (pH 3.5) for oxidation and reduction reactions respectively. The heights of the redox peaks were significantly higher on AuNPs/en/MWNTs/GCE compare with MWCNTs/GC and there was no peak on bare GC. The electron-transfer reaction for myricetin on the surface of electrochemical sensor was controlled by adsorption. Some parameters including pH, accumulation potential, accumulation time and scan rate have been optimized. Under the optimum conditions, anodic peak current was proportional to myricetin concentration in the dynamic range of 5.0×10−8 to 4.0×10−5 mol L−1 with the detection limit of 1.2×10−8 mol L−1. The proposed method was successfully used for the determination of myricetin content in tea and fruit juices. PMID:24809346
Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen
2015-08-12
Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.
NASA Astrophysics Data System (ADS)
Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.
2006-09-01
Near thermal energy reactive collisions of small mixed metal cluster cations AgmAun+ (m +n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu3+ and Ag2Au2+ are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu2CO+. In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77to1.09eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag2Au2+ suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.
Navalon, Sergio; Martin, Roberto; Alvaro, Mercedes; Garcia, Hermenegildo
2011-05-23
Gold nanoparticles supported on Fenton-treated diamond nanoparticles (Au/DNPs) have been reported as one of the most efficient solid catalysts effecting the Fenton reaction, achieving a turnover number (TON) as high as 321,000. However, at room temperature the main limitation for the catalytic activity of Au/DNPs is the pH of the solution, which should be less than 5. In this paper, we report that exposure of Au/DNPs to sunlight enhances the catalytic activity of Au/DNPs up to the point that it can promote the Fenton reaction at room temperature even at slightly basic pH values. Also, in addition to performing a deep Fenton treatment and considering that the excess of H(2)O(2) used in the process should be minimized, we have achieved in our study, using a mild Fenton reaction promoted by Au/DNPs under sunlight irradiation, an optimum in the biodegradability, a minimum in the ecotoxicity, and no toxicity for the Vibrio fischeri test. The results have shown that, by using an H(2)O(2) -to-phenol molar ratio of 5.5 or higher, it is possible to achieve a high biodegradability as well as a complete lack of ecotoxicity and of Vibrio fischeri toxicity. The stability of Au/DNPs was confirmed by analyzing the gold leached to the solution and by performing four consecutive reuses of the catalyst with initial pH values ranging from 4 to 8. It was observed that, after finishing the reaction and exhaustive washings with basic aqueous solutions, the initial reaction rate of the used catalyst is recovered to the value exhibited by the fresh solid. Overall, our study shows that the synergism between catalysis and photocatalysis can overcome the limitations found for dark catalytic reactions and that the reaction parameters can be optimized to effect mild Fenton reactions aimed at increasing biodegradability in biorecalcitrant waste waters. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diffusion and the Thermal Stability of Amorphous Copper-Zirconium
NASA Astrophysics Data System (ADS)
Stelter, Eric Carl
Measurements have been made of diffusion and thermal relaxation in amorphous Cu(,50)Zr(,50). Samples were prepared by melt-spinning under vacuum. Diffusion measurements were made over the temperature range from 317 to 385 C, using Ag and Au as substitutional impurities, by means of Auger electron spectrometry (AES) and Rutherford backscattering spectrometry (RBS). Thermal measurements were made by differential scanning calorimetry (DSC) up to 550 C. The diffusion coefficients of Ag and Au in amorphous Cu(,50)Zr(,50) are found to be somewhat higher than, but very close in magnitude to the coefficient of self-diffusion in crystalline Cu at the same temperatures. The activation energies for diffusion in the amorphous alloy are 0.72 to 1.55 eV/atom, much closer to the activation energy for self-diffusion in liquid Cu, 0.42 eV/atom, than that for the crystalline solid, 2.19 eV/atom. The mechanism for diffusion in the amorphous metal is presumably quite different from the monovacancy mechanism dominant in the crystalline solid. The pre-exponential terms are found to be extremely small, on the order of 10('-10) to 10('-11) cm('2)/sec for Ag diffusion. This indicates that diffusion in amorphous Cu(,50)Zr(,50) may involve an extended defect of 10 or more atoms. Analysis of the data in terms of the free -volume model also lends strength to this conclusion and indicates that the glass is composed of liquid-like clusters of 15 to 20 atoms. The initial stage of relaxation in amorphous CuZr occurs with a spectrum of activation energies. The lowest activation energy involved, 0.78 eV/atom, is almost identical to the average activation energy of Ag diffusion in the glass, 0.77 eV/atom, indicating that relaxation occurs primarily through diffusion. The activation energy of crystallization, determined by Kissinger's method, is 3.10 eV/atom. The large difference, on the order of 2.3 eV/atom, between the activation energies of crystallization and diffusion is attributed to the energy required to nucleate the crystalline phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barroo, Cedric; Janvelyan, Nare; Zugic, Branko
To improve the understanding of catalytic processes, the surface structure and composition of the active materials need to be determined before and after reaction. Morphological changes may occur under reaction conditions and can dramatically influence the reactivity and/or selectivity of a catalyst. Goldbased catalysts with different architectures are currently being developed for selective oxidation reactions at low temperatures. Specifically, nanoporous Au (npAu) with a composition of Au 97-Ag 3 is obtained by dealloying a Ag 70-Au 30 bulk alloy. Recent studies highlight the efficiency of npAu catalysts for methanol oxidation using ozone to activate the catalysts before methanol oxidation. Inmore » this paper, we studied the morphological and compositional changes occurring at the surface of Au-based catalysts in certain conditions.« less
Goto, Y; Nishida, A; Nishiate, H; Murata, M; Lee, C H; Miura, A; Moriyoshi, C; Kuroiwa, Y; Mizuguchi, Y
2018-02-20
Silver bismuth diselenide (AgBiSe 2 ) has attracted much attention as an efficient thermoelectric material, owing to its intrinsically low lattice thermal conductivity. While samples synthesized using a solid-state reaction showed n-type conductivity and their dimensionless figure of merit (ZT) reached ∼1 by electron doping, theoretical calculations predicted that a remarkably high thermoelectric performance can be achieved in p-type AgBiSe 2 . In this paper, we present the effect of Te substitution on the crystal structure and thermoelectric properties of AgBiSe 2 , expecting p-type conductivity due to the shallowing of the energy potential of the valence band. We found that all AgBiSe 2-x Te x (x = 0-0.8) prepared using a solid-state reaction exhibits n-type conductivity from 300 to 750 K. The room-temperature lattice thermal conductivity decreased to as low as 0.3 W m -1 K -1 by Te substitution, which was qualitatively described using the point defect scattering model for the solid solution. We show that ZT reaches ∼0.6 for x = 0.8 at a broad range of temperatures, from 550 to 750 K, due to the increased power factor, although the carrier concentration has not been optimized yet.
Bimetallic clustered thin films with variable electro-optical properties
NASA Astrophysics Data System (ADS)
Antipov, A.; Bukharov, D.; Arakelyan, S.; Osipov, A.; Lelekova, A.
2018-01-01
The drop deposition of colloidal nanoparticles was performed from water-based colloidal solutions. The proposed procedure is based on the agglomeration of colloidal particles in laser-assisted evaporation processes. The evaporation process was resulted in the formation of clustered thin films on a glass substrate. In the experiments with bimetallic Au:Ag solutions, the clustered films are grown, the formation of the clustered films with the average height of 100 nm was achieved. Optical properties of the deposited structures were investigated experimentally. It is shown that the obtained films may become transparent and its properties are defined by its morphology.
Nanoporous Au: An experimental study on the porosity of dealloyed AuAg leafs
NASA Astrophysics Data System (ADS)
Grillo, R.; Torrisi, V.; Ruffino, F.
2016-12-01
We present a study on the fraction of porosity for dealloyed nanoporous Au leafs. Nanoporous Au is attracting great scientific interest due to its peculiar plasmonic properties and the high exposed surface (∼10 m2/g). As examples, it was used in prototypes of chemical and biological devices. However, the maximization of the devices sensitivity is subjected to the maximization of the exposed surface by the nanoporous Au, i. e. maximization of the porosity fraction. So, we report on the analyses of the porosity fraction in nanoporous Au leafs as a function of the fabrication process parameters. We dealloyed 60 μm-thick Au23Ag77 at.% leafs and we show that: a) for dealloying time till to 6 h, only a 450 nm-thick surface layer of the leafs assumes a nanoporous structure with a porosity fraction of 32%. For a dealloying time of 20 h the leafs result fragmented in small black pieces with a porosity fraction increased to 60%. b) After 600 °C-30 minutes annealing of the previous samples, the nanopores disappear due to the Au/residual Ag inter-diffusion. c) After a second dealloying process on the previously annealed samples, the surface nanoporous structure is, again, obtained with the porosity fraction increased to 50%.
NASA Astrophysics Data System (ADS)
Ji, Hongjun; Ma, Yuyou; Li, Mingyu; Wang, Chunqing
2015-02-01
The silver content of lead-free solders affects their microstructure, the interfacial reaction, and the performance of the joints in reliability tests. In this study, Sn3.0Ag0.5Cu (wt.%, SAC305) and Sn1.0Ag0.5Cu (wt.%, SAC105) solder balls of diameter 55 μm were reflowed on gold surface pads by laser-jet soldering. It was found that four types of layered intermetallic compound (IMC) were formed at the interfaces; these were Au5Sn/AuSn, AuSn, AuSn2, and AuSn4 from the pad side to the solder matrix. The Au5Sn/AuSn eutectic region, thickness 400 nm, formed because of the high cooling rate induced by the laser-jet soldering. During high-temperature storage tests, the silver became segregated at the interfaces between the Au-Sn IMC and the solder matrix, resulting in inhibition of IMC growth in SAC305 joints, the shear strengths of which were higher than those of SAC105 joints. In mechanical drop tests, however, percentage failure of the SAC305 joints was twice that of the SAC105 joints.
Single plasmonic nanoparticles for ultrasensitive DNA sensing: From invisible to visible.
Guo, Longhua; Chen, Lichan; Hong, Seungpyo; Kim, Dong-Hwan
2016-05-15
The background signal is a major factor that restricts the limit of detection of biosensors. Herein, we present a zero-background DNA-sensing approach that utilizes enzyme-guided gold nanoparticle (AuNP) enlargement. This sensing strategy is based on the finding that small nanoparticles are invisible under a darkfield optical microscope, thus completely eliminating the background signal. In the event of target binding, Ag deposition is triggered and enlarges the AuNP beyond its optical diffraction limit, thereby making the invisible AuNP visible. Because the plasmon scattering of Ag is stronger than that of Au, only a thin layer of Ag is required to greatly enhance the scattering intensity of the AuNPs. Our investigation revealed that a target DNA concentration as low as 5.0×10(-21)M can transform the darkfield image of the nanoparticle from completely dark (invisible) to a blue dot (visible). Copyright © 2015 Elsevier B.V. All rights reserved.
Huh, Yun Suk; Erickson, David
2009-01-01
Here we present an optofluidic surface enhanced Raman spectroscopy (SERS) device for on-chip detection of vasopressin using an aptamer based binding assay. To create the SERS-active substrate, densely packed, 200 nm diameter, metal nanotube arrays were fabricated using an anodized alumina nanoporous membrane as a template for shadow evaporation. We explore the use of both single layer Au structures and multilayer Au/Ag/Au structures and also demonstrate a facile technique for integrating the membranes with all polydimethylsiloxane (PDMS) microfluidic devices. Using the integrated device, we demonstrate a linear response in the main detection peak intensity to solution phase concentration and a limit of detection on the order of 5.2 μU/mL. This low limit of detection is obtained with device containing the multilayer SERS substrate which we show exhibits a stronger Raman enhancement while maintaining biocompatibility and ease or surface reactivity with the capture probe. PMID:19857952
Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis
2017-01-01
We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl− selective electrodes, one Ag2S/Ag-based reference or S2− selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors. PMID:28608820
Bimetallic d10 -Metal Complexes of a Bipyridine Substituted N-Heterocyclic Carbene.
Kaub, Christoph; Lebedkin, Sergei; Li, Alina; Kruppa, Sebastian V; Strebert, Patrick H; Kappes, Manfred M; Riehn, Christoph; Roesky, Peter W
2018-04-20
The hybrid ligand 3-(2,2'-bipyridine-6-ylmethyl)-1-mesityl-1H-imidazolylidene (NHC Bipy ) featuring both carbene and N-donor sites, was selectively complexed with various d 10 metal cations in order to examine its coordination behavior with regard to homo and heterometallic structures. Respective silver complexes can be obtained by the silver oxide route and are suitable transmetallation reagents for the synthesis of gold(I) compounds. Starting from the mononuclear complexes [(NHC Bipy )AuCl], [(NHC Bipy )Au(C 6 F 5 )] and [(NHC Bipy ) 2 Au][ClO 4 ], open-chain as well as cyclic heterobimetallic complexes containing Cu + , Ag + , Zn 2+ , Cd 2+ , and Hg 2+ were synthesized. Furthermore, the homobimetallic species [(NHC Bipy ) 2 M 2 ][ClO 4 ] 2 (M=Cu, Ag) were obtained. All bimetallic compounds were fully characterized including single-crystal X-ray analysis. Their photoluminescence (PL) properties were investigated in the solid state at temperatures between 15 and 295 K and compared with those of the mononuclear species. There is a clear difference in PL properties between the open chain and the cyclic heterobimetallic complexes. The latter species show different PL properties, depending on the metals involved. In addition, collision-induced dissociation (CID) experiments were performed on electrosprayed cations of the cyclic heterobimetallic compounds, to compare the metal binding at the carbene and N-donor sites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Han, Yong; Liu, Da-Jiang; Evans, James W
2014-08-13
Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yong; Liu, Da-Jiang; Evans, James W
2014-08-13
Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).
