Science.gov

Sample records for ag-doped nanocrystalline hydroxyapatite

  1. Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100°C

    PubMed Central

    2011-01-01

    Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10-xAgx(PO4)6(OH)2 (x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp (x = 0) and Ag:HAp (x = 0.2). The Ag:Hap nanopowder showed higher inhibition. PMID:22136671

  2. Photocatalytic characteristics for the nanocrystalline TiO2 on the Ag-doped CaAl2O4:(Eu,Nd) phosphor

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Sik; Sung, Hyun-Je; Kim, Bum-Joon

    2015-04-01

    This study investigated the photocatalytic behavior of nanocrystalline TiO2 deposited on Ag-doped long-lasting phosphor (CaAl2O4:Eu2+,Nd3+). The CaAl2O4:Eu2+,Nd3+ phosphor powders were prepared via conventional sintering using CaCO3, Al2O3, Eu2O3, and Nd2O3 as raw materials according to the appropriate molar ratios. Silver nanoparticles were loaded on the phosphor by mixing with an aqueous Ag-dispersion solution. Nanocrystalline TiO2 was deposited on Ag-doped CaAl2O4:Eu2+,Nd3+ powders via low-pressure chemical vapor deposition (LPCVD). The TiO2 coated on the phosphor was actively photo-reactive under irradiation with visible light and showed much faster benzene degradation than pure TiO2, which is almost non-reactive. The coupling of TiO2 with phosphor may result in an energy band bending in the junction region, which then induces the TiO2 crystal at the interface to be photo-reactive under irradiation with visible light. In addition, the intermetallic compound of CaTiO3 that formed at the interface between TiO2 and the CaAl2O4:(Eu2+,Nd3+) phosphor results in the formation of oxygen vacancies and additional electrons that promote the photodecomposition of benzene gas. The addition of Ag nanoparticles enhanced the photocatalytic reactivity of the TiO2/CaAl2O4:Eu2+,Nd3+ phosphor. TiO2 on the Ag-doped phosphor presented a higher benzene gas decomposition rate than the TiO2 did on the phosphor without Ag-doping under both irradiation with ultraviolet and visible light.

  3. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    NASA Astrophysics Data System (ADS)

    Mallik, P. K.; Swain, P. K.; Patnaik, S. C.

    2016-02-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles.

  4. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    NASA Astrophysics Data System (ADS)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-07-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.

  5. Nanocrystalline hydroxyapatite prepared under various pH conditions

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Mary Saral, A.; Ruban Kumar, A.

    2014-10-01

    Hydroxyapatite (HAP) has sovereign biomedical application due to its excellent biocompatibility, chemical and crystallographic similitude with natural human bone. In this present work, we discussed about the role of pH in the synthesis of calcium phosphate compound using calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate as starting materials by chemical precipitation method assisted with ultrasonic irradiation technique. 5% polyethylene glycol (PEG600) is added along with the precursors under various pH condition of 7, 9 and 11 respectively. The functional group analysis, crystallized size and fraction of crystallized size are confirmed using Fourier Transformation Infra-Red spectroscopy and X-ray diffraction pattern. Morphological observations are done by scanning electron microscope. The results revealed the presence of nanocrystalline hydroxyapatite at pH above 9.

  6. Tailoring the Microstructure of Sol–Gel Derived Hydroxyapatite/Zirconia Nanocrystalline Composites

    PubMed Central

    2011-01-01

    In this study, we tailor the microstructure of hydroxyapatite/zirconia nanocrystalline composites by optimizing processing parameters, namely, introducing an atmosphere of water vapor during sintering in order to control the thermal stability of hydroxyapatite, and a modified sol–gel process that yields to an excellent intergranular distribution of zirconia phase dispersed intergranularly within the hydroxyapatite matrix. In terms of mechanical behavior, SEM images of fissure deflection and the presence of monoclinic ZrO2 content on cracked surface indicate that both toughening mechanisms, stress-induced tetragonal to monoclinic phase transformation and deflection, are active for toughness enhancement. PMID:24764458

  7. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite.

    PubMed

    Sofronia, Ancuta M; Baies, Radu; Anghel, Elena M; Marinescu, Cornelia A; Tanasescu, Speranta

    2014-10-01

    The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400°C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis-TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800°C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins.

  8. Nanocrystalline Hydroxyapatite/Si Coating by Mechanical Alloying Technique

    PubMed Central

    Hannora, Ahmed E.; Mukasyan, Alexander S.; Mansurov, Zulkhair A.

    2012-01-01

    A novel approach for depositing hydroxyapatite (HA) films on titanium substrates by using mechanical alloying (MA) technique has been developed. However, it was shown that one-hour heat treatment at 800°C of such mechanically coated HA layer leads to partial transformation of desired HA phase to beta-tri-calcium phosphate (β-TCP) phase. It appears that the grain boundary and interface defects formed during MA promote this transformation. It was discovered that doping HA by silicon results in hindering this phase transformation process. The Si-doped HA does not show phase transition to β-TCP or decomposition after heat treatment even at 900°C. PMID:22312324

  9. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method

    SciTech Connect

    Han Yingchao; Li Shipu; Wang Xinyu; Chen Xiaoming

    2004-01-03

    The citric acid sol-gel combustion method has been used for the synthesis of nanocrystalline hydroxyapatite (HAP) powder from calcium nitrate, diammonium hydrogen phosphate and citric acid. The phase composition of HAP powder was characterized by X-ray powder diffraction analysis (XRD). The morphology of HAP powder was observed by transmission electron microscope (TEM). The HAP powder has been sintered into microporous ceramic in air at 1200 deg. C with 3 h soaking time. The microstructure and phase composition of the resulting HAP ceramic were characterized by scanning electron microscope (SEM) and XRD, respectively. The physical characterization of open porosity and flexural strength have also been carried out.

  10. A Solid-State NMR Study of Selenium Substitution into Nanocrystalline Hydroxyapatite

    PubMed Central

    Kolmas, Joanna; Kuras, Marzena; Oledzka, Ewa; Sobczak, Marcin

    2015-01-01

    The substitution of selenium oxyanions in the hydroxyapatite structure was examined using multinuclear solid-state resonance spectroscopy (ssNMR). The study was supported by powder X-ray diffractometry (PXRD) and wavelength dispersion X-ray fluorescence (WD-XRF). Samples of pure hydroxyapatite (HA300) and selenate (HA300-1.2SeO4) or selenite (HA300-1.2SeO3) substituted hydroxyapatites were synthesized using the standard wet method and heated at 300 °C to remove loosely bonded water. PXRD data showed that all samples are single-phase, nanocrystalline hydroxyapatite. The incorporation of selenite and selenate ions affected the lattice constants. In selenium-containing samples the concentration of Se was very similar and amounted to 9.55% and 9.64%, for HA300-1.2SeO4 and HA300-1.2SeO3, respectively. PXRD and ssNMR data showed that the selenite doping significantly decreases the crystallite size and crystallinity degree. 31P and 1H NMR experiments demonstrated the developed surface hydrated layer in all samples, especially in HA300-1.2SeO3. 1H NMR studies showed the dehydroxylation of HA during the selenium oxyanions substitution and the existence of hydrogen bonding in structural hydroxyl group channels. 1H→77Se cross polarization NMR experiments indicated that selenites and selenates are located in the crystal lattice and on the crystal surface. PMID:25997001

  11. Electric field-assisted sintering of nanocrystalline hydroxyapatite for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tran, Tien Bich

    As the main inorganic component of bone, hydroxyapatite (HA, Ca 10(PO4)6(OH)2) should be an ideal candidate in biomaterials selection. When grain sizes are in the nanometric regime, protein adsorption and cell adhesion are enhanced, while strength, hardness, and wear resistance are improved. Unfortunately, low phase stability, poor sinterability, and a tendency towards exaggerated grain coarsening challenge full densification of nanocrystalline hydroxyapatite by conventional sintering methods. The field-assisted sintering technique (FAST) has successfully consolidated a variety of nanocrystalline metals and ceramics in dramatically reduced times. The sintering enhancements observed during FAST can be attributed to thermal and athermal effects. The rapid heating rates (up to ˜1000ºC/min) afforded by FAST contribute a significant thermal effect. Since fast heating rates reduce powder exposure to sub-sintering temperatures, non-densifying surface diffusion is limited. The athermal effects of FAST are less well understood and can include plasma generation, dielectric breakdown, particle surface cleaning, grain boundary pinning, and space charge effects. Applying the field-assisted sintering technique to nanocrystalline hydroxyapatite yielded surprising results. Deviations from conventional densification behavior were observed, with dehydroxylation identified as the most deleterious process to densification as well as mechanical and biological performance. Since hydroxyapatite is not a stable phase at high temperatures and low water partial pressure atmospheres, desintering due to dehydroxylation-related pore formation became apparent during Stage III sintering. In fact, the degree of desintering and pore formation increased with the extent of Stage III sintering and grain growth. The atomic rearrangements taking place during grain boundary migration are believed to favor the formation of more-stable oxyapatite through hydroxyapatite dehydroxylation. This behavior was

  12. Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite.

    PubMed

    Holopainen, Jani; Santala, Eero; Heikkilä, Mikko; Ritala, Mikko

    2014-12-01

    Calcium carbonate (CaCO3) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO3 fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO3 layer by spin or dip coating Ca(NO3)2/PVP precursor solution on the CaCO3 fibers followed by annealing of the gel formed inside the fiber layer. The CaCO3 fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings.

  13. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    PubMed

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants.

  14. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions.

    PubMed

    Handley-Sidhu, Stephanie; Renshaw, Joanna C; Yong, Ping; Kerley, Robert; Macaskie, Lynne E

    2011-01-01

    Hydroxyapatites were analysed using electron microscopy, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. Examination of a bacterially produced hydroxyapatite (Bio-HA) by scanning electron microscopy showed agglomerated nano-sized particles; XRD analysis confirmed that the Bio-HA was hydroxyapatite, with an organic matter content of 7.6%; XRF analysis gave a Ca/P ratio of 1.55, also indicative of HA. The size of the Bio-HA crystals was calculated as ~25 nm from XRD data using the Scherrer equation, whereas Comm-HA powder size was measured as ≤ 50 μm. The nano-crystalline Bio-HA was ~7 times more efficient in removing Sr(2+) from synthetic groundwater than Comm-HA. Dissolution of HA as indicated by the release of phosphate into the solution phase was higher in the Comm-HA than the Bio-HA, indicating a more stable biomaterial which has a potential for the remediation of contaminated sites.

  15. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    PubMed

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants. PMID:26255163

  16. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    SciTech Connect

    Mousa, Sahar; Hanna, Adly

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  17. Green synthesis of magnesium ion incorporated nanocrystalline hydroxyapatite and their mechanical, dielectric and photoluminescence properties

    SciTech Connect

    Arul, K. Thanigai; Kolanthai, Elayaraja; Manikandan, E.; Bhalerao, G.M.; Chandra, V. Sarath; Ramya, J. Ramana; Mudali, U. Kamachi; Nair, K.G.M.; Kalkura, S.Narayana

    2015-07-15

    Highlights: • Rapid technique to synthesize nanorods of magnesium ion incorporated hydroxyapatite. • Enhanced electrical and mechanical properties. • Improved photoluminescence and wettability on magnesium incorporation. • Increased in vitro bioactivity. - Abstract: Nanocrystalline hydroxyapatite (HAp-Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2,} 35 nm) and magnesium (Mg{sup 2+}) ion incorporated HAp were synthesized by microwave technique. XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), FE-HRTEM (Field emission high resolution transmission electron microscopy), DLS (dynamic light scattering), EDXRF (energy dispersive X-ray fluorescence spectrometry), microhardness, permittivity and alternating current (ac) conductivity, besides the PL (photoluminescence), wettability and in vitro bioactivity of the samples were analysed. EDXRF revealed the Mg{sup 2+} ion incorporation in HAp. The Mg{sup 2+} ion incorporation did not alter the phase but drastically reduced the crystallite size and particle size respectively by 48% and 32%. There was enhanced microhardness (24%) at low level (<13%) and decreased zeta potential of Mg{sup 2+} ion incorporation. The permittivity, ac conductivity, PL, wettability and in vitro bioactivity were enhanced on Mg{sup 2+} ion incorporation. These properties enable them to be a promising candidate for wound healing, bone replacement applications and also as a biosensor.

  18. Similar healthy osteoclast and osteoblast activity on nanocrystalline hydroxyapatite and nanoparticles of tri-calcium phosphate compared to natural bone.

    PubMed

    MacMillan, Adam K; Lamberti, Francis V; Moulton, Julia N; Geilich, Benjamin M; Webster, Thomas J

    2014-01-01

    While there have been numerous studies to determine osteoblast (bone forming cell) functions on nanocrystalline compared to micron crystalline ceramics, there have been few studies which have examined osteoclast activity (including tartrate-resistant acid phosphatase, formation of resorption pits, size of resorption pits, and receptor activator of nuclear factor κB [RANK]). This is despite the fact that osteoclasts are an important part of maintaining healthy bone since they resorb bone during the bone remodeling process. Moreover, while it is now well documented that bone formation is enhanced on nanoceramics compared to micron ceramics, some have pondered whether osteoblast functions (such as osteoprotegerin and RANK ligand [RANKL]) are normal (ie, non-diseased) on such materials compared to natural bone. For these reasons, the objective of the present in vitro study was to determine various functions of osteoclasts and osteoblasts on nanocrystalline and micron crystalline hydroxyapatite as well as tri-calcium phosphate materials and compare such results to cortical and cancellous bone. Results showed for the first time similar osteoclast activity (including tartrate-resistant acid phosphatase, formation of resorption pits, size of resorption pits, and RANK) and osteoblast activity (osteoprotegerin and RANKL) on nanocrystalline hydroxyapatite compared to natural bone, whereas osteoclast and osteoblast functions on micron crystalline versions of these ceramics were much different than natural bone. In this manner, this study provides additional evidence that nanocrystalline calcium phosphates can serve as suitable synthetic analogs to natural bone to improve numerous orthopedic applications. It also provides the first data of healthy osteoclast and osteoblast functions on nanocrystalline calcium phosphates compared to natural bone.

  19. Similar healthy osteoclast and osteoblast activity on nanocrystalline hydroxyapatite and nanoparticles of tri-calcium phosphate compared to natural bone

    PubMed Central

    MacMillan, Adam K; Lamberti, Francis V; Moulton, Julia N; Geilich, Benjamin M; Webster, Thomas J

    2014-01-01

    While there have been numerous studies to determine osteoblast (bone forming cell) functions on nanocrystalline compared to micron crystalline ceramics, there have been few studies which have examined osteoclast activity (including tartrate-resistant acid phosphatase, formation of resorption pits, size of resorption pits, and receptor activator of nuclear factor κB [RANK]). This is despite the fact that osteoclasts are an important part of maintaining healthy bone since they resorb bone during the bone remodeling process. Moreover, while it is now well documented that bone formation is enhanced on nanoceramics compared to micron ceramics, some have pondered whether osteoblast functions (such as osteoprotegerin and RANK ligand [RANKL]) are normal (ie, non-diseased) on such materials compared to natural bone. For these reasons, the objective of the present in vitro study was to determine various functions of osteoclasts and osteoblasts on nanocrystalline and micron crystalline hydroxyapatite as well as tri-calcium phosphate materials and compare such results to cortical and cancellous bone. Results showed for the first time similar osteoclast activity (including tartrate-resistant acid phosphatase, formation of resorption pits, size of resorption pits, and RANK) and osteoblast activity (osteoprotegerin and RANKL) on nanocrystalline hydroxyapatite compared to natural bone, whereas osteoclast and osteoblast functions on micron crystalline versions of these ceramics were much different than natural bone. In this manner, this study provides additional evidence that nanocrystalline calcium phosphates can serve as suitable synthetic analogs to natural bone to improve numerous orthopedic applications. It also provides the first data of healthy osteoclast and osteoblast functions on nanocrystalline calcium phosphates compared to natural bone. PMID:25506216

  20. Effect of Nanocrystalline Hydroxyapatite Socket Preservation on Orthodontically Induced Inflammatory Root Resorption

    PubMed Central

    Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya

    2015-01-01

    Objective Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. Materials and Methods This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. Results The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10-4mm2 in the maxilla and 21.41 ± 11.25×10-4mm2 in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). Conclusion The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®. PMID:25685742

  1. Greater osteoblast and mesenchymal stem cell adhesion and proliferation on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes.

    PubMed

    Wang, Mian; Castro, Nathan J; Li, Jian; Keidar, Michael; Zhang, Lijie Grace

    2012-10-01

    With an increasingly active and aging population, a growing number of orthopedic procedures are performed annually. However, traditional orthopedic implants face many complications such as infection, implant loosening, and poor host tissue integration leading to implant failure. Metal implant materials such as titanium and its alloys are widely used in orthopedic applications mainly based on their excellent mechanical properties and biological inertness. Since human bone extracellular matrix is nanometer in dimension comprised of rich nanostructured hydroxyapatite particles and collagen nanofibers, it is highly desirable to design a biologically-inspired nanostructured coating which renders the biocompatible titanium surface into a biomimetic and bioactive interface, thus enhancing osteoblast adhesion and promoting osseointegration. For this purpose, a biomimetic nanostructured coating based on nanocrystalline hydroxyapatite and single wall carbon nanotubes was designed. Specifically, nano hydroxyapatites with good crystallinity and biomimetic dimensions were prepared via a wet chemistry method and hydrothermal treatment. Microcrystalline hydroxyapatite with larger grain sizes can be obtained without hydrothermal treatment. The carbon nanotubes with different diameter and length were synthesized via an arc plasma method in the presence or absence of a magnetic field. Transmission electron microscopy images illustrate the regular, rod-like nanocrystalline and biomimetic nanostructure of hydrothermally treated nano hydroxyapatite. In addition, the length of carbon nanotubes can be significantly increased under external magnetic fields when compared to nanotubes produced without a magnetic field. More importantly, the in vitro study demonstrated for the first time that osteoblast and mesenchymal stem cell adhesion and proliferation were greater on titanium with hydrothermally treated nanocrystalline hydroxyapatites/magnetically treated carbon nanotubes, which suggests

  2. Nanocrystalline hydroxyapatite enriched in selenite and manganese ions: physicochemical and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Kolmas, Joanna; Groszyk, Ewa; Piotrowska, Urszula

    2015-07-01

    In this work, we used the co-precipitation method to synthesize hydroxyapatite (Mn-SeO3-HA) containing both selenium IV (approximately 3.60 wt.%) and manganese II (approximately 0.29 wt.%). Pure hydroxyapatite (HA), hydroxyapatite-containing manganese (II) ions (Mn-HA), and hydroxyapatite-containing selenite ions alone (SeO3-HA), prepared with the same method, were used as reference materials. The structures and physicochemical properties of all the obtained samples were investigated. PXRD studies showed that the obtained materials were homogeneous and consisted of apatite phase. Introducing selenites into the hydroxyapatite crystals considerably affects the size and degree of ordering. Experiments with transmission electron microscopy (TEM) showed that Mn-SeO3-HA crystals are very small, needle-like, and tend to form agglomerates. Fourier transform infrared spectroscopy (FT-IR) and solid-state nuclear magnetic resonance (ssNMR) were used to analyze the structure of the obtained material. Preliminary microbiological tests showed that the material demonstrated antibacterial activity against Staphylococcus aureus, yet such properties were not confirmed regarding Escherichia coli. PACS codes: 61, 76, 81

  3. Optical and biological properties of transparent nanocrystalline hydroxyapatite obtained through spark plasma sintering.

    PubMed

    Li, Zhong; Thompson, Brianna C; Dong, Zhili; Khor, Khiam Aik

    2016-12-01

    Transparent bioceramics have attracted a large amount of research interest as they facilitate direct observation of biointerfacial reactions. Thus far, attempts to achieve transparent hydroxyapatite have been focused on augmenting the sintering pressure and/or extending the sintering duration. This study aims at fabricating transparent HA using a direct and fast spark plasma sintering process with appropriate starting powder and moderate sintering pressure. Three types of raw powder, namely micro-spheres, nano-rods and nano-spheres, were sintered to investigate the optical and biological properties of the compacted pellets. It was found that in terms of transparency, the micro-sphere pellet sintered at 1000°C stood out with an in-line transmittance as high as 84% achieved at 1300nm for a 2mm thick sample. In addition, pellets fabricated from micro-spheres demonstrated the highest cell viability in in vitro biological tests with L929 cells. Living cells cultured on a transparent micro-sphere pellet could be directly and clearly observed by light microscopy. It is thus concluded that the micro-sphere powder is the most desirable raw material to manufacture transparent hydroxyapatite because it could enable dense pellets with notably high transparency and outstanding in vitro biocompatibility to be readily obtained. PMID:27612791

  4. Microwave processed nanocrystalline hydroxyapatite: Simultaneous enhancement of mechanical and biological properties

    PubMed Central

    Bose, Susmita; Dasgupta, Sudip; Tarafder, Solaiman; Bandyopadhyay, Amit

    2010-01-01

    Despite excellent bioactivity of hydroxyapatite (HA) ceramics, poor mechanical strength has limited its applications primarily to coatings and other non-load bearing areas as bone grafts. Using synthesized HA nanopowder, dense compacts with grain sizes in nanometers to micrometers were processed via microwave sintering between 1000 and 1150 °C for 20 minutes. Here we demonstrate that mechanical properties, such as compressive strength, hardness and indentation fracture toughness of HA compacts increased with a decrease in grain size. HA with 168± 86 nm grain size showed the highest compressive strength of 395±42 MPa, hardness of 8.4±0.4 GPa and indentation fracture toughness of 1.9 ±0.2 MPam1/2. To study the in vitro biological properties, HA compacts with grain size between 168 nm and 1.16 µm were assessed for in vitro bone cell-materials interactions with human osteoblast cell line. Vinculin protein expression for cell attachment and bone cell proliferation using MTT assay showed surfaces with finer grains provided better bone cell-materials interactions than coarse grained samples. Our results indicate simultaneous improvements in mechanical and biological properties in microwave sintered HA compacts with nanoscale grain size. PMID:20230922

  5. Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2.

    PubMed

    Goonasekera, Chandhi S; Jack, Kevin S; Bhakta, Gajadhar; Rai, Bina; Luong-Van, Emma; Nurcombe, Victor; Cool, Simon M; Cooper-White, Justin J; Grøndahl, Lisbeth

    2015-01-01

    Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer. The chemical composition of the particles was evaluated using X-ray photoelectron spectroscopy and elemental microanalysis, revealing that the heparin grafting densities achieved were dependent on the curing temperature used in the fabrication of APTES-modified HAP. Comparable amounts of heparin were attached via both covalent coupling and adsorption to the APTES-modified particles, but characterization of the particle surfaces by zeta potential and Brunauer-Emmett-Teller measurements indicated that the conformation of the heparin on the surface was dependent on the method of attachment, which in turn affected the stability of heparin on the surface. The release of BMP-2 from the particles after 7 days in phosphate-buffered saline found that 31% of the loaded BMP-2 was released from the APTES-modified particles with heparin covalently attached, compared to 16% from the APTES-modified particles with the heparin adsorbed. Moreover, when heparin was adsorbed onto pure HAP, it was found that the BMP-2 released after 7 days was 5% (similar to that from unmodified HAP). This illustrates that by altering the mode of attachment of heparin to HAP the release profile and total release of BMP-2 can be manipulated. Importantly, the BMP-2 released from all the heparin particle types was found by the SMAD 1/5/8 phosphorylation assay to be biologically active. PMID:26474791

  6. Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2.

    PubMed

    Goonasekera, Chandhi S; Jack, Kevin S; Bhakta, Gajadhar; Rai, Bina; Luong-Van, Emma; Nurcombe, Victor; Cool, Simon M; Cooper-White, Justin J; Grøndahl, Lisbeth

    2015-12-16

    Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer. The chemical composition of the particles was evaluated using X-ray photoelectron spectroscopy and elemental microanalysis, revealing that the heparin grafting densities achieved were dependent on the curing temperature used in the fabrication of APTES-modified HAP. Comparable amounts of heparin were attached via both covalent coupling and adsorption to the APTES-modified particles, but characterization of the particle surfaces by zeta potential and Brunauer-Emmett-Teller measurements indicated that the conformation of the heparin on the surface was dependent on the method of attachment, which in turn affected the stability of heparin on the surface. The release of BMP-2 from the particles after 7 days in phosphate-buffered saline found that 31% of the loaded BMP-2 was released from the APTES-modified particles with heparin covalently attached, compared to 16% from the APTES-modified particles with the heparin adsorbed. Moreover, when heparin was adsorbed onto pure HAP, it was found that the BMP-2 released after 7 days was 5% (similar to that from unmodified HAP). This illustrates that by altering the mode of attachment of heparin to HAP the release profile and total release of BMP-2 can be manipulated. Importantly, the BMP-2 released from all the heparin particle types was found by the SMAD 1/5/8 phosphorylation assay to be biologically active.

  7. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation.

    PubMed

    Smolen, Dariusz; Chudoba, Tadeusz; Malka, Iwona; Kedzierska, Aleksandra; Lojkowski, Witold; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof Jan; Kolodziejczyk-Mierzynska, Małgorzata; Lewandowska-Szumiel, Małgorzata

    2013-01-01

    A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp) nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM). The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m(2)/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 μmol/dm(3) in the tris(hydroxymethyl)aminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material extract, and in direct contact. A quantitative analysis was based on the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. Viability assay as well as on DNA content measurements in the PicoGreen test. Indirect observations were performed at one point in time according to the ISO standard for in vitro cytotoxicity (ie, after 24 hours of cell exposure to the extracts). The direct contact tests were completed at three time points: after 24 hours, on day 7, and on day 14 of a culture in an

  8. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    PubMed Central

    Smolen, Dariusz; Chudoba, Tadeusz; Malka, Iwona; Kedzierska, Aleksandra; Lojkowski, Witold; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof Jan; Kolodziejczyk-Mierzynska, Małgorzata; Lewandowska-Szumiel, Małgorzata

    2013-01-01

    A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp) nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM). The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 μmol/dm3 in the tris(hydroxymethyl)aminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material extract, and in direct contact. A quantitative analysis was based on the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. Viability assay as well as on DNA content measurements in the PicoGreen test. Indirect observations were performed at one point in time according to the ISO standard for in vitro cytotoxicity (ie, after 24 hours of cell exposure to the extracts). The direct contact tests were completed at three time points: after 24 hours, on day 7, and on day 14 of a culture in an osteogenic

  9. Hydrogen in Ag-doped ZnO: theoretical calculations.

    PubMed

    He, H Y; Hu, J; Pan, B C

    2009-05-28

    Based on density functional theory calculations, we systematically investigate the behaviors of a H atom in Ag-doped ZnO involving the preference sites, diffusion behaviors, the electronic structures, and vibrational properties. We find that a H atom can migrate to the doped Ag to form a Ag-H complex by overcoming energy barriers of 0.3-1.0 eV. The lowest-energy site for H location is the bond center of a Ag-O in the basal plane. Moreover, H can migrate between this site and its equivalent sites with energy cost of less than 0.5 eV. In contrast, dissociation of such a Ag-H complex needs energy of about 1.1-1.3 eV. This implies that the Ag-H complexes can commonly exist in the Ag-doped ZnO, which have a negative effect on the desirable p-type carrier concentrations of Ag-doped ZnO. In addition, based on the frozen phonon calculation, the vibrational properties of ZnO with a Ag-H complex are predicted. Some new vibrational modes associated with the Ag-H complex present in the vibrational spectrum of the system.

  10. The Synthesis of Ag-Doped Mesoporous TiO2

    SciTech Connect

    Li, Xiaohong S.; Fryxell, Glen E.; Wang, Chong M.; Engelhard, Mark H.

    2008-04-15

    Ag-doped mesoporous titanium oxide was prepared using non-ionic surfactants and easily handled titanium precursors, under mild reaction conditions. In contrast to the stabilizing effect of Cd-doping on mesoporous TiO2, Ag-doping was found to significantly destabilize the mesoporous structure.

  11. Clinical and radiographic evaluation of nanocrystalline hydroxyapatite with or without platelet-rich fibrin membrane in the treatment of periodontal intrabony defects

    PubMed Central

    Elgendy, Enas Ahmed; Abo Shady, Tamer Elamer

    2015-01-01

    Background: Nano-sized ceramics may represent a promising class of bone graft substitutes due to their improved osseointegrative properties. Nanocrystalline hydroxyapatite (NcHA) binds to bone and stimulate bone healing by stimulation of osteoblast activity. Platelet-rich fibrin (PRF), an intimate assembly of cytokines, glycan chains, and structural glycoproteins enmeshed within a slowly polymerized fibrin network, has the potential to accelerate soft and hard tissue healing. The present study aims to explore the clinical and radiographical outcome of NcHA bone graft with or without PRF, in the treatment of intrabony periodontal defects. Materials and Methods: In a split-mouth study design, 20 patients having two almost identical intrabony defects with clinical probing depth of at least 6 mm were selected for the study. Selected sites were randomly divided into two groups. In Group I, mucoperiosteal flap elevation followed by the placement of NcHA was done. In Group II, mucoperiosteal flap elevation, followed by the placement of NcHA with PRF was done. Clinical and radiographic parameters were recorded at baseline and at 6-month postoperatively. Results: Both treatment groups showed a significant probing pocket depth (PPD) reduction, clinical attachment gain, increase bone density 6-month after surgery compared with baseline. However, there was a significantly greater PPD reduction and clinical attachment gain when PRF was added to NcHA. Conclusion: The NcHA bone graft in combination with PRF demonstrated clinical advantages beyond that achieved by the NcHA alone. PMID:25810595

  12. Mechanical preparation of nanocrystalline biocompatible single-phase Mn-doped A-type carbonated hydroxyapatite (A-cHAp): effect of Mn doping on microstructure.

    PubMed

    Lala, S; Ghosh, M; Das, P K; Kar, T; Pradhan, S K

    2015-12-14

    Nanocrystalline biocompatible single-phase Mn-doped A-type carbonated hydroxyapatite (A-cHAp) powder has been synthesized by mechanical alloying of a stoichiometric mixture of CaCO3, CaHPO4·2H2O and MnO powder for 10 h at room temperature under open air. The A-type carbonation in HAp (substitution of CO3(2-) for OH(-)) is confirmed by FTIR analysis. Microstructure characterization in terms of lattice imperfections and phase quantification of ball milled samples are made by analyzing XRD patterns employing the Rietveld structure refinement method. Rietveld analysis of XRD patterns recorded from Mn-doped HAp samples has been used to locate Mn(2+) cations in HAp. The Ca2 vacancy site is found to be more favorable for Mn substitution. Microstructure characterization by HRTEM corroborates the findings of the X-ray analysis where the presence of a significant amount of amorphous phase of HAp analogous to indigenous bone mineral is clearly found. MTT assay shows sufficiently high percentage cell viability confirming the cytocompatibility of the sample.

  13. Effect of Ag doping and annealing on thermoelectric properties of PbTe

    SciTech Connect

    Bala, Manju Tripathi, T. S.; Avasthi, D. K.; Asokan, K.; Gupta, Srashti

    2015-06-24

    The present study reveals that annealing Ag doped PbTe thin films enhance thermoelectric properties. Phase formation was identified by using X-ray diffraction measurement. Annealing increases the crystallinity of both undoped and Ag doped PbTe. Electrical resistivity and thermoelectric power measurements are done using four probe and bridge method respectively. The increase in thermoelectric power of Ag doped PbTe is 29 % in comparison to undoped PbTe and it further increases to 34 % after annealing at 250{sup o} C for 1 hour whereas thermoelectric power increases by 14 % on annealing undoped PbTe thin films at same temperature.

  14. Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Le Coustumer, Phillippe; Constantin, Liliana Violeta; Predoi, Daniela

    2012-06-01

    Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10- x Ag x (PO4)6(OH)2, x Ag = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for x Ag = 0.05, a = b = 9.443 Å, c = 6.875 Å for x Ag = 0.2, and a = b = 9.445 Å, c = 6.877 Å for x Ag = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples ( x Ag = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of x Ag in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth ( P. stuartii).

  15. Structural, morphological, optical and photocatalytic investigation of Ag-doped TiO2

    NASA Astrophysics Data System (ADS)

    Kundu, Virender Singh; Singh, Davender; Maan, A. S.; Tanwar, Amit

    2016-05-01

    The pure and Ag-doped TiO2 nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO2 and 8.86 nm for 6 mol % Ag doped TiO2. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO2 and Ag-doped TiO2 nanoparticles showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc's plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO2 and Ag-doped TiO2 nanoparticles showed that Ag-doped TiO2 degrades MB dye more efficiently than pure TiO2.

  16. Ultra-trace silver-doped hydroxyapatite with non-cytotoxicity and effective antibacterial activity.

    PubMed

    Shi, Chao; Gao, Jianyong; Wang, Ming; Fu, Jingke; Wang, Dalin; Zhu, Yingchun

    2015-10-01

    Hydroxyapatite (HAp) nanocrystals as the main inorganic component in hard tissue have been extensively studied for bone regeneration and dental implant treatment. However, failure of surgical reconstruction often occurs owing to the lack of effective antibacterial ability of HAp. It is still a challenge to develop artificial HAp with both efficient antibacterial ability and proper biological properties. Herein, a series of ultra-trace Ag-doped HAp nanocrystals have been elaborately prepared with the optimal doping concentration from 0.27 ppm to 2.2 ppm, which present non-cytotoxicity while possess effective bacteria reduction ability. Ultra-trace Ag-doped HAp nanocrystals possess higher protein adsorption than pure HAp nanocrystals due to the trace doping-induced less negative surface potential. The ultra-trace Ag-doped HAp nanocrystals showed effectively antibacterial ability, non-cytotoxicity and enhanced adsorbability that made them ideal materials for various biocompatible and antibacterial applications. PMID:26117782

  17. Bone formation and degradation behavior of nanocrystalline hydroxyapatite with or without collagen-type 1 in osteoporotic bone defects - an experimental study in osteoporotic goats.

    PubMed

    Alt, Volker; Cheung, Wing Hoi; Chow, Simon K H; Thormann, Ulrich; Cheung, Edmond N M; Lips, Katrin S; Schnettler, Reinhard; Leung, Kwok-Sui

    2016-06-01

    The intention of the current work is to assess new bone formation and degradation behavior of nanocrystalline hydroxyapatite with (HA/col-1) or without collagen-type I (HA) in osteoporotic metaphyseal bone defects in goats. After ovariectomy and special low-calcium diet for three months, 3 drill hole defects in the vertebrae of L3, L4, L5, 4 drill hole defects in the right and left iliac crest and 1 drill hole defect at the distal femur were created in three Chinese mountain goats with a total of 24 defects. The defects were either filled with one of the biomaterials or left empty (empty defect control group). After 42 days, the animals were euthanized and the samples were assessed for new bone formation using high-resolution peripheral quantitative computed tomography (HR-pQCT) and histomorphometry with 2 regions of interest. Detail histology, enzymehistochemistry and immunohistochemistry as well as connexin-43 in situ hybridization and transmission electron microscopy were carried out for evaluation of degradation behavior of the materials and cellular responses of the surrounding tissue in respect to the implants. HR-pQCT showed the highest BV/TV ratio (p = 0.008) and smallest trabecular spacing (p = 0.005) for HA compared to the other groups in the region of interest at the interface with 1mm distance to the initially created defect. The HA/col-1 yielded the highest connectivity density (Conn.D) (p = 0.034) and the highest number of trabeculae (Tb.N) (p = 0.002) compared to the HA and the control group. Histomorphometric analysis for the core region of the initially created defect revealed a statistically higher new bone formation in the HA (p = 0.001) and HA/col-1 group (p = 0.001) compared to the empty defect group including all defect sites. This result was confirmed for site specific analysis with significant higher new bone formation for the HA group for vertebral defects compared to the empty defect group (p = 0.029). For the interface region, no

  18. Bone formation and degradation behavior of nanocrystalline hydroxyapatite with or without collagen-type 1 in osteoporotic bone defects - an experimental study in osteoporotic goats.

    PubMed

    Alt, Volker; Cheung, Wing Hoi; Chow, Simon K H; Thormann, Ulrich; Cheung, Edmond N M; Lips, Katrin S; Schnettler, Reinhard; Leung, Kwok-Sui

    2016-06-01

    The intention of the current work is to assess new bone formation and degradation behavior of nanocrystalline hydroxyapatite with (HA/col-1) or without collagen-type I (HA) in osteoporotic metaphyseal bone defects in goats. After ovariectomy and special low-calcium diet for three months, 3 drill hole defects in the vertebrae of L3, L4, L5, 4 drill hole defects in the right and left iliac crest and 1 drill hole defect at the distal femur were created in three Chinese mountain goats with a total of 24 defects. The defects were either filled with one of the biomaterials or left empty (empty defect control group). After 42 days, the animals were euthanized and the samples were assessed for new bone formation using high-resolution peripheral quantitative computed tomography (HR-pQCT) and histomorphometry with 2 regions of interest. Detail histology, enzymehistochemistry and immunohistochemistry as well as connexin-43 in situ hybridization and transmission electron microscopy were carried out for evaluation of degradation behavior of the materials and cellular responses of the surrounding tissue in respect to the implants. HR-pQCT showed the highest BV/TV ratio (p = 0.008) and smallest trabecular spacing (p = 0.005) for HA compared to the other groups in the region of interest at the interface with 1mm distance to the initially created defect. The HA/col-1 yielded the highest connectivity density (Conn.D) (p = 0.034) and the highest number of trabeculae (Tb.N) (p = 0.002) compared to the HA and the control group. Histomorphometric analysis for the core region of the initially created defect revealed a statistically higher new bone formation in the HA (p = 0.001) and HA/col-1 group (p = 0.001) compared to the empty defect group including all defect sites. This result was confirmed for site specific analysis with significant higher new bone formation for the HA group for vertebral defects compared to the empty defect group (p = 0.029). For the interface region, no

  19. An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity

    NASA Astrophysics Data System (ADS)

    Wu, Sen; Zhao, Yongfu; Li, Degeng; Xia, Yang; Si, Shihui

    2015-02-01

    In this study, the effect of oxygen on the potential of reduced polyaniline (PANI) was investigated. In order to enhance the air oxidation of reduced PANI, several composites of PANI doped with co-catalysts were prepared, and a reasonable flow Zn//PANI suspension cell system was designed to investigate the discharge capacity of obtained PANI composite microparticle suspension cathodes. Compared with PANI doped with Cu2+, La+, Mn2+ and zinc protoporphyrin, Ag doped PANI composite at 0.90 weight percent doping of Ag gave the highest value of discharge capacity for the half-cell potential from the initial value to -0.20 V (vs. SCE). A comparison study on the electrochemical properties of both PANI and Ag doped PANI microparticle suspension was done by using cyclic voltammetry, AC Impedance. Due to partial utilization of Zn//air fuel cell, the discharge capacity for Ag doped PANI reached 470 mA h g-1 at the current density of 20 mA cm-2. At 15 mA cm-2, the discharge capacity even reached up to 1650 mA h g-1 after 220 h constant current discharge at the final discharge voltage of 0.65 V. This work demonstrates an effective and feasible approach toward obtaining high energy and power densities by a Zn//Ag-doped PANI suspension flow battery system combined with Zn//air fuel cell.

  20. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    SciTech Connect

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mahmood, Arshad

    2014-04-21

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects in ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn{sup 2+} interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.

  1. Evaluation of Bone Healing on Sandblasted and Acid Etched Implants Coated with Nanocrystalline Hydroxyapatite: An In Vivo Study in Rabbit Femur

    PubMed Central

    Melin Svanborg, Lory; Meirelles, Luiz; Franke Stenport, Victoria; Currie, Fredrik; Andersson, Martin

    2014-01-01

    This study aimed at investigating if a coating of hydroxyapatite nanocrystals would enhance bone healing over time in trabecular bone. Sandblasted and acid etched titanium implants with and without a submicron thick coat of hydroxyapatite nanocrystals (nano-HA) were implanted in rabbit femur with healing times of 2, 4, and 9 weeks. Removal torque analyses and histological evaluations were performed. The torque analysis did not show any significant differences between the implants at any healing time. The control implant showed a tendency of more newly formed bone after 4 weeks of healing and significantly higher bone area values after 9 weeks of healing. According to the results from this present study, both control and nano-HA surfaces were biocompatible and osteoconductive. A submicron thick coating of hydroxyapatite nanocrystals deposited onto blasted and acid etched screw shaped titanium implants did not enhance bone healing, as compared to blasted and etched control implants when placed in trabecular bone. PMID:24723952

  2. Transport and pinning properties of Ag-doped FeSe0.94

    NASA Astrophysics Data System (ADS)

    Nazarova, E.; Balchev, N.; Nenkov, K.; Buchkov, K.; Kovacheva, D.; Zahariev, A.; Fuchs, G.

