Science.gov

Sample records for ag-cu-ti filler metal

  1. Active Brazing of C/C Composite to Copper by AgCuTi Filler Metal

    NASA Astrophysics Data System (ADS)

    Zhang, Kexiang; Xia, Lihong; Zhang, Fuqin; He, Lianlong

    2016-05-01

    Brazing between the carbon-fiber-reinforced carbon composite (C/C composite) and copper has gained increasing interest because of its important application in thermal management systems in nuclear fusion reactors and in the aerospace industry. In order to examine the "interfacial shape effect" on the mechanical properties of the joint, straight and conical interfacial configurations were designed and machined on the surface of C/C composites before joining to copper using an Ag-68.8Cu-4.5Ti (wt pct) alloy. The microstructure and interfacial microchemistry of C/C composite/AgCuTi/Cu brazed joints were comprehensively investigated by using high-resolution transmission electron microscopy. The results indicate that the joint region of both straight and conical joints can be described as a bilayer. Reaction products of Cu3Ti3O and γ-TiO were formed near the copper side in a conical interface joint, while no reaction products were found in the straight case. The effect of Ag on the interfacial reaction was discussed, and the formation mechanism of the joints during brazing was proposed. On the basis of the detailed microstructure presented, the mechanical performance of the brazed joints was discussed in terms of reaction and morphology across the joint.

  2. Al2O3/SUS304 Brazing via AgCuTi-W Composite as Active Filler

    NASA Astrophysics Data System (ADS)

    Su, Cherng-Yuh; Zhuang, Xie-Zongyang; Pan, Cheng-Tang

    2014-03-01

    Alumina ceramic (α-Al2O3) was brazed to stainless steel (SUS304) using an Ag-Cu-Ti + W composite filler and a traditional active brazing filler alloy (CuSil-ABA). Then, the effects of the presence of W particles and of the brazing parameters on the microstructures and mechanical properties of the brazed joints were investigated. The maximum tensile strength of the joints obtained using Ag-Cu-Ti + W composite filler was 13.2 MPa, which is similar to that obtained using CuSil-ABA filler (13.5 MPa). When the joint was brazed at 930 °C for 30 min, the tensile strengths decreased for both kinds of fillers, although the strength was slightly higher for the Ag-Cu-Ti + W composite filler than for the Ag-Cu-Ti filler. The interfacial microstructure results show that the Ti reacts with W to form a Ti-W-O compound in the brazing alloy. When there are more W particles in the brazing alloy, the thickness of the Ti X O Y reaction layer near the alumina ceramic decreases. Moreover, W particles added to the brazing alloy can reduce the coefficient of thermal expansion of the brazing alloy, which results in lower residual stress between the Al2O3 and SUS304 in the brazing joints and thus yields higher tensile strengths as compared to those obtained using the CuSil-ABA brazing alloy.

  3. Properties of vacuum brazed Si3N4/steel joint using active brazing filler metal

    NASA Astrophysics Data System (ADS)

    Bao, Fanghan; Ren, Jialie; Zhou, Yunhong; Yan, Ping

    The influence of active element Ti in Ag-Cu-Ti filler metal on wettability and joint strength is studied. Filler metal with 3 percent Ti achieves good results in direct brazing of silicon nitride to steel. For improving joint strength different interlayers are synthetically investigated. Experiments showed that an interlayer of low yield strength material can reduce the residual stress in the joint and increase joint strength more effectively than that of an interlayer of low coefficient of expansion material. Active element Ti in the brazing alloy diffused into Si3N4, and chemical reactions occurred in ceramic-metal interface producing certain chemical compounds consist of N and Ti.

  4. Interfacial reactions between sapphire and silver-copper-titanium thin film filler metal

    SciTech Connect

    Suenaga, Seiichi; Nakahashi, Masako; Maruyama, Miho; Fukasawa, Takayuki

    1997-02-01

    Wetting and brazing studies of sputtering-deposited, submicrometer thin film filler metal in an Ag-Cu-Ti/Al{sub 2}O{sub 3} system were performed. The interfacial reaction layer between the filler metal and Al{sub 2}O{sub 3} was investigated. It is possible to make a brazing joint even with a reaction layer of less than 100 nm thickness. Different types of interfacial reaction layers were observed when the Ti content in the filler metal was varied. The Cu-Ti-O system compounds were observed in the samples with high wetting capabilities, but not in the sample with low wetting characteristics. It was found that these compounds are substances that promote effective brazing.

  5. Variations of phases and microstructure of reaction products in the interface of Al[sub 2]O[sub 3]/Ag-Cu-Ti joint system with heat-treatment

    SciTech Connect

    Byun, W.; Kim, H. . Dept. of Inorganic Materials Science and Engineering); Yun, M. )

    1994-12-01

    Ceramic-to-metal (C/M) joining is of particular importance because of physical and economic limitations that restrict the size and complexity of ceramic components. The active filler metal method is one of the C/M joining techniques and involves the use of elements with a strong affinity for O[sub 2], e.g., Ti or Zr. Active metal elements, typically Ti, have been shown to be effective in wetting various oxides. In the Ag-Cu-Ti/Al[sub 2]O[sub 3] system the primary concern has been focused on the formation of Ti-contained phases as a result of chemical reaction between Al[sub 2]O[sub 3] and the Ti-containing brazing alloy. Previous studies suggested that Ti in brazing alloy reacts with the Al[sub 2]O[sub 3] ceramic surface to form compounds such as TiO. These compounds act as a transition layer between the Al[sub 2]O[sub 3] and the brazing alloy. The chemical reaction products at the C/M interface are important because they influence the mechanical strength of the joint. These products are affected by the composition of the brazing alloy and the process conditions such as the heat-treatment temperature and time. Consequently, microstructural studies of interfacial reaction products must be carried out to understand the relationships between the structure and the properties of the joint. The purpose of the present study is to investigate the phase evolution and the microstructural characteristics of chemical reaction products formed in the interface between the commercial alumina and the Ti-containing brazing filler metal at various heat-treatment conditions.

  6. Microstructure and Performance of Kovar/Alumina Joints Made with Silver-Copper Base Active Metal Braze Alloys

    SciTech Connect

    STEPHENS, JOHN J.; VIANCO,PAUL T.; HLAVA,PAUL F.; WALKER,CHARLES A.

    1999-12-15

    Poor hermeticity performance was observed for Al{sub 2}O{sub 3}-Al{sub 2}O{sub 3} ceramic-ceramic joints having a Kovar{trademark} alloy interlayer. The active Ag-Cu-Ti filler metal was used to braze the substrates together. The Ti active element was scavenged from the filler metal by the formation of a (Fe, Ni, Co){sub x}Ti phase (x= 2-3) that prevented development of a continuous Ti{sub x}O{sub y} layer at the filler metal/Al{sub 2}O{sub 3} interface. Altering the process parameters did not circumvent the scavenging of Ti. Molybdenum barrier layers 1000, 2500, or 5000 {angstrom} thick on the Kovar{trademark} surfaces successfully allowed Ti{sub x}O{sub y} formation at the filler metal/Al{sub 2}O{sub 3} interface and hermetic joints. The problems with the Ag-Cu-Ti filler metal for Kovar{trademark}/Al{sub 2}O{sub 3} braze joints led to the evaluation of a Ag-Cu-Zr filler metal. The Zr (active element) in Ag-Cu-Zr filler metal was not susceptible to the scavenging problem.

  7. Effect of vertically oriented few-layer graphene on the wettability and interfacial reactions of the AgCuTi-SiO2f/SiO2 system.

    PubMed

    Sun, Z; Zhang, L X; Qi, J L; Zhang, Z H; Hao, T D; Feng, J C

    2017-03-22

    With the aim of expanding their applications, particularly when joining metals, a simple but effective method is reported whereby the surface chemical reactivity of SiO2f/SiO2 (SiO2f/SiO2 stands for silica fibre reinforced silica based composite materials and f is short for fibre) composites with vertically oriented few-layer graphene (VFG, 3-10 atomic layers of graphene vertically oriented to the substrate) can be tailored. VFG was uniformly grown on the surface of a SiO2f/SiO2 composite by using plasma enhanced chemical vapour deposition (PECVD). The wetting experiments were conducted by placing small pieces of AgCuTi alloy foil on SiO2f/SiO2 composites with and without VFG decoration. It was demonstrated that the contact angle dropped from 120° (without VFG decoration) to 50° (with VFG decoration) when the holding time was 10 min. The interfacial reaction layer in SiO2f/SiO2 composites with VFG decoration became continuous without any unfilled gaps compared with the composites without VFG decoration. High-resolution transmission electron microscopy (HRTEM) was employed to investigate the interaction between VFG and Ti from the AgCuTi alloy. The results showed that VFG possessed high chemical reactivity and could easily react with Ti even at room temperature. Finally, a mechanism of how VFG promoted the wetting of the SiO2f/SiO2 composite by the AgCuTi alloy is proposed and thoroughly discussed.

  8. Formation of interfacial microstructure in brazing of Si{sub 3}N{sub 4} with Ti-activated Ag-Cu filler alloys

    SciTech Connect

    Paulasto, M.; Kivilahti, J.K.

    1995-04-15

    Advanced ceramics like silicon nitride are increasingly used as structural components in demanding applications such as turbine engines and heat exchangers. Owing to the difficulties in fabrication of complicated geometries from brittle ceramics, like Si{sub 3}N{sub 4}, adequate joining techniques have to be provided. Brazing with active filler metals, most of which are based on the Ag-Cu-Ti system, is increasingly used for joining of Si{sub 3}N{sub 4} to other ceramics and metals. The present work concentrates on the formation of the interfacial microstructures in the brazing of silicon nitride with AgCuTi alloys using both thermodynamic analysis and brazing experiments. This article is part of a larger program, in which the role of titanium in active brazing of ceramics has been studied. The interfacial reactions were investigated by brazing Si{sub 3}N{sub 4} with two commercial filler alloys and with different binary AgCu filler alloys produced in the laboratory. Phases formed during joining were characterized with the SEM/EPMA and SIMS techniques. The thermodynamic information is obtained from the descriptions of the ternary Ti-Si-N and Ti-Cu-Ag systems assessed in previous studies and from the literature concerning the Ag-Si and Cu-Si systems.

  9. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal...

  10. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal...

  11. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal...

  12. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal...

  13. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal...

  14. Nickel-chromium-silicon brazing filler metal

    DOEpatents

    Martini, Angelo J.; Gourley, Bruce R.

    1976-01-01

    A brazing filler metal containing, by weight percent, 23-35% chromium, 9-12% silicon, a maximum of 0.15% carbon, and the remainder nickel. The maximum amount of elements other than those noted above is 1.00%.

  15. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST... Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler metal is used in a welded fabrication that is required to meet the requirements of this part the...

  16. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST... Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler metal is used in a welded fabrication that is required to meet the requirements of this part the...

  17. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST... Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler metal is used in a welded fabrication that is required to meet the requirements of this part the...

  18. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST... Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler metal is used in a welded fabrication that is required to meet the requirements of this part the...

  19. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST... Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler metal is used in a welded fabrication that is required to meet the requirements of this part the...

  20. Interfacial structure of Si3N4 brazed with an Ag-Cu-Ti alloy

    NASA Astrophysics Data System (ADS)

    Suematsu, H.; Petrovic, J. J.; Mitchell, T. E.; Yano, T.

    Single crystal Si3N4 was brazed using a Ag-Cu eutectic alloy containing 2 percent Ti at 950 C for 30 min and the interface was observed by high resolution electron microscopy. A layer of reaction products is formed between the Si3N4 and the brazed metal. TiN and Ti2N are formed near the interface; however, only TiN is found at the interface in contact with the Si3N4. A crystallographic orientation relationship was found between the TiN and Si3N4 in which the N atoms are shared between the two structures with little distortion.

  1. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  2. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  3. Amorphous Ti-Zr; Base Metglas brazing filler metals

    SciTech Connect

    Rabinkin, A.; Liebermann, H.; Pounds, S.; Taylor, T. )

    1991-01-01

    This paper is the first report on processing, properties and potential application of amorphous titanium/zirconium-base alloys produced in the form of a good quality continuous and ductile ribbon having up to 12.5 mm width. To date, the majority of titanium brazing is accomplished using cooper and aluminum-base brazing filler metals. The brazements produced with these filler metals have rather low ({approximately}300{degrees} C) service temperature, thus impeding progress in aircraft and other technologies and industries. The attempt to develop a generation of high temperature brazing filler metals was made in the late sixties-early seventies studies in detail were a large number of Ti-, Zr-Ti-Zr, Ti-V and Zr-V-Ti based alloys. The majority of these alloys has copper and nickel as melting temperature depressants. The presence of nickel and copper converts them into eutectic alloys having (Ti(Zr)) (Cu(Ni)), intermetallic phases as major structural constituents. This, in turn, results in high alloy brittleness and poor, if any, processability by means of conventional, i.e. melting-ingot casting-deformation technology. In spite of good wettability and high joint strength achieved in dozens of promising alloys, only Ti-15Cu-15Ni is now widely used as a brazing filler metal for high service temperature. Up until now this material could not be produced as a homogeneous foil and is instead applied as a clad strip consisting of three separate metallic layers.

  4. Weldability testing of Inconel{trademark} filler metals

    SciTech Connect

    Hood, B.B.; Lin, W.

    1995-12-31

    This paper presents the findings of a research program aimed at quantifying the weld solidification cracking susceptibility and weld metal liquation cracking susceptibility of Inconel{trademark} filler materials 52, 82, 152 and 182 deposited on a variety of materials intended for pressurized water reactor applications. A cursory investigation on the repair weldability of Filler Metal 52 using the Gleeble{trademark} thermo-mechanical simulation technique is also included. The brittle temperature range (BTR) in the fusion zone and HAZ was determined using the longitudinal-Varestraint test and spot-Varestraint test, respectively, and used as a weldability index for quantification of susceptibility to weld solidification cracking and HAZ liquation cracking. Results from this study showed that Filler Metals 52 exhibited the best resistance to both weld solidification cracking and weld metal liquation cracking followed by 82, 152 and 182 for the base metal combinations tested in this study. Repair weldability study suggested that the resistance to weld metal liquation cracking of 52 all weld metal would not be significantly reduced after ten times of weld simulation at peak temperatures of 900 C and 1,300 C.

  5. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    SciTech Connect

    Kikel, J.M.; Parker, D.M.

    1998-06-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility was compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC.

  6. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    NASA Astrophysics Data System (ADS)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  7. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and Inconel 600 Alloy with Two Ag-Cu-Ti Active Braze Alloys

    NASA Astrophysics Data System (ADS)

    Shiue, Ren-Kae; Wu, Shyi-Kaan; Yang, Sheng-Hao

    2017-02-01

    Infrared brazing of Ti50Ni50 SMA and Inconel 600 alloy using Cusil-ABA and Ticusil filler metals has been investigated. The joints were dominated by Ag-Cu eutectic with proeutectic Cu in the Cusil-ABA brazed joint and with proeutectic Ag in the Ticusil one. A continuous curved belt composed of a Ni3Ti layer and a (Cu x Ni1- x )2Ti layer formed in the brazed Ti50Ni50/Ticusil/Inconel 600 joint. On the Ti50Ni50 SMA side, an intermetallic layer of (Cu x Ni1- x )2Ti formed in all joints, with x values around 0.81 and 0.47. Layers of (Cu x Ni1- x )2Ti, Ni3Ti, and mixed Ni3Ti and Ni2Cr intermetallics were observed next to the Inconel 600 substrate in the brazed Ti50Ni50/Cusil-ABA/Inconel 600 joint. The maximum shear strengths of the joints using the Cusil-ABA filler metal and the Ticusil filler metal were 324 and 300 MPa, respectively. In the Cusil-ABA brazed joint, cracks with cleavage-dominated fracture propagated along the (Cu x Ni1- x )2Ti interfacial layer next to the Ti50Ni50 SMA substrate. In the Ticusil brazed joint, ductile dimple fracture occurred in the Ag-rich matrix near the Inconel 600 alloy substrate. The absence of a detrimental Ti-Fe-(Cu) layer on the Inconel 600 substrate side can effectively improve the shear strength of the joint.

  8. Brazing of copper to stainless steel with a low-silver-content brazing filler metal

    NASA Astrophysics Data System (ADS)

    Fukikoshi, Tatsuya; Watanabe, Yūki; Miyazawa, Yasuyuki; Kanasaki, Fumio

    2014-08-01

    The brazing of copper to stainless steel (SUS304 JIS) was performed using a low- silver-content brazing filler metal, Ag-50Cu, under an Ar gas atmosphere with a conventional furnace, owing to the potential economic benefits of using low-silver-content filler metals. The brazeability of the low-silver-content brazing filler metal to copper and SUS304 was investigated. A good joint was obtained, and a drastic dissolution reaction occurred at the copper side. Molten BAg8 penetrated along the crystal grain boundary of the copper base metal when BAg8 was used as the filler metal. This was caused by the dissolution of Ni from the stainless steel into the molten filler metal. Ag-50Cu, which was investigated in this work, can be used instead of BAg8 filler metal.

  9. Brazing diamond grits onto a steel substrate using copper alloys as the filler metals

    NASA Astrophysics Data System (ADS)

    Chen, S.-M.; Lin, S.-T.

    1996-12-01

    Surface-set diamond tools were fabricated by an active metal brazing process, using bronze (Cu-8.9Sn) powder and 316L stainless steel powder mixed to various ratios as the braze filler metals. The diamond grits were brazed onto a steel substrate at 1050 °C for 30 min in a dry hydrogen atmosphere. After brazing practice, an intermediate layer rich in chromium formed between the braze filler metal and diamond. A braze filler metal composed of 70 wt % bronze powder and 30 wt % stainless steel powder was found to be optimum in that the diamond grits were strongly impregnated in the filler metal by both mechanical and chemical types of holding. The diamond tools thus fabricated performed better than conventional nickel-plated diamond tools. In service, the braze filler metal wore at almost the same rate as the diamond grits, and no pullout of diamond grits or peeling of the filler metal layer took place.

  10. Interfacial structure of Si{sub 3}N{sub 4} brazed with a Ag-Cu-Ti alloy

    SciTech Connect

    Suematsu, H.; Petrovic, J.J.; Mitchell, T.E.; Yano, T.

    1992-12-01

    Single crystal Si{sub 3}N{sub 4} was brazed using a Ag-Cu eutectic alloy containing 2% Ti at 950{degrees}C for 30min and the interface was observed by high resolution electron microscopy. A layer of reaction products is formed between the Si{sub 3}N{sub 4} and the brazed metal. TiN and Ti{sub 2}N are formed near the interface; however, only TiN is found at the interface in contact with the Si{sub 3}N{sub 4}. A crystallographic orientation relationship was found between the TiN and Si{sub 3}N{sub 4} in which the N atoms are shared between the two structures with little distortion.

  11. Interfacial reaction between alumina and Cu-Ti filler metal during reactive metal brazing

    SciTech Connect

    Bang, K.S. . Welding Research Center); Liu, S. . Center for Welding and Joining Research)

    1994-03-01

    If a chemical reaction at the interface can influence significantly the properties of a brazed joint using reactive filler metals, it is very important to understand which reaction occurs and how the reaction products grow at the interface. In this research, the interfacial reaction and the kinetics of reaction products growth in alumina brazing utilizing Cu-Ti filler metals were investigated. Cu-Ti filler metals reduced Al[sub 2]O[sub 3] to form TiO at the interface. Thermodynamically, reduction of Al[sub 2]O[sub 3] is possible through the dissolution of the aluminum by the filler metal. At 1,300 K, for example, interfacial reaction can proceed until the activity of aluminum reaches about 0.02 in Cu-20 at.-% Ti filler metal. With time, the TiO layer grew toward the center of the brazing filler metal following a parabolic rate law, at the cost of another complex oxide, presumably Ti[sub 3]Cu[sub 3]O, which formed next to the TiO. The activation energy of TiO growth was 208 kJ/mol (50 kcal/mol), which corresponds to the activation energy of oxygen diffusion in the TiO. Therefore, it appears likely that the growth of TiO is controlled by oxygen diffusion.

  12. Brazing of titanium by Cu-P brazing filler metals

    SciTech Connect

    Ariga, Tadashi; Matsu, Kotaro; Miyazawa, Yasuyuki

    1994-12-31

    Brazing of commercially pure titanium materials was made using the two types of the copper-phosphorus brazing filler metal foil. Two types of the brazing filler metal foils, BCuP-2 and -3 (AWS classification number), were used in this study. The chemical compositions of BCuP-2 and -3 were Cu-7.2P and Cu-6P-5Ag. Brazing was done in an argon gas atmosphere. After brazing, cutting, and polishing of the specimen, the mechanical properties of the specimen were estimated by shear strength test. And the cross-sectional microstructures at the brazed joint were observed by optical microscope and the elemental distributions at the brazed joint were analyzed by SENM and EPMA examinations. A sound brazed joint was obtained in this study. The maximum shear strength of the specimen was about 300 MPa in this study. According to observation of the cross-sectional microstructures, the reaction layer was formed at the base metal/brazed layer interface. The fracture during the shear test occurred in this reaction layer. And the phosphorus element was concentrated in this layer. Therefore, it appeared that the behavior of phosphorus element influenced the brazeability of these specimen.

  13. Corrosion behaviors of Al-Si-Cu-based filler metals and 6061-T6 brazements

    NASA Astrophysics Data System (ADS)

    Su, T. L.; Wang, S. S.; Tsao, L. C.; Chang, S. Y.; Chuang, T. H.; Yeh, M. S.

    2002-04-01

    The corrosion behaviors of a series of Al-Si-Cu-based filler metals and the 6061-T6 butt joints brazed with these filler metals are evaluated by polarization tests and immersion tests in a 3.5% NaCl aqueous solution. For comparison, a traditional Al-12Si filler metal is also employed. The results indicate that the Al-Si-Cu-based filler metals before brazing possess much higher corrosion current densities and pitting tendencies than the Al-12Si filler metal. However, brazing of the 6061-T6 alloy with an Al-12Si filler metal produces a wider butt joint, which, in this case, creates a more extensive corrosion region. Severe galvanic corrosion occurs at the 6061-T6 joints when brazed with Al-Si-Cu-based filler metals. However, in the case of the 6061-T6/Al-12Si brazements, selective corrosion of the Al-12Si eutectic phase can be observed. The bonding strengths of the 6061-T6 butt joints brazed with various filler metals are also measured before and after the immersion tests.

  14. Influence of Filler Metals in Welding Wires on the Phase and Chemical Composition of Weld Metal

    NASA Astrophysics Data System (ADS)

    Kozyrev, N. A.; Osetkovskiy, I. V.; Kozyreva, O. A.; Zernin, E. A.; Kartsev, D. S.

    2016-04-01

    The influence of filler metals used in welding wires on the phase and chemical composition of the metal, which is surfaced to mining equipment exposed to abrasive wear, has been investigated. Under a laboratory environment, samples of Mo-V-B and Cr-Mn-Mo-V wires were made. The performed experiments have revealed that fillers of the Cr-Mn-Mo-V system used in powder wire show better wear resistance of the weld metal than that of the Mn-Mo-V-B system; the absence of boron, which promotes grain refinement in the Mn-Mo-V-B system, significantly reduces wear resistance; the Mn-Mo-V-B weld metal has a finer structure than the Cr-Mn-Mo-V weld metal.

  15. Some possible filler alloys with low vapor pressures for refractory-metal brazing

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1973-01-01

    A compilation of eutectics and melting-point minima for binary combinations of metals having vapor pressures below 10 to the minus 10th power torr at 1500 degrees K and .00005 torr at 2000 degree K is presented. These compositions and others near them on their phase diagrams are potential special brazing fillers for refractory metals. Some possible problems and advantages for fusion bonds of such mixtures are indicated. Evaluations of brazing fillers containing refractory metals are reported.

  16. The use of Ni-Cr-Si-Be filler metals for brazing of stainless steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Fedotov, V.; Suchkov, A.; Penyaz, M.; Fedotov, I.; Tarasov, B.

    2016-04-01

    Nanocrystalline ribbon filler metal-alloys of system Ni-Cr-Si-Be are produced by the rapidly quenching of the melt method. By these filler metals carried out hight temperature vacuum brazing of austenitic steels (12Kh18N10T and Kh18N8G2) and austenitic-ferritic class EI-811 (12Kh21N5T). The basic laws of structure-phase state foundation of brazed joints are determined, features of the interaction of the molten filler metal to the brazed materials are identified, the optimal temperature and time parameters of the brazing process are determined.

  17. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  18. Effect of stainless steel chemical composition on brazing ability of filler metal

    NASA Astrophysics Data System (ADS)

    Miyazawa, Yasuyuki; Ohta, Kei; Nishiyama, Akira

    2014-08-01

    Many kinds of stainless steel have been used in the engineering field. So it is necessary to investigate the effect of SUS chemical compositions on the brazing ability of filler metal. In this study, SUS315J containing Cr, Ni, Si, Cu, and Mo was employed as a base metal. Excellent spreading ability of the molten nickel-based brazing filler on SUS315J was obtained as compared with that on SUS316. Copper and silicon influenced the significant spreading ability of the filler.

  19. [Determination of Ag, Cu, Zn and Cd in silver brazing filler metals by ICP-AES].

    PubMed

    Yang, X

    1997-06-01

    A method of simultaneous and direct determination for Ag, Cu, Zn and Cd in silver brazing filler metals by ICP-AES is reported. The spectral interferences and effect of acidity have been investigated. Working conditions were optimized. The method has been applied to the analysis of silver brazing filler metals with RSD of 4-7% and recovery of 94-105%. This method was accurate, simple and rapid.

  20. Laser brazing of inconel 718 alloy with a silver based filler metal

    NASA Astrophysics Data System (ADS)

    Khorram, A.; Ghoreishi, M.; Torkamany, M. J.; Bali, M. M.

    2014-03-01

    In the presented study laser brazing of an inconel 718 alloy with silver based filler metal using 400 W pulsed Nd:YAG laser is investigated. Laser brazing was performed with varying laser frequency, pulse width, process speed and gap distance. The effect of preheating on wetting and spreading also was studied. Brazing geometrical images were observed using an optical microscope. The composition analysis and microstructure of the filler metal and brazed joints were examined using X-ray diffraction analyzer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Micro-hardness and tensile test were performed for investigation of mechanical properties. The experimental observations show that filler metal consist of α-Ag solid solution, ά-Cu solid solution surround by the α-Ag solid solution and eutectic structure. Phases of the brazed joint are similar to the filler metal. The results indicate that the filler metal has adequate wetting and spreading on inconel 718 and the wetting angle depends on the heat input significantly. Interdiffusion occurs in laser brazing and the average thickness of reaction layer is approximately 2.5 μm. Whenever the gap is big, it is needed to use longer pulse width in order to have a better melting flow. Preheating has significant influence on wetting and spreading of the filler metal.

  1. Recommend design of filler metal to minimize carbon steel weld metal preferential corrosion in CO2-saturated oilfield produced water

    NASA Astrophysics Data System (ADS)

    Lu, Yongxin; Jing, Hongyang; Han, Yongdian; Feng, Zhicao; Xu, Lianyong

    2016-12-01

    The paper proposes a recommend design for the alloying elements in the filler metal to minimize preferential weld corrosion of carbon steel. The tensile and corrosion resistance properties of the weld metal are considerably improved by using a filler metal containing alloying elements according to the recommended design. Analysis of the morphology and composition of corrosion products on weld metals showed that the common weld metal suffered severe localized corrosion, whereas the weld metal with the alloying elements exhibited uniform corrosion. Based on these results, a tentative mechanism of CO2 corrosion resistance for both weld metals has been proposed.

  2. Graphite-metal brazing for thermal applications

    SciTech Connect

    Hosking, F.M.; Koski, J.A.

    1991-01-01

    Various plasma facing components are being designed and fabricated to support Magnetic Fusion Energy experiments. They typically consist of graphite tiles mechanically or metallurgically attached to metallic cooling substrates. This paper will discuss the active brazing of isotropic and pyrolytic graphite to oxygen free, high conductivity (OFHC) Cu and an alumina-dispersion strengthened Cu with a Ag-Cu-Ti active filler metal. The Ti constituent promotes direct wetting of graphite with the formation of a thin TiC reaction layer. Joint design and materials selection are critical factors since graphite and Cu have large thermal expansion differences that affect residual stresses after brazing and subsequent component thermal performance. Low thermal expansion Mo and compliant Cu interlayers were introduced to lower the residual stresses and extend the thermal life of prototype graphite-Cu braze joints. Although the interlayers showed evidence of reducing the incidence of graphite cracking and spalling under thermal loading when brazed to the dispersion-stengthened Cu, the best graphite braze joints were produced with the more ductile OFHC Cu substrates and no interlayer. These latter joints survived simulated tokamak surface high heat fluxes of 30 MW{center dot}m{sup {minus}2} or greater, while comparable dispersion strengthened Cu samples failed at 10 MW{center dot}m{sup {minus}2}. 23 refs., 14 figs., 2 tabs.

  3. Graphite-metal brazing for thermal applications

    NASA Astrophysics Data System (ADS)

    Hosking, F. M.; Koski, J. A.

    Various plasma facing components are being designed and fabricated to support Magnetic Fusion Energy experiments. They typically consist of graphite tiles mechanically or metallurgically attached to metallic cooling substrates. This paper will discuss the active brazing of isotropic and pyrolytic graphite to oxygen free, high conductivity (OFHC) Cu and an alumina-dispersion strengthened Cu with a Ag-Cu-Ti active filler metal. The Ti constituent promotes direct wetting of graphite with the formation of a thin TiC reaction layer. Joint design and materials selection are critical factors since graphite and Cu have large thermal expansion differences that affect residual stresses after brazing and subsequent component thermal performance. Low thermal expansion Mo and compliant Cu interlayers were introduced to lower the residual stresses and extend the thermal life of prototype graphite-Cu braze joints. Although the interlayers showed evidence of reducing the incidence of graphite cracking and spalling under thermal loading when brazed to the dispersion stengthened Cu, the best graphite braze joints were produced with the more ductile OFHC Cu substrates and no interlayer. These latter joints survived simulated tokamak surface high heat fluxes of 30 MW x m(exp -2) or greater, while comparable dispersion strengthened Cu samples failed at 10 MW x m(exp -2)

  4. Copper-silver-titanium filler metal for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1987-01-01

    A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  5. Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1988-04-05

    A method of joining ceramics and metals to themselves and to one another at about 800.degree. C. is described using a brazing filler metal consisting essentially of 35 to 50 at. % copper, 40 to 50 at. % silver, 1 to 15 at. % titanium, and 2 to 8 at. % tin. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  6. Brazeability of powder aluminum brazing filler metals with non-corrosive flux

    SciTech Connect

    Takemoto, T.; Matsunawa, A.; Ujie, T.

    1994-12-31

    Various brazed aluminum products, mainly heat exchangers, have been widely used especially in automobiles and electric power industries. They have been produced by using brazing sheet; however, recently the demand to braze the complicated shape is increasing, leading to the necessity for setting brazing filler metal at braze parts instead of using brazing sheet. Therefore, the present work aimed to investigated the brazeability of aluminum powder filler metal in nitrogen gas atmosphere using KAIF{sub 4}-K{sub 3}AIF{sub 6} system noncorrosive brazing flux. By considering the applicability of filler metal, brazing pastes were made of powder filler metal, flux and organic binder. AI-Si powder brazing filler metals were made by automization. T-type specimen was made by A3003 base metal with thickness of 2 mm. in the present experiment, fillet formabiltity, the percentage of the length of formed fillet against the length of vertical member wall at each side, was adopted to evaluate brazeability. The shape of the atomized powder depended on atomize atmosphere and atomizing gas. Sound fillet formation was achieved on the full length of both sides of the vertical member under the condition of appropriate surface treatment and sufficient flux content. Decrease in flux content gave partial fillet formation at the opposite side of the paste set side. Further decrease brought the partial fillet formation at the paste set side also. The paste made of air-atomized powder required more flux content to achieve 100% fillet formation at the opposite side. On the other hand, argon-atomized powders formed fillet in full length using paste with less flux content. powders sorted to remove fine particles and powders with low oxygen content were found to be suitable for brazing filler metal powders, because they required less flux content to obtain 100% fillet formation under the same amount of paste.

  7. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Gao, Zeng; Niu, Jitai

    2016-06-01

    Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.

  8. Substrate Effects on the High Temperature Oxidation Behavior of a Gold-Based Braze Filler Metal

    SciTech Connect

    Weil, K. Scott; Rice, Joseph P.

    2005-06-01

    Oxidation testing was conducted on a commercial gold-based braze alloy, Gold ABA®, and on zirconia/stainless steel couples joined using this filler metal. Preliminary results reveal that both substrates play a significant role in determining the overall oxidation behavior of the brazed joint.

  9. Substrate Effects on the High Temperature Oxidation Behavior of a Gold-Based Braze Filler Metal

    SciTech Connect

    Weil, K. Scott; Rice, Joseph P.

    2005-06-30

    Oxidation testing was conducted on a commercial gold-based braze alloy, Gold ABA, and on zirconia and stainless steel joining couples prepared using this braze filler metal. Preliminary results reveal that both substrates play a significant role in determining the overall oxidation resistance of the brazed joint.

  10. Microstructure and Mechanical Properties of Joints in Sintered SiC Fiber-Bonded Ceramics Brazed with Ag-Cu-Ti Alloy

    SciTech Connect

    Singh, Mrityunjay; Matsunaga, Tadashi; Lin, Hua-Tay; Asthana, Rajiv; Ishikawa, Toshihiro

    2012-01-01

    Active metal brazing of a new high thermal conductivity sintered SiC-polycrystalline fiber-bonded ceramic (SA-Tyrannohex{reg_sign}) has been carried out using a Ti-containing Ag-Cu active braze alloy (Cusil-ABA{reg_sign}). The brazed composite joints were characterized using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDS). The results show that this material can be successfully joined using judiciously selected off-the shelf active braze alloys to yield metallurgically sound joints possessing high integrity. Uniform and continuous joints were obtained irrespective of differences in the fiber orientation in the substrate material. Detailed interfacial microanalysis showed that the titanium reacts with C and Si to form TiC layer and a Ti-Si compound, respectively. Furthermore, the evaluation of shear strength of the joints was also conducted at ambient and elevated temperatures in air using the single-lap offset (SLO) shear test. The perpendicular-type SA-Tyrannohex joints exhibited apparent shear strengths of about 42 MPa and 25 MPa at 650 C and 750 C, respectively. The fracture at the higher temperature occurred at the interface between the reaction-formed TiC layer and braze. This might be caused by generation of stress intensity when a shear stress was applied, according to {mu}-FEA simulation results.

  11. Microstructure and mechanical properties of joints in sintered SiC fiber-bonded ceramics brazed with Ag Cu Ti alloy

    SciTech Connect

    Singh, Mrityunjay; Asthana, Rajiv; Ishikawa, Toshihiro; Matsunaga, Tadashi; Lin, Hua-Tay

    2012-01-01

    Active metal brazing of a new high thermal conductivity sintered SiC-polycrystalline fiber-bonded ceramic (SA-Tyrannohexs) has been carried out using a Ti-containing Ag Cu active braze alloy (Cusil-ABAs). The brazed composite joints were characterized using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM EDS). The results show that this material can be successfully joined using judiciously selected off-the shelf active braze alloys to yield metallurgically sound joints possessing high integrity. Uniform and continuous joints were obtained irrespective of differences in the fiber orientation in the substrate material. Detailed interfacial microanalysis showed that the titanium reacts with C and Si to form TiC layer and a Ti Si compound, respectively. Furthermore, the evaluation of shear strength of the joints was also conducted at ambient and elevated temperatures in air using the single-lap offset (SLO) shear test. The perpendicular-type SA-Tyrannohex joints exhibited apparent shear strengths of about 42 MPa and 25 MPa at 650 1C and 750 1C, respectively. The fracture at the higher temperature occurred at the interface between the reactionformed TiC layer and braze. This might be caused by generation of stress intensity when a shear stress was applied, according to m-FEA simulation results.

  12. Oxidation resistant filler metals for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1986-01-01

    A method of joining ceramics and metals to themselves and to one another is described using essentially pure trinickel aluminide and trinickel aluminide containing small amounts of carbon. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  13. Investigation of Pd-Modified Ag-CuO Air Braze Filler Metals

    SciTech Connect

    Weil, K. Scott; Kim, Jin Yong; Hardy, John S.; Darsell, Jens T.

    2006-01-01

    This paper reports on the effects of palladium on the liquidus/solidus temperatures and wetting behavior of a series of Ag-CuOx air braze filler metals. Currently, the maximum operating temperature of the Ag-CuOx system is limited by its eutectic temperature of ~935°C. One strategy to increase the maximum operational temperature of this family of filler metals is to add a higher melting noble alloying element. In the current study, we examined the effects of palladium additions on the melting characteristics of the Ag-CuO materials and the wetting properties of the resulting air braze filler metals with respect to alumina. It was found that while the addition of Pd causes the anticipated increase in the melting temperature, it does so at a sacrifice in wetting properties. The extent of both effects and therefore the opportunity to trade-off the two properties in order to develop an optimized higher temperature air braze depends on concentrations of both the palladium and copper oxide.

  14. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys.

  15. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    NASA Astrophysics Data System (ADS)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  16. Application of amorphous filler metals in production of fusion reactor high heat flux components

    SciTech Connect

    Kalin, B.A.; Fedotov, V.T.; Grigoriev, A.E.

    1994-12-31

    The technology of Al-Si, Zr-Ti-Be and Ti-Zr-Cu-Ni amorphous filler metals for Be and graphite brazing with Cu, Mo and V was developed. The fusion reactor high heat flux components from Cu-Be, Cu-graphite, Mo-Be, Mo-graphite, V-Re and V-graphite materials were produced by brazing. Every component represents metallic base, to which Be or graphite plates are brazed. The distance between plates was equal 0.2 times the plate height. These components were irradiated by hydrogen plasma with 5 x 10{sup 6} W/m{sup 2} power. The microstructure and the element distribution in the brazed zone were investigated before and after heat plasma irradiation. Topography graphite plate surfaces and topography of metal surfaces between plates were also investigated after heat plasma irradiation. The results of microstructure investigation and material erosion are discussed.

  17. Vacuum brazing ceramics to metals

    SciTech Connect

    Mizuhara, H.

    1987-02-01

    Attention is given to the use in ceramic/metal joint brazing alloy of silver-copper composition that incorporates 2 percent Ti. This alloy allows one-step brazing, and wets superalloys and stainless steels without prior Ni plating of the substrate. Another alloy consisting of Ag-Cu-In-Ti has been developed which alloys at lower temperatures and allows step-brazing when used with Ag-Cu-Ti alloy. If the thermal expansion difference between metal and ceramic is large, brazing with a graded seal may be used; this minimizes joint stresses upon cooling to room temperature.

  18. Interfacial characteristics for brazing of aluminum matrix composites with Al-12Si filler metals

    SciTech Connect

    Weng, W.P.; Chuang, T.H.

    1997-12-01

    Discussions concerning the interfacial reactions and characterizations in brazing aluminum matrix composites are documented in this study. Joints of alumina particulate reinforced 6061 aluminum matrix composites were made using an Al-12 (wt pct) Si filler metal by vacuum brazing. The resulted maximum bonding strengths were 75.4, 81.5, and 71.8 MPa for 10, 15, and 20 vol pct alumina reinforcement, respectively. The microstructural examinations revealed that the bonding strength was strictly related to the reinforced alumina particles and the reaction products presented at the joint interfaces. During brazing, Mg segregated at the joining interface and alumina/6061 Al interface. Further, reactions between alumina and 6061 Al matrix resulted in the formation of Mg-rich phases, such as MgAl{sub 2}O{sub 4} and MgO, near the joining interface and the alumina reinforcement. The Si in the filler material penetrated into the metal matrix composites (MMCs) matrix and segregated at the alumina/6061 Al interfaces. This phenomenon can be confirmed by a joint between two alumina bulk specimens.

  19. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  20. High Temperature Strength of YSZ Joints Brazed with Palladium Silver Copper Oxide Filler Metals

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2010-06-09

    The Ag-CuOx system is being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. The current study examines the effects of palladium addition on the high temperature joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with the binary Ag-CuOx, and 15Pd-Ag-CuO. It was found that while the binary Ag-CuOx system exhibits stronger room temperature strength than the 15Pd system the strength is reduced to values equivalent of the 15Pd system at 800°C. The 15Pd system exhibits a lower ambient temperature strength that is retained at 800°C. In both systems the failure mechanism at high temperature appears to be peeling of the noble metal component from the oxide phases and tearing through the noble metal phase whereas sufficient adhesion is retained at lower temperatures to cause fracture of the YSZ substrate.

  1. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  2. Brazing microstructure of Ti-6Al-6V-2Sn with Ti-Zr-Cu-Ni filler metal

    SciTech Connect

    Hsieh, K.C.; Kao, P.W.; Shu, M.F.

    1994-12-31

    Titanium and its alloys have been widely used in the aerospace industry since they have high specific strength and high corrosion resistance. The brazing of titanium is beneficial to join many contact areas simultaneously without severe distortion. The purpose of this study is to investigate the brazing microstructures under different brazing conditions with several Ti-Zr-Cu-Ni filler alloys. In our previous studies, the brazing microstructure of Ti-6Al-4V with Ti-Cu-Ni filler metal have been reported. Since Ti-6Al-6V-2Sn alloy has lower b-transus, the Ti-Cu-Ni filler alloy cannot successfully apply the brazing work. Several Ti-Zr-Cu-Ni alloys were prepared in powder form and pre-alloy form to perform the brazing of Ti-6Al-6V-2Sn at 870{degrees}C. The brazing microstructures are examined under optical metallograph, scanning electron microscopy (SEM), and X-ray analysis. The contents of this report include (1) DTA and phase analysis of Ti-Zr-Cu-Ni filler metals, (2) the brazing microstructure, and (3) the shear test result.

  3. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  4. Effect of filler metal composition on the strength of yttria stabilized zirconia joints brazed with Pd-Ag-CuOx

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2008-09-08

    The Ag-CuOx system is of interest to be used to be used as an air braze filler metal for joining high temperature electrochemical devices. Previous work has shown that the melting temperatures can be increased by adding palladium to Ag-CuOx and it is expected that this may aid high temperature stability. This work compares the room temperature bend strength of joints made between yttria-stabilized zirconia (YSZ) air brazed using Ag-CuOx without palladium and with 5 and 15mol% palladium additions. It has been found that in general palladium decreases joint strength, especially in low copper oxide compositions filler metals. At high copper oxide contents, brittle fracture through both copper oxide rich phases and the YSZ limits joint strength.

  5. Percolation behavior of polymer/metal composites on modification of filler

    NASA Astrophysics Data System (ADS)

    Panda, M.; Srinivas, V.; Thakur, A. K.

    2014-02-01

    Polymer-metal composites with different fillers, such as nanocrystalline nickel (n-Ni), core shell n-Ni and nickel oxide (NiO)[n-Ni@NiO] were prepared under the same processing conditions with polyvinyledene fluoride matrix. The larger value of critical exponents (s and s') and percolation threshold (fc 0.30) for n-Ni@NiO composites as compared to n-Ni composites (fc 0.07) and a comparable effective dielectric constant (ɛeff 300) with low loss tangent (tan δ 0.1) at 100 Hz in case of percolative n-Ni@NiO composite was observed. The core shell structure [n-Ni@NiO] also shows a very high value of ɛeff 6000 with tan δ 8 at 40 Hz. The results have been explained by using boundary layer capacitor effect and the percolation theory. The difference in fc and critical exponents is attributed to NiO insulating layer that gives rise to different extent of continuumness at fc and have been explained with the help of Swiss cheese model.

  6. Study on ductility dip cracking susceptibility in Filler Metal 82 during welding

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Qing; Lu, Hao; Cui, Wei

    2011-06-01

    In this paper, Ductility Dip Cracking (DDC) susceptibility in Inconel600 companion Filler Metal 82 (FM82) under different stress states is investigated. Inconel600 is a Ni-Cr-Fe alloy with excellent resistance to general corrosion, localized corrosion, and stress corrosion, which has been widely used in nuclear power plants. However, the companion FM82 has been shown to be susceptible to DDC in welding process. To resolve the problem, this work is mainly focused on evaluating DDC susceptibility in FM82 in welding process. First of all, Strain to Fracture (STF) test is used to achieve the DDC criterion under simple stress state, and the formation mechanism of DDC was explained. Real welding is a process with complex stress state. Later, to get the DDC susceptibility under complex stress state, models about multi-pass welding were built up by means of finite element method. According to numerical simulation results, relationship of deformation and temperature history is achieved. Moreover, susceptible locations and moments could be determined associated with STF results. The simulation results fairly agree with welding experiment from another research.

  7. Joining of alumina ceramics and nickel alloy

    SciTech Connect

    Ariga, Tadashi; Nitta, Yuji; Miyazawa, Yasuyuki

    1994-12-31

    Joining of alumina ceramics to nickel alloy was made using the various types of Ag-Cu-Ti brazing filler metal. Ti-containing brazing filler metal was produced by physical vapor deposition (PVD) method on the joining area of the alumina ceramics. The joinability of the brazing filler metal was estimated by its mechanical properties. And the composition and structure of the ceramic-metal bond zone in the alumina ceramics-nickel alloy joints were analyzed by SEM, EPMA and X-ray diffraction examinations. Some of brazing filler metal achieved the highest shear strength 100 MPa at room temperature. The elemental distributions of the interface between alumina ceramics and Ag-Cu-Ti brazing filler metal was shown to form the reaction layer consisting titanium oxide.

  8. Effects of Different Filler Metals on the Mechanical Behaviors of GTA Welded AA7A52(T6)

    NASA Astrophysics Data System (ADS)

    Shu, Fengyuan; Lv, Yaohui; Liu, Yuxin; Lin, Jianjun; Sun, Zhe; Xu, Binshi; He, Peng

    2014-06-01

    ER4043, ER5356, and AA7A52 on behalf of the Al-Si, Al-Mg, and Al-Zn-Mg-based welding material, respectively, were chosen as the filler metal to weld AA7A52(T6) plates by GTAW. The variance in mechanical performances of the joints caused by the various filler materials was investigated with reference to the SEM and EDS test results for the weld seam and the fracture surface. Failure was found in the seam for all the welded joints. With regard to the joint obtained with ER4043 welding wire, the total elongation was limited by the brittle intergranular compound Mg2Si of which Mg was introduced by convection mass transfer. As for the other two welds, the content ratio of Zn and Mg was found to play the dominant role in deciding the mechanical properties of the intergranular Mg-Zn compounds which were responsible for the tensile behavior of the joints. The content ratio (wt.%) of beyond 2:1 gave birth to the strengthening phase MgZn2 leading to a ductile fracture. Cr in the seam obtained with AA7A52 filler metal was found to enhance the strength of the joint through isolated particles.

  9. Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2009-12-01

    AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.

  10. Investigation of Pd-Modified Ag-CuO Air Braze Filler Metals

    SciTech Connect

    Darsell, Jens T.; Hardy, John S.; Kim, Jin Yong; Weil, K. Scott

    2006-01-10

    Palladium was added as a ternary component to a series of silver - copper oxide alloys in an effort to increase the use temperature of these materials for potential ceramic air brazing applications. Large portions of the silver component of the Ag-CuO system were substituted by palladium forming the following alloys: (100-y)[(100-z)Pd - (z)Ag] - (y)CuOx where y = 0 - 34 mol% CuOx, z = 50 - 100 mol% silver, and x = 0, 0.5, and 1, denoting copper metal, Cu2O, or CuO. From differential scanning calorimetry, it was determined that the addition of palladium causes an increase in the solidus and liquidus temperatures of the resulting Pd-Ag-CuO brazes. In general, the liquidus was found to increase by approximately 220°C for the (100-y)(25Pd - 75Ag) - (z)CuOx filler metal compositions relative to comparable Ag-CuOx alloys. Likewise, the solidus was found to increase for these alloys, respectively by 185°C and 60°C, respectively for CuOx contents of y = 0 - 1mol% and 4 - 10 mol%. For the (100-y)(50Pd - 50Ag) - (y)CuOx alloys, the solidus increased between 280 - 390°C over a copper oxide compositional range of x = 0 to 8 mol%. It was determined from sessile drop experiments that palladium causes an increase in the wetting angle for all of the samples tested. Alloy compositions of (100-y)(25Pd - 75Ag) - (y)CuOx displayed increased wetting angles of 5-20° relative to comparable binary compositions. (100-y)(50Pd - 50Ag) - (y)CuOx alloys exhibited an increase in contact angle of 10-60° and compositions containing less than 10 mol% CuOx were not able to wet the substrate. Scanning electron microscopy indicates that the microstructure of the braze consists of Ag-Pd solid solution with CuOx precipitates. In general, a reaction layer consisting of CuAlO2 forms adjacent to the alumina substrate. However, the formation of this layer is apparently hindered by the addition of large amounts of palladium, causing poor wetting behavior, as denoted by substantial porosity found along

  11. Improved Wetting of Mixed Ionic/Electronic Conductors Used in Electrochemical Devices with Ternary Reactive Air Braze Filler Metals

    SciTech Connect

    Hardy, John S; Kim, Jin Yong Y; Thomsen, Ed C; Weil, K Scott

    2007-01-19

    This paper reports on the wetting behavior, reactivity, and long-term electrical conductance of a series of ternary filler metals being considered for brazing lanthanum strontium cobalt ferrite (LSCF) based oxygen separation membranes. Mixed ionic/electronic conducting perovskite oxides such as LSCF and various doped barium cerates are currently being considered for use in high-temperature electrochemical devices such as oxygen and hydrogen concentrators and solid oxide fuel cells. However to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. Furthermore, if the proposed joining technique were to yield a hermetic ceramic-to-metal junction that was also electrically conductive, it would additionally benefit the device by allowing current to be drawn from or carried to the electrochemically active mixed conducting oxide component without requiring an separate current collector. A newly developed brazing technique known as air brazing is one such method of joining. In its present form, air brazing uses a silver-copper oxide based filler metal that can be melted directly in air to form a compliant joint that is electrically conductive. Recently, it has been shown that the addition of titania can enhance the wetting behavior of Ag-CuO filler metals on alumina. Here the effect of this wetting agent on the surface wettability, long-term electrical resistance at 750°C, and reactivity with La0.6Sr0.4Co0.2Fe0.8O3- (LSCF-6428 or LSCF) substrates is discussed.

  12. Optical and analytical electron microscopy of ductility-dip cracking in Ni-base filler metal 52 -- Initial studies

    SciTech Connect

    Cola, M.J.; Teter, D.F.

    1998-01-01

    Microcharacterization studies were performed on weld-metal microstructures of a Ni-base filler metal. Specimens were taken from the fusion zone and the weld-metal heat-affected zone of transverse- and spot-Varestraint welds. The filler metal was first deposited onto a steel substrate by hot-wire, gas tungsten arc welding before specimen removal. Optical microscopy indicates the crack morphology is intergranular and is along high-angle, migrated grain boundaries. At low magnifications, scanning electron microscopy reveals a relatively smooth fracture surface. However, at higher magnifications the grain faces exhibit microductility. Analytical electron microscopy reveals high-angle, migrated grain boundaries decorated with MC (Ti, Cr) and M{sub 23}C{sub 6} (Cr, Ni, Fe) precipitates ranging from 10 to 200 n. Auger electron spectroscopy of pre-strained Gleeble specimens fractured in situ revealed internal ductility-dip cracks decorated with magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel particles (1,000 nm).

  13. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect

    Liu Fei; Zhang Zhaodong; Liu Liming

    2012-07-15

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  14. Improved Wetting Characteristics in TiO2–Modified Ag-CuO Air Braze Filler Metals

    SciTech Connect

    Weil, K. Scott; Kim, Jin Yong Y.; Hardy, John S.; Darsell, Jens T.

    2006-01-01

    In this paper we report on the results of a series of sessile drop experiments designed to examine the effect of TiO2 on the wetting behavior of Ag-CuO air braze filler metals. It was found that TiO2 concentrations as small as 0.5 mol% can significantly decrease the contact angle of Ag-CuO on alumina over a compositional range of 1 – 34mol% CuO. The effect appears to maximize at a copper oxide concentration of ~4 mol% CuO regardless of the titania content.

  15. Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing

    NASA Astrophysics Data System (ADS)

    Petchsang, S.; Phung-on, I.; Poopat, B.

    2016-12-01

    Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.

  16. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  17. Platable Filler And Sealant

    NASA Technical Reports Server (NTRS)

    Heerman, Todd R.; Volkenant, Jerome G.

    1992-01-01

    Mixture of facsimile compound and silver powder forms positive seal in small hole in metal sheet. Filled hole plated over by standard electrodeposition. Compound does not deteriorate in high plating-bath temperatures, unlike wax and other fillers. Provides surface to which plated metals readily adhere.