Rao, K Jagajjanani; Paria, Santanu
2015-07-01
The growing awareness toward the environment is increasing commercial demand for nanoparticles by green route syntheses. In this study, alloy-like Ag-Au-Pd trimetallic nanoparticles have been prepared by two plants extracts Aegle marmelos leaf (LE) and Syzygium aromaticum bud extracts (CE). Compositionally different Ag-Au-Pd nanoparticles with an atomic ratio of 5.26:2.16:1.0 (by LE) and 11.36:13.14:1.0 (by LE + CE) of Ag:Au:Pd were easily synthesized within 10 min at ambient conditions by changing the composition of phytochemicals. The average diameters of the nanoparticles by LE and LE + CE are ∼8 and ∼11 nm. The catalytic activity of the trimetallic nanoparticles was studied, and they were found to be efficient catalysts for the glucose oxidation process. The prepared nanoparticles also exhibited efficient antibacterial activity against a model Gram-negative bacteria Escherichia coli. The catalytic and antimicrobial properties of these readymade trimetallic nanoparticles have high possibility to be utilized in diverse fields of applications such as health care to environmental.
Structural and electronic properties of graphene nanoflakes on Au(111) and Ag(111)
Tesch, Julia; Leicht, Philipp; Blumenschein, Felix; Gragnaniello, Luca; Fonin, Mikhail; Marsoner Steinkasserer, Lukas Eugen; Paulus, Beate; Voloshina, Elena; Dedkov, Yuriy
2016-01-01
We investigate the electronic properties of graphene nanoflakes on Ag(111) and Au(111) surfaces by means of scanning tunneling microscopy and spectroscopy as well as density functional theory calculations. Quasiparticle interference mapping allows for the clear distinction of substrate-derived contributions in scattering and those originating from graphene nanoflakes. Our analysis shows that the parabolic dispersion of Au(111) and Ag(111) surface states remains unchanged with the band minimum shifted to higher energies for the regions of the metal surface covered by graphene, reflecting a rather weak interaction between graphene and the metal surface. The analysis of graphene-related scattering on single nanoflakes yields a linear dispersion relation E(k), with a slight p-doping for graphene/Au(111) and a larger n-doping for graphene/Ag(111). The obtained experimental data (doping level, band dispersions around EF, and Fermi velocity) are very well reproduced within DFT-D2/D3 approaches, which provide a detailed insight into the site-specific interaction between graphene and the underlying substrate. PMID:27002297
A real-time comparison of mercury accumulation on noble metal thin films using gravimetric device
NASA Astrophysics Data System (ADS)
Kabir, K. M. Mohibul; Kandjani, Ahmad Esmaielzadeh; Harrison, Christopher J.; Ippolito, Samuel J.; Sabri, Ylias M.; Bhargava, Suresh K.
2016-12-01
We simultaneously compared and analyzed the mercury sorption and sensing performance of gold, silver, palladium and platinum using quartz crystal microbalance (QCM). Overall, the Au- and Ag-QCM showed superior Hg sensing performance over the Pd- and Pt-counterparts when tested toward a range of concentrations (24-365 ppbv) at various operating temperatures (35-105 °C). However, it was also found that the Hg sensing performance of each metal varied significantly with the operating temperature and is dependent on the concentration tested. For instance, the Ag-QCM exhibited 57% higher response magnitude than the Au-QCM when exposed toward 24 ppbv of Hg0 vapor at 35 °C; however, the opposite trend was observed when the same concentration of Hg0 vapor was tested at 105 °C, with Au-QCM showing 104% higher response magnitudes compared to the Ag-QCM. Moreover, the Ag-QCM showed higher response magnitudes than the Au-QCM for exposure toward 365 ppbv of Hg0 vapor regardless of the operating temperature.
Imai, Hideyuki; Koizumi, Hiroyasu; Shimoe, Saiji; Hirata, Isao; Matsumura, Hideo; Nikawa, Hiroki
2014-01-01
The current study evaluated the effect of primers on the shear bond strength of an indirect composite material joined to a silverpalladium-copper-gold (Ag-Pd-Cu-Au) alloy (Castwell). Disk specimens were cast from the alloy and were air-abraded with alumina. Eight metal primers were applied to the alloy surface. A light-polymerized indirect composite material (Solidex) was bonded to the alloy. Shear bond strength was determined both before and after the application of thermocycling. Two groups primed with Metaltite (thione) and M. L. Primer (sulfide) showed the greatest post-thermocycling bond strength (8.8 and 6.5 MPa). The results of the X-ray photoelectron spectroscopic (XPS) analysis suggested that the thione monomer (MTU-6) in the Metaltite primer was strongly adsorbed onto the Ag-Pd-Cu-Au alloy surface even after repeated cleaning with acetone. The application of either the thione (MTU-6) or sulfide primer is effective for enhancing the bonding between a composite material and Ag-Pd-Cu-Au alloy.
Patil, Maheshkumar Prakash; Kim, Gun-Do
2017-01-01
This review covers general information about the eco-friendly process for the synthesis of silver nanoparticles (AgNP) and gold nanoparticles (AuNP) and focuses on mechanism of the antibacterial activity of AgNPs and the anticancer activity of AuNPs. Biomolecules in the plant extract are involved in reduction of metal ions to nanoparticle in a one-step and eco-friendly synthesis process. Natural plant extracts contain wide range of metabolites including carbohydrates, alkaloids, terpenoids, phenolic compounds, and enzymes. A variety of plant species and plant parts have been successfully extracted and utilized for AgNP and AuNP syntheses. Green-synthesized nanoparticles eliminate the need for a stabilizing and capping agent and show shape and size-dependent biological activities. Here, we describe some of the plant extracts involved in nanoparticle synthesis, characterization methods, and biological applications. Nanoparticles are important in the field of pharmaceuticals for their strong antibacterial and anticancer activity. Considering the importance and uniqueness of this concept, the synthesis, characterization, and application of AgNPs and AuNPs are discussed in this review.
NASA Technical Reports Server (NTRS)
Sako, H.; Ahle, L.; Akiba, Y.; Ashktorab, K.; Baker, M. D.; Beavis, D.; Britt, H. C.; Chang, J.; Chasman, C.; Chen, Z.;
1997-01-01
Antiproton production in heavy ion collisions reflects subtle interplay between initial production and absorption by nucleons. Because the AGS energies (10--20 A(center-dot)GeV/c) are close to the antiproton production threshold, antiproton may be sensitive to cooperative processes such as QGP and hadronic multi-step processes. On the other hand, antiproton has been proposed as a probe of baryon density due to large N(anti N) annihilation cross sections. Cascade models predict the maximum baryon density reaches about 10 times the normal nucleus density in central Au+Au collisions, where the strong antiproton absorption is expected. In this paper, the authors show systematic studies of antiproton production from p+A to Au+Au collisions.
Structural modification in the formation of starch - silver nanocomposites
NASA Astrophysics Data System (ADS)
Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal
2016-05-01
Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.
NASA Astrophysics Data System (ADS)
Zhao, Man; Dai, Xiaodong; Shen, Yixiong; Liu, Baixin
2008-07-01
For the equilibrium immiscible Ag-Ta system characterized by a positive heat of formation of +23 kJ/mol, a proved realistic extended Finnis-Sinclair potential is applied to study the crystal-to-amorphous transition through molecular dynamics simulations and a glass-forming range (GFR) of the Ag-Ta system is determined to be from 10 to 80 at. % of Ta, within which a disordered state is energetically favored than its crystalline counterpart of solid solution. In experiment, the uniform amorphous phases are indeed obtained, by ion beam mixing of far-from-equilibrium, in the Ag38Ta62, Ag30Ta70 and Ag20Ta80 Ag-Ta multilayered films, which fall within the GFR and thus confirm the relevance of the calculated GFR of the system.
Zhang, Li; Li, Zhenhua; Hu, Zheng; Chang, Xijun
2011-09-01
The first study on the high efficiency of triocarbohydrazide modified attapulgite as solid-phase extractant for preconcentration of trace Au(III) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES) has been reported. Experimental conditions for effective adsorption of trace levels of Au(III) were optimized with respect to different experimental parameters using batch and column procedures in detail. At pH 3, Au(III) could be quantitatively adsorbed on the new sorbent, and the adsorbed Au(III) could be completely eluted from the sorbent surface by 2.0mL 1.0molL(-1) of HCl+2% CS(NH(2))(2) solution. An enrichment factor of 150 was accomplished. Moreover, common interfering ions did not interfere in both separation and determination. The maximum adsorption capacity of the sorbent for Au(III) was found to be 66.7mgg(-1). The detection limit (3σ) of this method was 0.32μgL(-1) and the relative standard deviation (RSD) was 3.3% (n=8). The method, with high selectivity, sensitivity and reproducibility, was validated using certified reference materials, and had been applied for the determination of trace Au(III) with satisfactory results. Copyright © 2011 Elsevier B.V. All rights reserved.
Shervani, Zameer; Yamamoto, Yasushi
2011-04-01
A monosaccharide (β-D-glucose) and polysaccharide (soluble starch) were used as structure directing and subsequently stabilizing agents for the synthesis of spherical nanoparticles (NPs) and nanowires of silver and gold. Homogeneous monodispersed Ag(0) nanoparticles (Ag NPs) of 15 nm diameter were obtained when 10(-4)M AgNO(3) precursor salt was reduced in starch (1 wt%)-water gel by 1 wt% β-D-glucose. For a second preparation the effect of reducing agents on the synthesis of Au(0) metallic nanoparticles (Au NPs) of 2 × 10(-4)M concentration prepared in a β-D-glucose (0.03 M)-water dispersion was studied first in detail. Different equivalent amounts of NaBH(4) and a number of pH values were evaluated for the reduction of the Au salt HAuCl(4)·3H(2)O to obtain Au NPs. The type and the amount of reducing agent, as well as the pH of the solution was shown to affect the size and morphology of the NPs. NaBH(4) (4 equiv) produced the smallest (5.3 nm (σ 0.7)) metallic particles compared to larger particles (10.0 nm (σ 1.4)) when the salt was reduced by 1 equiv of NaBH(4). Addition of excess NaBH(4) caused the NPs to settle out as a precipitate forming a mesh or wire structure rather than monodispersed particles. Low pH (pH 6) resulted in incomplete reduction, while at pH 8 the salt was completely reduced. When the salt was reduced by NaOH at pH 8, the particles were larger (14.2 nm) and less homogeneous (σ 2.8) compared to those from NaBH(4) reduction. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yung-Chen Andrew; Engelhard, Mark H.; Baer, Donald R.
2016-03-07
Abstract or short description: Spectral modeling of photoelectrons can serve as a valuable tool when combined with X-ray photoelectron spectroscopy (XPS) analysis. Herein, a new version of the NIST Simulation of Electron Spectra for Surface Analysis (SESSA 2.0) software, capable of directly simulating spherical multilayer NPs, was applied to model citrate stabilized Au/Ag-core/shell nanoparticles (NPs). The NPs were characterized using XPS and scanning transmission electron microscopy (STEM) to determine the composition and morphology of the NPs. The Au/Ag-core/shell NPs were observed to be polydispersed in size, non-circular, and contain off-centered Au-cores. Using the average NP dimensions determined from STEM analysis,more » SESSA spectral modeling indicated that washed Au/Ag-core shell NPs were stabilized with a 0.8 nm l« less
Huang, Jian-Lin
2013-01-01
Summary We decorated HS-functionalized cellulose nanocrystallite (CNC) films with monodisperse Au nanoparticles (AuNPs) to form a novel nanocomposite catalyst AuNPs@HS-CNC. The uniform, fine AuNPs were made by the reduction of HAuCl4 solution with thiol (HS-) group-functionalized CNC films. The AuNPs@HS-CNC nanocomposites were examined by X-ray photoelectron spectroscopy (XPS), TEM, ATR-IR and solid-state NMR. Characterizations suggested that the size of the AuNPs was about 2–3 nm and they were evenly distributed onto the surface of CNC films. Furthermore, the unique nanocomposite Au@HS-CNC catalyst displayed high catalytic efficiency in promoting three-component coupling of an aldehyde, an alkyne, and an amine (A3-coupling) either in water or without solvent. Most importantly, the catalyst could be used repetitively more than 11 times without significant deactivation. Our strategy also promotes the use of naturally renewable cellulose to prepare reusable nanocomposite catalysts for organic synthesis. PMID:23946833
NASA Astrophysics Data System (ADS)
Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan
2017-02-01
Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.
Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan
2017-01-01
Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors. PMID:28155913
Santhosh, Mallesh; Chinnadayyala, Somasekhar R; Singh, Naveen K; Goswami, Pranab
2016-10-01
Human serum albumin (HSA)-stabilized Au18 nanoclusters (AuNCs) were synthesized and chemically immobilized on an Indium tin oxide (ITO) plate. The assembly process was characterized by advanced electrochemical and spectroscopic techniques. The bare ITO electrode generated three irreversible oxidation peaks, whereas the HSA-AuNC-modified electrode produced a pair of redox peaks for bilirubin at a formal potential of 0.27V (vs. Ag/AgCl). However, the native HSA protein immobilized on the ITO electrode failed to produce any redox peak for bilirubin. The results indicate that the AuNCs present in HSA act as electron transfer bridge between bilirubin and the ITO plate. Docking studies of AuNC with HSA revealed that the best docked structure of the nanocluster is located around the vicinity of the bilirubin binding site, with an orientation that allows specific oxidation. When the HSA-AuNC-modified electrode was employed for the detection of bilirubin using chronoamperometry at 0.3V (vs. Ag/AgCl), a steady-state current response against bilirubin in the range of 0.2μM to 7μM, with a sensitivity of 0.34μAμM(-1) and limit of detection of 86.32nM at S/N 3, was obtained. The bioelectrode was successfully applied to measure the bilirubin content in spiked serum samples. The results indicate the feasibility of using HSA-AuNC as a biorecognition element for the detection of serum bilirubin levels using an electrochemical technique. Copyright © 2016 Elsevier B.V. All rights reserved.