    2015-02-01

    We investigated the superconducting transition and the pinning properties of undoped and Ag-doped FeSe0.94 at magnetic fields up to 14 T. We established that, due to Ag addition, the hexagonal phase formation in melted FeSe0.94 samples is suppressed and the grain connectivity is strongly improved. The obtained superconducting zero-field transition becomes sharp, with a transition width below 1 K. Tc and the upper critical field were found to increase, while the normal-state resistivity was significantly reduced, becoming comparable with that of FeSe single crystals. In addition, a considerable magnetoresistance was observed due to Ag doping. The resistive transition of undoped and Ag-doped FeSe0.94 is dominated by a thermally activated flux flow. From the activation energy U versus H dependence, we found a crossover from single-vortex pinning to a collective-creep pinning behavior by increasing the magnetic field.

  3. Ag-doped ZnO nanorods synthesized by two-step method

    NASA Astrophysics Data System (ADS)

    Chen, Xian-Mei; Ji, Yong; Gao, Xiao-Yong; Zhao, Xian-Wei

    2012-11-01

    A two-step method is adopted to synthesize Ag-doped ZnO nanorods. A ZnO seed layer is first prepared on a glass substrate by thermal decomposition of zinc acetate. Ag-doped ZnO nanorods are then assembled on the ZnO seed layer using the hydrothermal method. The influences of the molar percentage of Ag ions to Zn ions (RAg/Zn) on the structural and optical properties of the ZnO nanorods obtained are carefully studied using X-ray diffractometry, scanning electron microscopy and spectrophotometry. Results indicate that Ag ions enter into the crystal lattice through the substitution of Zn ions. The (002) c-axis-preferred orientation of the ZnO nanorods decreases as RAg/Zn increases. At RAg/Zn > 1.0%, ZnO nanorods lose their c-axis-preferred orientation and generate Ag precipitates from the ZnO crystal lattice. The average transmissivity in the visible region first increases and then decreases as RAg/Zn increases. The absorption edge is first blue shifted and then red shifted. The influence of Ag doping on the average head face, and axial dimensions of the ZnO nanorods may be optimized to improve the average transmissivity at RAg/Zn < 1.0%.

  4. Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method

    NASA Astrophysics Data System (ADS)

    Stanić, Vojislav; Radosavljević-Mihajlović, Ana S.; Živković-Radovanović, Vukosava; Nastasijević, Branislav; Marinović-Cincović, Milena; Marković, Jelena P.; Budimir, Milica D.

    2015-05-01

    Silver doped fluorapatite nanopowders were synthesised by neutralization method, which consists of dissolving Ag2O in solution of HF and H3PO4 and addition to suspension of Ca(OH)2. The powder XRD, SEM and FTIR studies indicated the formation of a fluorapatite nanomaterials with average length of the particles is about 80 nm and a width of about 15 nm. The FTIR studies show that carbonate content in samples is very small and carbonte ions substitute both phosphate and hydroxyl groups in the crystal structure of samples, forming AB-type fluorapatite. Antibacterial studies have demonstrated that all Ag+-doped fluorapatite samples exhibit bactericidal effect against pathogens: Staphylococcus aureus, Micrococcus luteus and Kllebsiela pneumoniae. Antibacterial activity increased with the increase of Ag+ in the samples. The atomic force microscopy studies revealed extensive damage to the bacterial cell envelops in the presence of Ag+-doped fluorapatite particles which may lead to their death. The synthesized Ag+-doped fluorapatite nanomaterials are promising as antibacterial biomaterials in orthopedics and dentistry.

  5. Assessment of antimicrobial activity of nanosized Ag doped TiO(2) colloids.

    PubMed

    Yaşa, Ihsan; Lkhagvajav, Natsag; Koizhaiganova, Meruyert; Celik, Erdal; Sarı, Ozcan

    2012-07-01

    In the present research, the antimicrobial effects of nanosized silver (Ag) doped TiO(2) colloidal solutions prepared using a sol-gel technique were investigated. In order to determine the solution characteristics, the turbidity, viscosity and pH of the colloidal solutions were measured. Differential thermal analysis-thermogravimetry equipment was used to determine the chemical structures and reaction types of the films formed from these solutions. The morphology of Ag doped TiO(2) nanoparticles was evaluated by atomic force microscopy. The disc diffusion method was employed to explore antimicrobial activity, and the Broth Microdilution method was used to obtain MIC values of nanosized Ag doped TiO(2) colloidal solutions against the test microorganisms Escherichia coli, Staphylococcus aureus, Candida albicans, Bacillus subtilis, and Salmonella typhimurium. It was found that the silver doped TiO(2) nanoparticles inhibited the growth and multiplication of the test microorganisms, including the fungus C. albicans. Antimicrobial activity was observed against all tested microorganisms at a very low concentration of 1.125-2.81 μg/ml of nano silver in 1-25 % Ag-TiO(2) solutions.

  6. The Effect of Ag-DOPING on the Critical Current Density of YBa2Cu3O7-δ Superconductors

    NASA Astrophysics Data System (ADS)

    Lue, Juh Tzeng; Kung, J. H.; Yen, H. H.; Chen, Y. C.; Wu, P. T.

    The superconducting state and the transition temperature Tc of the interstitially Ag-doped YBa2 Cu3 O7-δ are not changed even when the Ag concentration is increased up to 20%, whereas the substitutionally doped YBa2 Cu3-x Agx O7-δ system ceases to be superconductive when the contents x of Ag is over 1.2. Magnetic susceptibility measurement indicates that the interstitial Ag-doping yields higher diamagnetic signal and enhances the critical current density by 15 folds. Photoelectron emission and electron spin resonance spectroscopic studies elucidate that the copper ions change from diamagnetic to paramagnetic states at some doping levels.

  7. Contact potential barriers and characterization of Ag-doped composite TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Jingling; Chen, Wenzhe; Yu, Hualiang; Wu, Bo; Huang, Wenbo; Wang, Mingxiu; Huang, Shizhen; Lin, Wei; Zhang, Likun; Li, Shiping

    2014-04-01

    Ag-doping TiO2 composite nanotubes (Ag-TNTs) were synthesized by alkaline fusion followed by hydrothermal treatment. The microstructure and morphology of the materials were characterized by XRD, TEM, XPS, SPS (surface photovoltage spectroscopy), FISPS (electric field-induced surface photovoltage spectroscopy) and Raman spectroscopy. First-principles calculations based on density-functional theory (DFT) showed the formation of several impurity levels near the top of the valence band in the band gap (Eg) of rutile TiO2 due to Ag doping. A "double junction" is proposed, involving a Schottky junction and p-n junction (denoted as "Ag-p-n junction") occurring between the Ag particles and the nanotube surface, as well as forming inside TiO2 nanotubes, respectively. The strongly built-in electric field of the junctions promotes the separation of photo-holes and photoelectrons, enhancing the photocatalytic efficiency. XRD results indicated that the composite Ag-TNTs exist as a mixture of anatase and rutile phases. XPS results showed that Ti4+ is the primary state of Ti. Raman spectral analysis of Ag-TNTs revealed the presence of a new peak at 271 cm-1. The red-shift of the absorption light wavelength of Ag-TNTs was 0.16 eV (20 nm) due to a considerable narrowing of Eg by the existing impurity levels.

  8. Synthesis and Characterization of Varying Concentrations of Ag-doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Hachlica, Justin; Wadie-Ibrahim, Patrick; Sahiner, M. Alper

    Silver doped ZnO is a promising compound for photovoltaic solar cell use. Doping this compound with varying amounts of silver will theoretically make this type of thin film more efficient by reducing the overall resistance and increasing the voltage and current output. The extent of this promise is being tested experimentally, by analysis of both the electrical and the surface roughness properties of the cells. Ag-doped Zinc Oxide is deposited by method of Pulsed Laser Deposition (PLD) onto Indium Tin Oxide (ITO) coated Glass. Annealing effects were also observed by varying the temperature at which the annealing occurred after synthesis of the sample. Thickness is confirmed by use of Ellipsometery. X-Ray Diffraction (XRD) measurements confirmed a ZnO crystal structure on the thin films. The active dopant carrier concentrations were determined using a Hall Effect Measuring System. Finally, the photovoltaic properties of the film are recorded by using a Keithley Source Meter. The structural characterization and electrical results of the effect of Ag doping on ZnO will then be discussed.

  9. Effect of Ag doping and insulator buffer layer on the memory mechanism of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Kaur, Jagdish; Tripathi, S. K.

    2015-07-01

    Resistive memory devices based on nanocomposites have attracted great potential for future applications in electronic and optoelectronic devices. The successful synthesis of aqueous CdSe nanoparticles has been provided with UV-Vis and Photoluminescence spectroscopy. The two terminal planar devices of CdSe nanocomposite have been fabricated. The effect of Ag doping and additional dielectric buffer layers on the memory devices have been studied by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The devices show hysteresis loops in both positive and negative bias directions. The memory window has been found to be increased with both Ag doping and PVA layer addition. The charge carrier transport mechanism in the memory devices has been studied by fitting the I-V characteristics with the theoretical model, Space charge conduction model (SCLC). C-V hysteresis loop in both positive and negative bias directions indicate that both the electrons and holes are responsible for memory mechanism of the devices. The switching mechanism of the memory devices has been explained by charge trapping/detrapping model. The retention characteristics show good stability and reliability of the devices.

  10. Dynamic fatigue behaviour of Ag-doped Bi-2212 textured thin rods

    NASA Astrophysics Data System (ADS)

    Madre, M. A.; Rasekh, Sh; Diez, J. C.; Sotelo, A.

    2009-03-01

    The flexural strength of 1 wt.% Ag-doped Bi2Sr2CaCu2O8+δ thin rods textured by a laser heated floating zone was measured as a function of the environmental conditions (air versus water) at room temperature. Loading rates spanning three orders of magnitude (1, 10 and 100 μm/min) were used to explore their susceptibility to the environmental conditions. These mechanical tests were completed with electrical characterization (critical current at 77K and resistivity from 77 to 300 K) of samples submerged in distilled water for different time lengths (0, 12 and 120h). While Bi2Sr2CaCu2O8+δ has been shown, in previous works, to be unstable during contact with water molecules, the Ag-doped Bi-2212 textured rods tested in this work are very inert to the water environment, with respect to their mechanical and electrical properties, due to the presence of a narrow (approx150 μm) low textured outer ring formed in the growth process.

  11. Ag-doped FeSe0.94 polycrystalline samples obtained through hot isostatic pressing with improved grain connectivity

    NASA Astrophysics Data System (ADS)

    Gajda, G.; Morawski, A.; Rogacki, K.; Cetner, T.; Zaleski, A. J.; Buchkov, K.; Nazarova, E.; Balchev, N.; Hossain, M. S. A.; Diduszko, R.; Gruszka, K.; Przysłupski, P.; Fajfrowski, Ł.; Gajda, D.

    2016-09-01

    We evaluate the effects of high pressure during annealing on the structural and superconducting properties of Ag-doped FeSe bulks. The results obtained in this work indicate that the annealing at high pressure increases the critical temperature, upper critical field and irreversibility field due to the improved uniformity and grain connectivity.

  12. Local order origin of thermal stability enhancement in amorphous Ag doping GeTe

    NASA Astrophysics Data System (ADS)

    Xu, L.; Li, Y.; Yu, N. N.; Zhong, Y. P.; Miao, X. S.

    2015-01-01

    We demonstrate the impacts of Ag doping on the local atomic structure of amorphous GeTe phase-change material. The variations of phonon vibrational modes, boding nature, and atomic structure are shown by Raman, X-ray photoelectron spectroscopy, and ab initio calculation. Combining the experiments and simulations, we observe that the number of Ge atoms in octahedral site decreases and that in tetrahedral site increases. This modification in local order of GeTe originating from the low valence element will affect the crystallization behavior of amorphous GeTe, which is verified by differential scanning calorimetry and transmission electron microscope results. This work not only gives the analysis on the structural change of GeTe with Ag dopants but also provides a method to enhance the thermal stability of amorphous phase-change materials for memory and brain-inspired computing applications.

  13. Local order origin of thermal stability enhancement in amorphous Ag doping GeTe

    SciTech Connect

    Xu, L.; Li, Y.; Yu, N. N.; Zhong, Y. P.; Miao, X. S.

    2015-01-19

    We demonstrate the impacts of Ag doping on the local atomic structure of amorphous GeTe phase-change material. The variations of phonon vibrational modes, boding nature, and atomic structure are shown by Raman, X-ray photoelectron spectroscopy, and ab initio calculation. Combining the experiments and simulations, we observe that the number of Ge atoms in octahedral site decreases and that in tetrahedral site increases. This modification in local order of GeTe originating from the low valence element will affect the crystallization behavior of amorphous GeTe, which is verified by differential scanning calorimetry and transmission electron microscope results. This work not only gives the analysis on the structural change of GeTe with Ag dopants but also provides a method to enhance the thermal stability of amorphous phase-change materials for memory and brain-inspired computing applications.

  14. Efficient inverted organic light-emitting devices with self or intentionally Ag-doped interlayer modified cathode

    SciTech Connect

    Liu, Wenbo; Liu, Shihao; Yu, Jing; Zhang, Wei; Wen, Xuemei; Yin, Yongming; Zhang, Letian; Chen, Ping; Xie, Wenfa

    2014-03-03

    Green phosphorescent inverted organic light-emitting devices (IOLEDs) with self or intentionally Ag-doped interlayer modified cathode were demonstrated. The IOLEDs show low driving voltage and high efficiency. For example, the efficiency of inverted bottom-emitting OLED with ITO cathode is comparable with the conventional bottom-emitting OLED with ITO anode. The top-emitting IOLED with Ag cathode shows high current efficiency of 76.4 cd/A which is 2.38 times of that of the conventional bottom-emitting OLED with ITO anode. The results indicate that the electron injection from cathode was observably improved by the Ag-doped interlayer and such interlayer is cathode independent relatively.

  15. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A.

    2013-07-01

    Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur-Ag-SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV-visible diffuse reflectance spectra (UV-vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag-SnO2 and Cur-Ag-SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur-Ag-SnO2 shows better photocatalytic activity than that of Ag-SnO2 and SnO2. The superior photocatalytic activity of Cur-Ag-SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur-Ag-SnO2 were tested.

  16. Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots

    PubMed Central

    2010-01-01

    Highly luminescent Ag-ion-doped Cd1−xZnxS (0 ≤ x ≤ 1) alloy nanocrystals were successfully synthesized by a novel wet chemical precipitation method. Influence of dopant concentration and the Zn/Cd stoichiometric variations in doped alloy nanocrystals have been investigated. The samples were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) to investigate the size and structure of the as prepared nanocrystals. A shift in LO phonon modes from micro-Raman investigations and the elemental analysis from the energy dispersive X-ray analysis (EDAX) confirms the stoichiometry of the final product. The average crystallite size was found increasing from 1.0 to 1.4 nm with gradual increase in Ag doping. It was observed that photoluminescence (PL) intensity corresponding to Ag impurity (570 nm), relative to the other two bands 480 and 520 nm that originates due to native defects, enhanced and showed slight red shift with increasing silver doping. In addition, decrease in the band gap energy of the doped nanocrystals indicates that the introduction of dopant ion in the host material influence the particle size of the nanocrystals. The composition dependent bandgap engineering in CdZnS:Ag was achieved to attain the deliberate color tunability and demonstrated successfully, which are potentially important for white light generation. PMID:20652135

  17. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli.

    PubMed

    Gupta, Kiran; Singh, R P; Pandey, Ashutosh; Pandey, Anjana

    2013-01-01

    This paper reports the structural and optical properties and comparative photocatalytic activity of TiO2 and Ag-doped TiO2 nanoparticles against different bacterial strains under visible-light irradiation. The TiO2 and Ag-doped TiO2 photocatalysts were synthesized by acid catalyzed sol-gel technique and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectroscopy and photoluminescence (PL). The XRD pattern revealed that the annealed sample of TiO2 has both anatase and rutile phases while only an anatase phase was found in Ag-doped TiO2 nanoparticles. The decreased band-gap energy of Ag-doped TiO2 nanoparticles in comparison to TiO2 nanoparticles was investigated by UV-vis spectroscopy. The rate of recombination and transfer behaviour of the photoexcited electron-hole pairs in the semiconductors was recorded by photoluminescence. The antimicrobial activity of TiO2 and Ag-doped TiO2 nanoparticles (3% and 7%) was investigated against both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. As a result, the viability of all three microorganisms was reduced to zero at 60 mg/30 mL culture in the case of both (3% and 7% doping) concentrations of Ag-doped TiO2 nanoparticles. Annealed TiO2 showed zero viability at 80 mg/30 mL whereas doped Ag-TiO2 7% showed zero viability at 40 mg/30 mL culture in the case of P. aeruginosa only.

  18. Synthesis and characterization of porous hydroxyapatite and hydroxyapatite coatings

    SciTech Connect

    Nieh, T G; Choi, B W; Jankowski, A F

    2000-10-25

    A technique is developed to construct bulk hydroxyapatite (HAp) with different cellular structures. The technique involves the initial synthesis of nanocrystalline hydroxyapatite powder from an aqueous solution using water-soluble compounds and then followed by spray drying into agglomerated granules. The granules were further cold pressed and sintered into bulks at elevated temperatures. The sintering behavior of the HAp granules was characterized and compared with those previously reported. Resulting from the fact that the starting HAp powders were extremely fine, a relatively low activation energy for sintering was obtained. In the present study, both porous and dense structures were produced by varying powder morphology and sintering parameters. Porous structures consisting of open cells were constructed. Sintered structures were characterized using scanning electron microscopy and x-ray tomography. In the present paper, hydroxyapatite coatings produced by magnetron sputtering on silicon and titanium substrates will also be presented. The mechanical properties of the coatings were measured using nanoindentation techniques and microstructures examined using transmission electron microscopy.

  19. Photocatalytic degradation of gaseous toluene over Ag-doping TiO₂ nanotube powder prepared by anodization coupled with impregnation method.

    PubMed

    Li, Xinyong; Zou, Xuejun; Qu, Zhenping; Zhao, Qidong; Wang, Lianzhou

    2011-04-01

    In this work, Ag-doping TiO(2) nanotubes were prepared and employed as the photocatalyst for the degradation of toluene. The TiO(2) nanotube powder was produced by the rapid-breakdown potentiostatic anodization of Ti foil in chloride-containing electrolytes, and then doped with Ag through an incipient wetness impregnation method. The samples were characterized by scanning electron microscope, high-resolution transmission electron microscopy, X-ray diffraction, surface photovoltage measurements, X-ray photoelectron spectroscopy and N(2) adsorption. The nanotubular TiO(2) photocatalysts showed an outer diameter of approximately 40nm, fine mesoporous structure and high specific surface area. The photocatalytic activity of Ag-doping TiO(2) nanotube powder was evaluated through photooxidation of gaseous toluene. The results indicated that the degradation efficiency of toluene could get 98% after 4h reaction using the Ag-doping TiO(2) nanotubes as the photocatalyst under UV light illumination, which was higher than that of the pure TiO(2) nanotubes, Ag-doping P25 or P25. Benzaldehyde species could be observed during the photocatalytic oxidation monitored by in situ FTIR, and the formed benzaldehyde intermediate during reaction would be partially oxidized into CO(2) and H(2)O. PMID:21435692

  20. Improved performance of Ag-doped TiO2 synthesized by modified sol-gel method as photoanode of dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Gupta, Arun Kumar; Srivastava, Pankaj; Bahadur, Lal

    2016-08-01

    Ag-doped TiO2 with Ag content ranging from 1 to 7 mol% was synthesized by a modified sol-gel route, and its performance as the photoanode of dye-sensitized solar cells (DSSCs) was compared with undoped TiO2 photoanode. Titanium(IV)isopropoxide was used as precursor and hexamethylenetetramine as the capping agent. XRD results show the formation of TiO2 nanoparticles with an average crystallite size of 5 nm (1 % Ag-doped TiO2) and 9 nm (undoped TiO2), respectively. The TiO2 nanopowder was used to prepare its thin film photoelectrode using doctor's blade method. Significant improvement in light-to-energy conversion efficiency was achieved when thin films of 1 % Ag-doped TiO2 were applied as photoanode in DSSC taking N719 as the sensitizer dye. As evidenced by EIS measurements, the electron lifetime of DSSC with Ag-doped TiO2 increased from 1.33 (for undoped TiO2) to 2.05 ms. The short-circuit current density ( J sc), open-circuit voltage ( V oc), fill factor (FF) and the overall energy conversion efficiency ( η) were 1.07 mA cm-2, 0.72 V, 0.73 and 0.40 %, respectively, with the use of 1 % Ag-doped TiO2 photoanode, whereas with undoped TiO2 under similar conditions, J sc = 0.63 mA cm-2, V oc = 0.70 V, fill factor 0.45 and conversion efficiency 0.14 % could be obtained. Therefore, compared with the reference DSSC containing an undoped TiO2 photoanode, the power conversion efficiency of the cell based on Ag-doped TiO2 has been remarkably enhanced by ~70 %. The substantial improvement in the device performance is attributed to the reduced band-gap energy, retarded charge recombination and greater surface coverage of the sensitizing dye over Ag-doped TiO2, which ultimately resulted in improved IPCE, J SC and η values.

  1. Photocatalytic activity of undoped and Ag-doped TiO{sub 2}-supported zeolite for humic acid degradation and mineralization

    SciTech Connect

    Lazau, C.; Ratiu, C.; Orha, C.; Pode, R.; Manea, F.

    2011-11-15

    Highlights: {yields} Hybrid materials based on natural zeolite and TiO{sub 2} obtained by solid-state reaction. {yields} XRD proved the presence of anatase form of undoped and Ag-doped TiO{sub 2} onto zeolite. {yields} FT-IR spectra evidenced the presence on TiO{sub 2} bounded at the zeolite network. {yields} Ag-doped TiO{sub 2} onto zeolitic matrix exhibited an enhanced photocatalytic activity. -- Abstract: The hybrid materials based on natural zeolite and undoped and Ag-doped TiO{sub 2}, i.e., Z-Na-TiO{sub 2} and Z-Na-TiO{sub 2}-Ag, were successfully synthesized by solid-state reaction in microwave-assisted hydrothermal conditions. Undoped TiO{sub 2} and Ag-doped TiO{sub 2} nanocrystals were previously synthesized by sol-gel method. The surface characterization of undoped TiO{sub 2}/Ag-doped TiO{sub 2} and natural zeolite hybrid materials has been investigated by X-ray diffraction, DRUV-VIS spectroscopy, FT-IR spectroscopy, BET analysis, SEM microscopy and EDX analysis. The results indicated that anatase TiO{sub 2} is the dominant crystalline type as spherical form onto zeolitic matrix. The presence of Ag into Z-Na-TiO{sub 2}-Ag was confirmed by EDX analysis. The DRUV-VIS spectra showed that Z-Na-TiO{sub 2}-Ag exhibited absorption within the range of 400-500 nm in comparison with Z-Na-TiO{sub 2} catalyst. The enhanced photocatalytic activity of Z-Na-TiO{sub 2}-Ag catalyst is proved through the degradation and mineralization of humic acid under ultraviolet and visible irradiation.

  2. Surface resistance and residual losses of Ag-doped YBa2Cu3O7 - delta thin films on sapphire

    NASA Astrophysics Data System (ADS)

    Pinto, R.; Apte, P. R.; Hegde, M. S.; Kumar, Dhananjay

    1995-04-01

    High-quality Ag-doped YBa2Cu3O7-δ thin films have been grown by laser ablation on R-plane <11¯02> sapphire without any buffer layer. Thin films have been found to be highly c-axis oriented with Tc=90 K, transition width ΔT≤1 K, and transport Jc=1.2×106 A cm-2 at 77 K in self-field conditions. The microwave surface resistance of these films measured on patterned microstrip resonators has been found to be 530 μΩ at 10 GHz at 77 K which is the lowest reported on unbuffered sapphire. Improved in-plane epitaxy and reduced reaction rate between the substrate and the film caused due to Ag in the film are believed to be responsible for this greatly improved microwave surface resistance.

  3. Influence of Ag doping concentration on structural and optical properties of CdS thin film

    SciTech Connect

    Kumar, Pragati; Saxena, Nupur; Gupta, Vinay; Agarwal, Avinash

    2015-05-15

    This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.

  4. Synthesis and characterization of hierarchical multilayered flower-like assemblies of Ag doped Bi2WO6 and their photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Dumrongrojthanath, Phattharanit; Thongtem, Titipun; Phuruangrat, Anukorn; Thongtem, Somchai

    2013-12-01

    In this research, 0-3 mol% Ag doped Bi2WO6 hierarchical multilayered flower-like assemblies were successfully synthesized by a simple hydrothermal method at 180 °C for 24 h. The XRD, FE-SEM, FTIR and Raman analyses revealed the presence of flower-like Russellite Bi2WO6 structures which were constructed from a large number of orderly arranged 2D layers of interconnected nanoplates. Their photocatalytic activities were evaluated by photodegradation of rhodamine B (RhB) under Xe visible light irradiation (λ > 420 nm). The 3 mol% Ag doped Bi2WO6 showed the highest photocatalytic activities of 98.20% within 180 min.

  5. Biomineralization of nanoscale single crystal hydroxyapatite.

    PubMed

    Omokanwaye, Tiffany; Wilson, Otto C; Gugssa, Ayelle; Anderson, Winston

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague-Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54nm and 0.23nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. PMID:26249568

  6. Biomineralization of nanoscale single crystal hydroxyapatite.

    PubMed

    Omokanwaye, Tiffany; Wilson, Otto C; Gugssa, Ayelle; Anderson, Winston

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague-Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54nm and 0.23nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process.

  7. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  8. Tuning of Ag doped core-shell ZnO NWs/Cu2O grown by electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Makhlouf, Houssin; Messaoudi, Olfa; Souissi, Ahmed; Ben Assaker, Ibtissem; Oueslati, Mihrez; Bechelany, Mikhael; Chtourou, Radhouane

    2015-09-01

    ZnO nanowires (NWs)/Cu2O-Ag core-shell nanostructures (NSs) have been synthesized by electrochemical deposition method on ITO-coated glass substrates in order to improve the efficiency of the type-II transition of core-shell ZnO NWs/Cu2O-Ag NSs. The morphologies of the obtained NSs were studied by scanning electron microscopy confirming the presence of core-shell NSs. The crystalline proprieties were analyzed by x-ray diffraction and micro-Raman measurement: wurtzite ZnO and cuprit Cu2O phase were founded. The presence of Ag content in core-shell NS was detected by EDX. Optical measurement reveals an additional contribution δE at about 1.72 eV attributed to the type-II interfacial transition between the valance band of cuprit-Cu2O and the conduction band of W-ZnO. The effect of the Ag doping into the type-II transition was investigated. A red shift of the type-II transition was detected according to the Ag concentration. These materials could have potential applications in photocatalytic and photovoltaic fields.

  9. Hardness and microplasticity of nanocrystalline and amorphous calcium phosphate coatings

    NASA Astrophysics Data System (ADS)

    Ievlev, V. M.; Kostyuchenko, A. V.; Darinskii, B. M.; Barinov, S. M.

    2014-02-01

    The hardness of thin (1.0-4.0 μm) hydroxyapatite coatings with different structures (nanocrystalline, amorphous-crystalline, and amorphous) grown by rf magnetron sputtering on Ti and Si plates has been studied using the nanoindentation method. All the grown structures are characterized by the strain which has reversible and irreversible components. The hardness of nanocrystalline coatings (about 10 GPa) corresponds to the average hardness of hydroxyapatite single crystals. The structure of nanocrystalline coatings in the indentation zone and outside it has been investigated and changes in the structure under the indenter have been revealed using high-resolution transmission electron microscopy. From a comparison of the hardnesses of coatings with different structures and based on an analysis of the intragranular structure, it has been assumed that the plastic deformation occurs according to a dislocation-free mechanism. The plastic deformation is interpreted in terms of the cluster representation of the hydroxyapatite structure and amorphous calcium phosphates of the same elemental composition and cluster-boundary sliding during the deformation.

  10. Study of thermal effects of silicate-containing hydroxyapatites

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Zaits, A. V.; Berdinskaya, N. V.; Mylnikova, T. S.

    2016-02-01

    The possibility of modifications of hydroxyapatite silicate ions, from the extracellular fluid prototype solution under near-physiological conditions has been studied. Formation of silicon-structured hydroxyapatite with different extent of substitution of phosphate groups in the silicate group has been established through chemical and X-ray diffraction analyses, FTIR spectroscopy and optical microscopy. The results obtained are in agreement and suggest the possibility of substitution of phosphate groups for silicate groups in the hydroxyapatite structure when introducing different sources of silica, tetraethoxysilane and sodium silicate, in the reaction mixture. Growth in the amount of silicon in Si-HA results in the increase in the thermal stability of the samples. The greatest mass loss occurs at temperatures in the range of 25-400 0C that is caused by the removal of the crystallization and adsorption water and volatile impurities. It is shown that the modified apatites are of imperfect structure and crystallize in a nanocrystalline state.

  11. Photocatalytic comparison of Cu- and Ag-doped TiO2/GF for bioaerosol disinfection under visible light

    NASA Astrophysics Data System (ADS)

    Pham, Thanh-Dong; Lee, Byeong-Kyu

    2015-12-01

    Photocatalysts, TiO2/glass fiber (TiO2/GF), Cu-doped TiO2/glass fiber (Cu-TiO2/GF) and Ag-doped TiO2/glass fiber (Ag-TiO2/GF), were synthesized by a sol-gel method. They were then used to disinfect Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in bioaerosols under visible light irradiation. TiO2/GF did not show any significant disinfection effect. Both Cu and Ag acted as intermediate agents to enhance separation efficiency of electron-hole pairs of TiO2, leading to improved photocatalytic activity of Cu-TiO2/GF and Ag-TiO2/GF under visible light. Cu in Cu-TiO2/GF acted as a defective agent, increasing the internal quantum efficiency of TiO2, while Ag in Ag-TiO2/GF acted as a sensitive agent, enhancing the transfer efficiency of the electrons generated. The highest disinfection efficiencies of E. coli and S. aureus by Cu-TiO2/GF were 84.85% and 65.21%, respectively. The highest disinfection efficiencies of E. coli and S. aureus by Ag-TiO2/GF were 94.46% and 73.12%, respectively. Among three humidity conditions - 40±5% (dry), 60±5% (moderate), and 80±5% (humid) - the moderate humidity condition showed the highest disinfection efficiency for both E. coli and S. aureus. This study also showed that a Gram-negative bacterium (E. coli) were more readily disinfected by the photocatalysts than a Gram-positive bacterium (S. aureus).

  12. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens

    NASA Astrophysics Data System (ADS)

    Sankar Boxi, Siddhartha; Mukherjee, Khushi; Paria, Santanu

    2016-02-01

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated •OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  13. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens.

    PubMed

    Boxi, Siddhartha Sankar; Mukherjee, Khushi; Paria, Santanu

    2016-02-26

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated (•)OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling. PMID:26808118

  14. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens.

    PubMed

    Boxi, Siddhartha Sankar; Mukherjee, Khushi; Paria, Santanu

    2016-02-26

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated (•)OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  15. Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Meier, Anne; Shah, Malay G.; Devor, Robert W.; Surma, Jan M.; Maloney, Phillip R.; Bauer, Brint M.; Mazyck, David W.

    2016-01-01

    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems.

  16. Nanophase hydroxyapatite coatings for dental and orthopedic applications

    NASA Astrophysics Data System (ADS)

    Sato, Michiko

    In order to improve dental and orthopedic implant performance, the objective of this study was to synthesize nanocrystalline hydroxyapatite (HA) powders to coat metals (specifically, titanium and tantalum). Precipitated HA powders were either sintered in order to produce UltraCaP HA (or microcrystalline size HA) or were treated hydrothermally to produce nanocrystalline HA. Some of the UltraCaP and nanocrystalline HA powders were doped with yttrium (Y) since previous in vitro studies demonstrated that Y-doped HA in bulk improved osteoblast (or bone-forming cell) function over undoped HA. The nanocrystalline HA powders were also mixed with nanophase titania powders because previous studies demonstrated that titania/HA composite coatings increased coating adhesive strength and HA nucleation. These powders were then deposited onto titanium by a novel room-temperature process, called IonTiteT(TM). The results demonstrated that the chemical properties and crystallite size of the original HA powders were maintained in the coatings. More importantly, in vitro studies showed increased osteoblast (bone-forming cell) adhesion on the single phase nanocrystalline HA and nano-titania/HA coatings compared to traditionally used plasma-sprayed HA coatings and uncoated metals. Results further demonstrated greater amounts of calcium deposition by osteoblasts cultured on nanocrystalline HA coatings compared to UltraCaP coatings and conventionally used plasma-sprayed HA coatings. To elucidate mechanisms that influenced osteoblast functions on the HA coatings, the amount of proteins (fibronectin and vitronectin) onto the HA powders and the adsorbed fibronectin conformation were investigated. Exposure of cell integrin binding domains (in fibronectin III10 segments) was greater in fibronectin adsorbed onto 1.2 mole% Y-doped UltraCaP HA coatings compared to nanocrystalline HA coatings tested. However, 1.2 mole% Y-doped UltraCaP HA coatings did not increase mineralization by osteoblasts

  17. [Physiological changes in the morphology of the main structural enamel unit - hydroxyapatite crystal - during its life span (in vitro study)].

    PubMed

    Shumilovich, B R; Sadovsky, V V; Sushchenko, A V; Kharitonov, Yu M

    2015-01-01

    The in vitro study by means of complex laboratory techniques including X-ray faze analysis, infrared spectroscopy, scanning electron and atomic force microscopy defined age-related physiological mineralization process as a shift of the structural enamel unit - nanocrystalline hydroxyapatite crystals - TO microcrystal phase. Relevant anatomical sites with age-dependent enamel optical characteristics corresponding to certain ratio of hydroxyapatite phases and the compliance of their color characteristics to composites enamel layers were revealed.

  18. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  19. New Bismuth-Substituted Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Ciobanu, Gabriela; Bargan, Ana Maria; Luca, Constantin

    2015-11-01

    New bismuth-substituted hydroxyapatite [Ca10- x Bi x (PO4)6(OH)2 where x = 0-2.5] nanoparticles were synthesized by the co-precipitation method from aqueous solutions. The structural properties of the samples were analyzed by scanning electron microscopy coupled with x-ray analysis, x-ray powder diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area analysis. The results confirm that bismuth ions have been incorporated into the hydroxyapatite lattice. The prepared nanocrystalline powders consisted of hydroxyapatite as single phase with hexagonal structure, crystal sizes smaller than 60 nm and (Bi + Ca)/P atomic ratio of around 1.67. The hydroxyapatite samples doped with Bi have mesoporous textures with pores size of around 2 nm and specific surface area in the range of 12-25 m2/g. The Bi-substituted hydroxyapatite powders are more effective against Gram-negative Escherichia coli bacteria than Gram-positive Staphylococcus aureus bacteria.

  20. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    SciTech Connect

    Das, Sayantan; Alford, T. L.

    2013-06-28

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  1. Simultaneous electrochemical determination of nitrate and nitrite in aqueous solution using Ag-doped zeolite-expanded graphite-epoxy electrode.

    PubMed

    Manea, Florica; Remes, Adriana; Radovan, Ciprian; Pode, Rodica; Picken, Stephen; Schoonman, Joop

    2010-11-15

    In this work a new electrochemical sensor based on an Ag-doped zeolite-expanded graphite-epoxy composite electrode (AgZEGE) was evaluated as a novel alternative for the simultaneous quantitative determination of nitrate and nitrite in aqueous solutions. Cyclic voltammetry was used to characterize the electrochemical behavior of the electrode in the presence of individual or mixtures of nitrate and nitrite anions in 0.1M Na(2)SO(4) supporting electrolyte. Linear dependences of current versus nitrate and nitrite concentrations were obtained for the concentration ranges of 1-10mM for nitrate and 0.1-1mM for nitrite using cyclic voltammetry (CV), chronoamperometry (CA), and multiple-pulsed amperometry (MPA) procedures. The comparative assessment of the electrochemical behavior of the individual anions and mixtures of anions on this modified electrode allowed determining the working conditions for the simultaneous detection of the nitrite and nitrate anions. Applying MPA allowed enhancement of the sensitivity for direct and indirect nitrate detection and also for nitrite detection. The proposed sensor was applied in tap water samples spiked with known nitrate and nitrite concentrations and the results were in agreement with those obtained by a comparative spectrophotometric method. This work demonstrates that using multiple-pulse amperometry with the Ag-doped zeolite-expanded graphite-epoxy composite electrode provides a real opportunity for the simultaneous detection of nitrite and nitrate in aqueous solutions. PMID:21035645

  2. Calcium hydroxyapatite fillers.

    PubMed

    Tansavatdi, Kristina; Mangat, Devinder S

    2011-12-01

    Calcium hydroxyapatite fillers have unique advantages over other fillers in regards to duration of action and volume of product required for augmentation, especially in the midface and lower face. In this article, we describe our experience with calcium hydroxyapatite fillers and compare them with other available filler products.

  3. Room-temperature NH3 gas sensors based on Ag-doped γ-Fe2O3/SiO2 composite films with sub-ppm detection ability.

    PubMed

    Tang, Yongliang; Li, Zhijie; Zu, Xiaotao; Ma, Jinyi; Wang, Lu; Yang, Jing; Du, Bo; Yu, Qingkai

    2015-11-15

    In this report, NH3 gas sensors based on Ag-doped γ-Fe2O3/SiO2 composite films are investigated. The composite films were prepared with a sol-gel process, and the films' electrical resistance responded to the change of NH3 concentration in the environment. The SEM and AFM investigations showed that the films had a porous structure, and the XRD investigation indicated that the size of Ag particles changed with the modification of Ag loading content. Through a comparative gas sensing study among the Ag-doped composite films, undoped composite film, γ-Fe2O3 film, and SiO2 film, the Ag-doped composite films were found to be much more sensitive than the sensors based on the undoped composite film and γ-Fe2O3 film at room temperature, indicating the significant influences of the SiO2 and Ag on the sensing property. Moreover, the sensor based on Ag-doped (4%) γ-Fe2O3/SiO2 composite film was able to detect the NH3 gas at ppb level. Conversely, the responses of the sensor to other test gases (C2H5OH, CO, H2, CH4 and H2S) were all markedly low, suggesting excellent selectivity.

  4. Room-temperature NH3 gas sensors based on Ag-doped γ-Fe2O3/SiO2 composite films with sub-ppm detection ability.

    PubMed

    Tang, Yongliang; Li, Zhijie; Zu, Xiaotao; Ma, Jinyi; Wang, Lu; Yang, Jing; Du, Bo; Yu, Qingkai

    2015-11-15

    In this report, NH3 gas sensors based on Ag-doped γ-Fe2O3/SiO2 composite films are investigated. The composite films were prepared with a sol-gel process, and the films' electrical resistance responded to the change of NH3 concentration in the environment. The SEM and AFM investigations showed that the films had a porous structure, and the XRD investigation indicated that the size of Ag particles changed with the modification of Ag loading content. Through a comparative gas sensing study among the Ag-doped composite films, undoped composite film, γ-Fe2O3 film, and SiO2 film, the Ag-doped composite films were found to be much more sensitive than the sensors based on the undoped composite film and γ-Fe2O3 film at room temperature, indicating the significant influences of the SiO2 and Ag on the sensing property. Moreover, the sensor based on Ag-doped (4%) γ-Fe2O3/SiO2 composite film was able to detect the NH3 gas at ppb level. Conversely, the responses of the sensor to other test gases (C2H5OH, CO, H2, CH4 and H2S) were all markedly low, suggesting excellent selectivity. PMID:26057440

  5. Compressibility of Nanocrystalline Forsterite

    SciTech Connect

    Couvy, H.; Chen, J; Drozd, V

    2010-01-01

    We established an equation of state for nanocrystalline forsterite using multi-anvil press and diamond anvil cell. Comparative high-pressure and high-temperature experiments have been performed up to 9.6 GPa and 1,300 C. We found that nanocrystalline forsterite is more compressible than macro-powder forsterite. The bulk modulus of nanocrystalline forsterite is equal to 123.3 ({+-}3.4) GPa whereas the bulk modulus of macro-powder forsterite is equal to 129.6 ({+-}3.2) GPa. This difference is attributed to a weakening of the elastic properties of grain boundary and triple junction and their significant contribution in nanocrystalline sample compare to the bulk counterpart. The bulk modulus at zero pressure of forsterite grain boundary was determined to be 83.5 GPa.

  6. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  7. One-pot synthesis of Ag+ doped BiVO4 microspheres with enhanced photocatalytic activity via a facile hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zhu, Shiwen; Li, Quanguo; Li, Feng; Cao, Wei; Li, Taohai

    2016-05-01

    The Ag+/BiVO4 photocatalyst was fabricated through a facile hydrothermal method by using K6V10O28·9H2O as the vanadium source. The impact of Ag+ on the product's structure and morphology was studied. It was shown that the amount of Ag+ has no effect on the product's crystal phases but plays an important role on the morphology of the nanoparticles that construct the shell of BiVO4 microspheres. In addition, the Ag+-doped photocatalysts have much higher photocatalytic activities in removing RhB and MB under the UV light illumination than the pure BiVO4. A possible photocatalytic mechanism was proposed in photoexcitation of the BiVO4 electrons which subsequently captured by the dopant. The present work may offer a novel route to reach higher photocatalytic activity by doping the Ag+ in the semiconductor catalysts.