  18. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld metal.

  19. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  20. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    NASA Astrophysics Data System (ADS)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  1. Effect of mechanical milling on Ni-TiH{sub 2} powder alloy filler metal for brazing TiAl intermetallic alloy: The microstructure and joint's properties

    SciTech Connect

    He Peng Liu Duo; Shang Erjing; Wang Ming

    2009-01-15

    A TiH{sub 2}-50 wt.% Ni powder alloy was mechanically milled in an argon gas atmosphere using milling times up to 480 min. A TiAl intermetallic alloy was joined by vacuum furnace brazing using the TiH{sub 2}-50 wt.% Ni powder alloy as the filler metal. The effect of mechanical milling on the microstructure and shear strength of the brazed joints was investigated. The results showed that the grains of TiH{sub 2}-50 wt.% Ni powder alloy were refined and the fusion temperature decreased after milling. A sound brazing seam was obtained when the sample was brazed at 1140 deg. C for 15 min using filler metal powder milled for 120 min. The interfacial zones of the specimens brazed with the milled filler powder were thinner and the shear strength of the joint was increased compared to specimens brazed with non-milled filler powder. A sample brazed at 1180 deg. C for 15 min using TiH{sub 2}-50 wt.% Ni powder alloy milled for 120 min exhibited the highest shear strength at both room and elevated temperatures.

  2. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  3. Microstructure and Interfacial Reactions During Active Metal Brazing of Stainless Steel to Titanium

    NASA Astrophysics Data System (ADS)

    Laik, A.; Shirzadi, A. A.; Tewari, R.; Kumar, Anish; Jayakumar, T.; Dey, G. K.

    2013-05-01

    Microstructural evolution and interfacial reactions during active metal vacuum brazing of Ti (grade-2) and stainless steel (SS 304L) using a Ag-based alloy containing Cu, Ti, and Al was investigated. A Ni-depleted solid solution layer and a discontinuous layer of (Ni,Fe)2TiAl intermetallic compound formed on the SS surface and adjacent to the SS-braze alloy interface, respectively. Three parallel contiguous layers of intermetallic compounds, CuTi, AgTi, and (Ag,Cu)Ti2, formed at the Ti-braze alloy interface. The diffusion path for the reaction at this interface was established. Transmission electron microscopy revealed formation of nanocrystals of Ag-Cu alloy of size ranging between 20 and 30 nm in the unreacted braze alloy layer. The interdiffusion zone of β-Ti(Ag,Cu) solid solution, formed on the Ti side of the joint, showed eutectoid decomposition to lamellar colonies of α-Ti and internally twinned (Cu,Ag)Ti2 intermetallic phase, with an orientation relationship between the two. Bend tests indicated that the failure in the joints occurred by formation and propagation of the crack mostly along the Ti-braze alloy interface, through the (Ag,Cu)Ti2 phase layer.

  4. Vacuum brazing of alumina ceramic to titanium for biomedical implants using pure gold as the filler metal

    NASA Astrophysics Data System (ADS)

    Siddiqui, Mohammad S.

    One of the many promising applications of metal/ceramic joining is in biomedical implantable devices. This work is focused on vacuum brazing of C.P titanium to 96% alumina ceramic using pure gold as the filler metal. A novel method of brazing is developed where resistance heating of C.P titanium is done inside a thermal evaporator using a Ta heating electrode. The design of electrode is optimized using Ansys resistive heating simulations. The materials chosen in this study are biocompatible and have prior history in implantable devices approved by FDA. This research is part of Boston Retinal implant project to make a biocompatible implantable device (www.bostonretina.org). Pure gold braze has been used in the construction of single terminal feedthrough in low density hermetic packages utilizing a single platinum pin brazed to an alumina or sapphire ceramic donut (brazed to a titanium case or ferrule for many years in implantable pacemakers. Pure gold (99.99%) brazing of 96% alumina ceramic with CP titanium has been performed and evaluated in this dissertation. Brazing has been done by using electrical resistance heating. The 96% alumina ceramic disk was manufactured by high temperature cofired ceramic (HTCC) processing while the Ti ferrule and gold performs were purchased from outside. Hermetic joints having leak rate of the order of 1.6 x 10-8 atm-cc/ sec on a helium leak detector were measured. Alumina ceramics made by HTCC processing were centreless grounded utilizing 800 grit diamond wheel to provide a smooth surface for sputtering of a thin film of Nb. Since pure alumina demonstrates no adhesion or wetting to gold, an adhesion layer must be used on the alumina surface. Niobium (Nb), Tantalum (Ta) and Tungsten (W) were chosen for evaluation since all are refractory (less dissolution into molten gold), all form stable oxides (necessary for adhesion to alumina) and all are readily thin film deposited as metals. Wetting studies are also performed to determine the

  5. Brazing Si{sub 3}N{sub 4} ceramic to AISI 5140 steel under pressure

    SciTech Connect

    Liu, W.Y.; Yao, S.W.; Qu, J.X.

    1996-04-01

    Pressures (0 to 40 MPa) were applied to the joints of Si{sub 3}N{sub 4} ceramic to 5,140 steel during vacuum brazing with Ag-Cu-Ti active filler metal. Pressurization started at various temperatures (873, 973, and 1,073 K) and ended at room temperature during cooling. Results show that there is an optimum starting temperature to pressurize, at which the maximum room temperature shear strength of the joint is obtained.

  6. Development and Brazing Ability of Cu-Si-Ti Filler Metals for Joining Si3N4

    NASA Astrophysics Data System (ADS)

    Naka, Masaaki; Takase, Hideki; Scuster, J. C.

    Cu-5Si-xTi filler alloys for joining Si3N4 were developed, and the joining ability of the alloys was investigated by measuring contact angles on Si3N4 in vacuum and strength of Si3N4 joint brazed with the filler alloys. The addition of Ti content of 3 at% or more decreased the contact angle on Si3N4. The alloys containing Ti content of 5at% showed the lowest contact angle and good wettability. Si3N4 was brazed to Si3N4 with the filler alloys containing Ti content of 3 at% or more, and the strength of the Si3N4 joint increased with the Ti content in the filler alloys. The increase in the amount of TiN and Ti5Si3 which was formed by the reaction of Ti in the filler with Si3N4 raised the strength of the Si3N4 joint.

  7. Use of filler limestone and construction and demolition residues for remediating soils contaminated with heavy metals: an assessment by means of plant uptake.

    NASA Astrophysics Data System (ADS)

    Banegas, Ascension; Martinez-Sanchez, Maria Jose; Agudo, Ines; Perez-Sirvent, Carmen

    2010-05-01

    A greenhouse trial was carried out to evaluate the assimilation of heavy metals by three types of horticultural plants (lettuce, broccoli and alfalfa), different parts of which are destined for human and animal consumption (leaves, roots, fruits). The plants were cultivated in four types of soil, one uncontaminated (T1), one soil collected in the surrounding area of Sierra Minera (T2), the third being remediated with residues coming from demolition and construction activities (T3) and the four remediated with filler limestone (T4). To determine the metal content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. The DTPA-extractable content was also determined to calculate the bioavailable amount of metal. Finally, the translocation factor (TF) and bioconcentration factor (BCF) were calculated. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer and Cd, Pb and Zn was determined by electrothermal atomization atomic absorption spectrometry (ETAAS) or flame atomic absorption spectrometry (FAAS). Samples of the leached water were also obtained and analyzed. According to our results, the retention of the studied elements varies with the type of plant and is strongly decreased by the incorporation of filler limestone and/or construction and demolition residues to the soils. This practice represents a suitable way to reduce the risk posed to the biota by the presence of high levels of heavy metal in soil.

  8. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride

    NASA Astrophysics Data System (ADS)

    Takenaka, Koshi; Kuzuoka, Kota; Sugimoto, Norihiro

    2015-08-01

    Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix-filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices.

  9. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride

    SciTech Connect

    Takenaka, Koshi; Kuzuoka, Kota; Sugimoto, Norihiro

    2015-08-28

    Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix–filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices.

  10. The structure and properties of filler metal-free laser beam welded joints in steel S700MC subjected to TMCP

    NASA Astrophysics Data System (ADS)

    Górka, Jacek; Stano, Sebastian

    2016-12-01

    The research-related tests aimed to determine the effect of filer-metal free laser beam welding on the structure and properties of 10 mm thick steel S700MC subjected to the Thermo-Mechanical Control Process (TMCP). The nondestructive tests revealed that the welded joints represented quality level B according to the requirements of standard 13919-1. The destructive tests revealed that the joints were characterised by tensile strength being by approximately 5% lower than that of the base material. The tests of thin foils performed using a high-resolution scanning transmission electron microscope revealed that filler metal-free welding led to the increased amount of alloying microagents (Ti and Nb) in the weld (particularly near fusion line) in comparison with welding performed using a filler metal. The significant content of hardening phases in the welds during cooling resulted in considerable precipitation hardening through finedispersive (Ti,Nb)(C,N) type precipitates (several nm in size) leading to the deterioration of plastic properties. The destructive tests revealed that the joints were characterised by tensile strength being by approximately 5% lower than that of the base material. The increase in the concentration of microagents responsible for steel hardening (Ti and Nb) also contributed to the decrease in weld toughness being below the allowed value of 25 J/cm2.

  11. Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys

    SciTech Connect

    Ganjeh, E.; Sarkhosh, H.; Bajgholi, M.E.; Khorsand, H.; Ghaffari, M.

    2012-09-15

    Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 Degree-Sign C for the titanium-based filler and 900-990 Degree-Sign C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni and Zr along the joint. Accordingly, existence of Zr{sub 2}Cu, Ti{sub 2}Cu and (Ti,Zr){sub 2}Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 Degree-Sign C for Ti-based and 990 Degree-Sign C for Zr-based) resulted in an acicular Widmanstaetten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. - Highlights: Black-Right-Pointing-Pointer Temperature or time was the main factors of controlling braze joint strength. Black-Right-Pointing-Pointer Developing a Widmanstaetten microstructure generates equal strength to base metal. Black-Right-Pointing-Pointer Brittle intermetallic compounds like (Ti,Zr){sub 2}Ni/Cu deteriorate shear strength. Black-Right-Pointing-Pointer Ti and Zr base filler alloys were the best choice for brazing Ti

  12. Joining of zirconia ceramic to stainless steel and to itself using Ag{sub 57}Cu{sub 38}Ti{sub 5} filler metal

    SciTech Connect

    Hao, H.; Wang, Y.; Jin, Z.; Wang, X.

    1995-08-01

    The brazing of ZrO{sub 2} ceramic to 1Cr18Ni9Ti stainless steel and to itself was performed using Ag{sub 57}Cu{sub 38}Ti{sub 5} filler metal under a vacuum of t {times} 10{sup {minus}3} Pa. The effects o9f interlayer copper on the ceramic to stainless steel joint strength, and the brazing temperature (1,073 to 1,323 K) and holding time (0 to 60 min) on ceramic to ceramic joint strength were investigated. The joint strength was evaluated by shear testing. An interfacial reaction layer between the ceramic and the filler metal was found, and the reaction products were {delta}-TiO and {gamma}-AgTi{sub 3}. The joint strength of ZrO{sub 2} ceramic to stainless steel was improved by using a layer of copper of a suitable thickness. The brazing temperature and holding time had a strong influence on the joint strength of ceramic time had a strong influence on the joint strength of ceramic to ceramic, and the joint strength was mainly controlled by reaction layer thickness and the properties of the reaction products. The maximum shear strength was obtained for brazing at 1,123 K for 30 min and an interfacial reaction layer thickness of {approximately}4.4 {micro}m.

  13. Vacuum Brazing of WC-8Co Cemented Carbides to Carbon Steel Using Pure Cu and Ag-28Cu as Filler Metal

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Liu, G. W.; Tao, J. N.; Shao, H. C.; Fu, H.; Pan, T. Z.; Qiao, G. J.

    2016-12-01

    The wetting and spreading behavior of commercial pure Cu and Ag-28Cu alloy on WC-8Co cemented carbide were investigated by the sessile drop technique. The contact angle of both systems obviously decreases with moderately increasing the wetting temperature. Vacuum brazing of the WC-8Co cemented carbide to SAE1045 steel using the pure Cu or Ag-28Cu as filler metal was further carried out based on the wetting results. The interfacial interactions and joint mechanical behavior involving microhardness, shear strength and fracture were analyzed and discussed. An obvious Fe-Cu-Co transition layer is detected at the WC-8Co/Cu interface, while no obvious reaction layer is observed at the whole WC-8Co/Ag-28Cu/SAE1045 brazing seam. The microhardness values of the two interlayers and the steel substrate near the two interlayers increase more or less, while those of WC-8Co cemented carbide substrates adjacent to the two interlayers decrease. The WC-8Co/SAE1045 joints using pure Cu and Ag-28Cu alloy as filler metals obtain average shear strength values of about 172 and 136 MPa, and both of the joint fractures occur in the interlayers.

  14. Vacuum Brazing of WC-8Co Cemented Carbides to Carbon Steel Using Pure Cu and Ag-28Cu as Filler Metal

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Liu, G. W.; Tao, J. N.; Shao, H. C.; Fu, H.; Pan, T. Z.; Qiao, G. J.

    2017-02-01

    The wetting and spreading behavior of commercial pure Cu and Ag-28Cu alloy on WC-8Co cemented carbide were investigated by the sessile drop technique. The contact angle of both systems obviously decreases with moderately increasing the wetting temperature. Vacuum brazing of the WC-8Co cemented carbide to SAE1045 steel using the pure Cu or Ag-28Cu as filler metal was further carried out based on the wetting results. The interfacial interactions and joint mechanical behavior involving microhardness, shear strength and fracture were analyzed and discussed. An obvious Fe-Cu-Co transition layer is detected at the WC-8Co/Cu interface, while no obvious reaction layer is observed at the whole WC-8Co/Ag-28Cu/SAE1045 brazing seam. The microhardness values of the two interlayers and the steel substrate near the two interlayers increase more or less, while those of WC-8Co cemented carbide substrates adjacent to the two interlayers decrease. The WC-8Co/SAE1045 joints using pure Cu and Ag-28Cu alloy as filler metals obtain average shear strength values of about 172 and 136 MPa, and both of the joint fractures occur in the interlayers.

  15. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    SciTech Connect

    Liu, Fei; Wang, Hongyang; Liu, Liming

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.

  16. Development of a High Chromium Ni-Base Filler Metal Resistant to Ductility Dip Cracking and Solidification Cracking

    NASA Astrophysics Data System (ADS)

    Hope, Adam T.

    Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while

  17. Scalable plasticized polymer electrolytes reinforced with surface-modified sepiolite fillers - A feasibility study in lithium metal polymer batteries

    NASA Astrophysics Data System (ADS)

    Mejía, Alberto; Devaraj, Shanmukaraj; Guzmán, Julio; Lopez del Amo, Juan Miguel; García, Nuria; Rojo, Teófilo; Armand, Michel; Tiemblo, Pilar

    2016-02-01

    Electrochemical properties of (polyethylene oxide) (PEO)/lithium trifluoromethanesulfonate (LiTf)/ethylene carbonate (EC)/sepiolite extruded composite electrolytes were studied. Appreciable electrochemical stability of 4.5 V at 70 °C was observed for polymer composite membranes with D-α-tocopherol-polyethylene glycol 1000 succinate-coated sepiolite fillers. Lithium plating/stripping analysis indicated no evidence of dendrite formation with good interfacial properties which were further confirmed by postmortem analysis of the cells. Solid state NMR studies show the presence of two Li+ population in the membranes. The feasibility of these electrolytes has been shown with LiFePO4 cathode materials. Initial discharge capacity of 142 mAh/g was observed remaining at 110 mAh/g after 25 cycles with a coulombic efficiency of 96%. The upscaling of these polymers can be easily achieved by extrusion technique and the capacity can be improved by varying the cathode architecture.

  18. Brazing of zirconia to metal for development of oxygen and pH sensors for high-temperature, high-pressure aqueous environments

    SciTech Connect

    Kelkar, G.P.; Biswas, R.; Bertuch, A.

    1997-11-01

    Zirconia electrodes are routinely used as oxygen sensors at temperatures of 600{degrees}C and are now extensively used as pH sensors in high-temperature high-pressure aqueous systems (300{degrees}C and 3000 psi). Brazing of zirconia tubes to metal is one approach to making such sensors. A variety of metal supports (304L SS, Ni, Cu), three braze alloys in the Ag-Cu-Ti system and their combinations were investigated in bonding with the zirconia tubes. The important issues were the weakening of the zirconia matrix during brazing, bonding with the metal, and corrosion of the braze under operating conditions of 300{degrees}C and 3000 psi in aqueous environments. The results obtained are discussed along with guidelines for further investigations.

  19. Graphite-to-304SS Braze Joining by Active Metal-Brazing Technique: Improvement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Ray, Ajoy K.; Kar, Abhijit; Kori, S. A.; Pathak, L. C.; Sonnad, A. N.

    2013-01-01

    In the present investigation, an attempt has been made to improve the mechanical strength of graphite-stainless steel-brazed joint. Due to high capillary action, the liquid filler alloy usually tends to percolate into the pores of graphite causing severe stress in the graphite near the joint interface resulting in poor joint strength of 10-15 MPa. In the present investigation, a thin coating of SiC was applied on graphite before the joining process to avoid the penetration of liquid filler alloy into the pores of the graphite. Active filler alloy Ag-Cu-Ti was used to braze the substrates. The brazing was carried out at 850, 900, 950, and 1000 °C. The characterization of the interfaces of the brazed joints was carried out using scanning electron microscopy attached with energy dispersive spectroscopy and x-ray diffraction analysis. From the correlation between the microstructural and mechanical properties, shear strength of approximately 35 MPa for graphite-304SS-brazed joint produced at 900 °C was demonstrated. After the shear tests, the fracture surfaces were analyzed by SEM-EDS.

  20. Low-melting-point titanium-base brazing alloys. Part 1: Characteristics of two-, three-, and four-component filler metals

    SciTech Connect

    Chang, E.; Chen, C.H.

    1997-12-01

    The melting point, microstructure, phase, and electrochemical behavior of Ti-21Ni-15Cu alloy, together with two-, three-, and four-component low-melting-point titanium-base brazing alloys, are presented in this paper. Five filler metals were selected for the study, in which melting points were measured by differential thermal analysis, phases identified by x-ray diffractometry, and corrosion behaviors tested by potentiodynamic polarization. The experimental results show that the three-component Ti-15Cu-15Ni and the newly developed Ti-21Ni-14Cu alloys exhibit the combination of lower melting point and superior corrosion resistance compared to the two- and four-component titanium alloys, 316L stainless steel, and a Co-Cr-Mo alloy in Hank`s solution at 37 C. On a short time basis, the presence of Ti{sub 2}Ni and Ti{sub 2}Cu intermetallics in the Ti-15Cu-15Ni and Ti-21Ni-14Cu alloys should not be preferentially dissolved in galvanic corrosion with respect to the dissimilar Ti-6Al-4V alloy.

  1. Microstructure of Vacuum-Brazed Joints of Super-Ni/NiCr Laminated Composite Using Nickel-Based Amorphous Filler Metal

    NASA Astrophysics Data System (ADS)

    Ma, Qunshuang; Li, Yajiang; Wu, Na; Wang, Juan

    2013-06-01

    Vacuum brazing of super-Ni/NiCr laminated composite and Cr18-Ni8 stainless steel was carried out using Ni-Cr-Si-B amorphous filler metal at 1060, 1080, and 1100 °C, respectively. Microstructure and phase constitution were investigated by means of optical and scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and micro-hardness tester. When brazed at 1060-1080 °C, the brazed region can be divided into two distinct zones: isothermally solidified zone (ISZ) consisting of γ-Ni solid solution and athermally solidified zone (ASZ) consisting of Cr-rich borides. Micro-hardness of the Cr-rich borides formed in the ASZ was as high as 809 HV50 g. ASZ decreased with increase of the brazing temperature. Isothermal solidification occurred sufficiently at 1100 °C and an excellent joint composed of γ-Ni solid solution formed. The segregation of boron from ISZ to residual liquid phase is the reason of Cr-rich borides formed in ASZ. The formation of secondary precipitates in diffusion-affected zone is mainly controlled by diffusion of B.

  2. Microstructure and Shear Strength in Brazing Joint of Mo-Cu Composite with 304 Stainless Steel by Ni-Cr-P Filler Metal

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Jiteng; Li, Yajiang; Zheng, Deshuang

    2015-07-01

    The brazing of Mo-Cu composite and 304 stainless steel was carried out in vacuum with Ni-Cr-P filler metal at 980 °C for 20 min. Microstructure in Mo-Cu/304 stainless steel joint was investigated by field-emission scanning electron microscope (FE-SEM) with energy dispersive spectrometer (EDS) and shear strength was measured by shearing test. The results indicate that shear strength of the Mo-Cu/304 stainless steel joint is about 155 MPa. There forms eutectic structure of γ-Ni solid solution with Ni3P in the braze seam. Ni-Cu(Mo) and Ni-Fe solid solution are at the interface beside Mo-Cu composite and 304 stainless steel, respectively. Shear fracture exhibits mixed ductile-brittle fracture feature with trans-granular fracture, ductile dimples and tearing edges. Fracture originates from the interface between brazing seam and Mo-Cu composite and it propagates to the braze seam due to the formation of brittle Ni5P2 and Cr3P precipitation.

  3. Polyurethane Filler for Electroplating

    NASA Technical Reports Server (NTRS)

    Beasley, J. L.

    1984-01-01

    Polyurethane foam proves suitable as filler for slots in parts electroplated with copper or nickel. Polyurethane causes less contamination of plating bath and of cleaning and filtering tanks than wax fillers used previously. Direct cost of maintenance and indirect cost of reduced operating time during tank cleaning also reduced.

  4. Development of High-Temperature Air Braze Filler Metals for Use in Two-Step Joining and Sealing Processes

    SciTech Connect

    Hardy, John S.; Weil, K. Scott

    2006-11-02

    Reactive air brazing (RAB) creates metallic braze joints between oxide surfaces. RAB can be performed in air and can undergo subsequent operation at temperatures up to 900ºC in oxidizing environments. This makes RAB an attractive joining method for creating seals in solid oxide fuel cells (SOFCs) which operate at temperatures between 700 and 850ºC and comprise cathode materials which are intolerant of reducing environments. Many planar SOFC designs require a two-step sealing process. Thus the seal formed during the first step must not melt or soften at the firing temperature of the second step, otherwise its integrity could be compromised. The goal of this study is to investigate the effects of adding Pd to a Ag-CuO RAB to produce a braze composition with a melting temperature high enough that it might be used in the first step of a two-step sealing process with unmodified Ag-CuO RAB used in the second step, thereby making possible a two step reactive air brazing process. Yttria-stabilized zirconia (YSZ) is the substrate of choice in this study in order to simulate the initial sealing step in planar SOFCs which often involves sealing a yttrium-stabilized zirconia (YSZ) electrolyte to a metallic support frame. RAB compositions containing a 15 mol% Pd : 85 mol% Ag alloy with 8 mol% Cu added were found to provide the best combination of wettability, mechanical strength, and melting characteristics for brazing YSZ.

  5. Shaping Lips with Fillers

    PubMed Central

    Luthra, Amit

    2015-01-01

    The lips and the eyes enhance facial beauty, and they have been highlighted since time immemorial. Rejuvenating the lips with fillers, frequently hyaluronic acid (HA), is a common procedure but requires expertise. The objective of this text is to describe the procedure in detail and cover the practical aspects of injecting lips with fillers. An analysis of treating lips with needles and cannulae has been made with special emphasis on achieving optimum results. PMID:26644736

  6. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers

    PubMed Central

    Brostow, Witold; Lobland, Haley E. Hagg; Hnatchuk, Nathalie; Perez, Jose M.

    2017-01-01

    Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs). We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic—with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention. PMID:28336900

  7. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers.

    PubMed

    Brostow, Witold; Lobland, Haley E Hagg; Hnatchuk, Nathalie; Perez, Jose M

    2017-03-16

    Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs). We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic-with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention.

  8. Effect of Filler and Heat Treatment on the Physical and Mechanical Properties of the Brazed Joint between Carbide Tip and Steel

    NASA Astrophysics Data System (ADS)

    Winardi, Y.; Triyono; Wijayanta, A. T.

    2017-02-01

    In this study, the effect of filler and heat treatment on the physical and mechanical properties of the brazed joint carbide tip and steel was investigated. Tip carbide YG6 and low carbon steel (SS400) is joining by torch brazing with two filler metals, silver, and copper filler. Heat treatment was performed in induction furnace. Microstructure and shear strength of the brazed joint have been investigated. Many silver filler layer are formed on the surface of the base metal rather then using copper filler. The highest shear strength is achieved using a silver filler metal at temperatur 725°C. The highest shear load is 18.62 kN.

  9. What's new in fillers?

    PubMed

    Brown, Lance H; Frank, Paul J

    2003-06-01

    This article is an in-depth review of various materials and products that have been used for the augmentation of soft tissue in the past, and covers several new products, methods, and techniques that may provide new options for dermatologists who use fillers in their practice. Pros and cons of each are discussed, along with mechanisms of action, dosages, approved and off-label uses, as well as a look ahead at some prospective technology.

  10. Stable, Thermally Conductive Fillers for Bolted Joints

    NASA Technical Reports Server (NTRS)

    LeVesque, Raymond J., II; Jones, Cherie A.; Babel, Henry W.

    2003-01-01

    A commercial structural epoxy [Super Koropon (or equivalent)] has been found to be a suitable filler material for bolted joints that are required to have large thermal conductances. The contact area of such a joint can be less than 1 percent of the apparent joint area, the exact value depending on the roughnesses of the mating surfaces. By occupying the valleys between contact peaks, the filler widens the effective cross section for thermal conduction. In comparison with prior thermal joint-filler materials, the present epoxy offers advantages of stability, ease of application, and -- as a byproduct of its stability -- lasting protection against corrosion. Moreover, unlike silicone greases that have been used previously, this epoxy does not migrate to contaminate adjacent surfaces. Because this epoxy in its uncured state wets metal joint surfaces and has low viscosity, it readily flows to fill the gaps between the mating surfaces: these characteristics affect the overall thermal conductance of the joint more than does the bulk thermal conductivity of the epoxy, which is not exceptional. The thermal conductances of metal-to-metal joints containing this epoxy were found to range between 5 and 8 times those of unfilled joints.

  11. [Photocatalytic reduction of nitrate using metal-doped titania].

    PubMed

    Tang, Li-na; Liu, Li-fen; Dong, Xiao-yan; Yang, Feng-lin

    2008-09-01

    Metal Fe or Cu doped P25 titania was prepared using the photodeposition method and characterized by TEM, ICP, XRD and UV-Vis, further tested for photocatalytic nitrate reduction and TN removal, under 20 W UV lamp irradiation. The influencing factors such as the pH values of solution, stirring gas, metal loadings, hole scavenger formic acid amount and co-doped Ag-Cu/TiO2 are investigated and discussed in detail. The experimental results after 2 h reaction indicated that with the increase of Cu loadings, nitrate conversion increases too, while a loading of 0.5% is optimal for highest N2 selectivity and TN (total nitrogen) removal. Using N2 as stirring gas and under acidic conditions, the N2 selectivity is lower (62%), but the highest conversion of nitrate and removal of TN can reach 36.9% and 23.2% respectively. Using CO2 as stirring gas, the highest selectivity for nitrogen 88.4% is obtained with 0.5% Cu/TiO2, 0.06 mol/L formic acid. Under the same conditions, using the prepared bimetallic titania (1%, 1:1 Ag/Cu), the conversion of nitrate and removal of TN are 48.1%, 34.2%, and N2 selectivity is 72.2%.

  12. Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn; Bjorkman, Gerry; McCool, Carolyn (Technical Monitor)

    2000-01-01

    A viewgraph presentation outlines NASA Marshall Space Flight Center, Lockheed Martin Michoud Space Systems, and McCook Metals' development an aluminum-copper weld filler wire for fusion welding 2195 aluminum lithium. The aluminum-copper based weld filler wire has been identified as B218, which is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The Super Lightweight External Tank for the NASA Space Shuttle Program consists of 2195 welded with 4043 aluminum-silicon weld filler wire. The B218 filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties. An initial characterization of the B218 weld filler wire was performed consisting of initial weld and repair weld evaluation comparing B218 and 4043. The testing involved room temperature and cryogenic tensile testing along with fracture toughness testing. B218 weld filler wire proved to produce enhanced initial and repair weld tensile and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding 2195 and other aluminum lithium alloys over 4043.

  13. More About Brazing Or Welding NiAl Without Filler

    NASA Technical Reports Server (NTRS)

    Moore, Thomas J.; Kalinowski, Joseph M.

    1996-01-01

    Two reports present additional information about two processes for joining, brazing, or welding workpieces made of nickel aluminide alloys, without use of filler metal. Joining processes involve uniform heating in vacuum-controlled furnace. Eliminates internal thermal gradients in workpieces joined and greatly reduces tendency toward cracking.

  14. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    NASA Astrophysics Data System (ADS)

    Longtin, Rémi; Sanchez-Valencia, Juan Ramon; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-02-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

  15. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance.

    PubMed

    Longtin, Rémi; Ramon Sanchez-Valencia, Juan; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-02-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm(-1). The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

  16. Use of Fillers in Rhinoplasty.

    PubMed

    Moon, Hyoung Jin

    2016-01-01

    Surgical rhinoplasty is the one of the most common cosmetic procedures in Asians. But there are limitations, such as down time, high cost, and a steep learning curve. Most complications are implant related. A safer and less invasive procedure is rhinoplasty using fillers. Good knowledge of the nasal anatomy is essential for rhinoplasty using fillers. Knowledge of nerves, blood supply, and injection plane allows avoiding complications. There are several planes in the nose. The deep fatty layer is recommended for injection, because it is wide and loose and there are less important neurovascular structures. Botulinum toxin also can be used for noninvasive rhinoplasty.

  17. Silica Fillers for elastomer Reinforement

    SciTech Connect

    Kohls, D.J.; Schaefer, D.W.

    2009-08-26

    This article summarizes recent work on the structure of precipitated silica used in the reinforcement of elastomers. Silica has a unique morphology, consisting of multiple structural levels that can be controlled through processing. The ability to control and characterize the multiple structures of precipitated silica is an example of morphological engineering for reinforcement applications. In this summary of some recent research efforts using precipitated silica, small-angle scattering techniques are described and their usefulness for determining the morphology of silica in terms of primary particles, aggregates, and agglomerates are discussed. The structure of several different precipitated silica powders is shown as well as the mechanical properties of elastomers reinforced with these silica particles. The study of the mechanical properties of filled elastomer systems is a challenging and exciting topic for both fundamental science and industrial application. It is known that the addition of hard particulates to a soft elastomer matrix results in properties that do not follow a straightforward rule of mixtures. Research efforts in this area have shown that the properties of filled elastomers are influenced by the nature of both the filler and the matrix, as well as the interactions between them. Several articles have reviewed the influence of fillers like silica and carbon black on the reinforcement of elastomers. In general, the structure-property relationships developed for filled elastomers have evolved into the following major areas: Filler structure, hydrodynamic reinforcement, and interactions between fillers and elastomers.

  18. Silica Fillers for elastomer Reinforement

    SciTech Connect

    Kohls, D.J.; Schaefer, D.W.

    2012-09-10

    This article summarizes recent work on the structure of precipitated silica used in the reinforcement of elastomers. Silica has a unique morphology, consisting of multiple structural levels that can be controlled through processing. The ability to control and characterize the multiple structures of precipitated silica is an example of morphological engineering for reinforcement applications. In this summary of some recent research efforts using precipitated silica, small-angle scattering techniques are described and their usefulness for determining the morphology of silica in terms of primary particles, aggregates, and agglomerates are discussed. The structure of several different precipitated silica powders is shown as well as the mechanical properties of elastomers reinforced with these silica particles. The study of the mechanical properties of filled elastomer systems is a challenging and exciting topic for both fundamental science and industrial application. It is known that the addition of hard particulates to a soft elastomer matrix results in properties that do not follow a straightforward rule of mixtures. Research efforts in this area have shown that the properties of filled elastomers are influenced by the nature of both the filler and the matrix, as well as the interactions between them. Several articles have reviewed the influence of fillers like silica and carbon black on the reinforcement of elastomers. In general, the structure-property relationships developed for filled elastomers have evolved into the following major areas: Filler structure, hydrodynamic reinforcement, and interactions between fillers and elastomers.

  19. Dry bin filler for apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A unique dry bin filler for apples using a sequenced tray was developed to reduce bruising in packing operations. Research and commercial trials in West Virginia, Pennsylvania, and Washington State demonstrated the ability to fill bins evenly and with low damage. Cultivars with different bruising su...

  20. Does moly improve hardfacing filler metals?

    SciTech Connect

    Arthur, D.

    1996-02-01

    This study involved two wear tests that simulated low-stress and high-stress abrasion. A typical example of low-stress abrasion (also called scratching), is encouraged when sand or other abrasive particles flow down a chute. High stress is also called three-body or grinding abrasion. It occurs when there are two surfaces with the abrasive particles between them. The force of the two surfaces fractures the abrasive particles. A typical place where high-stress abrasion is seen is on the outside flight of an auger or between the tracks and rollers on the undercarriage of heavy equipment. Because of the high cost of molybdenum, a study was undertaken to investigate the effects of additions into high-carbon, high-chromium weld deposits. The study was done with laboratory testing techniques intended to represent real-world applications. The results indicated there is little, if any, benefit in adding molybdenum to high-carbon, high-chromium weld deposits that are to be used in the as-welded condition to resist abrasion.

  1. Characterization and photocatalytic activity of Ag-Cu/TiO2 nanoparticles prepared by sol-gel method.

    PubMed

    Behnajady, Mohammad A; Eskandarloo, Hamed

    2013-01-01

    In this study, monometallic and bimetallic silver and copper doped TiO2 nanoparticles were prepared by sol-gel method. Structural and morphological characterizations of prepared nanoparticles were performed by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and N2 physisorption techniques. Co-doped TiO2 nanoparticles displayed pure anatase phase with 20-30 nm particle size and a humdrum distribution. The stability of anatase phase was increased with co-doping of silver and copper to TiO2 lattice. In addition, the co-doped TiO2 nanoparticles had a mesoporous structure with slit-shaped pores. The photocatalytic activity of all samples was evaluated in the photocatalytic removal of C.I. Acid Orange 7. Co-doped TiO2 nanoparticles by Ag and Cu were shown to have highest activity as compared with the Ag/TiO2, Cu/TiO2 and pure TiO2 nanoparticles. The best performance of co-doped TiO2 nanoparticles was observed for a sample calcined under 550 degrees C, containing optimum molar contents of silver (0.08 mol%) and copper (0.01 mol%) dopant ions.

  2. Soy-based fillers for thermoset composites

    NASA Astrophysics Data System (ADS)

    Watt, Paula

    Considerable work has been done with bio-based fillers in thermoplastics. Wood dust has been used for decades in wood plastic composites in conjunction with recycled high HDPE and PET. In recent years rapidly renewable fillers derived from dried distillery grains and from wood have been introduced commercially for thermoset polymers. These fillers provide bio-content and weight reduction to thermoset molding compounds but issues with moisture absorption and polymerization inhibition have limited their commercial acceptance. The intent of this research was to develop a bio-based filler suitable for thermoset composites. This filler would provide a low density alternative to mined mineral filler, such as CaCO3 or clay. Composites made with these fillers would be lighter in weight, which is desirable for many markets, particularly transportation. Cost parity to the mineral fillers, on a volume basis, was desirable and the use of green chemistry principles was a key objective of the project. This work provides a basis from which further development of modified soy flours as fillers for thermoset composites will continue. Biomass has been evaluated as fillers for thermoset composites since the early 1980s but failed to gain commercial acceptance due to excessive water absorption and inhibition issues with free radical curing. Biomass, with a large percentage of carbohydrates, are very hydrophilic due to their abundance of hydroxyl groups, while biomass, high in lignin, resulted in inhibition of the free radical cure of the unsaturated styrenated polyester matrix systems. Generally protein use as a filler is not desirable due to its food value. Torrefaction has proved to be a good, cost effective, process to reduce hydrophilicity of high cellulose feedstock. Surprising, however, some levels of torrefaction were found to induce the inhibition effect of the filler. Scientific inquiry into this problem proved that aromatics form during the torrefaction process and can

  3. 7 CFR 58.914 - Fillers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Fillers. 58.914 Section 58.914 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections... gravity and vacuum type fillers shall be of sanitary design and all product contact surfaces, if...

  4. 7 CFR 58.914 - Fillers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Fillers. 58.914 Section 58.914 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections... gravity and vacuum type fillers shall be of sanitary design and all product contact surfaces, if...

  5. 7 CFR 58.514 - Container fillers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Container fillers. 58.514 Section 58.514 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....514 Container fillers. Shall comply with the 3-A Sanitary Standards for Equipment for Packaging...

  6. Intumescent-ablator coatings using endothermic fillers

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R. (Inventor)

    1978-01-01

    An intumescent-ablator coating composition which contains the ammonium salt of 1,4-nitroaniline-2-sulfonic acid or 4,4 dinitrosul fanilide, a polymeric binder system and about 5 to 30% weight of an endothermic filler is reported. The filler has a decomposition temperature about or within the exothermic region of the intumescent agent.

  7. [Cutaneous ultrasound and dermal fillers].

    PubMed

    Villegas Fernández, C; Burón Álvarez, I; Fernández-Tresguerres Centeno, A; Alfageme Roldán, F; de Cabo Francés, F

    2015-11-01

    Requests for fillers or dermatological implants have dramatically increased in dermatology consultations in the last few years, either for the correction of superficial age-related wrinkles and cutaneous creases or to increase the volume of specific areas (cheeks, lips...). Dermatologists are often the first professionals to provide these treatments. Nevertheless, in other situations, the patients have already been treated, and many of them do not know the type of material that has been implanted or may even deny previous treatment, even when evident on clinical examination. In these occasions, cutaneous ultrasound is an effective and reliable tool for the real-time diagnosis of the kind of implant that has been used, its location, and the study of its possible complications.

  8. Cosmetic Fillers: Perspectives on the Industry.

    PubMed

    Basta, Steven L

    2015-11-01

    The cosmetic filler industry has evolved substantially over the last 30 years. The market is characterized by multiple fillers and a competitive dynamic among major aesthetics companies. Marketing in the United States and Europe has been different owing to regulatory constraints. Differences have led to more rapid growth in the European market. The US market has evolved owing to growth of major companies with multiple product portfolios and leverage in consumer promotion and aesthetics office marketing owing to scale. The evolution of the filler market will include new materials, injection techniques, and facilitation devices, and new areas of injection.

  9. Filler Wire Development for 2195 Aluminum-Lithium. Pt. 2

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Cho, Alex

    1998-01-01

    The objective of the research was to determine the susceptibility of submitted welded 2195 plate in an AI (Alternate Immersion) environment. Forty-day AI exposure was completed on 8 welded 2195 stress corrosion samples. No stress corrosion cracking (SCC) was found on any of the samples tested. All 8 samples experienced exfoliation corrosion attack in the heat-affected zone (HAZ) adjacent to the weld. All samples were examined metallographically and showed varying degrees of intergranular corrosion (IG). The filler metal on all samples showed moderate to heavy pitting.

  10. Mechanical properties of ethylene-octene copolymer (EOC) - lignocellulosic fillers biocomposites in dependence to filler content

    NASA Astrophysics Data System (ADS)

    Zykova, Anna; Pantyukhov, Petr; Popov, Anatoly

    2016-05-01

    The mechanical properties of biocomposites based on ethylene-octene copolymer were studied. The aim of present work was to investigate the mechanical properties of composites based on ethylene-octene copolymer (EOC) in dependence to type of the filler, filler content and trade mark of EOC. Addition of fillers (wood flour or seed flax straw) decreases elongation at break and decreases unsignificantly tensile strenght of examined copolymers. Particles of filler increase the toughness of polymer chain, which leads to decline of elongation at break. Biocomposites with wood flour had higher tensile strength and elongation at break than the composites with flax straw.

  11. Epoxy coatings over latex block fillers

    SciTech Connect

    Vincent, L.D.

    1997-12-01

    Failures of polymerized epoxy coatings applied over latex/acrylic block fillers continue to plague owners of commercial buildings, particularly those with high architectural content such as condominiums, high rise offices, etc. Water treatment facilities in paper mills are especially prone to this problem. The types of failures include delamination of the topcoats, blisters in both the block fillers and the topcoats and disintegration of the block filler itself. While the problem is well known, the approach to a solution is not. A study of several coatings manufacturer`s Product Data Sheets shows a wide variance in the recommendations for what are purportedly generically equivalent block fillers. While one manufacturer might take an essentially architectural approach, another will take a heavy-duty industrial approach. To the specifying architect or engineer who has little training in the complexities of protective coating systems, this presents a dilemma. Who does he believe? What does he specify? To whom can he turn for independent advice?

  12. New Manufacturing Method for Paper filler and Fiber Material

    SciTech Connect

    Doelle, Klaus

    2011-11-22

    The study compares commercial available filler products with a new developed “Hybrid Fiber Filler Composite Material” and how main structural, optical and strength properties are affected by increasing the filler content of at least 5% over commercial values. The study consists of: (i) an overview of paper filler materials used in the paper production process, (ii) discusses the manufacturing technology of lime based filler materials for paper applications, (iii) gives an overview of new emerging paper filler technologies, (iv) discusses a filler evaluation of commercial available digital printing paper products, (v) reports from a detailed handsheet study and 12” pilot plant paper machine trial runs with the new Hybrid Fiber Filler Composite Material, and (vi) evaluates and compares commercial filler products and the new Hybrid Fiber Filler Composite Material with a life cycle analyses that explains manufacturing, economic and environmental benefits as they are applied to uncoated digital printing papers.

  13. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    PubMed

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys.

  14. Passive Cooling Enabled by Polymer Composite Coating: Dependence on Filler, Filler Size and Coating Thickness

    NASA Astrophysics Data System (ADS)

    Shao, Yue; Shi, Frank G.

    2017-02-01

    The effective passive radiation cooling that is enabled by silicone-based composites is investigated for its dependence on coating thickness and filler size in the range of nanometers to micrometers. It is established, contrary to prior reports, that the effective passive radiation cooling does not exhibit a filler size dependence, i.e., there is no optimal size at which a maximum cooling would be reached. However, the apparent cooling effect is filler type dependent and among the fillers investigated, Al2O3 exhibits the best apparent cooling effect. In addition, the apparent cooling effect is dependent on coating thickness: the thickness dependence is non-monotonic, and the maximum cooling occurs at an optimal thickness of 70 μm, regardless of filler type. Potential significant implications of the findings are also discussed.

  15. High-performance field emission of carbon nanotube paste emitters fabricated using graphite nanopowder filler

    NASA Astrophysics Data System (ADS)

    Sun, Yuning; Yun, Ki Nam; Leti, Guillaume; Lee, Sang Heon; Song, Yoon-Ho; Lee, Cheol Jin

    2017-02-01

    Carbon nanotube (CNT) paste emitters were fabricated using graphite nanopowder filler. The CNT paste emitters consist of CNTs as the emitting material, graphite nanopowder as the filler and a graphite rod as the cathode. Rather than metal or inorganic materials, graphite nanopowder was adapted as a filler material to make the CNT paste emitters. After fabricating the emitters, sandpaper treatment was applied to increase the density of emission sites. The CNT paste emitters showed a high field emission performance, for example a high emission current of 8.5 mA from a cylindrical emitter with a diameter of 0.7 mm (corresponding to a current density of 2.2 A cm-2) and an extremely stable emission current at 1 mA (260 mA cm-2 for 20 h). Interestingly, after a number of electrical arcing events, the emitters still showed a high emission current of 5-8 mA (higher than 1 A cm-2). In addition to the sound electrical and thermal properties of the graphite filler, effective mechanical adhesion of the CNTs onto the graphite cathode induced by the use of the graphite nanopowder filler contributed the excellent field emission properties of the CNT paste emitters.

  16. High-performance field emission of carbon nanotube paste emitters fabricated using graphite nanopowder filler.

    PubMed

    Sun, Yuning; Yun, Ki Nam; Leti, Guillaume; Lee, Sang Heon; Song, Yoon-Ho; Lee, Cheol Jin

    2017-02-10

    Carbon nanotube (CNT) paste emitters were fabricated using graphite nanopowder filler. The CNT paste emitters consist of CNTs as the emitting material, graphite nanopowder as the filler and a graphite rod as the cathode. Rather than metal or inorganic materials, graphite nanopowder was adapted as a filler material to make the CNT paste emitters. After fabricating the emitters, sandpaper treatment was applied to increase the density of emission sites. The CNT paste emitters showed a high field emission performance, for example a high emission current of 8.5 mA from a cylindrical emitter with a diameter of 0.7 mm (corresponding to a current density of 2.2 A cm(-2)) and an extremely stable emission current at 1 mA (260 mA cm(-2) for 20 h). Interestingly, after a number of electrical arcing events, the emitters still showed a high emission current of 5-8 mA (higher than 1 A cm(-2)). In addition to the sound electrical and thermal properties of the graphite filler, effective mechanical adhesion of the CNTs onto the graphite cathode induced by the use of the graphite nanopowder filler contributed the excellent field emission properties of the CNT paste emitters.

  17. Effect of electromagnetic Stirring on the Element Distribution in Laser Beam Welding of Aluminium with Filler Wire

    NASA Astrophysics Data System (ADS)

    Gatzen, M.; Tang, Z.; Vollertsen, F.

    Additional external electromagnetic fields are used in laser beam welding of aluminium with silicon containing filler wire to manipulate the flow of the liquid metal due to induced volume forces and hence to modify the element distribution. Aiming for a better understanding of the fluid-dynamic processes inside the meld pool, a CFD model has been implemented to simulate the melt flow. In this paper, simulation results on the resulting element distribution of filler wire material under a coaxial magnetic field with different frequencies is compared to experimental results for the same parameters. It is shown that in both cases the concentration of alloying elements of the filler material has a spatial periodicity. From the CFD model it can be concluded that the change of the distribution of the filler material results from a modulation of the melt flow due to the periodic induced electromagnetic volume forces.

  18. Temporal fossa defects: techniques for injecting hyaluronic acid filler and complications after hyaluronic acid filler injection.

    PubMed

    Juhász, Margit Lai Wun; Marmur, Ellen S

    2015-09-01

    Facial changes with aging include thinning of the epidermis, loss of skin elasticity, atrophy of muscle, and subcutaneous fat and bony changes, all which result in a loss of volume. As temporal bones become more concave, and the temporalis atrophies and the temporal fat pad decreases, volume loss leads to an undesirable, gaunt appearance. By altering the temporal fossa and upper face with hyaluronic acid filler, those whose specialty is injecting filler can achieve a balanced and more youthful facial structure. Many techniques have been described to inject filler into the fossa including a "fanned" pattern of injections, highly diluted filler injection, and the method we describe using a three-injection approach. Complications of filler in the temporal fossa include bruising, tenderness, swelling, Tyndall effect, overcorrection, and chewing discomfort. Although rare, more serious complications include infection, foreign body granuloma, intravascular necrosis, and blindness due to embolization into the ophthalmic artery. Using reversible hyaluronic acid fillers, hyaluronidase can be used to relieve any discomfort felt by the patient. Injectors must be aware of the complications that may occur and provide treatment readily to avoid morbidities associated with filler injection into this sensitive area.

  19. Thermal pretreatment of silica composite filler materials

    PubMed Central

    Wan, Quan; Ramsey, Christopher

    2010-01-01

    Three different silica filler materials were thermally treated in order to effect dehydration, dehydroxylation, and rehydroxylation. Samples were characterized by thermogravimetry (TG), pycnometry, elemental analysis, and scanning electron microscopy (SEM). For all fillers, our results indicate incremental removal of silanol groups at higher heating temperatures and irreversible dehydroxylation at over 673 K. To remove the organic content and maintain adequate silanol density for subsequent silanization on Stöber-type silica, we suggest heating at 673 K followed by overnight boiling in water. PMID:20445821

  20. High-Temperature Insulating Gap Filler

    NASA Technical Reports Server (NTRS)

    Toombs, Gordon R.; Oyoung, Kevin K.; Stevens, Everett G.

    1991-01-01

    New inorganic, ceramic filler for gaps between refractory ceramic tiles offers high resistance to heat and erosion. Consists of ceramic-fiber fabric precoated with silica and further coated with silica containing small amount of silicon carbide powder to increase thermal emittance. Developed as replacement for organic filler used on thermal-protection system of Space Shuttle. Promises to serve for many missions and to reduce cost and delay of refurbishing aerospace craft. Used as sealing material in furnaces or as heat shield for sensitive components in automobiles, aircraft, and home appliances.

  1. The filler revolution: a six-year retrospective.

    PubMed

    Wesley, Naissan O; Dover, Jeffrey S

    2009-10-01

    There are currently more than 20 FDA-approved fillers in the United States (U.S.), noteworthy considering that it was only six years ago that the first hyaluronic acid filler was approved. The pace of development of filler substances in the last few years has been extremely rapid. The authors review the development, advantages, and disadvantages of fillers currently available in the U.S.

  2. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 23.973 Section... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.973 Fuel tank filler connection. (a) Each fuel tank filler connection must be marked as prescribed...

  3. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 27.973 Section... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection. (a) Each fuel tank filler connection must prevent the entrance of fuel into any part of...

  4. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 23.973 Section... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.973 Fuel tank filler connection. (a) Each fuel tank filler connection must be marked as prescribed...

  5. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 25.973 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler connection. Each fuel tank filler connection must prevent the entrance of fuel into any part of the...

  6. Process for recovering filler from polymer

    DOEpatents

    Smith, Maurice L.; Smith, Robert M.

    1978-01-01

    This disclosure relates to a process for recovering filler material from a polymeric matrix by reacting the matrix at an elevated temperature in a gas atmosphere with a controlled oxidizing potential and thereafter separating and cleaning the residue from the reaction mixture.

  7. High Temperature Filler for Tile Gaps

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Wang, D. S.

    1983-01-01

    Gaps between ceramic tiles filled with ceramic-coated fabric that withstands temperatures as high as 2,000 degrees F (1,300 degrees C). Reusable high-temperature gap filler is made of fabric coated with ceramic slurry and bonded in place with room-temperature-vulcanized adhesive. Procedure used in kilns and furnaces.

  8. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system

    PubMed Central

    Ha, Sung Min; Kwon, O Hwan; Oh, Yu Gyeong; Kim, Yong Seok; Lee, Sung-Goo; Won, Jong Chan; Cho, Kwang Soo; Kim, Byoung Gak; Yoo, Youngjae

    2015-01-01

    We explored the use of a hybrid filler consisting of graphite nanoplatelets (GNPs) and single walled carbon nanotubes (SWCNTs) in a polyamide 6 (PA 6) matrix. The composites containing PA 6, powdered GNP, and SWCNT were melt-processed and the effect of filler content in the single filler and hybrid filler systems on the thermal conductivity of the composites was examined. The thermal diffusivities of the composites were measured by the standard laser flash method. Composites containing the hybrid filler system showed enhanced thermal conductivity with values as high as 8.8 W (m · K)−1, which is a 35-fold increase compared to the thermal conductivity of pure PA 6. Thermographic images of heat conduction and heat release behaviors were consistent with the thermal conductivity results, and showed rapid temperature jumps and drops, respectively, for the composites. A composite model based on the Lewis–Nielsen theory was developed to treat GNP and SWCNT as two separate types of fillers. Two approaches, the additive and multiplicative approaches, give rather good quantitative agreement between the predicted values of thermal conductivity and those measured experimentally. PMID:27877843

  9. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system.

    PubMed

    Ha, Sung Min; Kwon, O Hwan; Oh, Yu Gyeong; Kim, Yong Seok; Lee, Sung-Goo; Won, Jong Chan; Cho, Kwang Soo; Kim, Byoung Gak; Yoo, Youngjae

    2015-12-01

    We explored the use of a hybrid filler consisting of graphite nanoplatelets (GNPs) and single walled carbon nanotubes (SWCNTs) in a polyamide 6 (PA 6) matrix. The composites containing PA 6, powdered GNP, and SWCNT were melt-processed and the effect of filler content in the single filler and hybrid filler systems on the thermal conductivity of the composites was examined. The thermal diffusivities of the composites were measured by the standard laser flash method. Composites containing the hybrid filler system showed enhanced thermal conductivity with values as high as 8.8 W (m · K)(-1), which is a 35-fold increase compared to the thermal conductivity of pure PA 6. Thermographic images of heat conduction and heat release behaviors were consistent with the thermal conductivity results, and showed rapid temperature jumps and drops, respectively, for the composites. A composite model based on the Lewis-Nielsen theory was developed to treat GNP and SWCNT as two separate types of fillers. Two approaches, the additive and multiplicative approaches, give rather good quantitative agreement between the predicted values of thermal conductivity and those measured experimentally.