Krystek, Petra; Bäuerlein, Patrick S; Kooij, Pascal J F
2015-03-15
For pharmaceutical applications, the use of inorganic engineered nanoparticles is of growing interest while silver (Ag) and gold (Au) are the most relevant elements. A few methods were developed recently but the validation and the application testing were quite limited. Therefore, a routinely suitable multi element method for the identification of nanoparticles of different sizes below 100 nm and elemental composition by applying asymmetric flow field flow fraction (AF4) - inductively coupled plasma mass spectrometry (ICPMS) is developed. A complete validation model of the quantification of releasable pharmaceutical relevant inorganic nanoparticles based on Ag and Au is presented for the most relevant aqueous matrices of tap water and domestic waste water. The samples are originated from locations in the Netherlands and it is of great interest to study the unwanted presence of Ag and Au as nanoparticle residues due to possible health and environmental risks. During method development, instability effects are observed for 60 nm and 70 nm Ag ENPs with different capping agents. These effects are studied more closely in relation to matrix effects. Besides the methodological aspects, the obtained analytical results and relevant performance characteristics (e.g. measuring range, limit of detection, repeatability, reproducibility, trueness, and expanded uncertainty of measurement) are determined and discussed. For the chosen aqueous matrices, the results of the performance characteristics are significantly better for Au ENPs in comparison to Ag ENPs; e.g. repeatability and reproducibility are below 10% for all Au ENPs respectively maximal 27% repeatability for larger Ag ENPs. The method is a promising tool for the simultaneous determination of releasable pharmaceutical relevant inorganic nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ran, Huili; Fan, Jiajie; Zhang, Xiaoli; Mao, Jing; Shao, Guosheng
2018-02-01
Novel double-layer films were prepared and applied to dye-sensitized solar cells (DSSCs) using commercial TiO2 nanoparticles as a bonding underlayer and noble metal (Au and Ag) nanoparticles (NP) and nanowires (NW) incorporated to hybrid TiO2 composites, consisting of 3 dimensional (3D) hierarchical microspheres, 3D hollow spheres, 2 dimensional (2D) nanosheets and commercial P25 nanoparticles, as multifunctional light scattering overlayer. The influence of Au NP, Ag NP, Au NW, and Ag NW on of microstructures of the film electrodes and the photovoltaic (PV) performances of DSSCs was investigated. The result revealed that the ranges and intensity of sunlight absorption, the photo capture ability for dye molecules of the hybrid nanocomposite film electrodes, and the photoelectric conversion efficiency (PCE) of the cells were all significantly enhanced due to the plasmonic effect of the noble metal nanostructures. All composite DSSCs with noble metal nanostructures have higher PCE than the pure TiO2 solar cell. This is attributed the improved electron transport of the noble metal nanostructures, and the improvement of light absorption because of their local surface plasmon resonance (LSPR) effect. Under optical conditions, a PCE of 5.74% was obtained in the TiO2-AgNW DSSC, representing a 25.3% enhancement compared to a reference solar cell based on pure TiO2 film (4.58%). The main reason of the advancement is the improved electron transport of AgNW, the light absorption enhancement on account of the LSPR effect of AgNW, and increased light scattering due to the incorporation of the large one dimensional AgNWs within the photo-anode.
2012-12-17
hybrid films as an alternative to organic-based photoactive materials in flexible photodetectors and solar cells . Figure 3. Solution...a wide range of metal nanoparticle-decorated (Pt, Au, Ag, Pt/Ru) graphene oxide (GO) hybrids as well as inorganic particle-graphene ( TiO2 /PbSe/G... hybrids . These hybrids were then evaluated for their performance in energy conversion devices and two examples were chosen, namely stacked fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imai, Shunji; Morishita, Yuki; Hata, Tomoyuki
When considering the safety of ingested nanomaterials, it is important to quantitate their transfer across intestinal cells; however, little information exists about the effects of nanomaterial size or exposure side (apical versus basolateral epithelial surface) on nanomaterial transfer. Here, we examined cellular internalization and transcellular transport, and the effects of nanomaterials on Caco-2 monolayers after apical or basolateral exposure to Ag or Au nanoparticles with various sizes. After apical treatment, both internalization and transfer to the basolateral side of the monolayers were greater for smaller Ag nanoparticles than for larger Ag nanoparticles. In contrast, after basolateral treatment, larger Ag nanoparticlesmore » were more internalized than smaller Ag nanoparticles, but the transfer to the apical side was greater for smaller Ag nanoparticles. Au nanoparticles showed different rules of internalization and transcellular transport compared with Ag nanoparticles. Furthermore, the paracellular permeability of the Caco-2 monolayers was temporarily increased by Ag nanoparticles (5 μg/mL; diameters, ≤10 nm) following basolateral but not apical exposure. We conclude that the internalization, transfer, and effects of nanomaterials in epithelial cell monolayers depend on the size and composition of nanomaterials, and the exposure side. - Highlights: • Ag and Au nanoparticles can transfer across Caco-2 monolayers. • Cellular uptake of nanoparticles change between apical and basolateral exposure. • Basolateral Ag nanoparticle exposure increases the permeability of Caco-2 monolayers.« less
Epitaxial insertion of gold silicide nanodisks during the growth of silicon nanowires.
Um, Han-Don; Jee, Sang-Won; Park, Kwang-Tae; Jung, Jin-Young; Guo, Zhongyi; Lee, Jung-Ho
2011-07-01
Nanodisk-shaped, single-crystal gold silicide heterojunctions were inserted into silicon nanowires during vapor-liquid-solid growth using Au as a catalyst within a specific range of chlorine-to-hydrogen atomic ratio. The mechanism of nanodisk formation has been investigated by changing the source gas ratio of SiCl4 to H2. We report that an over-supply of silicon into the Au-Si liquid alloy leads to highly supersaturated solution and enhances the precipitation of Au in the silicon nanowires due to the formation of unstable phases within the liquid alloy. It is shown that the gold precipitates embedded in the silicon nanowires consisted of a metastable gold silicide. Interestingly, faceting of gold silicide was observed at the Au/Si interfaces, and silicon nanowires were epitaxially grown on the top of the nanodisk by vapor-liquid-solid growth. High resolution transmission electron microscopy confirmed that gold silicide nanodisks are epitaxially connected to the silicon nanowires in the direction of growth direction. These gold silicide nanodisks would be useful as nanosized electrical junctions for future applications in nanowire interconnections.
Jiang, Xinya; Chai, Yaqin; Wang, Haijun; Yuan, Ruo
2014-04-15
A novel and ultrasensitive electrochemiluminescence (ECL) immunosensor, which was based on the amplifying ECL of luminol by hemin-reduced graphene oxide (hemin-rGO) and Ag nanoparticles (AgNPs) decorated reduced graphene oxide (Ag-rGO), was constructed for the detection of carcinoembryonic antigen (CEA). For this proposed sandwich-type ECL immunosensor, Au nanoparticles electrodeposited (DpAu) onto hemin-rGO (DpAu/hemin-rGO) constructed the base of the immunosensor. DpAu had outstanding electrical conductivity to promote the electron transfer at the electrode interface and had good biocompatibility to load large amounts of primary antibody (Ab1), which provided an excellent platform for this immunosensor. Moreover, AgNPs and glucose oxidase (GOD) functionalized graphene labeled secondary antibody (Ag-rGO-Ab2-GOD) was designed as the signal probe for the sandwiched immunosensor. Not only did the hemin-rGO improve the electron transfer of the electrode surface, but hemin also further amplified the ECL signal of luminol in the presence of hydrogen peroxide (H2O2). With the aid of Ag-rGO-Ab2-GOD, enhanced signal was obtained by in situ generation of H2O2 and catalysis of AgNPs to ECL reaction of the luminol-H2O2 system. The as-prepared ECL immunosensor exhibited excellent analytical property for the detection of CEA in the range from 0.1 pg mL(-1) to 160 ng mL(-1) with a detection limit of 0.03 pg mL(-1) (SN(-1)=3). © 2013 Published by Elsevier B.V.
Shuttling single metal atom into and out of a metal nanoparticle.
Wang, Shuxin; Abroshan, Hadi; Liu, Chong; Luo, Tian-Yi; Zhu, Manzhou; Kim, Hyung J; Rosi, Nathaniel L; Jin, Rongchao
2017-10-10
It has long been a challenge to dope metal nanoparticles with a specific number of heterometal atoms at specific positions. This becomes even more challenging if the heterometal belongs to the same group as the host metal because of the high tendency of forming a distribution of alloy nanoparticles with different numbers of dopants due to the similarities of metals in outmost electron configuration. Herein we report a new strategy for shuttling a single Ag or Cu atom into a centrally hollow, rod-shaped Au 24 nanoparticle, forming AgAu 24 and CuAu 24 nanoparticles in a highly controllable manner. Through a combined approach of experiment and theory, we explain the shuttling pathways of single dopants into and out of the nanoparticles. This study shows that the single dopant is shuttled into the hollow Au 24 nanoparticle either through the apex or side entry, while shuttling a metal atom out of the Au 25 to form the Au 24 nanoparticle occurs mainly through the side entry.Doping a metal nanocluster with heteroatoms dramatically changes its properties, but it remains difficult to dope with single-atom control. Here, the authors devise a strategy to dope single atoms of Ag or Cu into hollow Au nanoclusters, creating precise alloy nanoparticles atom-by-atom.
Wang, Saihua; Niu, Hongyun; Cai, Yaqi; Cao, Dong
2018-05-01
High-throughput and rapid detection of hazardous compounds in complicated samples is essential for the solution of environmental problems. We have prepared a "pH-paper-like" chip which can rapidly "indicate" the occurrence of organic contaminants just through dipping the chip in water samples for short time followed by fast analysis with surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS). The chips are composed of polyvinylidene fluoride membrane (PVDFM), polydopamine (PDA) film and Au nanoparticles (Au NPs), which are layer-by-layer assembled according to the adhesion, self-polymerization and reduction property of dopamine. In the Au NPs loaded polydopamine-polyvinylidene fluoride membrane (Au NPs-PDA-PVDFM) chips, PVDFM combined with PDA film are responsible for the enrichment of organic analyte through hydrophobic interactions and π-π stacking; Au NPs serve as effective SALDI matrix for the rapid detection of target analyte. After dipping into water solution for minutes, the Au-PDA-PVDFM chips with enriched organic analytes can be detected directly with SALDI-TOF MS. The good solid-phase extraction performance of the PDA-PVDFM components, remarkable matrix effect of the loaded AuNPs, and sensitivity of the SALDI-TOF MS technique ensure excellent sensitivity and reproducibility for the quantification of trace levels of organic contaminants in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Djerahov, Lubomir; Vasileva, Penka; Karadjova, Irina; Kurakalva, Rama Mohan; Aradhi, Keshav Krishna
2016-08-20
The present study describes the ecofriendly method for the preparation of chitosan film loaded with silver nanoparticles (CS-AgNPs) and application of this film as efficient sorbent for separation and enrichment of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). The stable CS-AgNPs colloid was prepared by dispersing the AgNPs sol in chitosan solution at appropriate ratio and further used to obtain a cast film with very good stability under storage and good mechanical strength for easy handling in aqueous medium. The incorporation of AgNPs in the structure of CS film and interaction between the polymer matrix and nanoparticles were confirmed by UV-vis and FTIR spectroscopy. The homogeneously embedded AgNPs (average diameter 29nm, TEM analysis) were clearly observed throughout the film by SEM. The CS-AgNPs nanocomposite film shows high sorption activity toward trace metals under optimized chemical conditions. The results suggest that the CS-AgNPs nanocomposite film can be feasibly used as a novel sorbent material for solid-phase extraction of metal pollutants from surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Ji, Jialin; Tao, Chunxian; Zhang, Dawei
2016-10-01
Au/ZnO/Ag sandwich structure films were fabricated by DC magnetron sputter at room temperature. The tunability of the surface plasmon resonance wavelength was realized by varying the thickness of ZnO thin film. The effects of ZnO layer on the optical properties of Au/ZnO/Au thin films were investigated by optical absorption and Raman scattering measurements. It has been found that both the surface plasmon resonance frequency and SERS can be controlled by adjusting the thickness of ZnO layer due to the coupling of metal and semiconductor.
Au-Ag-Cu nano-alloys: tailoring of permittivity
NASA Astrophysics Data System (ADS)
Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki
2016-04-01
Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.
Composition distributions in FePt(Au) nanoparticles
NASA Astrophysics Data System (ADS)
Srivastava, C.; Nikles, D. E.; Harrell, J. W.; Thompson, G. B.
2010-08-01
Ternary alloy FePt(Au) nanoparticles were prepared by the co-reduction of platinum(II) acetylacetonate and gold(III) acetate and the thermal decomposition of iron pentacarbonyl in hot phenyl ether in the presence of oleic acid and oleylamine ligands. This gave spherical particles with an average diameter of 4.4 nm with a range of diameters from approximately 1.6-9 nm. The as-synthesized particles had a solid solution, face-centered-cubic structure. Though the average composition of the particles was Fe44Pt45Au11, individual particle analysis by Scanning Transmission Electron Microscopy-X-ray Energy Dispersive Spectroscopy showed a broad distribution in composition. In general, smaller-sized particles tended to have a lower amount of Au as compared to larger-sized particles. As the Au content increased, the ratio of Fe/Pt widened.