  8. The growth mode and microstructure of Ag-doped YBa 2Cu 3O 7-δ thin films prepared by dual beam pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Xu, S. Y.; Ong, C. K.; You, L. P.; Li, J.; Wang, S. J.

    Ag-doped c-axis YBa 2Cu 3O 7-δ thin films were fabricated by using dual-beam pulsed-laser deposition. When a small amount of silver was doped in the film grown at 700 °C, the Jc value was obviously enhanced. The temperature dependence of Jc was found proportional to ( 1- T/T c0 ) {3}/{2} at T close to Tc). In the films grown at 730 °C, we observed long bar-like structures with lengths in tens of μm, oriented along or at 45° to the a/ b axes of the film. The bars consisted mainly a-axis YBCO grains and a mixture of polycrystalline and amorphous oxides. Defects on substrate surface and growth temperature were found dominating in formation of the bars, which could be attributed to a Ag-assisted diffusion mechanism during the deposition process.

  9. Structural properties of silver doped hydroxyapatite and their biocompatibility.

    PubMed

    Ciobanu, C S; Iconaru, S L; Pasuk, I; Vasile, B S; Lupu, A R; Hermenean, A; Dinischiotu, A; Predoi, D

    2013-04-01

    The aim of this study was to obtain a novel hydroxyapatite-based material with high biocompatibility. The structural properties of the samples were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The X-ray diffraction studies revealed the characteristic peaks of hydroxyapatite in each sample. Other phases or impurities were not observed. The scanning electron microscopy observations suggest that the doping components have no influence on the surface morphology of the samples, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O) and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) and X-ray Photoelectron Spectroscopy analyses. Nanocrystalline silver doped HAp stimulated viability and potentiated the activation of murine macrophages.

  10. Synthesis of Ag-doped TiO2 nanoparticles by combining laser decomposition of titanium isopropoxide and ablation of Ag for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Al-Kamal, Ahmed Kamal

    Nanostructured powders of TiO2 and Ag-doped TiO2 are synthesized by a novel pulsed-laser process that combines laser ablation of a silver (Ag) disc with laser decomposition of a titanium tetra-isopropoxide (TTIP) solution. Nanoparticles are formed by rapid condensation of vaporized species in the plasma plume generated by the high power laser, resulting in the formation of rapidly quenched Ag-doped TiO2 nanoparticles that have far-from-equilibrium or metastable structures. The uniqueness of the new ablation process is that it is a one-step process, in contrast to the two-step process developed by previous researchers in the field. Moreover, its ability to synthesize an extended-solid solution phase of Ag in TiO 2 may also be unique. The present work implies that other oxide phases, such as Al2O3, MgO and MgAl2O4, can be doped with normally insoluble metals, such as Pt and Ir, thus opening new opportunities for catalytic applications. Again, there is the prospect of being able to synthesize nanopowders of diamond, c-BN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor. A wet-chemistry method is also investigated, which has much in common with that adopted by previous workers in the field. However, photo-voltaic properties do not measure up to expectations based on published data. A possible explanation is that the selected Ag concentrations are too high, so that recombination of holes and electrons occurs via a quantum-tunneling mechanism reduces photo-activity. Future work, therefore, will investigate lower concentrations of Ag dopant in TiO2, while also examining the effects of metastable states, including extended solid solution, amorphous, and semi-crystalline structures.

  11. Low-Temperature Preparation of Ag-Doped ZnO Nanowire Arrays, DFT Study, and Application to Light-Emitting Diode.

    PubMed

    Pauporté, Thierry; Lupan, Oleg; Zhang, Jie; Tugsuz, Tugba; Ciofini, Ilaria; Labat, Frédéric; Viana, Bruno

    2015-06-10

    Doping ZnO nanowires (NWs) by group IB elements is an important challenge for integrating nanostructures into functional devices with better and tuned performances. The growth of Ag-doped ZnO NWs by electrodeposition at 90 °C using a chloride bath and molecular oxygen precursor is reported. Ag acts as an electrocatalyst for the deposition and influences the nucleation and growth of the structures. The silver atomic concentration in the wires is controlled by the additive concentration in the deposition bath and a content up to 3.7 atomic % is reported. XRD analysis shows that the integration of silver enlarges the lattice parameters of ZnO. The optical measurements also show that the direct optical bandgap of ZnO is reduced by silver doping. The bandgap shift and lattice expansion are explained by first principle calculations using the density functional theory (DFT) on the silver impurity integration as an interstitial (Ag(i)) and as a substitute of zinc atom (Ag(Zn)) in the crystal lattice. They notably indicate that Ag(Zn) doping forms an impurity band because of Ag 4d and O 2p orbital interactions, shifting the Fermi level toward the valence band. At least, Ag-doped ZnO vertically aligned nanowire arrays have been epitaxially grown on GaN(001) substrate. The heterostructure has been inserted in a light emitting device. UV-blue light emission has been achieved with a low emission threshold of 5 V and a tunable red-shifted emission spectrum related to the bandgap reduction induced by silver doping of the ZnO emitter material. PMID:25990263

  12. Hydroxyapatite with environmental applications

    SciTech Connect

    Popa, C. L.; Ciobanu, C. S.; Predoi, D.; Petre, C. C.; Jiga, G.; Motelica-Heino, M.; Iconaru, S. L.

    2014-05-15

    The aim of this study was to synthetize new nanoparticles based on methyltrimethoxysilane coated hydroxyapatite (MTHAp) for lead removal in aqueous solutions. The morphological and compositional analysis of MTHAp was investigated by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). Removal experiments of Pb{sup 2+} ions were carried out in aqueous solutions with controlled concentration of Pb{sup 2+} and at fixed pH of 5. After the removal experiment of Pb{sup 2+} ions from solutions, porous hydroxyapatite nanoparticles were transformed into PbMTHAp-5 via the adsorption of Pb{sup 2+} ions followed by a cation exchange reaction. Our results demonstrate that the porous hydroxyapatite nanoparticles can be used as an adsorbent for removing Pb{sup 2+} ions from aqueous solution.

  13. A comparative study of optical and radiative characteristics of X-ray-induced luminescent defects in Ag-doped glass and LiF thin films and their applications in 2-D imaging

    NASA Astrophysics Data System (ADS)

    Kurobori, T.; Miyamoto, Y.; Maruyama, Y.; Yamamoto, T.; Sasaki, T.

    2014-05-01

    We report novel disk-type X-ray two-dimensional (2-D) imaging detectors utilising Ag-doped phosphate glass and lithium fluoride (LiF) thin films based on the radiophotoluminescence (RPL) and photoluminescence (PL) phenomena, respectively. The accumulated X-ray doses written in the form of atomic-scale Ag-related luminescent centres in Ag-doped glass and F-aggregated centres in LiF thin films were rapidly reconstructed as a dose distribution using a homemade readout system. The 2-D images reconstructed from the RPL and PL detectors are compared with that from the optically stimulated luminescence (OSL) detector. In addition, the optical and dosimetric characteristics of LiF thin films are investigated and evaluated. The possibilities of dose distributions with a high spatial resolution on the order of microns over large areas, a wide dynamic range covering 11 orders of magnitude and a non-destructive readout are successfully demonstrated by combining the Ag-doped glass with LiF thin films.

  14. Nanocrystalline nanowires: I. Structure.

    PubMed

    Allen, Philip B

    2007-01-01

    Geometric constructions of possible atomic arrangements are suggested for inorganic nanowires. These are fragments of bulk crystals, and can be called "nanocrystalline" nanowires (NCNW). To minimize surface polarity, nearly one-dimensional formula units, oriented along the growth axis, generate NCNWs by translation and rotation.

  15. Nanocrystalline heterojunction materials

    SciTech Connect

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  16. Nanocrystalline Heterojunction Materials

    SciTech Connect

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2004-02-03

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  17. The distribution of Ag in Ag-doped YBa2Cu3O7-δ thin film prepared by dual-beam pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Zhou, W. Z.; Chua, D. H. C.; Xu, S. Y.; Ong, C. K.; Feng, Y. P.; Osipowicz, T.; Chen, M. S.

    1999-06-01

    The Ag distribution in Ag-doped YBa2Cu3O7-δ (YBCO) thin films fabricated by dual-beam pulsed-laser deposition on SrTiO3 (100) substrates has been studied by Auger electron spectroscopy, microproton-induced x-ray emission, atomic force microscopy and scanning electron microscopy. All the results consistently show that Ag aggregated in the bar-like structures observed in the film. These bars are aligned along the a-b-axis or at 45° to the a-b-axis of the YBCO thin film. The main body of the long bars aligned with the a-b-axes of the film was found to be a combination of metallic Ag with other precipitates of YBCO film that may grow from the substrate surface to the YBCO film surface. There were other precipitates aggregating as well at the surface of these bars, such as oxides of Cu and Ba. The short bars that aligned along 45° to the a-b-axes of the film were found to be deficient in Ag but rich in Cu, Ba and O, which could be oxide precipitates of YBCO. The growth mechanisms of the two types of bars seem quite different.

  18. Microstructure and temperature dependence of microwave penetration depth of Ag doped Y 1Ba 2Cu 3O 7- x thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Davinder; Pai, S. P.; Jesudasan, J.; Pinto, R.

    2004-06-01

    We report the measurements of magnetic penetration depth λ( T) of Ag-doped YBa 2Cu 3O 7- δ (YBCO) thin films in the thickness range 1500-4000 A and temperature range 18-88 K. The films are in situ grown by laser ablation on <1 0 0> LaAlO 3 substrates. The penetration depth measurements are performed by microstrip resonator technique. A correlation of λ( T) with the film microstructure observed with atomic force microscopy has shown that λ( T) depends critically on the film microstructure. Temperature dependence of magnetic penetration depth has also been studied for best quality films. The experimental results are discussed in terms of BCS theory (s-wave pairing) and d-wave Pairing with and without unitary scattering. The results are found to be best fitted to the d-wave model with unitary scattering limit. Near Tc, we have also compare the (3D) XY critical regime and the Ginzburg-Landau (GL) behaviour.

  19. Fluorometric sensing of ultralow As(III) concentrations using Ag doped hollow CdS/ZnS bi-layer nanoparticles.

    PubMed

    Boxi, Siddhartha Sankar; Paria, Santanu

    2015-12-21

    Arsenic poisoning from drinking water has been an important global issue in recent years. Because of the high level toxicity of arsenic to human health, an easy, inexpensive, low level and highly selective detection technique is of great importance to take any early precautions. This study reports the synthesis of Ag doped hollow CdS/ZnS bi-layer (Ag-h-CdS/ZnS) nanoparticles for the easy fluorometric determination of As(iii) ions in the aqueous phase. The hollow bi-layer structures were synthesized by a sacrificial core method using AgBr as the sacrificial core and the core was removed by dissolution in an ammonium hydroxide solution. The synthesized nanoparticles were characterized using different instrumental techniques. A good linear relationship was obtained between fluorescence quenching intensity and As(iii) concentration in the range of 0.75-22.5 μg L(-1) at neutral pH with a limit of detection as low as 0.226 μg L(-1). PMID:26541652

  20. Characterization of porous hydroxyapatite.

    PubMed

    Hing, K A; Best, S M; Bonfield, W

    1999-03-01

    Hydroxyapatite has been considered for use in the repair of osseous defects for the last 20 years. Recent developments have led to interest in the potential of porous hydroxyapatite as a synthetic bone graft. However, despite considerable activity in this field, regarding assessment of the biological response to such materials, the basic materials characterization is often inadequate. This paper documents the characterization of the chemical composition, mechanical integrity, macro- and microstructure of a porous hydroxyapatite, Endobon (E. Merck GmbH), intended for the bone-graft market. Specimens possesed a range of apparent densities from 0.35 to 1.44 g cm(-3). Chemical analysis demonstrated that the natural apatite precursor of Endobon was not converted to pure hydroxyapatite, but retained many of the ionic substituents found in bone mineral, notably carbonate, sodium and magnesium ions. Investigation of the microstructure illustrated that the struts of the material were not fully dense, but had retained some traces of the network of osteocyte lacunae. Macrostructural analysis demonstrated the complex inter-relationship between the structural features of an open pore structure. Both pore size and connectivity were found to be inversely dependent on apparent density. Furthermore, measurement of pore aspect ratio and orientation demonstrated a relationship between apparent density and the degree of macrostructural anisotropy within the specimens, while, it was also noted that pore connectivity was sensitive to anisotropy. Compression testing demonstrated the effect of apparent density and macrostructural anisotropy on the mechanical properties. An increase in apparent density from 0.38 to 1.25 g cm(-3) resulted in increases in ultimate compressive stress and compressive modulus of 1 to 11 MPa and 0.2 to 3.1 GPa, respectively. Furthermore, anisotropic high density (> 0.9 g cm(-3)) specimens were found to possess lower compressive moduli than isotropic specimens

  1. Functional hydroxyapatite bioceramics with excellent osteoconductivity and stern-interface induced antibacterial ability.

    PubMed

    Shi, Chao; Gao, Jianyong; Wang, Ming; Shao, Yiran; Wang, Liping; Wang, Dalin; Zhu, Yingchun

    2016-04-01

    The biocompatibility and antibacterial properties of hydroxyapatite (HAp) bioceramics are crucial in medical applications. However, it is still a challenge to control HAp with antibacterial ability while maintaining other biological properties in the development of bioactive bone implants. Herein, we report functional silver ion substituted HAp bioceramics with excellent osteoconductivity and efficient antibacterial activity and propose a stern-interface induced antibacterial mechanism of such bioactive ceramics. In this antibacterial process, the concentration of Ag(+) at the stern-interface of Ag/HAp bioceramics is nearly 5 times higher than that in the bulk solution due to the trace dopant Ag(+) enrichment in the stern layer of the electric double layer at the negatively charged surface of Ag/HAp bioceramics. Trace Ag-doping in HAp induces a positive shift of zeta potential and increase of hydrophilicity, which may help inhibit bacterial proliferation. The positive osteoblast adhesion, proliferation and differentiation of ultra-trace doped Ag/HAp are also demonstrated through actin cytoskeleton staining, MTT and alkaline phosphatase (ALP) activity assays. This work may enlighten us on the artificial design of novel smart anti-infective bone grafts using ultra-trace functional elements and also suggest its potential applications in orthopedic surgery and bone osseointegration. PMID:26883734

  2. Mechanical, In Vitro Antimicrobial and Biological Properties of Plasma Sprayed Silver-Doped Hydroxyapatite Coating

    PubMed Central

    Roy, Mangal; Fielding, Gary A.; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-01-01

    Implant related infection is one of the key concerns in total joint hip arthroplasties. In order to reduce bacterial adhesion, silver (Ag) / silver oxide (Ag2O) doping was used in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0 and 6.0 wt% Ag, heat treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas Aeruginosa (PAO1). Live/Dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Present results suggest that the plasma sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag doped HA coatings. PMID:22313742

  3. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating.

    PubMed

    Roy, Mangal; Fielding, Gary A; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-03-01

    Implant-related infection is one of the key concerns in total joint hip arthroplasties. To reduce bacterial adhesion, we used silver (Ag)/silver oxide (Ag(2)O) doping in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0, and 6.0 wt % Ag, heat-treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas aeruginosa (PAO1). Live/dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Our results suggest that the plasma-sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag-doped HA coatings.

  4. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature

    PubMed Central

    Pepla, Erlind; Besharat, Lait Kostantinos; Palaia, Gaspare; Tenore, Gianluca; Migliau, Guido

    2014-01-01

    Summary This study aims to critically summarize the literature about nano-hydroxyapatite. The purpose of this work is to analyze the benefits of using nano-hydroxyapatite in dentistry, especially for its preventive, restorative and regenerative applications. We also provide an overview of new dental materials, still experimental, which contain the nano-hydroxyapatite in its nano-crystalline form. Hydroxyapatite is one of the most studied biomaterials in the medical field for its proven biocompatibility and for being the main constituent of the mineral part of bone and teeth. In terms of restorative and preventive dentistry, nano-hydroxyapatite has significant remineralizing effects on initial enamel lesions, certainly superior to conventional fluoride, and good results on the sensitivity of the teeth. The nano-HA has also been used as an additive material, in order to improve already existing and widely used dental materials, in the restorative field (experimental addition to conventional glass ionomer cements, that has led to significant improvements in their mechanical properties). Because of its unique properties, such as the ability to chemically bond to bone, to not induce toxicity or inflammation and to stimulate bone growth through a direct action on osteoblasts, nano-HA has been widely used in periodontology and in oral and maxillofacial surgery. Its use in oral implantology, however, is a widely used practice established for years, as this substance has excellent osteoinductive capacity and improves bone-to-implant integration. PMID:25506416

  5. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature.

    PubMed

    Pepla, Erlind; Besharat, Lait Kostantinos; Palaia, Gaspare; Tenore, Gianluca; Migliau, Guido

    2014-07-01

    This study aims to critically summarize the literature about nano-hydroxyapatite. The purpose of this work is to analyze the benefits of using nano-hydroxyapatite in dentistry, especially for its preventive, restorative and regenerative applications. We also provide an overview of new dental materials, still experimental, which contain the nano-hydroxyapatite in its nano-crystalline form. Hydroxyapatite is one of the most studied biomaterials in the medical field for its proven biocompatibility and for being the main constituent of the mineral part of bone and teeth. In terms of restorative and preventive dentistry, nano-hydroxyapatite has significant remineralizing effects on initial enamel lesions, certainly superior to conventional fluoride, and good results on the sensitivity of the teeth. The nano-HA has also been used as an additive material, in order to improve already existing and widely used dental materials, in the restorative field (experimental addition to conventional glass ionomer cements, that has led to significant improvements in their mechanical properties). Because of its unique properties, such as the ability to chemically bond to bone, to not induce toxicity or inflammation and to stimulate bone growth through a direct action on osteoblasts, nano-HA has been widely used in periodontology and in oral and maxillofacial surgery. Its use in oral implantology, however, is a widely used practice established for years, as this substance has excellent osteoinductive capacity and improves bone-to-implant integration.

  6. Characterisations of collagen-silver-hydroxyapatite nanocomposites

    NASA Astrophysics Data System (ADS)

    Ciobanu, C. S.; Popa, C. L.; Petre, C. C.; Jiga, G.; Trusca, R.; Predoi, D.

    2016-05-01

    The XRD analysis were performed to confirm the formation of hydroxyapatite structure in collagen-silver-hydroxyapatite nanocomposites. The molecular interaction in collagen-hydroxyapatite nanocomposites was highlighted by Fourier transform infrared spectroscopy (FTIR) analysis. The SEM showed a nanostructure of collagen-silverhydroxyapatite nanocomposites composed of nano needle-like particles in a veil with collagen texture. The presence of vibrational groups characteristics to the hydroxyapatite structure in collagen-silver-hydroxyapatite (AgHApColl) nanocomposites was investigated by FTIR.

  7. Nanocrystalline nanowires: III. Electrons.

    PubMed

    Allen, Philip B

    2007-05-01

    Nanocrystalline nanowires (NCNW) are fragments of bulk crystals that are infinite in only one direction and typically have some rotational symmetry around this direction. Electron eigenstates belonging to the symmetry labels (k,m) (wavevector and rotational quantum number) are discussed. The rotational quantum number simplifies discussion of optical properties. For m not equal 0, the +/-m degeneracy allows orbital magnetism. The simplest sensible model which is more complex than a one-dimensional chain is solved. Methods are suggested for incorporating rotational symmetry into preexisting codes with three-dimensional translations.

  8. Nanocrystalline nanowires: 2. Phonons.

    PubMed

    Allen, Philip B

    2007-01-01

    Nanocrystalline nanowires (NCNW) are fragments of bulk crystals that are infinite in only one direction. A construction is given for calculating eigenstates belonging to the symmetry labels (k,m) (wavevector and rotational quantum number). Vibrational harmonic eigenstates are worked out explicitly for a simple model, illustrating the general results: the LA mode has m=0, while with sufficient rotational symmetry, the TA branch is doubly degenerate, has m=+/-1, and has quadratic dispersion with k for k less than the reciprocal diameter of the NCNW. The twiston branch (a fourth Goldstone boson) is an acoustic m=0 branch, additional to the LA and two TA branches.

  9. Magnetism in nanocrystalline gold.

    PubMed

    Tuboltsev, Vladimir; Savin, Alexander; Pirojenko, Alexandre; Räisänen, Jyrki

    2013-08-27

    While bulk gold is well known to be diamagnetic, there is a growing body of convincing experimental and theoretical work indicating that nanostructured gold can be imparted with unconventional magnetic properties. Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. We demonstrate ferromagnetic-like hysteretic magnetization with temperature dependence indicative of spin-glass-like behavior and find this to be consistent with theoretical predictions, available in the literature, based on first-principles calculations.

  10. Hydroxyapatite in Physiological Environment

    NASA Astrophysics Data System (ADS)

    Slepko, Alexander; Demkov, Alexander A.

    2011-03-01

    A carbonated form of hydroxyapatite (HA) [ Ca 10 (PO4)6 (OH)2 ] is one of the most abundant materials in mammal bone. It crystallizes within the spaces between tropocollagen protein chains in an aqueous solution and strengthens the bone tissue. An emerging application of synthetic HA is bone repair and replacement. Bulk electronic and chemical properties of HA were studied theoretically recently. However, the absorption of H2 O molecules and amino acids of the tropocollagen chains at HA surfaces remains an area of active research. Using density functional theory we analyze the electronic properties and surface energetics of HA for different orientations and terminations and generate a theoretical surface phase diagram of HA. The reactivity of these surface models is analyzed using the frontier orbital approach. We find two dominant surfaces which are most stable over the widest chemical range. However, we expect them to show little surface reactivity. Using a HA slab with a highly reactive surface we build atomistic models of HA covered with up to one monolayer of water and analyze interactions between this surface and the water molecules.

  11. Enhancement of the photoelectric performance of dye-sensitized solar cells using Ag-doped TiO2 nanofibers in a TiO2 film as electrode.

    PubMed

    Jin, En Mei; Zhao, Xing Guan; Park, Ju-Young; Gu, Hal-Bon

    2012-01-01

    For high solar conversion efficiency of dye-sensitized solar cells [DSSCs], TiO2 nanofiber [TN] and Ag-doped TiO2 nanofiber [ATN] have been extended to be included in TiO2 films to increase the amount of dye loading for a higher short-circuit current. The ATN was used on affected DSSCs to increase the open circuit voltage. This process had enhanced the exit in dye molecules which were rapidly split into electrons, and the DSSCs with ATN stop the recombination of the electronic process. The conversion efficiency of TiO2 photoelectrode-based DSSCs was 4.74%; it was increased to 6.13% after adding 5 wt.% ATN into TiO2 films. The electron lifetime of DSSCs with ATN increased from 0.29 to 0.34 s and that electron recombination was reduced.

  12. Spectroscopic studies on photoelectron transfer from 2-(furan-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole to ZnO, Cu-doped ZnO and Ag-doped ZnO.

    PubMed

    Thanikachalam, V; Arunpandiyan, A; Jayabharathi, J; Karunakaran, C; Ramanathan, P

    2014-09-01

    The 2-(furan-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole [FPI] has been designed and synthesized as fluorescent sensor for nanoparticulate ZnO. The present work investigates the photoelectron transfer (PET) from FPI to ZnO, Cu-doped ZnO and Ag- doped ZnO nanoparticles using electronic and life time spectral measurements. Broad absorption along with red shift indicates the formation of charge-transfer complex [FPI-Nanoparticles]. The photophysical studies indicate lowering of HOMO and LUMO energy levels of FPI on adsorption on ZnO due to FPI- ZnO interaction. The obtained binding constant implies that the binding of FPI with nanoparticles was influenced by the surface modification of ZnO nanoparticles with Cu and Ag.

  13. Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics.

    PubMed

    Kim, Hae-Won; Kim, Hyoun-Ee

    2006-05-01

    In this study, we produced hydroxyapatite (HA) and fluor-hydroxyapatite (FHA) bioceramics as a novel geometrical form, the nanoscale fiber, for the biomedical applications. Based on the sol-gel precursors of the apatites, an electrospinning technique was introduced to generate nanoscale fibers. The diameter of the fibers was exploited in the range of a few micrometers to hundreds of nanometers (1.55 microm-240 nm) by means of adjusting the concentration of the sols. Through the fluoridation of apatite, the solubility of the fiber was tailored and the fluorine ions were well released from the FHA. The HA and FHA nanofibers produced in this study are considered to find potential applications in the biomaterials and tissue engineering fields.

  14. Tensile behavior of nanocrystalline copper

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Eastman, J.A. |

    1995-11-01

    High density nanocrystalline copper produced by inert gas condensation was tested in tension. Displacements were measured using foil strain gauges, which greatly improved the accuracy of the strain data. The Young`s modulus of nanocrystalline copper was found to be consistent with that of coarse-grained copper. Total elongations of {approx} 1% were observed in samples with grain sizes less than 50 nm, while a sample with a grain size of 110 nm exhibited more than 10% elongation, perhaps signifying a change to a dislocation-based deformation mechanism in the larger-grained material. In addition, tensile tests were performed as a function of strain rate, with a possible trend of decreased strength and increased elongation as the strain rate was decreased.

  15. Cementless Hydroxyapatite Coated Hip Prostheses

    PubMed Central

    Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda

    2015-01-01

    More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality. PMID:25802848

  16. Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation.

    PubMed

    Janković, A; Eraković, S; Ristoscu, C; Mihailescu Serban, N; Duta, L; Visan, A; Stan, G E; Popa, A C; Husanu, M A; Luculescu, C R; Srdić, V V; Janaćković, Dj; Mišković-Stanković, V; Bleotu, C; Chifiriuc, M C; Mihailescu, I N

    2015-01-01

    We report on thin film deposition by matrix-assisted pulsed laser evaporation of simple hydroxyapatite (HA) or silver (Ag) doped HA combined with the natural biopolymer organosolv lignin (Lig) (Ag:HA-Lig). Solid cryogenic target of aqueous dispersions of Ag:HA-Lig composite and its counterpart without silver (HA-Lig) were prepared for evaporation using a KrF* excimer laser source. The expulsed material was assembled onto TiO2/Ti substrata or silicon wafers and subjected to physical-chemical investigations. Smooth, uniform films adherent to substratum were observed. The chemical analyses confirmed the presence of the HA components, but also evidenced traces of Ag and Lig. Deposited HA was Ca deficient, which is indicative of a film with increased solubility. Recorded X-ray Diffraction patterns were characteristic for amorphous films. Lig presence in thin films was undoubtedly proved by both X-ray Photoelectron and Fourier Transform Infra-Red Spectroscopy analyses. The microbiological evaluation showed that the newly assembled surfaces exhibited an inhibitory activity both on the initial steps of biofilm forming, and on mature bacterial and fungal biofilm development. The intensity of the anti-biofilm activity was positively influenced by the presence of the Lig and/or Ag, in the case of Staphylococcus aureus, Pseudomonas aeruginosa and Candida famata biofilms. The obtained surfaces exhibited a low cytotoxicity toward human mesenchymal stem cells, being therefore promising candidates for fabricating implantable biomaterials with increased biocompatibility and resistance to microbial colonization and further biofilm development.

  17. Tribological behavior of nanocrystalline nickel.

    PubMed

    Guidry, D J; Lian, K; Jiang, J C; Meletis, E I

    2009-07-01

    During the last decade, an intensive investigative effort around the globe has been devoted to the understanding of scale effects on materials properties. In spite of their importance, nanoscale effects on tribological properties have attracted little attention. Such effects are of utmost importance to small scale devices such as nano and micro electromechanical systems that contain nanostructured dynamic components that would be difficult to replace or repair. The significant increase in strength arising from the grain size reduction in the nano domain is expected to impact on mechanical processes at asperity contacts that are dominating wear behavior. In the present work, nanocrystalline Ni produced by electroplating was used as a model system to study scale effects on tribological behavior. It was found that compared to bulk (microcrystalline), nanocrystalline Ni can cause a significant reduction in both, the coefficient of friction and wear rate. A consistent relationship was found between grain size, hardness and tribological behavior. It is suggested that the improved tribological behavior of the nanocrystalline Ni is due to the refinement of mechanical processes inhibiting plastic deformation by extensive dislocation motion leading to fracture events. PMID:19916423

  18. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid.

    PubMed

    Mirzaee, Majid; Vaezi, Mohammadreza; Palizdar, Yahya

    2016-12-01

    Silver-doped hydroxyapatite (Ca10-xAgx(PO4)6(OH)2-x) films were synthesized and deposited on anodized titanium (Ti) using electrophoretic. The influence of different silver-dopant contents (X=0, 0.02, 0.05, 0.08 and 0.1) on the phase formation and microstructure of the powders were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and Fourier transform infrared spectrum analysis (FT-IR). XRD analysis confirmed the formation of Hexagonal structure of hydroxyapatite (HAp) annealed at 600°C with a small shift in the major peak position toward lower angles with adding silver. FT-IR spectroscopy disclosed the presence of the different vibrational modes matching to phosphates and hydroxyl groups and the absence of any band characteristics to silver. XPS analysis showed that 75% and 23% of silver was in the chemical states of Ag(2+) and Ag(+), respectively. However, only about 2% of silver was in the Ag(0) state, resulting in the high quality of nanocomposite films. The anodization treatment improves the bond strength between the Ag doped HAp deposited layers on TiO2. HAp and silver doped HAp (X=0.05) are regarded to be hydrophilic due to a large number of -OH groups on the surface. The sample with content of silver (x=0.05) also showed excellent antimicrobial efficacy (>99% reduction in viable cells). Electrochemical reveals the passive current densities of the HAp coated anodized Ti are lower than those of silver doped HAp coated anodized Ti, leading to a slightly lower corrosion resistance. PMID:27612761

  19. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid.

    PubMed

    Mirzaee, Majid; Vaezi, Mohammadreza; Palizdar, Yahya

    2016-12-01

    Silver-doped hydroxyapatite (Ca10-xAgx(PO4)6(OH)2-x) films were synthesized and deposited on anodized titanium (Ti) using electrophoretic. The influence of different silver-dopant contents (X=0, 0.02, 0.05, 0.08 and 0.1) on the phase formation and microstructure of the powders were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and Fourier transform infrared spectrum analysis (FT-IR). XRD analysis confirmed the formation of Hexagonal structure of hydroxyapatite (HAp) annealed at 600°C with a small shift in the major peak position toward lower angles with adding silver. FT-IR spectroscopy disclosed the presence of the different vibrational modes matching to phosphates and hydroxyl groups and the absence of any band characteristics to silver. XPS analysis showed that 75% and 23% of silver was in the chemical states of Ag(2+) and Ag(+), respectively. However, only about 2% of silver was in the Ag(0) state, resulting in the high quality of nanocomposite films. The anodization treatment improves the bond strength between the Ag doped HAp deposited layers on TiO2. HAp and silver doped HAp (X=0.05) are regarded to be hydrophilic due to a large number of -OH groups on the surface. The sample with content of silver (x=0.05) also showed excellent antimicrobial efficacy (>99% reduction in viable cells). Electrochemical reveals the passive current densities of the HAp coated anodized Ti are lower than those of silver doped HAp coated anodized Ti, leading to a slightly lower corrosion resistance.

  20. Method of making nanocrystalline alpha alumina

    DOEpatents

    Siegel, Richard W.; Hahn, Horst; Eastman, Jeffrey A.

    1992-01-01

    Method of making selected phases of nanocrystalline ceramic materials. Various methods of controlling the production of nanocrystalline alpha alumina and titanium oxygen phases are described. Control of the gas atmosphere and use of particular oxidation treatments give rise to the ability to control the particular phases provided in the aluminum/oxygen and titanium/oxygen system.

  1. Nanostructure of biocompatible titania/hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Rodionov, Igor V.; Steinhauer, Aleksey B.; Fomina, Marina A.; Petrova, Natalia V.; Zakharevich, Andrey M.; Skaptsov, Aleksandr A.; Gribov, Andrey N.; Atkin, Vsevolod S.

    2014-01-01

    The article describes prospective composite biocompatible titania coatings modified with hydroxyapatite nanoparticles and obtained on intraosseous implants fabricated from commercially pure titanium VT1-00. Consistency changes of morphological characteristics, crystalline structure, physical and mechanical properties and biocompatibility of experimental titanium implant coatings obtained by the combination of oxidation and surface modification with hydroxyapatite during induction heat treatment are defined.

  2. Electronic structure and thermoelectric properties of p-type Ag-doped Mg₂Sn and Mg₂Sn{sub 1-x}Si{sub x} (x=0.05, 0.1)

    SciTech Connect

    Kim, Sunphil; Jin, Hyungyu; Wiendlocha, Bartlomiej; Tobola, Janusz; Heremans, Joseph P.

    2014-10-21

    An experimental and theoretical study of p-type Ag-doped Mg₂Sn and Mg₂Sn{sub 1-x}Si{sub x} (x=0.05, 0.1) is presented. Band structure calculations show that behavior of Ag in Mg₂Sn depends on the site it occupies. Based on Bloch spectral functions and density of states calculations, we show that if Ag substitutes for Sn, it is likely to form a resonant level; if it substitutes for Mg, a rigid-band-like behavior is observed. In both cases, the doped system should exhibit p-type conductivity. Experimentally, thermoelectric, thermomagnetic, and galvanomagnetic properties are investigated of p-type Mg₂Sn{sub 1–x}Si{sub x} (x=0, 0.05, 0.1) samples synthesized by a co-melting method in sealed crucibles. Ag effectively dopes the samples p-type, and thermoelectric power factors in excess of 20μW cm⁻¹K⁻² are observed in optimally doped samples. From the measured Seebeck coefficient, Nernst coefficient, and mobility, we find that the combination of acoustic phonon scattering, optical phonon scattering and defect scattering results in an energy-independent scattering rate. No resonant-like increase in thermopower is observed, which correlates well with electronic structure calculations assuming the location of Ag on Mg site.

  3. Application of hydroxyapatite-sol as drug carrier.

    PubMed

    Kano, S; Yamazaki, A; Otsuka, R; Ohgaki, M; Akao, M; Aoki, H

    1994-01-01

    The application of hydroxyapatite-sol as a drug carrier is being developed. Hydroxyapatite-sol which is a suspension consisting of hydroxyapatite nano-crystals, was synthesized using an ultrasonic homogenizer. The size of the crystals was 40 x 15 x 10 mm3 on average and their specific surface area was 100 m2/g. An amount of a glycoside antibiotics adsorbed onto hydroxyapatite nano-crystals was measured. The drug adsorbed 0.2 mg per 1 mg of hydroxyapatite. The affect of the drug adsorbed onto the hydroxyapatite was investigated using cancer cells. The drug, adsorbed onto the hydroxyapatite nano-crystals, inhibited cancer cell growth.

  4. Microstructured microspheres of hydroxyapatite bioceramic.

    PubMed

    Sunny, M C; Ramesh, P; Varma, H K

    2002-07-01

    Hydroxyapatite (HAP) particles having spherical geometry and 125-1000 microm in size range were prepared using a solid-in-water-in-oil (S/W/O) emulsion, cross-linking technique. An aqueous solution of chitosan containing different loading of HAP was dispersed as droplet in liquid paraffin using a stabilizing agent. Cross-linking of chitosan was induced by adding appropriate amount of glutaraldehyde saturated toluene. Chitosan microspheres containing HAP were sintered at 1150 degrees C to obtain pure HAP microspheres. The spheres thus produced were examined by scanning electron microscopy. The percentage yield and size distributions of the spheres were also determined.

  5. Facile and controllable synthesis of hydroxyapatite/graphene hybrid materials with enhanced sensing performance towards ammonia.

    PubMed

    Zhang, Qing; Liu, Yong; Zhang, Ying; Li, Huixia; Tan, Yanni; Luo, Lanlan; Duan, Junhao; Li, Kaiyang; Banks, Craig E

    2015-08-01

    In this work, needle-like and micro-spherical agglomerates of nanocrystalline hydroxyapatite (HA) were successfully assembled on the surface of graphene sheets with the aid of dopamine having two roles, as a template and a reductant for graphite oxide during the process of self-polymerization. The crystalline structure and micromorphology of HA can be conveniently regulated by controlling the mineralization route either with a precipitation (cHA/GR) or biomimetic methodology (bHA/GR). Both the composites exhibit improvements of ∼150% and ∼250% in sensitivity towards the sensing of ammonia at room temperature, compared with that of bare graphene. The combination of the multi-adsorption capability of HA and the electric conductivity of graphene is proposed to be the major reason for the observed enhancements. Gas sensing tests demonstrated that the HA/GR composites exhibit excellent selectivity, high sensitivity and repeatable stability towards the analytical sensing of ammonia. PMID:26066071

  6. Structural and Magnetic Studies on Nano-crystalline Biocompatible Glass/Glass-ceramic

    NASA Astrophysics Data System (ADS)

    Kothiyal, G. P.; Sharma, K.; Dixit, A.; Srinivasan, A.

    2010-12-01

    Ferrimagnetic glass-ceramics have been derived from bulk CaO-P2O5-SiO2-Fe2O3 glass system containing different additives like MgO, ZnO etc. by controlled crystallization. Phase formation and magnetic behaviour of glass-ceramics samples have been studied using XRD and SQUID magnetometer. The microstructure as seen by scanning electron microscopy exhibits nano sized particles. Nanocrystalline hematite and magnetite along with bone mineral phases constitute the major crystalline phases. Saturation magnetization increases with increase in amount of iron oxide since the volume fraction of magnetite has also increased. Addition of ZnO leads to increase in the saturation magnetization. In vitro response in simulated body fluid shows the formation of hydroxyapatite like layer implying the bioactive nature of the samples.

  7. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  8. Substituted Hydroxyapatites with Antibacterial Properties

    PubMed Central

    Kolmas, Joanna; Groszyk, Ewa; Kwiatkowska-Różycka, Dagmara

    2014-01-01

    Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions) and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency. PMID:24949423

  9. Stability of hydroxyapatite while processing short-fibre reinforced hydroxyapatite ceramics.

    PubMed

    Knepper, M; Moricca, S; Milthorpe, B K

    1997-12-01

    Reinforcement by short fibres has been adapted from modern ceramic processing technologies to achieve an improvement of structural properties of hydroxyapatite. However, the influence of the reinforcement fibres on the thermochemical behaviour of the hydroxyapatite has yet to be clarified comprehensively. Titanium, alumina and 316L-stainless steel, all materials with a proven record as implant materials, were chosen as reinforcement materials. Short fibres of these materials were incorporated in a matrix of hydroxyapatite to toughen the hydroxyapatite. Composites were processed by sintering in air, hot isostatic pressing and a method combining sintering in inert gas atmosphere and hot isostatic pressing. PMID:9430334

  10. Dissolution studies of hydroxyapatite and glass-reinforced hydroxyapatite ceramics

    SciTech Connect

    Queiroz, A.C.; Santos, J.D.; Monteiro, F.J.; Prado da Silva, M.H

    2003-03-15

    In the continuous agitation assays, glass-reinforced hydroxyapatite (GR-HA) was shown to form a calcium phosphate (CaP) layer, but hydroxyapatite (HA) only formed dispersed precipitates. The formation of this layer was first detected on the GR-HA with a 7.5% glass addition (7.5 GR-HA) after only 3 days of immersion in simulated body fluid (SBF). The time required for layer formation decreased as the amount of glass added to the HA increased. The dissolution rate of the materials followed a similar pattern, i.e. the dissolution rate for GR-HA was higher than for HA, and increased with the addition of glass. The immersion of 7.5 GR-HA in water showed almost linear dissolution kinetics over the immersion periods (3, 7, 15, 30 and 60 days). The concentration of calcium ions in solution and the scanning electron microscopy (SEM) analysis of the 7.5 GR-HA specimens immersed in water and in SBF revealed a clear competition between the material dissolution and the precipitation of a CaP phase. Fourier transformed infrared spectroscopy with alternated total reflectance (FTIR-ATR) analysis indicated that the CaP phase that formed during longer immersion times (30 and 60 days) could be a carbonate-substituted CaP precipitate. As expected from previous work, the GR-HA behavior in terms of its in vitro bioactivity is higher than HA because a homogeneous CaP layer is formed and the precipitation occurs faster. From the dissolution test and in accordance with the chemical composition of the samples, GR-HA was more soluble than HA.

  11. Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability.

    PubMed

    Sang Cho, Jung; Um, Seung-Hoon; Su Yoo, Dong; Chung, Yong-Chae; Hye Chung, Shin; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2014-07-01

    The effect of substituting sodium for calcium on enhanced osteoconductivity of hydroxyapatite was newly investigated. Sodium-substituted hydroxyapatite was synthesized by reacting calcium hydroxide and phosphoric acid with sodium nitrate followed by sintering. As a control, pure hydroxyapatite was prepared under identical conditions, but without the addition of sodium nitrate. Substitution of calcium with sodium in hydroxyapatite produced the structural vacancies for carbonate ion from phosphate site and hydrogen ion from hydroxide site of hydroxyapatite after sintering. The total system energy of sodium-substituted hydroxyapatite with structural defects calculated by ab initio methods based on quantum mechanics was much higher than that of hydroxyapatite, suggesting that the sodium-substituted hydroxyapatite was energetically less stable compared with hydroxyapatite. Indeed, sodium-substituted hydroxyapatite exhibited higher dissolution behavior of constituent elements of hydroxyapatite in simulated body fluid (SBF) and Tris-buffered deionized water compared with hydroxyapatite, which directly affected low-crystalline hydroxyl-carbonate apatite forming capacity by increasing the degree of apatite supersaturation in SBF. Actually, sodium-substituted hydroxyapatite exhibited markedly improved low-crystalline hydroxyl-carbonate apatite forming capacity in SBF and noticeably higher osteoconductivity 4 weeks after implantation in calvarial defects of New Zealand white rabbits compared with hydroxyapatite. In addition, there were no statistically significant differences between hydroxyapatite and sodium-substituted hydroxyapatite on cytotoxicity as determined by BCA assay. Taken together, these results indicate that sodium-substituted hydroxyapatite with structural defects has promising potential for use as a bone grafting material due to its enhanced osteoconductivity compared with hydroxyapatite.