  10. Enhanced thermal conductivity of novel multifunctional polyphenylene sulfide composites embedded with heat transfer networks of hybrid fillers

    NASA Astrophysics Data System (ADS)

    Leung, Siu N.; Khan, Omer M.; Chan, Ellen; Naguib, Hani E.; Dawson, Francis; Adinkrah, Vincent; Lakatos-Hayward, Laszlo

    2011-04-01

    Today's smaller, more powerful electronic devices, communications equipment, and lighting apparatus required optimum heat dissipation solutions. Traditionally, metals are widely known for their superior thermal conductivity; however, their good electrical conductivity has limited their applications in heat management components for microelectronic applications. This prompts the requirement to develop novel plastic composites that satisfy multifunctional requirements thermally, electrically, and mechanically. Furthermore, the moldability of polymer composites would make them ideal for manufacturing three-dimensional, net-shape enclosures and/or heat management assembly. Using polyphenylene sulfide (PPS) as the matrix, heat transfer networks were developed and structured by embedding hexagonal boron nitride (BN) alone, blending BN fillers of different shapes and sizes, as well as hybridizing BN fillers with carbonaceous nano- and micro-fillers. Parametric studies were conducted to elucidate the effects of types, shapes, sizes, and hybridization of fillers on the composite's thermal and electrical properties. The use of hybrid fillers, with optimized material formulations, was found to effectively promote a composite's thermal conductivity. This was achieved by optimizing the development of an interconnected thermal conductive network through structuring hybrid fillers with appropriate shapes and sizes. The thermal conductive composite affords unique opportunities to injection mold three-dimensional, net-shape microelectronic enclosures with superior heat dissipation performance.

  11. Chemical interaction of polyethylene matrix with vegetable fillers in biocomposites

    NASA Astrophysics Data System (ADS)

    Pantyukhov, Petr; Monakhova, Tatiana; Popov, Anatoly; Zykova, Anna

    2016-05-01

    The paper studies the diffusion of low molecular weight components from vegetable fillers into polyethylene matrix during the preparation of biocomposites. In order to identify the diffusible substances a model experiment used where the hexadecane acted as a model of polyethylene. It was determined that polyphenolic compounds and chlorophyll penetrate from vegetable fillers to hexadecane to the maximum extent. There was found a correlation between the amount of polyphenolic compounds diffusible from the fillers to hexadecane and thermal oxidation kinetics of real biocomposites based on polyethylene and vegetable fillers. Thus, it has been assumed the diffusion of polyphenols and chlorophyll from vegetable fillers into polyethylene matrix during the preparation of biocomposites.

  12. Surface and interfacial effect of filler particle on electrical properties of polyvinyledene fluoride/nickel composites

    NASA Astrophysics Data System (ADS)

    Panda, Maheswar; Srinivas, V.; Thakur, A. K.

    2008-12-01

    The effect of processing conditions and filler particle size/surface area on the dielectric behavior of polyvinyledene fluoride/nickel composites is reported. Large enhancement of low frequency dielectric constant with reduction in metal particle size in a metal-polymer composite is observed. Enhancement in the dielectric constant has been attributed to increase in interfacial area and consequent interfacial polarization with reduction in metal particle size. The increased interparticle contacts from the nearest neighbors result in enhanced tunneling probability leading to lowering of percolation threshold for nanosized nickel/polyvinyledene fluoride composites as compared to micron nickel/polyvinyledene fluoride composites.

  13. Rapid Polymer Concrete Repairs Using Available Fillers

    DTIC Science & Technology

    2006-02-01

    report was reviewed and cleared for public release by the Air Force Research Laboratory Tyndall Site (AFRL/MLQ) Public Affairs Office (PAO) and is...AFRL-ML-TY-TP-2005-4544 RAPID POLYMER CONCRETE REPAIRS USING AVAILABLE FILLERS David W. Fowler, Ph. D, P.E., Chul Suh, P.E., and...February 2006 DISTRIBUTION STATEMENT A: Approved for public release; distribution unlimited. Air Force Research Laboratory Materials and

  14. Technical Considerations for Filler and Neuromodulator Refinements

    PubMed Central

    Wilson, Anthony J.; Chang, Brian L.; Percec, Ivona

    2016-01-01

    Background: The toolbox for cosmetic practitioners is growing at an unprecedented rate. There are novel products every year and expanding off-label indications for neurotoxin and soft-tissue filler applications. Consequently, aesthetic physicians are increasingly challenged by the task of selecting the most appropriate products and techniques to achieve optimal patient outcomes. Methods: We employed a PubMed literature search of facial injectables from the past 10 years (2005–2015), with emphasis on those articles embracing evidence-based medicine. We evaluated the scientific background of every product and the physicochemical properties that make each one ideal for specific indications. The 2 senior authors provide commentary regarding their clinical experience with specific technical refinements of neuromodulators and soft-tissue fillers. Results: Neurotoxins and fillers are characterized by unique physical characteristics that distinguish each product. This results in subtle but important differences in their clinical applications. Specific indications and recommendations for the use of the various neurotoxins and soft-tissue fillers are reviewed. The discussion highlights refinements in combination treatments and product physical modifications, according to specific treatment zones. Conclusions: The field of facial aesthetics has evolved dramatically, mostly secondary to our increased understanding of 3-dimensional structural volume restoration. Our work reviews Food and Drug Administration–approved injectables. In addition, we describe how to modify products to fulfill specific indications such as treatment of the mid face, décolletage, hands, and periorbital regions. Although we cannot directly evaluate the duration or exact physical properties of blended products, we argue that “product customization” is safe and provides natural results with excellent patient outcomes. PMID:28018778

  15. Bio-inspired Fillers for Mechanical Enhancement

    NASA Astrophysics Data System (ADS)

    Korley, Lashanda

    2012-02-01

    An examination of natural materials has offered a new perspective on the development of multi-functional materials with enhanced mechanical properties. One important lesson from nature is the utilization of composite structures to impart improved mechanical behavior and enhanced functionality using nanofillers. A relatively unexplored expansion of this bio-inspired, nanoscale filler approach to high performance materials is the incorporation of responsive, multi-functional reinforcing elements in polymeric composites with the goal of combining superior mechanical behavior that can be tuned with additional functionality, such as sensing and bioactivity. One approach is the use of self-assembling small molecules that form uniform, one-dimensional nanostructures as an emerging class of filler components. Another pathway toward mechanical enhancement is the incorporation of stimuli-responsive and high-modulus electrospun nanofibers. We have probed the utilization of high-aspect ratio, self-assembled small molecules and responsive electrospun nanofibers as all-organic nanofillers to achieve significant modulus changes within elastomeric matrices. The influence of matrix-filler interactions and the role of hierarchical organization in these nature-inspired composites will be discussed. Potential applications in barrier technology and drug delivery have also been explored.

  16. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  17. X-ray study of Pd40Cu30Ni10P20 bulk metallic glass brazing filler for Ti-6Al-7Nb alloy

    SciTech Connect

    Miura, E.; Ice, Gene E; Specht, Eliot D; Pang, Judy; Kato, H.; Hisatsune, K.; Inoue, I.

    2007-01-01

    Crystalline precipitates in a bulk-metallic-glass (BMG) braze were investigated with an intense x-ray microbeam. The precipitates were found in the Pd{sub 40}Cu{sub 30}P{sub 20}Ni{sub 10} BMG braze matrix after joining crystalline Ti-6Al-7Nb. However, the role (if any) played by the precipitates in improving the mechanical bond of the BMG/crystalline joint is unknown. X-ray microdiffraction and microfluorescence measurements from small sample volumes were made with an {approx} 0.5 x 0.5 {micro}m2 beam. Spatially-resolved Laue diffraction and x-ray fluorescence measurements were made on several second-phase crystals within the BMG matrix. Although precipitate crystals with the observed compositions were anticipated to be predominantly hexagonal, one of the crystals was found to be cubic or tetragonal. The instrumentation includes capabilities for 3D depth-resolved measurements of crystal structure and for fluorescence analysis of elemental composition. Depth profiling gave information about the grain distribution and morphology in the BMG matrix.

  18. X-ray Study of Pd[subscript 40]Cu[subscript 30]Ni[subscript 10]P[subscript 20] Bulk Metallic Glass Brazing Filler For Ti-6Al-7Nb Alloy

    SciTech Connect

    Miura, E.; Ice, G.E.; Specht, E.D.; Pang, J.W.L.; Kato, H.; Hisatsune, K.; Inoue, A.

    2007-10-02

    Crystalline precipitates in a bulk-metallic-glass (BMG) braze were investigated with an intense x-ray microbeam. The precipitates were found in the Pd{sub 40}Cu{sub 30}P{sub 20}Ni{sub 10} BMG braze matrix after joining crystalline Ti-6Al-7Nb. However, the role (if any) played by the precipitates in improving the mechanical bond of the BMG/crystalline joint is unknown. X-ray microdiffraction and microfluorescence measurements from small sample volumes were made with an {approx} 0.5 x 0.5 {micro}m2 beam. Spatially-resolved Laue diffraction and x-ray fluorescence measurements were made on several second-phase crystals within the BMG matrix. Although precipitate crystals with the observed compositions were anticipated to be predominantly hexagonal, one of the crystals was found to be cubic or tetragonal. The instrumentation includes capabilities for 3D depth-resolved measurements of crystal structure and for fluorescence analysis of elemental composition. Depth profiling gave information about the grain distribution and morphology in the BMG matrix.

  19. Investigating Filler Reinforcement and Nonlinear Viscoelastic Behavior in Polymer Composites

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiyong; Wang, Shi-Qing; von Meerwall, Ernst

    2004-03-01

    Solid fillers have been known to enhance the linear viscoelastic responses of polymer melts and elastomers. Nonlinear viscoelastic behavior of such systems is closely related to the reinforcement of the linear viscoelascity. Understanding such phenomena as the Payne effect (where the storage modulus is measured to decrease in oscillatory shear with the amplitude of the oscillation and with time for a fixed amplitude) requires a better understanding of the filler reinforcement mechanism. Recent publications, from two different groups (a) (b) prompted our present study. Using monodisperse 1,4-polybutadiene melts as the matrix and nano-silicon oxide particles of 15 nm diameter as the fillers, we carried out a variety of viscoelastic and NMR-spin-echo diffusion measurements to elucidate the important role of the filler-filler networking in controlling the observed linear and nonlinear behavior at temperatures over 100 degrees above the glass transition temperature of PBD. (a)S.S. Sternstein and A. Zhu, Macromolecules 35, 7262 (2002); Composites Sci. and Techn. 63, 1113 (2003). This work claims that the reinforcement arises primarily from the entrapped chain entanglement due to chain adsorption on filler surfaces instead of the filler-filler networking. (b) H. Montes, F. Lequeux and J. Berriot, Macromolecules, 36, 8107 (2003). This work advocates that a glassy layer formed around each filler is responsible for the enhanced linear viscoelascity and for the observed nonlinear viscoelastic behavior such as the Payne effect.

  20. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  1. Coaggregation of mineral filler particles and starch granules as a basis for improving filler-fiber interaction in paper production.

    PubMed

    Li, Ting; Fan, Jun; Chen, Wensen; Shu, Jiayan; Qian, Xueren; Wei, Haifeng; Wang, Qingwen; Shen, Jing

    2016-09-20

    The sustainable, efficient use of renewable bio-based additives in the production of various materials fits well into the concept of sustainability. Here, the concept of coaggregation of mineral filler particles and starch granules for improving filler-fiber interaction in paper-based cellulosic networks is presented. Coaggregation of precipitated calcium carbonate filler particles and uncooked, unmodified corn starch granules by cationic polyacrylamide (a cationic high molecular weight polymer flocculant) in combination with bentonite (an anionic microparticle) prior to addition to cellulosic fiber slurry delivered enhanced filler bondability with cellulosic fibers. For instance, under the conditions studied, preaggregation resulted in an increase in filler bondability factor from 9.24 to 15.21 at starch dosage of 1% (on the basis of the dry weight of papermaking stock). The swelling and gelatinization of the starch granules in starch-filler preaggregates or hybrids enabled the "bridging" of the gaps in cellulosic networks, leading to structural consolidation and strength enhancement.

  2. Esthetic Reconstruction of Diastema with Adhesive Tooth-Colored Restorations and Hyaluronic Acid Fillers

    PubMed Central

    2017-01-01

    Objective. This report presents a comprehensive esthetic treatment with adhesive tooth-colored restorations in a combination with hyaluronic acid (HA) fillers of diastema in an orthodontic patient with relapse. Case Report. A 36-year-old female patient consulted about 1.5–2 mm midline diastema after an orthodontic relapse of replacing missing central incisors with lateral incisors and dark-colored gingival tissue as a result of a metal post and core with porcelain fused to a metal (PFM) crown at the left lateral incisor. Restorative treatments included replacing the PFM with all-ceramic material and placing a ceramic veneer on the right lateral incisor. To close the space, crown forms of both lateral incisors were altered. A direct resin composite was then used to reform right and left canines to a more ideal lateral incisor shape. An HA fillers injection was used to fill the remaining open gingival embrasure. Eighteen months after treatment, the interdental papilla remained stable and the patient was satisfied with the result. Conclusion. Esthetic reconstruction of diastema and open gingival embrasure in this case can be accomplished without orthodontic retreatment. Tooth-colored restorations and HA filler injection appear as a promising modality to address this patient's esthetic concern. PMID:28386488

  3. Welding, bonding, and sealing of refractory metals by vapor deposition

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Plating process welds, bonds, and seals refractory metals without weakening or changing the structure of the base metals. A metal halide compound in the vapor phase is decomposed to deposit filler metal on the base metal. The resulting bond is a true metal-to-metal bond.

  4. 7 CFR 58.229 - Filler and packaging equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry...

  5. Use of nut shells as fillers in polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three nutshell fillers including walnut, almond and pistachio nutshell were added to PLA. All the physical properties of samples deteriorated relative to PLA. When subjected to heat pre-treatment, although the physical properties of PLA-filler samples still deteriorated, the extent of deteriorat...

  6. Selecting fillers on emotional appearance improves lineup identification accuracy.

    PubMed

    Flowe, Heather D; Klatt, Thimna; Colloff, Melissa F

    2014-12-01

    Mock witnesses sometimes report using criminal stereotypes to identify a face from a lineup, a tendency known as criminal face bias. Faces are perceived as criminal-looking if they appear angry. We tested whether matching the emotional appearance of the fillers to an angry suspect can reduce criminal face bias. In Study 1, mock witnesses (n = 226) viewed lineups in which the suspect had an angry, happy, or neutral expression, and we varied whether the fillers matched the expression. An additional group of participants (n = 59) rated the faces on criminal and emotional appearance. As predicted, mock witnesses tended to identify suspects who appeared angrier and more criminal-looking than the fillers. This tendency was reduced when the lineup fillers matched the emotional appearance of the suspect. Study 2 extended the results, testing whether the emotional appearance of the suspect and fillers affects recognition memory. Participants (n = 1,983) studied faces and took a lineup test in which the emotional appearance of the target and fillers was varied between subjects. Discrimination accuracy was enhanced when the fillers matched an angry target's emotional appearance. We conclude that lineup member emotional appearance plays a critical role in the psychology of lineup identification. The fillers should match an angry suspect's emotional appearance to improve lineup identification accuracy.

  7. Filler Wire Development for 2195 Aluminum-Lithium

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cho, Alex; Russell, Carolyn; Zimmerman, Frank

    1998-01-01

    The presentation outline summarizes activities supporting the development of filler wire for 215 aluminum-lithium. The specific objective of the research was to identify an Al-Cu based filler wire chemistry which reduces weld susceptibility in 2195 Aluminum-Lithium welds and repairs welds along with providing adequate mechanical properties. This report is in viewgraph form.

  8. 7 CFR 29.6129 - Farm Filler (Y Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Farm Filler (Y Group). 29.6129 Section 29.6129 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6129 Farm Filler (Y Group). This group consists...

  9. 7 CFR 29.6129 - Farm Filler (Y Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Farm Filler (Y Group). 29.6129 Section 29.6129 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6129 Farm Filler (Y Group). This group consists...

  10. 7 CFR 29.6129 - Farm Filler (Y Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Farm Filler (Y Group). 29.6129 Section 29.6129 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6129 Farm Filler (Y Group). This group consists...

  11. 7 CFR 29.6129 - Farm Filler (Y Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Farm Filler (Y Group). 29.6129 Section 29.6129 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6129 Farm Filler (Y Group). This group consists...

  12. 7 CFR 29.6129 - Farm Filler (Y Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Farm Filler (Y Group). 29.6129 Section 29.6129 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6129 Farm Filler (Y Group). This group consists...

  13. Fillers as Signals: Evidence from a Question-Answering Paradigm

    ERIC Educational Resources Information Center

    Walker, Esther J.; Risko, Evan F.; Kingstone, Alan

    2014-01-01

    The present study examined the influence of a human or computer "partner" on the production of fillers ("um" and "uh") during a question and answer task. Experiment 1 investigated whether or not responding to a human partner as opposed to a computer partner results in a higher rate of filler production. Participants…

  14. Reaction layers and mechanisms for a Ti-activated braze on sapphire

    NASA Astrophysics Data System (ADS)

    Stephens, J. J.; Hosking, F. M.; Headley, T. J.; Hlava, P. F.; Yost, F. G.

    2003-12-01

    A study was conducted to understand the wetting phenomena observed in brazing of a Ti-containing active filler metal on sapphire substrates. The goal of the study was to understand the interfacial reactions that permit wetting of commercial Ag-Cu-Ti active filler metal to pure alumina, despite the lower thermodynamic stability of TiO2 relative to Al2O3. Based upon transmission electron microscope, electron microprobe, and Auger analyses, it is proposed that two coupled reactions and diffusion of reactants take place. The oxides TiO, Ti2O, and Cu3Ti3O were observed at the braze/ceramic interface. It is suggested that the complex oxide Cu3Ti3O grows at its interface with TiO, and the oxide TiO is produced by reaction of Ti and sapphire and is subsequently consumed at its interface with Cu3Ti3O. It is also suggested that Ti2O forms from Ti and TiO while cooling from the brazing cycle.

  15. Simulation of Polymer Physical Gel With Platelet Fillers

    NASA Astrophysics Data System (ADS)

    Xu, Di; Gerssape, Dilip

    Platelet filler such as clays have superior effects on the properties of polymer gels. We used molecular dynamic simulations to study platelet filled composite gels system, in which small hexagonal disks simulate the platelets and gelation is due to short-range attraction between end-monomers and platelets. The properties of platelet filled composites are studied as a function of filler concentration. The mechanism of gelation was found similar to those of pure polymer gels; the polymers and platelets formed organic-inorganic networks, which percolate at high enough filler concentration. It was observed platelets aggregated into local intercalation structure, which significantly differs from typical spherical fillers. This unique intercalation structure is examined by radial distribution function and ordering parameters. We discussed how intercalation would affect the properties of the platelet composites by comparing them with spherical fillers.

  16. Microvascular complications associated with injection of cosmetic facelift dermal fillers

    NASA Astrophysics Data System (ADS)

    Yousefi, Siavash; Prendes, Mark; Chang, Shu-Hong; Wang, Ruikang K.

    2015-02-01

    Minimally-invasive cosmetic surgeries such as injection of subdermal fillers have become very popular in the past decade. Although rare, some complications may follow injections such as tissue necrosis and even blindness. There exist two hypothesis regarding source of these complications both of which include microvasculature. The first hypothesis is that fillers in between the tissue structures and compress microvasculature that causes blockage of tissue neutrition and oxygen exchange in the tissue. In another theory, it is hypothesized that fillers move inside major arteries and block the arteries/veins. In this paper, we study these hypotheses using optical coherence tomography and optical microangiography technologies with different hyaluronic-acid fillers in a mouse ear model. Based on our observations, the fillers eventually block arteries/veins if injected directly into them that eventually causes tissue necrosis.

  17. Managing Complications of Fillers: Rare and Not-So-Rare

    PubMed Central

    Haneke, Eckart

    2015-01-01

    Fillers belong to the most frequently used beautifying products. They are generally well tolerated, but any one of them may occasionally produce adverse side effects. Adverse effects usually last as long as the filler is in the skin, which means that short-lived fillers have short-term side effects and permanent fillers may induce life-long adverse effects. The main goal is to prevent them, however, this is not always possible. Utmost care has to be given to the prevention of infections and the injection technique has to be perfect. Treatment of adverse effects is often with hyaluronidase or steroid injections and in some cases together with 5-fluorouracil plus allopurinol orally. Histological examination of biopsy specimens often helps to identify the responsible filler allowing a specific treatment to be adapted. PMID:26865784

  18. Filler/ Polycarbosilane Systems as CMC Matrix Precursors

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1998-01-01

    Pyrolytic conversion of polymeric precursors to ceramics is accompanied by loss of volatiles and large volume changes. Infiltration of a low viscosity polymer into a fiber preform will fill small spaces within fiber tows by capillary forces, but create large matrix cracks within large, intertow areas. One approach to minimizing shrinkage and reducing the number of required infiltration cycles is to use particulate fillers. In this study, Starfire allylhydridopolycarbosilane (AHPCS) was blended with a silicon carbide powder, with and without dispersant, using shear mixing. The polymer and polymer/particle interactions were characterized using nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and rheometry. Polymer/particulate slurries and suspensions were used to infiltrate a figidized preform of an eight ply five harness satin CG Nicalon fiber having a dual layer BN/SiC interface coating, and the resulting composites characterized by optical and scanning electron microscopy.

  19. Filler Materials for Polyphenylenesulphide Composite Coatings: Preprint

    SciTech Connect

    Sugama, T.; Gawlik, K.

    2001-07-17

    Researchers at Brookhaven National Laboratory and the National Renewable Energy Laboratory have tested polymer-based coating systems to reduce the capital equipment and maintenance costs of heat exchangers in corrosive and fouling geothermal environments. These coating systems act as barriers to corrosion to protect low-cost carbon steel tubing; they are formulated to resist wear from hydroblasting and to have high thermal conductivity. Recently, new filler materials have been developed for coating systems that use polyphenylenesulphide as a matrix. These materials include boehmite crystals (orthorhombic aluminum hydroxide, which is grown in situ as a product of reaction with the geothermal fluid), which enhance wear and corrosion resistance, and carbon fibers, which improve mechanical, thermal, and corrosion-resistance properties of the composite.

  20. Low filler volume concentration composite dielectrics

    NASA Astrophysics Data System (ADS)

    Gilbert, Lynell Joy

    One avenue for synthesizing a high energy density capacitor while circumventing the manufacturing problems and low breakdown strength associated with dense, sintered ceramics, is to incorporate low volume concentrations of well dispersed high permittivity filler, such as barium titanate, in conjunction with polymers, naturally high breakdown strength materials. The focus of this work was to examine the factors that influence the energy density of a composite: the breakdown strength and dielectric constant. First, the breakdown strength of composites synthesized with low filler volume concentrations of particles, barium titanate and titanium dioxide, in an epoxy matrix, was determined. The impact of commercial dispersants, phosphate esters and menhaden fish oil particle size, and solvent polarity on the electrical performance of the epoxy based composite was assessed by thermogravimetrie analysis, and Weibull distributions of the breakdown strength data. The surface of BaTiO3 was found to contain BaCO3 using X-ray diffraction and X-ray photoelectron spectroscopy. Dispersion quality of acid washed BaTiO3 improved over as-received powder with comparable incorporation of dispersant and solvent system. T1O2 was used as a model to simulate the Ti-rich surface created after acid washing. A range of solids loading, from 5 to 40% volume, for a BaTiO3/epoxy composite system was used to determine the optimum trade-off in factors influencing energy density, dielectric constant or breakdown strength. The composites' components and electrical properties were characterized. Sample and electrode geometry were modified to impart a calculated dielectric constant without the influence of enhanced electric field lines.

  1. Graphite to Inconel brazing using active filler metal

    SciTech Connect

    King, J.F.; Baity, F.W.; Walls, J.C.; Hoffman, D.J.

    1989-01-01

    Ion cyclotron resonant frequency (ICRF) antennas are designed to supply large amounts of auxiliary heating power to fusion-grade plasmas in the Toroidal Fusion Test Reactor (TFTR) and Tore Supra fusion energy experiments. A single Faraday shield structure protects a pair of resonant double loops which are designed to launch up to 2 MW of power per loop. The shield consists of two tiers of actively cooled Inconel alloy tubes with the front tier being covered with semicircular graphite tiles. Successful operation of the antenna requires the making of high integrity bonds between the Inconel tubes and graphite tiles by brazing. This paper discusses this process.

  2. Orbiter Gap Filler Bending Model for Re-entry

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2007-01-01

    Pressure loads on a protruding gap filler during an Orbiter reentry are investigated to evaluate the likelihood of extraction due to pressure loads, and to ascertain how much bending will be induced by re-entry pressure loads. Oblique shock wave theory is utilized to develop a representation of the pressure loads induced on a gap filler for the ISSHVFW trajectory, representative of a heavy weight ISS return. A free body diagram is utilized to react the forces induced by the pressure forces. Preliminary results developed using these methods demonstrate that pressure loads, alone, are not likely causes of gap filler extraction during reentry. Assessment of the amount a gap filler will bend over is presented. Implications of gap filler bending during re-entry include possible mitigation of early boundary layer transition concerns, uncertainty in ground based measurement of protruding gap fillers from historical Orbiter flight history, and uncertainty in the use of Orbiter gap fillers for boundary layer prediction calibration. Authors will be added to the author list as appropriate.

  3. Microstructural and rheological analysis of fillers and asphalt mastics

    NASA Astrophysics Data System (ADS)

    Geber, R.; Simon, A.; Kocserha, I.; Buzimov, A.

    2017-01-01

    Pavements are made of different grades of mineral aggregates and organic binder. The aggregates are sorted in different sizes and different amount which are mixed together with bitumen. The finest mineral fraction (d<0.063 mm) is called filler. This component has an important role in asphalt mixture - it fills the gaps between the aggregates and if mixed with bitumen (which is called asphalt mastics) it sticks the larger particles together. Particle size, microstructure and surface properties of fillers highly affect the cohesion with bitumen, therefore the aim of our research was to investigate the microstructure of mineral fillers (limestone, dolomite) which are used in Hungarian road constructions with the use of different techniques (particle size distribution, scanning electronmicroscopy tests, mercury intrusion porosimetry, BET specific surface tests, determination of hydrophobicity). After the tests of fillers, asphalt mastics were prepared and rheological examinations were obtained. These examinations served to observe the interaction and the effect of fillers. The stiffening effect of fillers and the causes of rutting were also investigated. Based on our results, it can be stated that particle size, hydrophobic properties and the amount of fillers highly affect the rheological properties of mastics.

  4. Wear of nanofilled dental composites at varying filler concentrations.

    PubMed

    Lawson, Nathaniel C; Burgess, John O

    2015-02-01

    The aim of this study is to examine the effects of nanofiller concentration on the mechanisms of wear of a dental composite. Nanofilled composites were fabricated with a bisphenol A glycidyl methacrylate polymer and 40 nm SiO2 filler particles at three filler loads (25, 50, and 65 wt %). The elastic modulus, flexural strength, and hardness of the composites and the unfilled resin were measured. The materials (n = 8) were tested in the modified wear testing device at 50,000, 100,000, and 200,000 cycles with 20N force at 1 Hz. A 33% glycerine lubricant and stainless steel antagonist were used. The worn composite and antagonist surfaces were analyzed with noncontact profilometry and SEM. The volumetric wear data indicated that there are significant differences between filler concentrations and cycles (p < 0.05). A trend was noted that increasing filler content beyond 25% decreased the wear resistance of the composites. Increasing filler content increased hardness and modulus and increased flexural strength up to 50% fill. SEM evaluation of the worn specimens indicated that the resin and 25% filled materials exhibited cracking and failed by fatigue and the 50 and 65% filled materials exhibited microcutting and failed by abrasive wear. Based on the results of this study, composite manufacturers are recommended to use a filler concentration between 25 and 50% when using nanosized filler particles.

  5. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance...

  6. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance...

  7. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance...

  8. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance...

  9. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance...

  10. Dielectric properties of inorganic fillers filled epoxy thin film

    NASA Astrophysics Data System (ADS)

    Norshamira, A.; Mariatti, M.

    2015-07-01

    The demand on the small size and high performance electronics has driven changes in the electronic packaging requirements from discrete capacitor to embedded capacitor. Embedded capacitor can improve electrical performance compared with discrete capacitor. This study aimed to achieve high dielectric of epoxy thin film composite that were targeted for application as embedded capacitor. In this study, inorganic fillers such as Calcium Copper Titanate (CCTO), Iron(III) Oxide (Fe2O3) and Titanium Dioxide (TiO2) were loaded in epoxy system at 5 and 20vol%. Morphology and dielectric properties were investigated to identify the effect of fillers loading and types of fillers on the properties of epoxy thin film composite. Based on the study, CCTO with 20vol% loading was found to have good dielectric properties compared to other type of fillers.

  11. Dielectric properties of inorganic fillers filled epoxy thin film

    SciTech Connect

    Norshamira, A. Mariatti, M.

    2015-07-22

    The demand on the small size and high performance electronics has driven changes in the electronic packaging requirements from discrete capacitor to embedded capacitor. Embedded capacitor can improve electrical performance compared with discrete capacitor. This study aimed to achieve high dielectric of epoxy thin film composite that were targeted for application as embedded capacitor. In this study, inorganic fillers such as Calcium Copper Titanate (CCTO), Iron(III) Oxide (Fe{sub 2}O{sub 3}) and Titanium Dioxide (TiO{sub 2}) were loaded in epoxy system at 5 and 20vol%. Morphology and dielectric properties were investigated to identify the effect of fillers loading and types of fillers on the properties of epoxy thin film composite. Based on the study, CCTO with 20vol% loading was found to have good dielectric properties compared to other type of fillers.

  12. Filler-polymer bonding and its role in elastomer reinforcement

    SciTech Connect

    Xu, Ping, Mark, J.E.

    1993-12-31

    Iron oxide particles were blended into samples of cis-1,4-polybutadiene and polyisobutylene, and both the unfilled polymers and the resulting polymer-filler mixture were cured with benzoyl peroxide. The filled networks were cloudy, but strips extracted using a toluene-hydrochloric acid mixture became as clear as the unfilled networks, suggesting removal of the filler particles. Equilibrium swelling and stress-strain measurements in elongation were carried out the unfilled elastomer and on the filled ones, both before and after extraction. There were no significant differences between the stress-strain isotherms and degrees of equilibrium swelling of the unfilled networks and the corresponding properties of the previously-filled networks after the filler particles were removed. This suggests that for these systems, the bonding between the filler particles and the polymer chains is physical rather than chemical.

  13. Influence of silanization and filler fraction on aged dental composites.

    PubMed

    Lin, C T; Lee, S Y; Keh, E S; Dong, D R; Huang, H M; Shih, Y H

    2000-11-01

    The effect of silanization and filler fraction on the mechanical properties of aged dental composites was investigated. Experimental composites (75/25 Bis-GMA/TEGDMA resin reinforced with 0, 12.6, 30.0, and 56.5 vol% 8 microm silanized/unsilanized BaSiO6) were fabricated into 4.7 mm diameter x 2.2 mm thick discs and 3.5 mm diameter x 7.3 mm thick discs for diametral tensile and compressive tests, respectively. The effect of immersion in 75% ethanol at 37 degrees C for 0-30 days on the diametral tensile strength (DTS) and compressive strength (CS) of the samples was evaluated and analysed by ANOVA and Tukey LSD test. The fracture interface between filler and resin matrix was then examined by scanning electron microscope. Results and subsequent statistical evidence from DTS (18.6+/-7.6 MPa, silanized versus 11.7+/-2.6 MPa, unsilanized) and CS (85.1+/-29.7 MPa, silanized versus 56.0+/-11.3 MPa, unsilanized) strongly implies that silanization may greatly enhance the mechanical properties of the resin composites. Furthermore, it also shows that both DTS and CS increased proportionally as the filler fraction of the composites increased. However, in the unsilanized groups, DTS decreased (up to 40%) as the filler fraction increased, and CS showed no relevance to the filler fraction at all. As for the influence of aging, it was found that both DTS and CS showed a significant decrease after immersion in 75% ethanol, and silanization heavily correlated with the filler fraction of aged-resin composites. Microscopic examination of the fractured samples showed that failure primarily occurred within the resin matrix per se for silanized composites and adjacent to the filler particles for unsilanized composites. All the evidence points to the conclusion that mechanical properties of aged-resin composites can be greatly influenced by silanization and the filler fraction.

  14. Global Updates on the Future Directions of Neurotoxins and Fillers

    PubMed Central

    Heningburg, Jade

    2016-01-01

    Summary: Neurotoxins and fillers continue to remain in high demand, comprising a large part of the growing business of cosmetic minimally invasive procedures. Multiple Food and Drug Administration–approved safe yet different products exist within each category, and the role of each product continues to expand. The authors review the literature to provide an overview of the use of neurotoxins and fillers and their future directions. PMID:28018777

  15. Natural Rubber-Filler Interactions: What Are the Parameters?

    PubMed

    Chan, Alan Jenkin; Steenkeste, Karine; Canette, Alexis; Eloy, Marie; Brosson, Damien; Gaboriaud, Fabien; Fontaine-Aupart, Marie-Pierre

    2015-11-17

    Reinforcement of a polymer matrix through the incorporation of nanoparticles (fillers) is a common industrial practice that greatly enhances the mechanical properties of the composite material. The origin of such mechanical reinforcement has been linked to the interaction between the polymer and filler as well as the homogeneous dispersion of the filler within the polymer matrix. In natural rubber (NR) technology, knowledge of the conditions necessary to achieve more efficient NR-filler interactions is improving continuously. This study explores the important physicochemical parameters required to achieve NR-filler interactions under dilute aqueous conditions by varying both the properties of the filler (size, composition, surface activity, concentration) and the aqueous solution (ionic strength, ion valency). By combining fluorescence and electron microscopy methods, we show that NR and silica interact only in the presence of ions and that heteroaggregation is favored more than homoaggregation of silica-silica or NR-NR. The interaction kinetics increases with the ion valence, whereas the morphology of the heteroaggregates depends on the size of silica and the volume percent ratio (dry silica/dry NR). We observe dendritic structures using silica with a diameter (d) of 100 nm at a ∼20-50 vol % ratio, whereas we obtain raspberry-like structures using silica with d = 30 nm particles. We observe that in liquid the interaction is controlled by the hydrophilic bioshell, in contrast to dried conditions, where hydrophobic polymer dominates the interaction of NR with the fillers. A good correlation between the nanoscopic aggregation behavior and the macroscopic aggregation dynamics of the particles was observed. These results provide insight into improving the reinforcement of a polymer matrix using NR-filler films.

  16. Fillers for improved graphite fiber retention by polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Sheppard, C. H.

    1981-01-01

    The results of a program designed to determine the extent to which elemental boron and boron containing fillers added to the matrix resin of graphite/epoxy composites prevent the release of graphite fibers when the composites are exposed to fire and impact conditions are described. The fillers evaluated were boron, boron carbide and aluminum boride. The conditions evaluated were laboratory simulations of those that could exist in the event of an aircraft crash and burn situation. The baseline (i.e., unfilled) laminates evaluated were prepared from commercially available graphite/epoxy. The baseline and filled laminates' mechanical properties, before and after isothermal and humidity aging, also were compared. It was found that a small amount of graphite fiber was released from the baseline graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that the addition of boron and boron containing fillers to the resin matrix eliminated this fiber release. Mechanical properties of laminates containing the boron and boron containing fillers were lower than those of the baseline laminates. These property degradations for two systems: boron (5 micron) at 2.5 percent filler loading, and boron (5 micron) at 5.0 percent filler loading do not appear severe enough to preclude their use in structural composite applications.

  17. Reuse of EAF Slag as Reinforcing Filler for Polypropylene Matrix Composites

    NASA Astrophysics Data System (ADS)

    Cornacchia, G.; Agnelli, S.; Gelfi, M.; Ramorino, G.; Roberti, R.

    2015-06-01

    Electric-arc furnace (EAF) slag, the by-product of steel fabricated at the EAF, is in most cases still sent to dumps, with serious environmental consequences. This work shows an innovative, economically convenient application for EAF slag: its use as reinforcing filler for polypropylene. Composites based on polypropylene containing 10-40 wt.% of EAF slag particles were prepared by melt compounding followed by injection molding. A physical-chemical analysis of the EAF slag was performed to determine microstructural features and main component phases. Leaching tests demonstrated that, although EAF slag can release small amounts of toxic elements, such as heavy metals, incorporating such material into the polymeric matrix immobilizes the heavy metals inside that matrix. The mechanical characterization of the polymer-based composites was performed. Incorporating EAF slag particles raises the Young's modulus and the tensile strength at yield, whereas elongation at break and the impact strength of the polymer-based composite are significantly reduced only when large amounts of filler are added, i.e., 30% or more.

  18. An investigation of tendon sheathing filler migration into concrete

    SciTech Connect

    Naus, D.J.; Oland, C.B.

    1998-03-01

    During some of the inspections at nuclear power plants with prestressed concrete containments, it was observed that the containments has experienced leakage of the tendon sheathing filler (i.e., streaks). The objective of this activity was to provide an indication of the extent of tendon sheathing filler leakage into the concrete and its affects on concrete properties. Literature was reviewed and concrete core samples were obtained from the Trojan Nuclear Plant and tested. The literature primarily addressed effects of crude or lubricating oils that are known to cause concrete damage. However, these materials have significantly different characteristics relative to the materials used as tendon sheathing fillers. Examination and testing of the concrete cores indicated that the appearance of tendon sheathing filler on the concrete surface was due to leakage from the conduits and its subsequent migration through cracks that were present. Migration of the tendon sheathing filler was confined to the cracks and there was no perceptible movement into the concrete. Results of compressive strength testing indicated that the concrete quality was consistent in the containment and that the strength had increased over 40% in 25.4 years relative to the average compressive strength at 28-days age.

  19. Preparation of ceramic-corrosion-cell fillers and application for cyclohexanone industry wastewater treatment in electrobath reactor.

    PubMed

    Wu, Suqing; Qi, Yuanfeng; Gao, Yue; Xu, Yunyun; Gao, Fan; Yu, Huan; Lu, Yue; Yue, Qinyan; Li, Jinze

    2011-11-30

    As new media, ceramic-corrosion-cell fillers (Cathode Ceramic-corrosion-cell Fillers - CCF, and Anode Ceramic-corrosion-cell Fillers - ACF) employed in electrobath were investigated for cyclohexanone industry wastewater treatment. 60.0 wt% of dried sewage sludge and 40.0 wt% of clay, 40.0 wt% of scrap iron and 60.0 wt% of clay were utilized as raw materials for the preparation of raw CCF and ACF, respectively. The raw CCF and ACF were respectively sintered at 400°C for 20 min in anoxic conditions. The physical properties (bulk density, grain density and water absorption), structural and morphological characters and toxic metal leaching contents were tested. The influences of pH, hydraulic retention time (HRT) and the media height on removal of COD(Cr) and cyclohexanone were studied. The results showed that the bulk density and grain density of CCF and ACF were 869.0 kg m(-3) and 936.3 kg m(-3), 1245.0 kg m(-3) and 1420.0 kg m(-3), respectively. The contents of toxic metal (Cu, Zn, Cd, Pb, Cr, Ba, Ni and As) were all below the detection limit. When pH of 3-4, HRT of 6h and the media height of 60 cm were applied, about 90% of COD(cr) and cyclohexanone were removed.

  20. Numbers or apologies? Customer reactions to telephone waiting time fillers.

    PubMed

    Munichor, Nira; Rafaeli, Anat

    2007-03-01

    The authors examined the effect of time perception and sense of progress in telephone queues on caller reactions to 3 telephone waiting time fillers: music, apologies, and information about location in the queue. In Study 1, conducted on 123 real calls, call abandonment was lowest, and call evaluations were most positive with information about location in the queue as the time filler. In Study 2, conducted with 83 participants who experienced a simulated telephone wait experience, sense of progress in the queue rather than perceived waiting time mediated the relationship between telephone waiting time filler and caller reactions. The findings provide insight for the management and design of telephone queues, as well as theoretical insight into critical cognitive processes that underlie telephone waiting, opening up an important new research agenda.

  1. Effects of filler composition on flexibility of microfilled resin composite.

    PubMed

    Suzuki, S; Ori, T; Saimi, Y

    2005-07-01

    The effects of the filler composition on physical and mechanical properties of microfilled composites was investigated by measuring water absorption, solubility, compressive, flexural, and impact strength. A series of experimental composites, consisting of UDMA/TEGDMA comonomer matrix and prepolymerized fillers, was fabricated. The prepolymerized fillers were composed of hydrophobic colloidal silica and two monomers in varying ratios, trimethylolpropanetrimethacrylate (TMPT), and polyesterdiacrylate (PEDA). TMPT/PEDA ratios were 100:0, 64:36, 46:54, 18:82, and 0:100%. There were no significant differences in water sorption and solubility, regardless of the amount of PEDA monomer. Young's modulus and modulus of resilience increased with decreasing PEDA ratio. Fracture energy exhibited drastic changes (30.1 x 10(-5) J to 93.4 x 10(-5) J). The highest value of flexural strength (96.0 +/- 3.5 MPa) was obtained when the TMPT-PEDA filler was 46:54. The impact strengths of composites fabricated with TMPT-PEDA filler of 46:54 (11.2 +/- 1.4 kJ/m(2)), 18:82 (10.6 +/- 3.2 kJ/m(2)), and 0:100 (13.1 +/- 3.8 kJ/m(2)) were significantly higher than those with 100:0 (6.0 +/- 1.8 kJ/m(2)) or 64:36 (7.1 +/- 2.4 kJ/m(2)). Based upon the results, it was concluded that the mechanical properties of microfilled composites were improved by the modification of prepolymerized filler composition.

  2. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, Herschel B.; Einerson, Carolyn J.; Watkins, Arthur D.

    1989-01-01

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

  3. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

    1987-08-10

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

  4. Volume correction in the aging hand: role of dermal fillers

    PubMed Central

    Rivkin, Alexander Z

    2016-01-01

    The hands, just like the face, are highly visible parts of the body. They age at a similar rate and demonstrate comparable changes with time, sun damage, and smoking. Loss of volume in the hands exposes underlying tendons, veins, and bony prominences. Rejuvenation of the hands with dermal fillers is a procedure with high patient satisfaction and relatively low risk for complications. This study will review relevant anatomy, injection technique, clinical safety, and efficacy of dermal filler volumization of the aging hand. PMID:27621659

  5. Influences of filler content and size on the color adjustment potential of nonlayered resin composites.

    PubMed

    Suh, Yong-Rok; Ahn, Jin-Soo; Ju, Sung-Won; Kim, Kwang-Mahn

    2017-01-31

    The blending effect (BE) plays an important role in esthetics of the composite resin. The objective of this study was to determine the extents to which filler size and content affect the BE. Three types of fillers (0.7, 1.0, and 1.5 µm) were mixed at weight contents of 60, 70, 75, and 80%. This study simulated clinical class 3 or 4 cavities and quantitatively measured the color diffusion of the objects next to the cavities based on the CIELab color space. For each filler size, there was a trend of increasing BE as the filler content was increased. The translucency parameter (TP) exhibited the opposite trend of decreasing (p<0.05) with increases in filler content. The filler size did not affect the BE, and the different filler sizes produced statistically non-significant results in this study. Increases in filler content elevated the opacity of the composite resin and significantly influenced the BE.

  6. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.

    PubMed

    He, Ming; Cho, Byoung-Uk; Won, Jong Myoung

    2016-01-20

    A new concept of composite filler was developed by using cellulose nanofibrils (CNF), precipitated calcium carbonate (PCC) and cationic starch (C-starch). In this study, cellulose nanofibrils were utilized in two different ways: a PCC-CNF composite filler and a papermaking additive in sheet forming. The aim was to elucidate their effects on flocculation, filler retention and the strength and optical properties of handsheets. The highest filler retention was obtained by using the PCC-CNF composite filler in paper sheets. The paper filled with the composite fillers had much higher bursting and tensile strengths than conventional PCC loading. It was also found that the paper prepared with PCC-CNF composite fillers became denser with increasing the filler content of paper.

  7. Fillers used in papermaking. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning organic and inorganic fillers used in paper products and their effect on the properties and manufacture of paper. The citations examine a variety of fillers, including natural calcium carbonate, bentonite, polymeric fillers, titanium dioxide, calcium carbonate, calcium silicate, barium sulphate, agalite, talc, clay, kaolin, limestone, mica, and ash. Filler effects on thermal strength, coloring, acidity, surface coatings, porosity, production efficiency, absorption, opacity, printability, and deposit control are presented. Also discussed are the microanalysis of fillers, recovery of fillers from wastes, availability of filler and pigment raw materials, and the determination of filler content in paper products. (Contains 250 citations and includes a subject term index and title list.)

  8. Improved fiber retention by the use of fillers in graphite fiber/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Bowles, K. J.

    1980-01-01

    A variety of matrix fillers were tested for their ability to prevent loss of fiber from graphite fiber/PMR polyimide and graphite fiber/epoxy composites in a fire. The fillers tested included powders of boron, boron carbide lime glass, lead glass, and aluminum. Boron was the most effective and prevented any loss of graphite fiber during burning. Mechanical properties of composites containing boron filler were measured and compared to those of composites containing no filler.

  9. Atmospheric pressure cold plasma treatment of cellulose based fillers for wood plastic composites

    NASA Astrophysics Data System (ADS)

    Lekobou, William; Englund, Karl; Pedrow, Patrick; Scudiero, Louis

    2011-10-01

    The main challenge of wood plastic composites (WPC) resides in the low interfacial adhesion due to incompatibility between the cellulose based filler that has a polar surface and most common matrixes, polyolefins which are non-polar. Plasma treatment is a promising technique for surface modification and its implementation into the processing of WPC would provide this industry with a versatile and nearly environmentally benign manufacturing tool. Our investigation aims at designing a cold atmospheric pressure plasma reactor for coating fillers with a hydrophobic material prior to compounding with the matrix. Deposition was achieved with our reactor that includes an array of high voltage needles, a grounded metal mesh, Ar as carrier gas and C2H2 as the precursor molecule. Parameters studied have included gas feed rates and applied voltage; FTIR, ESCA, AFM and SEM imaging were used for film diagnostics. We will also report on deposition rate and its dependence on radial and axial position as well as the effects of plasma-polymerized acetylene on the surface free energy of cellulose based substrates.

  10. Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper

    SciTech Connect

    Dr. VIjay K. Mathur

    2009-04-30

    The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

  11. Photosensitive filler minimizes internal stresses in epoxy resins

    NASA Technical Reports Server (NTRS)

    Dillon, J. N.

    1967-01-01

    Photosensitive filler is added to curable epoxy resins to minimize stress from internal shrinkage during curing or polymerization. Cinnamic acid resins and cinnamal ketones may be added in the amount of 1 to 3 percent by weight of the resin mixture.

  12. Internal Filler-Wire Feed For Arc Welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Dyer, Gerald E.

    1990-01-01

    Tungsten electrode for gas/tungsten arc welding contains lengthwise channel for feeding filler wire to weld joint. Channel makes it unnecessary to feed wire through guides outside electrode, conserving valuable space near weld and protects wire from deformation by contact with other parts in vicinity of weld. Helpful in robotic or automatic welding.

  13. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank...

  14. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank...

  15. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank...

  16. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank...

  17. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank...

  18. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank...

  19. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank...

  20. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank...

  1. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank...

  2. Gap Filler Induced Transition on the Mars Science Laboratory Heatshield

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Barnhardt, Michael D.; Tang, Chun Y.; Sozer, Emre; Candler, Graham

    2012-01-01

    Detached Eddy Simulations have been performed to investigate the effects of high-fidelity turbulence modeling on roughness-induced transition to turbulence during Mars entry. Chemically reacting flow solutions will be obtained for a gap filler of Mars Science Laboratory at the peak heating condition.

  3. Review of 3-dimensional Facial Anatomy: Injecting Fillers and Neuromodulators

    PubMed Central

    Sieber, David A.; Scheuer, Jack F.; Villanueva, Nathaniel L.; Pezeshk, Ronnie A.

    2016-01-01

    Summary: To achieve consistent results utilizing facial injectables, practitioners must understand the pertinent anatomy of the forehead, temple, cheek, nose, and perioral areas. A detailed understanding of facial blood vessels, nerves, and musculature is essential for safe and effective placement of fillers and neuromodulators. PMID:28018775

  4. 7 CFR 58.229 - Filler and packaging equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION, GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General... construction and all parts, including valves and filler heads accessible for cleaning. New or...

  5. Design and fabrication of polymeric nanocomposites with conducting fillers as electronic nanomaterials

    NASA Astrophysics Data System (ADS)

    Mushibe, Eliud Kizito

    The growing demand for small, portable and high performance electronic devices has resulted in research activity for embedded electronic components. This offers prospects for the development of flexible electronic components that combines the use of organic and inorganic materials and can be produced on a roll-to-roll process. This dissertation presents advances in the fabrication and characterization of flexible polymeric nanocomposite thin films. Inorganic and synthetic metal nanostructures with high electrical and dielectric properties were employed as filler materials. The processability of these functional filler materials was achieved by dispersion in conventional polymer matrices such as polystyrene (PS), polymethylmethacrylate (PMMA) and poly(vinylidene fluoride) to afford electroactive polymeric composite materials. In the fabrication of inorganic nanostructures, a Tubes by Fiber Template technique was employed to afford submicron metal and metal oxide tubes. Silver and copper nanostructures were fabricated by electroless deposition on electrospun fiber templates. To obtain hollow, submicron tubes, the sacrificial polymer template materials were removed by a combination of solvent dissolution and thermal degradation under an inert atmosphere. Polyaniline thin film deposited on the fiber template was used as a binding interface to enhance uniform and continuous deposition of the metal. This was instrumental in fabricating tubes with varied wall thicknesses ranging from 50 to 300 nm obtained as a function of plating time. By doping electrically conducting polymers such as polyaniline, the conductivity can be modified. We describe the fabrication of highly conducting polyaniline nanostructures via template free synthesis. A novel approach that involves a combination of hydrochloric acid and camphorsulfonic acid dopant at low concentrations was adopted. This approach afforded nanofibers with diameters of 150 ± 50 nm and high electrical

  6. New Manufacturing Method for Paper Filler and Fiber Material

    SciTech Connect

    Doelle, Klaus

    2013-08-25

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings over $12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons annually

  7. Market opportunities for fly ash fillers in North America

    SciTech Connect

    Eckert, C.; Harris, T.; Gledhill, J. )

    1990-11-01

    Direct Acid Leaching (DAL) processed fly ash is derived from treating raw and beneficiated coal fly ash with hydrochloric acid. The DAL process allows for the production of fly ash with greater chemical purity and consistency than raw fly ash alone. In addition, DAL fly ash is similar to various minerals used in a wide range of applications that require filler minerals. This project investigates the feasibility of using three grades of DAL fly ash ranging from 10 microns to 30 microns in diameter as an alternative filler material to mineral fillers. Six major applications in North America, requiring large volumes of filler minerals were investigated by region including: (1) asphalt roofing shingles (2) carpet backing (3) joint compound and wallboard (4) industrial coatings (5) plastics (6) vinyl flooring. It is determined that calcium carbonate was the primary mineral filler DAL fly ash would be competing with in the applications investigated. Calcium carbonate is used in all applications investigated. The application which demonstrated the greatest potential for using DAL fly ash is asphalt shingles. Asphalt shingles were the largest calcium carbonate consuming application identified, consuming 4.8 million tons in 1988, and is the least sensitive to the dark color of the DAL fly ash. Although the DAL fly ash typically has a smaller particle size, in comparison to calcium carbonate, the asphalt shingle manufacturers felt it would be a good substitute. Other promising applications for DAL fly ash were industrial coatings and plastics where the calcium carbonate particle size requirements of 3 to 6 microns very closely matches the particle size of the DAL fly ash considered in this project. 17 figs., 36 tabs.