Asharani, P V; Lianwu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh
2011-03-01
Nanoparticles have diverse applications in electronics, medical devices, therapeutic agents and cosmetics. While the commercialization of nanoparticles is rapidly expanding, their health and environmental impact is not well understood. Toxicity assays of silver, gold, and platinum nanoparticles, using zebrafish embryos to study their developmental effects were carried out. Gold (Au-NP, 15-35 nm), silver (Ag-NP, 5-35 nm) and platinum nanoparticles (Pt-NP, 3-10 nm) were synthesized using polyvinyl alcohol (PVA) as a capping agent. Toxicity was recorded in terms of mortality, hatching delay, phenotypic defects and metal accumulation. The addition of Ag-NP resulted in a concentration-dependant increase in mortality rate. Both Ag-NP and Pt-NP induced hatching delays, as well as a concentration dependant drop in heart rate, touch response and axis curvatures. Ag-NP also induced other significant phenotypic changes including pericardial effusion, abnormal cardiac morphology, circulatory defects and absence or malformation of the eyes. In contrast, Au-NP did not show any indication of toxicity. Uptake and accumulation of nanoparticles in embryos was confirmed by inductively coupled plasma optical emission spectroscopy (ICP-OES), which revealed detectable levels in embryos within 72 hpf. Ag-NP and Au-NP were taken up by the embryos in relatively equal amounts whereas lower Pt concentrations were observed in embryos exposed to Pt-NP. This was probably due to the small size of the Pt nanoparticles compared to Ag-NP and Au-NP, thus resulting in fewer metal atoms being retained in the embryos. Among the nanoparticles studied, Ag-NPs were found to be the most toxic and Au-NPs the non-toxic. The toxic effects exhibited by the zebrafish embryos as a consequence of nanoparticle exposure, accompanied by the accumulation of metals inside the body calls for urgent further investigations in this field.
Barroo, Cedric; Janvelyan, Nare; Zugic, Branko; ...
2016-07-25
To improve the understanding of catalytic processes, the surface structure and composition of the active materials need to be determined before and after reaction. Morphological changes may occur under reaction conditions and can dramatically influence the reactivity and/or selectivity of a catalyst. Goldbased catalysts with different architectures are currently being developed for selective oxidation reactions at low temperatures. Specifically, nanoporous Au (npAu) with a composition of Au 97-Ag 3 is obtained by dealloying a Ag 70-Au 30 bulk alloy. Recent studies highlight the efficiency of npAu catalysts for methanol oxidation using ozone to activate the catalysts before methanol oxidation. Inmore » this paper, we studied the morphological and compositional changes occurring at the surface of Au-based catalysts in certain conditions.« less
Atomistic study of mixing at high Z / low Z interfaces at Warm Dense Matter Conditions
NASA Astrophysics Data System (ADS)
Haxhimali, Tomorr; Glosli, James; Rudd, Robert; Lawrence Livermore National Laboratory Team
2016-10-01
We use atomistic simulations to study different aspects of mixing occurring at an initially sharp interface of high Z and low Z plasmas in the Warm/Hot Dense Matter regime. We consider a system of Diamond (the low Z component) in contact with Ag (the high Z component), which undergoes rapid isochoric heating from room temperature up to 10 eV, rapidly changing the solids into warm dense matter at solid density. We simulate the motion of ions via the screened Coulomb potential. The electric field, the electron density and ionizations level are computed on the fly by solving Poisson equation. The spatially varying screening lengths computed from the electron cloud are included in this effective interaction; the electrons are not simulated explicitly. We compute the electric field generated at the Ag-C interface as well as the dynamics of the ions during the mixing process occurring at the plasma interface. Preliminary results indicate an anomalous transport of high Z ions (Ag) into the low Z component (C); a phenomenon that is partially related to the enhanced transport of ions due to the generated electric field. These results are in agreement with recent experimental observation on Au-diamond plasma interface. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.
Miao, Xiangmin; Cheng, Zhiyuan; Ma, Haiyan; Li, Zongbing; Xue, Ning; Wang, Po
2018-01-16
A novel strategy was developed for microRNA-155 (miRNA-155) detection based on the fluorescence quenching of positively charged gold nanoparticles [(+)AuNPs] to Ag nanoclusters (AgNCs). In the designed system, DNA-stabilized Ag nanoclusters (DNA/AgNCs) were introduced as fluorescent probes, and DNA-RNA heteroduplexes were formed upon the addition of target miRNA-155. Meanwhile, the (+)AuNPs could be electrostatically adsorbed on the negatively charged single-stranded DNA (ssDNA) or DNA-RNA heteroduplexes to quench the fluorescence signal. In the presence of duplex-specific nuclease (DSN), DNA-RNA heteroduplexes became a substrate for the enzymatic hydrolysis of the DNA strand to yield a fluorescence signal due to the diffusion of AgNCs away from (+)AuNPs. Under the optimal conditions, (+)AuNPs displayed very high quenching efficiency to AgNCs, which paved the way for ultrasensitive detection with a low detection limit of 33.4 fM. In particular, the present strategy demonstrated excellent specificity and selectivity toward the detection of target miRNA against control miRNAs, including mutated miRNA-155, miRNA-21, miRNA-141, let-7a, and miRNA-182. Moreover, the practical application value of the system was confirmed by the evaluation of the expression levels of miRNA-155 in clinical serum samples with satisfactory results, suggesting that the proposed sensing platform is promising for applications in disease diagnosis as well as the fundamental research of biochemistry.
NASA Astrophysics Data System (ADS)
Kolmogorov, Yu. P.; Mezentsev, N. A.; Mironov, A. G.; Parkhomenko, V. S.; Spiridonov, A. M.; Shaporenko, A. D.; Yusupov, T. S.; Zhmodik, S. M.; Zolotarev, K. V.; Anoshin, G. N.
2009-05-01
A system of methods to detect platinum group elements (PGE): Re, Au, and Ag in hard-to-analyze rocks and complex ores has been developed. It applies the SRXRF for Ru, Rh, Pd, and Ag and the INAA method for Os, Ir, Pt and Ag and implies mechanoactivation of probes to study. The results of measurement of standard samples of carbonaceous rocks and ores in order to PGE, gold, and silver confirm the possibility of detecting some of the above-listed elements with a detection limit of 10 ppb.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodward, David I., E-mail: d.i.woodward@warwick.ac.uk; Lees, Martin R.; Thomas, Pam A.
2012-08-15
The phase transitions between various structural modifications of the natrotantite-structured system xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} have been investigated and a phase diagram constructed as a function of temperature and composition. This shows three separate phase transition types: (1) paraelectric-ferroelectric, (2) rhombohedral-monoclinic and (3) a phase transition within the ferroelectric rhombohedral zone between space groups R3c and R3. The parent structure for the entire series has space group R3{sup Macron }c. Compositions with x>0.75 are rhombohedral at all temperatures whereas compositions with x<0.75 are all monoclinic at room temperature and below. At x=0.75, rhombohedral and monoclinic phases coexistmore » with the phase boundary below room temperature being virtually temperature-independent. The ferroelectric phase boundary extends into the monoclinic phase field. No evidence was found for the R3-R3c phase boundary extending into the monoclinic phase field and it is concluded that a triple point is formed. - Graphical abstract: Phase diagram for xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} solid solution showing changes in crystal symmetry as a function of temperature and composition. The crystal structure is depicted. Highlights: Black-Right-Pointing-Triangle Ferroelectric, rhombohedral Ag{sub 2}Nb{sub 4}O{sub 11} in solid solution with monoclinic Na{sub 2}Nb{sub 4}O{sub 11}. Black-Right-Pointing-Triangle Three phase boundaries were studied as a function of composition and temperature. Black-Right-Pointing-Triangle Both rhombohedral and monoclinic variants exhibit ferroelectricity. The parent phase of the series has space group R3{sup Macron }c.« less
Myochrysine Solution Structure and Reactivity
Jones, William B.; Zhao, Zheng; Dorsey, John G.; Tepperman, Katherine
1994-01-01
We have determined the framework structure of Myochrysine (disodium gold(I)thiomalate) in the solid state and extremely concentrated aqueous solution, previously. It consists of an open chain polymer with linear gold coordination to two thiolates from the thiomalic acid moieties which bridge between pairs of gold atoms providing an Au-S-Au angle of 95°. The question remained: was this structure relevant to the dilute solutions of drugs administered and the still lower concentrations of gold found in the bodies of patients (typically 1 ppm Au in blood and urine or 5 μM in Au). We have provided an answer to that question using extended X-ray absorption spectroscopy (EXAFS) and capillary zone electrophoresis (CZE). EXAFS studies confirm that the polymeric structure with two sulfur atoms per gold atom persists from molar concentrations down to millimolar concentrations. CZE is able to separate and detect Myochrysine at millimolar levels. More importantly, at micromolar levels Myochrysine solutions exhibit identical CZE behavior to that measured at millimolar levels. Thus, aqueous solutions of the drug remain oligomeric at concentrations commensurate with those found in patient blood and urine. The reactivity of Myochrysine with cyanide, a species especially prevalent in smoking patients, was explored using CZE. Cyanide freely replaces thiomalic acid to form [Au(CN)2]- and thiomalic acid via a mixed ligand intermediate. The overall apparent equilibrium constant (Kapp) for the reaction is 6×10-4M-1. Further reaction of [Au(CN)2]- with a large excess of L, where L is cysteine, N-acetylcysteine, or glutathione, shows that these amino acids readily replace cyanide to form [AuL2]-. These species are thus potential metabolites and could possibly be active forms of gold in vivo. That all of these species are readily separated and quantified using CZE demonstrates that capillary electrophoresis is an accessible and powerful tool to add to those used for the study of gold-based antiarthritis drugs. PMID:18476256
Anomalous property of Ag(BO2)2 hyperhalogen: does spin-orbit coupling matter?
Chen, Hui; Kong, Xiang-Yu; Zheng, Weijun; Yao, Jiannian; Kandalam, Anil K; Jena, Puru
2013-10-07
Hyperhalogens were recently identified as a new class of highly electronagative species which are composed of metals and superhalogens. In this work, high-level theoretical calculations and photoelectron spectroscopy experiments are systematically conducted to investigate a series of coinage-metal-containing hyperhalogen anions, Cu(BO(2))(2)(-), Ag(BO(2))(2)(-), and Au(BO(2))(2)(-). The vertical electron detachment energy (VDE) of Ag(BO(2))(2)(-) is anomalously higher than those of Au(BO(2))(2)(-) and Cu(BO(2))(2)(-). In quantitative agreement with the experiment, high-level ab initio calculations reveal that spin-orbit coupling (SOC) lowers the VDE of Au(BO(2))(2)(-) significantly. The sizable magnitude of about 0.5 eV of SOC effect on the VDE of Au(BO(2))(2)(-) demonstrates that SOC plays an important role in the electronic structure of gold hyperhalogens. This study represents a new paradigm for relativistic electronic structure calculations for the one-electron-removal process of ionic Au(I)L(2) complexes, which is characterized by a substantial SOC effect. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Funakawa, Akiyasu; Yamanaka, Ichiro; Otsuka, Kiyoshi
2005-05-12
Electrochemical oxidative carbonylation of methanol was studied over Au supported carbon anode in CO. The major carbonylation products were dimethyl oxalate (DMO) and dimethyl carbonate (DMC). The minor oxidation products were dimethoxy methane (DMM) and methyl formate (MF) from methanol and CO(2). Influences of various reaction conditions were studied on carbonylation activities and selectivities. The selectivities to DMO and DMC can be controlled by the electrochemical potential. Electrocatalysis of Au/carbon anode was studied by cyclic voltammetry (CV), stoichiometric reactions among Au(3+), methanol, and CO, and UV-vis spectra. The Au/carbon anode was characterized by XRD, SEM, and BE images before and after the carbonylation. These experimental facts strongly suggest that transition of oxidation states of Au affects changing of the carbonylation selectivities to DMO and DMC. Au(0) is the active species for the selective DMO formation by direct electrochemical carbonylation at low potentials (<+1.2 V (Ag/AgCl)). On the other hand, Au(3+) is the active spices for the selective DMC formation by indirect electrochemical carbonylation through Au(3+)/Au(+) redox at high potentials (>+1.3 V).
Bagci, Pelin Onsekizoglu; Wang, Yi-Cheng; Gunasekaran, Sundaram
2015-09-01
Gold nanoparticles (AuNPs) were synthesized at room temperature following a simple, rapid, and green route using fresh-squeezed apple juice as a reducing reagent. The optimal AuNPs, based on the particle color, stability, and color change suitable for colorimetric detection of cysteine (Cys), are synthesized using 5 mL of 10% apple juice, 1 mL of 10 mM gold precursor solution, and 1 mL of 0.1 M NaOH. Under this set of parameters, the AuNPs are synthesized within 30 min at room temperature. The average size (11.1 ± 3.2 nm) and ζ potential (-36.5 mV) of the AuNPs synthesized were similar to those of AuNPs prepared via the conventional citrate-reduction method. In the presence of Cys, unlike with any other amino acid, the AuNPs aggregated, possibly due to the gold-sulfur covalent interaction, yielding red-to-purple color change of the sample solution. The red-shift of the localized surface plasmon resonance peak of the AuNPs responsible for the color change was recorded by UV-vis spectrometer. The effect of other potential interferents such as glucose, ascorbic acid, K(+) , Na(+) , Ca(2+) , Zn(2+) , Ag(+) , Ni(2+) , Cu(2+) , Co(2+) , and Hg(2+) were also examined. The results show that AuNPs can be used to selectively detect and measure Cys with a linear dependency in the range of 2 to 100 μM and a limit of detection (signal-to-noise ratio > 3) of 50 nM. The results suggest that the green-synthesized AuNPs are useful for simple, rapid, and sensitive colorimetric detection of Cys, which is an essential amino acid in food and biological systems. © 2015 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Silbaugh, Trent L.; Boaventura, Jaime S.; Barteau, Mark A.