  12. Nanocrystalline silicon based thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  13. Nanocrystalline diamond synthesized from C60

    SciTech Connect

    Dubrovinskaia, N.; Dubrovinsky, L.; Langehorst, F.; Jacobsen, S.; Liebske, C.

    2010-11-30

    A bulk sample of nanocrystalline cubic diamond with crystallite sizes of 5-12 nm was synthesized from fullerene C{sub 60} at 20(1) GPa and 2000 C using a multi-anvil apparatus. The new material is at least as hard as single crystal diamond. It was found that nanocrystalline diamond at high temperature and ambient pressure kinetically is more stable with respect to graphitization than usual diamonds.

  14. Biodegradation and cytotoxicity of ciprofloxacin-loaded hydroxyapatite-polycaprolactone nanocomposite film for sustainable bone implants

    PubMed Central

    Nithya, Rajendran; Meenakshi Sundaram, Nachiappan

    2015-01-01

    Introduction In recent years there has been a steep increase in the number of orthopedic patients for many reasons. One major reason is osteomyelitis, caused by pyrogenic bacteria, with progressive infection of the bone or bone marrow and surrounding tissues. So antibiotics must be introduced during bone implantation to avoid prolonged infection. Aim The objective of the study reported here was to prepare a composite film of nanocrystalline hydroxyapatite (HAp) and polycaprolactone (PCL) polymer loaded with ciprofloxacin, a frequently used antibiotic agent for bone infections. Methods Nanocrystalline HAp was synthesized by precipitation method using the precursor obtained from eggshell. The nanocomposite film (HAp-PCL-ciprofloxacin) was prepared by solvent evaporation. Drug-release and biodegradation studies were undertaken by immersing the composite film in phosphate-buffered saline solution, while a cytotoxicity test was performed using the fibroblast cell line NIH-3T3 and osteoblast cell line MG-63. Results The pure PCL film had quite a low dissolution rate after an initial sharp weight loss, whereas the ciprofloxacin-loaded HAp-PCL nanocomposite film had a large weight loss due to its fast drug release. The composite film had higher water absorption than the pure PCL, and increasing the concentration of the HAp increased the water absorption. The in vitro cell-line study showed a good biocompatibility and bioactivity of the developed nanocomposite film. Conclusion The prepared film will act as a sustainable bone implant in addition to controlled drug delivery. PMID:26491313

  15. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation.

    PubMed

    Gonçalves, Elsa M; Oliveira, Filipe J; Silva, Rui F; Neto, Miguel A; Fernandes, M Helena; Amaral, Margarida; Vallet-Regí, María; Vila, Mercedes

    2016-08-01

    A three-phase [nanocrystalline hydroxyapatite (HA), carbon nanotubes (CNT), mixed in a polymeric matrix of polycaprolactone (PCL)] composite scaffold produced by 3D printing is presented. The CNT content varied between 0 and 10 wt % in a 50 wt % PCL matrix, with HA being the balance. With the combination of three well-known materials, these scaffolds aimed at bringing together the properties of all into a unique material to be used in tissue engineering as support for cell growth. The 3D printing technique allows producing composite scaffolds having an interconnected network of square pores in the range of 450-700 μm. The 2 wt % CNT scaffold offers the best combination of mechanical behaviour and electrical conductivity. Its compressive strength of ∼4 MPa is compatible with the trabecular bone. The composites show typical hydroxyapatite bioactivity, good cell adhesion and spreading at the scaffolds surface, this combination of properties indicating that the produced 3D, three-phase, scaffolds are promising materials in the field of bone regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1210-1219, 2016. PMID:26089195

  16. Nanocrystalline cellulose from coir fiber: preparation, properties, and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nanocrystalline cellulose derived from various botanical sources offers unique and potentially useful characteristics. In principle, any cellulosic material can be considered as a potential source of a nanocrystalline material, including crops, crop residues, and agroindustrial wastes. Because of t...

  17. Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites.

    PubMed

    Djordjevic, Aleksandar; Ignjatovic, Nenad; Seke, Mariana; Jovic, Danica; Uskokovic, Dragan; Rakocevic, Zlatko

    2015-02-01

    Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.

  18. Development of functionalized hydroxyapatite/poly(vinyl alcohol) composites

    NASA Astrophysics Data System (ADS)

    Stipniece, Liga; Salma-Ancane, Kristine; Rjabovs, Vitalijs; Juhnevica, Inna; Turks, Maris; Narkevica, Inga; Berzina-Cimdina, Liga

    2016-06-01

    Based on the well-known pharmaceutical excipient potential of poly(vinyl alcohol) (PVA) and clinical success of hydroxyapatite (HAp), the objective of this work was to fabricate functionalized composite microgranules. PVA was modified with succinic anhydride to introduce carboxyl groups (-COOH), respectively, by reaction between the -OH groups of PVA and succinic anhydride, for attachment of drug molecules. For the first time, the functionalized composite microgranules containing HAp/PVA in the ratio of 1:1 were prepared through in situ precipitation of HAp in modified PVA aqueous solutions followed by spray drying of obtained suspensions. The microgranules were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry (DSC). The presence of -COOH groups was verified by FT-IR, and the amount of functional groups added to PVA molecules (averaging 15 mol%) was determined by nuclear magnetic resonance spectroscopy (NMR). DSC results showed that modification with -COOH groups slightly decreased the thermal stability of PVA. FT-IR and XRD analysis confirmed that the resulting composites contain mainly nanocrystalline HAp and PVA. Moreover, the images taken by FE-SEM revealed that the microgranules consisted of nanosized HAp crystallites homogenously embedded in the PVA matrix. DSC measurements indicated that decomposition mechanism of the HAp/PVA differs from that of pure PVA and occurs at lower temperatures. However, the presence of HAp had minor influence on the thermal decomposition of the PVA modified with succinic anhydride. The investigation of composite microgranules confirmed interaction and integration between the HAp and PVA.

  19. Stacking fault and twinning in nanocrystalline metals.

    SciTech Connect

    Liao, Xiaozhou; Zhao, Y.; Srivilliputhur, S. G.; Zhou, F.; Lavernia, E. J.; Baskes, M. I.; Zhu, Y. T.; Xu, H. F.

    2004-01-01

    Nanocrystalline Al processed by cryogenic ball-milling and nanocrystalline Cu processed by high-pressure torsion at a very low strain rate and at room temperature were investigated using high-resolution transmission electron microscopy. For nanocrystalline Al, we observed partial dislocation emission from grain boundaries, which consequently resulted in deformation stacking faults and twinning. We also observed deformation twins formed via two other mechanisms recently predicted by molecular dynamic simulations. These results are surprising because (1) partial dislocation emission from grain boundaries has not been experimentally observed although it has been predicted by simulations and (2) deformation stacking faults and twinning have not been reported in Al due to its high stacking fault energy. For nanocrystalline Cu, we found that twinning becomes a major deformation mechanism, which contrasts with the literature reports that deformation twinning in coarse-grained Cu occurs only under high strain rate and/or low temperature conditions and that reducing grain sizes suppresses deformation twinning. The investigation of the twinning morphology suggests that twins and stacking faults in nanocrystalline Cu were formed through partial dislocation emissions from grain boundaries. This mechanism differs from the pole mechanism operating in coarse-grained Cu.

  20. Growth of hydroxyapatite nanoparticles on silica gels.

    PubMed

    Rivera-Muñoz, E M; Huirache-Acuña, R; Velázquez, R; Alonso-Núñez, G; Eguía-Eguía, S

    2011-06-01

    Synthetic, hydroxyapatite nanoparticles were grown on the surface of silica gels. The synthesis of those nanoparticles was obtained by immersing silica gels in a simulated body fluid (SBF) at 37 degrees C. The SBF was replaced every week to keep constant the Ca and P ion concentration and subsequent growth of hydroxyapatite was evaluated after 1-6 weeks of total soaking time in SBF. Hydroxyapatite nanoparticles were observed by scanning electron microscopy (SEM) on the surface of silica gel samples and confirmed by energy dispersive X-ray spectroscopy (EDS), Fourier Transform Infra Red Spectroscopy (FTIR) and powder X-ray Diffractometry (XRD) analysis. These particles show a regular shape and uniform size every week, keeping within the nanoscale always. Both the size and morphology of hydroxyapatite nanoparticles obtained are the result of the use of different chemical additives in the synthesis of silica gels, since they affect the liquid-to-solid interface, and the growth could correspond to a diffusion limited aggregation (DLA) process. A more detailed analysis, with higher magnifications, showed that hydroxyapatite nanoparticles are not solid spheres, showing a branched texture and their size depends on the scale and resolution of the measure instrument. PMID:21770224

  1. Fracture toughness of hydroxyapatite/mica composite, packed hydroxyapatite, alumina ceramics, silicon nitride and -carbide.

    PubMed

    Nordström, E G; Yokobori, A T; Yokobori, T; Aizawa, Y

    1998-01-01

    By using the fracture toughness estimation method based on two-dimensional map, it was found that the ductility of the high porosity hydroxyapatite/mice composite was comparable with silicon carbide. It was measured to be higher than that of packed hydroxyapatite. Alumina ceramics with more than 96% aluminium oxide showed a higher fracture toughness than the composite material. When bending strength was compared, the strength of the composite was two or three times lower than that of packed hydroxyapatite and much lower than the other studied materials. The composite material showed high porosity, which in turn gives it a lower bending strength. However, the high porosity is more favourable for biocompatibility.

  2. Rapid phase synthesis of nanocrystalline cobalt ferrite

    SciTech Connect

    Shanmugavel, T.; Raj, S. Gokul; Rajarajan, G.; Kumar, G. Ramesh

    2014-04-24

    Synthesis of single phase nanocrystalline Cobalt Ferrite (CoFe{sub 2}O{sub 4}) was achieved by single step autocombustion technique with the use of citric acid as a chelating agent in mono proportion with metal. Specimens prepared with this method showed significantly higher initial permeability's than with the conventional process. Single phase nanocrystalline cobalt ferrites were formed at very low temperature. Surface morphology identification were carried out by transmission electron microscopy (TEM) analysis. The average grain size and density at low temperature increased gradually with increasing the temperature. The single phase formation is confirmed through powder X-ray diffraction analysis. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors. Temperature dependent magnetization results showed improved behavior for the nanocrystalline form of cobalt ferrite when compared to the bulk nature of materials synthesized by other methods.

  3. Recent advances in research applications of nanophase hydroxyapatite.

    PubMed

    Fox, Kate; Tran, Phong A; Tran, Nhiem

    2012-07-16

    Hydroxyapatite, the main inorganic material in natural bone, has been used widely for orthopaedic applications. Due to size effects and surface phenomena at the nanoscale, nanophase hydroxyapatite possesses unique properties compared to its bulk-phase counterpart. The high surface-to-volume ratio, reactivities, and biomimetic morphologies make nano-hydroxyapatite more favourable in applications such as orthopaedic implant coating or bone substitute filler. Recently, more efforts have been focused on the possibility of combining hydroxyapatite with other drugs and materials for multipurpose applications, such as antimicrobial treatments, osteoporosis treatments and magnetic manipulation. To build more effective nano-hydroxyapatite and composite systems, the particle synthesis processes, chemistry, and toxicity have to be thoroughly investigated. In this Minireview, we report the recent advances in research regarding nano-hydroxyapatite. Synthesis routes and a wide range of applications of hydroxyapatite nanoparticles will be discussed. The Minireview also addresses several challenges concerning the biosafety of the nanoparticles.

  4. Preparation of irregular mesoporous hydroxyapatite

    SciTech Connect

    Wang Hualin Zhai Linfeng; Li Yanhong; Shi Tiejun

    2008-06-03

    An irregular mesoporous hydroxyapatite (meso-HA), Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, is successfully prepared from Ca(NO{sub 3}){sub 2}.4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} using surfactant cetyltrimethyl ammonium bromide (CTAB) as template. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) results reveal that the positive head of CTAB is assembled on the surface precipitated HA and much NH{sub 4}{sup +} is enclosed in precipitated HA before calcination. Field scanning electron microscope (FSEM) reveals that there exist many interconnected pores throughout the HA reticular skeleton. Nitrogen adsorption-desorption experiment exhibits a mesoporous material type IV curve, and pore size distribution calculated from the desorption branch of the isotherms based on Barrett-Joyner-Halenda (BJH) model shows that most pores throughout the HA reticular skeleton are sized at about 40 nm, but the pores are not uniform on the whole, owning to decomposition of the 'organic' CTAB templating structures and ammonium salt enclosed in the precipitated HA. The specific surface area of irregular meso-HA is calculated to be 37.6 m{sup 2}/g according to the Brunauer-Emmett-Teller (BET) equation. Moreover, after polylactic acid/meso-HA (PLA/meso-HA) composites degraded 12 weeks in normal saline at 37 deg. C, the interconnected pores throughout the HA skeleton were enlarged and sized in micron degree, which resemble trabecular bone structure very much.

  5. Ag-doped titanium dioxide gas sensor

    NASA Astrophysics Data System (ADS)

    Alaei Sheini, Navid; Rohani, Mahsa

    2016-03-01

    Titanium dioxide has been utilized for the fabrication of oxygen sensitive ceramic bodies. In this work, disk-shaped TiO2 pellets are fabricated by the sintering of the press- formed anatase powder at 1000°C. Two silver contacts are printed on one of the top base of each sample. Silver wire segments are connected to the printed electrodes. It is shown that the gradual diffusion of silver into titanium dioxide from the electrodes profoundly affects the resistive properties of the ceramic samples. SEM, XRD and EDAX analyses are carried out to determine the position of the silver diffused in the structure. At 35°C, before silver diffusion, the electrical resistance of the device decreases ten times in response to the presence of 3000 ppm ethanol contamination. Sensitivity (Rair/Rgas) to reducing gases is severely affected by the silver doping level in the titanium dioxide. The progress of silver diffusion continuously decreases the sensitivity till it become less than one. Further progress in silver diffusion brings the devices to the condition at which the resistance increases at the presents of reducing gases. In this condition, inverse sensitivities (Rgas/Rair) as large as 103 are demonstrated.

  6. Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface.

    PubMed

    Qin, Zhao; Gautieri, Alfonso; Nair, Arun K; Inbar, Hadass; Buehler, Markus J

    2012-01-31

    Collagen-hydroxyapatite interfaces compose an important building block of bone structures. While it is known that the nanoscale structure of this elementary building block can affect the mechanical properties of bone, a systematic understanding of the effect of the geometry on the mechanical properties of this interface between protein and mineral is lacking. Here we study the effect of geometry, different crystal surfaces, and hydration on the mechanical properties of collagen-hydroxyapatite interfaces from an atomistic perspective, and discuss underlying deformation mechanisms. We find that the presence of hydroxyapatite significantly enhances the tensile modulus and strength compared with a tropocollagen molecule alone. The stiffening effect is strongly dependent on the thickness of the mineral crystal until a plateau is reached at 2 nm crystal thickness. We observe no significant differences due to the mineral surface (Ca surface vs OH surface) or due to the presence of water. Our result shows that the hydroxyapatite crystal with its thickness confined to the nanometer size efficiently increases the tensile modulus and strength of the collagen-hydroxyapatite composite, agreeing well with experimental observations that consistently show the existence of extremely thin mineral flakes in various types of bones. We also show that the collagen-hydroxyapatite interface can be modeled with an elastic network model which, based on the results of atomistic simulations, provides a good estimate of the surface energy and other mechanical features. PMID:22208454

  7. Platelet-rich fibrin combined with synthetic nanocrystalline hydroxy apatite granules in the management of radicular cyst.

    PubMed

    Pradeep, K; Kudva, Adarsh; Narayanamoorthy, Vidya; Cariappa, K M; Saraswathi, M Vidya

    2016-01-01

    Radicular cysts are inflammatory jaw cysts confined to the apices of teeth with infected and necrotic pulp. They arise from the epithelial residues in the periodontal ligament as a result of inflammation, following the death of pulp. The treatment of such lesions vary with regard to their sizes; the small cystic lesions heal after an endodontic therapy, but larger lesions, may require additional treatment. Apical surgery for radicular cysts generally involves apical root resection and sealing with endodontic material. This case report, describes the treatment of a cyst related to the maxillary central and lateral incisors using platelet rich fibrin along with synthetic nanocrystalline hydroxyapatite granules for the regeneration of lost tissues. A follow-up evaluation at 6 months and 1-year revealed a significant radiographic bone fill with satisfactory healing at the surgical site. PMID:27538563

  8. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution.

  9. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. PMID:26249601

  10. [Adsorption of Congo red from aqueous solution on hydroxyapatite].

    PubMed

    Zhan, Yan-Hui; Lin, Jian-Wei

    2013-08-01

    The adsorption of Congo red (CR) from aqueous solution on hydroxyapatite was investigated using batch experiments. The hydroxyapatite was effective for CR removal from aqueous solution. The adsorption kinetics of CR on hydroxyapatite well followed a pseudo-second-order model. The equilibrium adsorption data of CR on hydroxyapatite could be described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and showed that the adsorption of CR on hydroxyapatite was spontaneous and exothermic in nature. The CR adsorption capacity for hydroxyapatite decreased significantly with increasing pH from 8 to 10. Thermal regeneration showed that hydroxyapatite could be used for six desorption-adsorption cycles with high removal efficiency for CR in each cycle. The mechanisms for CR adsorption on hydroxyapatite with pH value below the pH at point of zero charge (pH(PZC)) include electrostatic attraction, hydrogen bonding and Lewis acid-base interaction. The mechanisms for CR adsorption on hydroxyapatite with pH value above its pH(PZC) include hydrogen bonding and Lewis acid-base interaction. Results of this work indicate that hydroxyapatite is a promising adsorbent for CR removal from aqueous solution.

  11. [Adsorption of Congo red from aqueous solution on hydroxyapatite].

    PubMed

    Zhan, Yan-Hui; Lin, Jian-Wei

    2013-08-01

    The adsorption of Congo red (CR) from aqueous solution on hydroxyapatite was investigated using batch experiments. The hydroxyapatite was effective for CR removal from aqueous solution. The adsorption kinetics of CR on hydroxyapatite well followed a pseudo-second-order model. The equilibrium adsorption data of CR on hydroxyapatite could be described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and showed that the adsorption of CR on hydroxyapatite was spontaneous and exothermic in nature. The CR adsorption capacity for hydroxyapatite decreased significantly with increasing pH from 8 to 10. Thermal regeneration showed that hydroxyapatite could be used for six desorption-adsorption cycles with high removal efficiency for CR in each cycle. The mechanisms for CR adsorption on hydroxyapatite with pH value below the pH at point of zero charge (pH(PZC)) include electrostatic attraction, hydrogen bonding and Lewis acid-base interaction. The mechanisms for CR adsorption on hydroxyapatite with pH value above its pH(PZC) include hydrogen bonding and Lewis acid-base interaction. Results of this work indicate that hydroxyapatite is a promising adsorbent for CR removal from aqueous solution. PMID:24191561

  12. Nutrient-substituted hydroxyapatites: synthesis and characterization

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.

    1999-01-01

    Incorporation of Mg, S, and plant-essential micronutrients into the structure of synthetic hydroxyapatite (HA) may be advantageous for closed-loop systems, such as will be required on Lunar and Martian outposts, because these apatites can be used as slow-release fertilizers. Our objective was to synthesize HA with Ca, P, Mg, S, Fe, Cu, Mn, Zn, Mo, B, and Cl incorporated into the structure, i.e., nutrient-substituted apatites. Hydroxyapatite, carbonate hydroxyapatite (CHA), nutrient-substituted hydroxyapatite (NHA), and nutrient-substituted carbonate hydroxyapatite (NCHA) were synthesized by precipitating from solution. Chemical and mineralogical analysis of precipitated samples indicated a considerable fraction of the added cations were incorporated into HA, without mineral impurities. Particle size of the HA was in the 1 to 40 nm range, and decreased with increased substitution of nutrient elements. The particle shape of HA was elongated in the c-direction in unsubstituted HA and NHA but more spherical in CHA and NCHA. The substitution of cations and anions in the HA structure was confirmed by the decrease of the d[002] spacing of HA with substitution of ions with an ionic radius less than that of Ca or P. The DTPA-extractable Cu ranged from 8 to 8429 mg kg-1, Zn ranged from 57 to 1279 mg kg-1, Fe from 211 to 2573 mg kg-1, and Mn from 190 to 1719 mg kg-1, depending on the substitution level of each element in HA. Nutrient-substituted HA has the potential to be used as a slow-release fertilizer to supply micronutrients, S, and Mg in addition to Ca and P.

  13. Simple route for nano-hydroxyapatite properties expansion.

    PubMed

    Rojas, L; Olmedo, H; García-Piñeres, A J; Silveira, C; Tasic, L; Fraga, F; Montero, M L

    2015-09-01

    Simple surface modification of nano-hydroxyapatite, through acid-basic reactions, allows expanding the properties of this material. Introduction of organic groups such as hydrophobic alkyl chains, carboxylic acid, and amide or amine basic groups on the hydroxyapatite surface systematically change the polarity, surface area, and reactivity of hydroxyapatite without modifying its phase. Physical and chemical properties of the new derivative particles were analyzed. The biocompatibility of modified Nano-Hap on Raw 264.7 cells was also assessed. PMID:26481455

  14. Preparation and characterization of collagen-hydroxyapatite/pectin composite.

    PubMed

    Wenpo, Feng; Gaofeng, Liang; Shuying, Feng; Yuanming, Qi; Keyong, Tang

    2015-03-01

    Pectin, a kind of plant polysaccharide, was introduced into collagen-hydroxyapatite composite system, and prepared collagen-hydroxyapatite/pectin (Col-HA/pectin) composite in situ. The structure of the composite was investigated by XRD, SEM, and FT-IR. The mechanical properties, water absorption, enzyme degradation, and cytotoxicity of the composite were investigated as well. The results show that the inorganic substance in the composite materials is hydroxyapatite in relatively low crystallinity. A new interface appeared by the interaction among hydroxyapatite and collagen-pectin, and formed smooth fine particles. The mechanical properties, water absorption, enzyme degradation, and cytotoxicity indicate a potential use in bone replacement for the new composite.

  15. Microemulsion-based synthesis of nanocrystalline materials.

    PubMed

    Ganguli, Ashok K; Ganguly, Aparna; Vaidya, Sonalika

    2010-02-01

    Microemulsion-based synthesis is found to be a versatile route to synthesize a variety of nanomaterials. The manipulation of various components involved in the formation of a microemulsion enables one to synthesize nanomaterials with varied size and shape. In this tutorial review several aspects of microemulsion based synthesis of nanocrystalline materials have been discussed which would be of interest to a cross-section of researchers working on colloids, physical chemistry, nanoscience and materials chemistry. The review focuses on the recent developments in the above area with current understanding on the various factors that control the structure and dynamics of microemulsions which can be effectively used to manipulate the size and shape of nanocrystalline materials. PMID:20111772

  16. Nanosecond magnetization reversal in nanocrystalline magnetic films

    NASA Astrophysics Data System (ADS)

    Rahman, I. Z.; Gandhi, A. A.; Khaddem-Mousavi, M. V.; Lynch, T. F.; Rahman, M. A.

    2007-03-01

    This paper reports on the investigation of dynamic magnetization reversal process in electrodeposited nanocrystalline Ni and Ni80Fe20 films by employing nanosecond magnetic pulse technique. The surface morphology has been investigated using SEM, EDAX, XRD and AFM analyses and static magnetic properties of the films are characterized by vibrating sample magnetometer (VSM). Two different techniques are designed and employed to study the nanosecond magnetization reversal process in nanocrystalline thin films: Magneto-Optical Kerr Effect (MOKE) and nanosecond pulsed field magnetometer. Results of dynamical behavior as a function of several variables such as magnitude of applied bias magnetic field, amplitude and width of the pulsed magnetic field are analyzed in detail using both techniques. A computer simulation package called Object Oriented Micro-Magnetic Framework (OOMMF) has been used to simulate the magnetic domain patterns of the samples.

  17. Microstrain in hydroxyapatite carbon nanotube composites.

    PubMed

    Kealley, Catherine; Elcombe, Margaret; van Riessen, Arie

    2008-01-01

    Synchrotron radiation diffraction data were collected from hydroxyapatite-carbon nanotube bioceramic composites to determine the crystallite size and to measure changes in non-uniform strain. Estimates of crystallite size and strain were determined by line-profile fitting of discrete peaks and these were compared with a Rietveld whole-pattern analysis. Overall the two analysis methods produced very similar numbers. In the commercial hydroxyapatite material, one reflection in particular, (0 2 3), has higher crystallite size and lower strain values in comparison with laboratory-synthesized material. This could indicate preferential crystal growth in the [0 2 3] direction in the commercial material. From the measured strains in the pure material and the composite, there was a degree of bonding between the matrix and strengthening fibres. However, increasing the amount of carbon nanotubes in the composite has increased the strain in the material, which is undesirable for biomedical implant applications.

  18. Reactive hydroxyapatite fillers for pectin biocomposites.

    PubMed

    Munarin, Fabiola; Petrini, Paola; Barcellona, Giulia; Roversi, Tommaso; Piazza, Laura; Visai, Livia; Tanzi, Maria Cristina

    2014-12-01

    In this work, a novel injectable biocomposite hydrogel is produced by internal gelation, using pectin as organic matrix and hydroxyapatite either as crosslinking agent and inorganic reinforcement. Tunable gelling kinetics and rheological properties are obtained varying the hydrogels' composition, with the final aim of developing systems for cell immobilization. The reversibility by dissolution of pectin-hydroxyapatite hydrogels is achieved with saline solutions, to possibly accelerate the release of the cells or active agents immobilized. Texture analysis confirms the possibility of extruding the biocomposites from needles with diameters from 20 G to 30 G, indicating that they can be implanted with minimally-invasive approaches, minimizing the pain during injection and the side effects of the open surgery. L929 fibroblasts entrapped in the hydrogels survive to the immobilization procedure and exhibit high cell viability. On the overall, these systems result to be suitable supports for the immobilization of cells for tissue regeneration applications.

  19. Space-cutting model of hydroxyapatite.

    PubMed

    Okazaki, M; Sato, M; Takahashi, J

    1995-01-01

    The possibility of substitution of trace elements such as Mg2+, Sr2+ and Ba2+ into the columnar Ca2+ positions of hydroxyapatite was examined by computer graphics with a personal computer and a space-cutting method. Data on the structural coordinates of the hydroxyapatite were put into a protein graphics program in Angstrom units. The connection of each element, with front and rear, was displayed by the shade-line erasing method, and the solidity of the image was expressed by the degree of lightness from the light source. The space-cutting model was obtained by selecting the cutting plane with three atoms in the crystal. Rotating the graphics freely around the X, Y and Z axes gives a view from any direction. The computer graphics suggested visually how the lattice dimensions expand with Sr2+ and Ba2+ substitution and contract with Mg2+ substitution.

  20. Chemical characterization of silicon-substituted hydroxyapatite.

    PubMed

    Gibson, I R; Best, S M; Bonfield, W

    1999-03-15

    Bioceramic specimens have been prepared by incorporating a small amount of silicon (0.4 wt %) into the structure of hydroxyapatite [Ca10(PO4)6(OH)2, HA] via an aqueous precipitation reaction to produce a silicon-substituted hydroxyapatite (Si-HA). The results of chemical analysis confirmed the proposed substitution of the silicon (or silicate) ion for the phosphorus (or phosphate) ion in hydroxyapatite. The Si-HA was produced by first preparing a silicon-substituted apatite (Si-Ap) by a precipitation process. A single-phase Si-HA was obtained by heating/calcining the as-prepared Si-Ap to temperatures above 700 degrees C; no secondary phases, such as tricalcium phosphate (TCP), tetracalcium phosphate (TeCP), or calcium oxide (CaO), were observed by X-ray diffraction analysis. Although the X-ray diffraction patterns of Si-HA and stoichiometric HA appeared to be identical, refinement of the diffraction data revealed some small structural differences between the two materials. The silicon substitution in the HA lattice resulted in a small decrease in the a axis and an increase in the c axis of the unit cell. This substitution also caused a decrease in the number of hydroxyl (OH) groups in the unit cell, which was expected from the proposed substitution mechanism. The incorporation of silicon in the HA lattice resulted in an increase in the distortion of the PO4 tetrahedra, indicated by an increase in the distortion index. Analysis of the Si-HA by Fourier transform infrared (FTIR) spectroscopy indicated that although the amount of silicon incorporated into the HA lattice was small, silicon substitution appeared to affect the FTIR spectra of HA, in particular the P-O vibrational bands. The results demonstrate that phase-pure silicon-substituted hydroxyapatite may be prepared using a simple precipitation technique.

  1. Identification of hydroxyapatite crystals in synovial fluid.

    PubMed

    Halverson, P B; McCarty, D J

    1979-04-01

    A semiquantitative technique employing (14C) ethane-1-hydroxy 1, -1-diphosphonate (EHDP) binding has been used to detect crystals, presumably hydroxyapatite, in human synovial fluid samples which were handled to prevent the formation of artifactual mineral phase. Binding material was found in 29% of non-inflammatory and in none of inflammatory joint fluids. Nuclide binding material was strongly correlated with the presence of CPPD crystals and with radiographic evidence of cartilaginous degeneration. PMID:106859

  2. The hydroxyapatite orbital implant: a prospective study.

    PubMed

    Ashworth, J L; Rhatigan, M; Sampath, R; Brammar, R; Sunderland, S; Leatherbarrow, B

    1996-01-01

    The hydroxyapatite orbital implant was first released for use as an orbital implant in humans in August 1989. It has been shown to be well tolerated, providing good motility of the artificial eye with a low complication rate when used as a primary implant. This prospective study evaluated the hydroxyapatite orbital implant used as both a primary and a secondary implant. Sixty patients were implanted between October 1992 and November 1994, 28 being implanted as a primary procedure at the time of enucleation or evisceration, and 32 as a secondary procedure. Seven patients underwent second-stage drilling and pegging of the implant. The mean follow-up time was 13 months (range 2-26 months). A standardised operative and post-operative protocol was followed. The patients were evaluated post-operatively for the amount of enophthalmos, degree of upper lid sulcus deformity, motility of the prosthesis, location of the implant in the socket, socket status and the presence or absence of discharge, position of the drill hole and coverage of the implant. Complications and their management were documented. Both patient and surgeon made a subjective assessment of cosmesis and the patient's satisfaction with the overall result was noted. The results of this study show the hydroxyapatite orbital implant to provide excellent motility of the artificial eye and good cosmesis with a low rate of complications when used both as a primary and as a secondary implant.

  3. Synthesis and in-depth analysis of highly ordered yttrium doped hydroxyapatite nanorods prepared by hydrothermal method and its mechanical analysis

    SciTech Connect

    Nathanael, A. Joseph; Mangalaraj, D.; Hong, S.I.; Masuda, Y.

    2011-12-15

    In this study, undoped and yttrium (Y) doped nanocrystalline hydroxyapatite crystals were synthesized by the hydrothermal method at 180 Degree-Sign C for 24 h. Highly ordered and oriented hydroxyapatite (HAp) nanorods were prepared by yttrium doping and their nanostructure and physical properties were compared with those of undoped HAp rods. FESEM images showed that the doping with Y ions reduced the diameter (from 25 nm to 15 nm) and increased the length (from 95 nm to 115 nm) of the synthesized rods. The aspect ratio of the undoped and Y-doped nanorods were calculated to be 4.303 (SD = 0.0959) and 7.61 (SD = 0.0355), respectively. Specific surface area (SSA) analysis showed that SSA also increased from 66.74 m{sup 2}/g to 68.57 m{sup 2}/g with the addition of yttrium. Y-doped HAp nanorod reinforced HMWPE composites displayed the better mechanical performance than those reinforced with pure HAp nanorods. The possible strengthening of nanorods and the increase of SSA due to the reduction in the size of nanorods in the presence of yttrium may have contributed to the strengthening of Y-doped HAp/HMWPE composites. - Graphical Abstract: Highly ordered and oriented yttrium doped hydroxyapatite (HAp) nanorods were prepared by hydrothermal method. For undoped HAp the average length of the nanorod is 95 nm with mean diameter of 24 nm and for a Y doped nanorod the average length is {approx} 115 nm and the mean diameter is 15 nm. Mechanical analysis was carried out by polymer/nanoparticle composite method. Highlights: Black-Right-Pointing-Pointer Yttrium doped hydroxyapatite nanorods were prepared by hydrothermal method. Black-Right-Pointing-Pointer The nanorods have highly uniform size distribution. Black-Right-Pointing-Pointer Yttrium substitution and nanostructure formation was confirmed by careful analysis. Black-Right-Pointing-Pointer Mechanical strength was analyzed by polymer nanoparticle reinforcement method.

  4. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    SciTech Connect

    Hall, Aaron Christopher; Sarobol, Pylin; Argibay, Nicolas; Clark, Blythe; Diantonio, Christopher

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  5. Bone remodeling and hydroxyapatite resorption in coated primary hip prostheses.

    PubMed

    Tonino, Alphons J; van der Wal, Bart C H; Heyligers, Ide C; Grimm, Bernd

    2009-02-01

    Hydroxyapatite coatings for THA promote bone ongrowth, but bone and coating are exposed to stress shielding-driven osteoclastic resorption. We asked: (1) if the resorption of hydroxyapatite coating and bone ongrowth correlated with demographics; (2) if the resorption related to the stem level; and (3) what happens to the implant-bone interface when all hydroxyapatite coating is resorbed? We recovered 13 femoral components from cadaveric specimens 3.3 to 11.2 years after uneventful primary THA. Three cross sections (proximal, medial, distal) of the hydroxyapatite-coated proximal implant sleeve were analyzed by measuring the percentage of residual hydroxyapatite and bone ongrowth on the implant perimeter. Hydroxyapatite resorption was independent of patient age but increased with time in vivo and mostly was gone after 8 years. Bone ongrowth was independent of time in vivo but decreased with aging patients. Only in the most proximal section did less residual hydroxyapatite correlate with less bone ongrowth. Hydroxyapatite resorption, which was more proximal than distal, showed no adverse effects on the implant-bone interface.

  6. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings

    SciTech Connect

    Pang Xin; Zhitomirsky, Igor . E-mail: zhitom@mcmaster.ca

    2007-04-15

    Cathodic electrophoretic deposition has been utilized for the fabrication of composite hydroxyapatite-chitosan coatings on 316L stainless steel substrates. The addition of chitosan to the hydroxyapatite suspensions promoted the electrophoretic deposition of the hydroxyapatite nanoparticles and resulted in the formation of composite coatings. The obtained coatings were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. It was shown that the deposit composition can be changed by a variation of the chitosan or hydroxyapatite concentration in the solutions. Experimental conditions were developed for the fabrication of hydroxyapatite-chitosan nanocomposites containing 40.9-89.8 wt.% hydroxyapatite. The method enabled the formation of adherent and uniform coatings of thicknesses up to 60 {mu}m. X-ray studies revealed that the preferred orientation of the hydroxyapatite nanoparticles in the chitosan matrix increases with decreasing hydroxyapatite content in the composite coatings. The obtained coatings provided the corrosion protection for the 316L stainless steel substrates00.

  7. Control of the pore architecture in three-dimensional hydroxyapatite-reinforced hydrogel scaffolds

    NASA Astrophysics Data System (ADS)

    Román, Jesús; Cabañas, María Victoria; Peña, Juan; Vallet-Regí, María

    2011-08-01

    Hydrogels (gellan or agarose) reinforced with nanocrystalline carbonated hydroxyapatite (nCHA) were prepared by the GELPOR3D technique. This simple method is characterized by compositional flexibility; it does not require expensive equipment, thermal treatment, or aggressive or toxic solvents, and yields a three-dimensional (3D) network of interconnected pores 300-900 μm in size. In addition, an interconnected porosity is generated, yielding a hierarchical porous architecture from the macro to the molecular scale. This porosity depends on both the drying/preservation technology (freeze drying or oven drying at 37 circleC) and on the content and microstructure of the reinforcing ceramic. For freeze-dried samples, the porosities were approximately 30, 66 and below 3% for pore sizes of 600-900 μm, 100-200 μm and 50-100 nm, respectively. The pore structure depends much on the ceramic content, so that higher contents lead to the disappearance of the characteristic honeycomb structure observed in low-ceramic scaffolds and to a lower fraction of the 100-200-μm-sized pores. The nature of the hydrogel did not affect the pore size distribution but was crucial for the behavior of the scaffolds in a hydrated medium: gellan-containing scaffolds showed a higher swelling degree owing to the presence of more hydrophilic groups.

  8. In-vivo behavior of Si-hydroxyapatite/polycaprolactone/DMB scaffolds fabricated by 3D printing.

    PubMed

    Meseguer-Olmo, Luis; Vicente-Ortega, Vicente; Alcaraz-Baños, Miguel; Calvo-Guirado, José Luis; Vallet-Regí, María; Arcos, Daniel; Baeza, Alejandro

    2013-07-01

    Scaffolds made of polycaprolactone and nanocrystalline silicon-substituted hydroxyapatite have been fabricated by 3D printing rapid prototyping technique. To asses that the scaffolds fulfill the requirements to be considered for bone grafting applications, they were implanted in New Zealand rabbits. Histological and radiological studies have demonstrated that the scaffolds implanted in bone exhibited an excellent osteointegration without the interposition of fibrous tissue between bone and implants and without immune response after 4 months of implantation. In addition, we have evaluated the possibility of improving the scaffolds efficiency by incorporating demineralized bone matrix during the preparation by 3D printing. When demineralized bone matrix (DBM) is incorporated, the efficacy of the scaffolds is enhanced, as new bone formation occurs not only in the peripheral portions of the scaffolds but also within its pores after 4 months of implantation. This enhanced performance can be explained in terms of the osteoinductive properties of the DBM in the scaffolds, which have been assessed through the new bone tissue formation when the scaffolds are ectopically implanted.

  9. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOEpatents

    Luo, P.

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 {micro}m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogeneous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided. 26 figs.

  10. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOEpatents

    Luo, Ping

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 .mu.m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogenous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided.

  11. Effect of zeta potentials on bovine serum albumin adsorption to hydroxyapatite surfaces.

    PubMed

    Miyake, Nahoko; Sato, Toru; Maki, Yoshinobu

    2013-01-01

    The aim of the present study was to examine the adsorption of bovine serum albumin (BSA) to hydroxyapatite surfaces by means of zeta potential. The electrophoretic mobility of both hydroxyapatite and BSA were negative, with BSA itself less negative than hydroxyapatite. The zeta potential of the surface of BSA-adsorbed hydroxyapatite was significantly more negative than that of hydroxyapatite alone (p<0.0001). The BSA histogram indicated two negative peaks, and the zeta potential of BSA-adsorbed hydroxyapatite also showed two similar negative peaks. These results suggest that BSA adsorption to hydroxyapatite surfaces is related to electrostatic interaction. PMID:23903580

  12. Ultrastructure of regenerated bone mineral surrounding hydroxyapatite-alginate composite and sintered hydroxyapatite.

    PubMed

    Rossi, Andre L; Barreto, Isabela C; Maciel, William Q; Rosa, Fabiana P; Rocha-Leão, Maria H; Werckmann, Jacques; Rossi, Alexandre M; Borojevic, Radovan; Farina, Marcos

    2012-01-01

    We report the ultrastructure of regenerated bone surrounding two types of biomaterials: hydroxyapatite-alginate composite and sintered hydroxyapatite. Critical defects in the calvaria of Wistar rats were filled with micrometer-sized spherical biomaterials and analyzed after 90 and 120 days of implantation by high-resolution transmission electron microscopy and Fourier transform infrared attenuated total reflectance microscopy, respectively. Infrared spectroscopy showed that hydroxyapatite of both biomaterials became more disordered after implantation in the rat calvaria, indicating that the biological environment induced modifications in biomaterials structure. We observed that the regenerated bone surrounding both biomaterials had a lamellar structure with type I collagen fibers alternating in adjacent lamella with angles of approximately 90°. In each lamella, plate-like apatite crystals were aligned in the c-axis direction, although a rotation around the c-axis could be present. Bone plate-like crystal dimensions were similar in regenerated bone around biomaterials and pre-existing bone in the rat calvaria. No epitaxial growth was observed around any of the biomaterials. A distinct mineralized layer was observed between new bone and hydroxyapatite-alginate biomaterial. This region presented a particular ultrastructure with crystallites smaller than those of the bulk of the biomaterial, and was possibly formed during the synthesis of alginate-containing composite or in the biological environment after implantation. Round nanoparticles were observed in regions of newly formed bone. The findings of this work contribute to a better understanding of the role of hydroxyapatite based biomaterials in bone regeneration processes at the nanoscale.