  8. New Manufacturing Method for Paper Filler and Fiber Material

    SciTech Connect

    Doelle, Klaus

    2011-06-26

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections and it is important to understand the effect that different types of calcium carbonates have on the paper properties made of 100% eucalyptus pulp. The current study is focused on selecting the most suitable market available calcium carbonate for the production of uncoated Eucalyptus digital printing paper, targeting a potential filler increase of 5% above the currently used filler content. We made hand sheets using 13 different varieties of widely used calcium carbonates [Nine samples of PCC (two rhombic and seven scalenohedral, covering a wide particle size range from 1.2 {micro}m to 2.9 {micro}m), and four samples of GCC (three anionic and one cationic, with a particle size range from 0.7 {micro}m to 1.5 {micro}m)] available in the market followed by a 12” pilot plant paper machine run. The detailed analysis on the main structural, optical and strength properties of the hand sheets found that the most suitable calcium carbonate for uncoated Eucalyptus digital printing paper production is scalenohedral PCC, with a particle size of 1.9 {micro}m for its positive effects on thickness, stiffness, brightness and opacity of paper.

  9. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    NASA Astrophysics Data System (ADS)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  10. Hybrid membranes of metal-organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation.

    PubMed

    Zhao, Cui; Wang, Naixin; Wang, Lin; Huang, Hongliang; Zhang, Rong; Yang, Fan; Xie, Yabo; Ji, Shulan; Li, Jian-Rong

    2014-11-21

    Hybrid membranes composed of porous metal-organic molecule nanocages as fillers embedded in a hyperbranched polymer (Boltorn W3000) were fabricated, which exhibit excellent pervaporation separation performances towards aromatic/aliphatic hydrocarbons. The unique nature of the molecule-based fillers and their good dispersion and compatibility in/with the polymer are responsible for the good membrane properties.

  11. Autonomous Slat-Cove-Filler Device for Reduction of Aeroacoustic Noise Associated with Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Kidd, Reggie T. (Inventor); Lockard, David P (Inventor); Khorrami, Mehdi R. (Inventor); Streett, Craig L. (Inventor); Weber, Douglas Leo (Inventor)

    2016-01-01

    A slat cove filler is utilized to reduce airframe noise resulting from deployment of a leading edge slat of an aircraft wing. The slat cove filler is preferably made of a super elastic shape memory alloy, and the slat cove filler shifts between stowed and deployed shapes as the slat is deployed. The slat cove filler may be configured such that a separate powered actuator is not required to change the shape of the slat cove filler from its deployed shape to its stowed shape and vice-versa. The outer contour of the slat cove filler preferably follows a profile designed to maintain accelerating flow in the gap between the slat cove filler and wing leading edge to provide for noise reduction.

  12. Thermal analysis of resin composites with ellipsoidal filler considering thermal boundary resistance

    NASA Astrophysics Data System (ADS)

    Asakuma, Yusuke; Yamamoto, Tsuyoshi

    2016-10-01

    The effective thermal conductivity of composites with ellipsoidal fillers is analyzed by using a homogenization method that is able to represent the microstructure precisely. In this study, various parameters such as the volume fraction, shape, and distribution of the filler are quantitatively estimated to understand the mechanisms of heat transfer in the composite. First, thermal boundary resistance between resin and filler is important for obtaining composites with higher thermal conductivity. Second, the anisotropy of the effective thermal conductivity arises from contact between filler in the case of ellipsoidal filler and produces lower thermal resistance. Finally, the filler network and thermal resistance are essential for the heat transfer in composites because the path of thermal conduction is improved by contact between neighboring filler particles.

  13. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications.

    PubMed

    Moura, Duarte; Mano, João F; Paiva, Maria C; Alves, Natália M

    2016-01-01

    Chitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications.

  14. Properties of hybrid resin composite systems containing prepolymerized filler particles.

    PubMed

    Blackham, Jason T; Vandewalle, Kraig S; Lien, Wen

    2009-01-01

    This study compared the properties of newer hybrid resin composites with prepolymerized-filler particles to traditional hybrids and a microfill composite. The following properties were examined per composite: diametral tensile strength, flexural strength/modulus, Knoop microhardness and polymerization shrinkage. Physical properties were determined for each Jason T Blackham, DMD, USAF, General Dentistry, Tyndall composite group (n = 8), showing significant differences between groups per property (p < 0.001). In general, the traditional hybrid composites (Z250, Esthet-X) had higher strength, composites containing pre-polymerized fillers (Gradia Direct Posterior, Premise) performed more moderately and the microfill composite (Durafill VS) had lower strength. Premise and Durafill VS had the lowest polymerization shrinkage.

  15. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications

    PubMed Central

    Moura, Duarte; Mano, João F.; Paiva, Maria C.; Alves, Natália M.

    2016-01-01

    Abstract Chitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications. PMID:27877909

  16. Injectable carboxymethylcellulose hydrogels for soft tissue filler applications.

    PubMed

    Varma, Devika M; Gold, Gittel T; Taub, Peter J; Nicoll, Steven B

    2014-12-01

    Disease, trauma and aging all lead to deficits in soft tissue. As a result, there is a need to develop materials that safely and effectively restore areas of deficiency. While autogenous fat is the current gold standard, hyaluronic acid (HA) fillers are commonly used. However, the animal and bacterial origin of HA-based materials can induce adverse reactions in patients. With the aim of developing a safer and more affordable alternative, this study characterized the properties of a plant-derived, injectable carboxymethylcellulose (CMC) soft tissue filler. Specifically, methacrylated CMC was synthesized and crosslinked to form stable hydrogels at varying macromer concentrations (2-4% w/v) using an ammonium persulfate and ascorbic acid redox initiation system. The equilibrium Young's modulus was shown to vary with macromer concentration (ranging from ∼2 to 9.25kPa), comparable to values of native soft tissue and current surgical fillers. The swelling properties were similarly affected by macromer concentration, with 4% gels exhibiting the lowest swelling ratio and mesh size, and highest crosslinking density. Rheological analysis was performed to determine gelation onset and completion, and was measured to be within the ISO standard for injectable materials. In addition, hydrolytic degradation of these gels was sensitive to macromer concentration, while selective removal using enzymatic treatment was also demonstrated. Moreover, favorable cytocompatibility of the CMC hydrogels was exhibited by co-culture with human dermal fibroblasts. Taken together, these findings demonstrate the tunability of redox-crosslinked CMC hydrogels by varying fabrication parameters, making them a versatile platform for soft tissue filler applications.

  17. Using hyperbranched oligomer functionalized glass fillers to reduce shrinkage stress

    PubMed Central

    Ye, Sheng; Azarnoush, Setareh; Smith, Ian R.; Cramer, Neil B.; Stansbury, Jeffrey W.; Bowman, Christopher N

    2012-01-01

    Objective Fillers are widely utilized to enhance the mechanical properties of polymer resins. However, polymerization stress has the potential to increase due to the higher elastic modulus achieved upon filler addition. Here, we demonstrate a hyperbranched oligomer functionalized glass filler UV curable resin composite which is able to reduce the shrinkage stress without sacrificing mechanical properties. Methods A 16-functional alkene-terminated hyperbranched oligomer is synthesized by thiol-acrylate and thiol-yne reactions and the product structure is analyzed by 1H-NMR, mass spectroscopy, and gel permeation chromatography. Surface functionalization of the glass filler is measured by thermogravimetric analysis. Reaction kinetics, mechanical properties and shrinkage stress are studied via Fourier transform infrared spectroscopy, dynamic mechanical analysis and a tensometer, respectively. Results Silica nanoparticles are functionalized with a flexible 16-functional alkene-terminated hyperbranched oligomer which is synthesized by multistage thiol-ene/yne reactions. 93% of the particle surface was covered by this oligomer and an interfacial layer ranging from 0.7 – 4.5 nm thickness is generated. A composite system with these functionalized silica nanoparticles incorporated into the thiol-yne-methacrylate resin demonstrates 30% reduction of shrinkage stress (from 0.9 MPa to 0.6 MPa) without sacrificing the modulus (3100 ± 300 MPa) or glass transition temperature (62 ± 3 °C). Moreover, the shrinkage stress of the composite system builds up at much later stages of the polymerization as compared to the control system. Significance Due to the capability of reducing shrinkage stress without sacrificing mechanical properties, this composite system will be a great candidate for dental composite applications. PMID:22717296

  18. Polymer Filler Aging and Failure Studied by Lateral Force Microscopy

    SciTech Connect

    Ratto, T; Saab, A P

    2009-05-27

    In the present work, we study, via force microscopy, the basic physical interactions of a single bead of silica filler with a PDMS matrix both before and after exposure to gamma radiation. Our goal was to confirm our results from last year, and to explore force microscopy as a means of obtaining particle-scale polymer/filler interactions suitable for use as empirical inputs to a computational model consisting of an ensemble of silica beads embedded in a PDMS matrix. Through careful calibration of a conventional atomic force microscope, we obtained both normal and lateral force data that was fitted to yield adhesion, surface shear modulus, and friction of a 1 {micro}m silica bead in contact with PDMS layers of various thickness. Comparison of these terms before and after gamma exposure indicated that initially, radiation exposure lead to softening of the PDMS, but eventually resulted in stiffening. Simultaneously, adhesion between the polymer and silica decreased. This could indicate a serious failure path for filled PDMS exposed to radiation, whereby stiffening of the bulk polymer leads to loss of compressive elastic behavior, while a decrease in polymer filler adhesion results in an increased likelihood of stress failure under load. In addition to further testing of radiation damaged polymers, we also performed FEA modeling of silica beads in a silicone matrix using the shear modulus and adhesion values isolated from the force microscopy experiments as model inputs. The resulting simulation indicated that as a polymer stiffens due to impinging radiation, it also undergoes weakening of adhesion to the filler. The implication is that radiation induces a compound failure mode in filled polymer systems.

  19. Complications of injectable fillers, part 2: vascular complications.

    PubMed

    DeLorenzi, Claudio

    2014-05-01

    Accidental intra-arterial filler injection may cause significant tissue injury and necrosis. Hyaluronic acid (HA) fillers, currently the most popular, are the focus of this article, which highlights complications and their symptoms, risk factors, and possible treatment strategies. Although ischemic events do happen and are therefore important to discuss, they seem to be exceptionally rare and represent a small percentage of complications in individual clinical practices. However, the true incidence of this complication is unknown because of underreporting by clinicians. Typical clinical findings include skin blanching, livedo reticularis, slow capillary refill, and dusky blue-red discoloration, followed a few days later by blister formation and finally tissue slough. Mainstays of treatment (apart from avoidance by meticulous technique) are prompt recognition, immediate treatment with hyaluronidase, topical nitropaste under occlusion, oral acetylsalicylic acid (aspirin), warm compresses, and vigorous massage. Secondary lines of treatment may involve intra-arterial hyaluronidase, hyperbaric oxygen therapy, and ancillary vasodilating agents such as prostaglandin E1. Emergency preparedness (a "filler crash cart") is emphasized, since early intervention is likely to significantly reduce morbidity. A clinical summary chart is provided, organized by complication presentation.

  20. Evaluation of rice husk ash as filler in tread compounds

    SciTech Connect

    Fernandes, M. R. S.; Furtado, C. R. G. E-mail: ana.furtado.sousa@gmail.com; Sousa, A. M. F. de E-mail: ana.furtado.sousa@gmail.com

    2014-05-15

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety)

  1. Fatigue strengths of particulate filler composites reinforced with fibers.

    PubMed

    Bae, Ji-Myung; Kim, Kyoung-Nam; Hattori, Masayuki; Hasegawa, Koji; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2004-06-01

    The aim of this study was to evaluate the dynamic fatigue strengths at 10(5) cycles and the strains of particulate filler composite resins with and without reinforcing fibers. An UHMWPE (Ribbond), a polyaromatic polyamide fiber (Fibreflex), and three glass fibers (GlasSpan, FibreKor, Vectris Frame) were used to reinforce the particulate filler composite resins. The fatigue properties were measured in three-point bending mode using a servohydraulic universal testing machine at a frequency of 5 Hz, until failure occurred or 10(5) cycles had been completed. The fatigue strengths at 10(5) cycles were determined by the staircase method. The fractured aspects of specimens were evaluated by an optical and scanning electron microscope. The fatigue strengths of particulate filler composite resins were 49-57 MPa, and those of fiber-reinforced were 90-209 MPa. Unidirectional glass fibers showed higher reinforcing effects on the fatigue strengths of composite resins. The strain of UHMWPE-reinforced composite was largest.

  2. Electrically insulating thermal nano-oils using 2D fillers.

    PubMed

    Taha-Tijerina, Jaime; Narayanan, Tharangattu N; Gao, Guanhui; Rohde, Matthew; Tsentalovich, Dmitri A; Pasquali, Matteo; Ajayan, Pulickel M

    2012-02-28

    Different nanoscale fillers have been used to create composite fluids for applications such as thermal management. The ever increasing thermal loads in applications now require advanced operational fluids, for example, high thermal conductivity dielectric oils in transformers. These oils require excellent filler dispersion, high thermal conduction, but also electrical insulation. Such thermal oils that conform to this thermal/electrical requirement, and yet remain in highly suspended stable state, have not yet been synthesized. We report here the synthesis and characterization of stable high thermal conductivity Newtonian nanofluids using exfoliated layers of hexagonal boron nitride in oil without compromising its electrically insulating property. Two-dimensional nanosheets of hexagonal boron nitride are liquid exfoliated in isopropyl alcohol and redispersed in mineral oil, used as standard transformer oil, forming stable nanosuspensions with high shelf life. A high electrical resistivity, even higher than that of the base oil, is maintained for the nano-oil containing small weight fraction of the filler (0.01 wt %), whereas the thermal conductivity was enhanced. The low dissipation factor and high pour point for this nano-oil suggests several applications in thermal management.

  3. Thermal Degradation of Filler/PP Composite and Its Depression

    NASA Astrophysics Data System (ADS)

    Hosoi, Hiroshi; Funami, Fumiyasu; Yasuda, Naoki; Nomura, Manabu; Yui, Hiroshi; Ikuta, Nobuo

    To examine thermal degradation accelerated by filling inorganic particles in polypropylene (PP), the composites were made with three types of inorganic powders : talc, magnesium hydroxide, and mica. They were easily degraded with the fillers in this order in the thermal aging test. A commercial heat resistance agent, ‘Plenlizer MK-400’, was added while making the composites. The degradation resistance of the agent remarkably appeared in the reverse order. That is, thermal degradation was most depressed in talc-filled composite with the agent. In another experience, soxhlet extraction was carried out to the filler with an organic solvent, o-xylene, that was able to dissolve PP. A lot of inorganic ions were detected in the extractant. In particular, the detected amount of aluminum ion increased in the order of talc, magnesium hydroxide, and mica. This order was the same as the fillers indicated by the degree of degradation. Infrared analysis of the agent with inorganic ions in chloroform showed that the peaks due to the agent were much stronger with aluminum ion than those with iron ion. These results suggested that a cause of degradation was aluminum ion dispersed from particles to PP matrix during the molding.

  4. Calcium polyphosphate particulates for bone void filler applications.

    PubMed

    Pilliar, Robert M; Kandel, Rita A; Grynpas, Marc D; Theodoropoulos, John; Hu, Youxin; Allo, Bedilu; Changoor, Adele

    2016-02-01

    This study investigates the characteristics of porous calcium polyphosphate particulates (CPPp) formed using two different processing treatments as bone void fillers in non- or minimally load-bearing sites. The two calcium polyphosphate particulate variants (grades) were formed using different annealing conditions during particulate preparation to yield either more slowly degrading calcium polyphosphate particulates (SD-CPPp) or faster degrading particulates (FD-CPPp) as suggested by a previous degradation study conducted in vitro (Hu et al., Submitted for publication 2016). The two CPPp grades were compared as bone void fillers in vivo by implanting particulates in defects created in rabbit femoral condyle sites (critical size defects). The SD-CPPp and FD-CPPp were implanted for 4- and 16-week periods. The in vivo study indicated a significant difference in amount of new bone formed in the prepared sites with SD-CPPp resulting in more new bone formation compared with FD-CPPp. The lower bone formation characteristic of the FD-CPPp was attributed to its faster degradation rate and resulting higher local concentration of released polyphosphate degradation products. The study results indicate the importance of processing conditions on preparing calcium polyphosphate particulates for potential use as bone void fillers in nonload-bearing sites. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  5. Nanostructures and dynamics of macromolecules bound to attractive filler surfaces

    NASA Astrophysics Data System (ADS)

    Koga, Tad; Barkley, Deborah; Jiang, Naisheng; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Satija, Sushil; Taniguchi, Takashi

    We report in-situ nanostructures and dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in a good solvent. The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene to label the BPL for small-angle neutron scattering and neutron spin echo techniques. Intriguingly, the results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of ~ 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. This two-layer formation on the filler surface is similar to that reported for polymer chains adsorbed on planar substrates from melts. In addition, the results show that the dynamics of the swollen bound chains can be explained by the so-called ``breathing mode'' and is generalized with the thickness of the swollen BPL. Furthermore, we will discuss how the breathing collective dynamics is affected by the presence of polymer chains in a matrix solution. We acknowledge the financial support from NSF Grant No. CMMI-1332499.

  6. Evaluation of rice husk ash as filler in tread compounds

    NASA Astrophysics Data System (ADS)

    Fernandes, M. R. S.; Furtado, C. R. G.; de Sousa, A. M. F.

    2014-05-01

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety).

  7. NANOSCALE BOEHMITE FILLER FOR CORROSION AND WEAR RESISTANT POLYPHENYLENESULFIDE COATINGS.

    SciTech Connect

    SUGAMA,T.

    2003-06-26

    The authors evaluated the usefulness of nanoscale boehmite crystals as a filler for anti-wear and anti-corrosion polyphenylenesulfide (PPS) coatings exposed to a very harsh, 300 C corrosive geothermal environment. The boehmite fillers dispersed uniformly into the PPS coating, conferring two advanced properties: First, they reduced markedly the rate of blasting wear; second, they increased the PPS's glass transition temperature and thermal decomposition temperature. The wear rate of PPS surfaces was reduced three times when 5wt% boehmite was incorporated into the PPS. During exposure for 15 days at 300 C, the PPS underwent hydrothermal oxidation, leading to the substitution of sulfide linkages by the sulfite linkages. However, such molecular alteration did not significantly diminish the ability of the coating to protect carbon steel against corrosion. In fact, PPS coating filled with boehmite of {le} 5wt% adequately mitigated its corrosion in brine at 300 C. One concern in using this filler was that it absorbs brine. Thus, adding an excess amount of boehmite was detrimental to achieving the maximum protection afforded by the coatings.

  8. XPS analysis of the effect of fillers on PTFE transfer film development in sliding contacts

    NASA Technical Reports Server (NTRS)

    Blanchet, T. A.; Kennedy, F. E.; Jayne, D. T.

    1993-01-01

    The development of transfer films atop steel counterfaces in contact with unfilled and bronze-filled PTFE has been studied using X-ray photoelectron spectroscopy. The sliding apparatus was contained within the vacuum of the analytical system, so the effects of the native oxide, hydrocarbon, and adsorbed gaseous surface layers of the steel upon the PTFE transfer behavior could be studied in situ. For both the filled and the unfilled PTFE, cleaner surfaces promoted greater amounts of transfer. Metal fluorides, which formed at the transfer film/counterface interface, were found solely in cases where the native oxide had been removed to expose the metallic surface prior to sliding. These fluorides also were found at clean metal/PTFE interfaces formed in the absence of frictional contact. A fraction of these fluorides resulted from irradiation damage inherent in XPS analysis. PTFE transfer films were found to build up with repeated sliding passes, by a process in which strands of transfer filled in the remaining counterface area. Under these reported test conditions, the transfer process is not expected to continue atop previously deposited transfer films. The bronze-filled composite generated greater amounts of transfer than the unfilled PTFE. The results are discussed relative to the observed increase in wear resistance imparted to PTFE by a broad range of inorganic fillers.

  9. Monitorization of technosols in old mining sites treated with calcareous fillers

    NASA Astrophysics Data System (ADS)

    Martínez-Sanchez, MJose; Perez-Sirvent, Carmen; Garcia-Lorenzo, MariLuz; Gonzalez, Eva; Perez-Espinosa, Victor; Martínez-Lopez, Salvadora; Hernandez, Carmen; Molina, Jose; Martínez, Lucia B.

    2014-05-01

    A large number of soils around the world are contaminated by heavy metals due to mining activities, generating adverse effects on human health and the environment. In response to these negative effects, a variety of technologies to remediate soils affected by heavy metals have been developed. Among them, in situ immobilization by means of soil amendment is a non-intrusive and cost effective alternative, that transforms the highly mobile toxic heavy metals to physico-chemically stable forms, reducing their mobility and environmental risks. Limestone filler is a good selection for such a purpose, because of its low permeability and low solubility, due to its high degree of physical-chemical stability and because is a non-toxic material with a high finely divided calcium carbonate content. In addition, the use of this amendment could revalorize the residues, reducing the costs of the process. The objective of this work was to evaluate the effectiveness of a immobilization technique in sediments contaminated by heavy metals as a results of mining activities. The study area was Portman bay, located close to the mining region of La Unión and subjected to mining from the time of the Roman Empire to 1991. Wastes from mining activities mainly consisted in ore materials (galena, pyrite and sphalerite), phyllosilicates, in addition to siderite, iron oxides and sometimes alteration products such as jarosite, alunite, kaolinite and greenalite. These materials have suffered a concentration process by floatation with sea water and, as a result of the discharge, the whole of the bay has filled up with wastes which also extend into the Mediterranean Sea. Two experimental areas, approximately 1 Ha each one, were selected and technosols were developed as follows: original sediments from the bay, sediments mixed with limestone filler in a 1:1 proportion, gravel to avoid capillary and natural soil to allow plant growth. After the remediation technique was applied, monitorization of

  10. Effect of filler type and polishing on the discoloration of composite resin artificial teeth.

    PubMed

    Imamura, Soichiro; Takahashi, Hidekazu; Hayakawa, Iwao; Loyaga-Rendon, Paola G; Minakuchi, Shunsuke

    2008-11-01

    In this study, the effects of filler type and polishing on the discoloration of composite resin artificial teeth were examined. Four types of experimental resins were prepared: one was a matrix resin, while the others were composite resins containing three different types of fillers (nano-sized silica filler with or without silanization, and prepolymerized filler). Specimens were immersed in distilled water, coffee, red wine, or curry. Color change after immersion was measured using a colorimeter. Color difference values (delta E) and changes in translucency parameter (delta TP) were statistically analyzed using three-way ANOVA and Tukey's comparison. On the influence of the polishing factor, statistically significant differences were neither observed in delta E nor delta TP between polished and non-polished tooth surfaces. On the contrary, the influences of filler type and discoloration medium, and their interaction thereof, were significant. With unsilanized filler, the delta E value of composite resin artificial teeth was significantly increased.

  11. Effect of presilanization filler decontamination on aesthetics and degradation resistance of resin composites.

    PubMed

    Yoshida, Yasuhiro; Shirai, Kenichi; Shintani, Hideaki; Okazaki, Masayuki; Suzuki, Kazuomi; Van Meerbeek, Bart

    2002-12-01

    Filler-matrix coupling determines, to a large extent, the mechanical strength and clinical longevity of dental composites. The aim of this study was to examine how far a methodology to decontaminate filler prior to silanization may improve aesthetic performance in addition to physico-mechanical properties such as degradation resistance. It was reported that filler particles are surrounded and wrapped by a film that consists of multiple layers of silane molecules. X-ray photoelectron spectroscopy, however, revealed that silanization of filler particles largely depended upon siloxane bridge (Si-O-Si) formation between the silica surface and the silane molecule rather than on intermolecular bonding between adjacent silane molecules. In this study, we showed that filler decontamination resulted in a higher translucency, thereby providing a better aesthetic potential. In addition, experimental composites produced following presilanization decontamination of filler revealed a higher Vickers hardness value and a diametral tensile strength that was resistant to degradation by thermo-cycling.

  12. New fillers under consideration: what is the future of injectable aesthetics?

    PubMed

    Rivkin, Alexander

    2009-05-01

    The past 5 years in the United States have seen an explosion in the popularity of noninvasive aesthetic procedures. Not only have fillers and Botox turned out to be fantastically reliable and effective aesthetic tools, but also they have vastly expanded the accessibility of cosmetic procedures. Our cosmetic filler options are growing quickly as more and more fillers are coming before the U.S. Food and Drug Administration (FDA), seeking entry into the lucrative U.S. market. This article outlines the approval process that foreign fillers go through in their home countries and gives an idea of the fillers that are currently under consideration by the FDA. As our armamentarium of injectable fillers grows, it will be essential to know each product's strengths and weaknesses so that we can provide our patients with the best possible aesthetic results.

  13. Effect of ZrO2 Nanoparticles on the Microstructure of Al-Si-Cu Filler for Low-Temperature Al Brazing Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Roh, Myung-Hwan; Jung, Do-Hyun; Jung, Jae-Pil

    2016-01-01

    In this study, the effect of ZrO2 nanoparticles on Al-12Si-20Cu alloy has been studied as a filler metal for aluminum brazing. The microstructural and thermal characterizations are performed using X-ray diffraction (XRD), scanning electron microscope (SEM), and differential thermal analysis (DTA). The intermetallic compound (IMC) phases are identified by the energy-dispersive spectroscopy analysis coupled with the SEM. The filler spreading test is performed according to JIS-Z-3197 standard. XRD and SEM analyses confirm the presence of Si particles, the CuAl2 ( θ) intermetallic, and the eutectic structures of Al-Si, Al-Cu, and Al-Si-Cu in the Al matrix in the monolithic and composite samples. It is observed that when the ZrO2 is added in the alloy, the CuAl2 IMCs and Si particles are found to be dispersed uniformly in the Al matrix up to 0.05 wt pct ZrO2. DTA results show that the liquidus temperature of Al-12Si-20Cu filler metal is dropped from ~806.78 K to 804.6 K (533.78 °C to 531.6 °C) with a lowering of 2 K (2 °C) in liquidus temperature, when the amount of ZrO2 is increased up to 0.05 wt pct. It is also shown that the presence of ZrO2 nanoparticles in the filler metal has no deleterious effect on wettability up to 0.05 wt pct of ZrO2. The ultimate tensile strength and elongation percentage are also found to improve with the addition of ZrO2 nanoparticles in the Al-12Si-20Cu alloy.

  14. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    SciTech Connect

    Panin, S. V.; Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R.; Suan, T. Nguen

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  15. A Langevin dynamics study of mobile filler particles in phase-separating binary systems

    NASA Astrophysics Data System (ADS)

    Laradji, Mohamed

    2004-05-01

    The dynamics of phase separation in a simple binary mixture containing mobile filler particles that are preferentially wet by one of the two components is investigated systematically via Langevin simulations in two dimensions. We found that while the filler particles reduce the growth rate of spinodal decomposition, the domain growth remains essentially identical to that of the pure binary mixture. The growth rate diminishes as either the filler particles concentration is increased or their diffusivity is decreased.

  16. Kinetics of pH and colour of meat emulsions containing various fillers during smokehouse cooking.

    PubMed

    Correia, L R; Mittal, G S

    1991-01-01

    The cooking kinetics of meat emulsions containing various fillers was determined by monitoring changes in pH and colour during smokehouse cooking. The fillers used were buttermilk powder, corn starch, microcrystallline cellulose, modified corn starch, modified wheat flour, soy-protein concentrate and whey-protein concentrate. The cooking process was modelled using reaction kinetics and Eyring's absolute reaction rate theory. Enthalpy and entropy changes of activation were calculated for various properties and fillers.

  17. Applied anatomy of the temporal region and forehead for injectable fillers.

    PubMed

    Sykes, Jonathan M

    2009-10-01

    Injectable fillers allow for augmentation of soft tissue deficiencies caused by aging, trauma or other scarring. Placement of injectable fillers can be performed in the office, safely and with minimal patient downtime. In order to avoid complications from injection of filler substances, the injector must have a thorough knowledge of the applied anatomy. The temple and forehead are often associated with aging changes. This article describes the anatomic layers of the forehead and temple, and discusses the various planes for safe injection of fillers.

  18. The use of agar as a novel filler for monolithic matrices produced using hot melt extrusion.

    PubMed

    Lyons, John G; Devine, Declan M; Kennedy, James E; Geever, Luke M; O'Sullivan, Patrick; Higginbotham, Clement L

    2006-08-01

    The use of filler materials in an extended release monolithic polymer matrix can lead to a vastly altered release profile for the active pharmaceutical ingredient. A range of excipients for use in monolithic matrices have been discussed in the literature. The body of work described in this research paper outlines the use of agar as a novel filler material in a hot melt extruded polymer matrix. Several batches of matrix material were prepared with Diclofenac sodium used as the active pharmaceutical ingredient (API). Agar and microcrystalline cellulose were used as the filler materials in varying ratios, to examine the effect of % filler content as well as filler type on the properties of the hot melt extruded matrix. The resultant extrudates were characterised using steady state parallel plate rheometry, differential scanning calorimetry (DSC) and dissolution testing. The rheometry analysis concluded that the fillers used resulted in an increase in the matrix viscosity. The DSC scans obtained showed negligible effects on the melting behavior of the matrix as a result of the filler inclusion. Dissolution analysis showed that the presence of the fillers resulted in a slower release rate of API than for the matrix alone. The results detailed within this paper indicate that agar is a viable filler for extended release hot melt produced dosage forms.

  19. PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers.

    PubMed

    Mitra, Tamoghna; Bhavsar, Rupesh S; Adams, Dave J; Budd, Peter M; Cooper, Andrew I

    2016-04-25

    High-free-volume glassy polymers, such as polymers of intrinsic microporosity (PIMs) and poly(trimethylsilylpropyne), have attracted attention as membrane materials due to their high permeability. However, loss of free volume over time, or aging, limits their applicability. Introduction of a secondary filler phase can reduce this aging but either cost or instability rules out scale up for many fillers. Here, we report a cheap, acid-tolerant, nanoparticulate hypercrosslinked polymer 'sponge' as an alternative filler. On adding the filler, permeability is enhanced and aging is strongly retarded. This is accompanied by a CO2/N2 selectivity that increases over time, surpassing the Robeson upper bound.

  20. Preparation and Characterization of N-Halamine-based Antimicrobial Fillers

    PubMed Central

    Padmanabhuni, Revathi V.; Luo, Jie; Cao, Zhengbing; Sun, Yuyu

    2012-01-01

    The purpose of this study was to demonstrate that the surface of CaCO3 fillers could be coated with an N-halamine based fatty acid to make the filler surface organophilic and accomplish antibacterial activity simultaneously, rendering the resulting polymer-filler composites antimicrobial. Thus, a new bi-functional compound, 4, 4 -Dimethyl hydantoin-undecanoic acid (DMH-UA), was synthesized by treating the potassium salt of dimethyl hydantoin (DMH) with 11-bromoundecanoic acid (BUA). Upon chlorination treatment with diluted bleach, DMH-UA was transformed into 3-chloro-4, 4-dimethyl hydantoin- undecanoic acid (Cl-DMH-UA). Alternatively, DMH-UA could be coated onto the surface of CaCO3 to obtain the corresponding calcium salt, 4, 4-dimethyl hydantoin-undecanoic acid-calcium carbonate (DMH-UA-CaCO3). In the presence of diluted chlorine bleach, the coated DMH-UA on the surface of CaCO3 was transformed into Cl-DMH-UA, leading to the formation of Cl-DMH-UA-CaCO3. The reactions were characterized with FT-IR, NMR, UV, DSC and SEM analyses. Both Cl-DMH-UA and Cl-DMH-UA-CaCO3 were used as antimicrobial additives for cellulose acetate (CA). The antimicrobial efficacy of the resulting samples was evaluated against both Escherichia coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria). It was found that with the same additive content, CA samples with Cl-DMH-UA-CaCO3 and Cl-DMH-UA had very similar antimicrobial and biofilm-controlling activity, but the former released less active chlorine into the surrounding environment than the latter. PMID:22942559

  1. Thin-walled composite tubes using fillers subjected to quasistatic axial compression

    NASA Astrophysics Data System (ADS)

    AL-Qrimli, Haidar F.; Mahdi, Fadhil A.; Ismail, Firas B.; Alzorqi, Ibrahim S.

    2015-04-01

    It has been demonstrated that composites are lightweight, fatigue resistant and easily melded, a seemingly attractive alternative to metals. However, there has been no widespread switch from metals to composites in the automotive sector. This is because there are a number of technical issues relating to the use of composite materials that still need to be resolved including accurate material characterization, manufacturing and joining process. The total of 36 specimens have been fabricated using the fibre-glass and resin (epoxy) with a two different geometries (circular and corrugated) each one will be filled with five types of filler (Rice Husk, Wood Chips, Aluminium Chips, Coconut Fibre, Palm Oil Fibre) all these type will be compared with empty Tubes for circular and corrugated in order to comprehend the crashworthiness parameters (initial failure load, average load, maximum crushing load, load ratio, energy absorption, specific energy absorption, volumetric energy absorption, crushing force efficiency and crush strain relation) which are considered very sufficient parameters in the design of automotive industry parts. All the tests have been done using the “INSTRON Universal machine” which is computerized in order to simply give a high precision to the collection of the results, along with the use of quasi-static load to test and observe the behaviour of the fabricated specimens.

  2. Automatic Submerged ARC Welding With Metal Power Additions to Increase Productivity and Maintain Quality

    DTIC Science & Technology

    1986-06-01

    Manager of Welding Engineering PROPOSAL WELDING OF CARBON STEEL AND HY80 UTILIZING THE BULK WELDING PROCESS May 9, 1983 PREPARED BY: NEWPORT NEwS...12 joints with carbon steel and 12 with HY80 , utilizing three The joints will requirements of Benefits 1. Deposition times that different size double...of Joint Variations and Deposition Rates Filler Metal/Base Material Chemical Analyses; Carbon Steel /HIS Filler Metal/Base Material Chemical Analyses

  3. System compliance dictates the effect of composite filler content on polymerization shrinkage stress☆

    PubMed Central

    Wang, Zhengzhi; Chiang, Martin Y.M.

    2016-01-01

    Objective The effect of filler content in dental restorative composites on the polymerization shrinkage stress (PS) is not straightforward and has caused much debate in the literature. Our objective in this study was to clarify the PS/filler content relationship based on analytical and experimental approaches, so that guidelines for materials comparison in terms of PS and clinical selection of dental composites with various filler content can be provided. Methods Analytically, a simplified model based on linear elasticity was utilized to predict PS as a function of filler content under various compliances of the testing system, a cantilever beam-based instrument used in this study. The predictions were validated by measuring PS of composites synthesized using 50/50 mixtures of two common dimethacrylate resins with a variety of filler contents. Results Both experiments and predictions indicated that the influence of filler content on the PS highly depended on the compliance of the testing system. Within the clinic-relevant range of compliances and for the specific sample configuration tested, the PS increased with increasing filler content at low compliance of instrument, while increasing the compliance caused the effect of filler content on the PS to gradually diminish. Eventually, at high compliance, the PS inverted and decreased with increasing filler content. Significance This compliance-dependent effect of filler content on PS suggests: (1) for materials comparison in terms of PS, the specific compliance at which the comparison being done should always be reported and (2) clinically, composites with relatively lower filler content could be selected for such cavities with relatively lower compliance (e.g. a Class-I cavity with thick tooth walls or the basal part in a cavity) and vice versa in order to reduce the final PS. PMID:26916062

  4. Thermal Conductivity of Polymer/Nano-filler Blends

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Delozier, Donovan M.; Working, Dennis C.; Connell, John W.; Smith, Joseph G.; Sun, Y. P.; Lin, Y.

    2006-01-01

    To improve the thermal conductivity of an ethylene vinyl acetate copolymer, Elvax 260 was compounded with three carbon based nano-fillers. Multiwalled carbon nanotubes (MWCNT), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. In an attempt to improve compatibility between the Elvax and nanofillers, MWCNTs and EGs were modified through non covalent and covalent attachment of alkyl groups. Ribbons were extruded to form samples in which the nanofillers were aligned, and samples were also fabricated by compression molding in which the nano-fillers were randomly oriented. The thermal properties were evaluated by DSC and TGA, and mechanical properties of the aligned samples were determined by tensile testing. The degree of dispersion and alignment of the nanoparticles were investigated using high-resolution scanning electron microscopy. Thermal conductivity measurements were performed using a Nanoflash technique. The thermal conductivity of the samples was measured in both the direction of alignment as well as perpendicular to that direction. The results of this study will be presented.

  5. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.

    PubMed

    Liu, Wei; Liu, Nian; Sun, Jie; Hsu, Po-Chun; Li, Yuzhang; Lee, Hyun-Wook; Cui, Yi

    2015-04-08

    Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 × 10(-4) S cm(-1) at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance.

  6. Facial Rejuvenation with Fillers: The Dual Plane Technique

    PubMed Central

    Salti, Giovanni; Rauso, Raffaele

    2015-01-01

    Background: Facial aging is characterized by skin changes, sagging and volume loss. Volume is frequently addressed with reabsorbable fillers like hyaluronic acid gels. Materials and Methods: From an anatomical point of view, the deep and superficial fat compartments evolve differently with aging in a rather predictable manner. Volume can therefore be restored following a technique based on restoring first the deep volumes and there after the superficial volumes. We called this strategy “dual plane”. A series of 147 consecutive patients have been treated with fillers using the dual plane technique in the last five years. Results: An average of 4.25 session per patient has been carried out for a total of 625 treatment sessions. The average total amount of products used has been 12 ml per patient with an average amount per session of 3.75 ml. We had few and limited adverse events with this technique. Conclusion: The dual plane technique is an injection technique based on anatomical logics. Different types of products can be used according to the plane of injection and their rheology in order to obtain a natural result and few side effects. PMID:26644734

  7. Polymethylmethacrylate dermal fillers: evaluation of the systemic toxicity in rats.

    PubMed

    Medeiros, C C G; Borghetti, R L; Nicoletti, N; da Silva, V D; Cherubini, K; Salum, F G; de Figueiredo, M A Z

    2014-01-01

    This study evaluated local and systemic reactions after an intravascular injection of polymethylmethacrylate (PMMA) at two concentrations in a murine model. Thirty rats were divided equally into three groups: 2% PMMA, 30% PMMA, and a control group (normal saline only injection). The filler was injected into the ranine vein. The rats were sedated at 7 and 90 days and a clinical evaluation performed. After euthanasia, the right lung, liver, and right kidney were removed, weighed, and microscopically analyzed. The submandibular lymph nodes and tongue were removed and examined microscopically. Serum was subjected to liver and kidney function tests. No groups showed clinical alterations. Microspheres were not observed at any distant organ. Two samples from the 2% PMMA group showed a local inflammatory response at day 7 and another two samples from the 30% PMMA group at day 90. The group injected with 30% PMMA presented higher levels of alanine aminotransferase (P = 0.047) after 90 days when compared with the other groups. The data obtained in this study demonstrate that intravascular injections of PMMA fillers show potential health risks such as chronic inflammation at the implantation site.

  8. Oil removal from runoff with natural sorbing filter fillers.

    PubMed

    Mažeikienė, Aušra; Vaiškūnaitė, Rasa; Vaišis, Vaidotas

    2014-08-01

    The aim of this paper was to investigate the ability of Lithuanian sheep wool waste and reeds (Phragmites australis) to absorb oil from runoff when it flows through filters filled with these materials. The third material that was analysed, the synthetic sorbent Fibroil, was chosen for comparing the results. The laboratory experiments were performed in several stages, with the following being filtrated: tap water with a diesel admixture, road runoff contaminated with oils, and also suspended solids. The significance of this work is due to the high runoff filtering rate (∼10 m/h) and high oil concentrations in the runoff (50-230 mg/L) used in the experiment. In these cases the use of sorbents is limited. Wool waste and reed (Phragmites australis) fillers are quite efficient (98-99%) in oil removal from runoff at a 10 m/h filtering rate. However, wool fillers clog up quickly. Reeds of the genus Phragmites australis are a natural source for the production of oil sorbents. The results obtained in this experimental work can be used in the design of equipment for the treatment of oil-contaminated runoff from gas stations as well as sullage from roads and tunnels.

  9. Patient factors influencing dermal filler complications: prevention, assessment, and treatment

    PubMed Central

    De Boulle, Koenraad; Heydenrych, Izolda

    2015-01-01

    While rare, complications do occur with the esthetic use of dermal fillers. Careful attention to patient factors and technique can do much to avoid these complications, and a well-informed practitioner can mitigate problems when they do occur. Since cosmetic surgery is usually an elective process, requested by the patient, clinical trials are complex to organize and run. For this reason, an international group of practicing physicians in the field of esthetics came together to share knowledge and to try and produce some informed guidance for their colleagues, considering the literature and also pooling their own extensive clinical experience. This manuscript aims to summarize the crucial aspects of patient selection, including absolute contraindications as well as situations that warrant caution, and also covers important considerations for the pre- and posttreatment periods as well as during the procedure itself. Guidance is given on both immediate and long-term management of adverse reactions. The majority of complications are related to accepting patients inappropriate for treatment or issues of sterility, placement, volume, and injection technique. It is clear that esthetic practitioners need an in-depth knowledge of all aspects of treatment with dermal fillers to achieve optimal outcomes for their patients. PMID:25926750

  10. Molecular Level Coating for Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); Saint Clair, Terry L. (Inventor)

    2000-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  11. Molecular Level Coating of Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); St.Clair, Terry L. (Inventor)

    2002-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar osmotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing, synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper. making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  12. Viscoelastic Properties of Rubber Composites Reinforced by Wheat Gluten and Starch Co-filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to different abilities of wheat gluten (WG) and wheat starch (WS) to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG to WS as a co-filler. This study shows that the co-filler composites became more temperature dependent as the WG co...

  13. Viscoelastic Properties of Rubber Composites Reinforced by Wheat Gluten and Wheat Starch Co-filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to different abilities of wheat gluten (WG) and wheat starch (WS) to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG to WS as a co-filler. This study shows that the co-filler composites became more temperature dependent as the WG co...

  14. Improved fiber retention by the use of fillers in graphite fiber/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Bowles, K. J.

    1980-01-01

    A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fiber during accidental fires. Airborne electrically conductive fibers originating from burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A variety of matrix fillers have been tested for their ability to prevent loss of fiber from graphite fiber/PMR polyimide and graphite fiber/epoxy composites in a fire. The fillers tested included powders of boron, boron carbide (B4C), lime glass, lead glass, and aluminum. Of these fillers, boron was the most effective and prevented any loss of graphite fiber during burning. Mechanical properties of composites containing boron filler were measured and compared to those of composite containing no filler.

  15. The Hyaluronic Acid Fillers: Current Understanding of the Tissue Device Interface.

    PubMed

    Greene, Jacqueline J; Sidle, Douglas M

    2015-11-01

    The article is a detailed update regarding cosmetic injectable fillers, specifically focusing on hyaluronic acid fillers. Hyaluronic acid-injectable fillers are used extensively for soft tissue volumizing and contouring. Many different hyaluronic acid-injectable fillers are available on the market and differ in terms of hyaluronic acid concentration, particle size, cross-linking density, requisite needle size, duration, stiffness, hydration, presence of lidocaine, type of cross-linking technology, and cost. Hyaluronic acid is a natural component of many soft tissues, is identical across species minimizing immunogenicity has been linked to wound healing and skin regeneration, and is currently actively being studied for tissue engineering purposes. The biomechanical and biochemical effects of HA on the local microenvironment of the injected site are key to its success as a soft tissue filler. Knowledge of the tissue-device interface will help guide the facial practitioner and lead to optimal outcomes for patients.

  16. Filler frontier: what's new and heading West to the US market.

    PubMed

    Palm, Melanie D

    2014-12-01

    The amount of fillers approved by the United States Food and Drug Administration (FDA) for use in facial volume augmentation is diminutive in comparison to filler products employed worldwide. In the near future, several new hyaluronic acid filler products will be available to the United States market. Already approved fillers include Belotero Balance for fine lines, Juvéderm Voluma XC for midfacial volume loss replacement, and Restylane Silk for perioral lines and lip augmentation. Volbella, currently under FDA evaluation, will be used for fine-line correction and lip augmentation. The physiochemical properties, best practices, clinical uses, and side effects of these fillers are discussed. Additionally, evolving techniques such as the use of blunt-tipped microcannulas are explained.

  17. Formation of a transition layer on the fillers of polymer composites

    NASA Astrophysics Data System (ADS)

    Lukosiute, I.; Levinskas, R.; Kviklys, A.

    2006-09-01

    Based on a plane model of composites, the effect of a transition layer on the elastic modulus Ec of the composites is analyzed in the case where, under the action of a load, the transition layer is formed both on the side of matrix and filler. In evaluating Ec, it is assumed that the elastic modulus in the layer grows linearly from the elastic modulus of matrix to that of filler, but pores in the filler are impermeable to matrix macromolecules. Analytic relation ships are found which allow one to determine the volume fractions of the transition layer on the side of matrix and filler if the experimental elastic modulus of the composite is known. These relationships are used to find the magnitude of the layer in epoxy composites with various fillers and to evaluate its effect on the compressive elastic modulus of the composites.

  18. On the metallurgy of active brazing of silicon nitride

    SciTech Connect

    Paulasto, M.; Kivilahti, J.K.; Loo, F.J.J. van

    1996-10-01

    Activation mechanism and interfacial reactions in brazing of Si{sub 3}N{sub 4} with different AgCuTi filler alloys has been investigated thermodynamically and experimentally. During brazing the AgCuTi filler alloy is divided into two liquids L1 and L2, where the (Cu,Ti)-rich liquid L2 gathers at the Si{sub 3}N{sub 4} interface and reacts with it. The concentration of Ti in L2 is high, but due to the strong attractive interaction between Cu and Ti, the activity of Ti in L2 is considerably low. In reaction between Si{sub 3}N{sub 4} and Cu-containing brazes at Ti-Cu-Si-N compound is typically formed at the interface. In absence of Cu, in joints brazed with AgTi based filler alloys, extremely Ti-rich solution reacts with Si{sub 3}N{sub 4} and as reaction products TiN and Ti{sub 5}Si{sub 3}[N] are formed.

  19. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-01

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10 000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm-2. The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  20. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers.

    PubMed

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-14

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10,000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm(-2). The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  1. Exploring the potential of exfoliated graphene nanoplatelets as the conductive filler in polymeric nanocomposites for bipolar plates

    NASA Astrophysics Data System (ADS)

    Jiang, Xian; Drzal, Lawrence T.

    2012-11-01

    This research explored the potential of using exfoliated graphene nanoplatelets, GNP, as the conductive filler to construct highly conductive polymeric nanocomposites to substitute for conventional metallic and graphite bipolar plates in the polymer electrolyte membrane (PEM) fuel cells. Polyphenylene sulfide (PPS) was selected as the polymer matrix because of its high thermal and chemical tolerance. Solid state ball milling (SSBM) followed by compression molding was then applied to fabricate PPS/GNP nanocomposites. Results showed that PPS/GNP nanocomposites made by this method exhibit excellent mechanical and gas barrier properties but unsatisfied electrical conductivity. However, it was found that the electrical conductivity of these nanocomposites could be substantially enhanced if we combine GNP with second minor conductive filler for a positive synergistic effect and also optimize the processing time of SSBM. Meanwhile, PPS impregnated GNP papers were embedded into these PPS/GNP nanocomposites in order to further improve various properties of the resulting bipolar plates. It is believed that the bipolar plates made from PPS/GNP nanocomposites will allow lighter weight of PEM fuel cells with enhanced performance which is particularly suited for automotive applications.

  2. Evaluation of Polymer-Filler Interaction Characteristics by Force Microscopy

    SciTech Connect

    Ratto, T; Saab, A

    2007-04-23

    Silicone polymers are frequently used as cushions and inserts between load bearing parts. In this capacity, they must act to position their associated parts and distribute mechanical force as appropriate. One type of failure is specific to silicones that are filled with high surface area particulates for purposes of tailoring the polymer compressive properties. Additives such as fumed silicon oxide are presumed to have a high degree of surface interaction with the polymer matrix, thus causing the polymer to stiffen and to display greater dimensional stability as a function of temperature. However, it has been observed that the compressive behavior of these materials is not always invariant over long times. There is evidence that suggests changes in humidity and temperature can irreversibly alter the silicone-filler interaction, thereby changing the overall characteristics of parts made from such materials. As before, changes in compressive or shear stability can have serious effects on the ability of these materials to effectively position precision parts or distribute high mechanical loads. We approach the analysis of the filled systems by creating controlled layers of silicone polymers attached to silicon oxide substrates. Straight chain vinyl-silicone polymers identical to those used in the formulation of pads for stockpile systems are chemically appended to a substrate surface, and cross-linked to form a three dimensional network. This type of structure serves as a model of silicone polymer coating a silicon oxide filler particle. We study these model systems first by using Atomic Force Microscopy (AFM) to image the samples with nanometer resolution, and then by measuring the forces of interactions between single model silica filler particles and polymer-coated surfaces. We use normal longitudinal force AFM to measure adhesion, and a relatively newly developed technique, lateral force AFM, to determine the frictional forces between the silica particles and the

  3. Brazing C-C composites to metals

    SciTech Connect

    Liu, J.Y.; Banerjee, P.; Chin, B.A.

    1994-12-31

    Carbon-carbon composites are attractive for use at high temperature because of their high strength, modulus, chemical stability and resistance to activation by radiation. In these applications, the C-C composite must be joined to itself and to metals. The research described in this paper has led to the invention of a new brazing filler metal from the Cu-Mu-Ti system and the development of a brazing process for joining CC composites to metals. The newly invented brazing filler metal compositions, with controllable melting points ranging from 800{emdash}920{degrees}C has excellent wettability on both C-C composites and metals (stainless steel, Nb, Mo, W, and Zr). Sound joints of C-C composite/metal were produced using the brazing filler metal and the specially developed brazing processes. Finite element analyses were used to predict the residual stress distribution in the brazed joints. Theoretical predictions were confirmed by interlayer experiments. The brazed joints were studied using optical and scanning electron microscopy (SEM) to examine the microstructure and fractured brazed joints. The results showed 100% bonding was obtained using the developed braze metal and brazing procedure.

  4. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    NASA Astrophysics Data System (ADS)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2017-02-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  5. Mechanical properties of heterophase polymer blends of cryogenically fractured soy flour composite filler and poly(styrene-butadiene)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reinforcement effect of cryogenically fractured soy Flour composite filler in soft polymer was investigated in this study. Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dis...

  6. Development of Pyrrone structural forms for honeycomb filler

    NASA Technical Reports Server (NTRS)

    Kimmel, B. G.

    1973-01-01

    The development of techniques for the preparation of Pyrrone structural foams for use as honeycomb filler is described. The feasibility of preparing foams from polymers formed by the condensation of 3,3'-diaminobenzidine (DAB), or 3,3',4,4'-tetraaminobenzophenone (TABP), with 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) was investigated. Initially, most of the effort was devoted to preparing Pyrrone prepolymers with improved and more reproducible foaming properties for making chemically blown foams. When it became apparent that very high curing shrinkages would not allow the use of unfilled Pyrrone prepolymers in a foam-in-place process, emphasis was shifted from chemically blown foams to syntactic foams. Syntactic foam formulations containing hollow carbon microspheres were developed. Syntactic foams made from selected formulations were found to have very low coefficients of thermal expansion. A technique was developed for the emplacement of Pyrrone syntactic foam formulations in honeycomb core structures.

  7. Development of Filler Structure in Colloidal Silica-Polymer Nanocomposites

    SciTech Connect

    Meth, Jeffrey S; Zane, Stephen G; Chi, Changzai; Londono, J David; Wood, Barbara A; Cotts, Patricia; Keating, Mimi; Guise, William; Weigand, Steven

    2012-02-07

    The realization of the full potential for polymeric nanocomposites to manifest their entitled property improvements relies, for some properties, on the ability to achieve maximum particle-matrix interfacial area. Well-dispersed nanocomposites incorporating colloidal silica as the filler can be realized in both polystyrene and poly(methyl methacrylate) matrices by exploiting the charge stabilized nature of silica in nonaqueous solvents which act as Bronsted bases. We demonstrate that dispersions of colloidal silica in dimethylformamide are charge stabilized, regardless of organosilyl surface functionalization. When formulated with polymer solutions, the charge stabilized structure is maintained during drying until the charged double layer collapses. Although particles are free to diffuse and cluster after this neutralization, increased matrix viscosity retards the kinetics. We demonstrate how high molecular weight polymers assist in immobilizing the structure of the silica to produce well-dispersed composites. The glass transition temperatures of these composites do not vary, even at loadings up to 50 vol %.

  8. Epoxy composites based on inexpensive tire waste filler

    SciTech Connect

    Ahmetli, Gulnare Gungor, Ahmet Kocaman, Suheyla

    2014-05-15

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young’s modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  9. Appropriate calcinating conditions from gangue to cable filler

    SciTech Connect

    Gao, F.; Zhang, J.Y.; Zhang, B.J.