2016-08-01
The first quantitative surface acidity scale for Brønsted acids on a solid surface is presented through the use of titration-displacement and equilibrium experiments on anatase TiO2. Surface acidities of species on TiO2 correlated with gas phase acidities, as was previously observed in qualitative studies of Brønsted acid displacement on Ag(110), Cu(110) and Au(111). A 90% compression of the surface acidity scale relative to the gas phase was observed due to compensation from the covalent component of the conjugate base - surface bond. Adsorbed conjugate bases need not be completely anionic for correlations with gas phase acidities to hold. Positive and negative substituent effects, such as substituted fluorine and hydrocarbon sidechain dispersion interactions with the surface, may modify the surface acidity scale, in agreement with previous experimental and theoretical work on Au(111).
Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions
Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei
2010-01-01
One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments. PMID:22163467
Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei
2010-01-01
One type of all-solid-state chloride sensor was fabricated using a MnO(2) electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K(+), Ca(2+), Na(+) and SO(4) (2-) ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.
Near-Infrared Ag2S Quantum Dots-Based DNA Logic Gate Platform for miRNA Diagnostics.
Miao, Peng; Tang, Yuguo; Wang, Bidou; Meng, Fanyu
2016-08-02
Dysregulation of miRNA expression is correlated with the development and progression of many diseases. These miRNAs are regarded as promising biomarkers. However, it is challenging to measure these low abundant molecules without employing time-consuming radioactive labeling or complex amplification strategies. Here, we present a DNA logic gate platform for miRNA diagnostics with fluorescence outputs from near-infrared (NIR) Ag2S quantum dots (QDs). Carefully designed toehold exchange-mediated strand displacements with different miRNA inputs occur on a solid-state interface, which control QDs release from solid-state interface to solution, responding to multiplex information on initial miRNAs. Excellent fluorescence emission properties of NIR Ag2S QDs certify the great prospect for amplification-free and sensitive miRNA assay. We demonstrate the potential of this platform by achieving femtomolar level miRNA analysis and the versatility of a series of logic circuits computation.
Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.
Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang
2016-03-09
The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.
Structural modification in the formation of starch – silver nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begum, S. N. Suraiya; Ramasamy, Radha Perumal, E-mail: perumal.ramasamy@gmail.com; Aswal, V. K.
Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO{sub 3}) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO{sub 3}. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structuresmore » and with increasing the AgNO{sub 3} concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.« less
One Dimensional Coordination Polymer of Zn(II) for Developing Multifunctional Nanoparticles.
Agarwal, Rashmi A
2017-10-16
A variety of nanoparticles (NPs) including Ag, Au, Pd, Cr and mixed Cu/Fe have been synthesized in a non-activated (without solvent removal) one dimensional coordination polymer (CP) of Zn(II) via two different mechanisms, acid formation and redox activity of the framework. Main driving force to grow these NPs within the cavities of CP is the presence of free oxygens of one of the monodentate carboxylate groups of BDC ligand. These free oxygens act as anchoring sites for the metal ions of the metal precursors. Chemical and physical characteristics of the NPs within the framework have been evaluated by the high resolution transmission electron microscopic (HRTEM) images. Excluding Ag(0) and Pd(0) other NPs are present as combinations of their elemental as well as oxide forms (Au/Au 2 O 3 , Cr/Cr 2 O 3 /CrO 2 and Cu/Cu 2 O, Fe/FeO). Synthesized Ag NPs within the framework show remarkable antibacterial efficacy at extremely low concentrations. Ag, Au and Cu/Fe NPs show ferromagnetic properties within the framework at room temperature. This polymer has potential to sequester highly toxic Cr(VI) to non toxic Cr(0), Cr(III) and Cr(IV) species.
Graphene-bimetal plasmonic platform for ultra-sensitive biosensing
NASA Astrophysics Data System (ADS)
Tong, Jinguang; Jiang, Li; Chen, Huifang; Wang, Yiqin; Yong, Ken-Tye; Forsberg, Erik; He, Sailing
2018-03-01
A graphene-bimetal plasmonic platform for surface plasmon resonance biosensing with ultra-high sensitivity was proposed and optimized. In this hybrid configuration, graphene nanosheets was employed to effectively absorb the excitation light and serve as biomolecular recognition elements for increased adsorption of analytes. Coating of an additional Au film prevents oxidation of the Ag substrate during manufacturing process and enhances the sensitivity at the same time. Thus, a bimetal Au-Ag substrate enables improved sensing performance and promotes stability of this plasmonic sensor. In this work we optimized the number of graphene layers as well as the thickness of the Au film and the Ag substrate based on the phase-interrogation sensitivity. We found an optimized configuration consisting of 6 layers of graphene coated on a bimetal surface consisting of a 5 nm Au film and a 30 nm Ag film. The calculation results showed the configuration could achieve a phase sensitivity as high as 1 . 71 × 106 deg/RIU, which was more than 2 orders of magnitude higher than that of bimetal structure and graphene-silver structure. Due to this enhanced sensing performance, the graphene-bimetal plasmonic platform proposed in this paper is potential for ultra-sensitive plasmonic sensing.
NASA Astrophysics Data System (ADS)
Suggs, K.; Kiros, F.; Tesfamichael, A.; Felfli, Z.; Msezane, A. Z.
2015-05-01
Fundamental anionic, cationic, and neutral atomic metal predictions utilizing density functional theory calculations validate the recent discovery identifying the interplay between Regge resonances and Ramsauer-Townsend minima obtained through complex angular momentum analysis as the fundamental atomic mechanism underlying nanoscale catalysis. Here we investigate the optimization of the catalytic behavior of Au, Ag, Pd, Rh, and Os atomic systems via polarization effects and conclude that anionic atomic systems are optimal and therefore ideal for catalyzing the oxidation of water to peroxide, with anionic Os being the best candidate. The discovery that cationic systems increase the transition energy barrier in the synthesis of peroxide could be important as inhibitors in controlling and regulating catalysis. These findings usher in a fundamental and comprehensive atomic theoretical framework for the generation of tunable catalytic systems. The ultimate aim is to design giant atomic catalysts and sensors, in the context of the recently synthesized tri-metal Ag@Au@Pt and bimetal Ag@Au nanoparticles for greatly enhanced plasmonic properties and improved chemical stability for chemical and biological sensing. Research was supported by U.S. DOE Office of Basic Energy Sciences.
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1998-01-01
A modified dc-diode plating system, utilizing a metallic screen cage as a cathode and referred as SCREEN CAGE ION PLATING (SCIP), is used to deposit Ag and Au lubricating films on Si3N4 and SiC surfaces. When deposition is performed in Ar or N2, glow discharge, the surface displays poor adhesive strength (less than 5 MPa). A dramatic increase in adhesive strength (less than 80 MPa) is achieved when plating is performed in a reactive 50% 02 + 50% Ar glow discharge. The excited/ionized oxygen species (O2(+)/O(+) in the glow discharge contribute to the oxidation of the Si3N4 or SiC surfaces as determined by X-ray Photoelectron Spectroscopy (XTS) depth profiling. The reactively sputter-oxidized S3N4 or SiC surfaces and the activated-oxidized-metastable Ag or Au species formed in the plasma cooperatively contribute to the increased adherence. As a result, the linear thermal expansion coefficient mismatch at the interface is reduced. These lubricating Ag and Au films under sliding conditions reduce the friction coefficient by a factor of 2-1/2 to 4.
Silalahi, Rhone P Brocha; Chakrahari, Kiran Kumarvarma; Liao, Jian-Hong; Kahlal, Samia; Liu, Yu-Chiao; Chiang, Ming-Hsi; Saillard, Jean-Yves; Liu, C W
2018-03-02
Atomically precise Cu-rich bimetallic superatom clusters have been synthesized by adopting a galvanic exchange strategy. [Cu@Cu 12 (S 2 CN n Bu 2 ) 6 (C≡CPh) 4 ][CuCl 2 ] (1) was used as a template to generate compositionally uniform clusters [M@Cu 12 (S 2 CN n Bu 2 ) 6 (C≡CPh) 4 ][CuCl 2 ], where M=Ag (2), Au (3). Structures of 1, 2 and 3 were determined by single crystal X-ray diffraction and the results were supported by ESI-MS. The anatomies of clusters 1-3 are very similar, with a centred cuboctahedral cationic core that is surrounded by six di-butyldithiocarbamate (dtc) and four phenylacetylide ligands. The doped Ag and Au atoms were found to preferentially occupy the centre of the 13-atom cuboctahedral core. Experimental and theoretical analyses of the synthesized clusters revealed that both Ag and Au doping result in significant changes in cluster stability, optical characteristics and enhancement in luminescence properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphene and PbS quantum dot hybrid vertical phototransistor
NASA Astrophysics Data System (ADS)
Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan
2017-04-01
A field-effect phototransistor based on a graphene and lead sulfide quantum dot (PbS QD) hybrid in which PbS QDs are embedded in a graphene matrix has been fabricated with a vertical architecture through a solution process. The n-type Si/SiO2 substrate (gate), Au/Ag nanowire transparent source electrode, active layer and Au drain electrode are vertically stacked in the device, which has a downscaled channel length of 250 nm. Photoinduced electrons in the PbS QDs leap into the conduction band and fill in the trap states, while the photoinduced holes left in the valence band transfer to the graphene and form the photocurrent under biases from which the photoconductive gain is evaluated. The graphene/QD-based vertical phototransistor shows a photoresponsivity of 2 × 103 A W-1, and specific detectivity up to 7 × 1012 Jones under 808 nm laser illumination with a light irradiance of 12 mW cm-2. The solution-processed vertical phototransistor provides a new facile method for optoelectronic device applications.
120 MeV Ag ion induced effects in Au/HfO2/Si MOSCAPs
NASA Astrophysics Data System (ADS)
Manikanthababu, N.; Prajna, K.; Pathak, A. P.; Rao, S. V. S. Nageswara
2018-05-01
HfO2/Si thinfilms were deposited by RF sputtering technique. 120 MeV Ag ion irradiation has been used to study the electrical properties of Au/HfO2/Si MOSCAPs. SHI (120 MeV Ag) induced annealing, defects creation and intermixing effects on the electrical properties of these systems have been studied. Here, we have observed that the high electronic excitation can cause a significant reduction of leakage currents in these MOSCAP devices. Various quantum mechanical tunneling phenomenon has been observed from the I-V characteristics.
Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis
2017-06-13
We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl - selective electrodes, one Ag₂S/Ag-based reference or S 2- selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.
NASA Astrophysics Data System (ADS)
Nguyen, Nhung H. A.; Padil, Vinod Vellora Thekkae; Slaveykova, Vera I.; Černík, Miroslav; Ševců, Alena
2018-05-01
Recently, the green synthesis of metal nanoparticles has attracted wide attention due to its feasibility and very low environmental impact. This approach was applied in this study to synthesise nanoscale gold (Au), platinum (Pt), palladium (Pd), silver (Ag) and copper oxide (CuO) materials in simple aqueous media using the natural polymer gum karaya as a reducing and stabilising agent. The nanoparticles' (NPs) zeta-potential, stability and size were characterised by Zetasizer Nano, UV-Vis spectroscopy and by electron microscopy. Moreover, the biological effect of the NPs (concentration range 1.0-20.0 mg/L) on a unicellular green alga ( Chlamydomonas reinhardtii) was investigated by assessing algal growth, membrane integrity, oxidative stress, chlorophyll ( Chl) fluorescence and photosystem II photosynthetic efficiency. The resulting NPs had a mean size of 42 (Au), 12 (Pt), 1.5 (Pd), 5 (Ag) and 180 (CuO) nm and showed high stability over 6 months. At concentrations of 5 mg/L, Au and Pt NPs only slightly reduced algal growth, while Pd, Ag and CuO NPs completely inhibited growth. Ag, Pd and CuO NPs showed strong biocidal properties and can be used for algae prevention in swimming pools (CuO) or in other antimicrobial applications (Pd, Ag), whereas Au and Pt lack these properties and can be ranked as harmless to green alga.
Au-Ag-Cu nano-alloys: tailoring of permittivity
Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki
2016-01-01
Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459
Fa, Wei; Zhou, Jian; Dong, Jinming
2013-04-07
Substitutional doping of gold and copper atoms in a (4, 4) silver single-wall nanotube has been investigated using first-principles simulations. It is found that the Au- and Cu-substitutional doping of the tip-suspended (4, 4) Ag tube can maintain the hollow tubular structure at different alloy compositions due to the existence of a local minimum in the string tension variation with their unit cell lengths. The bonding energy differences between the mono-elements and hetero-elements and string tension may play important roles in suppressing the "self-purification" effects so that the nanoalloy tubes can be formed. Analysis of the band structure suggests that the number of conduction channels of the Ag-Au alloy tubes may lie between the pure (4, 4) Ag and Au tubes.
NASA Astrophysics Data System (ADS)
Del Rosso, T.; Rey, N. A.; Rosado, T.; Landi, S.; Larrude, D. G.; Romani, E. C.; Freire Junior, F. L.; Quinteiro, S. M.; Cremona, M.; Aucelio, R. Q.; Margheri, G.; Pandoli, O.
2016-06-01
Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.
Del Rosso, T; Rey, N A; Rosado, T; Landi, S; Larrude, D G; Romani, E C; Junior, F L Freire; Quinteiro, S M; Cremona, M; Aucelio, R Q; Margheri, G; Pandoli, O
2016-06-24
Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.