  13. Microstructure and composition of biosynthetically synthesised hydroxyapatite.

    PubMed

    Medina Ledo, Hilda; Thackray, Ania C; Jones, Ian P; Marquis, Peter M; Macaskie, Lynne E; Sammons, Rachel L

    2008-11-01

    Biosynthetic hydroxyapatite (HA) manufactured utilising the bacterium Serratia sp. NCIMB40259 was characterised using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), energy dispersive X-ray analysis (EDX) scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED). SEM/EDX showed that the non-sintered material consisted mainly of calcium-deficient HA (CDHA) with a Ca/P ratio of 1.61 +/- 0.06 and crystal size (from TEM) of 50 +/- 10 nm. ED analysis of non-sintered powder showed resolvable ring patterns ascribed to (0002), (1122) and (0006) planes of crystalline HA. The crystallinity of the samples improved with heat treatment from approximately 9.4% (non-sintered) to 53% (1,200 degrees C). Samples heated at 600 degrees C and sintered at 1,200 degrees C were identified by XRD and FTIR as mainly CDHA with some sodium calcium phosphate in the sintered samples. Ca/P ratios (SEM/EDX) were 1.62 and 1.52, respectively. Single crystal spot patterns characteristic of HA were seen with commercial HA and Serratia HA heated at 600 degrees C. After sintering at 1,200 degrees C the material consisted of needle-like crystals with a length between 86 and 323 nm (from TEM) or 54-111 nm (from XRD) and lattice parameters of a = 9.441 A and c = 6.875 A. This study indicated that the material produced by Serratia bacteria was initially mainly nanophase calcium deficient hydroxyapatite, which sintered to a more highly crystalline form. With further refinements the method could be used as an inexpensive route for hydroxyapatite production for biomaterials applications.

  14. LIGHT-WEIGHT NANOCRYSTALLINE HYDROGEN STORAGE MATERIALS

    SciTech Connect

    S. G. Sankar; B. Zande; R.T. Obermyer; S. Simizu

    2005-11-21

    During Phase I of this SBIR Program, Advanced Materials Corporation has addressed two key issues concerning hydrogen storage: 1. We have conducted preliminary studies on the effect of certain catalysts in modifying the hydrogen absorption characteristics of nanocrystalline magnesium. 2. We have also conducted proof-of-concept design and construction of a prototype instrument that would rapidly screen materials for hydrogen storage employing chemical combinatorial technique in combination with a Pressure-Composition Isotherm Measurement (PCI) instrument. 3. Preliminary results obtained in this study approach are described in this report.

  15. Thermal effect on thermoluminescence response of hydroxyapatite.

    PubMed

    Zarate-Medina, J; Sandoval-Cedeño, K J; Barrera-Villatoro, A; Lemus-Ruiz, J; Rivera Montalvo, T

    2015-06-01

    This paper presents the experimental results of the thermoluminescence (TL) induced by gamma radiation in synthetic hydroxyapatite (HAp) obtained by the precipitation method, using Ca(NO3)2·4H2O and (NH4)2HPO4 and calcined at different temperatures. The structural and morphological characterization was carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. TL response as a function of gamma radiation dose was in a wide range, where intensity was enhanced in the sample annealed at 900°C, which tricalcium diphosphate (TCP) phase appear. Fading of the TL was also studied.

  16. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    PubMed

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials.

  17. Si-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sinterability

    SciTech Connect

    Bianco, Alessandra Cacciotti, Ilaria; Lombardi, Mariangela Montanaro, Laura

    2009-02-04

    Synthetic hydroxyapatites incorporating small amounts of Si have shown improved biological performances in terms of enhanced bone apposition, bone in-growth and cell-mediated degradation. This paper reports a systematic investigation on Si-substituted hydroxyapatite (Si 1.40 wt%) nanopowders produced following two different conventional wet methodologies: (a) precipitation of Ca(NO{sub 3}){sub 2}.4H{sub 2}O and (b) titration of Ca(OH){sub 2}. The influence of the synthesis process on composition, thermal behaviour and sinterability of the resulting nanopowders is studied. Samples were characterised by electron microscopy, induced coupled plasma atomic emission spectroscopy, thermal analysis, infrared spectroscopy, N{sub 2} adsorption measurements, X-ray diffraction and dilatometry. Semicrystalline Si-substituted hydroxyapatite powders made up of needle-like nanoparticles were obtained, the specific surface area ranged between 84 and 110 m{sup 2}/g. Pure and Si-substituted hydroxyapatite nanopowders derived from Ca(NO{sub 3}){sub 2}.4H{sub 2}O decomposed around 1000 deg. C. Si-substituted hydroxyapatite nanopowders obtained from Ca(OH){sub 2} were thermally stable up to 1200 deg. C and showed a distinct decreased thermal stability with respect to the homologous pure sample. Si-substituted hydroxyapatites exhibited higher sintering temperature and increased total shrinkage with respect to pure powders. Nanostructured dense ceramics were obtained by sintering at 1100 deg. C Si-substituted hydroxyapatites derived from Ca(OH){sub 2}.

  18. Growth and properties of nanocrystalline germanium films

    SciTech Connect

    Niu Xuejun; Dalal, Vikram L.

    2005-11-01

    We report on the growth characteristics and structure of nanocrystalline germanium films using low-pressure plasma-assisted chemical vapor deposition process in a remote electron-cyclotron-resonance reactor. The films were grown from mixtures of germane and hydrogen at deposition temperatures varying between 130 deg. C and 310 deg. C. The films were measured for structure using Raman and x-ray spectroscopy. It is shown that the orientation of the film depends strongly upon the deposition conditions. Low-temperature growth leads to both <111> and <220> orientations, whereas at higher temperatures, the <220> grain strongly dominates. The Raman spectrum reveals a sharp crystalline peak at 300 cm{sup -1} and a high ratio between crystalline and amorphous peak that is at 285 cm{sup -1}. The grain size in the films is a strong function of hydrogen dilution, with higher dilutions leading to smaller grain sizes. Growth temperature also has a strong influence on grain size, with higher temperatures yielding larger grain sizes. From these results, which are seen to be compatible with the growth of nanocrystalline Si films, it is seen that the natural growth direction for the film is <220>, and that bonded hydrogen interferes with the growth of <220> grains. High hydrogen dilutions lead to more random nucleation.

  19. Preparation of nanocrystalline yttria-stabilized zirconia

    SciTech Connect

    Venkatachari, K.R.; Huang, D.; Ostrander, S.P.; Schulze, W.A.; Stangle, G.C.

    1995-03-01

    Nanocrystalline powder with an average crystalline size of 8--12 nm, which was produced by a combustion synthesis process, was used to prepare dense, nanocrystalline articles. Green compacts of high green density were prepared by dry pressing and densified by a fast-firing process. During fast-firing, the dwell temperature significantly affected the final grain size and final density. On the other hand, the ranges of heating rates and dwell times that were used had a much less significant effect on the final density and final grain size. It was determined, however, that a high final density ({gt}99% {rho}{sub th}) and a very fine final average grain size ({lt}200 nm) can be simultaneously achieved under three different firing conditions. The high densification rates are, in part, a result of the minimal coarsening that the particles undergo when the sample is taken rapidly through the temperature regime in which surface diffusion predominates to the temperature regime in which the densification mechanisms of grain boundary and lattice diffusion predominate.

  20. Nanocrystalline cerium oxide materials for solid fuel cell systems

    SciTech Connect

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  1. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    PubMed

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  2. On the hardening and softening of nanocrystalline materials

    SciTech Connect

    Fougere, G.E.; Weertman, J.R. . Dept. of Materials Science and Engineering); Siegel, R.W. . Materials Science Div.)

    1993-04-01

    Nanocrystalline Pd and Cu samples have been thermally treated to determine whether the relation between hardness and grain size depend on the method used to vary the grain sizes. Previous reports indicate that hardening with decreasing grain size resulted from data obtained using individual samples, while softening with decreasing grain size resulted from data from a given sample that had been thermally treated. Hardening and softening regimes were evident for the nanocrystalline cu, and the hardness improvements over the original as-consolidated state were maintained throughout the thermal treatments. This review examines our hardness results for Cu and Pd and those for other nanocrystalline materials.

  3. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    PubMed

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer. PMID:26831689

  4. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel

    NASA Astrophysics Data System (ADS)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-02-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  5. Hydroxyapatite surface-induced peptide folding.

    PubMed

    Capriotti, Lisa A; Beebe, Thomas P; Schneider, Joel P

    2007-04-25

    Herein, we describe the design and surface-binding characterization of a de novo designed peptide, JAK1, which undergoes surface-induced folding at the hydroxyapatite (HA)-solution interface. JAK1 is designed to be unstructured in buffered saline solution, yet undergo HA-induced folding that is largely governed by the periodic positioning of gamma-carboxyglutamic acid (Gla) residues within the primary sequence of the peptide. Circular dichroism (CD) spectroscopy and analytical ultracentrifugation indicate that the peptide remains unfolded and monomeric in solution under normal physiological conditions; however, CD spectroscopy indicates that in the presence of hydroxyapatite, the peptide avidly binds to the mineral surface adopting a helical structure. Adsorption isotherms indicate nearly quantitative surface coverage and Kd = 310 nM for the peptide-surface binding event. X-ray photoelectron spectroscopy (XPS) coupled with the adsorption isotherm data suggests that JAK1 binds to HA, forming a self-limiting monolayer. This study demonstrates the feasibility of using HA surfaces to trigger the intramolecular folding of designed peptides and represents the initial stages of defining the design rules that allow HA-induced peptide folding.

  6. Inflammatory response to nano- and microstructured hydroxyapatite.

    PubMed

    Mestres, Gemma; Espanol, Montserrat; Xia, Wei; Persson, Cecilia; Ginebra, Maria-Pau; Ott, Marjam Karlsson

    2015-01-01

    The proliferation and activation of leukocytes upon contact with a biomaterial play a crucial role in the degree of inflammatory response, which may then determine the clinical failure or success of an implanted biomaterial. The aim of this study was to evaluate whether nano- and microstructured biomimetic hydroxyapatite substrates can influence the growth and activation of macrophage-like cells. Hydroxyapatite substrates with different crystal morphologies consisting of an entangled network of plate-like and needle-like crystals were evaluated. Macrophage proliferation was evaluated on the material surface (direct contact) and also in extracts i.e. media modified by the material (indirect contact). Additionally, the effect of supplementing the extracts with calcium ions and/or proteins was investigated. Macrophage activation on the substrates was evaluated by quantifying the release of reactive oxygen species and by morphological observations. The results showed that differences in the substrate's microstructure play a major role in the activation of macrophages as there was a higher release of reactive oxygen species after culturing the macrophages on plate-like crystals substrates compared to the almost non-existent release on needle-like substrates. However, the difference in macrophage proliferation was ascribed to different ionic exchanges and protein adsorption/retention from the substrates rather than to the texture of materials.

  7. Nano hydroxyapatite structures influence early bone formation.

    PubMed

    Meirelles, Luiz; Arvidsson, Anna; Andersson, Martin; Kjellin, Per; Albrektsson, Tomas; Wennerberg, Ann

    2008-11-01

    In a study model that aims to evaluate the effect of nanotopography on bone formation, micrometer structures known to alter bone formation, should be removed. Electropolished titanium implants were prepared to obtain a surface topography in the absence of micro structures, thereafter the implants were divided in two groups. The test group was modified with nanosize hydroxyapatite particles; the other group was left uncoated and served as control for the experiment. Topographical evaluation demonstrated increased nanoroughness parameters for the nano-HA implant and higher surface porosity compared to the control implant. The detected features had increased size and diameter equivalent to the nano-HA crystals present in the solution and the relative frequency of the feature size and diameter was very similar. Furthermore, feature density per microm(2) showed a decrease of 13.5% on the nano-HA implant. Chemical characterization revealed calcium and phosphorous ions on the modified implants, whereas the control implants consisted of pure titanium oxide. Histological evaluation demonstrated significantly increased bone formation to the coated (p < 0.05) compared to uncoated implants after 4 weeks of healing. These findings indicate for the first time that early bone formation is dependent on the nanosize hydroxyapatite features, but we are unaware if we see an isolated effect of the chemistry or of the nanotopography or a combination of both.

  8. Hydroxyapatite surface-induced peptide folding.

    PubMed

    Capriotti, Lisa A; Beebe, Thomas P; Schneider, Joel P

    2007-04-25

    Herein, we describe the design and surface-binding characterization of a de novo designed peptide, JAK1, which undergoes surface-induced folding at the hydroxyapatite (HA)-solution interface. JAK1 is designed to be unstructured in buffered saline solution, yet undergo HA-induced folding that is largely governed by the periodic positioning of gamma-carboxyglutamic acid (Gla) residues within the primary sequence of the peptide. Circular dichroism (CD) spectroscopy and analytical ultracentrifugation indicate that the peptide remains unfolded and monomeric in solution under normal physiological conditions; however, CD spectroscopy indicates that in the presence of hydroxyapatite, the peptide avidly binds to the mineral surface adopting a helical structure. Adsorption isotherms indicate nearly quantitative surface coverage and Kd = 310 nM for the peptide-surface binding event. X-ray photoelectron spectroscopy (XPS) coupled with the adsorption isotherm data suggests that JAK1 binds to HA, forming a self-limiting monolayer. This study demonstrates the feasibility of using HA surfaces to trigger the intramolecular folding of designed peptides and represents the initial stages of defining the design rules that allow HA-induced peptide folding. PMID:17397165

  9. Evolving application of biomimetic nanostructured hydroxyapatite

    PubMed Central

    Roveri, Norberto; Iafisco, Michele

    2010-01-01

    By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical–physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical–physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical–physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications. PMID:24198477

  10. Hydroxyapatite Reinforced Coatings with Incorporated Detonationally Generated Nanodiamonds

    SciTech Connect

    Pramatarova, L.; Pecheva, E.; Hikov, T.; Fingarova, D.; Dimitrova, R.; Spassov, T.; Krasteva, N.; Mitev, D.

    2010-01-21

    We studied the effect of the substrate chemistry on the morphology of hydroxyapatite-detonational nanodiamond composite coatings grown by a biomimetic approach (immersion in a supersaturated simulated body fluid). When detonational nanodiamond particles were added to the solution, the morphology of the grown for 2 h composite particles was porous but more compact then that of pure hydroxyapatite particles. The nanodiamond particles stimulated the hydroxyapatite growth with different morphology on the various substrates (Ti, Ti alloys, glasses, Si, opal). Biocompatibility assay with MG63 osteoblast cells revealed that the detonational nanodiamond water suspension with low and average concentration of the detonational nanodiamond powder is not toxic to living cells.

  11. In-situ deposition of hydroxyapatite on graphene nanosheets

    PubMed Central

    Neelgund, Gururaj M.; Oki, Aderemi; Luo, Zhiping

    2014-01-01

    Graphene nanosheets were effectively functionalized by in-situ deposition of hydroxyaptite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, Raman spectroscopy and thermogravimetric analysis. These characterization techniques revealed the successful grafting of hydroxyapatite over well exfoliated graphene nanosheets without destroying their structure. PMID:25110359

  12. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes.

    PubMed

    Shirkhanzadeh, M

    1998-02-01

    Ultrafine-grained, nanophase coatings of hydroxyapatite were synthesized by electrocrystallization from dilute electrolytes ([Ca]=6.1 x 10-4 M, [phosphate]=3.6 x 10-4 M) at pH values comparable with the biological pH. At these comparatively low supersaturations, hydroxyapatite is shown to be precipitated without the formation of a precursor phase. A description of the sequence of events occurring at the electrode-electrolyte interface is given to explain the mechanism involved in the direct formation of nanophase hydroxyapatite on polarized electrodes.

  13. An X-ray electron study of nanodisperse hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Melikhov, I. V.; Teterin, Yu. A.; Rudin, V. N.; Teterin, A. Yu.; Maslakov, K. I.; Severin, A. V.

    2009-01-01

    Two states of surface valence electrons localized on faces with different molecular reliefs were observed for nanodisperse hydroxyapatite. Thermal treatment of nanocrystals caused a shift Δ E b = 0.5 eV of the spectrum of valence electrons on molecularly rough faces and a shift of 0.8 eV of the spectrum from smooth faces. Similar electron spectrum shifts were observed for sorption, in particular, of sodium succinate. These results are of importance for the diagnostics of various hydroxyapatite kinds, since hydroxyapatite is a constituent mineral component of living organisms, and for the synthesis of medicines with enhanced biological activity used in treatment of various bone diseases.

  14. Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture

    NASA Astrophysics Data System (ADS)

    Mróz, W.; Bombalska, A.; Burdyńska, S.; Jedyński, M.; Prokopiuk, A.; Budner, B.; Ślósarczyk, A.; Zima, A.; Menaszek, E.; Ścisłowska-Czarnecka, A.; Niedzielski, K.

    2010-08-01

    Hydroxyapatite and magnesium modified hydroxyapatite were deposited on nitrited Ti6Al4V substrates by use of pulsed laser deposition technique. Three target materials consisting of non-modified and magnesium modified hydroxyapatite with Mg content of 0.6 wt.% and 1.8 wt.% were ablated using an ArF excimer laser. The obtained coatings were analyzed using X-ray diffraction, FTIR and AFM methods in order to determine the influence of magnesium on their phase and chemical composition, crystallinity, surface morphology and biological properties. Doping with low concentration of Mg does not significantly influence the HA morphology but improves osteoblast adhesion as compared to pure HA.

  15. Cytotoxicity of hydroxyapatite, fluorapatite and fluor-hydroxyapatite: a comparative in vitro study.

    PubMed

    Theiszova, M; Jantova, S; Letasiova, S; Palou, M; Cipak, L

    2008-01-01

    The purpose of this study was to evaluate the cytotoxicity of two formulations of hydroxyapatite (HA), namely fluorapatite (FA) and fluor-hydroxyapatite (FHA). HA is used as carrier material for antibiotics or anticancer drugs during treatment of bone metastasis. Negative control, represented by HA, was included for comparative purposes. Leukemia cells were used as a model cell line, and the effect of eluates of tested biomaterials on cell proliferation/viability and mechanism of antiproliferative activity were assessed. Study design attempted to reveal the toxicity of tested biomaterials with an emphasis to decide if tested biomaterials have promise for further studies in vivo. Results showed that eluates of FA and FHA inhibit the growth of leukemia cells and induce programmed cell death through mitochondrial/caspase-9/caspase-3-dependent pathway. Due to these differences compare to HA, it is concluded that FA and FHA have promise for evaluation of their behaviour in vivo.

  16. Topography, wetting, and corrosion responses of electrodeposited hydroxyapatite and fluoridated hydroxyapatite on magnesium.

    PubMed

    Assadian, Mahtab; Jafari, Hassan; Ghaffari Shahri, Seyed Morteza; Idris, Mohd Hasbullah; Almasi, Davood

    2016-08-12

    In this study, different types of calcium-phosphate phases were coated on NaOH pre-treated pure magnesium. The coating was applied by electrodeposition method in order to provide higher corrosion resistance and improve biocompatibility for magnesium. Thickness, surface morphology and topography of the coatings were analyzed using optical, scanning electron and atomic-force microscopies, respectively. Composition and chemical bonding, crystalline structures and wettability of the coatings were characterized using energy-dispersive and attenuated total reflectance-Fourier transform infrared spectroscopies, grazing incidence X-ray diffraction and contact angle measurement, respectively. Degradation behavior of the coated specimens was also investigated by potentiodynamic polarization and immersion tests. The experiments proved the presence of a porous coating dominated by dicalcium-phosphate dehydrate on the specimens. It was also verified that the developed hydroxyapatite was crystallized by alkali post-treatment. Addition of supplemental fluoride to the coating electrolyte resulted in stable and highly crystallized structures of fluoridated hydroxyapatite. The coatings were found effective to improve biocompatibility combined with corrosion resistance of the specimens. Noticeably, the fluoride supplemented layer was efficient in lowering corrosion rate and increasing surface roughness of the specimens compared to hydroxyapatite and dicalcium-phosphate dehydrates layers. PMID:27567782

  17. Monolithic Nanocrystalline Au Fabricated by the Compaction of Nanoscale Foam

    SciTech Connect

    Hodge, A M; Biener, J; Hsiung, L M; Hamza, A V; Satcher Jr., J H

    2004-07-28

    We describe a two-step dealloying/compaction process to produce nanocrystalline Au. First, nanocrystalline/nanoporous Au foam is synthesized by electrochemically-driven dealloying. The resulting Au foams exhibit porosities of 60 and 70% with pore sizes of {approx} 40 and 100 nm, respectively, and a typical grain size of <50 nm. Second, the nanoporous foams are fully compacted to produce nanocrystalline monolithic Au. The compacted Au was characterized by TEM and X-ray diffraction and tested by depth-sensing nanoindentation. The compacted nanocrystalline Au exhibits an average grain size of <50 nm and hardness values ranging from 1.4 to 2.0 GPa, which are up to 4.5 times higher than the hardness values obtained from polycrystalline Au.

  18. High Temperature Stable Nanocrystalline SiGe Thermoelectric Material

    NASA Technical Reports Server (NTRS)

    Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)

    2013-01-01

    A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.

  19. Preparation and characterization of collagen-hydroxyapatite/pectin composite.

    PubMed

    Wenpo, Feng; Gaofeng, Liang; Shuying, Feng; Yuanming, Qi; Keyong, Tang

    2015-03-01

    Pectin, a kind of plant polysaccharide, was introduced into collagen-hydroxyapatite composite system, and prepared collagen-hydroxyapatite/pectin (Col-HA/pectin) composite in situ. The structure of the composite was investigated by XRD, SEM, and FT-IR. The mechanical properties, water absorption, enzyme degradation, and cytotoxicity of the composite were investigated as well. The results show that the inorganic substance in the composite materials is hydroxyapatite in relatively low crystallinity. A new interface appeared by the interaction among hydroxyapatite and collagen-pectin, and formed smooth fine particles. The mechanical properties, water absorption, enzyme degradation, and cytotoxicity indicate a potential use in bone replacement for the new composite. PMID:25485944

  20. Formation of pyrophosphate on hydroxyapatite with thioesters as condensing agents

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1982-01-01

    'Energy-rich' thioesters are shown to act as condensing agents in the formation of pyrophosphate on hydroxyapatite in the presence of water at ambient temperature. The yield of pyrophosphate based on thioester ranges from 2.5% to 11.4% and depends upon the pH and concentration of reactants. Reaction of 0.130 M hydroxyapatite suspended in a solution of 0.08 M sodium phosphate and 0.20 M imidazole hydrochloride (pH 7.0) with 0.10 M N,S-diacetylcysteamine for 6 days gives the highest yield of pyrophosphate (11.4%). Pyrophosphate formation requires the presence of hydroxyapatite, sodium phosphate and the thioester, N,S-diacetylcysteamine. The related thioester, N,S-diacetylcysteine, also yields pyrophosphate in reactions on hydroxyapatite.

  1. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant

    EPA Science Inventory

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  2. Supra- and nanocrystallinities: a new scientific adventure.

    PubMed

    Pileni, M P

    2011-12-21

    Nanomaterials exist in the interstellar medium, in biology, in art and also metallurgy. Assemblies of nanomaterials were observed in the early solar system as well as silicate particle opals. The latter exhibits unusual optical properties directly dependent on particle ordering in 3D superlattices.The optical properties of noble metal nanoparticles (Ag, Au and Cu) change with the ordering of atoms in the nanocrystals, called nanocrystallinity. The vibrational properties related to nanocrystallinity markedly differ with the vibrational modes studied. Hence, a drastic effect on nanocrystallinity is observed on the confined acoustic vibrational property of the fundamental quadrupolar modes whereas the breathing acoustic modes remain quasi-unchanged. The mechanical properties characterized by the Young's modulus of multiply twinned particle (MTP) films are markedly lower than those of single nanocrystals.Two fcc supracrystal growth mechanisms, supported by simulation, of Au nanocrystals are proposed: heterogeneous and homogeneous growth processes. The final morphology of nanocrystal assemblies, with either films by layer-by-layer growth characterized by their plastic deformation or well-defined shapes grown in solution, depends on the solvent used to disperse the nanocrystals before the evaporation process.At thermodynamic equilibrium, two simultaneous supracrystal growth processes of Au nanocrystals take place in solution and at the air-liquid interface. These growth processes are rationalized by simulation. They involve, on the one hand, van der Waals interactions and, on the other hand, the attractive interaction between nanocrystals and the interface.Ag nanocrystals (5 nm) self-order in colloidal crystals with various arrangements called supracrystallinities. As in bulk materials, phase diagrams of supracrystals with structural transitions from face-centered-cubic (fcc) to hexagonal-close-packed (hcp) and body-centered-cubic (bcc) structures are observed. They

  3. Nanocrystalline Zeolites: Synthesis, Mechanism, and Applications

    NASA Astrophysics Data System (ADS)

    Severance, Michael Andrew

    Nanocrystalline zeolite particles are becoming an important material in many technical applications (e.g. zeolite membranes). Synthetic methods that minimize the zeolite crystal diameter, while providing a narrow particle size distribution, are of primary importance in these technical applications. However, there are several limitations to currently existing synthetic routes aimed at producing nanozeolites and zeolite membrane devices. For example, zeolite growth in these contexts typically requires days to weeks at high temperature to crystallize. Despite excellent performance of zeolite membranes in several separation applications, the long synthesis times required undermine any practical application of these technologies. This work focuses on chemical manipulation of zeolite nucleation processes in sol gel systems in effort to address such limitations. The primary findings indicate that careful control of the nucleation stage of a clear zeolite synthesis (optically transparent sol gel) allow the formation of zeolite Y nanocrystals less than 50 nm in diameter with a polydispersity index less than 0.2. Furthermore, chemical perturbations made during the nucleation stage of zeolite Y hydrogel synthesis is shown to accelerate crystal growth by a factor of 3-4, depending on the specific sol gel chemistry. These findings are applied to the nanocrystal seeding and rapid hydrothermal growth of zeolite Y membranes on inexpensive polymeric supports. A novel synthetic method is developed to this end. Also, the chemical and physical properties of monodisperse nanocrystalline zeolite Y synthesized herein are explored by electrochemical impedance spectroscopy. It is found that the particle interface plays an important role in the ionic conductivity of nanocrystalline zeolites in contrast to their larger zeolite counterparts in analogy to other ceramic and metal oxide ion conductors. Finally, the possibility to produce novel organic and inorganic composite systems through

  4. Supra- and nanocrystallinities: a new scientific adventure

    NASA Astrophysics Data System (ADS)

    Pileni, M. P.

    2011-12-01

    Nanomaterials exist in the interstellar medium, in biology, in art and also metallurgy. Assemblies of nanomaterials were observed in the early solar system as well as silicate particle opals. The latter exhibits unusual optical properties directly dependent on particle ordering in 3D superlattices. The optical properties of noble metal nanoparticles (Ag, Au and Cu) change with the ordering of atoms in the nanocrystals, called nanocrystallinity. The vibrational properties related to nanocrystallinity markedly differ with the vibrational modes studied. Hence, a drastic effect on nanocrystallinity is observed on the confined acoustic vibrational property of the fundamental quadrupolar modes whereas the breathing acoustic modes remain quasi-unchanged. The mechanical properties characterized by the Young’s modulus of multiply twinned particle (MTP) films are markedly lower than those of single nanocrystals. Two fcc supracrystal growth mechanisms, supported by simulation, of Au nanocrystals are proposed: heterogeneous and homogeneous growth processes. The final morphology of nanocrystal assemblies, with either films by layer-by-layer growth characterized by their plastic deformation or well-defined shapes grown in solution, depends on the solvent used to disperse the nanocrystals before the evaporation process. At thermodynamic equilibrium, two simultaneous supracrystal growth processes of Au nanocrystals take place in solution and at the air-liquid interface. These growth processes are rationalized by simulation. They involve, on the one hand, van der Waals interactions and, on the other hand, the attractive interaction between nanocrystals and the interface. Ag nanocrystals (5 nm) self-order in colloidal crystals with various arrangements called supracrystallinities. As in bulk materials, phase diagrams of supracrystals with structural transitions from face-centered-cubic (fcc) to hexagonal-close-packed (hcp) and body-centered-cubic (bcc) structures are observed

  5. Formation of hydroxyapatite in various aqueous solutions

    NASA Astrophysics Data System (ADS)

    Sturgeon, Jacqueline Lee

    Hydroxyapatite (HAp), Ca10(PO4)6(OH) 2, is important in the field of biomaterials as it is the mineral component of bones and teeth. Biological apatites do not maintain an exact composition and are usually calcium-deficient, represented as Ca(10- x)(HPO 4)x(PO4)(6-x)(OH)(2-x), where x ranges from 0 to 1, with various ion substitutions. Formation of calcium-deficient hydroxyapatites (CDHAp) from solid calcium phosphate precursor materials was performed at physiologic temperature (37°C) in a variety of aqueous solutions. Two cement systems were utilized in these experiments: tetralcium phosphate (TetCP) with dicalcium phosphate anhydrous (DCPA) and beta-tricalcium phosphate (beta-TCP). The kinetics, solution chemistry, phase evolution, and microstructure of the developed apatites were analyzed as appropriate. Reaction of beta-TCP in ammonium fluoride solutions formed HAp substituted with fluoride and calculated to be deficient in calcium. A new ratio of TetCP to DCPA was used with solutions of sodium bicarbonate to form a calcium-deficient carbonate hydroxyapatite. The capacity for sodium dihydrogen phosphate to buffer pH increases and enhance reaction kinetics in this system was also explored. Formation of a highly crystalline CDHAp was achieved by hydrolyzing beta-TCP in water for extended time periods. Lattice parameters were among the features characterized for this apatite. The hydrolysis of beta-TCP in phosphate buffered saline (PBS) and simulated body fluids (SBF) was also investigated; use of SBF was found to completely inhibit formation of HAp in this system while reaction in PBS was slow in comparison to water. The effects of filler materials on the mechanical properties of a calcium phosphate cement were examined using the TetCP/DCPA system. Dense aggregates were not found to decrease compressive strength in comparison to the cement alone. The use of aggregates was found to improve the compressive strength of cement formed using NaHCO3 solution as a

  6. Luminescence and related properties of nanocrystalline porous silicon

    NASA Astrophysics Data System (ADS)

    Koshida, N.

    This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses luminescence and related properties of nanocrystalline porous silicon. Topics include an overview of nanostructured silicon, its fabrication technology, and properties of nanocrystalline porous silicon such as confinement effects, photoluminescence, electroluminesce, carrier charging effects, ballistic transport and emission, and thermally induced acoustic emission.

  7. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review.

    PubMed

    Zakaria, Siti Maisurah; Sharif Zein, Sharif Hussein; Othman, Mohd Roslee; Yang, Fang; Jansen, John A

    2013-10-01

    Hydroxyapatite is a biocompatible material that is extensively used in the replacement and regeneration of bone material. In nature, nanostructured hydroxyapatite is the main component present in hard body tissues. Hence, the state of the art in nanotechnology can be exploited to synthesize nanophase hydroxyapatite that has similar properties with natural hydroxyapatite. Sustainable methods to mass-produce synthetic hydroxyapatite nanoparticles are being developed to meet the increasing demand for these materials and to further develop the progress made in hard tissue regeneration, especially for orthopedic and dental applications. This article reviews the current developments in nanophase hydroxyapatite through various manufacturing techniques and modifications.

  8. Magnetic Properties of Grain Boundaries of Nanocrystalline Ni and of Ni Precipitates in Nanocrystalline NiCu Alloys

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Guan, Z.; Li, X.; Wichert, Th.

    2001-11-01

    Perturbed γγ-angular correlation spectroscopy (PAC) was used to investigate nanocrystalline Ni and NiCu alloys, which are prepared by pulsed electrodeposition (PED). Using diffusion for doping nanocrystalline Ni with 111In four different ordered grain boundary structures are observed, which are characterized by unique electric field gradients. The incorporation of 111In on substitutional bulk sites of Ni is caused by moving grain boundaries below 1000 K and by volume diffusion above 1000 K. The nanocrystalline NiCu alloys prepared by PED are microscopically inhomogeneous as observed by PAC. In contrast, this inhomogeneity cannot be detected by X-ray diffraction. The influence of the temperature of the electrolyte, the current density during deposition, and the optional addition of saccharin to the electrolyte on the homogeneity of nanocrystalline NiCu alloys was investigated.

  9. Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour.

    PubMed

    Bolelli, Giovanni; Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella; Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer; Altomare, Lina; De Nardo, Luigi

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27-37μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%-70% were obtained, depending on the deposition parameters and the use of a TiO2 bond coat. The average hardness of layers with low (<24%) and high (70%) crystallinity was ≈3.5GPa and ≈4.5GPa respectively. The distributions of hardness values, all characterised by Weibull modulus in the 5-7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates.

  10. In situ deposition of hydroxyapatite on graphene nanosheets

    SciTech Connect

    Neelgund, Gururaj M.; Oki, Aderemi; Luo, Zhiping

    2013-02-15

    Graphical abstract: A facile chemical precipitation method is reported for effective in situ deposition of hydroxyapatite on graphene nanosheets. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. Display Omitted Highlights: ► It is a facile and effective method for deposition of HA on GR nanosheets. ► It avoids the use of harmful reducing agents like hydrazine, NaBH{sub 4} etc. ► GR nanosheets were produced using bio-compatible, ethylenediamine. ► The graphitic structure of synthesized GR nanosheets was high ordered. ► The ratio of Ca to P in HA was 1.64, which is close to ratio in natural bone. -- Abstract: Graphene nanosheets were effectively functionalized by in situ deposition of hydroxyapatite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, Raman spectroscopy and thermogravimetric analysis. These characterization techniques revealed the successful grafting of hydroxyapatite over well exfoliated graphene nanosheets without destroying their structure.

  11. Improvement of the stability of hydroxyapatite through glass ceramic reinforcement.

    PubMed

    Ha, Na Ra; Yang, Zheng Xun; Hwang, Kyu Hong; Kim, Tae Suk; Lee, Jong Kook

    2010-05-01

    Hydroxyapatite has achieved significant application in orthopedic and dental implants due to its excellent biocompatibility. Sintered hydroxyapatites showed significant dissolution, however, after their immersion in water or simulated body fluid (SBF). This grain boundary dissolution, even in pure hydroxyapatites, resulted in grain separation at the surfaces, and finally, in fracture. In this study, hydroxyapatite ceramics containing apatite-wollastonite (AW) or calcium silicate (SG) glass ceramics as additives were prepared to prevent the dissolution. AW and SG glass ceramics were added at 0-7 wt% and powder-compacted uniaxially followed by firing at moisture conditions. The glass phase was incorporated into the hydroxyapatite to act as a sintering aid, followed by crystallization, to improve the mechanical properties without reducing the biocompatibility. As seen in the results of the dissolution test, a significant amount of damage was reduced even after more than 14 days. TEM and SEM showed no decomposition of HA to the secondary phase, and the fracture toughness increased, becoming even higher than that of the commercial hydroxyapatite.

  12. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Duta, L.; Oktar, F. N.; Stan, G. E.; Popescu-Pelin, G.; Serban, N.; Luculescu, C.; Mihailescu, I. N.

    2013-01-01

    We report on the synthesis of novel ovine and bovine derived hydroxyapatite thin films on titanium substrates by pulsed laser deposition for a new generation of implants. The calcination treatment applied to produce the hydroxyapatite powders from ovine/bovine bones was intended to induce crystallization and to prohibit the transmission of diseases. The deposited films were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy. Pull-off adherence and profilometry measurements were also carried out. X-ray diffraction ascertained the polycrystalline hydroxyapatite nature of the powders and films. Fourier transform infrared spectroscopy evidenced the vibrational bands characteristic to a hydroxyapatite material slightly carbonated. The micrographs of the films showed a uniform distribution of spheroidal particulates with a mean diameter of ∼2 μm. Pull-off measurements demonstrated excellent bonding strength values between the hydroxyapatite films and the titanium substrates. Because of their physical-chemical properties and low cost fabrication from renewable resources, we think that these new coating materials could be considered as a prospective competitor to synthetic hydroxyapatite used for implantology applications.

  13. Toughness and strength of nanocrystalline graphene

    PubMed Central

    Shekhawat, Ashivni; Ritchie, Robert O.

    2016-01-01

    Pristine monocrystalline graphene is claimed to be the strongest material known with remarkable mechanical and electrical properties. However, graphene made with scalable fabrication techniques is polycrystalline and contains inherent nanoscale line and point defects—grain boundaries and grain-boundary triple junctions—that lead to significant statistical fluctuations in toughness and strength. These fluctuations become particularly pronounced for nanocrystalline graphene where the density of defects is high. Here we use large-scale simulation and continuum modelling to show that the statistical variation in toughness and strength can be understood with ‘weakest-link' statistics. We develop the first statistical theory of toughness in polycrystalline graphene, and elucidate the nanoscale origins of the grain-size dependence of its strength and toughness. Our results should lead to more reliable graphene device design, and provide a framework to interpret experimental results in a broad class of two-dimensional materials. PMID:26817712

  14. Nanocrystalline diamond coatings for mechanical seals applications.

    PubMed

    Santos, J A; Neto, V F; Ruch, D; Grácio, J

    2012-08-01

    A mechanical seal is a type of seal used in rotating equipment, such as pumps and compressors. It consists of a mechanism that assists the connection of the rotating shaft to the housings of the equipments, preventing leakage or avoiding contamination. A common cause of failure of these devices is end face wear out, thus the use of a hard, smooth and wear resistant coating such as nanocrystalline diamond would be of great importance to improve their working performance and increase their lifetime. In this paper, different diamond coatings were deposited by the HFCVD process, using different deposition conditions. Additionally, the as-grown films were characterized for, quality, morphology and microstructure using scanning electron microscopy (SEM) and Raman spectroscopy. The topography and the roughness of the films were characterized by atomic force microscopy (AFM). PMID:22962831

  15. Dye-sensitized nanocrystalline solar cells.

    PubMed

    Peter, Laurence M

    2007-06-01

    The basic physical and chemical principles behind the dye-sensitized nanocrystalline solar cell (DSC: also known as the Grätzel cell after its inventor) are outlined in order to clarify the differences and similarities between the DSC and conventional semiconductor solar cells. The roles of the components of the DSC (wide bandgap oxide, sensitizer dye, redox electrolyte or hole conductor, counter electrode) are examined in order to show how they influence the performance of the system. The routes that can lead to loss of DSC performance are analyzed within a quantitative framework that considers electron transport and interfacial electron transfer processes, and strategies to improve cell performance are discussed. Electron transport and trapping in the mesoporous oxide are discussed, and a novel method to probe the electrochemical potential (quasi Fermi level) of electrons in the DSC is described. The article concludes with an assessment of the prospects for future development of the DSC concept.

  16. Thermal Conductivity in Nanocrystalline Ceria Thin Films

    SciTech Connect

    Marat Khafizov; In-Wook Park; Aleksandr Chernatynskiy; Lingfeng He; Jianliang Lin; John J. Moore; David Swank; Thomas Lillo; Simon R. Phillpot; Anter El-Azab; David H. Hurley

    2014-02-01

    The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser-based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.

  17. Mesoscopically structured nanocrystalline metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Carretero-Genevrier, Adrian; Drisko, Glenna L.; Grosso, David; Boissiere, Cédric; Sanchez, Clement

    2014-11-01

    This review describes the main successful strategies that are used to grow mesostructured nanocrystalline metal oxide and SiO2 films via deposition of sol-gel derived solutions. In addition to the typical physicochemical forces to be considered during crystallization, mesoporous thin films are also affected by the substrate-film relationship and the mesostructure. The substrate can influence the crystallization temperature and the obtained crystallographic orientation due to the interfacial energies and the lattice mismatch. The mesostructure can influence the crystallite orientation, and affects nucleation and growth behavior due to the wall thickness and pore curvature. Three main methods are presented and discussed: templated mesoporosity followed by thermally induced crystallization, mesostructuration of already crystallized metal oxide nanobuilding units and substrate-directed crystallization with an emphasis on very recent results concerning epitaxially grown piezoelectric structured α-quartz films via crystallization of amorphous structured SiO2 thin films.

  18. Toughness and strength of nanocrystalline graphene

    DOE PAGES

    Shekhawat, Ashivni; Ritchie, Robert O.