    1997-12-31

    A large amount of gangue is mined together with coal, discarded, and piled up day after day. By the mineral analysis, it is known that the majority content of the gangue in the North China`s coal mine is kaolinite, usually more than 90 wt.%. A kind of gangue, arising from Shanxi province, China, was calcined under different heating procedures, and the electrical resistivity and whiteness of the calcined products were measured in this study. It is clear that this kind of gangue can serve as a cable filler after the appropriate calcination. By detailed analysis of the TG/TDA curves, four steps, reflecting the changes in structural nature, were noted. The appropriate conditions, including calcination temperature and soaking time, were also recommended.

  10. ANALYSIS OF MPC ACCESS REQUIREMENTS FOR ADDITION OF FILLER MATERIALS

    SciTech Connect

    W. Wallin

    1996-09-03

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) in response to a request received via a QAP-3-12 Design Input Data Request (Ref. 5.1) from WAST Design (formerly MRSMPC Design). The request is to provide: Specific MPC access requirements for the addition of filler materials at the MGDS (i.e., location and size of access required). The objective of this analysis is to provide a response to the foregoing request. The purpose of this analysis is to provide a documented record of the basis for the response. The response is stated in Section 8 herein. The response is based upon requirements from an MGDS perspective.

  11. Hair as a filler material for reconstructive or cosmetic surgery.

    PubMed

    Kaakedjian, G; Taylor, P

    1997-02-01

    The purpose of this study was to investigate the possible use of hair as a filler material for reconstructive or cosmetic surgery. Many implant materials tested so far have proved to be of limited usefulness due to a lack of staying power or to fears of a host immune response, among other problems. In this study, pellets of rat hair were placed subcutaneously or beneath the pectoral muscle of Lewis rats (10 rats per group). A thin vascularized fibrous pouch containing inflammatory cells had formed around the hair pellet at 4 months. By 8 to 12 months, the hair had compacted, and the fibrous matrix of the pouch showed very few inflammatory cells surrounding the embedded hairs. There was no evidence of implant rejection, granuloma formation, or hair degradation up to 12 months after implantation. The results indicate that hair merits further study as a surgical implant material.

  12. The Effect of Post-grinding Heat Treatment of Alumina and Ag-Cu-Ti Braze Preform Thickness on the Microstructure and Mechanical Properties of Alumina-to-Alumina-Brazed Joints

    NASA Astrophysics Data System (ADS)

    Kassam, Tahsin Ali; Nadendla, Hari Babu; Ludford, Nicholas; Buisman, Iris

    2016-08-01

    Alumina-to-alumina-brazed joints were formed using 96.0 and 99.7 wt.% Al2O3 and TICUSIL® (68.8Ag-26.7Cu-4.5Ti wt.%) preforms of different thicknesses. Brazing was conducted in a vacuum of 1 × 10-5 mbar at 850 °C for 10 minutes. Joint strengths were evaluated using four-point bend testing and were compared to flexural strengths of standard test bars. Post-grinding heat treatment, performed at 1550 °C for 1 hour, did not affect the average surface roughness or grain size of either grades of alumina but affected their average flexural strengths with a small increase for 96.0 wt.% Al2O3 and a small decrease for 99.7 wt.% Al2O3. As the TICUSIL® preform thickness was increased from 50 to 100 µm, the average strengths of both 96.0 and 99.7 wt.% Al2O3 brazed joints improved. Joints made using 100-µm-thick TICUSIL® preforms predominantly consisted of Cu-Ti phases which formed due to excess Ti in the interlayers and non-uniform Ag-rich outflow. Brazed joints of 96.0 wt.% Al2O3 made using 100-µm-thick TICUSIL® preforms achieved an average joint strength of 238 MPa with consistent failure in the ceramic.

  13. Wh-filler-gap dependency formation guides reflexive antecedent search

    PubMed Central

    Frazier, Michael; Ackerman, Lauren; Baumann, Peter; Potter, David; Yoshida, Masaya

    2015-01-01

    Prior studies on online sentence processing have shown that the parser can resolve non-local dependencies rapidly and accurately. This study investigates the interaction between the processing of two such non-local dependencies: wh-filler-gap dependencies (WhFGD) and reflexive-antecedent dependencies. We show that reflexive-antecedent dependency resolution is sensitive to the presence of a WhFGD, and argue that the filler-gap dependency established by WhFGD resolution is selected online as the antecedent of a reflexive dependency. We investigate the processing of constructions like (1), where two NPs might be possible antecedents for the reflexive, namely which cowgirl and Mary. Even though Mary is linearly closer to the reflexive, the only grammatically licit antecedent for the reflexive is the more distant wh-NP, which cowgirl. (1). Which cowgirl did Mary expect to have injured herself due to negligence? Four eye-tracking text-reading experiments were conducted on examples like (1), differing in whether the embedded clause was non-finite (1 and 3) or finite (2 and 4), and in whether the tail of the wh-dependency intervened between the reflexive and its closest overt antecedent (1 and 2) or the wh-dependency was associated with a position earlier in the sentence (3 and 4). The results of Experiments 1 and 2 indicate the parser accesses the result of WhFGD formation during reflexive antecedent search. The resolution of a wh-dependency alters the representation that reflexive antecedent search operates over, allowing the grammatical but linearly distant antecedent to be accessed rapidly. In the absence of a long-distance WhFGD (Experiments 3 and 4), wh-NPs were not found to impact reading times of the reflexive, indicating that the parser's ability to select distant wh-NPs as reflexive antecedents crucially involves syntactic structure. PMID:26500579

  14. Influence of filler selection on twin screw foam granulation.

    PubMed

    Rocca, K E; Weatherley, S; Sheskey, P J; Thompson, M R

    2015-01-01

    The influence of filler selection in wet granulation was studied for the novel case where the binder is delivered as an unstable, semi-rigid aqueous foam to an extrusion process. The work primarily examined the impact of differing concentrations of microcrystalline cellulose (Avicel PH® 101) in a formulation with spray-dried α-lactose monohydrate (Flowlac® 100) in regards to wetting and granule nucleation for this relatively new technique known as continuous foam granulation. Foam stability was varied within the work to change its drainage and coarsening behavior atop these powder excipients, by use of different foamable binding agents (METHOCEL™ F4 PLV and METHOCEL™ Premium VLV) as well as by adjusting the foam quality. A static bed penetration test was first used to study the foam behavior in wetting these powders without the processing constraints of an extruder which limit possible liquid-to-solids ratios as well as introduce shear which may complicate interpretation of the mechanism. The test found that the penetration time to saturate these powders decreased as their water absorption capacity increased which in turn decreased the size of the formed nuclei. Differences in the stability of the foamed binder had minimal influence on these attributes of wetting despite its high spread-to-soak behavior. The size of granules produced by extrusion similarly demonstrated sensitivity to the increasing water absorption capacity of the filler and little dependency on foam properties. The different liquid-to-solids ratios required to granulate these different formulations inside the extruder highlighted an evolving concept of powder lubricity for continuous foam granulation.

  15. Effect of fillers on key characteristics of sludge thermophilic anaerobic digestion.

    PubMed

    Shao, Liming; Xu, Yuanshun; Wang, Tianfeng; Lü, Fan; He, Pinjing

    2015-10-01

    In anaerobic digestion (AD) of sludge, AD efficiency and digested sludge (DS) dewaterability are critical factors. In this study, polyester non-woven fabric fillers were integrated into a sludge digester. The effect of such fillers on digestion was investigated in thermophilic temperature range in semi-continuous mode. Methane production of filler system and control reactor were significantly different (P < 0.05, paired t-test). At hydraulic retention times of 18 days and 12 days, the corresponding methane yields from filler system were 140% and 161%, respectively, of the yields from control digester without filler. Improvement of DS dewaterability was uncertain during 110 days of operation. While after a longer period of digestion, filler system resulted in a lower normalized capillary suction time of DS (76.5 ± 21.6 s L/g total suspended solids) than control reactor (118.7 ± 32.9 s L/g total suspended solids). The results showed that the filler could improve thermophilic AD performance, except at too short hydraulic retention times.

  16. The role of fillers in aesthetic medicine: medico-legal aspects.

    PubMed

    Marinelli, E; Montanari Vergallo, G; Reale, G; di Luca, A; Catarinozzi, I; Napoletano, S; Zaami, S

    2016-11-01

    In recent years there has been an exponential increase of fillers use in aesthetic medicine. The popularity of this anti-wrinkle product is based on their capacity to offer significant improvement in the aesthetic field, particularly to skin rejuvenating processes with non-invasive and less expensive techniques, if compared to the surgical methods (i.e. surgical lifting). The great number of fillers on the market is composed of a large heterogenic number of biomaterials. The aim of this review was to provide an overview and a classification of the filling materials that are most commonly used. A synthesis of the literature concerning fillers and related side effects was also reported. The law decree no. 23 of 1998, converted in the law no. 94 of 1998 and the principal judgments of the Italian Court of Cassation have been examined with the medico-legal issues related to fillers use in medicine. With respect to their degradation, filler materials may be classified as temporary (degradable), semi-permanent and permanent (not degradable). The temporary fillers such as hyaluronic acid and collagen are completely degraded by the surrounding tissue in a few months. The permanent fillers, such as the ones derived from silicon oil and minerals are not biodegradable and may cause serious and irreversible side effects. Their use requires a physician with a high level of specialization to perform the treatment, a deep knowledge of face anatomy and a great degree of experience.

  17. Influence of different fillers on the properties of an experimental vinyl polysiloxane.

    PubMed

    Meincke, Débora Könzgen; Ogliari, Aline de Oliveira; Ogliari, Fabrício Aulo

    2016-01-01

    The aim of the study was to evaluate the effect of the incorporation of different fillers on an experimental vinyl polysiloxane (VPS) at two different concentrations, 20% and 40%. Different fillers were added to an experimental VPS. The study was developed in two stages: (i) incorporation of fillers in different concentrations: (a) 20 wt% fillers, and (b) 40 wt%. The fillers were added to experimental VPS and mixed with a speed mixer; (ii) characterization of experimental VPS; after the base paste and catalyst paste were mixed, the experimental VPS was used to make specimens specifically for each test, which were stored at 23°C for 24 hours. The tests were designed according to the specific standardization for the analysis of tensile strength, detail reproduction, Shore A hardness, and elastic recovery. For analysis of filler size pattern, scanning electron microscopy at 1500× magnification was used. The aerosil OX-50 40% (AE), and pure aluminum hydroxide 40% (PAH) groups presented the highest tensile strength and Shore A hardness values. However, those were the only groups that did not present continuous detail reproduction of an intersection of 20 μm line. The elastic recovery was not statistically significant. The undesirable characteristics of VPS (lowest Shore A hardness and tensile strength) were observed when it was added to the composition of acrylic polymer (AP) and fiberglass (FG) in both concentrations, 20% and 40%. In groups AE and PAH, agglomerates of nanofillers were shown in SEM micrography, while the other groups presented different shapes and fillers sizes.

  18. Effect of Geopolymer filler in Glass Reinforced Epoxy (GRE) Pipe for Piping Application: Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Firdaus Abu Hashim, Mohammad; Bakri Abdullah, Mohd Mustafa Al; Mohd Ruzaidi Ghazali, Che; Hussin, Kamarudin; Binhussain, Mohammed

    2016-06-01

    The present work is aimed to carry out the effect of geopolymer material which is fly ash as filler in the glass reinforced epoxy pipe on the micro structure of fly ash geopolymer, compression properties, and bulk density using the filament winding method. Conventional glass reinforced epoxy pipes has its own disadvantages such as high corrosion resistance at acidic environment and low strength which can be replaced by the composite pipes. Geopolymer is a type of amorphous alumino-silicate and can be synthesized by geopolymerization process. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentage geopolymer filler which is fly ash with 4 Molarity were prepared. Morphology of the raw material fly ash and fly ash based-geopolymer surface was characterized using scanning electron microscopy. It was found that the additions of fly ash at the beginning with 10 wt% are showing higher compressive strength than glass reinforced epoxy pipe without fly ash geopolymer filler. The compressive test of these series of samples was determined using Instron Universal Testing under compression mode. It was found that compressive strength for samples fly ash based-geopolymer filler are higher as compared to glass reinforced epoxy pipe without geopolymer filler. However, the compressive strength of glass reinforced epoxy pipe with fly ash geopolymer filler continues to decline when added to 20 wt% - 40 wt% of geopolymer filler loading. The results showed that the mixing of geopolymer materials in epoxy system can be obtained in this study.

  19. Dental composite resins containing silica-fused ceramic single-crystalline whiskers with various filler levels.

    PubMed

    Xu, H H

    1999-07-01

    Currently available direct-filling composite resins are susceptible to fracture and hence are not recommended for use in large stress-bearing posterior restorations involving cusps. The glass fillers in composites provide only limited reinforcement because of the brittleness and low strength of glass. The aim of the present study was to use ceramic single-crystalline whiskers as fillers to reinforce composites, and to investigate the effect of whisker filler level on composite properties. Silica particles were fused onto the whiskers to facilitate silanization and to roughen the whiskers, thereby improving retention in the matrix. The composite flexural strength, elastic modulus, hardness, and degree of polymerization conversion were measured as a function of whisker filler mass fraction, which ranged from 0% to 70%. Selected composites were polished simulating clinical procedures, and the surface roughness was measured with profilometry. The whisker composite with a filler mass fraction of 55% had a flexural strength (mean +/- SD; n = 6) of 196+/-10 MPa, significantly higher than 83+/-14 MPa of a microfill and 120+/-16 MPa of a hybrid composite control (family confidence coefficient = 0.95; Tukey's multiple comparison). The composite modulus and hardness increased monotonically with filler level. The flexural strength first increased, then plateaued with increasing filler level. The degree of conversion decreased with increasing filler level. The whisker composite had a polished surface roughness similar to that of a conventional hybrid composite (p>0.1; Student's t). To conclude, ceramic whisker reinforcement can significantly improve the mechanical properties of composite resins; the whisker filler level plays a key role in determining composite properties; and the reinforcement mechanisms appear to be crack pinning by whiskers and friction from whisker pullout resisting crack propagation.

  20. Whisker-reinforced dental core buildup composites: effect of filler level on mechanical properties.

    PubMed

    Xu, H H; Smith, D T; Schumacher, G E; Eichmiller, F C

    2000-12-15

    The strength and toughness of dental core buildup composites in large stress-bearing restorations need to be improved to reduce the incidence of fracture due to stresses from chewing and clenching. The aims of the present study were to develop novel core buildup composites reinforced with ceramic whiskers, to examine the effect of filler level, and to investigate the reinforcement mechanisms. Silica particles were fused onto the whiskers to facilitate silanization and to roughen the whisker surface for improved retention in the matrix. Filler level was varied from 0 to 70%. Flexural strength, compressive strength, and fracture toughness of the composites were measured. A nano-indentation system was used to measure elastic modulus and hardness. Scanning electron microscopy (SEM) was used to examine the fracture surfaces of specimens. Whisker filler level had significant effects on composite properties. The flexural strength in MPa (mean +/- SD; n = 6) increased from (95+/-15) for the unfilled resin to (193+/- 8) for the composite with 50% filler level, then slightly decreased to (176+/-12) at 70% filler level. The compressive strength increased from (149+/-33) for the unfilled resin to (282+/-48) at 10% filler level, and remained equivalent from 10 to 70% filler level. Both the modulus and hardness increased monotonically with filler level. In conclusion, silica particle-fused ceramic single-crystalline whiskers significantly reinforced dental core buildup composites. The reinforcement mechanisms appeared to be crack deflection and bridging by the whiskers. Whisker filler level had significant effects on the flexural strength, compressive strength, elastic modulus, and hardness of composites.

  1. Kinetics of hydration properties of meat emulsions containing various fillers during smokehouse cooking.

    PubMed

    Correia, L R; Mittal, G S

    1991-01-01

    The cooking kinetics of meat emulsions containing various fillers was determined by monitoring changes in hydration properties such as cooking loss and water-holding capacity during smokehouse cooking. Press juice, consumer cook test and emulsion stability of cooked product were also determined. The fillers used were buttermilk powder, corn starch, microcrystalline cellulose, modified corn starch, modified wheat flour, soy-protein concentrate and whey-protein concentrate. The cooking process was modelled using reaction kinetics and Eyring's absolute reaction rate theory. Enthalpy and entropy changes of activation were calculated for various properties and fillers.

  2. Effect of Filler Concentration on Thermal Stability of Vinyl Copolymer Elastomer (VCE) Composites

    SciTech Connect

    Yang, Dali; Hubbard, Kevin Mark; Devlin, David James; Henderson, Kevin C.; Pacheco, Robin Montoya

    2015-03-06

    To study the thermal stability of vinyl copolymer elastomer (VCE) in its composite form, systematic TGA characterizations were conducted in both nonisothermal and isothermal modes. The effects of filler concentration on the aging behaviors of the VCE/filler composites were investigated under nitroplasticizer (NP) environment. FTIR characterization was used to probe the structural changes in the VCE polymer before and after the thermal treatments. This study suggests that the filler concentration significantly deteriorates the thermal stability of NP at a moderate temperature (< 70 °C). The degradation of NP, in turn, accelerates the aging process of the VCE polymer in its composite form.

  3. Microstructural Evolution of Inconel 625 and Inconel 686CPT Weld Metal for Clad Carbon Steel Linepipe Joints: A Comparator Study

    NASA Astrophysics Data System (ADS)

    Maltin, Charles A.; Galloway, Alexander M.; Mweemba, Martin

    2014-07-01

    Microstructural evolution of Inconel 625 and Inconel 686CPT filler metals, used for the fusion welding of clad carbon steel linepipe, has been investigated and compared. The effects of iron dilution from the linepipe parent material on the elemental segregation potential of the filler metal chemistry have been considered. The results obtained provide significant evidence to support the view that, in Inconel 686CPT weld metal, the segregation of tungsten is a function of the level of iron dilution from the parent material. The data presented indicate that the incoherent phase precipitated in the Inconel 686CPT weld metal has a morphology that is dependent on tungsten enrichment and, therefore, iron dilution. Furthermore, in the same weld metal, a continuous network of finer precipitates was observed. The Charpy impact toughness of each filler metal was evaluated, and the results highlighted the superior impact toughness of the Inconel 625 weld metal over that of Inconel 686CPT.

  4. Efficacy and durability of hyaluronic acid fillers for malar enhancement: a prospective, randomized, spilt-face clinical controlled trial.

    PubMed

    Jeong, Ki Heon; Gwak, Min Jae; Moon, Sung Kyung; Lee, Sang Jun; Shin, Min Kyung

    2017-01-31

    Various hyaluronic acid fillers can be used for facial attenuation and rejuvenation. The efficacy and durability of hyaluronic acid fillers are of major concern to dermatologists and patients. This study aimed to evaluate three dimensional morphology, tissue distribution, and changes in volume after injection of two different hyaluronic acid fillers. Ten Korean women were enrolled in this study. Each subject was injected with monophasic hyaluronic acid filler in one malar area and biphasic filler in the other. Clinical outcome was measured before and after injection, and after 2, 4, 6, 8, 12, and 24 weeks, using the Global Aesthetic Improvement Scale, photographs and Moire's topography. Facial magnetic resonance imaging (MRI) was performed twice over six months. Both products showed good results after injection and demonstrated good durability over time. MRI was a useful modality for assessing tissue distribution and volume changes. The effects and durability after injection of monophasic hyaluronic acid filler and biphasic hyaluronic acid filler are generally comparable.

  5. Elastomer coated filler and composites thereof comprising at least 60% by weight of a hydrated filler and an elastomer containing an acid substituent

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Ingham, J. D.; Reilly, W. W. (Inventor)

    1983-01-01

    The impact resistance of flame retardant composites, especially thermoplastic molding: compounds containing over 60% hydrated mineral filler such as Al(OH)3 or Mg(OH)2 as improved by coating the filler with 1 to 20% of an elastomer. The composite will fail by crazing or shearing rather than by brittle fracture. A well bonded elastomeric interphase resulted by utilizing acidic substituted resins such as ethyl-hexyl acrylate-acrylic acid copolymers which bond to and are cross-linked by the basic filler particles. Further improvement in impact resistance was provided by incorporating 1 to 10% of a resin fiber reinforcement such as polyvinyl alcohol fibers that decompose to yield at least 30% water when heated to decomposition temperature.

  6. Cytotoxicity of Resin Composites Containing Bioactive Glass Fillers

    PubMed Central

    Salehi, Satin; Gwinner, Fernanda; Mitchell, John C; Pfeifer, Carmem; Ferracane, Jack L

    2015-01-01

    Objective To determine the in vitro cytotoxicity of dental composites containing bioactive glass fillers. Methods Dental composites (50:50 Bis-GMA/TEGDMA resin: 72.5wt% filler, 67.5%Sr-glass and 5% OX50) containing different concentrations (0, 5, 10 and 15 wt %) of two sol-gel bioactive glasses, BAG65 (65 mole% SiO2, 31 mole% CaO, 4 mole% P2O5) and BAG62 (3 mole% F added) were evaluated for cytotoxicity using Alamar Blue assay. First, composite extracts were obtained from 7 day incubations of composite in cell culture medium at 37° C. Undifferentiated pulp cells (OD-21) were exposed to dilutions of the original extracts for 3, 5, and 7 days. Then freshly cured composite disks were incubated with OD-21 cells (n=5) for 2 days. Subsequently, fresh composite disks were incubated in culture medium at 37°C for 7 days, and then the extracted disks were incubated with OD-21 cells for 2 days. Finally, fresh composites disks were light cured for 3, 5, and 20 seconds and incubated with OD-21 cells (n=5) for 1, 3, 5, and 7 days. To verify that the three different curing modes produced different levels of degree of conversion (DC), the DC of each composite was determined by FTIR. Groups (n=5) were compared with ANOVA/Tukey’s (α≤0.05). Results Extracts from all composites significantly reduced cell viability until a dilution of 1:8 or lower, where the extract became equal to the control. All freshly-cured composites showed significantly reduced cell viability at two days. However, no reduction in cell viability was observed for any composite that had been previously soaked in media before exposure to the cells. Composites with reduced DC (3 s vs. 20 s cure), as verified by FTIR, showed significantly reduced cell viability. Significance The results show that the composites, independent of composition, had equivalent potency in terms of reducing the viability of the cells in culture. Soaking the composites for 7 days before exposing them to the cells suggested that the

  7. Stability Enhancement of Polymeric Sensing Films Using Fillers

    NASA Technical Reports Server (NTRS)

    Lin, Brian; Shevade, Abhijit; Ryan, Margaret Amy; Kisor, Adam; Yen, Shiao-Pin; Manatt, Kenneth; Homer, Margie; Fleurial, Jean-Pierre

    2006-01-01

    Experiments have shown the stability enhancement of polymeric sensing films on mixing the polymer with colloidal filler particles (submicron-sized) of carbon black, silver, titanium dioxide, and fumed silicon dioxide. The polymer films are candidates for potential use as sensing media in micro/nano chemical sensor devices. The need for stability enhancement of polymer sensing films arises because such films have been found to exhibit unpredictable changes in sensing activity over time, which could result in a possible failure of the sensor device. The changes in the physical properties of a polymer sensing film caused by the sorption of a target molecule can be measured by any of several established transduction techniques: electrochemical, optical, calorimetric, or piezoelectric, for example. The transduction technique used in the current polymer stability experiments is based on piezoelectric principles using a quartz-crystal microbalance (QCM). The surface of the QCM is coated with the polymer, and the mass uptake by the polymer film causes a change in the oscillating frequency of the quartz crystal. The polymer used for the current study is ethyl cellulose. The polymer/ polymer composite solutions were prepared in 1,3 dioxolane solvent. The filler concentration was fixed at 10 weight percent for the composites. The polymer or polymer composite solutions were cast on the quartz crystal having a fundamental frequency of about 6 MHz. The coated crystal was subjected to a multistage drying process to remove all measurable traces of the solvent. In each experiment, the frequency of oscillation was measured while the QCM was exposed to clean, dry, flowing air for about 30 minutes, then to air containing a known concentration of isopropanol for about 30 minutes, then again to clean dry air for about 30 minutes, and so forth. This cycle of measurements for varying isopropanol concentrations was repeated at intervals for several months. The figure depicts some of the

  8. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites.

    PubMed

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-05-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.

  9. Effect of elastic filler on the fatigue failure of thermoplastic polyurethane film at low temperature

    NASA Astrophysics Data System (ADS)

    Grishetskii, I. V.; Parfeev, V. M.; Erykalova, T. A.; Borisova, E. Yu.

    1989-11-01

    It was established by mathematical modeling of the curves of spectral transmissivity and by comparing them with experiments that in the mixture of polyurethane with caoutchouc an increase of the volume fraction of filler entails changes of the characteristic dimensions of its particles. With small volume fractions of filler (less than 10%), in consequence of the predominantly small size of the impurities, the mechanism of quasibrittle failure is realized without development of bulk damage to the mixture. When the mixture contains 20-30% filler, satisfactory static elastic and strength properties are retained, and in case of fatigue a considerable amount of damage accumulates and the mechanism of inhibiting macrocracks on the boundaries of impurities begins to act. When the proportion of filler increases further, the elastic and strength properties of the mixture are rapidly impaired, and as a consequence the material becomes practically unusable in operation.

  10. Adjustable high emittance gap filler. [reentry shielding for space shuttle vehicles

    NASA Technical Reports Server (NTRS)

    Leiser, D. B.; Stewart, D. A.; Smith, M.; Estrella, C. A.; Goldstein, H. E. (Inventor)

    1981-01-01

    A flexible, adjustable refractory filler is disclosed for filling gaps between ceramic tiles forming the heat shield of a space shuttle vehicle, to protect its aluminum skin during atmospheric reentry. The easily installed and replaced filler consists essentially of a strip of ceramic cloth coated, at least along both its longitudinal edges with a room temperature vulcanizable silicone rubber compound with a high emittance colored pigment. The filler may have one or more layers as the gap width requires. Preferred materials are basket weave aluminoborosilicate cloth, and a rubber compounded with silicon tetraboride as the emittance agent and finely divided borosilicate glass containing about 7.5% B2O3 as high temperature binder. The filler cloth strip or tape is cut to proper width and length, inserted into the gap, and fastened with previously applied drops of silicone rubber adhesive.

  11. Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers

    NASA Astrophysics Data System (ADS)

    Gupta, G.; Gupta, A.; Dhanola, A.; Raturi, A.

    2016-09-01

    Now-a-days, the natural fibers and fillers from renewable natural resources offer the potential to act as a reinforcing material for polymer composite material alternative to the use of synthetic fiber like as; glass, carbon and other man-made fibers. Among various natural fibers and fillers like banana, wheat straw, rice husk, wood powder, sisal, jute, hemp etc. are the most widely used natural fibers and fillers due to its advantages like easy availability, low density, low production cost and reasonable physical and mechanical properties This research work presents the effect of natural fillers loading with 5%, 10% and 15% on mechanical behavior of polyester based hybrid composites. The result of test depicted that hybrid composite has far better properties than single fibre glass reinforced composite under impact and flexural loads. However it is found that the hybrid composite have better strength as compared to single glass fibre composites.

  12. Foreign Body Granulomas after the Use of Dermal Fillers: Pathophysiology, Clinical Appearance, Histologic Features, and Treatment

    PubMed Central

    Lee, Jeong Min

    2015-01-01

    A foreign body granuloma is a non-allergic chronic inflammatory reaction that is mainly composed of multinucleated giant cells. Foreign body granulomas may occur after the administration of any dermal filler. Factors such as the volume of the injection, impurities present in the fillers, and the physical properties of fillers affect granuloma formation. The formation of granulomas involves five phases: protein adsorption, macrophage adhesion, macrophage fusion, and crosstalk. The clinical and pathologic features of granulomas vary depending on the type of filler that causes them. Foreign body granulomas can be treated effectively with intralesional corticosteroid injections. Surgical excisions of granulomas tend to be incomplete because granulomas have ill-defined borders and moreover, surgical excisions may leave scars and deformities. PMID:25798398

  13. Effect of PMMA filler particles addition on the physical properties of resin composite.

    PubMed

    Kondo, Yoshiko; Takagaki, Tomohiro; Okuda, Makoto; Ikeda, Masaomi; Kadoma, Yoshinori; Yamauchi, Junichi; Okada, Koichi; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    2010-10-01

    The aim of this study was to evaluate the effect of additional polymethyl methacrylate (PMMA) fillers on the physical properties of experimental resin composites. PMMA particles (d=30 µm) were added to an experimental methacrylate-based resin composite in five concentrations of 0, 2.0, 4.8, 9.1, and 23.1 wt%. Properties such as contact angle, water sorption and compressive strength were measured and the fractured specimens were observed with a scanning electron microscope. The results showed that a small amount (2 wt%) of additional PMMA fillers inhibited the crack propagation and enhanced compressive strengths of the resin composites, without a significant change in water contact angle of surface or increased water sorption. However, in higher portions, the mechanical properties were not improved as a debonding at the interface between untreated fillers and the matrix, or failure within the organic filler could reduce the compressive yield strength of the composite.

  14. Electro-mechanical properties of hydrogel composites with micro- and nano-cellulose fillers

    NASA Astrophysics Data System (ADS)

    N, Mohamed Shahid U.; Deshpande, Abhijit P.; Lakshmana Rao, C.

    2015-09-01

    Stimuli responsive cross-linked hydrogels are of great interest for applications in diverse fields such as sensors and biomaterials. In this study, we investigate polymer composites filled with cellulose fillers. The celluloses used in making the composites were a microcrystalline cellulose of commercial grade and cellulose nano-whiskers obtained through acid hydrolysis of microcrystalline cellulose. The filler concentration was varied and corresponding physical, mechanical and electro-mechanical characterization was carried out. The electro-mechanical properties were determined using a quasi-static method. The fillers not only enhance the mechanical properties of the composite by providing better reinforcement but also provide a quantitative electric potential in the composite. The measurements reveal that the polymer composites prepared from two different cellulose fillers possess a quantitative electric potential which can be utilized in biomedical applications. It is argued that the mechanism behind the quantitative electric potential in the composites is due to streaming potentials arising due to electrical double layer formation.

  15. Filler leachability of composites stored in distilled water or artificial saliva.

    PubMed

    Söderholm, K J; Mukherjee, R; Longmate, J

    1996-09-01

    Though dental composite materials leach filler elements when stored in distilled water, it is not known whether similar leaching occurs in saliva. The hypothesis to be tested was that due to ion exchange occurring at the filler surfaces, more filler elements leach from composites stored in a salt solution simulating saliva than from composites stored in distilled water. Another aim was to determine how matrix selection, filler composition, and filler silanization affect filler leachability of composites after storage in the simulated saliva and water media. We made 128 batches of experimental composites. Half of these used a bis-GMA/TEGDMA matrix and the other a UEDMA/TEGDMA matrix. Either silica or barium glass filler particles were incorporated into these matrices. Filler silanization was followed by a filler drying at 60 degrees C for 24 h. Half of the silanized particles received an additional heat treatment for 1 h at 110 degrees C in vacuum. One specimen per batch was stored in distilled water and the other in artificial saliva at 37 degrees C. After each 30-day interval for one year, the specimens were transferred to either freshly distilled water or newly mixed artificial saliva. The "old" solutions were analyzed by ICP for determination of the Si, Ba, and Al concentrations. Analysis of variance revealed that storage solution, filler composition, and total time in the storage solution had strong effects on the leachability (p < 0.0001 in all cases). The average monthly leakage of Si for quartz-filled composites was 0.22 +/- 0.20 microgram/mL (distilled water) and 2.80 +/- 1.20 microgram/mL (artificial saliva). For barium-glass-filled composites, the corresponding Si leaching values were 0.73 +/- 0.48 microgram/mL and 5.00 +/- 2.20 microgram/mL. The monthly means of the barium leaching values were 2.00 +/- 1.00 microgram/mL (distilled water) and 3.10 +/- 1.80 microgram/mL (artificial saliva). The large difference between leaching in artificial saliva and in

  16. Investigation of mineral filler effects on the aging process of asphalt mastics

    NASA Astrophysics Data System (ADS)

    Moraes, Raquel

    Aging of asphalt binders is induced by chemical and/or physicochemical changes during production of pavement and throughout its service life. Although binder aging in pavement always occurs while binder is in contact with aggregates and mineral filler, in most laboratory aging studies, and in current specifications, asphalt binders are individually aged without accounting for aggregate induced interactions. Past research has had conflicting findings, attributing both mitigating and/or catalytic effects to the presence of mineral filler in asphalt binder with regards to oxidative aging. Thus, in the present study it was hypothesized that evaluation of asphalt oxidative aging without regard to interactive effect of the presence of mineral filler is inadequate as a specification tool. Effects of mineral fillers on oxidative aging of asphalt is investigated by means of accelerated aging of mastics (asphalt and fillers) in Pressure Aging Vessel (PAV). Testing matrix included aging evaluation of mastics containing different fillers content, mineralogy, and surface area. Results showed that low-temperature behavior of aged mastic can be modified by controlling filler concentration and type. Fillers acts as an agent adsorbing heavy fractions of asphalt binder, therefore reducing stiffness and changing glass-transition temperature. Also, during oxidative aging of asphalt binders and mastics, both diffusion and adsorption mechanisms play a role in the rate of aging of asphaltic material. A method to characterize the behavior of mastics with aging was also developed by monitoring the mastics |G*| aging index (ratio of complex modulus before and after aging). Gel Permeation Chromatography (GPC) testing results supported mentioned findings regarding |G*| changes, as the presence of mineral filler appears to decelerate the rate of production of larger molecular size oxidation products in the binder phase of mastics. Implication of the findings is that change in molecular size

  17. Investigation of Thermostability of a Composite Resistive Material with Nanodimensional Carbon Fillers

    NASA Astrophysics Data System (ADS)

    Malinovskaya, T. D.; Vlasov, V. A.; Volokitin, G. G.; Melentyev, S. V.

    2014-06-01

    Thermostability of resistive materials based on polyurethane used as heat-liberating elements in the design of heating elements of thermoactive formworks is investigated. The application of polyurethane as a binder provides solid contact of polymer molecules with nanodimensional carbon fillers and their uniform distribution in a composite material. The influence of thermal treatment and dispersed fillers on the stability of electrophysical and thermophysical properties of carbon-filled polyurethane coatings is established.

  18. Crospovidone and Microcrystalline Cellulose: A Novel Description of Pharmaceutical Fillers in the Gastrointestinal Tract.

    PubMed

    Shaddy, Sophia M; Arnold, Michael A; Shilo, Konstantin; Frankel, Wendy L; Harzman, Alan E; Stanich, Peter P; Singhi, Aatur D; Yearsley, Martha M; Arnold, Christina A

    2017-04-01

    Crospovidone and microcrystalline cellulose (MCC) are pharmaceutical fillers well known in the pulmonary pathology literature. Fillers are inactive substances incorporated into medications to facilitate drug delivery. By examining 545 consecutive gastrointestinal surgical specimens from 302 patients between September 11, 2015 and October 23, 2015, we identified the fillers in 29 specimens from 26 patients. The control group consisted of an equal number of consecutive site-matched specimens collected during this same time. Pertinent clinicopathologic data were analyzed, and 1 case was subject to special stains. To confirm the histologic diagnosis, a variety of fillers and medications common to the patients were processed. The fillers were found in 9% of all patients, and there were no specific clinicopathologic associations. In the gastrointestinal tract, crospovidone is nonbirefringent and has a coral shape with each segment composed of a pink core and purple coat; MCC is brightly birefringent with matchstick shape and clear color. Identical material was seen in the processed crospovidone and MCC powders, as well as oxycodone-acetaminophen and omeprazole tablets. In summary, crospovidone and MCC are common, biologically inert, and they are most often seen in the small bowel. Their presence outside of the luminal bowel may serve as a surrogate marker for perforation. Awareness of their morphology is important to distinguish fillers from parasites, calcifications, and other medications, particularly those linked to mucosal injury. We report the unique histomorphologic profile of these fillers as a helpful diagnostic aide, and caution that the fillers have slightly divergent features when compared with those described in the lung.

  19. Magnetic and viscoelastic response of elastomers with hard magnetic filler

    NASA Astrophysics Data System (ADS)

    Kramarenko, E. Yu; Chertovich, A. V.; Stepanov, G. V.; Semisalova, A. S.; Makarova, L. A.; Perov, N. S.; Khokhlov, A. R.

    2015-03-01

    Magnetic elastomers (MEs) based on a silicone matrix and magnetically hard NdFeB particles have been synthesized and their magnetic and viscoelastic properties have been studied depending on the size and concentration of magnetic particles and the magnetizing field. It has been shown that magnetic particles can rotate in soft polymer matrix under applied magnetic field, this fact leading to some features in both magnetic and viscoelastic properties. In the maximum magnetic field used magnetization of MEs with smaller particles is larger while the coercivity is smaller due to higher mobility of the particles within the polymer matrix. Viscoelastic behavior is characterized by long relaxation times due to restructuring of the magnetic filler under the influence of an applied mechanical force and magnetic interactions. The storage and loss moduli of magnetically hard elastomers grow significantly with magnetizing field. The magnetic response of the magnetized samples depends on the mutual orientation of the external magnetic field and the internal sample magnetization. Due to the particle rotation within the polymer matrix, the loss factor increases abruptly when the magnetic field is turned on in the opposite direction to the sample magnetization, further decreasing with time. Moduli versus field dependences have minimum at non-zero field and are characterized by a high asymmetry with respect to the field direction.

  20. Characterization of a sustainable sulfur polymer concrete using activated fillers

    DOE PAGES

    Moon, Juhyuk; Kalb, Paul D.; Milian, Laurence; ...

    2016-01-02

    Sulfur polymer concrete (SPC) is a thermoplastic composite concrete consisting of chemically modified sulfur polymer and aggregates. This study focused on the characterization of a new SPC that has been developed as a sustainable construction material. It is made from industrial by-product sulfur that is modified with activated fillers of fly ash, petroleum refinery residual oil, and sand. Unlike conventional sulfur polymer cements made using dicyclopentadiene as a chemical modifier, the use of inexpensive industrial by-products enables the new SPC to cost-effectively produce sustainable, low-carbon, thermoplastic binder that can compete with conventional hydraulic cement concretes. A series of characterization analysesmore » was conducted including thermal analysis, X-ray diffraction, and spatially-resolved Xray absorption spectroscopy to confirm the polymerization of sulfur induced from the presence of the oil. In addition, mechanical testing, internal pore structure analysis, and scanning electron microscope studies evaluate the performance of this new SPC as a sustainable construction material with a reduced environmental impact.« less

  1. Characterization of a sustainable sulfur polymer concrete using activated fillers

    SciTech Connect

    Moon, Juhyuk; Kalb, Paul D.; Milian, Laurence; Northrup, Paul A.

    2016-01-02

    Sulfur polymer concrete (SPC) is a thermoplastic composite concrete consisting of chemically modified sulfur polymer and aggregates. This study focused on the characterization of a new SPC that has been developed as a sustainable construction material. It is made from industrial by-product sulfur that is modified with activated fillers of fly ash, petroleum refinery residual oil, and sand. Unlike conventional sulfur polymer cements made using dicyclopentadiene as a chemical modifier, the use of inexpensive industrial by-products enables the new SPC to cost-effectively produce sustainable, low-carbon, thermoplastic binder that can compete with conventional hydraulic cement concretes. A series of characterization analyses was conducted including thermal analysis, X-ray diffraction, and spatially-resolved Xray absorption spectroscopy to confirm the polymerization of sulfur induced from the presence of the oil. In addition, mechanical testing, internal pore structure analysis, and scanning electron microscope studies evaluate the performance of this new SPC as a sustainable construction material with a reduced environmental impact.

  2. Surface Treated Natural Fibres as Filler in Biocomposites

    NASA Astrophysics Data System (ADS)

    Schwarzova, I.; Stevulova, N.; Singovszka, E.; Terpakova, E.

    2015-11-01

    Biocomposites based on natural fibres as organic filler have been studied for several years because traditional building materials such as concrete are increasingly being replaced by advanced composite materials. Natural fibres are a potential replacement of glass fibres in composite materials. Inherent advantages such as low density, biodegradability and comparable specific mechanical properties make natural fibres an attractive option. However, limitations such as poor thermal stability, moisture absorption and poor compatibility with matrix are challenges that need to be resolved. The primary objective of this research was to study the effect of surface treatment on properties of hemp hurds like a natural lignocellulosic material and composites made thereof. Industrial hemp fibre is the one of the most suitable fibres for use in composite materials because of its good specific properties, as well as it being biologically degradable and CO2 neutral. Improving interfacial bonding between fibres and matrix is an important factor in using hemp fibres as reinforcement in composites. In order to improve interfacial bonding, modifications can be made to the hemp fibres to remove non- cellulosic compounds, separate hemp fibres from their bundles, and modify the fibre surface. This paper contains the comparison of FTIR spectra caused by combination of physical and chemical treatment of hemp material with unmodified sample. Modification of hemp hurds was carried out by NaOH solution and by ultrasonic treatment (deionized water and NaOH solution were used as the cleaning mediums).

  3. Experimental Evaluation of Cement Replacement Fillers on the Performance of Slurry Seal

    NASA Astrophysics Data System (ADS)

    Fakhri, Mansour; Alrezaei, Hossein Ali; Naji Almasi, Soroush

    2016-10-01

    Reducing the level of roads service is a process that starts from the first day of the operation of road and the slope of deterioration curve of road sustainability becomes faster with the passage of time. After building the road, adopting an economic approach in order to maintain the road is very important. Slurry seal as one type of protective asphalts that works by sealing inactive cracks of the road and increasing skid resistance is the most effective types of restoration with environmentally friendly behaviour. Fillers are responsible for adjusting set time in slurry seal. Cement is the most common filler used in slurry seal. Cements having suitable properties as a filler, has a very energy demanding manufacturing process and a notable amount of energy is used for manufacturing cement in the country annually. On the other hand, manufacturing process and application of cement have increased levels of pollutant gases, followed by significant environmental pollution. So in this study other options as a filler such as hydrated lime, stone powder and the slag from iron melting furnace were compared with two common types of cement (Portland and type-v cement) in the mixtures of slurry seal by wet abrasion and cohesion tests. Results indicated that, in both tests, lime and slag fillers had behaviours close to the cement filler.

  4. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    NASA Astrophysics Data System (ADS)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  5. Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler.

    PubMed

    Kim, Jin-Young; Kim, TaeYoung; Suk, Ji Won; Chou, Harry; Jang, Ji-Hoon; Lee, Jong Ho; Kholmanov, Iskandar N; Akinwande, Deji; Ruoff, Rodney S

    2014-08-27

    The electrical conductivity and the specific surface area of conductive fillers in conductor-insulator composite films can drastically improve the dielectric performance of those films through changing their polarization density by interfacial polarization. We have made a polymer composite film with a hybrid conductive filler material made of carbon nanotubes grown onto reduced graphene oxide platelets (rG-O/CNT). We report the effect of the rG-O/CNT hybrid filler on the dielectric performance of the composite film. The composite film had a dielectric constant of 32 with a dielectric loss of 0.051 at 0.062 wt% rG-O/CNT filler and 100 Hz, while the neat polymer film gave a dielectric constant of 15 with a dielectric loss of 0.036. This is attributed to the increased electrical conductivity and specific surface area of the rG-O/CNT hybrid filler, which results in an increase in interfacial polarization density between the hybrid filler and the polymer.

  6. Nanoparticle fillers obtained from wood processing wastes for reinforcing of paper

    NASA Astrophysics Data System (ADS)

    Laka, Marianna; Vikele, Laura; Rozenberga, Linda; Janceva, Sarmite

    2016-05-01

    Paper sheets were produced from bleached kraft pulp, and office and newsprint waste paper. Nanoparticles from black alder bark, grey alder bark and pine bark as well as birch sawdust were obtained for using them as reinforcing fillers in paper. Non-extracted bark and that extracted in biorefinery were used. For producing nanoparticles, the materials were destructed using the thermocatalytic destruction method and then dispersed in water medium in a ball mill. At a sufficient concentration, gel-like dispersions were obtained, which contained nanoparticles with the size ~300 nm. The dispersions were introduced in paper furnish in different amounts. It has been established that all the nanoparticle fillers increase the tensile index and burst index in dry and wet states. The nanoparticle fillers from extracted bark increase the mechanical indices to a higher extent. At 20% filler content, tensile index in a dry state increases in the case of non-extracted grey alder bark, black alder bark and pine bark by 28, 30 and 15%, and in the case of extracted ones - by 44, 40 and 30%, respectively; the burst index increases by 78, 19 and 4%, and 91, 25 and 14%, respectively. The nanoparticle filler from birch sawdust increases the tensile strength in a dry state by 9% and burst index by 20%. The obtained nanoparticle fillers slightly improve also the water resistance of paper.

  7. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  8. The Influence of Chicken Egg Shell as Fillers on Biocomposite Acrylic Resin for Denture Based

    NASA Astrophysics Data System (ADS)

    Lubis, M.; Ginting, M. H. S.; Dalimunthe, N. F.; Hasibuan, D. M. T.; Sastrodihardjo, S.

    2017-03-01

    This research was conducted to discover the influence of the addition of chicken egg shells microparticle as filler on the mechanical properties such as modulus of elasticity, modulus of rapture and particle size analysis on biocomposite acrylic resin for denture based. The raw materials used in this research were acrylic resin, egg shell, cold mold seals, gypsum, Vaseline and wax. The process of making biocomposite acrylic resin for denture based with mix the acrylic resin in ratio 2:1 (w/w). Then added the microparticle filler 0,10,20,30 (%w) to mold and boil in 75°C for 90 minutes and increase the temperature to 90 °C for 30 minutes. Took the sample and let it dried. The results of research showed the increase of modulus elasticity and modulus of rapture. The modulus of elasticity showed a very significant increase by adding fillers 10% of 2.123 GPa, which was only 1.932 GPa without adding the filler of chicken egg shells. For modulus of rapture showed the increase by adding fillers 20% of 48,311MPa, which was only 46,865 GPa without adding the filler of chicken egg shells

  9. Dermal fillers in aesthetics: an overview of adverse events and treatment approaches

    PubMed Central

    Funt, David; Pavicic, Tatjana

    2013-01-01

    Background The ever-expanding range of dermal filler products for aesthetic soft tissue augmentation is of benefit for patients and physicians, but as indications and the number of procedures performed increase, the number of complications will likely also increase. Objective To describe potential adverse events associated with dermal fillers and to provide structured and clear guidance on their treatment and avoidance. Methods Reports of dermal filler complications in the medical literature were reviewed and, based on the publications retrieved and the authors’ extensive experience, recommendations for avoiding and managing complications are provided. Results Different dermal fillers have widely varying properties, associated risks, and injection requirements. All dermal fillers have the potential to cause complications. Most are related to volume and technique, though some are associated with the material itself. The majority of adverse reactions are mild and transient, such as bruising and trauma-related edema. Serious adverse events are rare, and most are avoidable with proper planning and technique. Conclusion For optimum outcomes, aesthetic physicians should have a detailed understanding of facial anatomy; the individual characteristics of available fillers; their indications, contraindications, benefits, and drawbacks; and ways to prevent and avoid potential complications. PMID:24363560

  10. Study on the Functionality of Nano-Precipitated Calcium Carbonate as Filler in Thermoplastics

    NASA Astrophysics Data System (ADS)

    Basilia, Blessie A.; Panganiban, Marian Elaine G.; Collado, Archilles Allen V. C.; Pesigan, Michael Oliver D.; de Yro, Persia Ada

    This research aims to investigate the functionality of nano-precipitated calcium carbonate (NPCC) as filler in thermoplastic resins based on property enhancement. Three types of thermoplastics were used: polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC). The resins were evaluated by determining the effect of different NPCC loading on the chemical structure, thermal and mechanical properties of thermoplastics. Results showed that there was an interfacial bonding with the NPCC surface and the thermoplastics. Change in absorption peak and area were predominant in the PVC filled composite. There was a decreased in crystallinity of the PE and PP with the addition of filler. Tremendous increase on the tensile and impact strength was exhibited by the NPCC filled PVC composites while PE and PP composites maintained a slight increase in their mechanical properties. Nano-sized filler was proven to improve the mechanical properties of thermoplastics compared with micron-sized filler because nano-sized filler has larger interfacial area between the filler and the polymer matrix.

  11. Sensing and actuating capabilities of a shape memory polymer composite integrated with hybrid filler

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Yu, Kai; Liu, Yanju; Leng, Jinsong

    2010-06-01

    In this paper, hybrid fillers, including carbon black (CB) and chopped short carbon fibers (SCF), are integrated into a styrene-based shape memory polymer (SMP) with sensing and actuating capabilities. The hybrid filler is expected to transform insulating SMP into conducting. Static mechanical properties of the SMP composites containing various filler concentrations of hybrid filler reinforcement are studied first, and it is theoretically and experimentally confirmed that the mechanical properties are significantly improved by a factor of filler content of SCF. The excellent electrical properties of this novel type of SMP composite are determined by a four-point-probe method. As a consequence, the sensing properties of SMP composite filled with 5 wt% CB and 2 wt% SCF are characterized by functions of temperature and strain. These two experimental results both aid the use of SMP composites as sensors that respond to changes in temperature or mechanical loads. On the other hand, the actuating capability of SMP composites is also validated and demonstrated. The dynamic mechanical analysis result reveals that the output strength of SMP composites is improved with an increase in filler content of SCF. The actuating capability of SMP composites is subsequently demonstrated in a series of photographs.

  12. Ground-based simulation of the Earth's upper atmosphere oxygen impact on polymer composites with nanosized fillers

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Chernik, Vladimir; Voronina, Ekaterina; Chechenin, Nikolay; Samokhina, Maria S.; Bondarenko, Gennady G.; Gaidar, Anna I.; Vorobyeva, Ekaterina A.; Petrov, Dmitrii V.; Chirskaya, Natalia P.

    The improvement of durability of polymer composites to the space environment impact is a very important task because these materials are considered currently as very promising type of materials for aerospace engineering. By embedding various nanosized fillers into a polymer matrix it is possible to obtain composites with required mechanical, thermal, electrical and optic properties. However, while developing such materials for operation in low Earth orbits (LEO), it is necessary to study thoroughly their durability to the impact of atomic oxygen (AO) of the Earth’s upper atmosphere, because AO is the main factor that causes erosion and damage of spacecraft surface materials in LEO. Ground-based simulation of AO impact on polymer composites was performed on a magnetoplasmadynamic accelerator developed at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University. Polymer composite samples which were prepared as films of 30-50 mum thickness with different amount (3-20 wt%) of various inorganic and organic nanofillers including nanoparticles of metal oxides and carbides as well as polyethoxysiloxanes and carbon nanotubes (CNTs), were exposed to hyperthermal AO flow, and mass losses of samples were estimated. Changes in the structure of composite surface and in material optical properties were studied. The experiments demonstrated that embedding nanosized fillers into a polymer matrix can significantly reduced mass losses, and the good dispersion of fillers improves AO durability in comparison with initial polymers [1]. The computer simulation within the developed 2D Monte-Carlo model demonstrated a good agreement with the experimental data [2]. Special attention was given to the study of AO impact on aligned multiwalled CNTs and CNT-based composites [3]. Some results of computer simulation of hyperthermal oxygen atom interaction with CNT and graphene as well as with polymers are presented to discuss elementary processes which occur in nanostructures

  13. Percutaneous Vertebroplasty Using Fresh Frozen Allogeneic Bone Chips as Filler

    PubMed Central

    Lee, Song; Kim, Dae Geun; Shin, Won Sik

    2014-01-01

    Background Vertebroplasty is not free from cement related complications. If an allograft is used as a filler, most of them can be averted. Methods Forty consecutive cases of osteoporotic vertebral fracture were divided into two groups by self-selection. The study and the control groups underwent vertebroplasty with fresh frozen allogeneic bone chips and bone cement, respectively. Clinical results were assessed at preoperation, postoperative day 1 and months 3, 6, and 12 by 10-grade visual analog scale (VAS), and radiological results were assessed at the same time by vertebral kyphotic angle (VKA) and local kyphotic angle (LKA). The results were compared within and between the groups. Survival function was analyzed. The criteria of an event were clinical or radiological deterioration versus pre-index surgery state. Results VAS was improved in the study group from 8.4 ± 0.8 to 5.2 ± 1.4, 6.4 ± 1.2, 5.5 ± 2.7, and 3.7 ± 1.4 at postoperative day 1 and months 3, 6, and 12, respectively, and in the control group from 8.4 ± 1.2 to 3.2 ± 1.1, 3.2 ± 1.7, 3.2 ± 2.7, and 2.5 ± 1.7, respectively (within group, p < 0.001; between groups, p < 0.001). VKA was improved in the study group from 18.9° ± 8.0° to 15.2° ± 6.1° (p = 0.046) and in the control group from 14.7° ± 5.2° to 10.3° ± 4.7° (p < 0.001) at postoperative day 1. LKA was not improved in the study group but was improved in the control group from 16.8° ± 11.7° to 14.3° ± 9.6° (p = 0.015). Correction angle was 2.7° ± 4.6°, -7.9° ± 5.3°, -7.2° ± 5.2°, and -7.4° ± 6.3° at postoperative day 1 and months 3, 6, and 12, respectively, in the study group and 4.3° ± 3.7°, 0.7° ± 3.6°, 0.7° ± 4.2°, and 0.1° ± 4.4°, respectively, in the control group. Correction loss was significant in both groups (p < 0.001) and more serious in the study group (p < 0.001). The 6-month survival rate was 16.7% in the study group and 64.3% in the control group (p = 0.003; odds ratio, 5

  14. A novel 3D sandwich structure of hybrid graphite nanosheets and silver nanowires as fillers for improved thermal conductivity

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiao; Zhou, Yongcun; Liu, Feng

    2017-01-01

    We explored a novel 3D sandwich structure of fillers in the polymer matrix to enhance thermal conductivity. A variety of fillers in the polymer matrix play a significant role in the physical properties of the composite. Fillers containing particle and line structures are popular, and enhance the thermal and electrical conductivities. Therefore, filler-based matrix network improves conductivity. We propose a sandwich structure consisting of hybrid graphite nanosheets (two dimensions), and silver nanowires (AgNWs) (one dimension), to create a 3D sandwich structure of polyimide matrix with improved thermal conductivity. Surface treatment of graphite and silver nanowires were conducted to reduce the dielectric constant of the composite. We designed the filler of 20 wt% resulting in a high thermal conductivity of 3.21 W m‑1 K‑1 with 15% C@SiO2 and 5% AgNWs@SiO2 filler loading. The novel combination and structure markedly enhanced the thermal conductivity of the composite.