NASA Astrophysics Data System (ADS)
Liu, Xiang; Gregurec, Danijela; Irigoyen, Joseba; Martinez, Angel; Moya, Sergio; Ciganda, Roberto; Hermange, Philippe; Ruiz, Jaime; Astruc, Didier
2016-10-01
Understanding the relationship between the location of nanoparticles (NPs) in an organic matrix and their catalytic performances is essential for catalyst design. Here we show that catalytic activities of Au, Ag and CuNPs stabilized by dendrimers using coordination to intradendritic triazoles, galvanic replacement or stabilization outside dendrimers strongly depends on their location. AgNPs are found at the inner click dendrimer periphery, whereas CuNPs and AuNPs are encapsulated in click dendrimer nanosnakes. AuNPs and AgNPs formed by galvanic replacement are larger than precursors and only partly encapsulated. AuNPs are all the better 4-nitrophenol reduction catalysts as they are less sterically inhibited by the dendrimer interior, whereas on the contrary CuNPs are all the better alkyne azide cycloaddition catalysts as they are better protected from aerobic oxidation inside dendrimers. This work highlights the role of the location in macromolecules on the catalytic efficiency of metal nanoparticles and rationalizes optimization in catalyst engineering.
Thermosensitive polymer stabilized core-shell AuNR@Ag nanostructures as "smart" recyclable catalyst
NASA Astrophysics Data System (ADS)
Li, Dongxiang; Liu, Na; Gao, Yuanyuan; Lin, Weihong; Li, Chunfang
2017-11-01
Core-shell AuNR@Ag nanostructures were synthesized and surface-grafted with thermosensitive poly( N-isopropylacrylamide) to enhance stability and endow stimuli-responsive property. The AuNR cores showed average dimensions of 8-nm diameter and 33-nm length, while the anisotropic silver shells displayed 1-2 nm thin side and maximal 8 nm fat side. The obtained polymer-stabilized AuNR@Ag nanostructures as catalysts showed normal Arrhenius change of apparent rate constant, k app, in catalyzed reaction between 20 and 30 °C, but displayed a decrease of k app with respect to the temperature increasing between 32.5-40 °C, showing self-inhibition of the observed catalytic activity. Such "smart" self-inhibition of catalytic activity at enhanced temperature can be attributed to the thermosensitive response of the grafted polymer molecules and should be significant to control the reaction rate and avoid superheat for exothermic reactions. Such polymer-stabilized nanocatalyst also could be recovered and reused in the catalytic system. [Figure not available: see fulltext.
Silver Makes Better Electrical Contacts to Thiol-Terminated Silanes than Gold.
Li, Haixing; Su, Timothy A; Camarasa-Gómez, María; Hernangómez-Pérez, Daniel; Henn, Simon E; Pokorný, Vladislav; Caniglia, Caravaggio D; Inkpen, Michael S; Korytár, Richard; Steigerwald, Michael L; Nuckolls, Colin; Evers, Ferdinand; Venkataraman, Latha
2017-11-06
We report that the single-molecule junction conductance of thiol-terminated silanes with Ag electrodes are higher than the conductance of those formed with Au electrodes. These results are in contrast to the trends in the metal work function Φ(Ag)<Φ(Au). As such, a better alignment of the Au Fermi level to the molecular orbital of silane that mediates charge transport would be expected. This conductance trend is reversed when we replace the thiols with amines, highlighting the impact of metal-S covalent and metal-NH 2 dative bonds in controlling the molecular conductance. Density functional theory calculations elucidate the crucial role of the chemical linkers in determining the level alignment when molecules are attached to different metal contacts. We also demonstrate that conductance of thiol-terminated silanes with Pt electrodes is lower than the ones formed with Au and Ag electrodes, again in contrast to the trends in the metal work-functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Badhwar, Nidhi; Gupta, Nidhi; Pal, Bonamali
2013-09-01
Transition metal nanoparticles were prepared by chemical dissolution of CdS template from metal photodeposited CdS nanorod (length = 70-85 nm and width = 5-6 nm) heterocomposites. Size (9-10 nm) of metal nanoparticles obtained after CdS removal was larger than the size (4-6 nm) of metal nanodeposits over CdS template. The obtained Au nanoparticles displayed a broad red shifted absorption band at 660 nm, whereas Pt, Pd and Rh nanoparticles exhibit featureless absorption spectra. Elemental analysis confirms the complete removal of CdS template from Au-CdS (Au — 2.65 at.%) and Ag-CdS (Ag — 2.06 at.%) composites showing no Cd peak. These metal nanoparticles imparted dissimilar co-catalytic activity of TiO2 for photocatalytic degradation of salicylic acid in the order Au > Pt > Pd > Ag > Rh as a function of their nature, electronegativity, redox potential and work function.
González-Valdez, Eduardo; Alarcón, Alejandro; Ferrera-Cerrato, Ronald; Vega-Carrillo, Héctor René; Maldonado-Vega, María; Salas-Luévano, Miguel Ángel; Argumedo-Delira, Rosalba
2018-06-15
This study evaluated the ability of Brassica napus for extracting gold (Au), silver (Ag) and copper (Cu) from a mine tailings, with the inoculation of two Aspergillus niger strains, and the application of ammonium thiocyanate (NH 4 SCN) or ammonium thiosulfate [(NH 4 ) 2 S 2 O 3 ]. After seven weeks of growth inoculated or non-inoculated plants were applied with 1 or 2 g kg -1 of either NH 4 SCN or (NH 4 ) 2 S 2 O 3 , respectively. Eight days after the application of the chemical compounds, plants were harvested for determining the total dry biomass, and the content of Au, Ag, and Cu in plant organs. Application of (NH 4 ) 2 S 2 O 3 or NH 4 SCN resulted in enhanced Au-accumulation in stems (447% and 507%, respectively), while either (NH 4 ) 2 S 2 O 3 +Aspergillus, or NH 4 SCN increased the Au-accumulation in roots (198.5% and 404%, respectively) when compared to the control. Treatments with (NH 4 ) 2 S 2 O 3 or (NH 4 ) 2 S 2 O 3 +Aspergillus significantly increased (P ≤ 0.001) the accumulation of Ag in leaves (677% and 1376%, respectively), while NH 4 SCN + Aspergillus, and (NH 4 ) 2 S 2 O 3 enhanced the accumulation in stems (7153% and 6717.5%). The Ag-accumulation in roots was stimulated by NH 4 SCN+ Aspergillus, and (NH 4 ) 2 S 2 O 3 + Aspergillus (132.5% and 178%, respectively), when compared to the control. The combination of NH 4 SCN+Aspergillus significantly enhanced the Cu-accumulation in leaves (228%); whereas NH 4 SCN+ Aspergillus, or (NH 4 ) 2 S 2 O 3 + Aspergillus resulted in greater accumulation of Cu in stems (1233.5% and 1580%, respectively) than the control. Results suggest that either NH 4 SCN or (NH 4 ) 2 S 2 O 3 (with or without Aspergillus) improved the accumulation of Au and Ag by B. napus. Accumulation of Au and Ag in plant organs overpassed the hyperaccumulation criterion (> 1 mg kg -1 of plant biomass); whereas Cu-accumulation in stems and roots also overpassed such criterion (> 1000 mg kg -1 ) by applying either NH 4 SCN or (NH 4 ) 2 S 2 O 3 + A. niger. Copyright © 2018 Elsevier Inc. All rights reserved.
Park, Ji Su; Ahn, Eun-Young; Park, Youmie
2017-01-01
Mangosteen (Garcinia mangostana) pericarp waste extract was used to synthesize gold and silver nanoparticles by a green strategy. The extract was both a reducing and stabilizing agent during synthesis. Phytochemical screening of the extract was conducted to obtain information regarding the presence/absence of primary and secondary metabolites in the extract. The in vitro antioxidant activity results demonstrated that the extract had excellent antioxidant activity, which was comparable to a standard (butylated hydroxy toluene). Spherical gold nanoparticles (gold nanoparticles green synthesized by mangosteen pericarp extract [GM-AuNPs]) with an average size of 15.37±3.99 to 44.20±16.99 nm were observed in high-resolution transmission electron microscopy (HR-TEM) images. Most interestingly, the silver nanoparticles (silver nanoparticles green synthesized by mangosteen pericarp extract [GM-AgNPs]) had asymmetric nanodumbbell shapes where one tail grew from a spherical head. The average head size was measured to be 13.65±5.07 to 31.08±3.99 nm from HR-TEM images. The hydrodynamic size of both nanoparticles tended to increase with increasing extract concentration. Large negative zeta potentials (−18.92 to −34.77 mV) suggested that each nanoparticle solution possessed excellent colloidal stability. The reaction yields were 99.7% for GM-AuNPs and 82.8% for GM-AgNPs, which were assessed by inductively coupled plasma optical emission spectroscopy. A high-resolution X-ray diffraction pattern confirmed the face-centered cubic structure of both nanoparticles. Based on phytochemical screening and Fourier transform infrared spectra, the hydroxyl functional groups of carbohydrates, flavonoids, glycosides, and phenolic compounds were most likely involved in a reduction reaction of gold or silver salts to their corresponding nanoparticles. The in vitro cytotoxicity (based on a water-soluble tetrazolium assay) demonstrated that GM-AgNPs were toxic to both A549 (a human lung cancer cell) and NIH3T3 (a mouse fibroblast cell). The cytotoxicity of GM-AgNPs on A549 cells was related to apoptotic cell death. However, GM-AuNPs did not show any significant cytotoxicity to either cell. These results suggest that GM-AuNPs have the potential to be drug delivery vehicles or carriers for pharmaceutical and biomedical applications. PMID:29066885
Park, Ji Su; Ahn, Eun-Young; Park, Youmie
2017-01-01
Mangosteen ( Garcinia mangostana ) pericarp waste extract was used to synthesize gold and silver nanoparticles by a green strategy. The extract was both a reducing and stabilizing agent during synthesis. Phytochemical screening of the extract was conducted to obtain information regarding the presence/absence of primary and secondary metabolites in the extract. The in vitro antioxidant activity results demonstrated that the extract had excellent antioxidant activity, which was comparable to a standard (butylated hydroxy toluene). Spherical gold nanoparticles (gold nanoparticles green synthesized by mangosteen pericarp extract [GM-AuNPs]) with an average size of 15.37±3.99 to 44.20±16.99 nm were observed in high-resolution transmission electron microscopy (HR-TEM) images. Most interestingly, the silver nanoparticles (silver nanoparticles green synthesized by mangosteen pericarp extract [GM-AgNPs]) had asymmetric nanodumbbell shapes where one tail grew from a spherical head. The average head size was measured to be 13.65±5.07 to 31.08±3.99 nm from HR-TEM images. The hydrodynamic size of both nanoparticles tended to increase with increasing extract concentration. Large negative zeta potentials (-18.92 to -34.77 mV) suggested that each nanoparticle solution possessed excellent colloidal stability. The reaction yields were 99.7% for GM-AuNPs and 82.8% for GM-AgNPs, which were assessed by inductively coupled plasma optical emission spectroscopy. A high-resolution X-ray diffraction pattern confirmed the face-centered cubic structure of both nanoparticles. Based on phytochemical screening and Fourier transform infrared spectra, the hydroxyl functional groups of carbohydrates, flavonoids, glycosides, and phenolic compounds were most likely involved in a reduction reaction of gold or silver salts to their corresponding nanoparticles. The in vitro cytotoxicity (based on a water-soluble tetrazolium assay) demonstrated that GM-AgNPs were toxic to both A549 (a human lung cancer cell) and NIH3T3 (a mouse fibroblast cell). The cytotoxicity of GM-AgNPs on A549 cells was related to apoptotic cell death. However, GM-AuNPs did not show any significant cytotoxicity to either cell. These results suggest that GM-AuNPs have the potential to be drug delivery vehicles or carriers for pharmaceutical and biomedical applications.
Ma, Zheng-Yuan; Xu, Fei; Qin, Yu; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan
2016-04-19
In this work, direct exciton-plasmon interactions (EPI) between CdS quantum dots (QDs) and Ag nanoparticles (NPs) were invoked ingeniously by catalytic Ag deposition on Au NPs for the stimulation of high efficient damping effect toward the excitonic responses in CdS QDs, on the basis of which a novel photoelectrochemical (PEC) bioanalytical format was achieved for sensitive microRNA detection. Specifically, upon the configurational change from the hairpin probe DNA to the "Y"-shaped ternary conjugate consisting of the original probe DNA, assistant DNA, and the target microRNA, the alkaline phosphatase (ALP) catalytic chemistry would then trigger the transition of the interparticle interplay from the CdS QDs-Au NPs to the CdS QDs-Ag NPs systems for the microRNA detection due to the dependence of the photocurrent quenching on the target concentration. This work not only provided a unique method for EPI generation among the PEC nanosystems but also offered a versatile and general protocol for future PEC bioanalysis development.
Wang, Lu-Cun; Zhong, Yi; Jin, Haijun; Widmann, Daniel; Weissmüller, Jörg
2013-01-01
Summary The catalytic properties of nanostructured Au and their physical origin were investigated by using the low-temperature CO oxidation as a test reaction. In order to distinguish between structural effects (structure–activity correlations) and bimetallic/bifunctional effects, unsupported nanoporous gold (NPG) samples prepared from different Au alloys (AuAg, AuCu) by selective leaching of a less noble metal (Ag, Cu) were employed, whose structure (surface area, ligament size) as well as their residual amount of the second metal were systematically varied by applying different potentials for dealloying. The structural and chemical properties before and after 1000 min reaction were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The catalytic behavior was evaluated by kinetic measurements in a conventional microreactor and by dynamic measurements in a temporal analysis of products (TAP) reactor. The data reveal a clear influence of the surface contents of residual Ag and Cu species on both O2 activation and catalytic activity, while correlations between activity and structural parameters such as surface area or ligament/crystallite size are less evident. Consequences for the mechanistic understanding and the role of the nanostructure in these NPG catalysts are discussed. PMID:23503603
An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands.