    2016-01-28

    Pristine monocrystalline graphene is claimed to be the strongest material known with remarkable mechanical and electrical properties. However, graphene made with scalable fabrication techniques is polycrystalline and contains inherent nanoscale line and point defects—grain boundaries and grain-boundary triple junctions—that lead to significant statistical fluctuations in toughness and strength. These fluctuations become particularly pronounced for nanocrystalline graphene where the density of defects is high. Here we use large-scale simulation and continuum modelling to show that the statistical variation in toughness and strength can be understood with ‘weakest-link’ statistics. We develop the first statistical theory of toughness in polycrystalline graphene, and elucidatemore » the nanoscale origins of the grain-size dependence of its strength and toughness. Lastly, our results should lead to more reliable graphene device design, and provide a framework to interpret experimental results in a broad class of two-dimensional materials.« less

  19. Nanocrystalline silicon thin films for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Queen, Daniel; Jugdersuren, Battogtokh; Culberston, Jim; Wang, Qi; Nemeth, William; Metcalf, Tom; Liu, Xiao

    2014-03-01

    Recent advances in thermoelectric materials have come from reductions in thermal conductivity by manipulating both chemical composition and nanostructure to limit the phonon mean free path. However, wide spread applications for some of these materials may be limited due to high raw material and integration costs. In this talk we will discuss our recent results on nanocrystalline silicon thin films deposited by both hot-wire and plasma enhanced chemical vapor deposition where the nanocrystal size and crystalline volume fraction are varied by dilution of the silane precursor gas with hydrogen. Nanocyrstalline silicon is an established material technology used in multijunction amorphous silicon solar cells and has the potential to be a low cost and scalable material for use in thermoelectric devices. This work supported by the Office of Naval Research and the National Research Council.

  20. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    PubMed

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures. PMID:25280036

  1. [Diffusion bonding of hydroxyapatite ceramics and biometals].

    PubMed

    Yamane, F

    1990-03-01

    To improve the mechanical characteristics of hydroxyapatite (HAP) ceramics, a metal-ceramic composite formed by a solid state direct diffusion bonding system was studied. The joining treatment was carried out of a high vacuum and high temperature, for the bioactive ceramics (HAP) and the following biometals; platinum, gold-platinum alloy, titanium and titanium alloys, zirconium, niobium and aluminium alloy. The effects of the variations of thermal expansion mismatch and the interactive reactions at the interface were investigated by fractographic observation (SEM), X-ray diffraction method and EPMA analysis. On some of these joining combinations, the bonding strength had the same bonding strength as the adhesive materials. The results of interface observations showed that the bonding strength is affected by the interface reactions and the diffusion phenomena. PMID:2135505

  2. Hydroxyapatite deposition disease of the joint.

    PubMed

    Molloy, Eamonn S; McCarthy, Geraldine M

    2003-06-01

    Basic calcium phosphate (BCP) crystals include partially carbonate-substituted hydroxyapatite, octacalcium phosphate, and tricalcium phosphate. They may form deposits, which are frequently asymptomatic but may give rise to a number of clinical syndromes including calcific periarthritis, Milwaukee shoulder syndrome, and osteoarthritis, in and around joints. Recent data suggest that magnesium whitlockite, another form of BCP, may play a pathologic role in arthritis. Data from the past year have provided further understanding of the mechanisms by which BCP crystals induce inflammation and degeneration. There remains no specific treatment to modify the effects of BCP crystals. Although potential drugs are being identified as the complex pathophysiology of BCP crystals is unraveled, much work remains to be done in order to translate research advances to date into tangible clinical benefits. PMID:12744814

  3. Electrophoretic deposition of porous hydroxyapatite scaffold.

    PubMed

    Ma, J; Wang, C; Peng, K W

    2003-09-01

    Bioactive porous hydroxyapatite (HA) scaffold was fabricated using electrophoretic deposition (EPD) technique in the present work. Bulk HA scaffold was achieved by repeated deposition. The green scaffold was sintered at 1200 degrees C to 82% of the theoretical density. Scanning electron microscopy examination and mercury porosimetry measurement have shown that the porosity remains interconnected and a range of pore size from several microns to hundreds of microns was obtained. X-ray diffraction analysis was performed and confirmed that there is no HA decomposition during the sintering process. Mechanical characterization has also shown that the EPD scaffold possesses excellent properties. Cell culturing experiment was carried out and the result shows that the scaffold bioactivity is not only dependent on the interconnectivity of the pores, but also the pore size.

  4. Hydroxyapatite motility implants in ocular prosthetics.

    PubMed

    Cowper, T R

    1995-03-01

    For the past 5 years, an increasing number of ophthalmologists have been using hydroxyapatite (HA) motility implants after uncomplicated enucleation or evisceration of the eye. Unlike previous implant materials, HA promotes fibrovascular ingrowth and seemingly true integration of the motility implant to the residual ocular structures. As a result, a more stable defect and greater movement of the overlying prosthesis is produced. In addition, the problems of long-term orbital implant migration and the vexing postenucleation socket syndrome are thought to be minimized. This article briefly reviews the history and development of orbital implants and HA implant surgical and prosthetic procedures. It is concluded that HA implant rehabilitation is indicated after most uncomplicated enucleations or eviscerations where there is small likelihood of complication.

  5. Energy level alignments at the interface of N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1‧-biphenyl-4,4‧-diamine (NPB)/Ag-doped In2O3 and NPB/Sn-doped In2O3

    NASA Astrophysics Data System (ADS)

    Jung, Kwanwook; Park, Soohyung; Lee, Younjoo; Youn, Yungsik; Shin, Hae-In; Kim, Han-Ki; Lee, Hyunbok; Yi, Yeonjin

    2016-11-01

    The electronic structures of Ag-doped In2O3 (IAgO) and its energy level alignments with a N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1‧-biphenyl-4,4‧-diamine (NPB) hole transport layer (HTL) were investigated using in situ ultraviolet and X-ray photoelectron spectroscopies (UPS and XPS). As compared to the conventional Sn-doped In2O3 (ITO), IAgO has less oxygen vacancies leading to a higher work function (WF). The lower hole injection barrier (Φh) from IAgO to a NPB HTL is observed, which is attributed mainly to its higher WF and interface dipoles. The UPS measurements reveal that the Φh is 0.87 eV at NPB/IAgO while 1.11 eV is at NPB/ITO. Therefore, IAgO could be an alternative transparent anode in organic optoelectronics.

  6. Optoelectronic properties of nanocrystalline silicon composites

    NASA Astrophysics Data System (ADS)

    Posada Marin, Yury

    The interest in silicon at the nano-scale level has gained great impetus since the discovery in the last decade of its photoluminescence properties at room temperature; this characteristic has opened up the possibility of creating microelectronics with optical integrated capabilities and has been the main motivation for new research in photonics and optoelectronics applications. To date, the most cost effective technique used to make silicon nanoparticles is the electroetching of silicon wafers in HF electrolytes solutions; this method generates hydrogen-passivated particles by the electrochemical dispersion of bulk silicon. The ultrasonic fracturing of porous silicon structures produces a colloidal suspension of particles in a large variety of organic solvents that can be readily used as photoluminescent tags and to create new optical materials. Silicon nanoparticles can be also produced by sputtering Si-SiO 2, a technique that can render films with distributions of silicon crystallite sizes. This thesis presents the results of an optoelectronic study of nanocrystalline silicon produced by chemical electroetching of silicon wafers and RF-co sputtering of Si-SiO2. Herein are presented the experimental contributions of this work: the development of two novel materials: silica gel monoliths and microfilms doped with porous silicon nanoclusters that have showed blue shifted photoluminescence emission with intensities over five times higher than the original intensity from the native material used for the sol-gel preparation; the enhancement of the photoluminescence of porous silicon substrates by silica gel spin coating. Finally, through a charge transport study of nanocrystalline silicon in Si-SiO2 a relationship between the photoluminescence with the silicon crystallites sizes and concentrations is demonstrated and analyzed along with the diffusion length.

  7. Hydroxyapatite chromatography of phage-display virions.

    PubMed

    Smith, George P; Gingrich, Todd R

    2005-12-01

    Hydroxyapatite column chromatography can be used to purify filamentous bacteriophage--the phage most commonly used for phage display. Virions that have been partially purified from culture supernatant by two cycles of precipitation in 2% polyethylene glycol are adsorbed onto the matrix at a density of at least 7.6 x 10(13) virions (about 3 mg) per milliliter of packed bed volume in phosphate-buffered saline (PBS; 0.15 M NaCl, 5 mM NaH2PO4, pH-adjusted to 7.0 with NaOH). The matrix is washed successively with wash buffer I(150 mM NaCl, 125 mM phosphate, pH 7.0), wash buffer II (2.55 M NaCl, 125 mM phosphate, pH 7.0), and wash buffer I; after which virions are desorbed in desorption buffer (150 mM NaCl, 200 mM phosphate, pH 7.0), and the matrix is stripped with stripping buffer (150 mM NaCl, 1 Mphosphate, pH 7.0). About half of the applied virions are recovered in desorption buffer. Western blot analysis shows that they have undetectable levels of host-derived protein contaminants that are present in the input virions and in virions purified by CsCl equilibrium density gradient centrifugation--the method most commonly used to prepare virions in high purity. Hydroxyapatite chromatography is thus an attractive alternative method for purifying filamentous virions, particularly when the scale is too large for ultracentrifugation to be practical. PMID:16382907

  8. The analysis of biomedical hydroxyapatite powders and hydroxyapatite coatings on metallic medical implants by near-IR Fourier transform Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tudor, A. M.; Melia, C. D.; Davies, M. C.; Anderson, D.; Hastings, G.; Morrey, S.; Domingos-Sandos, J.; Barbosa, M.

    1993-06-01

    In this paper we discuss the application of Fourier transform Raman (FTR) spectroscopy to the in situ analysis of the inorganic bioceramic hydroxyapatite in both powder form and as a thermally sprayed hydroxyapatite coating on metals currently employed in medical implants for orthopaedic surgery. The derivation of the FTR spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. The FTR spectra of hydroxyapatite powders sintered up to 1300°C suggest significant structural changes in the region of 1250°C. The FTR spectra of coated metal systems clearly distinguish between samples of differing crystallinity and provide some information on the effect of the coating process on the hydroxyapatite material. The preliminary examination of hydroxyapatite coated dental screws shows a change in the nature of the hydroxyapatite coating on recovery after clinical use.

  9. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants.

    PubMed

    Yamada, Masahiro; Ueno, Takeshi; Tsukimura, Naoki; Ikeda, Takayuki; Nakagawa, Kaori; Hori, Norio; Suzuki, Takeo; Ogawa, Takahiro

    2012-01-01

    The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone-implant integration is largely unknown. Furthermore, refining the fabrication of nano-structured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone-implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone-implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone-implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone-implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was limited to the

  10. Nano-hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone.

    PubMed

    Barkarmo, Sargon; Wennerberg, Ann; Hoffman, Maria; Kjellin, Per; Breding, Karin; Handa, Paul; Stenport, Victoria

    2013-02-01

    Osseointegration of surface-modified polyetheretherketone (PEEK) implants was studied in vivo. A total of 18 cylinder-shaped PEEK implants were inserted in the femurs of nine New Zealand rabbits; half were coated with nanocrystalline hydroxyapatite (nanoHA) and half were uncoated controls. Healing time was 6 weeks. Samples were retrieved with the implant and surrounding tissue, processed to cut and ground sections, and analyzed histomorphometrically. The implant surfaces were analyzed with optical interferometry, scanning electron microscopy (SEM), atomic force microscopy, and X-ray photoelectron spectroscopy (XPS). NanoHA-coated PEEK surfaces had lower height deviation (Sa) than controls [mean ± SD: 0.41 μm (± 0.14) vs. 0.96 μm (± 0.28)]. SEM images showed the nanoHA crystals as a thin layer on the polymer surface. XPS analysis of the coated implants showed a Ca/P ratio of 1.67. Histomorphometry indicated that the nanoHA-coated implants had more bone-to-implant contact [16% (± 4.7) vs. 13% (± 9.3)] and more bone area [52% (± 9.5) vs. 45% (± 11.9)]. We found no difference between smooth nanoHA-coated cylinder-shaped PEEK implants and uncoated controls. However, higher mean bone-to-implant contact indicated better osseointegration in the coated implants than in the uncoated controls. The large number of lost implants was interpreted as a lack of primary stability due to implant design.

  11. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants.

    PubMed

    Yamada, Masahiro; Ueno, Takeshi; Tsukimura, Naoki; Ikeda, Takayuki; Nakagawa, Kaori; Hori, Norio; Suzuki, Takeo; Ogawa, Takahiro

    2012-01-01

    The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone-implant integration is largely unknown. Furthermore, refining the fabrication of nano-structured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone-implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone-implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone-implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone-implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was limited to the

  12. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    PubMed Central

    Yamada, Masahiro; Ueno, Takeshi; Tsukimura, Naoki; Ikeda, Takayuki; Nakagawa, Kaori; Hori, Norio; Suzuki, Takeo; Ogawa, Takahiro

    2012-01-01

    The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nano-structured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone–implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was

  13. Initial bone matrix formation at the hydroxyapatite interface in vivo.

    PubMed

    de Bruijn, J D; van Blitterswijk, C A; Davies, J E

    1995-01-01

    Dense, sintered, slip-cast hydroxyapatite rods were implanted transfemorally in young adult rats. The femora were excised after 2 and 4 weeks and, following fixation, either embedded in methyl methacrylate for light microscopy, decalcified and prepared for transmission electron microscopy, or freeze fractured in liquid nitrogen for scanning electron microscopic analysis. The latter was performed on the two tissue fragments that remained after freeze fracturing, from which the first contained the implants and the second comprised tissue that had been immediately adjacent to the hydroxyapatite rods. Undecalcified light microscopic sections revealed extensive bone tissue formation around and in contact with the hydroxyapatite rods. The initial bone matrix apposed to the implant surface, as demonstrated with scanning electron microscopy, was either composed of globular deposits or an organized network of collagen fibers. The deposits, which ranged in size from 0.1-1.1 microns, fused to form a cement-like matrix to which collagen fibers were attached. Degradation of the hydroxyapatite surface resulted in the presence of unidirectionally aligned crystallites, with which the newly formed bone matrix was closely associated. Ultrastructural analysis of the bone-hydroxyapatite interface with transmission electron microscopy revealed a 50-600-nm-wide collagen-free granular zone, comprising one or more 40-100-nm-thick electron-dense layer(s). These structural arrangements most probably partially represent the globular deposits and proteinaceous material adsorbed onto and partially in the degrading hydroxyapatite surface. Although the latter change in surface topography may have enhanced bonding of the cement-like matrix to the hydroxyapatite, the cause for this change in topography and the type of bond formed are, at present, unknown. PMID:7713963

  14. Sintering Effects on Morphology, Thermal Stability and Surface Area of Sol-Gel Derived Nano-Hydroxyapatite Powder

    NASA Astrophysics Data System (ADS)

    Kapoor, Seema; Batra, Uma; Kohli, Suchita

    2011-12-01

    Hydroxyapatite (HAP) ceramics have been recognized as substitute materials for bone and teeth in orthopedic and dentistry field due to their chemical and biological similarity to human hard tissue. The nanosized and nanocrystalline forms of HAP have great potential to revolutionize the hard tissue-engineering field, starting from bone repair and augmentation to controlled drug delivery systems. This paper reports the synthesis of biomimetic nano-hydroxyapatite (HAP) by sol-gel method using calcium nitrate tetrahydrate (CNT) and potassium dihydrogen phosphate (KDP) as calcium and phosphorus precursors, respectively to obtain a desired Ca/P ratio of 1.67. Deionized water was used as a diluting media for HAP sol preparation and ammonia was used to adjust the pH to 11. After aging, the HAP gel was dried at 55 °C and sintered to different temperatures (200 °C, 400 °C, 600 °C, 800 °C, 1000 °C and 1200 °C). The dried and sintered powders were characterized for phase composition using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The particle size and morphology was studied using transmission electron microscopy (TEM). The thermal behavior of the dried HAP nanopowder was studied in the temperature range of 55 °C to 1000 °C using thermal gravimetric analyser (TGA). The BET surface area of absorbance was determined by Nitrogen adsorption using Brunauer-Emmett-Teller (BET) method. The presence of characteristic peaks of the phosphate and OH groups in FTIR spectrums confirmed the formation of pure HAP in dried as well as sintered powders. XRD results also confirmed the formation of stoichiometric nano-HAP. Sintering revealed that with increase in temperature, both the crystallinity and crystallite size of nano-HAP particles increased. The synthesized nano-HAP powder was found to be stable upto 1000 °C without any additional phase other than HAP, whereas peak of β-TCP (tricalcium phosphate) was observed at 1200 °C. Photomicrograph of

  15. Sintering Effects on Morphology, Thermal Stability and Surface Area of Sol-Gel Derived Nano-Hydroxyapatite Powder

    SciTech Connect

    Kapoor, Seema; Batra, Uma; Kohli, Suchita

    2011-12-12

    Hydroxyapatite (HAP) ceramics have been recognized as substitute materials for bone and teeth in orthopedic and dentistry field due to their chemical and biological similarity to human hard tissue. The nanosized and nanocrystalline forms of HAP have great potential to revolutionize the hard tissue-engineering field, starting from bone repair and augmentation to controlled drug delivery systems. This paper reports the synthesis of biomimetic nano-hydroxyapatite (HAP) by sol-gel method using calcium nitrate tetrahydrate (CNT) and potassium dihydrogen phosphate (KDP) as calcium and phosphorus precursors, respectively to obtain a desired Ca/P ratio of 1.67. Deionized water was used as a diluting media for HAP sol preparation and ammonia was used to adjust the pH to 11. After aging, the HAP gel was dried at 55 deg. C and sintered to different temperatures (200 deg. C, 400 deg. C, 600 deg. C, 800 deg. C, 1000 deg. C and 1200 deg. C). The dried and sintered powders were characterized for phase composition using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The particle size and morphology was studied using transmission electron microscopy (TEM). The thermal behavior of the dried HAP nanopowder was studied in the temperature range of 55 deg. C to 1000 deg. C using thermal gravimetric analyser (TGA). The BET surface area of absorbance was determined by Nitrogen adsorption using Brunauer-Emmett-Teller (BET) method. The presence of characteristic peaks of the phosphate and OH groups in FTIR spectrums confirmed the formation of pure HAP in dried as well as sintered powders. XRD results also confirmed the formation of stoichiometric nano-HAP. Sintering revealed that with increase in temperature, both the crystallinity and crystallite size of nano-HAP particles increased. The synthesized nano-HAP powder was found to be stable upto 1000 deg. C without any additional phase other than HAP, whereas peak of {beta}-TCP (tricalcium phosphate) was observed

  16. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-05-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite.

  17. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes

    PubMed Central

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-01-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite. PMID:27185503

  18. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes.

    PubMed

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-01-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite.

  19. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes.

    PubMed

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-01-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite. PMID:27185503

  20. Effect of collagen on the mechanical properties of hydroxyapatite coatings.

    PubMed

    Ou, Keng-Liang; Chung, Ren-Jei; Tsai, Fu-Yi; Liang, Pei-Yu; Huang, Shih-Wei; Chang, Shou-Yi

    2011-05-01

    In this study, the mechanical properties of bioactive coatings on Ti6Al4V substrates were investigated using instrumented nanoindentation. The aim was to observe the differences in the mechanical properties before and after immersion in collagen solution. The hydroxyapatite coatings were prepared through two processes: self-assembly in simulated body fluid and a hydrothermal method. Sintered hydroxyapatite disks were used as controls. The test samples were then incubated in a dilute collagen solution for 24 hours to produce composite coatings. The materials were investigated using XRD, SEM and nanoindentation. The results showed that the grain sizes of the hydroxyapatite coatings formed using two processes were 1 μm and 10 μm, respectively. The Young's modulus of the pure hydroxyapatite, the disk and the coatings, was 3.6 GPa. After collagen incubation treatment, the composites had a Young's modulus of 7.5 GPa. The results also showed that the strengthening phenomena of collagen were more obvious for homogeneous and small-grain hydroxyapatite coatings. These results suggest that there are similarities between these HAp/collagen composited and natural composite materials, such as teeth and bones.

  1. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.

    PubMed

    Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil

    2016-01-01

    The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering.

  2. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.

    PubMed

    Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil

    2016-01-01

    The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. PMID:26478356

  3. A process for the development of strontium hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Zahra, N.; Fayyaz, M.; Iqbal, W.; Irfan, M.; Alam, S.

    2014-06-01

    A procedure for the preparation of Strontium Hydroxyapatite is adapted to produce high purity and better homogeneity ceramic with good Crystallinity. The strontium substituted bone cement has potential for use in orthopedic surgeries. Ionic Strontium (Sr) in humans shares the same physiological pathway as calcium and can be deposited in the mineral structure of the bone. In the present study, a novel concept of preparing Sr-contained Hydroxyapatite bone cement by using a precipitation method is proposed to get an ideal biomaterial that possesses potential degradability and more excellent pharmacological effect. Chemical analysis, Fourier Transform Infra Red analysis and Thermogravimetric/ Differential Scanning Calorimetric studies were conducted on prepared Strontium Hydroxyapatite sample to characterize the incorporation of 15% Sr2+ into the crystal lattice of Hydroxyapatite. Strontium was quantitatively incorporated into Hydroxyapatite where its substitution for calcium provoked a linear shift of the infrared absorption bands of the hydroxyl and phosphate groups. Thus, the formation of Sr-HAp was confirmed by Chemical Analysis, FT-IR and TGA/DSC results.

  4. Hydroxyapatite and urate crystal induced cytokine release by macrophages.

    PubMed Central

    Alwan, W H; Dieppe, P A; Elson, C J; Bradfield, J W

    1989-01-01

    Destructive osteoarthritis is characterised by rapidly progressive joint destruction associated with intra-articular deposition of hydroxyapatite crystals. The possible role of such crystals in the pathogenesis of this condition was investigated by testing the ability of hydroxyapatite crystals to stimulate the production of bone resorbing activity from mouse peritoneal macrophages. Urate crystals were used for comparison. Culture supernatants were tested for bone resorbing activity using the mouse calvarial bone resorption assay, for interleukin 1 using a standard lymphocyte activation assay, and for prostaglandin E2 by radioimmunoassay. Culture supernatants from macrophages incubated with hydroxyapatite crystals contained dialysable bone resorbing activity, high concentrations of prostaglandin E2, but no interleukin 1 like activity. The production of the bone resorbing agent was prevented by culturing macrophages with hydroxyapatite crystals in the presence of indomethacin. By contrast, culture supernatants from macrophages incubated with urate crystals contained bone resorbing activity, which was only partly removed by dialysis, and interleukin 1 like activity. The latter was shown to be increased in culture supernatants from macrophages incubated with urate crystals in the presence of indomethacin, while production of bone resorbing activity was partially inhibited. It is considered that the bone resorbing activity liberated from macrophages stimulated by hydroxyapatite crystals can be explained by the presence of prostaglandin E2 alone, whereas the activity liberated by urate crystals is due to both prostaglandin E2 and interleukin 1. PMID:2545171

  5. Surfactant free rapid synthesis of hydroxyapatite nanorods by a microwave irradiation method for the treatment of bone infection

    NASA Astrophysics Data System (ADS)

    Vani, R.; Bharathi Raja, Subramaniya; Sridevi, T. S.; Savithri, K.; Niranjali Devaraj, S.; Girija, E. K.; Thamizhavel, A.; Narayana Kalkura, S.

    2011-07-01

    Mesoporous nanocrystalline hydroxyapatite (nHAp) rods of size 40-75 nm long and 25 nm wide (resembling bone mineral) were synthesized under microwave irradiation without using any surfactants or modifiers. The surface area and average pore size of the nHAp were found to be 32 m2 g - 1 and 4 nm, respectively. Rifampicin (RIF) and ciprofloxacin (CPF) loaded nHAp displayed an initial burst followed by controlled release (zero order kinetics). Combination of CPF and RIF loaded nHAp showed enhanced bacterial growth inhibition against Staphylococcus aureus (S aureus), Staphylococcus epidermidis (S epidermidis) and Escherichia coli (E coli) compared to individual agent loaded nHAp and pure nHAp. In addition, decreased bacterial adhesion (90%) was observed on the surface of CPF plus RIF loaded nHAp. The biocompatibility test toward MG63 cells infected with micro-organisms showed better cell viability and alkaline phosphatase activity (ALP) for the combination of CPF and RIF loaded nHAp. The influence on cell viability of infected MG63 cells was attributed to the simultaneous and controlled release of CPF and RIF from nHAp, which prevented the emergence of subpopulations that were resistant to each other. Hence, apart from the issue of the rapid synthesis of nHAp without surfactants or modifiers, the simultaneous and controlled release of dual drugs from nHAp would be a simple, non-toxic and cost-effective method to treat bone infections.

  6. Hydroxyapatite coating on biodegradable AZ31 and Mg-Ca alloys prepared by RF-magnetron sputtering

    SciTech Connect

    Mukhametkaliyev, T. Surmeneva, M. Surmenev, R.; Mathan, B. K.

    2015-11-17

    A thin film of hydroxyapatite (HA) was deposited on AZ31 and Mg-Ca alloys by using radio frequency (RF) magnetron sputtering. The thickness of the HA coating was determined to be 750 nm. The phase composition, microstructure, and surface morphology of the HA coatings were investigated using X-ray diffraction and scanning electron microscopy. In vitro degradation behaviour of the HA coated alloys was evaluated in simulated body fluid (SBF) and 3.5wt.% NaCl solution using electrochemical method. The coatings homogeneously covered the entire surface of the substrates. The coating structure corresponded to a nanostructured HA. The ultrathin coating significantly improved the degradation resistance of the alloy. Nanocrystalline HA coating significantly improved the corrosion resistance of the Mg-Ca and AZ31 magnesium alloys. The polarization resistance (Rp) of the coated Mg-Ca alloy was more than two-order of magnitude higher and the corrosion current density I{sub corr} reduced by ∼ 98% as compared to the base alloy.

  7. Surfactant free rapid synthesis of hydroxyapatite nanorods by a microwave irradiation method for the treatment of bone infection.

    PubMed

    Vani, R; Raja, Subramaniya Bharathi; Sridevi, T S; Savithri, K; Devaraj, S Niranjali; Girija, E K; Thamizhavel, A; Kalkura, S Narayana

    2011-07-15

    Mesoporous nanocrystalline hydroxyapatite (nHAp) rods of size 40-75 nm long and 25 nm wide (resembling bone mineral) were synthesized under microwave irradiation without using any surfactants or modifiers. The surface area and average pore size of the nHAp were found to be 32 m(2) g(-1) and 4 nm, respectively. Rifampicin (RIF) and ciprofloxacin (CPF) loaded nHAp displayed an initial burst followed by controlled release (zero order kinetics). Combination of CPF and RIF loaded nHAp showed enhanced bacterial growth inhibition against Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis) and Escherichia coli (E. coli) compared to individual agent loaded nHAp and pure nHAp. In addition, decreased bacterial adhesion (90%) was observed on the surface of CPF plus RIF loaded nHAp. The biocompatibility test toward MG63 cells infected with micro-organisms showed better cell viability and alkaline phosphatase activity (ALP) for the combination of CPF and RIF loaded nHAp. The influence on cell viability of infected MG63 cells was attributed to the simultaneous and controlled release of CPF and RIF from nHAp, which prevented the emergence of subpopulations that were resistant to each other. Hence, apart from the issue of the rapid synthesis of nHAp without surfactants or modifiers, the simultaneous and controlled release of dual drugs from nHAp would be a simple, non-toxic and cost-effective method to treat bone infections. PMID:21625039

  8. Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications.

    PubMed

    Porter, Alexandra E; Best, Serena M; Bonfield, William

    2004-01-01

    Silicon-substituted hydroxyapatite (Si-HA) has been shown to lead to significantly increased rates of bone apposition when compared with phase-pure hydroxyapatite (HA) bioceramic implants (Patel N, et al. J Mater Sci Mater Med 2002;13:1199-1206). However, uncertainty remains about the mechanism by which Si increases the in vivo bioactivity. In this study, defect structures in Si-HA were observed and characterized for the first time using high-resolution transmission electron microscopy. Using tilting experiments and the g. b = 0 criterion for invisibility, the Burgers vectors of dislocations in phase-pure HA and 0.8 wt % Si-HA were characterized to be screw and mixed in character. Dislocations were observed in both pure HA and 0.8 wt % Si-HA with no significant difference in dislocation density between HA and Si-HA. However, our findings suggest that an increased number of triple junctions in Si-HA may have a significant role in increasing the solubility of the material and the subsequent rate at which bone apposes Si-HA ceramics.

  9. Production of hydroxyapatite from waste mussel shells

    NASA Astrophysics Data System (ADS)

    Jones, Mark I.; Barakat, Haneen; Patterson, Darrell Alec

    2011-10-01

    This work describes the formation of Hydroxyaptite, Ca10(PO4)6(OH)2, from waste mussel shells from the New Zealand aquaculture industry. The raw shells are first calcined to produce lime (CaO) and then reacted in a purpose built reactor to form the Hydroxyapatite (HA) in a low temperature batch process. The calcination was studied in terms of the effects of temperature, heating rate, holding time, nitrogen flow rate and particle size. The crystals formed in the batch reactor were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Photoelectron Spectroscopy (XPS). Optimised conditions in the calcination stage resulted in powder with around 95% conversion to lime. The as-produced HA showed poor crystallinity and the presence of impurities, although both of these features were improved by a suitable post heat treatment process. The post treated material showed good crystallinity and was comparable to commercially produced material. Preliminary biocompatibility experiments showed that the HA stimulated cell growth and promoted mineralization. The production of HA from mussel shells in a room temperature, ambient pressure process is not only a sustainable use of waste material, but also from an industrial point of view the process has considerable potential for reducing costs associated with both starting materials and energy.

  10. [Synthesis and characteristics of porous hydroxyapatite bioceramics].

    PubMed

    Niu, Jinlong; Zhang, Zhenxi; Jiang, Dazong

    2002-06-01

    The macroporous structure of human bone allows the ingrowth of the soft tissues and organic cells into the bone matrix, profits the development and metabolism of bone tissue, and adapts the bone to the change of load. There is great requirement for artificial biomimic porous bioactive ceramics with the similar structure of bone tissue that can be used clinically for repairing lost bone. Fine hydroxyapatite (HAp) powder produced by wet chemical reaction was mixed with hydrogen peroxide (H2O2), polyvinyl alcohol, methyl cellulose or other pores-making materials to form green cake. After drying at low temperature (below 100 degrees C) and decarbonizing at about 300 degrees C-400 degrees C, the spongy ceramic block was sintered at high temperature, thus, macroporous HAp bioceramic with interconnected pores and reasonable porosity and pore-diameter was manufactured. This kind of porous HAp bioceramics were intrinsically osteoinductive to a certain degree, but its outstanding property was that they can absorb human bone morphogenetic proteins and other bone growth factors to form composites, so that the macroporous HAp bioactive ceramic has appropriate feasibility for clinical application. From the point of biomedical application, the recent developments in synthesis and characteristics investigation of macroporous HAp are reviewed in this paper.

  11. Hydroxyapatite growth on cotton fibers modified chemically

    NASA Astrophysics Data System (ADS)

    Varela Caselis, J. L.; Reyes Cervantes, E.; Landeta Cortés, G.; Agustín Serrano, R.; Rubio Rosas, E.

    2014-09-01

    We have prepared carboxymethyl cellulose fibers (CMC) by chemically modifying cotton cellulose with monochloroacetic acid and calcium chloride solution. This modification favored the growth of hydroxyapatite (HAP) on the surface of the CMC fibers in contact with simulated body fluid solutions (SBF). After soaking in SBF for periods of 7, 14 and 21 days, formation of HAP was observed. Analysis by scanning electron microscopy and X-ray diffraction showed that crystallinity, crystallite size, and growth of HAP increased with the soaking time. The amount of HAP deposited on CMC fibers increased greatly after 21 days of immersion in the SBF, while the substrate surface was totally covered with hemispherical aggregates with the size of the order of 2 microns. Elemental analysis showed the presence of calcium and phosphate, with calcium/phosphate atomic ratio of 1.54. Fourier transform infrared spectroscopy bands confirmed the presence of HAP. The results suggest that cotton modified by calcium treatment has a nucleating ability and can accelerate the nucleation of HAP crystals.

  12. Bone formation on synthetic precursors of hydroxyapatite.

    PubMed

    Suzuki, O; Nakamura, M; Miyasaka, Y; Kagayama, M; Sakurai, M

    1991-05-01

    The aim of this study was to investigate the reaction of skeletal tissue to various synthetic calcium phosphate (Ca-P) compounds in vivo. Five synthetic Ca-P compounds were implanted into the subperiosteal area of the calvaria of 7-week-old BALB/c mice for one to 15 weeks. Synthetic compounds were dicalcium phosphate (DCP), octacalcium phosphate (OCP), amorphous calcium phosphate (ACP), Ca-deficient hydroxyapatite and hydroxyapatile (HA). Implanted DCP, OCP and ACP were found to be converted to apatitic phase by x-ray microdiffraction analysis using undecalcified specimens. Structure of bone was found out on all of Ca-P compounds eventually at late stage under the light microscope, but the rate of bone formation calculated from a number of experiments varied on respective synthetic Ca-P compound. It was high as 80% for DCP, OCP and ACP, but was low as 5.6% for Ca-deficient HA, and no reaction was found for HA at the stage of 3 weeks. Fine filaments and granular materials in the newly formed bone matrix were detected at 7 days around the remnants of OCP particles which already converted to apatitic phase by ultrastructural study of decalcified specimens. These structures were very similar to the components of bone nodules seen in intramembranous osteogenesis. It is postulated that the precursors of HA have an important role in intramembranous osteogenesis.

  13. Excimer laser deposition of hydroxyapatite thin films.

    PubMed

    Singh, R K; Qian, F; Nagabushnam, V; Damodaran, R; Moudgil, B M

    1994-06-01

    We have demonstrated a new and simple in situ method to fabricate adherent and dense hydroxyapatite (HA) coatings at relatively low deposition temperatures (500-600 degrees C). Under optimum processing conditions, the HA coatings possess a nominal Ca:P ratio of 1.65 and exhibit a fully crystalline single-phase structure. This deposition technique is based on the application of a pulsed excimer laser (wavelength lambda = 248 nm, pulse duration tau = 25 x 10(-9) s) to ablate a dense stoichiometric HA target. The HA target was prepared by standard ceramic coprecipitation techniques followed by cold pressing and further sintering at 1200 degrees C in air. High substrate temperatures (> or = 600 degrees C) during film deposition led to phosphorus deficient coatings because of re-evaporation of phosphorus during the deposition process. The stabilization of various calcium and phosphorus phases in the film was controlled by a number of process parameters such as substrate temperature, chamber pressure and presence of water vapour in the chamber. This is particularly advantageous for production of HA coatings, since it is known that HA decomposes at high temperatures due to the uncertainty in the starting material stoichiometry. Rutherford backscattering spectrometry, energy dispersive X-ray analysis, transmission electron microscopy, scanning electron microscopy and X-ray diffraction techniques were employed to determine the structure-processing relationships. Qualitative scratch measurements were conducted to determine the adhesion strength of the films.

  14. Biodegradable magnesium-hydroxyapatite metal matrix composites.

    PubMed

    Witte, Frank; Feyerabend, Frank; Maier, Petra; Fischer, Jens; Störmer, Michael; Blawert, Carsten; Dietzel, Wolfgang; Hort, Norbert

    2007-04-01

    Recent studies indicate that there is a high demand to design magnesium alloys with adjustable corrosion rates and suitable mechanical properties. An approach to this challenge might be the application of metal matrix composite (MMC) based on magnesium alloys. In this study, a MMC made of magnesium alloy AZ91D as a matrix and hydroxyapatite (HA) particles as reinforcements have been investigated in vitro for mechanical, corrosive and cytocompatible properties. The mechanical properties of the MMC-HA were adjustable by the choice of HA particle size and distribution. Corrosion tests revealed that HA particles stabilised the corrosion rate and exhibited more uniform corrosion attack in artificial sea water and cell solutions. The phase identification showed that all samples contained hcp-Mg, Mg(17)Al(12), and HA before and after immersion. After immersion in artificial sea water CaCO3 was found on MMC-HA surfaces, while no formation of CaCO3 was found after immersion in cell solutions with and without proteins. Co-cultivation of MMC-HA with human bone derived cells (HBDC), cells of an osteoblasts lineage (MG-63) and cells of a macrophage lineage (RAW264.7) revealed that RAW264.7, MG-63 and HBDC adhere, proliferate and survive on the corroding surfaces of MMC-HA. In summary, biodegradable MMC-HA are cytocompatible biomaterials with adjustable mechanical and corrosive properties.

  15. Characterization of hydroxyapatite by electron microscopy.

    PubMed

    Rodríguez-Lugo, V; Hernández, J Sanchez; Arellano-Jimenez, Ma J; Hernández-Tejeda, P H; Recillas-Gispert, S

    2005-12-01

    The obtention of hydroxyapatite (HAp) is reported using brushite (CaHPO4.2H2O) and the skeleton of a starfish (Mellita eduardobarrosoi sp. nov.), primarily composed of magnesian calcite ((Ca,Mg)CO3) as precursors. Stoichiometric amounts of both were reacted under hydrothermal conditions: a pressure of 5.8 MPa and a temperature of 200 degrees C for 2, 4, 6, 8, 10, and 20 h of reaction times. The samples obtained were characterized by means of scanning electron microscopy, X-ray diffraction, infrared spectroscopy, and transmission electron microscopy. Two defined populations of HAp fibers were found: A bundle of fibers 75 mum in length and 1-13 mum in diameter, and a second bundle of fibers 5 mum in length and less than 0.5 mum in diameter. Furthermore, an increase in HAp formation and a Ca/P ratio as a function of reaction time were observed. The growth mechanism of HAp is also discussed. PMID:17481330

  16. Characterization of Hydroxyapatite by Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Lugo, V.; Sanchez Hernández, J.; Arellano-Jimenez, Ma. J.; Hernández-Tejeda, P. H.; Recillas-Gispert, S.

    2005-12-01

    The obtention of hydroxyapatite (HAp) is reported using brushite (CaHPO4·2H2O) and the skeleton of a starfish (Mellita eduardobarrosoi sp. nov.), primarily composed of magnesian calcite ((Ca,Mg)CO3) as precursors. Stoichiometric amounts of both were reacted under hydrothermal conditions: a pressure of 5.8 MPa and a temperature of 200°C for 2, 4, 6, 8, 10, and 20 h of reaction times. The samples obtained were characterized by means of scanning electron microscopy, X-ray diffraction, infrared spectroscopy, and transmission electron microscopy. Two defined populations of HAp fibers were found: A bundle of fibers 75 [mu]m in length and 1 13 [mu]m in diameter, and a second bundle of fibers 5 [mu]m in length and less than 0.5 [mu]m in diameter. Furthermore, an increase in HAp formation and a Ca/P ratio as a function of reaction time were observed. The growth mechanism of HAp is also discussed.

  17. Ion exchange in hydroxyapatite with lanthanides.

    PubMed

    Cawthray, Jacqueline F; Creagh, A Louise; Haynes, Charles A; Orvig, Chris

    2015-02-16

    Naturally occurring hydroxyapatite, Ca5(PO4)3(OH) (HAP), is the main inorganic component of bone matrix, with synthetic analogues finding applications in bioceramics and catalysis. An interesting and valuable property of both natural and synthetic HAP is the ability to undergo cationic and anionic substitution. The lanthanides are well-suited for substitution for the Ca(2+) sites within HAP, because of their similarities in ionic radii, donor atom requirements, and coordination geometries. We have used isothermal titration calorimetry (ITC) to investigate the thermodynamics of ion exchange in HAP with a representative series of lanthanide ions, La(3+), Sm(3+), Gd(3+), Ho(3+), Yb(3+) and Lu(3+), reporting the association constant (Ka), ion-exchange thermodynamic parameters (ΔH, ΔS, ΔG), and binding stoichiometry (n). We also probe the nature of the La(3+):HAP interaction by solid-state nuclear magnetic resonance ((31)P NMR), X-ray diffraction (XRD), and inductively coupled plasma-optical emission spectroscopy (ICP-OES), in support of the ITC results. PMID:25594577

  18. Nanocrystalline films for gas-reactive applications

    DOEpatents

    Eastman, Jeffrey A.; Thompson, Loren J.

    2004-02-17

    A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.

  19. Functionalization of nanocrystalline diamond films with phthalocyanines

    NASA Astrophysics Data System (ADS)

    Petkov, Christo; Reintanz, Philipp M.; Kulisch, Wilhelm; Degenhardt, Anna Katharina; Weidner, Tobias; Baio, Joe E.; Merz, Rolf; Kopnarski, Michael; Siemeling, Ulrich; Reithmaier, Johann Peter; Popov, Cyril

    2016-08-01

    Phthalocyanine (Pc) derivatives containing different central metal atoms (Mn, Cu, Ti) and different peripheral chains were synthesized and comprehensively characterized. Their interaction with nanocrystalline diamond (NCD) films, as-grown by hot-filament chemical vapor deposition or after their modification with oxygen plasma to exchange the hydrogen termination with oxygen-containing groups, was studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The elemental composition as determined by XPS showed that the Pc were grafted on both as-grown and O-terminated NCD. Mn, Cu and Ti were detected together with N stemming from the Pc ring and S in case of the Ti-Pc from the peripheral ligands. The results for the elemental surface composition and the detailed study of the N 1s, S 2p and O 1s core spectra revealed that Ti-Pc grafted better on as-grown NCD but Cu-Pc and Mn-Pc on O-terminated films. Samples of Mn-Pc on as-grown and O-terminated NCD were further investigated by NEXAFS spectroscopy. The results showed ordering of the grafted molecules, laying flat on the H-terminated NCD surface while only the macrocycles were oriented parallel to the O-terminated surface with the peripheral chains perpendicular to it.