  15. A novel technique for preparing dental CAD/CAM composite resin blocks using the filler press and monomer infiltration method.

    PubMed

    Okada, Koichi; Kameya, Takehiro; Ishino, Hiroshige; Hayakawa, Tohru

    2014-01-01

    The authors have developed a new technique for preparing dental CAD/CAM composite resin blocks (CRBs): the filler press and monomer infiltration (FPMI) method. In this method, surface-treated filler is molded into a green body in which the filler particles are compressed to form an agglomeration. The green body is then infiltrated with a monomer mixture before being polymerized. It is possible to produce CRBs using this method through which densely packed nanofiller is uniformly dispersed. The greater the pressure of the filler molding, the more filler in the CRB, resulting at high pressure in a very dense CRB. A CRB obtained by applying 170 MPa of pressure contained up to 70 wt% of nano-silica filler and had a flexural strength of 200 MPa, as well. It is anticipated that CRBs obtained using the FPMI method will be useful as a dental CAD/CAM material for the fabrication of permanent crown restorations.

  16. Low temperature method for the production of calcium phosphate fillers

    PubMed Central

    Calafiori, Anna Rita; Marotta, Marcello; Nastro, Alfonso; Martino, Guglielmo

    2004-01-01

    Background Calcium phosphate manufactured samples, prepared with hydroxyapatite, are used as either spacers or fillers in orthopedic surgery, but these implants have never been used under conditions of mechanical stress. Similar conditions also apply with cements. Many authors have postulated that cements are a useful substitute material when implanted in vivo. The aim of this research is to develop a low cristalline material similar to bone in porosity and cristallinity. Methods Commercial hydroxyapatite (HAp) and monetite (M) powders are mixed with water and compacted to produce cylindrical samples. The material is processed at a temperature of 37–120 degrees C in saturated steam to obtain samples that are osteoconductive. The samples are studied by X-ray powder diffraction (XRD), Vickers hardness test (HV), scanning electron microscopy (SEM), and porosity evaluation. Results The X-ray diffractions of powders from the samples show patterns typical of HAp and M powders. After thermal treatment, no new crystal phase is formed and no increase of the relative intensity of the peaks is obtained. Vicker hardness data do not show any relationship with treatment temperature. The total porosity decreases by 50–60% according to the specific thermal treatment. Scanning electron microscopy of the surfaces of the samples with either HAp 80%-M 20% (c) or Hap 50%-M 50% (f), show cohesion of the powder grains. Conclusions The dissolution-reprecipitation process is more intesive in manufactured samples (c) and (f), according to Vickers hardness data. The process occurs in a steam saturated environment between 37 degrees and 120 degrees C. (c) (f) manufactured samples show pore dimension distributions useful to cellular repopulation in living tissues. PMID:15035671

  17. Microwave properties of polymer composites containing combinations of micro- and nano-sized magnetic fillers.

    PubMed

    Kolev, Svetoslav; Koutzarova, Tatyana; Yanev, Andrey; Ghelev, Chavdar; Nedkov, Ivan

    2008-02-01

    We investigated the microwave absorbing properties of composite bulk samples with nanostructured and micron-sized fillers. As magnetic fillers we used magnetite powder (Fe3O4 with low magnetocrystalline anisotropy) and strontium hexaferrite (SrFe12O9 with high magnetocrystalline anisotropy). The dielectric matrix consisted of silicone rubber. The average particle size was 30 nm for the magnetite powder and 6 micro/m for the strontium hexaferrite powder. The micron-sized SrFe12O19 powder was prepared using a solid-state reaction. We investigated the influence of the filler concentration and the filler ratio (Fe3O4/SrFe12O19) in the polymer matrix on the microwave absorption in a large frequency range (1 / 18 GHz). The results obtained showed that the highly anisotropic particles become centers of clusterification and the small magnetite particles form magnetic balls with different diameter depending on the concentration. The effect of adding micron-sized SrFe12O19 to the nanosized Fe3O4 filler in composites absorbing structures has to do with the ferromagnetic resonance (FMR) shifting to the higher frequencies due to the changes in the ferrite filler's properties induced by the presence of a magnetic material with high magnetocrystalline anisotropy. The two-component filler possesses new values of the saturation magnetization and of the anisotropy constant, differing from those of both SrFe12O1919 and Fe3O4, which leads to a rise in the effective anisotropy field. The results demonstrate the possibility to vary the composite's absorption characteristics in a controlled manner by way of introducing a second magnetic material.

  18. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater

    PubMed Central

    Yang, Ruihong; ZHU, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-01-01

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na2SO4 additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography–mass spectrometry (GC–MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet–visible spectroscopy (UV–VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency. PMID:27136574

  19. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater.

    PubMed

    Yang, Ruihong; Zhu, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-04-29

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na₂SO₄ additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography-mass spectrometry (GC-MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet-visible spectroscopy (UV-VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency.

  20. Dielectric elastomer actuators of silicone rubber-titanium dioxide composites obtained by dielectrophoretic assembly of filler particles

    NASA Astrophysics Data System (ADS)

    Javadi, S.; Razzaghi-Kashani, M.

    2010-04-01

    Formation of controlled morphology of fillers in polymeric composites may be difficult to achieve by conventional methods such as mechanical shear or chemical methods. Tunable structure of filler and anisotropic properties in composites can be obtained by exploiting dielectrophoretic assembly of fillers in a polymer composite by using electric fields. In this study, different concentrations of Titanium Dioxide (TiO2) particles in silicone rubber matrix were assembled in a chain-like structure by using an alternating electric field. Silicone rubber matrix was vulcanized to transform the liquid to solid and maintain the filler structure in the desired direction. Generation of chain structure of filler was verified by Scanning Electron Microscopy (SEM) and equilibrium swelling. It was shown that dielectric permittivity of the oriented composite is higher whereas its dielectric loss factor is lower in the orientation (thickness) direction than those for the composites with random distribution of filler. This phenomenon was in agreement with results of dynamic-mechanical loss factor for these composites, and can be utilized in more efficient dielectric elastomer actuators. Elastic modulus is higher for the structured samples, but presence of titania filler induced a softening effect at higher strains where the actuators are practically being pre-stretched. A critical concentration of filler was distinguished as the percolation point at which the change in dielectric behavior is amplified. Using a simple blocking-force measurement, potential advantages of structured composites over the ones with randomly-distributed filler was explained for potential dielectric elastomer actuator applications.

  1. Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite.

    PubMed

    Lung, Christie Ying Kei; Sarfraz, Zenab; Habib, Amir; Khan, Abdul Samad; Matinlinna, Jukka Pekka

    2016-02-01

    To evaluate the physical and mechanical properties of an experimental bis-GMA-based resin composite incorporated with non-silanized and silanized nano-hydroxyapatite (nHAP) fillers. Experimental bis-GMA based resin composites samples which were reinforced with nHAP fillers were prepared. Filler particles were surface treated with a silane coupling agent. Five test groups were prepared: 1. Unfilled, 2. Reinforced with 10wt% and 30wt% non-silanized nHAP fillers, and 3. Reinforced with 10wt% and 30wt% silanized nHAP fillers. The samples were subjected to tests in dry condition and in deionized water, aged at 37°C for 30 days. Prepared silanized and non-silanized nHAP were analyzed with Fourier Transform Infrared (FTIR) Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The micro-hardness and water sorption were evaluated. Data were analyzed by one-way ANOVA (p<0.05). The samples were characterized by FTIR Spectroscopy, Thermogravimetric Analysis and Differential Scanning Calorimetry. The surface morphology of sample surfaces was examined by Scanning Electron Microscope (SEM). The results showed that the water sorption for nHAP fillers reinforced resins was significantly lower than unfilled resins. Surface hardness for resins reinforced with silane treated fillers was superior to unfilled and untreated fillers resins. The resin matrix loaded with 30wt% silanized-nHAP fillers would improve the physical and mechanical properties of a bis-GMA based resin.

  2. A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers

    NASA Astrophysics Data System (ADS)

    Seyedin, Shayan; Razal, Joselito M.; Innis, Peter C.; Wallace, Gordon G.

    2016-03-01

    Electrically conductive elastomeric fibres prepared using a wet-spinning process are promising materials for intelligent textiles, in particular as a strain sensing component of the fabric. However, these fibres, when reinforced with conducting fillers, typically result in a compromise between mechanical and electrical properties and, ultimately, in the strain sensing functionality. Here we investigate the wet-spinning of polyurethane (PU) fibres with a range of conducting fillers such as carbon black (CB), single-walled carbon nanotubes (SWCNTs), and chemically converted graphene. We show that the electrical and mechanical properties of the composite fibres were strongly dependent on the aspect ratio of the filler and the interaction between the filler and the elastomer. The high aspect ratio SWCNT filler resulted in fibres with the highest electrical properties and reinforcement, while the fibres produced from the low aspect ratio CB had the highest stretchability. Furthermore, PU/SWCNT fibres presented the largest sensing range (up to 60% applied strain) and the most consistent and stable cyclic sensing behaviour. This work provides an understanding of the important factors that influence the production of conductive elastomer fibres by wet-spinning, which can be woven or knitted into textiles for the development of wearable strain sensors.

  3. Improving the Erosion Resistance of Electrical Insulating Materials Using Nano Fillers

    NASA Astrophysics Data System (ADS)

    El-Hag, A.; Ul-Haq, S.; Jayaram, S.; Cherney, E.

    2007-08-01

    The paper presents the experimental results obtained to test the effect of nano-fillers on the aging performance of silicone rubber for outdoor applications and enamelled wire for motor insulation. The erosion resistance of silicone rubber (SIR) filled with 12 nm size fumed silica is compared to those filled with 5 μm size silica filler using the ASTM 2303 Inclined Plane Tracking and Erosion Test. The erosion resistance of the SIR materials increased with increasing percentage of the fillers, and it was observed that 10% by weight of nano-filled SIR gives a performance that is similar to that obtained with 50% by weight of micro-filled SIR. The paper discusses the possible reasons for the improvement in the erosion resistance of nano-filled silicone composites using different material analysis techniques like Thermo Gravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM). Also, the effect of using different nano fillers like alumina, fumed silica and titanium oxide on the erosion resistance of enamel wire insulating material subjected to different electrical stresses will be addresses. Surface roughness is used to evaluate the effect of different nano-fillers on the erosion resistance of enamel wire insulation.

  4. Effects of pulverized coal fly-ash addition as a wet-end filler in papermaking

    SciTech Connect

    Sinha, A.S.K.

    2008-09-15

    This experimental study is based on the innovative idea of using pulverized coal fly ash as a wet-end filler in papermaking. This is the first evaluation of the possible use of fly ash in the paper industry. Coal-based thermal power plants throughout the world are generating fly ash as a solid waste product. The constituents of fly ash can be used effectively in papermaking. Fly ash has a wide variation in particle size, which ranges from a few micrometers to one hundred micrometers. Fly ash acts as an inert material in acidic, neutral, and alkaline papermaking processes. Its physical properties such as bulk density (800-980 kg/m{sup 3}), porosity (45%-57%), and surface area (0.138-2.3076 m{sup 2}/g) make it suitable for use as a paper filler. Fly ash obtained from thermal power plants using pulverized coal was fractionated by a vibratory-sieve stack. The fine fraction with a particle size below 38 micrometers was used to study its effect on the important mechanical-strength and optical properties of paper. The effects of fly-ash addition on these properties were compared with those of kaolin clay. Paper opacity was found to be much higher with fly ash as a filler, whereas brightness decreased as the filler percentage increased Mechanical strength properties of the paper samples with fly ash as filler were superior to those with kaolin clay.

  5. Blindness caused by cosmetic filler injection: a review of cause and therapy.

    PubMed

    Carruthers, Jean D A; Fagien, Steve; Rohrich, Rod J; Weinkle, Susan; Carruthers, Alastair

    2014-12-01

    Vascular occlusion causing blindness is a rare yet greatly feared complication of the use of facial aesthetic fillers. The authors performed a review of the aesthetic literature to ascertain the reported cases of blindness and the literature reporting variations in the vascular anatomy of the human face. The authors suggest a small but potentially helpful addition to the accepted management of the acute case. Cases of blindness, mostly irreversible, from aesthetic filler injections have been reported from Asia, Europe, and North America. Autologous fat appears to be the most frequent filler causing blindness. Some cases of partial visual recovery have been reported with hyaluronic acid and calcium hydroxylapatite fillers. The sudden profusion of new medical and nonmedical aesthetic filler injectors raises a new cause for alarm about patient safety. The published reports in the medical literature are made by experienced aesthetic surgeons and thus the actual incidence may be even higher. Also, newer injectors may not be aware of the variations in the pattern of facial vascular arborization. The authors present a summary of the relevant literature to date and a suggested helpful addition to the protocols for urgent management.

  6. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid)

    PubMed Central

    Liu, Xingxun; Wang, Tongxin; Chow, Laurence C.; Yang, Mingshu; Mitchell, James W.

    2015-01-01

    Addition of filler to polylactic acid (PLA) may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA) on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline) have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC), scanning electron microscope (SEM), instron tensile tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA. PMID:25717339

  7. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    ERIC Educational Resources Information Center

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  8. Intermediate temperature joining of dissimilar metals

    SciTech Connect

    Hosking, F.M.; Stephens, J.J.; Rejent, J.A.

    1999-04-01

    Duplex stainless steel and silver-nickel-silver laminate were jointed to copper with a gold-germanium filler metal. Test joints were processed at, or below, 450 C (842 F) to assure meeting minimum base metal yield strength requirements. Creep and tensile properties of the bulk filler metal candidates, including a gold-indium alloy, were measured. A constitutive model, based on the Garofalo sinh equation, was developed from the creep data for use in predicting residual stresses in actual joints. Wetting behavior, interfacial reactions and joint microstructures were investigated, with samples processed in a vacuum between 400 to 550 C. Prototype joints were tested in shear. The Au-12 Ge filler metal offered the best alternative to the higher melting braze alloys. The alloy exhibited excellent wetting and creep behavior, with low contact angles, generally less than 20 deg, and good creep relaxation under typical loading conditions. As-fabricated shear test specimens yielded average joint strengths of 160 MPa (23 ksi).

  9. Metal-Filled Adhesives Amenable To X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Hermansen, Ralph D.; Sutherland, Thomas H.; Predmore, Roamer

    1994-01-01

    Adhesive joints between metal parts made amenable to nondestructive radiographic inspection by incorporating radiopaque fillers that increase x-ray contrasts of joints. Adhesives can be epoxies, urethanes, acrylics, phenolics, or silicones, with appropriate curing agents and with such modifiers as polysulfides, polyamides, or butadiene rubbers.

  10. Polyurethane foam with multi walled carbon nanotubes/magnesium hybrid filler

    NASA Astrophysics Data System (ADS)

    Adnan, Sinar Arzuria; Zainuddin, Firuz; Zaidi, Nur Hidayah Ahmad; Akil, Hazizan Md.; Ahmad, Sahrim

    2016-07-01

    The purpose of this paper is to investigate the effect of multiwalled carbon nanotubes (MWCNTs)/magnesium (Mg) hybrid filler in polyurethane (PU) foams with different weight percentages (0.5 wt.% to 3.0 wt.%). The PU/MWCNTs/Mg foam composites were formed by reaction of based palm oil polyol (POP) with methylene diphenyl diisocyanate (MDI) with ratio 1:1.1 by weight. The foam properties were evaluated in density, morphology and compressive strength. The addition of 2.5 wt.% hybrid filler showed the higher density in 59.72 kg/m3 and thus contribute to the highest compressive strength at 1.76 MPa. The morphology show cell in closed structure and addition hybrid filler showed uneven structure.

  11. Influence of carbon fillers nature on the structural and morphological properties of polyurethane-based composites

    NASA Astrophysics Data System (ADS)

    Melentyev, S. V.; Malinovskaya, T. D.; Pavlov, S. V.

    2016-01-01

    The present paper is devoted to studying structural and morphological properties of the resistive composite materials based on the polyurethane binder. The paper shows the influence of nature, size, shape, concentration of conductive carbon fillers (channel black K-163, graphite element GE-3, colloidal-graphite preparation C-1) and the method of their introduction into the binder to form the electrical conductivity of composites. Experimentally it was found out that a homogeneous composite structure reaches dispersive mixing filler and binder within 120 min. The analysis of the morphological pattern surfaces and chipping resistance materials has demonstrated that composites with colloidal-graphite preparation C-1 are more unimodal with the same concentrations of the investigated fillers.

  12. Two Cases of Adverse Reactions of Hyaluronic Acid–based Filler Injections

    PubMed Central

    Fan, Xing; Dong, Ming; Li, Tong; Ma, Qiaoxin

    2016-01-01

    Hyaluronic acid (HA) is one of the natural components of the human body with high biocompatibility, biodegradability, and nonimmunogenicity, which makes it the ideal biomedical filling agent currently available. However, for many medical practitioners, HA filler injections remain a relatively new item to carry out. Learning while practicing, it is inevitable to encounter some difficulties and adverse reactions in its application. Here we report two cases of adverse reactions to HA-based filler injections, including anaphylactic reaction on the face and vascular thrombosis after augmentation rhinoplasty with HA filler. In this report, we highlight the management and prevention of the adverse reactions, especially in case 2, because vascular thrombosis is one of the severe complications and injectors should know how to avoid it and how to deal with it, thereby increasing the safety of HA-based procedures. PMID:28293495

  13. Aminoalcohol functionalized zirconium phosphate as versatile filler for starch-based composite membranes.

    PubMed

    Pica, Monica; Donnadio, Anna; Bianchi, Valentina; Fop, Sacha; Casciola, Mario

    2013-08-14

    Microcrystalline zirconium phosphate was exfoliated by treatment with aqueous solutions of α,ω-alkylaminoalcohols and employed for the fabrication of potato starch composite membranes. Glycerol-based and glycerol-free composite membranes, containing 5 wt% of filler, were prepared from gelatinized starch and characterized for their physico-chemical properties. Despite of a partial filler reaggregation, as revealed by XRD and SEM analysis, all the composites exhibited a significant increase in the Young's modulus with respect to the glycerol-starch membrane, up to 80% and 190% for the glycerol-based and the glycerol-free composites, respectively. For both kinds of membranes the filler delays to a large extent the starch decomposition above about 300°C. A significant reduction in the water uptake of the composites was also observed with respect to the neat glycerol-based membrane, up to about 70% for the glycerol-free composites.

  14. Magnetorheological and deformation properties of magnetically controlled elastomers with hard magnetic filler

    NASA Astrophysics Data System (ADS)

    Stepanov, G. V.; Chertovich, A. V.; Kramarenko, E. Yu.

    2012-10-01

    Viscoelastic and deformational behavior of soft magnetic elastomers with hard magnetic fillers under the influence of a magnetic field is studied by different experimental techniques. The magnetic elastomers used in this work were synthesized on the basis of silicone rubber filled with FeNdB particles and were magnetized in a field of 3 and 15 kOe. We have shown that due to high residual magnetization the materials demonstrate well pronounced non-elastic behavior already in the absence of any external magnetic field. In particular, in contrast to magnetic elastomers based on soft magnetic fillers their elastic modulus is strain-dependent. Under the influence of external magnetic field the storage and loss moduli of magnetic elastomers with hard magnetic filler can both increase and decrease tremendously.

  15. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers

    NASA Astrophysics Data System (ADS)

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-01

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  16. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.

    PubMed

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-20

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  17. A comparative study on industrial waste fillers affecting mechanical properties of polymer-matrix composites

    NASA Astrophysics Data System (ADS)

    Erkliğ, Ahmet; Alsaadi, Mohamad; Bulut, Mehmet

    2016-10-01

    This paper investigates the mechanical properties of the various inorganic filler-filled polymer composites. Sewage sludge ash (SSA), fly ash (FA) and silicon carbide (SiC) micro-particles were used as filler in the polyester resin. Composite samples were prepared with various filler content of 5, 10, 15 and 20 wt%. The results indicated that the tensile and flexural strength increased at the particle content of 5 wt% and then followed a decreasing trend with further particle inclusion. The tensile and flexural modulus values of the particulate polyester composites were significantly enhanced compared with the unfilled polyester composite. SEM micrograph results showed good indication for dispersion of FA, SSA and SiC particles within the polymer matrix.

  18. Waste-wood-derived fillers for plastics. Forest Service general technical report

    SciTech Connect

    English, B.; Clemons, C.M.; Stark, N.; Schneider, J.P.

    1996-05-01

    Filled thermosplastic composites are stiffer, stronger, and more dimensionally stable than their unfilled counterparts. Such thermoplastics are usually provided to the end-user as a precompounded, pelletized feedstock. Typical reinforcing fillers are inorganic materials like talc or fiberglass, but materials derived from waste wood, such as wood flour and recycled paper fiber, are also effective as fillers. The goal of this project was to generate commercial interest in using waste-wood-paper-derived fillers (WPFs) to reinforce thermoplastics. The research strategy was twofold: developmental research and outreach. Specific objectives were (1) to improve wastepaper fiber preparation, feeding, and compounding methods, and optimize composite performance, and (2) to communicate to end-product manufacturers the advantages of WPF thermoplastics.

  19. Hierarchically-structured silver nanoflowers for highly conductive metallic inks with dramatically reduced filler concentration

    NASA Astrophysics Data System (ADS)

    Muhammed Ajmal, C.; K. P., Faseela; Singh, Swati; Baik, Seunghyun

    2016-10-01

    Silver has long been employed as an electrically conductive component, and morphology-dependent properties have been actively investigated. Here we present a novel scalable synthesis method of flower-shaped silver nanoparticles (silver nanoflowers, Ag NFs). The preferential affinity of citrate molecules on (111) surface of silver enabled spontaneous anisotropic growth of Ag NFs (bud size: 250~580 nm, single crystalline petal thickness: 9~22 nm) with high reproducibility and a high yield of >99.5%. The unique hierarchical structure resulted in coalescence of petals over 80~120 °C which was practically employed in conductive inks to construct percolation pathways among Ag NFs. The ink with only 3 wt% of Ag NFs provided two orders of magnitude greater conductivity (1.008 × 105 Scm‑1), at a low curing temperature of 120 °C, compared with the silver nanoparticle ink with a much higher silver concentration (50 wt%). This extraordinary property may provide an excellent opportunity for Ag NFs for practical applications in printable and flexible electronics.

  20. Phase Evolution in the Pd-Ag-CuO Air Braze Filler Metal Alloy System

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2006-08-01

    Palladium was added as a ternary component to a series of copper oxide-silver alloys in an effort to increase the use temperature of these materials for potential ceramic air brazing applications. Phase equilibria in the ternary Pd-Ag-CuO system were investigated via differential scanning calorimetry (DSC) and a series of quenching experiments. Presented here are the latest findings on this system and a construction of the corresponding ternary phase diagram for low-to-moderate additions of palladium. The analysis included samples with higher palladium additions than were studied in the past, as well as an analysis of the composition-temperature trends in the Ag-CuO miscibility gap with palladium addition. It was found that the addition of palladium increases the solidus and liquidus and caused three phase zones to appear as expected by the phase rule. Furthermore, the palladium additions cause the miscibility gap boundary extending from the former binary eutectic to shift to lower silver-to-copper ratios.

  1. Hierarchically-structured silver nanoflowers for highly conductive metallic inks with dramatically reduced filler concentration.

    PubMed

    C, Muhammed Ajmal; K P, Faseela; Singh, Swati; Baik, Seunghyun

    2016-10-07

    Silver has long been employed as an electrically conductive component, and morphology-dependent properties have been actively investigated. Here we present a novel scalable synthesis method of flower-shaped silver nanoparticles (silver nanoflowers, Ag NFs). The preferential affinity of citrate molecules on (111) surface of silver enabled spontaneous anisotropic growth of Ag NFs (bud size: 250~580 nm, single crystalline petal thickness: 9~22 nm) with high reproducibility and a high yield of >99.5%. The unique hierarchical structure resulted in coalescence of petals over 80~120 °C which was practically employed in conductive inks to construct percolation pathways among Ag NFs. The ink with only 3 wt% of Ag NFs provided two orders of magnitude greater conductivity (1.008 × 10(5) Scm(-1)), at a low curing temperature of 120 °C, compared with the silver nanoparticle ink with a much higher silver concentration (50 wt%). This extraordinary property may provide an excellent opportunity for Ag NFs for practical applications in printable and flexible electronics.

  2. Hierarchically-structured silver nanoflowers for highly conductive metallic inks with dramatically reduced filler concentration

    PubMed Central

    C., Muhammed Ajmal; K. P., Faseela; Singh, Swati; Baik, Seunghyun

    2016-01-01

    Silver has long been employed as an electrically conductive component, and morphology-dependent properties have been actively investigated. Here we present a novel scalable synthesis method of flower-shaped silver nanoparticles (silver nanoflowers, Ag NFs). The preferential affinity of citrate molecules on (111) surface of silver enabled spontaneous anisotropic growth of Ag NFs (bud size: 250~580 nm, single crystalline petal thickness: 9~22 nm) with high reproducibility and a high yield of >99.5%. The unique hierarchical structure resulted in coalescence of petals over 80~120 °C which was practically employed in conductive inks to construct percolation pathways among Ag NFs. The ink with only 3 wt% of Ag NFs provided two orders of magnitude greater conductivity (1.008 × 105 Scm−1), at a low curing temperature of 120 °C, compared with the silver nanoparticle ink with a much higher silver concentration (50 wt%). This extraordinary property may provide an excellent opportunity for Ag NFs for practical applications in printable and flexible electronics. PMID:27713510

  3. Infrared Brazing Fe3Al Using Ag-Based Filler Metals

    NASA Astrophysics Data System (ADS)

    Shiue, Ren-Kae; Li, Yao; Wu, Shyi-Kaan; Wu, Ling-Mei

    2010-11-01

    The microstructural evolution and bonding shear strength of infrared brazed Fe3Al using Ag and BAg-8 (72Ag-28Cu in wt pct) braze alloys have been studied. The Ag-rich phase alloyed with Al dominates the entire Ag brazed joints, and the shear strength is independent of the brazing time. The BAg-8 brazed joint contains Ag-Cu eutectic for all brazing conditions, and its shear strength increases slightly with increasing brazing time. The highest shear strength of 181 MPa is acquired from the joint infrared brazed at 1073 K (800 °C) for 600 seconds. A thin layer of Fe3Al is identified at the interface between the brazed zone and the substrate for both braze alloys. An Al depletion zone in the Fe3Al substrate next to the interfacial Fe3Al is identified as the α-Fe phase. The dissolution of Al from the Fe3Al substrate into the molten braze causes the formation of α-Fe in the Fe3Al substrate.

  4. Optimization of Superaustenitic Stainless Steel Filler Metals for Welding Advanced Double Hull Combatant Ships

    DTIC Science & Technology

    2005-02-16

    of vertical isopleths was constructed of the Fe-Ni- Cr -Mo system using the CALPHAD software Thermo-Calc 8 in conjunction with the Iron Alloy Database 9...Element (wt/ o ) 25.4-mm-thick plate 15.9-mm-thick plate C 0.02 0.02 Mn 0.51 0.38 P 0.016 0.016 S 0.001 0.001 Si 0.46 0.50 Cr 20.54 20.69 Ni 24.31 24.06 Mo...red). 45 30% Niobium 20% 0 0 / o ’ 10% -- J--- 0% 10% 20% 30% Cr concentration, wt% Figure 26. Phase stability diagram of Fe-Ni- Cr -6Mo compositions

  5. Welding filler metal and procedure development for EPRI`s NOREM hardfacing alloy

    SciTech Connect

    Phillips, M.K.; Findlan, S.J.

    1995-12-31

    Iron-based wear-resistant alloys, designated NOREM, have been developed by the Electric Power Research Institute (EPRI) to address radiation exposure concerns to maintenance personnel in nuclear power plants. The often used cobalt-base alloys have been shown to be a major contributor to radiation field buildup as a result of cobalt wear particles passing through the reactor vessel and becoming ted, These ted particles are then transported throughout the primary nuclear system. This paper summarizes the results of the EPRI sponsored project which focused on the development of consumables and welding parameters for in-situ application. The development of hardfacing rod and wire product forms which yield multi-layer, crack-free deposits on both carbon and stainless steel substrates without the need for preheat, presented some unique challenges. This paper discusses the effect of various alloying and impurity elements on weldability. Results of galling wear, corrosion resistance, mechanical testing, as compared with the more traditional materials, will also be reported. Finally, material specifications and welding parameters will be provided, along with an overview of current nuclear utility applications.

  6. Effects of PMMA and Cross-Linked Dextran Filler for Soft Tissue Augmentation in Rats

    PubMed Central

    Huh, Jung-Bo; Kim, Joo-Hyun; Kim, Soyun; Lee, So-Hyoun; Shim, Kyung Mi; Kim, Se Eun; Kang, Seong Soo; Jeong, Chang-Mo

    2015-01-01

    This study was conducted for evaluation of the ability to maintain efficacy and biocompatibility of cross-linked dextran in hydroxypropyl methylcellulose (DiHM) and cross-linked dextran mixed with PMMA in hydroxypropyl methylcellulose (PDiHM), compared with hyaluronic acid (HA) filler. Saline and HA solution was administered in the negative and positive control groups, and DiHM and PDiHM were administered in the test groups (n = 10 in each group). The site of cranial subcutaneous injection was the mid-point of the interpupillary line, and the site of intraoral submucosal injection was the ridge crest 2 mm below the cervical line of the mandibular left incisor. Before and immediately after filler injection, intraoral photos and lateral cephalometric radiographs were taken for analysis and comparison of the effect of the filler on the injection sites. The filler injected areas were converted into sequential size changes (%) of the baseline. Histomorphologic examination was performed after 12 weeks. The smallest value in the filler injected area was observed during the experimental period in the normal saline group (p < 0.001), which was almost absorbed at 4 weeks (7.19% ± 12.72%). The HA group exhibited a steady decrease in sequential size and showed a lower value than the DiHM and PDiHM groups (saline < HA < DHiM, PDHiM, p < 0.001). DiHM and PDiHM tended to increase for the first 4 weeks and later decreased until 12 weeks. In this study on DiHM and PDiHM, there was no histological abnormality in cranial skin and oral mucosa. DiHM and PDiHM filler materials with injection system provide an excellent alternative surgical method for use in oral and craniofacial fields. PMID:26633376

  7. The evolution of interface microstructure in a ZrO[sub 2]/Ag-Cu-Al-Ti system

    SciTech Connect

    Lee, Youngmin; Yu, Jin )

    1993-08-01

    Among ceramic/metal (C/M) joining technologies, the active filler metal method has been studied extensively due to the simple brazing process and excellent joint strength. Active metal elements, typically Ti, are intentionally added to braze alloys to enhance the formation of reaction products between the ceramic and the braze metal at the C/M interface. In the brazing of Al[sub 2]O[sub 3] with the Ag-Cu-Ti filler metal, reaction products such as [gamma]-TiO, Cu[sub 2](Ti, Al)[sub 4]O, Ti[sub 3](Cu[sub 0.76]Al[sub 0.18]Sn[sub 0.06])[sub 3]O were found, while products such as Ti[sub 5]Si[sub 3] and TiN formed in the brazing of Si[sub 3]N[sub 4]. The presence of reaction layers at the C/M interface influences the interface strength in a complex way. In Cu/Al[sub 2]O[sub 3], Co/Al[sub 2]O[sub 3], Ni/Al[sub 2]O[sub 3], and Cu/diamond systems, maxima of joint strength were observed at some intermediate Ti addition, while the flexural strength decreased substantially with the thickening of the TiO layer in a ZrO[sub 2]/Ag-Cu-Sn-Ti system. Thus, composition of the braze alloy (particularly, the content of the active metal), process conditions such as brazing temperature and time, microstructure and mechanical properties of reaction products at the C/M interfaces, interfacial chemistry, and residual stress are primary factors to be studied in order to understand the strengths of the C/M interfaces systematically. In the present and the following papers, evolutions of interfacial microstructures at various brazing conditions, and corresponding interface strengths are reported, respectively, for a ZrO[sub 2]/Ag-Cu-Al-Ti system.

  8. Extraction and identification of fillers and pigments from pyrolyzed rubber and tire samples

    SciTech Connect

    Sadhukhan, P.; Zimmerman, J.B.

    1996-12-31

    Rubber stocks, specially tires, are composed of natural rubber and synthetic polymers and also of several compounding ingredients, such as carbon black, silica, zinc oxide etc. These are generally mixed and vulcanized with additional curing agents, mainly organic in nature, to achieve certain {open_quotes}designing properties{close_quotes} including wear, traction, rolling resistance and handling of tires. Considerable importance is, therefore, attached both by the manufacturers and their competitors to be able to extract, identify and characterize various types of fillers and pigments. Several analytical procedures have been in use to extract, preferentially, these fillers and pigments and subsequently identify and characterize them under a transmission electron microscope.

  9. Buffing dust as a filler of carboxylated butadiene-acrylonitrile rubber and butadiene-acrylonitrile rubber.

    PubMed

    Chronska, K; Przepiorkowska, A

    2008-03-01

    Buffing dust from chrome tanned leather is one of the difficult tannery wastes to manage. It is also hazardous to both human health and the environment. The scientific literature rarely reports studies on dust management, especially on its utilization as a filler for elastomers. In this connection we have made an attempt to use this leather waste as a filler for rubbers such as XNBR and NBR. The addition of the buffing dust to rubber mixes brought improvement in mechanical properties, and increase in resistance to thermal ageing as well as in electric conductivity and crosslink density of vulcalizates.

  10. Enhanced mechanical and thermal properties of CNT/HDPE nanocomposite using MMT as secondary filler

    NASA Astrophysics Data System (ADS)

    Ali Mohsin, M. E.; Arsad, Agus; Fouad, H.; Jawaid, M.; Alothman, Othman Y.

    2014-05-01

    This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and XRD properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increased values for the tensile and flexural strength, as compared to the pure HDPE matrix. The thermal analysis result showed improved thermal stability of the formulated nanocomposites.

  11. Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang; Shiue, Ren-Kae

    2012-07-01

    For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.

  12. Development of brazing process for W-EUROFER joints using Cu-based fillers

    NASA Astrophysics Data System (ADS)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2016-02-01

    A successful joint between W and EUROFER using high temperature brazing technique has been achieved for structural application in future fusion power plants. Cu-based powder alloy mixed with a polymeric binder has been used as filler. Microstructural analysis of the joints revealed that the joint consisted mainly of primary phases and acicular structures in a Cu matrix. Interaction between EUROFER and filler took place at the interface giving rise to several Cu-Ti-Fe rich layers. A loss of hardness at the EUROFER substrate close to the joint due to a diffusion phenomenon during brazing cycle was measured; however, the joints had an adequate shear strength value.

  13. The effect of fullerene fillers on the mechanical properties of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Zuev, V. V.; Kostromin, S. V.; Shlykov, A. V.

    2010-07-01

    The effect of fullerene and carbon fillers on the mechanical properties of polymer nanocomposites based on thermoreactive (epoxy resin) and thermoplastic (polyamide-12) matrices was investigated. It was found that the introduction of these fillers did not affect the properties of the thermoreactive blends, but Young's modulus and the tensile strength of the thermoplastic ones increased by about 30-40% upon addition of 0.02-0.08 wt.% fullerene materials. The best results were obtained for a mixture of C 60/ C 70.

  14. Depressed scar after filler injection successfully treated with pneumatic needleless injector and radiofrequency device.

    PubMed

    Seok, Joon; Choi, Sun Young; Park, Kui Young; Jang, Ji Hye; Bae, Joon Ho; Kim, Beom Joon; Kim, Myeung Nam; Hong, Chang Kwon

    2016-01-01

    Fillers are known to be associated with a number of side effects, one of the most severe being skin necrosis. The most vulnerable areas are those that are supplied by a single arterial branch; for example, the glabellar and nasolabial folds are susceptible. In this study, we report good cosmetic outcomes were produced by utilizing the pneumatic needleless injector and radiofrequency device to treat depressed scars that occurred after necrosis following filler injection. Initially, applying light-emitting diode treatment and following through with the two devices appears to have synergistic effects for scar remodeling when dealing with treatment of depressed scars with irregular borders.

  15. Biomechanical characteristics of polymeric UHMWPE composites with hybrid matrix and dispersed fillers

    NASA Astrophysics Data System (ADS)

    Panin, Sergey; Kornienko, Lyudmila; Shilko, Sergey; Thuc, Nguyen Xuan; Korchagin, Mikhail; Chaikina, Marina

    2015-11-01

    In order to develop artificial joint implants some biomechanical properties of composites with UHMWPE and hybrid (polymer-polymeric) "UHMWPE+PTFE" matrix with dispersed fillers were studied. A comparative analysis of the effectiveness of adding hydroxyapatite micron- and nanopowders as a biocompatible filler was carried out. It was shown that under dry sliding friction the wear rate of nanocomposites with the hybrid matrix is lower as compared with composites with the non-hybrid one. Mechanical activation of components further enhances the durability of nano- and microcomposites to almost double it without any significant reduction in the strength characteristics.

  16. Thermal Properties of Natural Rubber Composites with Organic and Inorganic Fillers

    NASA Astrophysics Data System (ADS)

    Najidha, S.; Predeep, P.; Saxena, N. S.

    2008-04-01

    The thermal transport properties of Natural Rubber/Polyaniline and Natural Rubber/Polyaniline/Carbon black composites have been investigated by Transient Plane Source (TPS) Technique at room temperature. The samples of different weight percentage (typically 20,30,40,50 and 60%) of fillers have been taken. The composites were prepared by dry mill mixing in a roll-mill and vulcanized in a hot press. It has been found that the effective thermal conductivity and effective thermal diffusivity of the both the composites increase as the fraction of filler increases.

  17. Fillers and potting compounds. Progress report, October 1971--December 1971

    SciTech Connect

    Lichte, H.W.

    1998-12-31

    Epoxy/metal oxide formulations were studied to establish techniques to encapsulate various types of velocity gages and simulators for Manganin gages, all of which are to be used in shock hydrodynamics studies by others; and to produce large mock HE castings. Future efforts to characterize the raw materials are recommended.

  18. Effects of copper filler sizes on the dielectric properties and the energy harvesting capability of nonpercolated polyurethane composites

    NASA Astrophysics Data System (ADS)

    Putson, C.; Lebrun, L.; Guyomar, D.; Muensit, N.; Cottinet, P.-J.; Seveyrat, L.; Guiffard, B.

    2011-01-01

    Nonpercolated composites based on polyurethane (PU) filled with low concentrations copper (Cu) powders of varying sizes were studied as electrostrictive materials for mechanical energy harvesting. The dispersion of the fillers within the polymeric matrix was investigated by scanning electron microscopy, and results showed a relatively homogeneous dispersion for the microsized fillers and the existence of agglomerates for their nanosized counterparts. Differential scanning calorimetry measurements displayed that there occurred no interaction between the polymeric matrix and the microsized fillers whereas the nanosized fillers slightly enhanced the glass transition of the soft segments of PU and significantly affected the recrystallization temperature. The dependence of the dielectric properties of the composites as a function of the filler volume fraction and filler size was investigated over a broad range of frequencies, showing an increase in the permittivity when fillers were used. This increase was more pronounced for the composites containing nanosized fillers. The measurement of the harvested current and of the harvested power also demonstrated an enhancement of the energy harvesting capability when nanofillers were employed. From the experimental data, it appeared that the electrostrictive coefficient Q was not proportional to the inverse ratio of the permittivity and the Young modulus for the studied composites. Finally, analytical modeling of the harvested current and of the harvested energy offered an accurate description of the experimental data.

  19. "Uh," "Um," and Autism: Filler Disfluencies as Pragmatic Markers in Adolescents with Optimal Outcomes from Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Irvine, Christina A.; Eigsti, Inge-Marie; Fein, Deborah A.

    2016-01-01

    Filler disfluencies--"uh" and "um"--are thought to serve distinct discourse functions. We examined fillers in spontaneous speech by youth with autism spectrum disorder (ASD), who struggle with pragmatic language, and by youth with ASD who have achieved an "optimal outcome" (OO), as well as in peers with typical…

  20. Rheological properties of styrene-butadiene rubber filled with electron beam modified surface treated dual phase fillers

    NASA Astrophysics Data System (ADS)

    Shanmugharaj, A. M.; Bhowmick, Anil K.

    2004-01-01

    The rheological properties of styrene-butadiene rubber (SBR) loaded with dual phase filler were measured using Monsanto Processability Tester (MPT) at three different temperatures (100°C, 110°C and 130°C) and four different shear rates (61.3, 306.3, 613, and 1004.5 s -1). The effect of electron beam modification of dual phase filler in absence and presence of trimethylol propane triacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) on melt flow properties of SBR was also studied. The viscosity of all the systems decreases with shear rate indicating their pseudoplastic or shear thinning nature. The higher shear viscosity for the SBR loaded with the electron beam modified filler is explained in terms of variation in structure of the filler upon electron beam irradiation. Die swell of the modified filler loaded SBR is slightly higher than that of the unmodified filler loaded rubber, which is explained by calculating normal stress difference for the systems. Activation energy of the modified filler loaded SBR systems is also slightly higher than that of the control filler loaded SBR system.

  1. Discontinuous Development in the Acquisition of Filler-Gap Dependencies: Evidence from 15- and 20-Month-Olds

    ERIC Educational Resources Information Center

    Gagliardi, Annie; Mease, Tara M.; Lidz, Jeffrey

    2016-01-01

    This article investigates infant comprehension of filler-gap dependencies. Three experiments probe 15- and 20-month-olds' comprehension of two filler-gap dependencies: "wh"-questions and relative clauses. Experiment 1 shows that both age groups appear to comprehend "wh"-questions. Experiment 2 shows that only the younger…

  2. Effect of strain rate on mechanical properties of melt-processed soy flour composite filler and styrene-butadiene blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dispersion of soy flour with styrene-butadiene rubber latex, dried, and cryogenically ground into powders. Upon crosslinking, th...

  3. Evaluating corn starch and corn stover biochar as renewable filler in carboxylated styrene-butadiene rubber composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn starch, corn flour, and corn stover biochar were evaluated as potential renewable substitutes for carbon black as filler in rubber composites using carboxylated styrene-butadiene as the rubber matrix. Previous work has shown that starch-based fillers have very good reinforcement properties at t...

  4. Long-term performance of thermoplastic composite material with cotton burr and stem (CBS) as a partial filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rationale: Cotton burr and stem (CBS) fraction of cotton gin byproducts has shown promise as a fiber filler in thermoplastic composites, with physical and mechanical properties comparable to that made with wood fiber fillers. However, the long-term performance of this composite material is not known...

  5. Alumina-clay nanoscale hybrid filler assembling in cross-linked polyethylene based nanocomposites: mechanics and thermal properties.

    PubMed

    Jose, Josmin P; Thomas, Sabu

    2014-07-28

    Herein, investigation on XLPE-Al2O3-clay ternary hybrid systems of Al2O3 and clay in 1 : 1 and 2 : 1 ratios, binary systems of XLPE-clay and XLPE-Al2O3 nanocomposites, with special reference to the hybrid filler effect and the superior microstructural development in ternary systems is conducted. The ternary hybrid composite of Al2O3 and clay in a 1 : 1 ratio exhibits the highest tensile strength (100% increase) and Young's modulus (208% increase), followed by the Al2O3 : clay = 2 : 1 system. The interaction between alumina and clay altered the composite morphology, filler dispersion and gave rise to a unique filler architecture leading to a substantial boost up in mechanics compared to predictions based on the idealized filler morphology. Experimentally observed much higher mechanics compared to theoretical predictions confirmed that the dramatic improvement in mechanics is the outcome of the positive hybrid effect and a second factor of synergism, i.e. filler-filler networks. Morphological control of the hybrid filler network is realized by adjusting the ratio between different fillers. For the Al2O3 : clay = 2 : 1 system, the microstructural limitation of dispersion due to the steric effect of alumina clusters shifts the properties to the negative hybrid effect region.

  6. Polymer composite electrolytes having core-shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries.

    PubMed

    Shim, Jimin; Kim, Dong-Gyun; Kim, Hee Joong; Lee, Jin Hong; Lee, Jong-Chan

    2015-04-15

    Core-shell silica particles with ion-conducting poly(ethylene glycol) and anion-trapping boron moiety in the shell layer were prepared to be used as fillers for polymer composite electrolytes based on organic/inorganic hybrid branched copolymer as polymer matrix for all-solid-state lithium-ion battery applications. The core-shell silica particles were found to improve mechanical strength and thermal stability of the polymer matrix and poly(ethylene glycol) and boron moiety in the shell layer increase compatibility between filler and polymer matrix. Furthermore, boron moiety in the shell layer increases both ionic conductivity and lithium transference number of the polymer matrix because lithium salt can be more easily dissociated by the anion-trapping boron. Interfacial compatibility with lithium metal anode is also improved because well-dispersed silica particles serve as protective layer against interfacial side reactions. As a result, all-solid-state battery performance was found to be enhanced when the copolymer having core-shell silica particles with the boron moiety was used as solid polymer electrolyte.

  7. Brazing process using'al-Si filler alloy reliably bonds aluminum parts

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Johnson, W. R.

    1966-01-01

    Brazing process employs an aluminum-silicon filler alloy for diffusion bonding of aluminum parts in a vacuum or inert gas atmosphere. This process is carried out at temperatures substantially below those required in conventional process and produces bonds of greater strength and reliability.

  8. Assessment of decontamination methods as pretreatment of silanization of composite glass fillers.

    PubMed

    Shirai, K; Yoshida, Y; Nakayama, Y; Fujitani, M; Shintani, H; Wakasa, K; Okazaki, M; Snauwaert, J; Van Meerbeek, B

    2000-01-01

    In terms of mechanical properties and durability, the surface of glass fillers should be decontaminated in order to optimize the silanization process for the production of resin composites. The objective of this study was to evaluate the decontamination efficiency of 18 cleaning methods on glass fillers as pretreatment of silane coupling. X-ray photoelectron spectroscopy revealed that SiO(2) boiled with a 5% sodium peroxodisulfate aqueous solution for 15 min, followed by ultrasonic rinsing with acetone for 30 min was most effective among all the decontamination methods investigated. In addition, nano-indentation measurements on SiO(2) treated by the above-mentioned method revealed that the surface was not significantly weakened as compared to untreated SiO(2). The results of this study should lead to an improved filler-matrix coupling and thus contribute to the development of better wear and fatigue-resistant composites. Therefore, sodium peroxodisulfate is proposed as a presilanization filler decontamination step in the production process of resin composites.

  9. Recycled rubber, aggregate, and filler in asphalt paving mixtures. Transportation research record

    SciTech Connect

    1996-12-31

    ;Contents(Partial): Evaluation Systems for Crumb Rubber Modified Binders and Mixtures; Hot Mix Asphalt Rubber Applications in Virginia; Evaluation of Pyrolized Carbon Black from Scrap Tires as Additive in Hot Mix Asphalt; Use of Scrap Tire Chips in Asphaltic Membrane; Effects of Mineral Fillers on Properties of Stone Matrix Asphalt Mixtures; and Quantitative Analysis of Aggregate Based on Hough Transform.

  10. Fabrications of electrospun nanofibers containing inorganic fillers for dye-sensitized solar cells.

    PubMed

    Kim, Young-Keun; Hwang, Won-Pill; Seo, Min-Hye; Lee, Jin-Kook; Kim, Mi-Ra

    2014-08-01

    Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers containing inorganic fillers were fabricated by electrospinning. Dye-sensitized solar cells (DSSCs) using these nanofibers showed improved short circuit currents without degraded fill factors or open circuit voltages. The long-term stabilities of cells using electrospun PVDF-HFP/titanium isopropoxide (TIP) nanofibers were significantly improved.

  11. Evaluating Renewable Cornstarch/biochar Fillers as Potential Substitutes for Carbon Black in SBR Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The continually growing demand for fossil fuels coupled with the potential risk of relying on foreign sources for these fuels strengthens the need to find renewable substitutes for petroleum products. Carbon black is a petroleum product that dominates the rubber composite filler market. Agricultur...

  12. Mechanical, thermal, and moisture properties of plastics with bean as filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments on polymers using beans as fillers are reported herein. We are looking for desirable mechanical, thermal and moisture properties at economical costs. Poly(lactic acid) (PLA) is studied as the polymeric matrix because it is available and biodegradable. Although the physical properties are...

  13. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase (33% by weight) and lignocellulosic fillers, derived from sugarcane bagasse, apple and orange waste (22% by weight) were molded in a carver press in the presence of water and glycerol such as platicizers agents. Cor...

  14. A study on engineering characteristics of asphalt concrete using filler with recycled waste lime.

    PubMed

    Sung Do, Hwang; Hee Mun, Park; Suk keun, Rhee

    2008-01-01

    This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures.

  15. The tower technique: a novel technique for the injection of hyaluronic acid fillers.

    PubMed

    Bartus, Cynthia L; Sattler, Gerhard; Hanke, C William

    2011-11-01

    A number of injection techniques have been described for the placement of hyaluronic acid fillers. Such techniques include, but are not limited to, linear threading, depot, fanning, and layering. The tower technique for hyaluronic acid filler injection is a novel variation of the depot and layering techniques. With this technique, the hyaluronic acid is deposited via a perpendicular approach to the deep tissue plane with a gradual tapering of product deposition as the needle is withdrawn. A series of towers or struts are thus created. These towers serve as support structures for the overlying soft tissue, thereby restoring the face to a more youthful appearance. The anatomic areas most amenable to this technique include the lateral brow, the nasolabial folds, the marionette lines, the prejowl sulcus, and the mental region. A detailed description of the tower technique for facial volume restoration with hyaluronic acid fillers is provided. Further prospective studies are needed to compare the efficacy, safety, and longevity of this technique to other commonly used techniques for the injection of hyaluronic acid fillers.

  16. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites

    PubMed Central

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-01-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability. PMID:27222742

  17. Use of filler materials to aid spent nuclear fuel dry storage

    SciTech Connect

    Anderson, K.J.

    1981-09-01

    The use of filler materials (also known as stabilizer or encapsulating materials) was investigated in conjunction with the dry storage of irradiated light water reactor (LWR) fuel. The results of this investigation appear to be equally valid for the wet storage of fuel. The need for encapsulation and suitable techniques for closing was also investigated. Various materials were reviewed (including solids, liquids, and gases) which were assumed to fill the void areas within a storage can containing either intact or disassembled spent fuel. Materials were reviewed and compared on the basis of cost, thermal characteristics, and overall suitability in the proposed environment. A thermal analysis was conducted to yield maximum centerline and surface temperatures of a design basis fuel encapsulated within various filler materials. In general, air was found to be the most likely choice as a filler material for the dry storage of spent fuel. The choice of any other filler material would probably be based on a desire, or need, to maximize specific selection criteria, such as surface temperatures, criticality safety, or confinement.