Wang, Yu; Su, Haifeng; Xu, Chaofa; Li, Gang; Gell, Lars; Lin, Shuichao; Tang, Zichao; Häkkinen, Hannu; Zheng, Nanfeng
2015-04-08
An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L = PhC≡C(-) or 2-pyridylthiolate) on the cluster. The co-presence of three different surface ligands allows the site-specific surface and functional modification of the cluster. The lability of PhC≡C(-) ligands on the cluster was demonstrated, making it possible to keep the metal core intact while removing partial surface capping. Moreover, it was found that ligand exchange on the cluster occurs easily to offer various derivatives with the same metal core but different surface functionality and thus different solubility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi; Wang, Shanshan; Ghiviriga, Ion
A novel synthetic method to create gold based metallo–oligomers/polymers via the combination of inorganic click (iClick) with intermolecular aurophilic interactions is demonstrated. Complexes [PEt 3Au] 4(μ-N 3C 2C 6H 5) (1) and [PPhMe 2Au] 43C 2C 6H 5) (2) and {[PEt 3Au] 4[(μ-N 3C 2) 2-9,9-dihexyl-9H-fluorene]} n (8) have been synthesized via iClick. The tetranuclear structures of 1 and 2, induced by aurophilic bonding, are confirmed in the solid state through single crystal X-ray diffraction experiments and in solution via variable temperature NMR spectroscopy. The extended 1D structure of 8 is constructed by aurophilic induced self-assembly. 1H DOSY NMR analysismore » reveals that the aurophilic bonds in 1, 2, and 8 are retained in the solution phase. The degree of polymerization within complex 8 is temperature and concentration dependent, as determined by 1H DOSY NMR. The complex 8 is a rare example of a solution stable higher ordered structure linked by aurophilic interactions.« less
Metal Adatoms and Clusters on Ultrathin Zirconia Films
2016-01-01
Nucleation and growth of transition metals on zirconia has been studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Since STM requires electrical conductivity, ultrathin ZrO2 films grown by oxidation of Pt3Zr(0001) and Pd3Zr(0001) were used as model systems. DFT studies were performed for single metal adatoms on supported ZrO2 films as well as the (1̅11) surface of monoclinic ZrO2. STM shows decreasing cluster size, indicative of increasing metal–oxide interaction, in the sequence Ag < Pd ≈ Au < Ni ≈ Fe. Ag and Pd nucleate mostly at steps and domain boundaries of ZrO2/Pt3Zr(0001) and form three-dimensional clusters. Deposition of low coverages of Ni and Fe at room temperature leads to a high density of few-atom clusters on the oxide terraces. Weak bonding of Ag to the oxide is demonstrated by removing Ag clusters with the STM tip. DFT calculations for single adatoms show that the metal–oxide interaction strength increases in the sequence Ag < Au < Pd < Ni on monoclinic ZrO2, and Ag ≈ Au < Pd < Ni on the supported ultrathin ZrO2 film. With the exception of Au, metal nucleation and growth on ultrathin zirconia films follow the usual rules: More reactive (more electropositive) metals result in a higher cluster density and wet the surface more strongly than more noble metals. These bind mainly to the oxygen anions of the oxide. Au is an exception because it can bind strongly to the Zr cations. Au diffusion may be impeded by changing its charge state between −1 and +1. We discuss differences between the supported ultrathin zirconia films and the surfaces of bulk ZrO2, such as the possibility of charge transfer to the substrate of the films. Due to their large in-plane lattice constant and the variety of adsorption sites, ZrO2{111} surfaces are more reactive than many other oxygen-terminated oxide surfaces. PMID:27213024
Ultrafast dynamics in atomic clusters: Analysis and control
Bonačić-Koutecký, Vlasta; Mitrić, Roland; Werner, Ute; Wöste, Ludger; Berry, R. Stephen
2006-01-01
We present a study of dynamics and ultrafast observables in the frame of pump–probe negative-to-neutral-to-positive ion (NeNePo) spectroscopy illustrated by the examples of bimetallic trimers Ag2Au−/Ag2Au/Ag2Au+ and silver oxides Ag3O2−/Ag3O2/Ag3O2+ in the context of cluster reactivity. First principle multistate adiabatic dynamics allows us to determine time scales of different ultrafast processes and conditions under which these processes can be experimentally observed. Furthermore, we present a strategy for optimal pump–dump control in complex systems based on the ab initio Wigner distribution approach and apply it to tailor laser fields for selective control of the isomerization process in Na3F2. The shapes of pulses can be assigned to underlying processes, and therefore control can be used as a tool for analysis. PMID:16740664
Xu, Ping; Mack, Nathan H; Jeon, Sea-Ho; Doorn, Stephen K; Han, Xijiang; Wang, Hsing-Lin
2010-06-01
We report a facile synthesis of large-area homogeneous three-dimensional (3D) Ag nanostructures on Au-supported polyaniline (PANI) membranes through a direct chemical reduction of metal ions by PANI. The citric acid absorbed on the Au nuclei that are prefabricated on PANI membranes directs Ag nanoaprticles (AgNPs) to self-assemble into 3D Ag nanosheet structures. The fabricated hybrid metal nanostructures display uniform surface-enhanced Raman scattering (SERS) responses throughout the whole surface area, with an average enhancement factor of 10(6)-10(7). The nanocavities formed by the stereotypical stacking of these Ag nanosheets and the junctions and gaps between two neighboring AgNPs are believed to be responsible for the strong SERS response upon plasmon absorption. These homogeneous metal nanostructure decorated PANI membranes can be used as highly efficient SERS substrates for sensitive detection of chemical and biological analytes.
Stepka, Zane; Dror, Ishai; Berkowitz, Brian
2018-01-01
As a consequence of their growing use in electronic and industrial products, increasing amounts of technology critical elements (TCEs) are being released to the environment. Currently little is known about the fate of many of these elements. Initial research on their potential environmental impact identifies TCEs as emerging contaminants. TCE movement in the environment is often governed by water systems. Research on "natural" waters so far demonstrates that TCEs tend to be associated with suspended particulate matter (SPM), which influences TCE aqueous concentrations (here: concentration of TCEs in dissolved form and attached to SPM) and transport. However, the relative potential of different types of SPM to interact with TCEs is unknown. Here we examine the potential of various types of particulate matter, namely different nanoparticles (NPs; Al 2 O 3, SiO 2 , CeO 2 , ZnO, montmorillonite, Ag, Au and carbon dots) and humic acid (HA), to impact TCE aqueous concentrations in aqueous solutions with soil and sand, and thus influence TCE transport in soil-water environments. We show that a combination of NPs and HA, and not NPs or HA individually, increases the aqueous concentrations of TCEs in soil solutions, for all tested NPs regardless of their type. TCEs retained on SPM, however, settle with time. In solutions with sand, HA alone is as influential as NPs+HA in keeping TCEs in the aqueous phase. Among NPs, Ag-NPs and Au-NPs demonstrate the highest potential for TCE transport. These results suggest that in natural soil-water environments, once TCEs are retained by soil, their partitioning to the aqueous phase by through-flowing water is unlikely. However, if TCEs are introduced to soil-water environments as part of solutions rich in NPs and HA, it is likely that NP and HA combinations can increase TCE stability in the aqueous phase and prevent their retention on soil and sand, thus facilitating TCE transport. Copyright © 2017 Elsevier B.V. All rights reserved.
Islam, Nazar Ul; Amin, Raza; Shahid, Muhammad; Amin, Muhammad; Zaib, Sumera; Iqbal, Jamshed
2017-05-23
Phytotherapeutics exhibit diverse pharmacological effects that are based on the combined action of a mixture of phytoconstituents. In this study, Prunus domestica gum-loaded, stabilized gold and silver nanoparticles (Au/Ag-NPs) were evaluated for their prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory, and analgesic properties. Au/Ag-NPs were biosynthesized and characterized with UV-Vis, FTIR, SEM, EDX, and XRD techniques. The effect of gum and metal ion concentration, reaction temperature, and time on the synthetic stability of nanoparticles was studied along with their post-synthetic stability against varying pH and salt concentrations, long-term storage and extremes of temperature. Nanoparticles were tested for anticancer (HeLa cervical cancer cells), antibacterial (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa), urease inhibition (jack-bean urease), anti-inflammatory (carrageenan-induced paw edema), and antinociceptive (abdominal constriction response) activities. The nanoparticles were mostly spherical with an average particle size between 7 and 30 nm (Au-NPs) and 5-30 nm (Ag-NPs). Au/Ag-NPs maintained their colloidal stability and nanoscale characteristics against variations in physicochemical factors. Au/Ag-NPs have potent anticancer potential (IC 50 = 2.14 ± 0.15 μg/mL and 3.45 ± 0.23 μg/mL). Au/Ag-NPs selectively suppressed the growth of S. aureus (10.5 ± 0.6 mm, 19.7 ± 0.4 mm), E. coli (10 ± 0.4 mm, 14.4 ± 0.7 mm), and P. aeruginosa (8.2 ± 0.3 mm, 13.1 ± 0.2 mm), as well as showed preferential inhibition against jack-bean urease (19.2 ± 0.86%, 21.5 ± 1.17%). At doses of 40 and 80 mg/kg, Au-NPs significantly ameliorated the increase in paw edema during the 1st h (P < 0.05, P < 0.01) and 2-5 h (P < 0.001) of carrageenan-induced inflammation compared to the 200 and 400 mg/kg doses of P. domestica gum (P < 0.05, P < 0.001). At similar doses, Au-NPs also significantly abolished (P < 0.01) the tonic visceral, chemically-induced nociception, which was comparable to that of P. domestica gum (200 mg/kg; P < 0.05, 400 mg/kg; P < 0.01).
Highly reflective Ag-Cu alloy-based ohmic contact on p-type GaN using Ru overlayer.
Son, Jun Ho; Jung, Gwan Ho; Lee, Jong-Lam
2008-12-15
We report on a metallization scheme of high reflectance, low resistance, and smooth surface morphology ohmic contact on p-type GaN. Ag-Cu alloy/Ru contact showed low contact resistivity as low as 6.2 x 10(-6) Ohms cm(2) and high reflectance of 91% at 460 nm after annealing at 400 degrees C in air ambient. The oxidation annealing promoted the out-diffusion of Ga atoms to dissolve in an Ag-Cu layer with the formation of an Ag-Ga solid solution, lowering the contact resistivity. The Ru overlayer acts as a diffusion barrier for excessive oxygen incorporation during oxidation annealing, resulting in high reflectance, good thermal stability, and smooth surface quality of the contact.
Au 329–xAg x(SR) 84 Nanomolecules: Plasmonic Alloy Faradaurate-329
Kumara, Chanaka; Zuo, Xiaobing; Cullen, David A.; ...
2015-08-10
Though significant progress has been made to improve the monodispersity of larger (>10 nm) alloy metal nanoparticles, there still exists a significant variation in nanoparticle composition, ranging from ±1000s of atoms. Here in this paper, for the first time, we report the synthesis of atomically precise (±0 metal atom variation) Au 329–xAg x(SCH 2CH 2Ph) 84 alloy nanomolecules. The composition was determined using high resolution electrospray ionization mass spectrometry. In contrast to larger (>10 nm) Au–Ag nanoparticles, the surface plasmon resonance (SPR) peak does not show a major shift, but a minor ~10 nm red-shift, upon increasing silver content. Themore » intensity of the SPR peak also varies in an intriguing manner, where a dampening is observed with medium silver incorporation, and a significant sharpening is observed upon higher Ag content. The report outlines (a) an unprecedented advance in nanoparticle mass spectrometry of high mass at atomic precision; and (b) the unexpected optical behavior of Au–Ag alloys in the region where nascent SPR emerges; specifically, in this work, the SPR-like peak does not show a major ~100 nm blue-shift with Ag alloying of Au 329 nanomolecules, as shown to be common in larger nanoparticles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erola, Markus O.A.; Philip, Anish; Ahmed, Tanzir
The inverse opal films of SiO{sub 2} containing metal nanoparticles can have both the localized surface plasmon resonance (LSPR) of metal nanoparticles and the Bragg diffraction of inverse opal crystals of SiO{sub 2}, which are very useful properties for applications, such as tunable photonic structures, catalysts and sensors. However, effective processes for fabrication of these films from colloidal particles have rarely been reported. In our study, two methods for preparation of inverse opal films of SiO{sub 2} with three different crystal sizes and containing gold or silver nanoparticles (NPs) via self-assembly using electrostatic interactions and capillary forces are reported. Themore » Bragg diffraction of inverse opal films of SiO{sub 2} in the presence and absence of the template was measured and predicted on the basis of with UV–vis spectroscopy and scanning electron microscopy. The preparation methods used provided good-quality inverse opal SiO{sub 2} films containing highly dispersed, plasmonic AuNPs or AgNPs and having both Bragg diffractions and LSPRs. - Graphical abstract: For syntheses of SiO{sub 2} inverse opals containing Au/Ag nanoparticles two approaches and three template sizes were employed. Self-assembly of template molecules and metal nanoparticles occurred using electrostatic interactions and capillary forces. Both the Bragg diffraction of the photonic crystal and the localized surface plasmon resonance of Au/Ag nanoparticles were detected. - Highlights: • Fabrication methods of silica inverse opals containing metal nanoparticles studied. • Three template sizes used to produce SiO{sub 2} inverse opals with Au/Ag nanoparticles. • PS templates with Au nanoparticles adsorbed used in formation of inverse opals. • Ag particles infiltrated in inverse opals with capillary and electrostatic forces. • Bragg diffractions of IOs and surface plasmon resonances of nanoparticles observed.« less
Hancock, Robert D; Bartolotti, Libero J
2005-10-03
A prediction of the formation constants (log K1) for complexes of metal ions with a single NH3 ligand in aqueous solution, using quantum mechanical calculations, is reported. DeltaG values at 298 K in the gas phase for eq 1 (DeltaG(DFT)) were calculated for 34 metal ions using density functional theory (DFT), with the expectation that these would correlate with the free energy of complex formation in aqueous solution (DeltaG(aq)). [M(H2O)6]n+(g) + NH(3)(g) = [M(H2O)5NH3]n+(g) + H2O(g) (eq 1). The DeltaG(aq) values include the effects of complex changes in solvation on complex formation, which are not included in eq 1. It was anticipated that such changes in solvation would be constant or vary systematically with changes in the log K(1) value for different metal ions; therefore, simple correlations between DeltaG(DFT) and DeltaG(aq) were sought. The bulk of the log K1(NH3) values used to calculate DeltaG(aq) were not experimental, but estimated previously (Hancock 1978, 1980) from a variety of empirical correlations. Separate linear correlations between DeltaG(DFT) and DeltaG(aq) for metal ions of different charges (M2+, M3+, and M4+) were found. In plots of DeltaG(DFT) versus DeltaG(aq), the slopes ranged from 2.201 for M2+ ions down to 1.076 for M4+ ions, with intercepts increasing from M2+ to M4+ ions. Two separate correlations occurred for the M3+ ions, which appeared to correspond to small metal ions with a coordination number (CN) of 6 and to large metal ions with a higher CN in the vicinity of 7-9. The good correlation coefficients (R) in the range of 0.97-0.99 for all these separate correlations suggest that the approach used here may be the basis for future predictions of aqueous phase chemistry that would otherwise be experimentally inaccessible. Thus, the log K1(NH3) value for the transuranic Lr3+, which has a half-life of 3.6 h in its most stable isotope, is predicted to be 1.46. These calculations should also lead to a greater insight into the factors governing complex formation in aqueous solution. All of the above DFT calculations involved corrections for scalar relativistic effects (RE). Au has been described (Koltsoyannis 1997) as a "relativistic element". The chief effect of RE for group 11 ions is to favor linear coordination geometry and greatly increase covalence in the M-L bond. The correlation for M+ ions (H+, Cu+, Ag+, Au+) involved the preferred linear coordination of the [M(H2O)2]+ complexes, so that the DFT calculations of DeltaG for the gas-phase reaction in eq 2 were carried out for M = H+, Cu+, Ag+, and Au+. [M(H2O)2]+(g) + NH3(g) = [M(H2O)NH3]+(g) + H2O(g) (eq 2). Additional DFT calculations for eq 2 were carried out omitting corrections for RE. These indicated, in the absence of RE, virtually no change in the log K1(NH3) value for H+, a small decrease for Cu+, and a larger decrease for Ag+. There would, however, be a very large decrease in the log K1(NH3) value for Au(I) from 9.8 (RE included) to 1.6 (RE omitted). These results suggest that much of "soft" acid behavior in aqueous solution in the hard and soft acid-base classification of Pearson may be the result of RE in the elements close to Au in the periodic table.