  20. Deuterium storage in nanocrystalline magnesium thin films

    NASA Astrophysics Data System (ADS)

    Checchetto, R.; Bazzanella, N.; Miotello, A.; Brusa, R. S.; Zecca, A.; Mengucci, A.

    2004-02-01

    Nanocrystalline magnesium deuteride thin films with the β-MgD2 structure were prepared by vacuum evaporation of hexagonal magnesium (h-Mg) samples and thermal annealing in 0.15 MPa D2 atmosphere at 373 K. Thermal desorption spectroscopy analysis indicated that the rate-limiting step in the deuterium desorption was given by the thermal decomposition of the deuteride phase. The activation energy Δg of the β-MgD2→h-Mg+D2 reaction scaled from 1.13±0.03 eV in 650-nm-thick films to 1.01±0.02 eV in 75-nm-thick films most likely as consequence of different stress and defect level. Positron annihilation spectroscopy analysis of the thin-film samples submitted to deuterium absorption and desorption cycles reveal the presence of a high concentration of void-like defects in the h-Mg layers after the very first decomposition of the β-MgD2 phase, the presence of these open volume defects reduces the D2 absorption capacity of the h-Mg thin film.

  1. Films prepared from electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Yang, Han; Tejado, Alvaro; Alam, Nur; Antal, Miro; van de Ven, Theo G M

    2012-05-22

    Electrosterically stabilized nanocrystalline cellulose (ENCC) was modified in three ways: (1) the hydroxyl groups on C2 and C3 of glucose repeat units of ENCC were converted to aldehyde groups by periodate oxidation to various extents; (2) the carboxyl groups in the sodium form on ENCC were converted to the acid form by treating them with an acid-type ion-exchange resin; and (3) ENCC was cross-linked in two different ways by employing adipic dihydrazide as a cross-linker and water-soluble 1-ethyl-3-[3-(dimethylaminopropyl)] carbodiimide as a carboxyl-activating agent. Films were prepared from these modified ENCC suspensions by vacuum filtration. The effects of these three modifications on the properties of films were investigated by a variety of techniques, including UV-visible spectroscopy, a tensile test, thermogravimetric analysis (TGA), the water vapor transmission rate (WVTR), and contact angle (CA) studies. On the basis of the results from UV spectra, the transmittance of these films was as high as 87%, which shows them to be highly transparent. The tensile strength of these films was increased with increasing aldehyde content. From TGA and WVTR experiments, cross-linked films showed much higher thermal stability and lower water permeability. Furthermore, although the original cellulose is hydrophilic, these films also exhibited a certain hydrophobic behavior. Films treated by trichloromethylsilane become superhydrophobic. The unique characteristics of these transparent films are very promising for potential applications in flexible packaging and other high-technology products. PMID:22482733

  2. Mesoporous junctions and nanocrystalline solar cells

    NASA Astrophysics Data System (ADS)

    Graetzel, Michael

    2000-03-01

    Learning from the concepts used by green plants, we have developed a molecular photovoltaic system based on the sensitization of nanocrystalline TiO2 films. In analogy to photosyntesis, light is absorbed by a monolayer of dye attached to the surface of a wide-band-gap oxide. The mesoporous morphology of the layer provides a substrate characterized by a very large surface area. The roughness factor of a 10-micron thick film reaches easily 1000. Light penetrating the dye loaded TiO2 nanocrystals is therefore collected in an efficient manner, similar to the thylakoid vesicles in green leafs which are stacked in order to enhance solar light harvesting. The excited dye injects an electron in the conduction band of the oxide resulting in efficient and very rapid charge separation. Nearly quantitative conversion of photons in electric current have been achieved with these devices over the whole visible and near-IR range of the spectrum. The overall AM 1.5 solar-to electric power conversion efficiency has reached already 11unravel the dynamics of interfacial charge transfer reactions at these dye- sensitized heterojunctions.

  3. Comparison of periodontal ligament cells responses to dense and nanophase hydroxyapatite.

    PubMed

    Sun, Weibin; Chu, Chenlin; Wang, Juan; Zhao, Huating

    2007-05-01

    Hydroxyapatite, a synthetic calcium phosphate ceramic, is used as a biomaterial for the restoration of human hard tissue as well as in techniques which aim to regenerate periodontal tissues. Generally, hydroxyapatite is believed to have osteoconductive effects and to be non-bioresorbable but not to induce to periodontal tissue regeneration. No report has been found on responses of periodontal ligament cells (PDLC), the main contributor to periodontal tissue regeneration, to nanoparticles of hydroxyapatite. The objective of this study was to investigate the possible effects of nanophase powder of hydroxyapatite on proliferation of periodontal ligament cells. Using a sol-gel method, the nanophase hydroxyapatite powders were fabricated. These powders were proved to comprise nanoparticles by transmission electron microscope examination. The primary periodontal ligament cells were cultured on dense particle hydroxyapatite and nanometer particle hydroxyapatite. The effects on proliferation of periodontal ligament cells on dense and nanoparticle hydroxyapatite were examined in vitro using a methyl thiazolil tetracolium (MTT) test. The intercellular effects were studied with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). In addition, the influence of the two materials on osteogenic differentiation was determined through measurement of alkaline phosphatase activity and flow cytometry. About 2, 3, and 4 days after treatment with nanoparticles of hydroxyapatite, the proliferation activity of the PDLC increased significantly compared with those proliferating on dense hydroxyapatite and of control PDLC, but no significant difference was found between the PDLC proliferation on dense hydroxyapatite and the control PDLCs. After 3 and 5 days' incubation with nanoparticles of hydroxyapatite, alkaline phosphatase activity was significantly increased as compared to PDLCs incubated with dense hydroxyapatite and control

  4. In vivo evaluation of matrix pellets containing nanocrystalline ketoprofen.

    PubMed

    Vergote, G J; Vervaet, C; Van Driessche, I; Hoste, S; De Smedt, S; Demeester, J; Jain, R A; Ruddy, S; Remon, J P

    2002-06-20

    The aim of this study was to evaluate the in-vivo behaviour of matrix pellets formulated with nanocrystalline ketoprofen after oral administration to dogs. No significant differences in AUC-values were seen between pellet formulations containing nanocrystalline or microcrystalline ketoprofen and a commercial ketoprofen formulation (reference: Rofenid 200 Long Acting). C(max) of the formulations containing nano- or microcrystalline ketoprofen was significantly higher compared to reference, whereas t(max) was significantly lower. The in-vivo burst release observed for the spray dried nanocrystalline ketoprofen matrix pellets was reduced following compression of the pellets in combination with placebo wax/starch pellets. These matrix tablets sustained the ketoprofen plasma concentrations during 5.6 and 5.4 h for formulations containing nano- and microcrystalline ketoprofen, respectively.

  5. Mechanochemical processing of nanocrystalline Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Pirzada, M. D. S.; (Sam) Froes, F. H.; Patankar, S. N.

    2004-06-01

    Synthesis of nanocrystalline Ti-6Al-4V was explored using mechanochemical processing. The reaction mixture was comprised of CaH2, Mg powder, anhydrous AlCl3, anhydrous VCl3, and TiCl4. The milled powder (reaction product) primarily consisted of nanocrystalline alloy hydride having a composition (Ti-6Al-4V)H1.942, along with MgCl2 and CaCl2 as by-products. Aqueous solutions of nitric acid, sulfuric acid, and 1 pct sodium sulfite were found to be very effective in leaching of the chlorides from the milled powder. The (Ti-6Al-4V)H1.942 on dehydrogenation at 375°C resulted in nanocrystalline Ti-6Al-4V alloy powder.

  6. Kinetic constants of abnormal grain growth in nanocrystalline nickel

    NASA Astrophysics Data System (ADS)

    Aleshin, A. N.

    2016-02-01

    The grain growth in nanocrystalline nickel with a purity of 99.5 at % during non-isothermal annealing was experimentally investigated using differential scanning calorimetry and transmission electron microscopy. Nanocrystalline nickel was prepared by electrodeposition and had an average grain size of approximately 20 nm. It was shown that, at a temperature corresponding to the calorimetric signal peak, abnormal grain growth occurs with the formation of a bimodal grain microstructure. Calorimeters signals were processed within the Johnson-Mehl-Avrami formalism. This made it possible to determine the exponent of the corresponding equation, the frequency factor, and the activation energy of the grain growth, which was found to be equal to the activation energy of the vacancy migration. The reasons for the abnormal grain growth in nanocrystalline nickel were discussed.

  7. A combustion synthesis process for synthesizing nanocrystalline zirconia powders

    SciTech Connect

    Venkatachari, K.R.; Huang, D.; Ostrander, S.P.; Schulze, W.A.; Stangle, G.C.

    1995-03-01

    Materials with nanocrystalline features are expected to have improved or unique properties when compared to those of conventional materials. Methods for the practical and economical production of nanoparticles in large quantities are not presently available. A method based on combustion synthesis for preparing nanocrystalline powders was investigated in this work. Yttria-doped zirconia powders with an average crystalline size of 10 nm were synthesized. The characteristics of the powder (e.g., surface area and phase content) were found to depend strongly on the fuel content in the starting mixture and on the ignition temperature used in the process. The method is expected to be suitable for commercial fabrication of nanocrystalline multicomponent oxide ceramic powders.

  8. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review.

    PubMed

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2015-12-21

    In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes.

  9. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells

    PubMed Central

    Michel, John; Penna, Matthew; Kochen, Juan; Cheung, Herman

    2015-01-01

    Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs) are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs) published in the last three years. PMID:26106425

  10. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    PubMed Central

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2015-01-01

    In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes. PMID:26703750

  11. [IN VIVO EVALUATION OF POLYCAPROLACTONE-HYDROXYAPATITE SCAFFOLD BIOCOMPATIBILITY].

    PubMed

    Ivanov, A N; Kozadaev, M N; Bogomolova, N V; Matveeva, O V; Puchinyan, D M; Norkin, I A; Sal'kovskii, Yu E; Lyubun, G P

    2015-01-01

    Biocompatibility is one of the main and very important properties for scaffolds. The aim of the present study was to investigate cells population dynamics in vivo in the process of original polycaprolactone-hydroxyapatite scaffold colonization, as well as tissue reactions to the implantation to assess the biocompatibility of the matrix. It has been found that tissue reactive changes in white rats subside completely up to the 21st day after subcutaneous polycaprolactone-hydroxyapatite scaffold implantation. Matrix was actively colonized by connective tissue cells in the period from the 7th to the 21st day of the experiment. However, intensive scaffold vascularization started from the 14th day after implantation. These findings suggest a high degree of the polycaprolactone-hydroxyapatite scaffold biocompatiblilitye.

  12. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells.

    PubMed

    Michel, John; Penna, Matthew; Kochen, Juan; Cheung, Herman

    2015-01-01

    Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs) are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs) published in the last three years.

  13. Production of zinc substituted hydroxyapatite using various precipitation routes.

    PubMed

    Shepherd, David; Best, Serena M

    2013-04-01

    Substituted hydroxyapatites have been investigated for use as bone grafts and have been investigated for many years. Zinc is of interest due to its potential to reduce bone resorption and antibacterial properties. However, it has proven problematic to substitute biologically significant levels of zinc into the crystal structure through wet chemical routes, whilst retaining the high temperature phase stability required for processing. The aim of this study is to investigate two different precipitation routes used to synthesize zinc substituted hydroxyapatite and to explore the effects of ammonia used in the reactions on the levels of zinc substituted into the crystal lattice. It was found that considerable amounts of ammonia are required to maintain a pH sufficiently high for the production of stoichiometric hydroxyapatite using a reaction between calcium nitrate, zinc nitrate and ammonium phosphate. X-ray fluorescence analysis showed that a significant proportion of the zinc added did not substitute into the hydroxyapatite lattice. Fourier transform infrared spectroscopy revealed the existence of a zinc-ammonia complex that, it is proposed, inhibits zinc substitution for calcium. It was found that by reacting orthophosphoric acid with calcium nitrate and zinc nitrate, the volume of ammonia required in the reaction was reduced and higher levels of zinc substitution were achieved, with up to 0.58 wt% incorporated into the hydroxyapatite lattice. The resulting products were found to be stoichiometric hydroxyapatite and did not appear to contain any extraneous calcium phosphate phases after heat treatment up to 1100 °C. X-ray diffraction and Rietveld analysis revealed that the effect of substituting zinc into the HA lattice was to decrease the a-lattice parameter whilst increasing the c-lattice. Transmission electron microscopy also showed that the incorporation of zinc reduced both the length and width of the precipitated crystals.

  14. Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides.

    PubMed

    Xiao, Y; Karttunen, M; Jalkanen, J; Mussi, M C M; Liao, Y; Grohe, B; Lagugné-Labarthet, F; Siqueira, W L

    2015-08-01

    In our recent studies, we have shown that in vivo-acquired enamel pellicle is a sophisticated biological structure containing a significant portion of naturally occurring salivary peptides. From a functional aspect, the identification of peptides in the acquired enamel pellicle is of interest because many salivary proteins exhibit functional domains that maintain the activities of the native protein. Among the in vivo-acquired enamel pellicle peptides that have been newly identified, 5 peptides are derived from statherin. Here, we assessed the ability of these statherin pellicle peptides to inhibit hydroxyapatite crystal growth. In addition, atomistic molecular dynamics (MD) simulations were performed to better understand the underlying physical mechanisms of hydroxyapatite growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite growth. Statherin protein, 5 statherin-derived peptides, and a peptide lacking phosphate at residues 2 and 3 were analyzed. Statherin peptide phosphorylated on residues 2 and 3 indicated a significant inhibitory effect when compared with the 5 other peptides (P < 0.05). MD simulations showed a strong affinity and fast adsorption to hydroxyapatite for phosphopeptides, whereas unphosphorylated peptides interacted weakly with the hydroxyapatite. Our data suggest that the presence of a covalently linked phosphate group (at residues 2 and 3) in statherin peptides modulates the effect of hydroxyapatite growth inhibition. This study provides a mechanism to account for the composition and function of acquired enamel pellicle statherin peptides that will contribute as a base for the development of biologically stable and functional synthetic peptides for therapeutic use against dental caries and/or periodontal disease.

  15. Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides.

    PubMed

    Xiao, Y; Karttunen, M; Jalkanen, J; Mussi, M C M; Liao, Y; Grohe, B; Lagugné-Labarthet, F; Siqueira, W L

    2015-08-01

    In our recent studies, we have shown that in vivo-acquired enamel pellicle is a sophisticated biological structure containing a significant portion of naturally occurring salivary peptides. From a functional aspect, the identification of peptides in the acquired enamel pellicle is of interest because many salivary proteins exhibit functional domains that maintain the activities of the native protein. Among the in vivo-acquired enamel pellicle peptides that have been newly identified, 5 peptides are derived from statherin. Here, we assessed the ability of these statherin pellicle peptides to inhibit hydroxyapatite crystal growth. In addition, atomistic molecular dynamics (MD) simulations were performed to better understand the underlying physical mechanisms of hydroxyapatite growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite growth. Statherin protein, 5 statherin-derived peptides, and a peptide lacking phosphate at residues 2 and 3 were analyzed. Statherin peptide phosphorylated on residues 2 and 3 indicated a significant inhibitory effect when compared with the 5 other peptides (P < 0.05). MD simulations showed a strong affinity and fast adsorption to hydroxyapatite for phosphopeptides, whereas unphosphorylated peptides interacted weakly with the hydroxyapatite. Our data suggest that the presence of a covalently linked phosphate group (at residues 2 and 3) in statherin peptides modulates the effect of hydroxyapatite growth inhibition. This study provides a mechanism to account for the composition and function of acquired enamel pellicle statherin peptides that will contribute as a base for the development of biologically stable and functional synthetic peptides for therapeutic use against dental caries and/or periodontal disease. PMID:26116492

  16. Small, but perfectly formed: The microstructure of nanocrystalline oxides

    NASA Astrophysics Data System (ADS)

    Chadwick, A. V.

    2003-01-01

    There is considerable interest in nanocrystalline materials due to their unusual properties that offer the possibility of exciting technological applications. This paper concentrates on the microstructure of nanocrystalline binary oxides as revealed by X-ray absorption studies. It will be shown that these experiments yield a picture of the materials in which, even when the particles are only a few nanometres in size, the crystallites are highly ordered and the interfaces are similar to grain boundaries in normal bulk solids. This is in conflict with earlier ideas where it was often assumed the surfaces of nanocrystals and the interfaces between them were very disordered.

  17. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics

    NASA Astrophysics Data System (ADS)

    Shiomi, Junichiro

    2016-10-01

    Nanocrystalline silicon thermoelectrics can be a solution to improve the cost-effectiveness of thermoelectric technology from both material and integration viewpoints. While their figure-of-merit is still developing, recent advances in theoretical/numerical calculations, property measurements, and structural synthesis/fabrication have opened up possibilities to develop the materials based on fundamental physics of phonon transport. Here, this is demonstrated by reviewing a series of works on nanocrystalline silicon materials using calculations of multiscale phonon transport, measurements of interfacial heat conduction, and synthesis from nanoparticles. Integration of these approaches allows us to engineer phonon transport to improve the thermoelectric performance by introducing local silicon-oxide structures.

  18. Ultrasound assisted additive free synthesis of nanocrystalline zinc oxide.

    PubMed

    Bhatte, Kushal D; Fujita, Shin-Ichiro; Arai, Masahiko; Pandit, Anirudha B; Bhanage, Bhalchandra M

    2011-01-01

    A novel method for the synthesis of nanocrystalline zinc oxide without any additive was developed using zinc acetate and 1,4-butanediol through sonication. The structure and morphology of prepared nanocrystalline zinc oxide was investigated by various techniques like TEM, XRD, EDAX, UV-Vis spectroscopy. The solvent 1,4-butanediol played a dual role of fuel as well as capping agent eliminating addition of any extraneous species. The results showed that using ultrasound sonication is green, cost effective compared to conventional wet chemical method for ZnO nanoparticle synthesis. PMID:20634118

  19. Incorporation Of Nanocrystalline Silver on Carbon Nanotubes by Electrodeposition Technique

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Pal, A. K.

    2008-10-01

    Nanocrystalline silver incorporated carbon nanotubes were grown on Si (001) substrate from an electrolytic bath containing acetonitrile (1% v/v) and water with appropriate amount of silver acetate at an applied d.c. potential ˜20V. The films were characterized by measuring their microstructural properties, FTIR and Raman studies. HRTEM image indicated that the diameter of the nanotubes as ˜5 nm and the d spacing as ˜0.34 nm for (002) plane of CNT. With the addition of nanocrystalline silver, the intensity of G-band decreases while the D-band located ˜1352 cm-1 becomes sharper.

  20. Development of high permeability nanocrystalline permalloy by electrodeposition

    NASA Astrophysics Data System (ADS)

    Seet, H. L.; Li, X. P.; Zhao, Z. J.; Kong, Y. K.; Zheng, H. M.; Ng, W. C.

    2005-05-01

    In this study, for developing microsensors for weak magnetic field, methods for developing high permeability nanocrystalline permalloy by electrodeposition and the relationship between the grain size and magnetic properties of the nanocrystalline permalloy are investigated. By dc plating with and without saccharin added and pulse plating with saccharin added, permalloy samples of grain sizes from 52 nm to 11 nm are obtained. The coercivity and magnetoimpedance (MI) ratio of the samples are tested against the grain size variation. Results show that the coercivity decreases rapidly and MI ratio increases greatly with grain size decrease from 52 nm to 11 nm.

  1. Development of high permeability nanocrystalline permalloy by electrodeposition

    SciTech Connect

    Seet, H.; Li, X.P.; Zhao, Z.J.; Kong, Y.K.; Zheng, H.M.; Ng, W.C.

    2005-05-15

    In this study, for developing microsensors for weak magnetic field, methods for developing high permeability nanocrystalline permalloy by electrodeposition and the relationship between the grain size and magnetic properties of the nanocrystalline permalloy are investigated. By dc plating with and without saccharin added and pulse plating with saccharin added, permalloy samples of grain sizes from 52 nm to 11 nm are obtained. The coercivity and magnetoimpedance (MI) ratio of the samples are tested against the grain size variation. Results show that the coercivity decreases rapidly and MI ratio increases greatly with grain size decrease from 52 nm to 11 nm.

  2. A mild reduction phosphidation approach to nanocrystalline GaP

    NASA Astrophysics Data System (ADS)

    Chen, Luyang; Luo, Tao; Huang, Mingxing; Gu, Yunle; Shi, Liang; Qian, Yitai

    2004-12-01

    Nanocrystalline gallium phosphide (GaP) has been prepared through a reduction-phosphidation by using Ga, PCl 3 as gallium and phosphorus sources and metallic sodium as reductant at 350 °C. The XRD pattern can be indexed as cublic GaP with the lattice constant of a=5.446 Å. The TEM image shows particle-like polycrystals and flake-like single crystals. The PL spectrum exhibits one peak at 330 nm for the as-prepared nanocrystalline GaP.

  3. Localized drugs delivery hydroxyapatite microspheres for osteoporosis therapy

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Ko, I. H.; Jeon, S.-H.; Chae, J. H.; Lee, E. J.; Chang, J. H.

    2011-10-01

    This study describes the preparation of hydroxyapatite microspheres for local drugs delivery. The formation of the hydroxyapatite microspheres was initiated by enzymatic decomposition of urea and accomplished by emulsification process (water-in-oil). The microspheres obtained were sintered at 500°C. Scanning electron microscope (SEM) indicated that the microspheres have various porous with random size, which maximizes the surface area. Cytotoxicity was not observed after sintering. Osteoporosis drugs, alendronate and BMP-2, were loaded into HAp microspheres and the releases of both molecules showed sustained releasing profiles.

  4. Reaction of the dental pulp to hydroxyapatite.

    PubMed

    Jaber, L; Mascrès, C; Donohue, W B

    1992-01-01

    The purpose of this study was to evaluate the action of hydroxyapatite (HA) (Osteogen HA Resorb, GBD Marketing Group Inc., Valley Stream, N.Y.) on the dental pulp of rats. Four upper molar pulps in 45 rats were exposed and capped with synthetic HA (Osteogen) with a stereoscopic microscope. Pulps capped with calcium hydroxide (Dycal, L.D. Caulk Co., Milford, Del.) served as controls. The cavities were filled with amalgam, and the molars on each side of the maxilla were protected by the placement of a pedodontic steel crown. Pulp inflammation and dentin repair were compared by histologic observations and computer image analysis after 7, 14, and 28 days. After 7 days a partial acute pulpitis were observed in specimens treated with Osteogen or Dycal. Reparative dentin formation along the pulp walls was also seen. After 14 days the pulpitis was more extensive in the Osteogen-treated teeth than in the control teeth. Dentin formation as measured by morphometric analysis was more pronounced in Osteogen-treated teeth. Neo-odontoblasts were observed after the use of both materials. After 28 days an acute inflammatory reaction was still evident in the Osteogen-treated group. A complete dentinal bridge was observed more frequently with Dycal than with Osteogen. Despite the putative abilities of HA to be osteoconductive, osteogenic, and dentinogenic, the results of this study indicate that it should not be used as a pulp-capping agent because of its tendency to cause scattered dystrophic calcification in the dental pulp, which could interfere with future endodontic treatment. PMID:1318535

  5. Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite.

    PubMed

    Fulmer, M T; Brown, P W

    1998-04-01

    Dicalcium phosphate dihydrate (DCPD) was hydrolysed in water and in 1 M Na2HPO4 solution at temperatures from 25-60 degrees C. Hydrolysis was incomplete in water. At 25 degrees C, DCPD partially hydrolysed to hydroxyapatite (HAp). Formation of HAp is indicative of incongruent DCPD dissolution. At the higher temperatures, hydrolysis to HAp was more extensive and was accompanied by the formation of anhydrous dicalcium phosphate (DCP). Both of these processes are endothermic. When hydrolysis was carried out in 1 M Na2HPO4 solution, heat absorption was greater at any given temperature than for hydrolysis in water. Complete hydrolysis to HAp occurred in this solution. The hydrolysis of DCPD to HAp in sodium phosphate solution was also endothermic. The complete conversion of DCPD to HAp in sodium phosphate solution would not be expected if the only effect of this solution was to cause DCPD dissolution to become congruent. Because of the buffering capacity of a dibasic sodium phosphate solution, DCPD hydrolysed completely to HAp. Complete conversion to HAp was accompanied by the conversion of dibasic sodium phosphate to monobasic sodium phosphate. The formation of DCP was not observed indicating that the sodium phosphate solution precluded the DCPD-to-DCP dehydration reaction. In addition to affecting the extent of hydrolysis, reaction in the sodium phosphate solution also caused a morphological change in the HAp which formed. HAp formed by hydrolysis in water was needle-like to globular while that formed in the sodium phosphate solution exhibited a florette-like morphology.

  6. Hydroxyapatite-reinforced collagen tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Kane, Robert J.

    Scaffolds have been fabricated from a wide variety of materials and most have showed some success, either as bone graft substitutes or as tissue engineering scaffolds. However, all current scaffold compositions and architectures suffer from one or more flaws including poor mechanical properties, lack of biological response, nondegradability, or a scaffold architecture not conducive to osteointegration. Biomimetic approaches to scaffold design using the two main components of bone tissue, collagen and hydroxyapatite, resulted in scaffolds with superior biological properties but relatively poor mechanical properties and scaffold architecture. It was hypothesized that by optimizing scaffold composition and architecture, HA-collagen bone tissue engineering scaffolds could provide both an excellent biological response along with improved structural properties. The mechanical properties of freeze-dried HA-collagen scaffolds, the most common type of porous HA-collagen material, were first shown to be increased by the addition of HA reinforcements, but scaffold stiffness still fell far short of the desired range. Based on limitations inherent in the freeze-dried process, a new type of leached-porogen scaffold fabrication process was developed. Proof-of-concept scaffolds demonstrated the feasibility of producing leached-porogen HA-collagen materials, and the scaffold architecture was optimized though careful selection of porogen particle size and shape along with an improved crosslinking technique. The final scaffolds exhibited substantially increased compressive modulus compared to previous types HA-collagen scaffolds, while the porosity, pore size, and scaffold permeability were tailored to be suitable for bone tissue ingrowth. An in vitro study demonstrated the capacity of the leached-porogen scaffolds to serve as a substrate for the differentiation of osteoblasts and subsequent production of new bone tissue. The new leached-porogen scaffold HA-collagen scaffolds were

  7. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-01

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

  8. Tribological properties of nanocrystalline diamond films

    SciTech Connect

    Erdemir, A.; Fenske, G. R.; Kraus, A. R.; Gruen, D. M.; McCauley, T.; Csencsits, R. T.

    2000-01-26

    In this paper, the authors present the friction and wear properties of nanocrystalline diamond (NCD) films grown in A-fullerene (C{sub 60}) and Ar-CH{sub 4} microwave plasmas. Specifically, they address the fundamental tribological issues posed by these films during sliding against Si{sub 3}N{sub 4} counterfaces in ambient air and inert gases. Grain sizes of the films grown by the new method are very small (10--30 nm) and are much smoother (20-40 nm, root mean square) than those of films grown by the conventional H{sub 2}-CH{sub 4} microwave-assisted chemical-vapor-deposition (CVD) process. Transmission electron microscopy (TEM) revealed that the grain boundaries of these films are very sharp and free of nondiamond phases. The microcrystalline diamond (MCD) films grown by most conventional methods consist of large grains and a rough surface finish, which can cause severe abrasion during sliding against other materials. The friction coefficients of films grown by the new method (i.e., in Ar-C{sub 60} and Ar-CH{sub 4} plasmas) are comparable to those of natural diamond, and wear damage on counterface materials is minimal. Fundamental tribological studies indicate that these films may undergo phase transformation during long-duration, high-speed and/or high-load sliding tests and that the transformation products trapped at the sliding interfaces can intermittently dominate friction and wear performance. Using results from a combination of TEM, electron diffraction, Raman spectroscopy, and electron energy loss spectroscopy (EELS), they describe the structural chemistry of the debris particles trapped at the sliding interfaces and elucidate their possible effects on friction and wear of NCD films in dry N{sub 2}. Finally, they suggest a few potential applications in which NCD films can improve performance and service lives.

  9. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-01

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most. PMID:25950624

  10. Mechanism of Zn stabilization in hydroxyapatite and hydrated (0 0 1) surfaces of hydroxyapatite.

    PubMed

    Matos, M; Terra, J; Ellis, D E

    2010-04-14

    A basic understanding of Zn incorporation on bulk and hydrated (0 0 1) surfaces of hydroxyapatite (HA) is attained through electronic structure calculations which use a combined first principles density functional (DFT) and extended Hückel tight binding (EHTB) methodology. A Zn substituted hydroxyapatite relaxed structure is obtained through a periodic cell DFT geometry optimization method. Electronic structure properties are calculated by using both cluster DFT and periodic cell EHTB methods. Bond order calculations show that Zn preference for the Ca2 vacancy, near the OH channel and with greater structural flexibility, is associated with the formation of a four-fold (bulk) and nearly four-fold (surface) coordination, as in ZnO. When occupying the octahedral Ca1 vacancy, Zn remains six-fold in the bulk, but coordination decreases to five-fold in the surface. In the bulk and surface, Zn2 is found to be more covalent than Zn1, due to a decrease in bond lengths at the four-fold site, which approach the 1.99 Å ZnO value. Zn is however considerably less bound in the biomaterial than in the oxide, where calculated bond orders are twice as large as in HA. Surface phosphate groups (PO(4)) and hydroxide ions behave as compact individual units as in the bulk; no evidence is found for the presence of HPO(4). Ca-O bond orders decrease at the surface, with a consequent increase in ionicity. Comparison between DFT and EHTB results show that the latter method gives a good qualitative account of charge and bonding in these systems. PMID:21389531

  11. New route to the fabrication of nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Varshney, Deepak; Palomino, Javier; Gil, Jennifer; Resto, Oscar; Weiner, Brad R.; Morell, Gerardo

    2014-02-01

    Nanocrystalline diamond (NCD) thin films offer applications in various fields, but the existing synthetic approaches are cumbersome and destructive. A major breakthrough has been achieved by our group in the direction of a non-destructive, scalable, and economic process of NCD thin-film fabrication. Here, we report a cheap precursor for the growth of nanocrystalline diamond in the form of paraffin wax. We show that NCD thin films can be fabricated on a copper support by using simple, commonplace paraffin wax under reaction conditions of Hot Filament Chemical Vapor Deposition (HFCVD). Surprisingly, even the presence of any catalyst or seeding that has been conventionally used in the state-of-the-art is not required. The structure of the obtained films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy and electron energy-loss spectroscopy recorded at the carbon K-edge region confirm the presence of nanocrystalline diamond. The process is a significant step towards cost-effective and non-cumbersome fabrication of nanocrystalline diamond thin films for commercial production.

  12. New route to the fabrication of nanocrystalline diamond films

    SciTech Connect

    Varshney, Deepak Morell, Gerardo; Palomino, Javier; Resto, Oscar; Gil, Jennifer; Weiner, Brad R.

    2014-02-07

    Nanocrystalline diamond (NCD) thin films offer applications in various fields, but the existing synthetic approaches are cumbersome and destructive. A major breakthrough has been achieved by our group in the direction of a non-destructive, scalable, and economic process of NCD thin-film fabrication. Here, we report a cheap precursor for the growth of nanocrystalline diamond in the form of paraffin wax. We show that NCD thin films can be fabricated on a copper support by using simple, commonplace paraffin wax under reaction conditions of Hot Filament Chemical Vapor Deposition (HFCVD). Surprisingly, even the presence of any catalyst or seeding that has been conventionally used in the state-of-the-art is not required. The structure of the obtained films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy and electron energy-loss spectroscopy recorded at the carbon K-edge region confirm the presence of nanocrystalline diamond. The process is a significant step towards cost-effective and non-cumbersome fabrication of nanocrystalline diamond thin films for commercial production.

  13. Distinctive glial and neuronal interfacing on nanocrystalline diamond.

    PubMed

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.

  14. The Thermal Stability of Nanocrystalline Au-Cu Alloys

    SciTech Connect

    Jankowski, A F; Saw, C K; Hayes, J P

    2006-02-15

    Grain refinement to the nanocrystalline scale is known to enhance physical properties as strength and surface hardness. For the case of Au-Cu alloys, development of the pulsed electroplating has led to the functional control of nanocrystalline grain size in the as-deposited condition. The thermal aging of Au-Cu electrodeposits is now investigated to assess the stability of the nanocrystalline grain structure and the difference between two diffusion mechanisms. The mobility of grain boundaries, dominant at low temperatures, leads to coarsening of grain size whereas at high temperature the process of bulk diffusion dominates. Although the kinetics of bulk diffusion are slow below 500 K at 10{sup -20} cm{sup 2} {center_dot} sec, the kinetics of grain boundary diffusion are faster at 10{sup -16} cm{sup 2} {center_dot} sec. The diffusivity values indicate that the grain boundaries of the as-deposited nanocrystalline Au-Cu are mobile and sensitive to low-temperature anneal treatments affecting the grain size, hence the strength of the material.

  15. Synthesis and characterization of nanocrystalline and mesoporous zeolites

    NASA Astrophysics Data System (ADS)

    Petushkov, Anton

    2011-12-01

    Mesoporous aggregates of nanocrystalline zeolites with MFI and BEA frameworks have been synthesized using a one-pot and single structure directing agent. The effect of different reaction conditions, such as temperature, time, pH and water content, on the particle size, surface area and mesopore volume has been studied. Nanocrystalline and mesoporous ZSM-5, beta and Y zeolites were modified with different transition metals and the resulting single- and double metal containing catalyst materials were characterized. Nanocrystalline Silicalite-1 zeolite samples with varying particle size were functionalized with different organosilane groups and the cytotoxic activity of the zeolite nanocrystals was studied as a function of particle size, concentration, organic functional group type, as well as the type of cell line. Framework stability of nanocrystalline NaY zeolite was tested under different pH conditions. The synthesized zeolites used in this work were characterized using a variety of physico-chemical methods, including powder X-ray diffraction, Solid State NMR, nitrogen sorption, electron microscopy, Inductively Coupled Plasma -- Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy.

  16. Positron lifetime calculation for possible defects in nanocrystalline copper

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Zhang, Ting; Wang, Zhu

    2015-10-01

    Structural models for dislocation, vacancy clusters, twin boundary, stacking fault and nanocrystalline sample are constructed using copper as a model material. Positron lifetimes and momentum distributions of annihilating electron-positron pairs are calculated for these structural models. The calculated results indicate that the dislocation, twin boundary and stacking fault are shallow traps to positrons. The dislocation associated with monovacancies gives rise to a positron lifetime similar to that of monovacancies. The calculated positron lifetimes of the nanocrystalline copper show no dependence on the mean grain size. The as-constructed nanocrystalline samples contain vacancy clusters in grain boundaries, and positrons are localized by the vacancy clusters. However after relaxation the samples show only other two kinds of free volumes: one is the interatomic space in grain boundaries which is a shallow trap to positrons; the other is similar to a monovacancy. The latter contributes a positron lifetime of about 163 ps. This kind of free volume is not only observed in grain boundaries but also in the regions near grain boundaries. Positron lifetime calculation combined with the momentum distribution calculation is useful to identify the defect in the nanocrystalline Cu.

  17. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    SciTech Connect

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  18. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  19. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE PAGES

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.; O’Brien, Christopher J.; Clark, Blythe G.; Arrington, Christian L.; Pillars, Jamin R.

    2016-03-11

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  20. Light emission, light detection and strain sensing with nanocrystalline graphene

    NASA Astrophysics Data System (ADS)

    Riaz, Adnan; Pyatkov, Feliks; Alam, Asiful; Dehm, Simone; Felten, Alexandre; Chakravadhanula, Venkata S. K.; Flavel, Benjamin S.; Kübel, Christian; Lemmer, Uli; Krupke, Ralph

    2015-08-01

    Graphene is of increasing interest for optoelectronic applications exploiting light detection, light emission and light modulation. Intrinsically, the light-matter interaction in graphene is of a broadband type. However, by integrating graphene into optical micro-cavities narrow-band light emitters and detectors have also been demonstrated. These devices benefit from the transparency, conductivity and processability of the atomically thin material. To this end, we explore in this work the feasibility of replacing graphene with nanocrystalline graphene, a material which can be grown on dielectric surfaces without catalyst by graphitization of polymeric films. We have studied the formation of nanocrystalline graphene on various substrates and under different graphitization conditions. The samples were characterized by resistance, optical transmission, Raman and x-ray photoelectron spectroscopy, atomic force microscopy and electron microscopy measurements. The conducting and transparent wafer-scale material with nanometer grain size was also patterned and integrated into devices for studying light-matter interaction. The measurements show that nanocrystalline graphene can be exploited as an incandescent emitter and bolometric detector similar to crystalline graphene. Moreover the material exhibits piezoresistive behavior which makes nanocrystalline graphene interesting for transparent strain sensors.

  1. Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saturated packed column experiments were conducted to investigate the facilitated transport of Cu with hydroxyapatite nanoparticles (nHAP) at different pore water velocities (0.22-2.2 cm min–1), solution pH (6.2-9.0), and fraction of Fe oxide coating on grain surfaces (', 0-0.36). The facilitated tr...

  2. Complications of motility peg placement for porous hydroxyapatite orbital implants

    PubMed Central

    Lin, C-J; Liao, S-L; Jou, J-R; Kao, S C S; Hou, P-K; Chen, M-S

    2002-01-01

    Aim: To evaluate the complications associated with pegging of porous hydroxyapatite orbital implants. Methods: Complications associated with pegging were retrospectively reviewed from the charts of 100 of 133 patients with hydroxyapatite implantation from 1993 to 2000. Results: 48 (48%) of the 100 hydroxyapatite implanted patients who had undergone pegging were found to have problems with their pegs, including discharge (45.8%), peg falling out (20.8%), pyogenic granulomas (16.7%), popping peg (14.6%), hydroxyapatite visible around peg hole (8.3%), part of peg shaft visible (6.2%), peg drilled off centre (6.2%), peg drilled at an angle (4.2%), and excess movement of peg (4.2%). The standard peg fell out statistically more often than the peg and sleeve system (Yates's corrected χ2, p=0.038). There was a trend towards complications of the peg with use of a standard peg (versus sleeved peg) (p=0.226). Conclusions: There are several potential complications of pegging. Most complications are minor and can be managed successfully. PMID:11914206

  3. Bone-Like Hydroxyapatite Formation in Human Blood

    ERIC Educational Resources Information Center

    Titov, Anatoly T.; Larionov, Peter M.; Ivanova, Alexandra S.; Zaikovskii, Vladimir I.; Chernyavskiy, Mikhail A.

    2016-01-01

    The purpose of this study was to prove the mechanism of mineralization, when hydroxyapatite (HAP) is formed in blood plasma. These observations were substantiated by in vitro simulation of HAP crystallization in the plasma of healthy adults in a controllable quasi-physiological environment (T = 37°C, pH = 7.4) and at concentrations of dissolved Ca…

  4. Accelerated Nucleation of Hydroxyapatite Using an Engineered Hydrophobin Fusion Protein.

    PubMed

    Melcher, Melanie; Facey, Sandra J; Henkes, Thorsten M; Subkowski, Thomas; Hauer, Bernhard

    2016-05-01

    Calcium phosphate mineralization is of particular interest in dental repair. A biomimetic approach using proteins or peptides is a highly promising way to reconstruct eroded teeth. In this study, the screening of several proteins is described for their binding and nucleating activities toward hydroxyapatite. Out of 27 tested candidates, only two hydrophobin fusion proteins showed binding abilities to hydroxyapatite in a mouthwash formulation and an increased nucleation in artificial saliva. Using a semirational approach, one of the two candidates (DEWA_5), a fusion protein consisting of a truncated section of the Bacillus subtilis synthase YaaD, the Aspergillus nidulans hydrophobin DEWA, and the rationally designed peptide P11-4 described in the literature, could be further engineered toward a faster mineral formation. The variants DEWA_5a (40aaYaaD-SDSDSD-DEWA) and DEWA_5b (40aaYaaD-RDRDRD-DEWA) were able to enhance the nucleation activity without losing the ability to form hydroxyapatite. In the case of variant DEWA_5b, an additional increase in the binding toward hydroxyapatite could be achieved. Especially with the variant DEWA_5a, the protein engineering of the rationally designed peptide sequence resulted in a resemblance of an amino acid motif that is found in nature. The engineered peptide resembles the amino acid motif in dentin phosphoprotein, one of the major proteins involved in dentinogenesis. PMID:27010648

  5. Peculiarities of hydroxyapatite/nanodiamond composites as novel implants

    NASA Astrophysics Data System (ADS)

    Pramatarova, L.; Dimitrova, R.; Pecheva, E.; Spassov, T.; Dimitrova, M.