  18. Effect of filler particles morphology of resin-composites on cavity packing force for repeated condensation.

    PubMed

    Kaleem, Muhammad; Watts, David C

    2017-03-29

    Effect of variation in morphology and size of filler particles, temperature and increase in condensation speed on packability of resincomposites was investigated. Eight experimental light-cured resin-composites (RZDn series) were tested. Each material was placed in a cylindrical mould at 26 or 32ºC. A flat-ended stainless-steel probe (φ=6 mm) was mechanically lowered with two different speeds 2 and 8 mm/s onto and into at the surface of the unset sample until a compressive force of 1 N was reached. This was repeated for five cycles, and from each cycle Fp was calculated. All spherical and irregular filler particle resin-composites showed a decrease in Fp with increase in number of compressions. Increase in temperature also decreased Fp, but this effect was not very prominent in the case of irregular filler resin-composites. Filler particle morphology, increase in temperature and compression cycle speed has a prominent effect on packability of resin-composites.

  19. Wear behavior of light-cured resin composites with bimodal silica nanostructures as fillers.

    PubMed

    Wang, Ruili; Bao, Shuang; Liu, Fengwei; Jiang, Xiaoze; Zhang, Qinghong; Sun, Bin; Zhu, Meifang

    2013-12-01

    To enhance wear behavior of resin composites, bimodal silica nanostructures including silica nanoparticles and silica nanoclusters were prepared and proposed as fillers. The silica nanoclusters, a combination of individually dispersed silica nanoparticles and their agglomerations, with size distribution of 0.07-2.70 μm, were fabricated by the coupling reaction between amino and epoxy functionalized silica nanoparticles, which were obtained by the surface modification of silica nanoparticles (~70 nm) using 3-aminopropyl triethoxysilane (APTES) and 3-glycidoxypropyl trimethoxysilane (GPS) as coupling agents, respectively. Silica nanoparticles and nanoclusters were then silanized with 3-methacryloxypropyl trimethoxysilane (γ-MPS) to prepare composites by mixing with bisphenol A glycerolate dimethacrylate (Bis-GMA) and tri (ethylene glycol) dimethacrylate (TEGDMA). Experimental composites with various filler compositions were prepared and their wear behaviors were assessed in this work. The results suggested that composites with increasing addition of silica nanoparticles in co-fillers possessed lower wear volume and smoother worn surface. Particularly, the composite 53:17 with the optimum weight ratio of silica nanoparticles and silica nanoclusters presented the excellent wear behavior with respect to that of the commercial Esthet-X, although the smallest wear volume was achieved by Z350 XT. The introduction of bimodal silica nanostructures as fillers might provide a new sight for the design of resin composites with significantly improved wear resistance.

  20. Coconut shell powder as cost effective filler in copolymer of acrylonitrile and butadiene rubber.

    PubMed

    Keerthika, B; Umayavalli, M; Jeyalalitha, T; Krishnaveni, N

    2016-08-01

    Filler is one of the major additives in rubber compounds to enhance the physical properties. Even though numerous benefits obtained from agricultural by products like coconut shell, rice husk etc., still they constitute a large source of environmental pollution. In this investigation, one of the agricultural bye product coconut shell powder (CSP) is used as filler in the compounding KNB rubber. It shows the positive and satisfied result was achieved only by the use of filler Fast Extrusion Furnace (FEF) and coconut shell powder (CSP) which was used 50% in each. The effect of these fillers on the mechanical properties of a rubber material at various loading raging from 0 to 60PHP was studied. Mercaptodibanzothiazole disulphide (MBTS) was used as an accelerator. The result shows that presence of 25% and 50% of the composites has better mechanical properties like Hardness, Tensile strength, Elongation at break and Specific gravity when compared with other two combinations. Even though both 25% and 50% of composites shows good mechanical properties, 50% of CSP have more efficient than 25% of CSP.

  1. Filler particles used in dental biomaterials induce production and release of inflammatory mediators in vitro.

    PubMed

    Ansteinsson, Vibeke E; Samuelsen, Jan Tore; Dahl, Jon E

    2009-04-01

    Although dental composites are in extensive use today, little is known about the biological effects of the filler particles. As composite materials are gradually broken down in the aggressive environment of the oral cavity, the filler particles may leak and induce toxic effects on the surrounding tissue and cells. The aim of this study was to elucidate possible adverse biological effects of commonly used dental filler particles; bariumaluminiumsilica (BaAlSi) and bariumaluminiumfluorosilica (BaAlFSi) with mean size of 1 microm. BEAS-2B cells were used as a model system. Particle morphology, mean particle size in solution, and particle surface charge were determined by scanning electron microscopy and Malvern zetasizer technology, respectively. Enzyme-linked immunosorbent assay was used to detect secretion of cytokine and chemokine (IL-8 and IL-6) and quantitative PCR for detection of gene activity. Both types of particle increased the release of IL-6 and IL-8 in a dose-dependent manner. BaAlFSi particles induced a more marked IL-8 response compared to BaAlSi particles, whereas no significant difference was observed for the IL-6 response. Mechanistic studies using specific inhibitors and activators indicated that cyclic AMP-dependent protein kinase A is partly involved in the observed IL-8 response. In conclusion, we consider dental filler particles to have potential to induce adverse biological response in cell cultures.

  2. Treatment of wet blue with fillers produced from quebracho-modified gelatin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gelatin modified with quebracho to produce high molecular weight, high viscosity products was investigated as a filler in leather processing. The uptake of quebracho/gelatin product by the wet blue was on the average about 55% of the 10% gelatin/quebracho product offered; the reaction appeared to be...

  3. Effects of Filler Concentration and Geometry on Performance of Cylindrical Injection Molded Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is growing interest in using fillers in plastic products to displace petroleum components, reduce cost, and improve mechanical properties. Many studies have examined the use of materials such as clay, talc, paper, wood flour, lignin, flax, and bamboo, to name just a few. For successful utili...

  4. Examining the Effects of Filler Concentration and Mold Geometry on Performance of Cylindrical Injection Molded Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is growing interest in using fillers in plastic products to displace petroleum components, reduce cost, and improve mechanical properties. Many studies have examined the use of materials such as clay, talc, paper, wood flour, lignin, flax, and bamboo, to name just a few. For successful utili...

  5. Influence of filler alignment in the mechanical and electrical properties of carbon nanotubes/epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Felisberto, M.; Arias-Durán, A.; Ramos, J. A.; Mondragon, I.; Candal, R.; Goyanes, S.; Rubiolo, G. H.

    2012-08-01

    In this work, we report the mechanical and electrical properties of carbon nanotubes/epoxy composites prepared with aligned and randomly oriented nanotubes as filler. The samples are disks of 30 mm in diameter and 3 mm in thickness. To obtain the carbon nanotubes alignment, an external electric field (250 VAC; 50 Hz) was applied through the thickness of the sample during all the cure process. The AC electrical current was measured, during the cure, as a strategy to determine the optimum time in which the alignment reaches the maximum value. DC conductivity measured after the cure shows a percolation threshold in the filler content one order of magnitude smaller for composites with aligned nanotubes than for composites with randomly oriented filler (from 0.06 to 0.5 wt%). In the percolation threshold, the achieved conductivity was 1.4×10-5 Sm-1. In both cases, aligned and randomly distributed carbon nanotube composites, the wear resistance increases with the addition of the filler while the Rockwell hardness decreases independently of the nanotubes alignment.

  6. Effect of filler loading of nickel zinc ferrite on the tensile properties of PLA nanocomposites

    NASA Astrophysics Data System (ADS)

    Shahdan, Dalila; Ahmad, Sahrim Hj

    2013-05-01

    The mechanical strength of magnetic polymer nanocomposite (MPNC) of nickel zinc (NiZn) ferrite nanoparticles incorporated with polylactic acid (PLA) and liquid natural rubber (LNR) as compatibilizer is reported. The matrix was prepared from PLA and LNR in the ratio of 90:10. The MPNC were prepared at constant mixing temperature at 180°C, mixing time of 15 min. and mixing speed of 100 rpm. In order to achieve a good dispersion of NiZn ferrite in the matrix, firstly an ultrasonic treatment had been employed to mix the LNR and NiZn ferrite for 1 hour. The MPNC of PLA/LNR/NiZn ferrite then were prepared via Thermo Haake internal mixer using melt-blending method from different filler loading from 1-5 wt% NiZn ferrite. The result of tensile tests showed that as the filler loading increases the tensile strength also increases until an optimum value of filler loading was reached. The Young's modulus, tensile strength and elongation at break have also increased. The study proves that NiZn ferrite is excellent reinforcement filler in PLA matrix. Scanning electron micrograph (SEM) and energy dispersive X-ray spectroscopy (EDX) were meant to show the homogeneity dispersion of nanoparticles within the matrix and to confirm the elemental composition of NiZn ferrites-PLA/LNR nanocomposites respectively.

  7. Gas permeability of ENR/PVC membrane with the addition of inorganic fillers

    NASA Astrophysics Data System (ADS)

    Nor, Farhan Mohd; Abdullah, Ibrahim; Othaman, Rizafizah

    2013-11-01

    Epoxidized natural rubber (ENR) was blended with polyvinyl chloride to form a flexible and porous membrane. SiO2 and MgO were added into the membrane for pore formation and the effects of the addition was investigated by means of FTIR, TGA, SEM, EDX and gas permeability towards CO2 and N2 gases. FTIR result showed the presence of Si-O-Si asymmetric stretching at the absorption peak of 467 cm-1 for ENR/PVC/SiO2 membrane and MgO signature peak at 3700 cm-1 for ENR/PVC/MgO membrane. Thermal analysis showed that the thermal stability of ENR/PVC membrane increased with the addition of fillers. Morphological studies prove that subsequently, the pores in the membranes increased showing that some of the added fillers were drawn towards the water leaving empty spaces and tracks. The remaining fillers are homogenously distributed on the surface of the membranes. CO2 and N2 gas permeability increased with increasing filler content and the permeability of ENR/PVC/SiO2 membranes towards CO2 and N2 gasses was higher than ENR/PVC/MgO membranes.

  8. Evaluation of cotton byproducts as fillers for poly(lactic acid) and low density polyethylene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymeric composites based on cotton burr and cottonseed bull have been prepared by melt blending and extrusion. For poly(lactic acid) (PLA) and low-density polyethylene (LDPE), addition of the fillers only slightly changed the composite’s thermal properties and significantly decreased the composite...

  9. A survey of the bacterial diversity in the cup filler of dental chair units

    PubMed Central

    Silva, Vítor; Figueira, Vânia; Figueiral, Helena; Manaia, Célia M.

    2011-01-01

    Water from the cup filler of dental chair units (CFDC) was observed to contain sphingomonads, environmental mycobacteria and methylobacteria, among other minor bacteria. Some of the bacteria detected are recognized opportunistic pathogens. Some of these, tended to persist over time. PMID:24031712

  10. Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”

    PubMed Central

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022

  11. Effect of filler particles on surface roughness of experimental composite series

    PubMed Central

    MARGHALANI, Hanadi Yousif

    2010-01-01

    Objective The purpose of this study was to evaluate the effect of different filler sizes and shapes on the surface roughness of experimental resin-composite series. Material and Methods Thirty-three disc-shaped specimens of the series (Spherical-RZD 102, 105, 106, 107, 114 and Irregular-RZD 103, 108, 109, 110, 111, 112) were prepared in a split Teflon mold and irradiated with an halogen light-curing unit (450 mW/cm2 for 40 s) at both top and bottom surfaces. The specimens were stored for 3 months in distilled water. The surface roughness values in form of surface finish-vertical parameter (Ra), maximum roughness depth (Rmax) and horizontal roughness parameter (Sm) were recorded using a contact profilometer. The data were analyzed by one-way ANOVA and the means were compared by Scheffé post-hoc test (α=0.05). Results The lowest surface roughness (Ra) was observed in S-100 (0.079±0.013), while the roughest surface was noted in I-450/ 700/1000 (0.125±0.011) and I-450/1000 (0.124±0.004). The spherical-shape series showed the smoothest surface finish compared to the irregular-shape ones with higher significant difference (p>0.05). The vertical surface roughness parameter (Ra) values increased as the filler size increased yielding a linear relation (r2=0.82). On the contrary, the horizontal parameter (Sm) was not significantly affected by the filler size (r2=0.24) as well as the filler shape. Conclusions Filler particle’s size and shape have a great effect on the surface roughness parameters of these composite series. PMID:20379683

  12. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, T.K.; Novak, R.F.

    1991-05-07

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.

  13. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, Thomas K.; Novak, Robert F.

    1991-01-01

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.

  14. Pure titanium particle loaded nanocomposites: study on the polymer/filler interface and hMSC biocompatibility.

    PubMed

    Avolio, Roberto; D'Albore, Marietta; Guarino, Vincenzo; Gentile, Gennaro; Cocca, Maria Cristina; Zeppetelli, Stefania; Errico, Maria Emanuela; Avella, Maurizio; Ambrosio, Luigi

    2016-10-01

    The integration of inorganic nanoparticles into polymer matrices allows for the modification of physical properties as well as the implementation of new features for unexplored application fields. Here, we propose the study of a new metal/polymer nanocomposite fabricated by dispersing pure Ti nanoparticles into a poly(methylmetacrilate) matrix via solvent casting process, to investigate its potential use as new biomaterial for biomedical applications. We demonstrated that Ti nanoparticles embedded in the poly(methylmetacrilate) matrix can act as reinforcing agent, not negatively influencing the biological response of human mesenchymal stem cell in terms of cytotoxicity and cell viability. As a function of relative amount and surface treatment, Ti nanoparticles may enhance mechanical strength of the composite-ranging from 31.1 ± 2.5 to 43.7 ± 0.7 MPa-also contributing to biological response in terms of adhesion and proliferation mechanisms. In particular, for 1 wt% Ti, treated Ti nanoparticles improve cell materials recognition, as confirmed by higher cell spreading-quantified in terms of cell area via image analysis-locally promoting stronger interactions at cell matrix interface. At this stage, these preliminary results suggest a promising use of pure Ti nanoparticles as filler in polymer composites for biomedical applications.

  15. A Thermally Conductive Composite with a Silica Gel Matrix and Carbon-Encapsulated Copper Nanoparticles as Filler

    NASA Astrophysics Data System (ADS)

    Lin, Jin; Zhang, Haiyan; Hong, Haoqun; Liu, Hui; Zhang, Xiubin

    2014-07-01

    Core-shell-structured nanocapsules with a copper core encapsulated in a carbon shell (Cu-C) were synthesized by a direct-current arc-discharge method. Morphological and microstructural characterization showed that the Cu-C consisted of a nanosized Cu core and carbon shell, with the carbon shells containing 6 to 15 ordered graphitic layers and amorphous carbon that effectively shield the metallic Cu core from oxidation. A thermally conductive composite was successfully fabricated using a silica gel matrix incorporated with Cu-C filler. The Cu-C nanoparticles were homogeneously dispersed in the silica gel. The effects of Cu-C on the thermal conductivity, electrical resistivity, and coefficient of thermal expansion (CTE) of the composite were investigated. For composites with 6.16 vol.%, 11.04 vol.%, 16.70 vol.%, and 23.34 vol.% Cu-C content, the thermal conductivity at 50°C was 0.32 W/(m K) to 0.77 W/(m K), the electrical resistivity was 1.98 × 109, 3.48 × 107, 302, and 1 Ω m, respectively, while the CTE at 200°C was 3.79 × 10-4 K-1 to 3.44 × 10-4 K-1. The results reveal that the ordered graphitic shells in the Cu-C increased both the thermal and electrical conduction, but decreased the CTE by preventing the Cu cores from expanding.

  16. Development of sputtered techniques for thrust chambers, task 1. [evaluation of filler materials for regeneratively cooled thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Schmid, T. E.; Hecht, R. J.

    1974-01-01

    Filler materials proposed for use in the sputter fabrication regeneratively cooled thrust chambers were evaluated. Low melting castable alloys, CERROBEND. CERROCAST, and CERROTRU, slurry applied SERMETEL 481 and flame-sprayed aluminum were investigated as filler materials. Sputter deposition from a cylindrical cathode inverted magnestron was used to apply an OFHC copper closeout layer to filled OFHC copper ribbed-wall cylindrical substrates. The sputtered closeout layer structure was evaluated with respect to filler material contamination, predeposition machining and finishing operations, and deposition parameters. The application of aluminum by flame-spraying resulted in excessiver filler porosity. Though the outgassing from this porosity was found to be detrimental to the closeout layer structure, bond strengths in excess of 10,500 psi were achieved. Removal of the aluminum from the grooves was readily accomplished by leaching in a 7.0 molar solution of sodium hydroxide at 353 K. Of the other filler materials evaluated, CERROTRU was found to be the most suitable material with respect to completely filling the ribbed-wall cylinders and vacuum system compatibility. However, bond contamination resulted in low closeout layer bond strength with the CERROTRU filler. CERROBEND, CERROCAST, and SERMETEL 481 were found to be unacceptable as filler materials.

  17. Study of Tetrapodal ZnO-PDMS Composites: A Comparison of Fillers Shapes in Stiffness and Hydrophobicity Improvements

    PubMed Central

    Jin, Xin; Deng, Mao; Kaps, Sören; Zhu, Xinwei; Hölken, Iris; Mess, Kristin; Adelung, Rainer; Mishra, Yogendra Kumar

    2014-01-01

    ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here. The tensile elastic modulus and water contact angle, which are important parameters for bio-mimetic applications, of fabricated composites with different fillers have been measured and compared. Among all three types of fillers, tetrapodal shaped ZnO microparticles showed the best performance in terms of increase in hydrophobicity of material cross-section as well as the stiffness of the composites. It has been demonstrated that the tetrapodal shaped microparticles gain their advantage due to the special shape, which avoids agglomeration problems as in the case for nanoparticles, and the difficulty of achieving truly random distribution for whisker fillers. PMID:25208080

  18. Metal Preferences and Metallation*

    PubMed Central

    Foster, Andrew W.; Osman, Deenah; Robinson, Nigel J.

    2014-01-01

    The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼25% acquiring preassembled metal cofactors. The remaining ∼70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells. PMID:25160626

  19. Experimental determination of TRIP-parameter K for mild- and high-strength low-alloy steels and a super martensitic filler material.

    PubMed

    Neubert, Sebastian; Pittner, Andreas; Rethmeier, Michael

    2016-01-01

    A combined experimental numerical approach is applied to determine the transformation induced plasticity (TRIP)-parameter K for different strength low-alloy steels of grade S355J2+N and S960QL as well as the super martensitic filler CN13-4-IG containing 13 wt% chromium and 4 wt% nickel. The thermo-physical analyses were conducted using a Gleeble (®) 3500 facility. The thermal histories of the specimens to be tested were extracted from corresponding simulations of a real gas metal arc weldment. In contrast to common TRIP-experiments which are based on complex specimens a simple flat specimen was utilized together with an engineering evaluation method. The evaluation method was validated with literature values for the TRIP-parameter. It could be shown that the proposed approach enables a correct description of the TRIP behavior.

  20. The electric conductivity of composites based on various carbonaceous fillers and estimation of their percolation model parameters

    NASA Astrophysics Data System (ADS)

    Zadneprovski, B. I.; Klyuev, I. Yu.; Turkov, V. E.

    2016-08-01

    We have studied the electric conductivity of composites with various carbonaceous fillers (multiwalled carbon nanotubes, colloidal graphite, and amorphous carbon) as a function of the filler content. The widths of critical regions of the percolation transition to the conducting state are determined and the percolation critical exponents are estimated. It is established that there is a tendency to increase in the width of transition region and values of critical exponents when the filler is varied in the following order: carbon nanotubes-colloidal graphite-amorphous carbon.

  1. Reduction of liquid metal embrittlement in copper-brazed stainless steel joints

    NASA Astrophysics Data System (ADS)

    Uhlig, T.; Fedorov, V.; Elßner, M.; Wagner, G.; Weis, S.

    2017-03-01

    Due to its very good formability and the low raw material cost, pure copper in form of foils is commonly used to braze plate heat exchangers made of stainless steel. The difference in the electrochemical potentials of brazing filler and base material leads to corrosion effects in contact with electrolytes. This may lead to leakages, which decrease the reliability of the heat exchanger during service in potable water. The dissolution of the emerging corrosion products of brazing filler and base material induces the migration of heavy metal ions, such as Cu2+ and Ni2+, into the potable water. The so-called liquid metal embrittlement, which takes place during the brazing process, may intensify the corrosion. The brazing filler infiltrates the stainless steel along the grain boundaries and causes an embrittlement. This paper deals with the determination of the grain boundary erosion dependent on the degree of deformation and heat treatment of the stainless steel AISI 316L.

  2. Expanding hollow metal rings

    DOEpatents

    Peacock, Harold B.; Imrich, Kenneth J.

    2009-03-17

    A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.

  3. Hydrogen-induced cracking along the fusion boundary of dissimilar metal welds

    SciTech Connect

    Rowe, M.D.; Nelson, T.W.; Lippold, J.C.

    1999-02-01

    Presented here are the results from a series of experiments in which dissimilar metals welds were made using the gas tungsten arc welding process with pure argon or argon-6% hydrogen shielding gas. The objective was to determine if cracking near the fusion boundary of dissimilar metal welds could be caused by hydrogen absorbed during welding and to characterize the microstructures in which cracking occurred. Welds consisted of ER308 and ER309LSi austenitic stainless steel and ERNiCr-3-nickel-based filler metals deposited on A36 steel base metal. Cracking was observed in welds made with all three filler metals. A ferrofluid color metallography technique revealed that cracking was confined to regions in the weld metal containing martensite. Microhardness indentations indicated that martensitic regions in which cracking occurred had hardness values from 400 to 550 HV. Cracks did not extend into bulk weld metal with hardness less than 350 HV. Martensite formed near the fusion boundary in all three filler metals due to regions of locally increased base metal dilution.

  4. Effect of film thickness and filler properties on sulphuric acid permeation in various commercially available epoxy mortar coatings.

    PubMed

    Valix, M; Mineyama, H; Chen, C; Cheung, W H; Shi, J; Bustamante, H

    2011-01-01

    The performance of various commercially available epoxy mortar coatings was compared by measuring their sulphuric acid diffusivity. Apparent diffusivities, which were measured gravimetrically, were found to be dependent on coating tortuosity. In composite materials like epoxy mortars, the tortuosity was determined by filler properties and polymer alignment. Tortuosity was found to depend on the filler size, their dispersion, filler aspect ratio and concentration. The order and greater alignment of polymer aggregates, which characterises thinner coatings effects higher tortuosity and thus lower permeabilities. The result is that sulphuric acid diffusivities were observed to increase with coating thickness, which challenges the notion that greater coating thicknesses provide greater protection or environmental barrier. The effect of film thickness and filler properties observed in this study has significant implications to the current selection of coatings and sewer protection.

  5. Three-dimensional Facial Anatomy: Structure and Function as It Relates to Injectable Neuromodulators and Soft Tissue Fillers

    PubMed Central

    Beer, Jacob I.; Scheuer, Jack F.; Greco, Timothy M.

    2016-01-01

    Background: The advent of new neuromodulators and soft-tissue fillers continues to expand the nonsurgical repertoire of the core cosmetic physician. Methods: The authors review relevant facial anatomy as it relates to facial aging and the resultant structural changes that occur. These changes are important for the cosmetic physician to identify and understand in order to perform both safe and effective placement of neuromodulators and soft-tissue fillers. In this anatomic review, the authors review key structures that serve as landmarks for successful treatment using both neuromodulators and fillers. Conclusions: Knowledge of key facial anatomical structures allows the cosmetic physician to perform injection of neuromodulators and soft-tissue fillers in a reproducible manner to optimizing patient safety and results. PMID:28018776

  6. Filler bar heating due to stepped tiles in the shuttle orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Smith, D. M.; Edwards, C. L. W.; Patten, A. B.; Hamilton, H. H., II

    1983-01-01

    An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented.

  7. Neutron Spectrometry for Identification of filler material in UXO - Final Report

    SciTech Connect

    Bliss, Mary

    2007-09-12

    Unexploded ordnance (UXO)-contaminated sites often include ordnance filled with inert substances that were used in dummy rounds. During UXO surveys, it is difficult to determine whether ordnance is filled with explosives or inert material (e.g., concrete, plaster-of-paris, wax, etc.) or is empty. Without verification of the filler material, handling procedures often necessitate that the object be blown in place, which has potential impacts to the environment, personnel, communities and survey costs. The Department of Defense (DoD) needs a reliable, timely, non-intrusive and cost-effective way to identify filler material before a removal action. A new technology that serves this purpose would minimize environmental impacts, personnel safety risks and removal costs; and, thus, would be especially beneficial to remediation activities.

  8. Long-chain polynucleotide filler for skin rejuvenation: efficacy and complications in five patients.

    PubMed

    Park, Kui Young; Seok, Joon; Rho, Nark Kyoung; Kim, Beom Joon; Kim, Myeung Nam

    2016-01-01

    Aging well has become the new target of preventative medicine, and aesthetic dermatology can contribute to this request. The polynucleotide (PN) containing products not only fill the space, but improve tissue regeneration, resulting in more natural tissue regeneration. Five Korean women received four times injections of long-chain PN filler in two-week intervals for skin rejuvenation. About 0.05 mL of material was injected in 40 points of one-side cheek. The pore and skin thickness were markedly improved in the patients in their 30s, whereas skin tone, melanin, wrinkles, and sagging were noticeably improved for patients in their 40s. There are no serious side effects. In conclusion, intradermal long-chain PN filler injection seems to be an effective and safe treatment for skin rejuvenation.

  9. Properties of natural rubber/attapulgite composites prepared by latex compounding method: Effect of filler loading

    NASA Astrophysics Data System (ADS)

    Muttalib, Siti Nadzirah Abdul; Othman, Nadras; Ismail, Hanafi

    2015-07-01

    This paper reports on the effect of filler loading on properties of natural rubber (NR)/attapulgite (ATP) composites. The NR/ATP composites were prepared by latex compounding method. It is called as masterbatch. The masterbatch was subsequently added to the NR through melt mixing process. The vulcanized NR/ATP composites were subjected to mechanical, swelling and morphological tests. All the results were compared with NR/ATP composites prepared by conventional system. The composites from masterbatch method showed better results compared to composites prepared by conventional method. They have higher tensile properties, elongation at break and tear strength. The images captured through scanning electron microscopy test revealed the improvement of tensile strength in masterbatch NR/ATP composites. It can be seen clearly that masterbatch NR/ATP have better filler dispersion compared to conventional method NR/ATP composites.

  10. The utilization of fillers and reinforcements to develop an optimal DAP (diallyl phthalate) molding compound

    SciTech Connect

    Kaye, C.J.; Schneider, R.E.; Katz, H.S.; Milewski, J.V.; Utility Development Corp., Livingston, NJ )

    1989-01-01

    Diallyl phthalate (DAP) resin-based compounds were formulated and tested. In these formulations, various types of fillers and fiberglass reinforcements were used in different concentrations while taking into consideration packing concepts, optimum aspect (L/D) ratios, resin content, rheology of the molding compound, and ultimately, the compound's performance. These formulations were required for transfer molding without restricting the melt flow through a gate size of less than 1 mm. The end products are very small parts that must conform to stringent dimensional tolerances (typically {plus minus}0.05 mm) and exhibit physical properties that exceed the requirements specified by MIL-M-14G without compromising excellent electrical characteristics. These objectives were achieved by changing from chopped glass roving to screened, milled fiberglass, by the use of microspherical fillers, and by improving micro packing which allowed an increase in the total

  11. Filler effect of fine particle sand on the compressive strength of mortar

    NASA Astrophysics Data System (ADS)

    Jaturapitakkul, Chai; Tangpagasit, Jatuphon; Songmue, Sawang; Kiattikomol, Kraiwood

    2011-04-01

    The river sand, which is a non-pozzolanic material, was ground into 3 different particle sizes. Portland cement type I was replaced by the ground river sands at 10wt%-40wt% of binder to cast mortar. Compressive strengths of mortar were investigated and the filler effect of different fine particles of sand on the compressive strength of mortar was evaluated. The results show that the compressive strength of mortar contributed from the filler effect of smaller particles is higher than that of the coarser ones. The difference in compressive strength of mortar tends to be greater as the difference in ground river sand fineness increases. The results also suggest that ASTM C618 specification is not practically suitable for specifying pozzolan in concrete since the strength activity index of mortar containing ground river sand (high crystalline phase) with 33.8wt% of particles retained on a 45-μm sieve can pass the strength requirement.

  12. Understanding How to Prevent and Treat Adverse Events of Fillers and Neuromodulators

    PubMed Central

    2016-01-01

    Summary: Experience teaches cosmetic surgeons to become good, but avoiding and treating adverse events make them great. In no area is this more true than in cosmetic procedures involving fillers and neuromodulators. By utilizing knowledge of materials and anatomy involved, specialists seek to avoid complications. A well-trained physician is able to reduce the sequelae from an adverse event by acting promptly using algorithms and a methodical approach to treatments. In this article I discuss the difference between perceived and true complications from fillers and neuromodulators, how to avoid, what to look for and how to treat to provide patients with the best possible outcomes, and make the physicians life less stressful. PMID:28018772

  13. Properties of natural rubber/attapulgite composites prepared by latex compounding method: Effect of filler loading

    SciTech Connect

    Muttalib, Siti Nadzirah Abdul Othman, Nadras Ismail, Hanafi

    2015-07-22

    This paper reports on the effect of filler loading on properties of natural rubber (NR)/attapulgite (ATP) composites. The NR/ATP composites were prepared by latex compounding method. It is called as masterbatch. The masterbatch was subsequently added to the NR through melt mixing process. The vulcanized NR/ATP composites were subjected to mechanical, swelling and morphological tests. All the results were compared with NR/ATP composites prepared by conventional system. The composites from masterbatch method showed better results compared to composites prepared by conventional method. They have higher tensile properties, elongation at break and tear strength. The images captured through scanning electron microscopy test revealed the improvement of tensile strength in masterbatch NR/ATP composites. It can be seen clearly that masterbatch NR/ATP have better filler dispersion compared to conventional method NR/ATP composites.

  14. Factors influencing the biodegradability of biocomposites based on ethylene-octene copolymer (EOC) and vegetable fillers

    NASA Astrophysics Data System (ADS)

    Zykova, A. K.; Pantyukhov, P. V.; Monakhova, T. V.; Kolesnikova, N. N.; Popov, A. A.; Ramos, C. C.

    2016-11-01

    In this study the role of the content of filler, its nature (particle geometry in particular) and the type of the copolymer matrix were examined. For the study three grades of ethylene-octene copolymer were chosen. Composites were mixed in proportion from 70 to 30 wt % of the polymer matrix content. Water absorption was determined; thermal oxidative degradation was studied; and a biodegradation test on recovered soil was carried out. It was concluded that water absorption and weight loss correlate with the filler content. It was found that biocomposites with oil flax straw are more prone to water absorption and weight loss than the same ones with wood flour. The most stable matrix to oxidation was Lucene 370, then Lucene 670 and Lucene 760. Therefore, biocomposites based on Lucene 760 should be more biodegradable than others.

  15. Evaluation of Waste from Aluminum Industry as Filler in Polypropylene Composites

    NASA Astrophysics Data System (ADS)

    Samat, N.; Sabaruddin, F. A.; Meor Yusoff, M. S.; Dayang Habibah, A. I. H.

    2017-01-01

    White aluminum (Al) dross is the waste or by-product generated from the smelting of Al. Improper disposal of this waste will affect the sustainability of the environment. This study was aimed at investigating the feasibility of Al dross as a thermoplastic filler. Various content of Al dross (10-40 wt.%) was blended with polypropylene (PP) using an extruder. An improvement in thermal and flame resistance properties was evident, which was associated with the presence of aluminum hydroxide elements in Al dross as revealed from x-ray diffraction analysis. It was shown that the higher Al dross content in PP did cause the composites to possess high stiffness and low crystallinity. An advantage in wear properties further showed that the Al dross can be used as a filler for thermoplastics.

  16. Subchondral Insufficiency Fracture of the Femoral Head treated with Core Decompression and Bone Void Filler Support

    PubMed Central

    Patel, Hiren; Kamath, Atul F.

    2016-01-01

    Subchondral insufficiency fracture of the femoral head (SIFFH) is characterized by acute onset hip pain without overt trauma. It appears as a low intensity band with bone marrow edema on T1-weighted MRI. The most common course of treatment is protected weight bearing for a period of several weeks. Total hip arthroplasty (THA) has been commonly used if the patient does not respond to the initial protected weight bearing treatment. We present a case of a 48-year-old male with SIFFH who was treated with core hip decompression and bone void filler as a hip-preserving alternative to THA. The patient has an excellent clinical and radiographic result at final follow up. Core hip decompression with bone void filler is a less invasive alternative to THA, and may be a preferred initial treatment strategy for SIFFH in the young and active patient who has failed conservative measures. PMID:27517074

  17. Late-Onset Complication of Fillers: Paraffinoma of the Lower Eyelids Clinically Mimicking Xanthelasma

    PubMed Central

    Kim, Min-Woo; Park, Hyun-sun; Yoon, Hyun-Sun

    2016-01-01

    Injectable poly-L-lactic acid (PLLA) is world-famous filler used in lipoatrophy and facial rejuvenation because of its collagen neogenesis effect which leads to gradual volume restoration. Until recently, quite a number of unwanted adverse events of PLLA have been reported. However, to the best of our knowledge, paraffinoma as a complication of PLLA has never been reported. We herein describe the first case of paraffinoma after Sculptra® injection and propose its possible mechanism. PMID:27904276

  18. Cerebral Angiographic Findings of Cosmetic Facial Filler-related Ophthalmic and Retinal Artery Occlusion

    PubMed Central

    2015-01-01

    Cosmetic facial filler-related ophthalmic artery occlusion is rare but is a devastating complication, while the exact pathophysiology is still elusive. Cerebral angiography provides more detailed information on blood flow of ophthalmic artery as well as surrounding orbital area which cannot be covered by fundus fluorescein angiography. This study aimed to evaluate cerebral angiographic features of cosmetic facial filler-related ophthalmic artery occlusion patients. We retrospectively reviewed cerebral angiography of 7 patients (4 hyaluronic acid [HA] and 3 autologous fat-injected cases) showing ophthalmic artery and its branches occlusion after cosmetic facial filler injections, and underwent intra-arterial thrombolysis. On selective ophthalmic artery angiograms, all fat-injected patients showed a large filling defect on the proximal ophthalmic artery, whereas the HA-injected patients showed occlusion of the distal branches of the ophthalmic artery. Three HA-injected patients revealed diminished distal runoff of the internal maxillary and facial arteries, which clinically corresponded with skin necrosis. However, all fat-injected patients and one HA-injected patient who were immediately treated with subcutaneous hyaluronidase injection showed preserved distal runoff of the internal maxillary and facial arteries and mild skin problems. The size difference between injected materials seems to be associated with different angiographic findings. Autologous fat is more prone to obstruct proximal part of ophthalmic artery, whereas HA obstructs distal branches. In addition, hydrophilic and volume-expansion property of HA might exacerbate blood flow on injected area, which is also related to skin necrosis. Intra-arterial thrombolysis has a limited role in reconstituting blood flow or regaining vision in cosmetic facial filler-associated ophthalmic artery occlusions. PMID:26713062

  19. Inhibition of enamel demineralization by buffering effect of S-PRG filler-containing dental sealant.

    PubMed

    Kaga, Masayuki; Kakuda, Shinichi; Ida, Yusuke; Toshima, Hirokazu; Hashimoto, Masanori; Endo, Kazuhiko; Sano, Hidehiko

    2014-02-01

    The buffering capacity and inhibitory effects on enamel demineralization of two commercially available dental sealants were evaluated in this study. The effects of filler particles were also examined. Disks of enamel and cured sealant materials of BeautiSealant (silica or S-PRG filler) or Teethmate F-1 were incubated in lactic acid solutions (pH 4.0) for 1-6 d. The pH changes and amounts of ions released in the solutions were assessed, and enamel surfaces were observed using a scanning electron microscope. The pH of the solution with BeautiSealant (S-PRG filler) was neutralized from pH 4.0 to pH 6.1 (after incubation for 1 d) and from pH 4.0 to pH 6.7 (after incubation for 6 d). In addition, no release of calcium ions was detected and the enamel surface was morphologically intact in scanning electron microscopy images. However, the pH of the solution with Teethmate F-1 remained below pH 4.0 during incubation from days 1 to 6. Calcium release was increased in solutions up to and after 6 d of incubation. Scanning electron microscopy images showed that the structures of hydroxyapatite rods were exposed at the specimen surfaces as a result of demineralization. Ions released from S-PRG filler-containing dental sealant rapidly buffered the lactic acid solution and inhibited enamel demineralization.

  20. Study of the valorization of phosphogypsum in the region of Gafsaas filler in paper

    NASA Astrophysics Data System (ADS)

    Hassen, S.; Anna, Z.; Elaloui E, E.; Belgacem, M. N.; Mauret, E.

    2012-02-01

    Four different fractions of phosphogypsum were characterized by several analytical techniques. The size and shape of particles were determined by scanning electron microscopy. Analyses of infrared spectroscopy and X-ray diffraction have shown that these particles are mainly composed of calcium sulfate more or less hydrated. Calcination tests were carried out showed that treatment of these powders at 600°C for one hour increase their initial britghtness to values high enough to be used as a filler in paper.

  1. Complex refractive index of starch acetate used as a biodegradable pigment and filler of paper

    NASA Astrophysics Data System (ADS)

    Karvinen, Petri; Oksman, Antti; Silvennoinen, Raimo; Mikkonen, Hannu

    2007-05-01

    Complex refractive index of strongly depolarizing starch acetate is investigated as a function of bulk package density, which is compulsory parameter in analysis of light scattering from nanoscale starch acetate pigments and fillers. The measurements were made using a laser-goniometer and spectrophotometer to gain data for refractive index analysis according to the Brewster's law and Fresnel equations. The real part of refractive index was verified by microscopic immersion method.

  2. Hyaluron Filler Containing Lidocaine on a CPM Basis for Lip Augmentation: Reports from Practical Experience.

    PubMed

    Fischer, Tanja C; Sattler, Gerhard; Gauglitz, Gerd G

    2016-06-01

    Lip augmentation with hyaluronic acid fillers is established. As monophasic polydensified hyaluronic acid products with variable density, CPM-HAL1 (Belotero Balance Lidocaine, Merz Aesthetics, Raleigh, NC) and CPM-HAL2 (Belotero Intense Lidocaine, Merz Aesthetics, Raleigh, NC) are qualified for beautification and particularly natural-looking rejuvenation, respectively. The aim of this article was to assess the handling and outcome of lip augmentation using the lidocaine-containing hyaluronic acid fillers, CPM-HAL1 and CPM-HAL2. Data were documented from patients who received lip augmentation by means of beautification and/or rejuvenation using CPM-HAL1 and/or CPM-HAL2. Observation period was 4 months, with assessment of natural outcome, evenness, distribution, fluidity, handling, malleability, tolerability, as well as patient satisfaction and pain. A total of 146 patients from 21 German centers participated. Physicians rated natural outcome and evenness as good or very good for more than 95% of patients. Distribution, fluidity, handling, and malleability were assessed for both fillers as good or very good in more than 91% of patients. At every evaluation point, more than 93% of patients were very or very much satisfied with the product. A total of 125 patients (85.6%) experienced transient injection-related side effects. Pain intensity during the procedure was mild (2.72 ± 1.72 on the 0-10 pain assessment scale) and abated markedly within 30 minutes (0.42 ± 0.57). Lip augmentation with hyaluronic acid fillers produced a long-term cosmetic result. Due to the lidocaine content, procedural pain was low and transient. Accordingly, a high degree of patient satisfaction was achieved that was maintained throughout the observation period.

  3. Design and Building of an Inexpensive and Sturdy Pipet Bulb Filler Port

    ERIC Educational Resources Information Center

    Danielson, Neil D.; Danielson, Alex P.

    2015-01-01

    A pipet filler port has been constructed from a 1/4 in. NPT-1/4 in. or -3/8 in. barbed end Kynar plastic male connector fitting and a washer (cut from a latex rubber hose) inserted into the NPT end. The barbed end can secure reliably different sized rubber bulbs such as 1 oz (30 mL pipet capacity) and 2 oz (60 mL pipet capacity) types, and the 1/4…

  4. Dermal filler complications: a clinicopathologic study with a spectrum of histologic reaction patterns.

    PubMed

    El-Khalawany, Mohamed; Fawzy, Sameh; Saied, Asmaa; Al Said, Mohammed; Amer, Ahmed; Eassa, Bayoumi

    2015-02-01

    Although dermal fillers are generally accepted as safe and well-tolerable cosmetic tools, adverse reaction still forms a prognostic problem. The aim of this study was to demonstrate the clinicopathologic patterns of dermal filler complications in our center. A 5-year single-center study that included patients complained from filler complications and referred to the dermatopathology unit in Al-Azhar University for histologic assessment. The study included 38 female patients with an average age of 47 years. The mean onset of complications was 14.6 ± 5.27 months after injection. The injected material included hyaluronic acid (18.4%), silicone (52.6%), bovine collagen (15.8%) and polyacrylamide hydrogel (13.2%). Most lesions were located on the face (55.3%), less commonly on the hands (18.4%), buttocks (21%), and rarely on the vulva (5.3%). The clinical spectrum included indurated plaque (23.7%), nodular lesion (31.6%), inflammatory mass (15.8%), atrophic lesion (10.5%), skin discoloration (13.1%) and ulceration (5.3%). Histologically, granulomatous reaction was the major finding, either a foreign body granuloma (34.2%) or infectious granuloma (13.2%). Other histologic reactions included dermal pseudocysts with chronic inflammation (26.3%), dermal fibrosis (15.8%), and eosinophilic panniculitis (10.5%). Our results confirmed that dermal fillers could be manifested with variable clinical presentations and show different histologic reactions. Because of long-standing duration until complications occur, history taking is crucial and should be emphasized in every suspected patient. It is hoped that this article will increase awareness for recognition of these variable complications and help select the appropriate therapy.

  5. Basic principles of creating a new generation of high- temperature brazing filler alloys

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Suchkov, A. N.

    2016-04-01

    The development of new materials is based on the formation of a structural-phase state providing the desired properties by selecting the base and the complex of alloying elements. The development of amorphous filler alloys for a high-temperature brazing has its own features that are due to the limited life cycle and the production method of brazing filler alloys. The work presents a cycle of analytical and experimental materials science investigations including justification of the composition of a new amorphous filler alloy for brazing the products from zirconium alloys at the temperature of no more than 800 °C and at the unbrazing temperature of permanent joints of more than 1200 °C. The experimental alloys have been used for manufacture of amorphous ribbons by rapid quenching, of which the certification has been made by X-ray investigations and a differential-thermal analysis. These ribbons were used to obtain permanent joints from the spacer grid cells (made from the alloy Zr-1% Nb) of fuel assemblies of the thermal nuclear reactor VVER-440. The brazed samples in the form of a pair of cells have been exposed to corrosion tests in autoclaves in superheated water at a temperature of 350 °C, a pressure of 160 MPa and duration of up to 6,000 h. They have been also exposed to destructive tests using a tensile machine. The experimental results obtained have made it possible to propose and patent a brazing filler alloy of the following composition: Zr-5.5Fe-(2.5-3.5)Be-1Nb-(5-8)Cu-2Sn-0.4Cr-(0.5-1.0)Ge. Its melting point is 780 °C and the recommended brazing temperature is 800°C.

  6. Magneto-rheological response of elastomer composites with hybrid-magnetic fillers

    NASA Astrophysics Data System (ADS)

    Aloui, Sahbi; Klüppel, Manfred

    2015-02-01

    We study the magneto-rheological response of hybrid-magnetic elastomer composites consisting of two different magnetic filler particles at fixed overall concentration. Thereby, we focus on an optimization of mechanical and magnetic properties by combining highly reinforcing magnetic nano-particles (MagSilica) with micro-sized carbonyl-iron particles (CIP), which exhibit high switch ability in a magnetic field. We observe a symbiotic interaction of both filler types, especially in the case when an orientation of the magnetic filler particles is achieved due to curing in an external magnetic field. The orientation effect is significant only for the micro-sized CIP particles with high saturation magnetization, indicating that the induced magnetic moment for the nano-sized particles is too small for delivering sufficient attraction between the particles in an external magnetic field. A pronounced switching behavior is observed for the non-cross-linked melts with 15 and 20 vol.% CIP, whereby the small strain modulus increases by more than 50%. For the sample without the coupling agent silane, one even observes a relative modulus increase of about 140%, which can be related to the combined effect of a higher mobility of the particles without a silane layer and the ability of the particles to come in close contact when they are arranged in strings along the field lines. For the cross-linked samples, a maximum switching effect of about 30% is achieved for the system with pure CIP. This magneto-sensitivity decreases successively if CIP is replaced by MagSilica, while the tensile strength of the systems increases significantly. The use of silane reduces the switching effect, but it is necessary for a good mechanical performance by delivering strong chemical bonding of the magnetic filler particles to the polymer matrix.

  7. Microstructure-based modelling of arbitrary deformation histories of filler-reinforced elastomers

    NASA Astrophysics Data System (ADS)

    Lorenz, H.; Klüppel, M.

    2012-11-01

    A physically motivated theory of rubber reinforcement based on filler cluster mechanics is presented considering the mechanical behaviour of quasi-statically loaded elastomeric materials subjected to arbitrary deformation histories. This represents an extension of a previously introduced model describing filler induced stress softening and hysteresis of highly strained elastomers. These effects are referred to the hydrodynamic reinforcement of rubber elasticity due to strain amplification by stiff filler clusters and cyclic breakdown and re-aggregation (healing) of softer, already damaged filler clusters. The theory is first developed for the special case of outer stress-strain cycles with successively increasing maximum strain. In this more simple case, all soft clusters are broken at the turning points of the cycle and the mechanical energy stored in the strained clusters is completely dissipated, i.e. only irreversible stress contributions result. Nevertheless, the description of outer cycles involves already all material parameters of the theory and hence they can be used for a fitting procedure. In the general case of an arbitrary deformation history, the cluster mechanics of the material is complicated due to the fact that not all soft clusters are broken at the turning points of a cycle. For that reason additional reversible stress contributions considering the relaxation of clusters upon retraction have to be taken into account for the description of inner cycles. A special recursive algorithm is developed constituting a frame of the mechanical response of encapsulated inner cycles. Simulation and measurement are found to be in fair agreement for CB and silica filled SBR/BR and EPDM samples, loaded in compression and tension along various deformation histories.

  8. Effect of Carbon-Black Filler and Processing Oil on Ultrasound Devulcanization of Isoprene Rubber

    NASA Astrophysics Data System (ADS)

    von Meerwall, Ernst; Sun, Ximei; Joshi, Tirtha; Isayev, Avraam

    2007-10-01

    In support of a novel approach to rubber recycling, we continue our investigation of the effects of intense ultrasound on isoprene rubber by studying molecular and segmental mobilities of the host rubber vulcanized in the presence of 35 phr carbon-black filler with and without 10 phr plasticizing processing oil. We measured wide-line transverse NMR relaxation (T2). The magnetization decays followed a bimodal distribution, distinguishing physical and chemical network (short T2) from lighter sol, dangling chain ends, and trace oligomers (long T2). Pulsed-gradient diffusion measurements failed because the high melt molecular weight contained insufficient longer-T2 sol components. It was found that, corrected for oil where present, chemically extractable sol fractions were reduced to about 2/3 of those in unfilled vulcanizates at equal ultrasound exposure. Black filler modestly decreased all segmental mobilities, whereas processing oil slightly increased them. This relative insensitivity to additives supports earlier conclusions that the efficiency of the ultrasound method is uncompromised by the solid filler and extender oils used in rubber-based industrial products.

  9. Effects of composition and setting environment on mechanical properties of a composite bone filler.

    PubMed

    Brown, Matthew E; Zou, Yuan; Dziubla, Thomas D; Puleo, David A

    2013-04-01

    Large bone defects can be difficult to treat, even with autografts. Bone graft substitutes, such as calcium sulfate (CS), calcium phosphate cements, and hydroxyapatite, are receiving significant attention because of their biocompatibility and potential for incorporation of therapeutic agents. To create a bone filler capable of treating irregularly shaped, often infected, bony defects, microspheres and a plasticizer were added to CS, resulting in a moldable composite capable of being loaded with biomolecules. Different compositions and setting environments, such as immersion in saline, a humidified incubator, or room temperature air, were investigated to determine their effects on mechanical strength and degradation rate of the composites. Addition of any other components to the CS, such as plasticizers or microspheres composed of biopolymers (gelatin, hyaluronan [HY], cellulose acetate phthalate, and carboxymethylcellulose), increased its functionality but reduced mechanical strength. The compressive modulus and strength of the composite fillers ranged from 10 to 350 MPa and 5 to 20 MPa, respectively, depending on the composition. This moldable bone filler degraded in 18-20 days when placed in solution and was able to set in harsh environments given a composition that did not retain too much water. By combining a plasticizing agent, such as HY with CS, a composite material has been developed that is moldable, sets in situ, and maintains its mechanical stability. With these desirable properties for a bone graft substitute and the potential to be loaded with bioactive drugs, this composite material merits further investigation for the future treatment of bony defects.

  10. Polyamide/silver antimicrobials: effect of filler types on the silver ion release.

    PubMed

    Kumar, Radhesh; Howdle, Steve; Münstedt, Helmut

    2005-11-01

    The efficiency of various silver-based antimicrobial fillers (elementary silver and silver substituted materials) in polyamide (PA) toward their silver ion (Ag+) release characteristics in an aqueous medium was investigated and discussed. Anode stripping voltammetry (ASV) was used for the quantitative estimation of Ag+ release from these composites. The biocidal (Ag+) release from the composites was found to be dependent on the time of soaking in water and the nature of the filler. The long-term Ag+ release capability of the elementary silver-based PA/Ag composite is promising compared with the commercial counterparts. The silver ion release potential of polyamide composites where the silver filling was performed by using supercritical carbon dioxide (scCO2) is also discussed. The composites release Ag+ at a concentration level capable of rendering antimicrobial efficacy and proved to be active against the microbes. A good agreement exists between the Ag+ release experiments and antimicrobial test results. The observed results on the influence of the nature of the filler and crystallinity on the biocidal release and the varying long-term release properties could be helpful in the design of industrially relevant biomaterials.

  11. Properties and osteoblast cytocompatibility of self-curing acrylic cements modified by glass fillers.

    PubMed

    Lopes, P; Garcia, M P; Fernandes, M H; Fernandes, M H V

    2013-11-01

    Materials filled with a silicate glass (MSi) and a borate glass (MB) were developed and compared in terms of their in vitro behavior. The effect of filler composition and concentration (0, 30, 40 and 50 wt%) on the curing parameters, residual monomer, water uptake, weight loss, bioactivity, mechanical properties (bending and compression) and osteoblast cytocompatibility was evaluated. The addition of bioactive glass filler significantly improved the cements curing parameters and the mechanical properties. The most relevant results were obtained for the lower filler concentration (30 t%) a maximum flexural strength of 40.4 Pa for MB3 and a maximum compressive strength of 95.7 MPa for MSi3. In vitro bioactivity in acellular media was enhanced by the higher glass contents in the cements. Regarding the biological assessment, the incorporation of the silicate glass significantly improved osteoblast cytocompatibility, whereas the presence of the borate glass resulted in a poor cell response. Nevertheless it was shown that the surviving cells on the MB surface were in a more differentiated stage compared to those growing over non-filled poly(methyl methacrylate). Results suggest that the developed formulations offer a high range of properties that might be interesting for their use as self-curing cements.

  12. Microstructural and phase evolution in metakaolin geopolymers with different activators and added aluminosilicate fillers

    NASA Astrophysics Data System (ADS)

    Sarkar, Madhuchhanda; Dana, Kausik; Das, Sukhen

    2015-10-01

    This work aims to investigate the microstructural and phase evolution of alkali activated metakaolin products with different activators and added aluminosilicate filler phases. The added filler phases have different reactivity to the alkali activated metakaolin system. Microstructural evolution in the alkali activated products has been investigated by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM). Variation in strength development in alkali activated metakaolin products was followed by compressive strength measurement test. Microstructural study shows that in case of metakaolin with NaOH activator crystalline sodalite formed in all the product samples irrespective of the added filler phases. The microstructure of these NaOH activated products investigated by FESEM showed crystalline and inhomogeneous morphology. Mixed activator containing both NaOH and sodium silicate in a fixed mass ratio formed predominantly amorphous phase. Microstructure of these samples showed more homogeneity than that of NaOH activated metakaolin products. The study further shows that addition of α-Al2O3 powder, non reactive phase to the alkali activated metakaolin system when used in larger amount increased crystalline phase in the matrix. α-Al2O3 powder addition increased the compressive strength of the product samples for both the activator compositions. Added phase of colloidal silica, reactive to the alkali activated metakaolin system when used in larger amount was found to increase amorphous nature of the matrix. Addition of colloidal silica influenced the compressive strength property differently with different activator compositions.