Comparison of the passivity between cast alloy and laser-welded titanium overdenture bars.
Paiva, Jose; Givan, Daniel A; Broome, James C; Lemons, Jack E; McCracken, Michael S
2009-12-01
The purpose of this study was to investigate the fit of cast alloy overdenture and laser-welded titanium-alloy bars by measuring induced strain upon tightening of the bars on a master cast as well as a function of screw tightening sequence. Four implant analogs were secured into Type IV dental stone to simulate a mandibular edentulous patient cast, and two groups of four overdenture bars were fabricated. Group I was four cast alloy bars and Group II was four laser-welded titanium bars. The cast alloy bars included Au-Ag-Pd, Pd-Ag-Au, Au-Ag-Cu-Pd, and Ag-Pd-Cu-Au, while the laser-welded bars were all Ti-Al-V alloy. Bars were made from the same master cast, were torqued into place, and the total strain in the bars was measured through five strain gauges bonded to the bar between the implants. Each bar was placed and torqued 27 times to 30 Ncm per screw using three tightening sequences. Data were processed through a strain amplifier and analyzed by computer using StrainSmart software. Data were analyzed by ANOVA and Tukey's post hoc test. Significant differences were found between alloy types. Laser-welded titanium bars tended to have lower strains than corresponding cast bars, although the Au-Ag-Pd bar was not significantly different. The magnitudes of total strain were the least when first tightening the ends of the bar. The passivity of implant overdenture bars was evaluated using total strain of the bar when tightening. Selecting a high modulus of elasticity cast alloy or use of laser-welded bar design resulted in the lowest average strain magnitudes. While the effect of screw tightening sequence was minimal, tightening the distal ends first demonstrated the lowest strain, and hence the best passivity.
Sinha, Tanur; Ahmaruzzaman, M
2015-09-01
The common household material, egg shell of Anas platyrhynchos is utilized for the synthesis of Silver and Gold-Silver core shell nanoparticles using greener, environment friendly and economic way. The egg shell extracts were acting as a stabilizing and reducing agents. This method avoids the use of external reducing and stabilizing agents, templates and solvents. The effects of various reaction parameters, such as reaction temperature, concentration in the formation of nanoparticles have also been investigated. The compositional abundance of gelatin may be envisaged for the effective reductive as well as stabilizing potency. The mechanisms for the formation of NPs have also been presented. The synthesized Ag NPs formed were predominantly spherical in nature with an average size of particles in the range of 6-26 nm. While, Au-Ag core shell nanoparticles formed were spherical and oval shaped, within a narrow size spectrum of 9-18 nm. Both the Ag NPs Au-and Ag core shell nanoparticles showed characteristic Bragg's reflection planes of fcc structure and surface plasmon resonance at 430 nm and 365 nm, respectively. The NPs were utilized for the removal of toxic and hazardous dyes, such as Rose Bengal, Methyl Violet 6 B and Methylene Blue from aqueous phase. Approximately 98.2%, 98.4% and 97% degradations of Rose Bengal, Methyl Violet 6 B, and Methylene Blue were observed with Ag NPs, while the percentage degradation of these dyes was 97.3%, 97.6% and 96% with Au-Ag NPs, respectively. Therefore, the present study has opened up an innovative way for synthesizing Ag NPs and Au-Ag bimetallic nanostructures of different morphologies and sizes involving the utilization of egg shell extract. The high efficiency of the NPs as photocatalysts has opened a promising application for the removal of hazardous dyes from the industrial effluents. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Krishnan, S.; Hauge, R. H.; Margrave, J. L.
1989-01-01
The development of a noncontact temperature measurement device utilizing rotating analyzer ellipsometry is described. The technique circumvents the necessity of spectral emissivity estimation by direct measurement concomittant with radiance brightness. Using this approach, the optical properties of electromagnetically levitated liquid metals Cu, Ag, Au, Ni, Pd, Pt, and Zr were measured in situ at four wavelengths and up to 600 K superheat in the liquid. The data suggest an increase in the emissivity of the liquid compared with the incandescent solid. The data also show moderate temperature dependence of the spectral emissivity. A few measurements of the optical properties of undercooled liquid metals were also conducted. The data for both solids and liquids show excellent agreement with available values in the literature for the spectral emissivities as well as the optical constants.
Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu
2014-04-01
A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.
Padil, Vinod Vellora Thekkae; Stuchlík, Martin; Černík, Miroslav
2015-05-05
Electrospun nanofibre membranes from blend solutions of deacetylated gum kondagogu and polyvinyl alcohol of various weight proportions were prepared. The electrospun membrane was cross linked by heating at 150°C for 6h and later modified by methane plasma treatment. Membranes were successively used for the removal of nanoparticles (Ag, Au and Pt) from water. Pt nanoparticles with the smallest size (2.4 ± 0.7 nm) has a higher adsorption capacity (270.4 mg/g and 327.2mg/g) compared to Au and Ag nanoparticles with particle sizes 7.8 ± 2.3 nm and 10.5 ± 3.5 nm onto nanofibre membrane (NFM) and methane plasma treated membrane (P-NFM). The extraction efficiency of P-NFM for the removal of nanoparticles in water is higher compared to untreated membranes. The adsorption kinetics were evaluated by pseudo-first order and pseudo-second order models for the extraction of nanoparticles from water, with the pseudo-second order model providing a better fit. The reusability and regeneration of the P-NFM for consecutive adsorption was also established. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lu, Luyao; Luo, Zhiqiang; Xu, Tao; Yu, Luping
2013-01-09
This article describes a cooperative plasmonic effect on improving the performance of polymer bulk heterojunction solar cells. When mixed Ag and Au nanoparticles are incorporated into the anode buffer layer, dual nanoparticles show superior behavior on enhancing light absorption in comparison with single nanoparticles, which led to the realization of a polymer solar cell with a power conversion efficiency of 8.67%, accounting for a 20% enhancement. The cooperative plasmonic effect aroused from dual resonance enhancement of two different nanoparticles. The idea was further unraveled by comparing Au nanorods with Au nanoparticles for solar cell application. Detailed studies shed light into the influence of plasmonic nanostructures on exciton generation, dissociation, and charge recombination and transport inside thin film devices.
The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM
NASA Astrophysics Data System (ADS)
Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa
2008-06-01
This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.
The Influence of Processing on Strengthening Mechanisms in Pb-Free Solder Joints
NASA Astrophysics Data System (ADS)
Mutuku, Francis; Arfaei, Babak; Cotts, Eric J.
2017-04-01
The number, and the spacing, of Ag3Sn precipitates in Sn-Ag-Cu/Cu solder joints were related to separate processing parameters. The mechanical properties of an individual solder joint were directly related to the resulting distribution of different dispersoids in the joint. As the number of Ag3Sn precipitates increased, so did solder joint strength and shear fatigue lifetime. The room-temperature shear fatigue lifetime was inversely correlated with the separation between Ag3Sn precipitates. Bi and Sb solid solution strengthening was found to result in significantly larger values of shear strength and shear fatigue lifetime for one Pb-free solder. Room-temperature shear fatigue lifetime tests were identified as a relatively straightforward, yet sensitive means to gain insight into the reliability of Sn-Ag-Cu (SAC) solder joints.
Localized surface plasmon resonance properties of symmetry-broken Au-ITO-Ag multilayered nanoshells
NASA Astrophysics Data System (ADS)
Lv, Jingwei; Mu, Haiwei; Lu, Xili; Liu, Qiang; Liu, Chao; Sun, Tao; Chu, Paul K.
2018-06-01
The plasmonic properties of symmetry-broken Au-ITO-Ag multilayered nanoshells by shell cutting are studied by the finite element method. The influence of the polarization of incident light and geometrical parameters on the plasmon resonances of the multilayered nanoshells are investigated. The polarization-dependent multiple plasmon resonances appear from the multilayered nanoshells due to symmetry breaking. In nanostructures with a broken symmetry, the localized surface plasmon resonance modes are enhanced resulting in higher order resonances. According to the plasmon hybridization theory, these resonance modes and greater spectral tunability derive from the interactions of an admixture of both primitive and multipolar modes between the inner Au core and outer Ag shell. By changing the radius of the Au core, the extinction resonance modes of the multilayered nanoshells can be easily tuned to the near-infrared region. To elucidate the symmetry-broken effects of multilayered nanoshells, we link the geometrical asymmetry to the asymmetrical distributions of surface charges and demonstrate dipolar and higher order plasmon modes with large associated field enhancements at the edge of the Ag rim. The spectral tunability of the multiple resonance modes from visible to near-infrared is investigated and the unique properties are attractive to applications including angularly selective filtering to biosensing.
NASA Astrophysics Data System (ADS)
Cui, Yuanyuan; Wang, Ying; Fan, Kangnian; Dai, Wei-Lin
2013-08-01
A series of AuAg/TiO2 catalysts calcined at different temperatures were used for single-pot, solvent-free synthesis of sodium benzoate and benzoic acid through the green oxidation of benzyl alcohol. The best catalytic performance, which produced a sodium benzoate yield of up to 85%, was obtained over the AuAg/TiO2 catalyst calcined at 623 K. Systematic characterizations including BET, XRD, TEM, XPS, and UV-vis DRS and ICP were carried out to investigate the influence of calcined temperature on the structural evolution of the bimetallic AuAg/TiO2 catalysts. TEM images showed that both low (473 K) and high calcinations temperatures (973 K) resulted in larger particles. The smallest particles (8.2 nm) were obtained at 623 K. This decrease in particle size may have been induced by the re-dispersion and interaction of the bimetallic species. XRD and XPS results showed that proper calcination temperature (623 K) could promote interactions between the bimetallic particles and the TiO2 support as well as the dispersion of active bimetallic species. The higher catalytic performance of the 623 K calcined catalyst could be attributed to the smaller particle size and the synergetic interaction between nano-bimetallic gold and silver species.
NASA Astrophysics Data System (ADS)
Çakır, D.; Gülseren, O.
2011-08-01
In this study, we have investigated the interaction of various different atomic and molecular species (H, C, O, H2, and O2) with the monatomic chains of Au, Ag, and Cu via total-energy calculations using the plane-wave pseudopotential method based on density functional theory. The stability, energetics, mechanical, and electronic properties of the clean and contaminated Au, Ag, and Cu nanowires have been presented. We have observed that the interaction of H, C, or O atoms with the monatomic chains are much stronger than the one of H2 or O2 molecules. The atomic impurities can easily be incorporated into these nanowires; they form stable and strong bonds with these one-dimensional structures when they are inserted in or placed close to the nanowires. Moreover, the metal-atomic impurity bond is much stronger than the metal-metal bond. Upon elongation, the nanowires contaminated with atomic impurities usually break from the remote metal-metal bond. We have observed both metallic and semiconducting contaminated nanowires depending on the type of impurity, whereas all clean monatomic chains of Au, Cu, and Ag exhibit metallic behavior. Our findings indicate that the stability and the electronic properties of these monatomic chains can be tuned by using appropriate molecular or atomic additives.