  13. Characterization of morphology and composition of inorganic fillers in dental alginates.

    PubMed

    Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Consani, Simonides; de Carvalho, Rodrigo Varella; Lopes, Murilo Baena; Meneghel, Luciana Lira; da Silva, Fabiane Borges; Sinhoreti, Mário Alexandre Coelho

    2014-01-01

    Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450(°)C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C-81.59%, H-79.89%, O-78.87%, H5-77.95%, JP-66.88%, wt). The filler fractions in volume (vt) were as follows: H5-84.85%, JP-74.76%, H-70.03%, O-68.31%, and C-56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.

  14. Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites.

    PubMed

    Perets, Yulia; Matzui, Lyudmila; Vovchenko, Lyudmila; Ovsiienko, Irina; Yakovenko, Olena; Lazarenko, Oleksandra; Zhuravkov, Alexander; Brusylovets, Oleksii

    2016-12-01

    In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment at 20-min ultraviolet exposure. The electric resistance of the samples was measured by two- or four-probe method and teraohmmeter E6-13. Several characterization techniques were employed to identify the mechanisms behind the improvements in the electrical properties, including SEM and FTIR spectrum analysis.It is established that the changes of the relative intensities of the bands in FTIR spectra indicate the destruction of the carboxyl group -COOH and group -OH. Electrical conductivity of composites has percolation character and graphite nanoplatelets (ultraviolet ozone treatment for 20 min) addition which leads to a decrease of percolation threshold 0.005 volume fraction and increase values of electrical conductivity (by 2-3 orders of magnitude) above the percolation threshold in comparison with composite materials-graphite nanoplatelets/epoxy resin. The changes of the value and behavior of temperature dependences of the electrical resistivity of epoxy composites with ultraviolet/ozone-treated graphite nanoparticles have been analyzed within the model of effective electrical conductivity. The model takes into account the own electrical conductivity of the filler and the value of contact electric resistance between the filler particles of the formation of continuous conductive pathways.

  15. Structure, scattering patterns and phase behavior of polymer nanocomposites with nonspherical fillers

    SciTech Connect

    Hall, Lisa M; Schweizer, Kenneth S

    2010-01-01

    Polymer nanocomposites made with carbon nanotubes, clay platelets, laponite disks and other novel nonspherical fillers have been the focus of many recent experiments. However, the effects of nanoparticle shape on statistical structure, polymer-mediated effective interactions, scattering patterns, and phase diagrams are not well understood. We extend and apply the polymer reference interaction site model liquid state theory to study the equilibrium properties of pseudo one-, two- and threedimensional particles (rod, disk, cube) of modest steric anisotropy and fixed space-filling volume in a dense adsorbing homopolymer melt up to relatively high volume fractions. The second virial coefficient, nanoparticle potential-of-mean force, osmotic compressibilities, and isotropic spinodal demixing boundaries have been determined. The entropic depletion attraction between nanoparticles is dominant for weakly adsorbing polymer, while strongly adsorbing chains induce a bridging attraction. Intermediate interfacial cohesion results in the formation of a steric stabilizing adsorbed polymer layer around each nanoparticle, which can partially damp inter-filler collective order on various length scales and increase order on an averaged length scale. The details of depletion, stabilization, or bridging behavior are shape-dependent and often, but not always, trends are monotonic with increasing filler dimensionality. Distinctive nanoparticle shape-dependent low angle features are predicted for the collective polymer structure factor associated with competing macrophase fluctuations and microphase-like ordering. The influence of nonzero mixture compressibility on the scattering profiles is established.

  16. Recent developments in annual growth lignocellulosics as reinforcing fillers in thermoplastics

    SciTech Connect

    Jacobson, R.E.; Caulfield, D.F.; Rowell, R.M.

    1995-11-01

    Recent interest in reducing the environmental impact of materials is leading to the development of newer agricultural based materials that can reduce the stress to the environment. Several billion pounds of fillers and reinforcements are used annually in the plastics industry and their use is likely to increase, to reduce the amount of plastics used in a product, with improved compounding technology and new coupling agents. The use of lignocellulosic fibers (eg. kenaf, jute, etc.) as reinforcing fillers in plastics has generated significant interest in recent years. The use of lignocellosic fibers permit the use of high volume fillings due to their lower densities and non-abrasive properties, and therefore reduces the use of plastics in a product. The specific tensile and flexural moduli of a 50% weight of glass fiber-PP injection molded composite and are superior to typical calcium carbonate or talc based PP composites. Results indicate that annual growth lignocellulosic wastes and fibers are viable reinforcing fillers as long as the right processing conditions and aids are used, and for applications where the higher water absorption of the agro-base fiber composite is not critical.

  17. Effect of Gum arabic on distribution behavior of nanocellulose fillers in starch film

    NASA Astrophysics Data System (ADS)

    Vigneshwaran, Nadanathangam; Ammayappan, L.; Huang, Qingrong

    2011-09-01

    Uniform distribution of nanofillers in polymer matrix is posing a major challenge in exploiting the full potential of nanomaterials. Various fillers are being evaluated to improve the performance of biopolymer films like starch. In this work, nanocellulose is used as fillers to increase the performance characteristics of starch film. Due to high surface energy and hydrophilic nature of nanocellulose, they tend to aggregate during the film forming process. To circumvent this problem, Gum arabic (GA) was added to distribute the nanocellulose uniformly. GA helps in reduction of surface energy (as analyzed by contact angle) and thus facilitates the uniform distribution of nanocellulose (as demonstrated through polarized light microscopy). Nanocellulose as filler improved the tensile strength of starch film by 2.5 times while that of uniformly distributed nanocellulose by 3.5 times. Moreover, while nanocellulose as such could reduce the water vapor permeability of starch film by 1.4 times, uniformly distributed nanocellulose reduced it by 2 times proving the importance of GA. Starch film filled with nanocellulose and GA will be a 100% biopolymer-based system having potential demand in eco-friendly applications.

  18. Prevention and management of vision loss relating to facial filler injections

    PubMed Central

    Loh, Kwok Thye David; Chua, Jun Jin; Lee, Hung Ming; Lim, Joyce Teng-Ee; Chuah, Gerard; Yim, Benjamin; Puah, Boon Kwang

    2016-01-01

    INTRODUCTION With the increased use of filler and fat injections for aesthetic purposes, there has been a corresponding increase in the incidence of complications. Vision loss as an uncommon but devastating vascular side effect of filler injections was the focus of this paper. METHODS A review committee, consisting of plastic surgeons, aesthetic medical practitioners, ophthalmologists and dermatologists from Singapore, was convened by the Society of Aesthetic Medicine (Singapore) to review and recommend methods for the prevention and management of vision loss secondary to filler injections. RESULTS The committee agreed that prevention through proper understanding of facial anatomy and good injection techniques was of foremost importance. The committee acknowledged that there is currently no standard management for these cases. Based on existing knowledge, injectors may follow a proposed course of action, which can be divided into immediate, definitive and supportive. The goals were to reduce intraocular pressure, dislodge the embolus to a more peripheral location, remove or reverse central ischaemia, preserve residual retinal function, and prevent the deterioration of vision. Dissolving a hyaluronic acid embolus remains a controversial option. It is proposed that injectors must be trained to recognise symptoms, institute immediate actions and refer patients without delay to dedicated specialists for definitive and supportive management. CONCLUSIONS Steps to prevent and manage vision loss based on current evidence and best clinical practices are outlined in this paper. Empirical referral to any emergency department or untrained doctors may lead to inordinate delays and poor outcomes for the affected eye. PMID:27549227

  19. Characterization of Morphology and Composition of Inorganic Fillers in Dental Alginates

    PubMed Central

    Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Consani, Simonides; de Carvalho, Rodrigo Varella; Lopes, Murilo Baena; Meneghel, Luciana Lira; da Silva, Fabiane Borges; Sinhoreti, Mário Alexandre Coelho

    2014-01-01

    Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450°C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C—81.59%, H—79.89%, O—78.87%, H5—77.95%, JP—66.88%, wt). The filler fractions in volume (vt) were as follows: H5—84.85%, JP—74.76%, H—70.03%, O—68.31%, and C—56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology. PMID:25165690

  20. Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites

    NASA Astrophysics Data System (ADS)

    Roes, A. L.; Tabak, L. B.; Shen, L.; Nieuwlaar, E.; Patel, M. K.

    2010-08-01

    The goal of our study was to investigate the potential benefits of reinforcing polymer matrices with nanoobjects for structural applications by looking at both the mechanical properties and environmental impacts. For determining the mechanical properties, we applied the material indices defined by Ashby for stiffness and strength. For the calculation of environmental impacts, we applied the life cycle assessment methodology, focusing on non-renewable energy use (NREU). NREU has shown to be a good indicator also for other environmental impacts. We then divided the NREU by the appropriate Ashby index to obtain the `functionality-based NREU'. We studied 23 different nanocomposites, based on thermoplastic and thermosetting polymer matrices and organophilic montmorillonite, silica, carbon nanotubes (single-walled and multiwalled) and calcium carbonate as filler. For 17 of these, we saw a decrease of the functionality-based NREU with increasing filler content. We draw the conclusion that the use of nanoobjects as filler can have benefits from both an environmental point of view and with respect to mechanical properties.

  1. Tensile Residual Stress Mitigation Using Low Temperature Phase Transformation Filler Wire in Welded Armor Plates

    SciTech Connect

    Feng, Zhili; Bunn, Jeffrey R; Tzelepis, Demetrios A; Payzant, E Andrew; Yu, Xinghua

    2016-01-01

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stresses in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.

  2. Performance of PDMS membranes in pervaporation: effect of silicalite fillers and comparison with SBS membranes.

    PubMed

    Dobrak, A; Figoli, A; Chovau, S; Galiano, F; Simone, S; Vankelecom, I F J; Drioli, E; Van der Bruggen, B

    2010-06-01

    Laboratory-made silicalite filled PDMS membranes were tested by means of concentration and temperature influence on the membrane performance in removal of ethanol from ethanol/water mixtures. This allowed studying the applicability of solution-diffusion model in the transport mechanism description. Experiments were performed by varying the ethanol concentration in the feed and temperature. Two types of fillers were incorporated into the PDMS network: commercial zeolite silicalite (CBV 3002) and laboratory-made colloidal silicalite-1. Obtained results were then compared with data gathered for unfilled PDMS membranes to examine the effect of fillers incorporation. Moreover, the comparison with novel block co-polymer based porous and dense SBS membranes was done. It was found that the solution-diffusion model was a good representation of ethanol transport through both filled and unfilled PDMS membranes, whereas the water flux did not obey this model due to the swelling effects. Incorporation of the fillers increased membrane stability and improved the selectivity. Performance of the SBS membranes characterized by a dense structure was found to be similar to the performance of filled PDMS membranes.

  3. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    NASA Astrophysics Data System (ADS)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae

  4. Relationships between gap makers and gap fillers in an Arkansas floodplain forest

    USGS Publications Warehouse

    King, S.L.; Antrobus, T.J.

    2005-01-01

    Question: In floodplain forests, does frequent flooding allow for self-replacement of shade-intolerant tree species or do small canopy gap openings lead to replacement by shade-tolerant tree species? Location: Cache River, Arkansas, US; 55 m a.s.l. Methods: The species, diameter-at-breast height, and elevation of primary gap-maker trees were determined for new gaps from 1995-1998. The size and species of gap-filler trees were identified and placed into three classes: definitive, edge, or interior. Transition probabilities were determined. Results: The dominant shade-intolerant species Quercus texana is being replaced primarily by the more shade-tolerant A. rubrum var. drummondii, Fraxinus spp. and Ulmus americana. Only 20 of 2767 gap fillers were Q. texana. Replacement probabilities are not constant across elevations, however, as the least shade-tolerant of the three most common species of definitive gap fillers, Fraxinus spp., occurred at lower elevations than A. rubrum var. drummondii, and U. americana. Conclusions: The contention that frequent flooding would allow for self-replacement of shade-intolerant species was only partially supported. The small canopy gaps undoubtedly influenced canopy replacement processes. ?? IAVS; Opulus Press.

  5. The effect of filler aspect ratio on the electromagnetic properties of carbon-nanofibers reinforced composites

    NASA Astrophysics Data System (ADS)

    De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V.; Guadagno, L.; Raimondo, M.

    2015-08-01

    The effect of filler aspect ratio on the electromagnetic properties of epoxy-amine resin reinforced with carbon nanofibers is here investigated. A heat treatment at 2500 °C of carbon nanofibers seems to increase their aspect ratio with respect to as-received ones most likely due to a lowering of structural defects and the improvement of the graphene layers within the dixie cup conformation. These morphological differences revealed by Raman's spectroscopy and scanning electron microscopy analyses may be responsible for the different electrical properties of the resulting composites. The DC characterization of the nanofilled material highlights an higher electrical conductivity and a lower electrical percolation threshold for the heat-treated carbon nanofibers based composites. In fact, the electrical conductivity is about 0.107 S/m and 1.36 × 10-3 S/m for the nanocomposites reinforced with heat-treated and as received fibers, respectively, at 1 wt. % of nanofiller loading, while the electrical percolation threshold falls in the range [0.05-0.32]wt. % for the first nanocomposites and above 0.64 wt. % for the latter. Moreover, also a different frequency response is observed since the critical frequency, which is indicative of the transition from a resistive to a capacitive-type behaviour, shifts forward of about one decade at the same filler loading. The experimental results are supported by theoretical and simulation studies focused on the role of the filler aspect ratio on the electrical properties of the nanocomposites.

  6. Characterization of carbon silica hybrid fillers obtained by pyrolysis of waste green tires by the STEM–EDX method

    SciTech Connect

    Al-Hartomy, Omar A.; Al-Ghamdi, Ahmed A.; Al Said, Said A. Farha; Dishovsky, Nikolay; Ward, Michael B.; Mihaylov, Mihail; Ivanov, Milcho

    2015-03-15

    Dual phase carbon–silica hybrid fillers obtained by pyrolysis-cum-water vapor of waste green tires have been characterized by energy dispersive X-ray spectroscopy in a scanning transmission electron microscope, silicate analysis, weight analysis, atomic absorption spectroscopy and by inductively coupled plasma–optical emission spectroscopy. The results achieved have shown that the location and distribution of the phases in the carbon silica hybrid fillers as well as their most essential characteristics are influenced by the pyrolysis conditions. The carbon phase of the filler thus obtained is located predominantly in the space among silica aggregates which have already been existing while it has been formed by elastomer destruction in the course of pyrolysis. The presence of ZnS also has been found in the hybrid fillers investigated. - Highlights: • Dual phase fillers obtained by pyrolysis of waste green tires have been characterized. • The STEM–EDX method was used for characterization. • The phase distributions in the fillers are influenced by the pyrolysis conditions.

  7. Tuning filler shape, surface chemistry and ion content in nanofilled polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ganapatibhotla, Lalitha V. N. R.

    We investigate how nanofiller surface chemistry and aspect ratio affect the performance of nanofilled solid polymer electrolytes. Polymer-based electrolytes are an attractive alternative to the organic electrolytes currently used in lithium ion batteries. We characterize acidic nanoparticle filled electrolytes and compare them to neutral particle-filled electrolytes previously measured in our lab. Dielectric spectroscopy measurements indicate that the highest increase in conductivity occurs at the eutectic composition (EO/Li=10) and is independent of filler surface chemistry. We measure PEO dynamics using quasi-elastic neutron scattering and do not observe any change in polymer dynamics with particle surface chemistry. When we examine the elastic incoherent structure factor associated with the rotational process, fillers are found to restrict the rotation of the highly conducting PEO6:LiClO4 tunnels. At the eutectic composition, these tunnels are stabilized at the filler surface even above PEO melting temperature. Marginal stability theory predicts formation of alternating layers of coexisting phases at the eutectic composition. We propose a new mechanism, via stabilization of alternating layers of PEO and highly conducting PEO 6:LiClO4 tunnels at the filler surface. When compared to spherical particles, more such structures would be stabilized at a filler surface with high aspect ratio. Consistent with this hypothesis, neutral gamma-Al2O3 nanowhiskers (2-4 nm in diameter and 200-400 nm in length) intensify the effect of neutral gamma-Al 2O3 nanoparticles. The diameters of the two fillers are similar, but the change in aspect ratio (1 to 100) improves conductivity by a factor of 5. This enhancement occurs at battery operation temperatures! Although the change in aspect ratio does not affect thermal transitions and segmental dynamics at optimal whisker loading, the rotation of PEO6 remnants is distinct at the eutectic composition. Because the mechanism by which

  8. Dispersed metal-toughened ceramics and ceramic brazing

    SciTech Connect

    Moorhead, A.J.; Tiegs, T.N.; Lauf, R.J.

    1983-01-01

    An alumina (Al/sub 2/O/sub 3/) based material that contains approximately 1 vol % finely dispersed platinum or chromium was developed for use in high temperature thermal-shock resistant electrical insulators. The work at ORNL is divided into two areas: (1) development of DMT ceramics; and (2) development of brazing filler metals suitable for making ceramic-to-ceramic and ceramic-to-metal brazements. The DMT ceramics and brazements are intended for service at elevated temperatures and at high stress levels in the dirty environments of advanced heat engines. The development and characterization of DMT ceramics includes processing (powder preparation, densification and heat treatment) and detailed measurement of mechanical and physical properties (strength, fracture toughness, and thermal conductivity). The brazing work includes: (1) the formulation and melting of small quantities of experimental brazing filler metals; (2) evaluation of the wetting and bonding behavior of these filler metals on Al/sub 2/O/sub 3/, partially stabilized zirconia and ..cap alpha..-SiC in a sessile drop apparatus; and (3) determine the short-term strength and fracture toughness of brazements.

  9. Preparation of ceramic filler from reusing sewage sludge and application in biological aerated filter for soy protein secondary wastewater treatment.

    PubMed

    Wu, Suqing; Qi, Yuanfeng; Yue, Qinyan; Gao, Baoyu; Gao, Yue; Fan, Chunzhen; He, Shengbing

    2015-01-01

    Dehydrated sewage sludge (DSS) and clay used as raw materials for preparation of novel media-sludge ceramic filler (SCF) and SCF employed in a lab-scale up-flow biological aerated filter (BAF) were investigated for soy protein secondary wastewater treatment. Single factor experiments were designed to investigate the preparation of SCF, and the characteristics (microstructure properties, toxic metal leaching property and other physical properties) of SCF prepared under the optimum conditions were examined. The influences of media height, hydraulic retention time (HRT) and air-liquid ratio (A/L) on chemical oxygen demand (CODcr) and ammonia nitrogen (NH4(+)-N) removal rate were studied. The results showed that the optimum addition of DSS was approximately 25.0 wt% according to the physical properties of SCF (expansion ratio of 53.0%, v/v, water absorption of 8.24 wt%, bulk density of 350.4 kg m(-3) and grain density of 931.5 kg m(-3)), and the optimum conditions of BAF system were media height of 75.0 cm, HRT of 10.0 h and A/L of 15:1 in terms of CODcr and NH4(+)-N removal rate (91.02% and 90.48%, respectively). Additionally, CODcr and NH4(+)-N (81.6 and 15.3 mg L(-1), respectively) in the final effluent of BAF system met the national standard (CODcr ≤ 100 mg L(-1), NH4(+)-N ≤ 25.0 mg L(-1), GB 18918-2002, secondary standard).

  10. Mesoporous Silica Gel–Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    PubMed Central

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-01-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4–30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565

  11. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    NASA Astrophysics Data System (ADS)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-11-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.

  12. Remineralizing amorphous calcium phosphate based composite resins: the influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness

    PubMed Central

    Marović, Danijela; Šariri, Kristina; Demoli, Nazif; Ristić, Mira; Hiller, Karl-Anton; Škrtić, Drago; Rosentritt, Martin; Schmalz, Gottfried; Tarle, Zrinka

    2016-01-01

    Aim To determine if the addition of inert fillers to a bioactive dental restorative composite material affects its degree of conversion (DC), polymerization shrinkage (PS), and microhardness (HV). Methods Three amorphous calcium phosphate (ACP)-based composite resins: without added fillers (0-ACP), with 10% of barium-glass fillers (Ba-ACP), and with 10% of silica fillers (Si-ACP), as well as commercial control (Ceram•X, Dentsply DeTrey) were tested in laboratory conditions. The amount of ACP (40%) and the composition of the resin mixture (based on ethoxylated bisphenol A dimethacrylate) was the same for all ACP materials. Fourier transform infrared spectroscopy was used to determine the DC (n = 40), 20 min and 72 h after polymerization. Linear PS and Vickers microhardness (n = 40) were also evaluated. The results were analyzed by paired samples t test, ANOVA, and one-way repeated measures ANOVA with Student-Newman-Keuls or Tukey’s post-hoc test (P = 0.05). Results The addition of barium fillers significantly increased the DC (20 min) (75.84 ± 0.62%) in comparison to 0-ACP (73.92 ± 3.08%), but the addition of silica fillers lowered the DC (71.00 ± 0.57%). Ceram•X had the lowest DC (54.93 ± 1.00%) and linear PS (1.01 ± 0.24%) but the highest HV (20.73 ± 2.09). PS was significantly reduced (P < 0.010) in both Ba-ACP (1.13 ± 0.25%) and Si-ACP (1.17 ± 0.19%) compared to 0-ACP (1.43 ± 0.21%). HV was significantly higher in Si-ACP (12.82 ± 1.30) than in 0-ACP (10.54 ± 0.86) and Ba-ACP (10.75 ± 0.62) (P < 0.010). Conclusion Incorporation of inert fillers to bioactive remineralizing composites enhanced their physical-mechanical performance in laboratory conditions. Both added fillers reduced the PS while maintaining high levels of the DC. Silica fillers additionally moderately improved the HV of ACP composites. PMID:27815937

  13. Do you know where your fillers go? An ultrastructural investigation of the lips

    PubMed Central

    Vent, Julia; Lefarth, Florian; Massing, Thomas; Angerstein, Wolfgang

    2014-01-01

    Aim To investigate the exact location and position of hyaluronic acid fillers in the perioral region by ultrasound and optical coherence tomography. Introduction To date, there are few in vivo investigations in humans on the exact positioning of injectable hyaluronic acid fillers, and severe complications such as hematoma and thromboembolism are rarely addressed. Materials and methods There were nine female patients investigated in this pilot study. All of them were periorally injected with hyaluronic acid. The exact product, amount, and locations, as well as the injection techniques, were recorded and compared. Before, immediately after, and 18 days after injection, photo documentation as well as high-resolution ultrasonography and optical coherence tomography of the lip surface were performed. Results Minor bruising occurred, which resolved within 7 to 9 days. On day 18, no more hemorrhage could be detected. Injected material distributed well in the tissue, and no embolism or thrombosis occurred. However, the injected material came close (up to 1 mm) to important structures such as blood vessels. Lip wrinkles improved, and the lip surface was smoother and more even. Conclusion Hyaluronic acid injections can improve aesthetics and reduce fine wrinkles of the lips. In the patients investigated in this study, compression of structures such as vessels and nerve fibers did not occur, nor did any severe complications result from injection. However, one must be aware of serious complications (eg, hematoma, thromboembolism) and the important anatomic structures (eg, orbicularis oris muscle, vessels, and nerves), and injecting physicians should always have hyaluronidase as a rescue medication at hand. Summary Hyaluronic acid is a suitable tool for lip augmentation and reduction of fine lines; however, one must be aware of anatomic structures when injecting filler material into the lips and perioral area, and be familiar with the injection techniques. PMID:25018646

  14. Controlling dynamic mechanical properties and degradation of composites for bone regeneration by means of filler content.

    PubMed

    Barbieri, Davide; de Bruijn, Joost D; Luo, Xiaoman; Farè, Silvia; Grijpma, Dirk W; Yuan, Huipin

    2013-04-01

    Bone tissue is a dynamic composite system that adapts itself, in response to the surrounding daily (cyclic) mechanical stimuli, through an equilibrium between growth and resorption processes. When there is need of synthetic bone grafts, the biggest issue is to support bone regeneration without causing mechanically-induced bone resorption. Apart from biological properties, such degradable materials should initially support and later leave room to bone formation. Further, dynamic mechanical properties comparable to those of bone are required. In this study we prepared composites comprising calcium phosphate and L-lactide/D-lactide copolymer in various content ratios using the extrusion method. We evaluated the effect of the inorganic filler amount on the polymer phase (i.e. on the post-extrusion intrinsic viscosity). We then studied their in vitro degradation and dynamic mechanical properties (in dry and humid conditions). By increasing the filler content, we observed significant decrease of the intrinsic viscosity of the polymer phase during the extrusion process. Composites containing higher amounts of apatite had faster degradation, and were also mechanically stiffer. But, due to the lower intrinsic viscosity of their polymer phase, they had larger damping properties. Besides this, higher amounts of apatite also rendered the composites more hydrophilic letting them absorb more water and causing them the largest decrease in stiffness. These results show the importance of filler content in controlling the properties of such composites. Further, in this study we observed that the viscoelastic properties of the composite containing 50wt% apatite were comparable to those of dry human cortical bone.

  15. The effect of filler aspect ratio on the electromagnetic properties of carbon-nanofibers reinforced composites

    SciTech Connect

    De Vivo, B.; Lamberti, P.; Spinelli, G. Tucci, V.; Guadagno, L.; Raimondo, M.

    2015-08-14

    The effect of filler aspect ratio on the electromagnetic properties of epoxy-amine resin reinforced with carbon nanofibers is here investigated. A heat treatment at 2500 °C of carbon nanofibers seems to increase their aspect ratio with respect to as-received ones most likely due to a lowering of structural defects and the improvement of the graphene layers within the dixie cup conformation. These morphological differences revealed by Raman's spectroscopy and scanning electron microscopy analyses may be responsible for the different electrical properties of the resulting composites. The DC characterization of the nanofilled material highlights an higher electrical conductivity and a lower electrical percolation threshold for the heat-treated carbon nanofibers based composites. In fact, the electrical conductivity is about 0.107 S/m and 1.36 × 10{sup −3} S/m for the nanocomposites reinforced with heat-treated and as received fibers, respectively, at 1 wt. % of nanofiller loading, while the electrical percolation threshold falls in the range [0.05–0.32]wt. % for the first nanocomposites and above 0.64 wt. % for the latter. Moreover, also a different frequency response is observed since the critical frequency, which is indicative of the transition from a resistive to a capacitive-type behaviour, shifts forward of about one decade at the same filler loading. The experimental results are supported by theoretical and simulation studies focused on the role of the filler aspect ratio on the electrical properties of the nanocomposites.

  16. Influence of filler existence on microleakage of a self-etch adhesive system

    PubMed Central

    Mirmohammadi, H; Khosravi, K; Kashani, K; Kleverlaan, CJ; Feilzer, AJ

    2014-01-01

    Aim: This study evaluated the effect of filler existence in self-etch adhesive resin on the marginal leakage of a class V restoration. Materials and Methods: Class V cavities were prepared and restored with a resin composite on the buccal surfaces of 48 premolars lined with unfilled or filled adhesives (n = 24). After thermo cycling, teeth in each group were divided to two subgroups (n = 12), specimens of the first subgroup were incubated for 24 h in distilled water at 37°C, and for the second group three months in the same condition. Specimens were placed in 50% silver nitrate for 24 h at 37°C, and then were cut buccolingually 1 mm thick. Dye penetration was measured using a stereomicroscope and scaled from 0 to 5 in a blind method. SEM images were made to evaluate the dentin-adhesive interfaces. Collected data were analyzed using the nonparametric Kruskal-Wallis and Mann-Whitney U-tests at a significant level of P<0.05. Results: There was no significant difference between microleakage of filled and unfilled adhesive at 24 h and 3 months (P<0.05). There was a significant difference in cervical microleakage between 24 h and 3 months, which was independ on filler load of the adhesive (P<0.001). In contrast, there was no significant difference in occlusal microleakage between 24 h and 3 months and the cervical microleakage was significantly higher than occlusal microleakage after 3 months. SEM images reveald that unfilled adhesive infiltrate slightly better than filled adhesive. Conclusion: The application of filler particles in a self etch adhesive system had no influence on marginal leakage at both the enamel and dentin margins. While the unfilled adhesive infiltrate better than the filled adhesive, its long term performance is not promising. PMID:24778517

  17. A preliminary investigation into the physical and chemical properties of biomass ashes used as aggregate fillers for bituminous mixtures.

    PubMed

    Melotti, Roberto; Santagata, Ezio; Bassani, Marco; Salvo, Milena; Rizzo, Stefano

    2013-09-01

    Fly and bottom ashes are the main by-products arising from the combustion of solid biomass. Since the production of energy from this source is increasing, the processing and disposal of the resulting ashes has become an environmental and economic issue. Such ashes are of interest as a construction material because they are composed of very fine particles similar to fillers normally employed in bituminous and cementitious mixtures. This research investigates the potential use of ash from biomass as filler in bituminous mixtures. The morphological, physical and chemical characteristics of 21 different ashes and two traditional fillers (calcium carbonate and "recovered" plant filler) were evaluated and discussed. Leaching tests, performed in order to quantify the release of pollutants, revealed that five ashes do not comply with the Italian environmental re-use limits. Experimental results show a wide range of values for almost all the investigated properties and a low correlation with biomass type in terms of origin and chemical composition. Furthermore, sieving and milling processes were found to improve the properties of the raw material in terms of grading and sample porosity. The effectiveness of these treatments and the low content of organic matter and harmful fines suggest that most of the biomass ashes investigated may be regarded as potential replacements for natural filler in bituminous mixtures.

  18. Inorganic composition and filler particles morphology of conventional and self-adhesive resin cements by SEM/EDX.

    PubMed

    Aguiar, Thaiane Rodrigues; Di Francescantonio, Marina; Bedran-Russo, Ana Karina; Giannini, Marcelo

    2012-10-01

    The purpose of this study was to characterize the inorganic components and morphology of filler particles of conventional and self-adhesive, dual-curing, resin luting cements. The main components were identified by energy dispersive X-ray spectroscopy microanalysis (EDX), and filler particles were morphologically analyzed by scanning electron microscopy (SEM). Four resin cements were used in this study: two conventional resin cements (RelyX ARC/3M ESPE and Clearfil Esthetic Cement/Kuraray Medical) and two self-adhesive resin cements (RelyX Unicem/3M ESPE and Clearfil SA Luting/Kuraray Medical). The materials (n = 5) were manipulated according to manufacturers' instructions, immersed in organic solvents to eliminate the organic phase and observed under SEM/EDX. Although EDX measurements showed high amount of silicon for all cements, differences in elemental composition of materials tested were identified. RelyX ARC showed spherical and irregular particles, whereas other cements presented only irregular filler shape. In general, self-adhesive cements contained higher filler size than conventional resin luting cements. The differences in inorganic components and filler particles were observed between categories of luting material and among them. All resin cements contain silicon, however, other components varied among them.

  19. Interspecies differences in reaction to a biodegradable subcutaneous tissue filler: severe inflammatory granulomatous reaction in the Sinclair minipig.

    PubMed

    Ramot, Yuval; Touitou, Dan; Levin, Galit; Ickowicz, Diana E; Zada, Moran Haim; Abbas, Randa; Yankelson, Lior; Domb, Abraham J; Nyska, Abraham

    2015-02-01

    Soft tissue filler products have become very popular in recent years, with ever-increasing medical and aesthetic indications. While generally considered safe, the number of reported complications with tissue fillers is growing. Nevertheless, there is no specific animal model that is considered as the gold standard for assessing safety or efficacy of tissue fillers, and there are very little data on interspecies differences in reaction to these products. Here, we report on interspecies differences in reaction to a subcutaneous injectable co-polyester, composed of castor oil and citric acid. Comparison of the histopathological local tissue changes following 1-month postimplantation, indicated that in rats the reaction consisted of cavities, surrounded by relatively thin fibrotic enveloping capsule. In contrast, an unexpected severe inflammatory granulomatous reaction was noticed in Sinclair minipigs. To our knowledge, this is the first report on significant interspecies differences in sensitivity to tissue fillers. It emphasizes the importance of using the appropriate animal model for performing preclinical biocompatibility assays for biodegradable polymers, tissue fillers, and implanted medical devices in general. It also makes the Sinclair minipig subject for scrutiny as an animal model in future biocompatibility studies.

  20. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    SciTech Connect

    Benhadjala, W.; Gravoueille, M.; Weiss, M.; Bord-Majek, I.; Béchou, L.; Ousten, Y.; Suhir, E.; Buet, M.; Louarn, M.; Rougé, F.; Gaud, V.

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  1. Thermal Control Method for High-Current Wire Bundles by Injecting a Thermally Conductive Filler

    NASA Technical Reports Server (NTRS)

    Rodriguez-Ruiz, Juan; Rowles, Russell; Greer, Greg

    2011-01-01

    A procedure was developed to inject thermal filler material (a paste-like substance) inside the power wire bundle coming from solar arrays. This substance fills in voids between wires, which enhances the heat path and reduces wire temperature. This leads to a reduced amount of heat generated. This technique is especially helpful for current and future generation high-power spacecraft (1 kW or more), because the heat generated by the power wires is significant enough to cause unacceptable overheating to critical components that are in close contact with the bundle.

  2. Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Perets, Yulia; Matzui, Lyudmila; Vovchenko, Lyudmila; Ovsiienko, Irina; Yakovenko, Olena; Lazarenko, Oleksandra; Zhuravkov, Alexander; Brusylovets, Oleksii

    2016-08-01

    In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment at 20-min ultraviolet exposure. The electric resistance of the samples was measured by two- or four-probe method and teraohmmeter E6-13. Several characterization techniques were employed to identify the mechanisms behind the improvements in the electrical properties, including SEM and FTIR spectrum analysis.

  3. Effect of Filler Orientation on Thermal Conductivity of Polypropylene Matrix Carbon Nanofiber Composites

    NASA Astrophysics Data System (ADS)

    Enomoto, Kazuki; Fujiwara, Shu; Yasuhara, Toshiyuki; Murakami, Hiroya; Teraki, Junichi; Ohtake, Naoto

    2005-06-01

    Polypropylene matrix carbon nanofiber composites were obtained by injection molding after kneading with a batch-type twin-screw kneader. The thermal conductivity of the composites in the thickness direction was evaluated, with particular focus on the effects of carbon nanofiber (CNF) content and filler orientation. The thermal conductivity of the composites increased with increasing CNF content, and was obtained as 3.46 W/(m\\cdotK) when the CNF content was 50% in weight fraction and the CNFs were highly oriented along the measuring direction of thermal conductivity. This value is approximately seventeenfold higher than that of neat polypropylene.

  4. Infrared Brazing Ti50Ni50 and Invar Using Ag-Based Filler Foils

    NASA Astrophysics Data System (ADS)

    Shiue, R. K.; Chang, Y. H.; Wu, S. K.

    2013-10-01

    Infrared brazing Ti50Ni50 and Invar using BAg-8 and Cusil-ABA foils was investigated. The Ag-Cu eutectic matrix dominates both brazed joints. The maximum shear strengths of the brazed joints using BAg-8 and Cusil-ABA fillers are 158 and 249 MPa. Failure of interfacial Fe2Ti/Ni3Ti reaction layers is responsible for the BAg-8 joint. In contrast, the Cusil-ABA brazed joint is fractured along the interfacial Fe2Ti intermetallic compound. Both fractographs are characterized with cleavage dominated fracture.

  5. Mechanical and thermal properties of green polylactide composites with natural fillers.

    PubMed

    Lezak, Emil; Kulinski, Zbigniew; Masirek, Robert; Piorkowska, Ewa; Pracella, Mariano; Gadzinowska, Krystyna

    2008-12-08

    Green composites of PLA with micropowders derived from agricultural by-products such as oat husks, cocoa shells, and apple solids that remain after pressing have been prepared by melt mixing. The thermal and mechanical properties of the composites, including the effect of matrix crystallization and plasticization with poly(propylene glycol), have been studied. All fillers nucleated PLA crystallization and decreased the cold-crystallization temperature. They also affected the mechanical properties of the compositions, increasing the modulus of elasticity but decreasing the elongation at break and tensile impact strength although with few exceptions. Plasticization of the PLA matrix improved the ductility of the composites.

  6. Influence of Low-frequency Magnetic Fields During Laser Beam Welding of Aluminium with Filler Wire

    NASA Astrophysics Data System (ADS)

    Gatzen, M.

    A typical problem in laser beam welding with filler wire is an insufficiently diluted melt pool leading to a non- uniform element distribution in the seam. Using low-frequency magnetic fields, the flow conditions inside the melt pool can be altered, potentially enhancing melt pool dilution. In this paper the role of the frequency and the flux density of the magnetic field are discussed on the basis of experimental results. It will be shown that the frequency is a main parameter to determine the spatial distribution of elements and hence, uniformity, whereas the flux density is the main parameter determining the overall scale of the magnetic manipulation.

  7. Wrinkle Fillers

    MedlinePlus

    ... PLLA): PLLA is a biodegradable, biocompatible man-made polymer. This material has wide uses in absorbable stitches ... PMMA is a non-biodegradable, biocompatible, man-made polymer. This material is used in other medical devices, ...

  8. Porous poly(L-lactic acid) sheet prepared by stretching with starch particles as filler for tissue engineering.

    PubMed

    Ju, Dandan; Han, Lijing; Li, Zonglin; Chen, Yunjing; Wang, Qingjiang; Bian, Junjia; Dong, Lisong

    2016-05-20

    Porous poly(L-lactic acid) (PLLA) sheets were prepared by uniaxial stretching PLLA sheets containing starch filler. Here, the starch filler content, stretching ratio, stretching rate and stretching temperature are important factors to influence the structure of the porous PLLA sheets, therefore, they have been investigated in detail. The pore size distribution and tortuosity were characterized by Mercury Intrusion Porosimetry. The results revealed that the porosity and pore size enlarged with the increase of the starch filler content and stretching ratio, while shrank with the rise of stretching temperature. On the other hand, the pore structure almost had no changes with the stretching rate ranging between 5 and 40 mm/min. In order to test and verify that the porous PLLA sheet was suitable for the tissue engineering, the starch particles were removed by selective enzymatic degradation and its in vitro biocompatibility to osteoblast-like MC3T3-E1 cells was investigated.

  9. Bio-filler from waste shellfish shell: preparation, characterization, and its effect on the mechanical properties on polypropylene composites.

    PubMed

    Li, Hai-Yan; Tan, Ye-Qiang; Zhang, Lu; Zhang, Yun-Xiang; Song, Yi-Hu; Ye, Ying; Xia, Mei-Sheng

    2012-05-30

    Waste shellfish shell stacking with a significant odor and toxicity which are hazardous to human constitutes a serious environmental hazard. For utilization of waste shellfish shell resource, granule of shellfish shell (SS) was prepared from waste shellfish shell by removing cuticle, crushing, grinding and shearing emulsification and was introduced as a filler to reinforce polypropylene (PP). The mechanical behavior of PP/SS composite shows a higher yield strain, yield strength, tensile strength and elongation at break than traditional commercial calcium carbonate (CC) filled PP. Yield strength of PP/SS composite with 2% SS is improved by 11.1% due to the formation of β-crystalline PP phase. Using waste SS for producing bio-filler for filling PP is an effective and prospective measure to deal with waste SS, which is valuable for industrial production and practical application as fillers for reinforcing polymers.

  10. PALS and DSC measurements in 8 MeV electron irradiated natural rubber filled with different fillers

    NASA Astrophysics Data System (ADS)

    Mandal, Arunava; Pan, Sandip; Roychowdhury, Anirban; Sengupta, Asmita

    2015-10-01

    The effect of high energy electron irradiation on the microstructure and thermal properties of natural rubber (NR) filled with different fillers at different concentrations are studied. The samples are irradiated with 8 MeV electron beam to a total dose of 100 KGy. The change in free volume size and specific heat due to addition of fillers and irradiation are studied using positron annihilation lifetime spectroscopy (PALS) and differential scanning calorimetry (DSC) respectively. The Positron lifetime spectra are de-convoluted into two components. The longer lived component (τo-Ps) signifies the pick-off annihilation of ortho-positronium (o-Ps) at free volume site which may be related to the radius of the free volume holes. It is observed that the specific heat (Cp) and free volume size are all affected by both irradiation and addition of fillers.

  11. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites.

    PubMed

    Ionescu, Andrei; Brambilla, Eugenio; Wastl, Daniel S; Giessibl, Franz J; Cazzaniga, Gloria; Schneider-Feyrer, Sibylle; Hahnel, Sebastian

    2015-01-01

    The aim of this study was to investigate the impact of resin matrix chemistry and filler fraction on biofilm formation on the surface of experimental resin-based composites (RBCs). Specimens were prepared from eight experimental RBC formulations differing in resin matrix blend (BisGMA/TEGDMA in a 7:3 wt% ratio or UDMA/aliphatic dimethacrylate in a 1:1 wt% ratio) and filler fraction (no fillers; 65 wt% dental glass with an average diameter of 7 or 0.7 µm or 65 wt% SiO2 with an average diameter of 20 nm). Surface roughness, surface free energy, and chemical surface composition were determined; surface topography was visualized using atomic force microscopy. Biofilm formation was simulated under continuous flow conditions for a 48 h period using a monospecies Streptococcus mutans and a multispecies biofilm model. In the monospecies biofilm model, the impact of the filler fraction overruled the influence of the resin matrix, indicating lowest biofilm formation on RBCs with nano-scaled filler particles and those manufactured from the neat resin blends. The multispecies model suggested a more pronounced effect of the resin matrix blend, as significantly higher biofilm formation was identified on RBCs with a UDMA/dimethacrylate matrix blend than on those including a BisGMA/TEGDMA matrix blend but analogous filler fractions. Although significant differences in surface properties between the various materials were identified, correlations between the surface properties and biofilm formation were poor, which highlights the relevance of surface topography and chemistry. These results may help to tailor novel RBC formulations which feature reduced biofilm formation on their surface.

  12. Effect of filler level and particle size on dental caries-inhibiting Ca–PO4 composite

    PubMed Central

    Weir, Michael D.; Sun, Limin; Ngai, Scott; Takagi, Shozo; Chow, Laurence C.

    2010-01-01

    Secondary caries and restoration fracture are common problems in restorative dentistry. The aim of this study was to develop Ca–PO4 nanocomposite having improved stress-bearing properties and Ca and PO4 ion release to inhibit caries, and to determine the effects of filler level. Nanoparticles of dicalcium phosphate anhydrous (DCPA), two larger DCPA powders, and reinforcing whiskers were incorporated into a resin. A 6 × 3 design was tested with six filler mass fractions (0, 30, 50, 65, 70, and 75%) and three DCPA particle sizes (112 nm, 0.88 µm, 12.0 µm). The DCPA nanocomposite at 75% fillers had a flexural strength (mean ± SD; n = 6) of 114 ± 23 MPa, matching the 112 ± 22 MPa of a commercial non-releasing, hybrid composite (P > 0.1). This was 2-fold of the 60 ± 6 MPa of a commercial releasing control. Decreasing the particle size increased the ion release. Increasing the filler level increased the ion release at a rate faster than being linear. The amount of ion release from the nanocomposite matched or exceeded those of previous composites that released supersaturating levels of Ca and PO4 and remineralized tooth lesions. This suggests that the much stronger nanocomposite may also be effective in remineralizing tooth lesion and inhibiting caries. In summary, combining calcium phosphate nanoparticles with reinforcing co-fillers in the composite provided a way to achieving both caries-inhibiting and stress-bearing capabilities. Filler level and particle size can be tailored to achieve optimal composite properties. PMID:19365616

  13. Magnesium-based bone cement and bone void filler: preliminary experimental studies.

    PubMed

    Schendel, Stephen A; Peauroi, John

    2009-03-01

    Bone cement has great potential in craniofacial surgery in the repair of osseous defects secondary to surgery or trauma. This includes the use of bone cement as a bone void filler for full-thickness cranial defects and as augmentation of deficient bones. Ideally, this material should be easily available, biocompatible, resorbable, bone inductive, and have adhesive qualities to bone. Calcium-based bone cements have some of these qualities but have a higher than desirable failure rate. OsteoCrete, a new magnesium-based bone cement and bone void filler, was compared to Norian in critical-sized skull defects and cementing bone flaps in rabbits. Both materials were successful; however, OsteoCrete had a faster resorption and replacement by bone rate than Norian. Bone flap position and apparent stability were also superior with OsteoCrete. There were no adverse reactions to either cement. A magnesium-based bone cement presents with advantages when compared with a comparator calcium-based cement in craniofacial surgery.

  14. Functionalized carbon nanotubes as a filler for dielectric elastomer composites with improved actuation performance

    NASA Astrophysics Data System (ADS)

    Galantini, Fabia; Bianchi, Sabrina; Castelvetro, Valter; Gallone, Giuseppe

    2013-05-01

    Among the broad class of electro-active polymers, dielectric elastomer actuators represent a rapidly growing technology for electromechanical transduction. In order to further develop this applied science, the high driving voltages currently needed must be reduced. For this purpose, one of the most widely considered approaches is based on making elastomeric composites with highly polarizable fillers in order to increase the dielectric constant while maintaining both low dielectric losses and high-mechanical compliance. In this work, multi-wall carbon nanotubes were first functionalized by grafting either acrylonitrile or diurethane monoacrylate oligomers, and then dispersed into a polyurethane matrix to make dielectric elastomer composites. The procedures for the chemical functionalization of carbon nanotubes and proper characterizations of the obtained products are provided in detail. The consequences of the use of chemically modified carbon nanotubes as a filler, in comparison to using unmodified ones, were studied in terms of dielectric, mechanical and electromechanical response. In particular, an increment of the dielectric constant was observed for all composites throughout the investigated frequency spectrum, but only in the cases of modified carbon nanotubes did the loss factor remain almost unchanged with respect to the simple matrix, indicating that conductive percolation paths did not arise in such systems. An effective improvement in the actuation strain was observed for samples loaded with functionalized carbon nanotubes.

  15. Composite membranes for alkaline electrolysis based on polysulfone and mineral fillers

    NASA Astrophysics Data System (ADS)

    Burnat, Dariusz; Schlupp, Meike; Wichser, Adrian; Lothenbach, Barbara; Gorbar, Michal; Züttel, Andreas; Vogt, Ulrich F.

    2015-09-01

    Mineral-based membranes for high temperature alkaline electrolysis were developed by a phase inversion process with polysulfone as binder. The long-term stability of new mineral fillers: wollastonite, forsterite and barite was assessed by 8000 h-long leaching experiments (5.5 M KOH, 85 °C) combined with thermodynamic modelling. Barite has released only 6.22 10-4 M of Ba ions into the electrolyte and was selected as promising filler material, due to its excellent stability. Barite-based membranes, prepared by the phase inversion process, were further studied. The resistivity of these membranes in 5.5 M KOH was investigated as a function of membrane thickness and total porosity, hydrodynamic porosity as well as gas purities determined by conducting electrolysis at ambient conditions. It was found that a dense top layer resulting from the phase inversion process, shows resistivity values up to 451.0 ± 22 Ω cm, which is two orders of magnitude higher than a porous bulk membrane microstructure (3.89 Ω cm). Developed membranes provided hydrogen purity of 99.83 at 200 mA cm-2, which is comparable to previously used chrysotile membranes and higher than commercial state-of-the-art Zirfon 500utp membrane. These cost-effective polysulfone - barite membranes are promising candidates as asbestos replacement for commercial applications.

  16. Effects of PCC fillers on plain paper ink-jet print quality

    NASA Astrophysics Data System (ADS)

    Bauch, Alan J.; Donigian, Douglas W.; Gill, Robert A.

    1997-08-01

    Ink jet printability is rapidly becoming a requirement for all multipurpose office papers. These papers must have an optimized balance of properties so they can perform equally well under various printing methods such as xerography, ink jet, and thermal imaging. The office paper of today truly must be a multipurpose copy paper capable of providing good toner adhesion as well as controlled absorption of aqueous ink jet solutions. The demand for ink jet paper is increasing rapidly. The global market for cut-size ink jet papers will expand to nearly 1.4 million tons by the year 2000. By that time the global market for all cut-size multipurpose plain printing papers will grow to nearly twenty million tons. The ink jet printing process places a large volume of aqueous ink on the surface of a substrate. The manner in which the substrate handles that volume of ink determines in large part the quality of the print. Multipurpose office papers are composed chiefly of cellulose fibers, inorganic fillers, and chemical additives. All of these components affect the quality of the sheet as an ink jet substrate. The particle morphology, surface area, and surface treatment of PCC fillers affect the ink jet printability of multipurpose office papers. This paper focuses on results from pilot paper machine and commercial trials performed in an effort to turn 'plain' office papers into high quality multipurpose papers capable of meeting or exceeding ink jet print quality specifications.

  17. Melting Point Depression and Fast Diffusion in Nanostructured Brazing Fillers Confined Between Barrier Nanolayers

    NASA Astrophysics Data System (ADS)

    Kaptay, G.; Janczak-Rusch, J.; Jeurgens, L. P. H.

    2016-08-01

    Successful brazing using Cu-based nanostructured brazing fillers at temperatures much below the bulk melting temperature of Cu was recently demonstrated (Lehmert et al. in, Mater Trans 56:1015-1018, 2015). The Cu-based nano-fillers are composed of alternating nanolayers of Cu and a permeable, non-wetted AlN barrier. In this study, a thermodynamic model is derived to estimate the melting point depression (MPD) in such Cu/AlN nano-multilayers (NMLs) as function of the Cu nanolayer thickness. Depending on the melting route, the model predicts a MPD range of 238-609 K for Cu10nm/AlN10nm NMLs, which suggests a heterogeneous pre-melting temperature range of 750-1147 K (476-874 °C), which is consistent with experimental observations. As suggested by basic kinetic considerations, the observed Cu outflow to the NML surface at the temperatures of 723-1023 K (450-750 °C) can also be partially rationalized by fast solid-state diffusion of Cu along internal interfaces, especially for the higher temperatures.

  18. Carbon nanotube growth from films of Langmuir-Blodgett deposited Fe nanoparticles with filler molecules

    NASA Astrophysics Data System (ADS)

    Kuriyama, Naoki; Takezawa, Akihiro; Kanasugi, Osamu; Nara, Ryuta; Kushida, Masahito

    2014-02-01

    Independently controlling the number density and diameter of Fe nanoparticles (FeNPs) used as a catalyst for vertically aligned carbon nanotube (VA-CNT) growth is difficult by conventional methods. In this study, mixed solutions of FeNPs and palmitic acid (C16) used as filler molecules were prepared to prevent the thermal aggregation of FeNPs and control the number density of VA-CNTs. FeNPs mixed with C16 monolayer films were prepared on the water surface and deposited on SiO2/Si substrates by the Langmuir-Blodgett (LB) technique. VA-CNTs were synthesized by a thermal chemical vapor deposition method using acetylene gas. Furthermore, we studied the optimum hydrogen reduction temperature and time of FeNPs used as a catalyst to encourage VA-CNT growth. By controlling the ratio of FeNP catalyst to C16 as a filler molecule in the LB film and optimizing hydrogen reduction condition, we were able to control the number density and diameter of FeNPs independently.

  19. Microstructural evolution during transient liquid phase bonding of Inconel 738LC using AMS 4777 filler alloy

    SciTech Connect

    Jalilvand, V.; Omidvar, H.; Shakeri, H.R.; Rahimipour, M.R.

    2013-01-15

    IN-738LC nickel-based superalloy was joined by transient liquid phase diffusion bonding using AMS 4777 filler alloy. The bonding process was carried out at 1050 Degree-Sign C under vacuum atmosphere for various hold times. Microstructures of the joints were studied by optical and scanning electron microscopy. Continuous centerline eutectic phases, characterized as nickel-rich boride, chromium-rich boride and nickel-rich silicide were observed at the bonds with incomplete isothermal solidification. In addition to the centerline eutectic products, precipitation of boron-rich particles was observed in the diffusion affected zone. The results showed that, as the bonding time was increased to 75 min, the width of the eutectic zone was completely removed and the joint was isothermally solidified. Homogenization of isothermally solidified joints at 1120 Degree-Sign C for 300 min resulted in the elimination of intermetallic phases formed at the diffusion affected zone and the formation of significant {gamma} Prime precipitates in the joint region. - Highlights: Black-Right-Pointing-Pointer TLP bonding of IN-738LC superalloy was performed using AMS 4777 filler alloy. Black-Right-Pointing-Pointer Insufficient diffusion time resulted in the formation of eutectic product. Black-Right-Pointing-Pointer Precipitation of B-rich particles was observed within the DAZ. Black-Right-Pointing-Pointer The extent of isothermal solidification increased with increasing holding time. Black-Right-Pointing-Pointer Homogenizing of joints resulted in the dissolution of DAZ intermetallics.

  20. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

    PubMed Central

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258