    2007-12-01

    Hydroxyapatite/detonation nanodiamond composites are created on silica glass and cover glass by simple soaking process in an open deposition type set-up. The supersaturated solution (simulated body fluid, SBF) is prepared in a way to resemble the composition of human blood plasma. The composite growth is carried out through the addition of detonation nanodiamond particles to the SBF. Scanning electron microscopy, X-ray diffraction and FTIR spectroscopy are used to determine the surface morphology and the structure of the hydroxyapatite /detonation nanodiamond composite layers. The applied methods provide evidence that the nanodiamond surface functional groups interact strongly with the biological solution. The detonation nanodiamond surface is chemically multifunctional (surface OH, C-O-H, C = C, C-O-C and C = O groups exist), so that the hydroxyapatite is grown both by physical adsorption and chemical interaction. The OH- groups are regarded to play an important role in the hydroxyapatite growth on a diamond's surface from SBF, as they charge it negatively and attract Ca2+ ions, which in turn attract PO43- ions, thus forming apatite nuclei.

  6. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings.

    PubMed

    Sun, Guangfei; Ma, Jun; Zhang, Shengmin

    2014-06-01

    Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%.

  7. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.

    PubMed

    Liu, Zeping; Yin, Xing; Ye, Qingsong; He, Wulin; Ge, Mengke; Zhou, Xiaofu; Hu, Jing; Zou, Shujuan

    2016-07-01

    Re-establishing compromised periodontium to its original structure, properties and function is demanding, but also challenging, for successful orthodontic treatment. In this study, the periodontal regeneration capability of collagen-hydroxyapatite scaffolds, seeded with bone marrow stem cells, was investigated in a canine labial alveolar bone defect model. Bone marrow stem cells were isolated, expanded and characterized. Porous collagen-hydroxyapatite scaffold and cross-linked collagen-hydroxyapatite scaffold were prepared. Attachment, migration, proliferation and morphology of bone marrow stem cells, co-cultured with porous collagen-hydroxyapatite or cross-linked collagen-hydroxyapatite, were evaluated in vitro. The periodontal regeneration capability of collagen-hydroxyapatite scaffold with or without bone marrow stem cells was tested in six beagle dogs, with each dog carrying one sham-operated site as healthy control, and three labial alveolar bone defects untreated to allow natural healing, treated with bone marrow stem cells - collagen-hydroxyapatite scaffold implant or collagen-hydroxyapatite scaffold implant, respectively. Animals were euthanized at 3 and 6 months (3 animals per group) after implantation and the resected maxillary and mandibular segments were examined using micro-computed tomography scan, H&E staining, Masson's staining and histometric evaluation. Bone marrow stem cells were successfully isolated and demonstrated self-renewal and multi-potency in vitro. The porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite had average pore sizes of 415 ± 20 µm and 203 ± 18 µm and porosity of 69 ± 0.5% and 50 ± 0.2%, respectively. The attachment, proliferation and migration of bone marrow stem cells were satisfactory on both porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite scaffolds. Implantation of bone marrow stem cells - collagen-hydroxyapatite or collagen-hydroxyapatite scaffold in

  8. Hot Superplastic Powder Forging for Transparent nanocrystalline Ceramics

    SciTech Connect

    Cannon, W. Roger

    2006-05-22

    The program explored a completely new, economical method of manufacturing nanocrystalline ceramics, Hot Superplastic Powder Forging (HSPF). The goal of the work was the development of nanocrystalline/low porosity optically transparent zirconia/alumina. The high optical transparency should result from lack of grain boundary scattering since grains will be smaller than one tenth the wavelength of light and from elimination of porosity. An important technological potential for this process is manufacturing of envelopes for high-pressure sodium vapor lamps. The technique for fabricating monolithic nanocrystalline material does not begin with powder whose particle diameter is <100 nm as is commonly done. Instead it begins with powder whose particle diameter is on the order of 10-100 microns but contains nanocrystalline crystallites <<100 nm. Spherical particles are quenched from a melt and heat treated to achieve the desired microstructure. Under a moderate pressure within a die or a mold at temperatures of 1100C to 1300C densification is by plastic flow of superplastic particles. A nanocrystalline microstructure results, though some features are greater than 100nm. It was found, for instance, that in the fully dense Al2O3-ZrO2 eutectic specimens that a bicontinuous microstructure exists containing <100 nm ZrO2 particles in a matrix of Al2O3 grains extending over 1-2 microns. Crystallization, growth, phase development and creep during hot pressing and forging were studied for several compositions and so provided some details on development of polycrystalline microstructure from heating quenched ceramics.

  9. Processing and characterization of nanocrystalline ceria

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao-Dong

    Ceria and doped ceria have been extensively investigated and applied in various industrial fields, including automotive, energy, polishing media, paint additives and cosmetics. The use of high surface area, nanocrystalline CeO2 powder could benefit all of these applications. This is particularly true for processing dense components, since the high melting point (2400°C) of pure CeO2 makes it difficult to sinter. In this dissertation, a semi-batch reactor method was developed for directly synthesizing undoped and doped, nanometer-scale CeO2 particles at room temperature. Powders exhibited a surface area of ≈170 m 2/g, and could be decreased to 5 m2/g by thermal annealing at 1000°C. Control over the particle size, size distribution and state of agglomeration could be achieved through variation of the mixing conditions, and oxidation pathway. Modeling of the nucleation behavior yielded a surface energy for Ce(OH)3 to be in the range of 2.9--3.7 J/m 2. Size induced lattice relaxation was observed for nanoscale CeO2 single crystals with an average size from 4 to 60 nm. Results showed the finest crystallites exhibited no strain-induced line broadening, while high temperature annealing resulted in larger grain sizes and significant strains. Modeling revealed that the [V••o] was found to be ≈4 x 1020/cm 3 for the 4 nm crystallites, and decreased two orders of magnitude for larger 60 mn single crystals. The microstructural evolution and grain boundary influence on electrical properties of Ce0.90Gd0.10 O1.95 were also studied. The nanoscale powders synthesized from semi-batch reactor exhibited 50% green density and 92% sintering density at 1200°C (≈200°C less than previous studies). A series of impedance spectra as a function of temperature and grain size were analyzed. The Ce 0.90Gd0.10O1.95 with finest grain size possessed highest overall grain boundary resistance; this contribution was eliminated at T>600°C, regardless of grain size. The grain conductivity

  10. Biomolecule-mediated synthesis of nanocrystalline semiconductors

    NASA Astrophysics Data System (ADS)

    Bae, Weon

    CdS and ZnS nanocrystalline semiconductors (NCs) were prepared by titrating inorganic sulfide into preformed Cd(II)- or Zn(II)-complexes of phytochelatins, glutathione or cysteine. This strategy resulted in the formation NCs capped by the chosen biomolecule. The range of sizes and their distributions depended primarily on the quantity of sulfide titrated and the biomolecule chosen for the initial metallo-complex. The processes of NC formation were studied by absorption and fluorescence spectrophotometry. The size distribution was analyzed by gel permeation chromatography. Ethanol precipitation of NCs under aqueous conditions was used to isolate nanoparticles within a very narrow size-range. Reduction of selected dyes was also studied on the surfaces of NCs. Glutathione-capped CdS nanoparticles exhibited significant size heterogeneity even at a single sulfide titration. In contrast, phytochelatins showed much less dispersion in size at a given sulfide titration. Phytochelatins could replace glutathione without changing the size of glutathione-capped CdS nanoparticles. Cysteine appeared to be intermediate between glutathione and phytochelatins in the formation of CdS nanoparticles. The calculated radii, using an effective mass approximation method, were 10.8-17.3, 10.6-11.8, and 13.5-15.5A for glutathione-, phytochelatin-, and cysteine-capped CdS nanoparticles, respectively. Cysteine-capped ZnS showed narrower size distribution than glutathione-capped ZnS. However, elevated temperatures were necessary to accomplish optimal yields of cysteine-capped ZnS NCs. An additional control over the size distribution of NCs was achieved by size-selective precipitation with ethanol. These procedures led to the isolation of nanoparticles that were more uniform in size and chemical compositions as determined by spectroscopic and chemical analyses of size-fractionated samples. Precipitation also allowed preparation of large quantities of powdered nanoparticles that could be

  11. The effect of partially stabilized zirconia on the mechanical properties of the hydroxyapatite-polyethylene composites.

    PubMed

    Sadi, A Yari; Homaeigohar, S Sh; Khavandi, A R; Javadpour, J

    2004-08-01

    The effect of partially stabilized zirconia (PSZ) on the mechanical properties of the hydroxyapatite-high density polyethylene composites was studied by investigating the effect of hydroxyapatite and the simultaneous effect of hydroxyapatite and PSZ volume fractions on fracture strength, modulus of elasticity, and absorbed energy in the composite samples. The results showed a decrease in fracture strength, and absorbed energy with an increase in the volume fraction of hydroxyapatite content in the hydroxyapatite-polyethylene samples. Partial replacement of hydroxyapatite with PSZ particles was beneficial in the improvement of both the fracture strength and failure energy values in the composite samples. A transition from ductile to brittle behavior was observed as the volume fraction of ceramic filler particles increased in the samples.

  12. Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests.

    PubMed

    Nguyen, Nga Kim; Leoni, Matteo; Maniglio, Devid; Migliaresi, Claudio

    2013-07-01

    Synthetic hydroxyapatite nanorods are excellent candidates for bone tissue engineering applications. In this study, hydroxyapatite nanorods resembling bone minerals were produced by using soft-template method with cetyltrimethylammonium bromide. Composite hydroxyapatite/poly(D, L)lactic acid films were prepared to evaluate the prepared hydroxyapatite nanorods in terms of cell affinity. Preliminary in vitro experiments showed that aspect ratio and film surface roughness play a vital role in controlling adhesion and proliferation of human osteoblast cell line MG 63. The hydroxyapatite nanorods with aspect ratios in the range of 5.94-7 were found to possess distinctive properties, with the corresponding hydroxyapatite/poly(D, L)lactic acid films promoting cellular confluence and a fast formation of collagen fibers as early as after 7 days of culture.

  13. Method to produce nanocrystalline powders of oxide-based phosphors for lighting applications

    DOEpatents

    Loureiro, Sergio Paulo Martins; Setlur, Anant Achyut; Williams, Darryl Stephen; Manoharan, Mohan; Srivastava, Alok Mani

    2007-12-25

    Some embodiments of the present invention are directed toward nanocrystalline oxide-based phosphor materials, and methods for making same. Typically, such methods comprise a steric entrapment route for converting precursors into such phosphor material. In some embodiments, the nanocrystalline oxide-based phosphor materials are quantum splitting phosphors. In some or other embodiments, such nanocrystalline oxide based phosphor materials provide reduced scattering, leading to greater efficiency, when used in lighting applications.

  14. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOEpatents

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo; Setlur, Anant Achyut; Srivastava, Alok Mani

    2013-04-16

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  15. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.

    PubMed

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  16. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.

    PubMed

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  17. Outcomes following ossicular chain reconstruction with composite prostheses: hydroxyapatite-polyethylene vs. hydroxyapatite-titanium.

    PubMed

    Hahn, Yoav; Bojrab, Dennis I

    2013-06-01

    We conducted a retrospective study to compare the results of ossicular chain reconstruction (OCR) with two types of composite prosthesis: a hydroxyapatite-polyethylene (HAPEX) implant and a hydroxyapatite-titanium (HATi) prosthesis. We reviewed the records of 222 patients-104 males and 118 females, aged 8 to 79 years (mean: 39.7)-who had undergone OCR for ossicular chain dysfunction and who met our eligibility criteria. In addition to demographic data and the type of prosthesis, we compiled information on pre- and postoperative audiometric findings, the underlying diagnosis, the timing of surgery (primary, planned, or revision), the type of surgery (tympanoplasty alone, tympanoplasty with antrotomy, intact-canal-wall tympanomastoidectomy, or canal-wall-down tympanomastoidectomy), the extent of reconstruction (partial or total), the use of the malleus, the use of a tragal cartilage graft, and evidence of extrusion. Of the 222 patients, 46 had undergone insertion of either a partial (n = 36) or total (n = 10) ossicular replacement prosthesis (PORP and TORP, respectively) made with HAPEX, and 176 had received a PORP (n = 101) or TORP (n = 75) made with HATi. Postoperatively, the mean air-bone gap (ABG) was 14.0 dB in the HAPEX group and 14.7 dB in the HATi group, which was not a significant difference (p = 0.61). Postoperative success (ABG ≤20 dB) with PORP was obtained in 30 of the 36 patients in the HAPEX group (83.3%) and in 87 of the 101 patients in the HATi group (86.1%), while success with TORP was achieved in 7 of 10 HAPEX patients (70.0%) and 56 of 75 HATi patients (74.7%); there was no significant difference in either PORP or TORP success rates between the HAPEX and HATi groups (p = 0.32). A significantly better hearing result was obtained when the malleus was used in reconstruction (p = 0.035), but the use of tragal cartilage led to a significantly worse outcome (p = 0.026). Revision surgery was associated with a significantly worse postoperative result (p

  18. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.

    PubMed

    Darling, K A; Rajagopalan, M; Komarasamy, M; Bhatia, M A; Hornbuckle, B C; Mishra, R S; Solanki, K N

    2016-01-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10(-6) per second-six to eight orders of magnitude lower than most nanocrystalline metals-at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  19. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  20. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.

    PubMed

    Darling, K A; Rajagopalan, M; Komarasamy, M; Bhatia, M A; Hornbuckle, B C; Mishra, R S; Solanki, K N

    2016-09-14

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10(-6) per second-six to eight orders of magnitude lower than most nanocrystalline metals-at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  1. A new injectable biphasic hydrogel based on partially hydrolyzed polyacrylamide and nano hydroxyapatite, crosslinked with chromium acetate, as scaffold for cartilage regeneration

    NASA Astrophysics Data System (ADS)

    Koushki, N.; Tavassoli, H.; Katbab, A. A.; Katbab, P.; Bonakdar, S.

    2015-05-01

    Polymer scaffolds are applied in the field of tissue engineering as three dimensional structures to organize cells and present stimuli to direct generation of a desired damaged tissue. In situ gelling scaffolds have attracted great attentions, as they are structurally similar to the extra cellular matrix (ECM). In the present work, attempts have been made to design and fabricate a new injectable and crosslinkable biphasic hydrogel based on partially hydrolyzed polyacrylamide (HPAM), chromium acetate as crosslink agent and nanocrystalline hydroxyapatite (nHAp) as reinforcing and bioactive agent for repair and regeneration of damaged cartilage. The distinct characteristic of HPAM is the presence of carboxylate anion groups on its backbone which allows to engineer the structure of the hydrogel for the desired bioactivity with appropriate cells differentiation towards both soft and hard (bone) tissues. The synthesized hydrogel exhibited bifunctional behavior which was derived by its biphasic structure in which one phase was loaded with nano hydroxyapatite to provide integration capability by subchondral bones and fix the hydrogel at cartilage defect without a need for suturing. The other phase differentiates the rabbit adipogenic mesenchymal stem cells (MSCs) towards soft tissue. Rheomechanical spectrometry (RMS) was employed to study the kinetic of the gelation including induction time and rate, as well as to measure the ultimate elastic modulus of the optimum crosslinked hydrogel. Surface tension measurement was also performed to tailor the surface characteristics of the gels. In vitro culturing of the cells inside the crosslinked hydrogel revealed high viability and high differentiation of the encapsulated rabbit stem cells, providing that the chromium acetate level was kept below 0.2 wt%. Based on the obtained results, the designed and fabricated biphasic hydrogel exhibited high potential as carrier for the stem cells for cartilage tissue engineering application

  2. Bone integration capability of a series of strontium-containing hydroxyapatite coatings formed by micro-arc oxidation.

    PubMed

    Yan, Jun; Sun, Ji-Feng; Chu, Paul K; Han, Yong; Zhang, Yu-Mei

    2013-09-01

    Strontium-containing hydroxyapatites (Sr-HA) combine the desirable bone regenerative properties of hydroxyapatites (HA) with anabolic and anti-catabolic effects of strontium cations. In the present work, a series of Sr(y)HA [Sr(y)Ca(10-y)(PO4)6(OH)2; y = 0, 0.5, 1, 2] coatings on titanium are produced by micro-arc oxidation (MAO), and the effects of the in vivo osseointegration ability of the coatings are investigated by using a rabbit model. All samples are subjected to biomechanical, surface elemental, micro-CT and histological analysis after 4 and 12 weeks of healing. The obtained results show that the MAO-formed coatings exhibit a microporous network structure composed of Sr(y)HA/Sr(y)HA-Sr(x)Ca(1-x)TiO3/Sr(x)Ca(1-x)TiO3-TiO2 multilayers, in which the outer Sr(y)HA and intermediate Sr(y)HA-Sr(x)Ca(1-x)TiO3 layers have a nanocrystalline structure. All Sr-HA coated implants induce marked improvements in the behavior of bone formation, quantity and quality of bone tissue around the implants than the control HA implant and in particular, the 20%Sr-HA coating promotes early bone formation as identified by polyfluorochrome sequential labeling. The bone-to-implant contact is increased by 46% (p < 0.05) and the pull-out strength is increased by 103% over the HA group (p < 0.01). Extensive areas of mineralized tissue densely deposit on the 20%Sr-HA coating after biomechanical testing, and the greatest improvement of bone microarchitecture are observed around the 20%Sr-HA implant. The identified biological parameters successfully demonstrate the osteoconductivity of 20%Sr-HA surfaces, which results not only in an acceleration but also an improvement of bone-implant integration. The study demonstrates the immense potential of 20%Sr-HA coatings in dental and orthopedic applications. PMID:23348908

  3. [FTIR and XRD analysis of hydroxyapatite from fossil human and animal teeth in Jinsha Relict, Chengdu].

    PubMed

    Huang, Cheng-min; Zhang, Qing; Bai, Song; Wang, Cheng-shan

    2007-12-01

    Diagenetic effect during burial on the hydroxyapatite in enamel and dentin from fossil human and animal teeth was examined, using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). For the enamel and dentin of all fossil teeth, XRD patterns exhibit bulge line and overlap between major reflections of hydroxyapatite, and the crystallinity of hydroxyapatite is low. For each infrared spectrum, H2O and OH(-) have distinct peaks of absorbance, and PO4(3-) and CO3(2-) ions have intensive infrared vibration modes at the fundamental wave numbers. The component of hydroxyapatite of all fossil teeth is similar to the modern biological hydroxyapatite. Furthermore, the index (PCI) which reflects the hydroxyapatite crystallinity of each sample ranges from 2.4 to 4.0 while the index (BPI) reflecting the amount of type B carbonate to phosphate indicates that the values of CO3(2-) content in hydroxyapatite are rather high, accordingly the crystallinity of all fossil hydroxyapatites are poor. It could be concluded that little alteration of hydroxyapatites from fossil human and animal teeth occurred in the process of diagenesis in Jinsha Relict, Chengdu, China.

  4. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces.

    PubMed

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D3, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence.

  5. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    PubMed

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.

  6. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates.

    PubMed

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions.

  7. Development of lattice-inserted 5-Fluorouracil-hydroxyapatite nanoparticles as a chemotherapeutic delivery system.

    PubMed

    Tseng, Ching-Li; Chen, Jung-Chih; Wu, Yu-Chun; Fang, Hsu-Wei; Lin, Feng-Huei; Tang, Tzu-Piao

    2015-10-01

    Developing an effective vehicle for cancer treatment, hydroxyapatite nanoparticles were fabricated for drug delivery. When 5-Fluorouracil, a major chemoagent, is combined with hydroxyapatite nanocarriers by interclay insertion, the modified hydroxyapatite nanoparticles have superior lysosomal degradation profiles, which could be leveraged as controlled drug release. The decomposition of the hydroxyapatite nanocarriers facilitates the release of 5-Fluorouracil into the cytoplasm causing cell death. Hydroxyapatite nanoparticles with/without 5-Fluorouracil were synthesized and analyzed in this study. Their crystallization properties and chemical composition were examined by X-ray diffraction and Fourier transforms infrared spectroscopy. The 5-Fluorouracil release rate was determined by UV spectroscopy. The biocompatibility of hydroxyapatite-5-Fluorouracil extraction solution was assessed using 3T3 cells via a WST-8 assay. The effect of hydroxyapatite-5-Fluorouracil particles which directly work on the human lung adenocarcinoma (A549) cells was evaluated by a lactate dehydrogenase assay via contact cultivation. A 5-Fluorouracil-absorbed hydroxyapatite particles were also tested. Overall, hydroxyapatite-5-Fluorouracils were prepared using a co-precipitation method wherein 5-Fluorouracil was intercalated in the hydroxyapatite lattice as determined by X-ray diffraction. Energy dispersive scanning examination showed the 5-Fluorouracil content was higher in hydroxyapatite-5-Fluorouracil than in a prepared absorption formulation. With 5-Fluorouracil insertion in the lattice, the widths of the a and c axial constants of the hydroxyapatite crystal increased. The extraction solution of hydroxyapatite-5-Fluorouracil was nontoxic to 3T3 cells, in which 5-Fluorouracil was not released in a neutral phosphate buffer solution. In contrast, at a lower pH value (2.5), 5-Fluorouracil was released by the acidic decomposition of hydroxyapatite. Finally, the results of the lactate

  8. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying.

    PubMed

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed. PMID:26625888

  9. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying

    NASA Astrophysics Data System (ADS)

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  10. On the assessment of hydroxyapatite fluoridation by means of Raman scattering

    SciTech Connect

    Campillo, M.; Valiente, M.; Lacharmoise, P. D.; Reparaz, J. S.; Goni, A. R.

    2010-06-28

    Hydroxyapatite is the main mineral component of bones and teeth. Fluorapatite, a bioceramic that can be obtained from hydroxyapatite by chemical substitution of the hydroxide ions with fluoride, exhibits lower mineral solubility and larger mechanical strength. Despite the widespread use of fluoride against caries, a reliable technique for unambiguous assessment of fluoridation in in vitro tests is still lacking. Here we present a method to probe fluorapatite formation in fluoridated hydroxyapatite by combining Raman scattering with thermal annealing. In synthetic minerals, we found that effectively fluoride substituted hydroxyapatite transforms into fluorapatite only after heat treatment, due to the high activation energy for this first order phase transition.

  11. On the assessment of hydroxyapatite fluoridation by means of Raman scattering

    NASA Astrophysics Data System (ADS)

    Campillo, M.; Lacharmoise, P. D.; Reparaz, J. S.; Goñi, A. R.; Valiente, M.

    2010-06-01

    Hydroxyapatite is the main mineral component of bones and teeth. Fluorapatite, a bioceramic that can be obtained from hydroxyapatite by chemical substitution of the hydroxide ions with fluoride, exhibits lower mineral solubility and larger mechanical strength. Despite the widespread use of fluoride against caries, a reliable technique for unambiguous assessment of fluoridation in in vitro tests is still lacking. Here we present a method to probe fluorapatite formation in fluoridated hydroxyapatite by combining Raman scattering with thermal annealing. In synthetic minerals, we found that effectively fluoride substituted hydroxyapatite transforms into fluorapatite only after heat treatment, due to the high activation energy for this first order phase transition.

  12. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics.

    PubMed

    Porter, A E; Patel, N; Skepper, J N; Best, S M; Bonfield, W

    2003-11-01

    The incorporation of silicate into hydroxyapatite (HA) has been shown to significantly increase the rate of bone apposition to HA bioceramic implants. However, uncertainty remains about the mechanism by which silicate increases the in vivo bioactivity of HA. In this study, high-resolution transmission electron microscopy was used to observe dissolution from HA, 0.8 wt% Si-HA and 1.5 wt% Si-HA implants after 6 and 12 weeks in vivo. Our observations confirmed that defects, in particular those involving grain boundaries, were the starting point of dissolution in vivo. Dissolution was observed to follow the order 1.5 wt% Si-HA>0.8 wt% Si-HA>pure HA and it was found to be particularly prevalent at grain boundaries and triple-junctions. These observations may help to explain the mechanism by which silicate ions increase the in vivo bioactivity of pure HA, and highlight the enhanced potential of these ceramics for biomedical applications.

  13. Grain boundary and triple junction diffusion in nanocrystalline copper

    SciTech Connect

    Wegner, M. Leuthold, J.; Peterlechner, M.; Divinski, S. V.; Song, X.; Wilde, G.

    2014-09-07

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, 〈d〉, of ∼35 and ∼44 nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500⋅D{sub gb} within the temperature interval from 420 K to 470 K.

  14. Grain growth and structural relaxation of nanocrystalline Bi₂Te₃

    SciTech Connect

    Humphry-Baker, Samuel A.; Schuh, Christopher A.

    2014-10-21

    Recovery and grain growth behavior is investigated systematically for the nanocrystalline thermoelectric compound bismuth telluride, synthesized by mechanical alloying. During annealing treatments at elevated temperatures, structural evolution is tracked using x-ray diffraction, electron microscopy and calorimetry. Below a homologous temperature of about 0.6T{sub m}, grain growth occurs slowly with an activation energy of 89 kJ/mol. However above this temperature grain growth becomes more rampant with an activation energy of 242 kJ/mol. The transition is attributed to a shift from a relaxation or recovery process that includes some reordering of the grain boundary structure, to a more conventional diffusionally-limited grain growth process. By extrapolating the measured grain growth and microstrain evolution kinetics, a thermal budget map is constructed, permitting recommendations for improving the thermoelectric properties of nanocrystalline materials processed via a powder route.

  15. Laser-induced refractive index changes in nanocrystalline diamond membranes.

    PubMed

    Preclíková, Jana; Kromka, Alexander; Rezek, Bohuslav; Malý, Petr

    2010-02-15

    We have observed what we believe to be a new phenomenon in nanocrystalline diamond membranes. The optical thickness of the membrane is changed under laser irradiation, which leads to a spectral shift of interference fringes in the transmission and photoluminescence spectra of high-quality thin self-supporting nanocrystalline membranes. The direction of the spectral shift (red/blue) can be tuned by the ambient air pressure. The effect is reversible and is accompanied by changes in photoluminescence intensity. We interpret the results in terms of the changes in the index of refraction caused by the photoinduced adsorption/desorption of air molecules that subsequently affect the properties of subgap energy states related to the surface and the grain boundaries of the nanocrystals.

  16. Surface Corrosion of Nanoscaled Hydroxyapatite During an In Vivo Experiment.

    PubMed

    Seo, Dong Seok; Lee, Jong Kook; Hwang, Kyu Hong

    2015-10-01

    Hydroxyapatite (HA) is widely used as a bioactive ceramics as it forms a chemical bond with bone. However, the drawback to using this material is its inferior mechanical properties. In this research, surface corrosion and disintegration of nanoscaled HA in a dog were studied, and the mechanism by which phase-pure HA dissolved in vivo was investigated. Biological properties of HA in vivo are affected by the grain-boundary dissolution followed by a surface corrosion and microstructural disintegration. This kind of dissolution process, apparently evidenced at the grain boundary, causes particle generation, which indicates that both long-term bone in-growth and mechanical properties can dramatically deteriorate. Implant dissolution by osteoclasts in vivo is also observed on the surface of hydroxyapatite. Implant surface showed an aggressive corrosion by an osteoclast resorption. Severe and deeper dissolution underwent close to osteoclast resulting in formation of smaller and more round particle shape.

  17. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    PubMed Central

    Nocerino, Nunzia; Fulgione, Andrea; Iannaccone, Marco; Tomasetta, Laura; Ianniello, Flora; Martora, Francesca; Lelli, Marco; Roveri, Norberto; Capuano, Federico; Capparelli, Rosanna

    2014-01-01

    The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA). We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. PMID:24623976

  18. Antimicrobial and cytotoxicity evaluation of aliovalent substituted hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Shanmugam, Sumathi; Gopal, Buvaneswari

    2014-06-01

    Aliovalent ion substituted hydroxyapatite of formulae BiNaCa3(PO4)3OH, Bi0.5M0.5Ca4(PO4)3OH (M = K, Ag) were synthesized and characterized. Antimicrobial properties of these synthesized materials were studied quantitatively by spread plate method against the microorganisms Escherichia coli (gram negative bacteria), Staphylococcus aureus (gram positive bacteria) and Candida albicans (yeast). Among the substituted hydroxyapatite compounds bismuth and silver substituted compound of formula Bi0.5Ag0.5Ca4(PO4)3OH shown excellent activity against all the three organisms. Cytotoxicity study was carried out against mouse fibroblast NIH-3T3 cell line in two different concentrations 10 μg/mL and 20 μg/mL by MTT assay method.

  19. Hydroxyapatite: Vibrational spectra and monoclinic to hexagonal phase transition

    NASA Astrophysics Data System (ADS)

    Slepko, Alexander; Demkov, Alexander A.

    2015-02-01

    Fundamental studies of biomaterials are necessary to deepen our understanding of their degradation and to develop cure for related illnesses. Biomineral hydroxyapatite Ca10(PO4)6(OH)2 is the main mineral constituent of mammal bone, and its synthetic analogues are used in biomedical applications. The mineral can be found in either hexagonal or monoclinic form. The transformation between these two phases is poorly understood, but knowing its mechanism may be critical to reversing processes in bone related to aging. Using density functional theory, we investigate the mechanisms of the phase transformation and estimate the transition temperature to be 680 K in fair agreement with the experimental temperature of 470 K. We also report the heat capacity of hydroxyapatite and a peculiarity in its phonon dispersion that might allow for non-destructive measurements of the crystal composition with applications in preventive medical screening for bone mineral loss.

  20. Phosphonate-hydroxyapatite hybrid compounds prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Agougui, H.; Aissa, A.; Maggi, S.; Debbabi, M.

    2010-12-01

    Calcium hydroxyapatite (CaHAp) was prepared in the presence of two alkylphosphonates, the tert-butyl phosphonic acid TBPOH and the 2-carboxyletylphosphonic acid 2-CEPA, by hydrothermal method at 120 °C for 15 h. The modification of hydroxyapatite by grafting organic moieties is confirmed by IR and NMR MAS ( 1H and 31P) spectroscopy and chemical analysis. X-ray powder diffraction patterns show that the incorporation of organic moieties induces a significant loss of the material crystallinity and a clear increase of the unit cell lattice parameter a as function of 2-CEPA grafting rate. The specific surface area (SSA) increases with increasing phosphonate amount especially for 2-CEPA. All techniques show the lower reactivity of TBPOH due to the steric effects of tert-butyl, whereas the 2-CEPA with a linear chain and double acidic functions is more reactive and can replace the OH - groups of the apatitic structure.

  1. Comparison of Electrical Properties between Fluoroapatite and Hydroxyapatite Materials

    NASA Astrophysics Data System (ADS)

    Laghzizil, A.; El Herch, N.; Bouhaouss, A.; Lorente, G.; Macquete, J.

    2001-01-01

    By appropriate modifications of existing precipitation methods, apatite samples of formula M10(PO4)6X2 (M=Ca, Pb, Ba and X=F, OH) were prepared at 80°C. Samples were characterized using X-ray diffraction, infrared, 31P NMR, SEM, and chemical analysis. By comparing the effect of fluoride and hydroxide ions on ionic conductivity measurements, it was concluded that the fluorinated materials (MFAp) were better conductors than other hydroxyapatites (MHAp). The F- and H+ ions are the main charge carriers, respectively, in fluoroapatite and in hydroxyapatite compounds. The most pronounced effect on the conduction properties was observed in the lead apatite material. These results should provide important physico-chemical information for ionic diffusion of the roles played by fluoride in inhibiting dental caries.

  2. Sorption behavior of fluoride ions from aqueous solutions by hydroxyapatite.

    PubMed

    Jiménez-Reyes, M; Solache-Ríos, M

    2010-08-15

    The effects of pH, contact time, fluoride-ion concentration, and the dose of sorbent on the sorption of fluoride ions by hydroxyapatite were studied. Equilibrium was reached in 16 h of contact time and the maximum sorption of fluoride ions was in the pH(eq) range between 5 and 7.3. The highest efficiency in the sorption system was determined by using 0.01 g of hydroxyapatite and 25 mL of solution. The pseudo-second order model described the kinetic sorption processes, and the Freundlich model, the sorption isotherm process. These results indicated that the mechanism was chemisorption on a heterogeneous material. Fluoride ions were partially desorbed using an alkaline solution.

  3. Nanocrystalline zinc oxide: Pyrolytic synthesis and spectroscopic characteristics

    SciTech Connect

    Demyanets, L. N. Li, L. E.; Lavrikov, A. S.; Nikitin, S. V.

    2010-01-15

    Nanocrystalline and microcrystalline ZnO powders are synthesized by the pyrolysis of organic zinc salts in the presence of a reducing catalyst represented by a porous cellulose carrier. The specimens obtained are characterized by X-ray powder diffraction, energy dispersive analysis, scanning electron microscopy, and pulse cathodoluminescence. Lasing characteristics of the specimens are studied. The synthesis conditions, under which specimens with the crystallite morphology optimal for a low-threshold lasing are obtained, are found.

  4. Method for the preparation of nanocrystalline diamond thin films

    DOEpatents

    Gruen, D.M.; Krauss, A.R.

    1998-06-30

    A method and system are disclosed for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip. 40 figs.

  5. Method for the preparation of nanocrystalline diamond thin films

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.

    1998-01-01

    A method and system for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip.

  6. Structural Modification of Nanocrystalline Ceria by Ion Beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D.; Varga, Tamas; Moll, Sandra J.; Namavar, Fereydoon; Lan, Chune; Weber, William J.

    2011-05-25

    Using energetic ions, we have demonstrated effective modification of grain size in nanocrystalline ceria in the critical region for controlling exceptional size-dependent electronicionic conductivity. The grain size increases and follows an exponential law as a function of ion fluence that increases with temperature, while the cubic phase is stable under the irradiation. The unique self-healing response of radiation damage at grain boundaries is utilized to control the grain size at the nanoscale.

  7. Twinning in nanocrystalline Ni by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Feng, X. Y.; Cheng, Z. Y.; Wu, X.; Wang, T. C.; Hong, Y. S.

    2006-02-01

    Deformation twinning is confirmed upon large plastic deformation in nanocrystalline (nc) Ni by transmission electron microscopy examinations. New and compelling evidence has been obtained for several twinning mechanisms that operate in nc grains, with the grain boundary emission of partial dislocations determined as the most proficient. Twinning in nc Ni may be interpreted in terms of molecular dynamics simulation based on generalized planar fault energy curves.

  8. Controllable nonlinear refraction characteristics in hydrogenated nanocrystalline silicon

    SciTech Connect

    Zheng, D. Q.; Ye, Q. H.; Shen, W. Z.; Su, W. A.

    2014-02-07

    Nonlinear refraction (NLR) of hydrogenated nanocrystalline silicon (nc-Si:H) has been investigated through the close aperture Z-scan method. We demonstrate a significant NLR and a unique feature of controllable NLR characteristics between saturable and Kerr NLR with the incident photon energy. We numerically evaluate the proportion of these two mechanisms in different wavelengths by a modified NLR equation. The band tail of nc-Si:H appears to play a crucial role in such NLR responses.

  9. Role of nanocrystalline cerium oxide coatings on austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Zhang, Haiying

    Protective nanocrystalline cerium oxide coating has been applied to ASTM grade 304L and 304 austenitic stainless steels to improve its oxidation resistance at elevated temperatures. Experimentally, the selected alloy was exposed to 800°C/1000°C under dry air conditions. Weight changes (DeltaW/A) were monitored as a function of time and the results were compared with uncoated alloys tested under similar conditions. It was found that the oxidation resistances of 304L and 304 stainless steels were significantly improved. A comparison of the oxidation rates indicated that the nanocrystalline cerium oxide coating reduced the rate of oxidation by more than two orders of magnitude. Nevertheless, a comprehensive understanding of the mechanisms responsible for the reduction in the oxidation rate is not clear. Consequently, this work is aimed at investigating the mechanisms involved during scale growth in the presence or absence of nanocrystalline coatings. For this purpose, density functional theory was carried out in order to predict oxygen and iron diffusion microscopic activation energies and reveal the intrinsic characteristics of nanocrystalline coatings. A numerical simulation of corrosion process has also been conducted to predict the corrosion rates of alloys with and without coatings. Hence, the results from simulations are compared with the experimental outcome, and possible explanations are given to account for the reduction in the exhibited oxidation rates. The simulation results will provide a highly valuable tool for the realization of functional nanostructures and architectures "by design", particularly in the development of novel coatings, and a new approach of life assessment.

  10. Magnons as a Bose-Einstein Condensate in Nanocrystalline Gadolinium

    SciTech Connect

    Kaul, S. N.; Mathew, S. P.

    2011-06-17

    The recent observation [S. P. Mathew et al., J. Phys. Conf. Ser. 200, 072047 (2010)] of the anomalous softening of spin-wave modes at low temperatures in nanocrystalline gadolinium is interpreted as a Bose-Einstein condensation (BEC) of magnons. A self-consistent calculation, based on the BEC picture, is shown to closely reproduce the observed temperature variations of magnetization and specific heat at constant magnetic fields.

  11. Magnetic irreversibility and magnetocrystalline anisotropy in nanocrystalline nickel

    NASA Astrophysics Data System (ADS)

    Prakash, P. V.; Madduri, Srinath, S.; Kaul, S. N.

    2015-06-01

    Magnetic properties of nanocrystalline Ni samples, with average grain sizes, d = 11(1) nm, 19(1) nm and 30(2) nm, synthesized by pulse electrodeposition, have been studied. We observed that (i) at low temperatures, the effective magneto-crystalline anisotropy constant, K1, increases with the crystallite size so as to reach the bulk value at d = 30 nm, and (ii) the rate of thermal decline of K1(T) slows down as the crystallite size reduces.

  12. Characterisation of amorphous and nanocrystalline molecular materials by total scattering

    SciTech Connect

    Billinge, Simon J.L.; Dykhne, Timur; Juhás, Pavol; Boin, Emil; Taylor, Ryan; Florence, Alastair J.; Shankland, Kenneth

    2010-09-17

    The use of high-energy X-ray total scattering coupled with pair distribution function analysis produces unique structural fingerprints from amorphous and nanostructured phases of the pharmaceuticals carbamazepine and indomethacin. The advantages of such facility-based experiments over laboratory-based ones are discussed and the technique is illustrated with the characterisation of a melt-quenched sample of carbamazepine as a nanocrystalline (4.5 nm domain diameter) version of form III.

  13. Modification of the supramolecular structure of collagen with nanodisperse hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Voloskova, E. V.; Berdnikova, L. K.; Poluboyarov, V. A.; Gur'yanova, T. I.

    2015-02-01

    The influence of nanodisperse particles of hydroxyapatite on the structure of films based on collagen with a molecular mass of 360 kDa was studied. When coatings formed, the collagen macromolecules aggregated into spherulites; modification led to structural changes related to the decomposition of the spherulite structure and the formation of a grain structure. The variation of the physicomechanical properties of film materials directly depends on the size of the structural units.

  14. Repairing the hole in hydroxyapatite orbital implants following peg removal.

    PubMed

    Jordan, D R

    2000-01-01

    Pegging hydroxyapatite implants may lead to improved prosthetic eye movement but may also be associated with complications that may occasionally require peg removal. Removing the peg and leaving the peg hole to spontaneously granulate in, is one technique to deal with the remaining implant hole. The author describes a simple technique to fill the peg hole that provides a smooth implant-conjunctival-prosthesis interface and may potentially allow repegging.

  15. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    PubMed

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  16. Model for temperature-dependent magnetization of nanocrystalline materials

    SciTech Connect

    Bian, Q.; Niewczas, M.

    2015-01-07

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau–Lifshitz–Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc–Ni is discussed.

  17. Model for temperature-dependent magnetization of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2015-01-01

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.

  18. Model of the magnetization of nanocrystalline materials at low temperatures

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2014-07-01

    A theoretical model incorporating the material texture has been developed to simulate the magnetic properties of nanocrystalline materials at low temperatures where the effect of thermal energy on magnetization is neglected. The method is based on Landau-Lifshitz-Gilbert (LLG) theory and it describes the magnetization dynamics of individual grains in the effective field. The modified LLG equation incorporates the intrinsic fields from the intragrain magnetocrystalline and grain boundary anisotropies and the interacting fields from intergrain dipolar and exchange couplings between the neighbouring grains. The model is applied to study magnetic properties of textured nanocrystalline Ni samples at 2K and is capable to reproduce closely the hysteresis loop behaviour at different orientations of applied magnetic field. Nanocrystalline Ni shows the grain boundary anisotropy constant K 1 s = - 6.0 × 104 J / m 3 and the intergrain exchange coupling denoted by the effective exchange constant Ap = 2.16 × 10-11 J/m. Analytical expressions to estimate the intergrain exchange energy density and the effective exchange constant have been formulated.

  19. Low temperature solid-state synthesis of nanocrystalline gallium nitride

    SciTech Connect

    Wang, Liangbiao; Shi, Liang; Li, Qianwen; Si, Lulu; Zhu, Yongchun; Qian, Yitai

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► GaN nanocrystalline was prepared via a solid-state reacion at relatively low temperature. ► The sizes and crystallinities of the GaN samples obtained at the different temperatures are investigated. ► The GaN sample has oxidation resistance and good thermal stability below 1000 °C. -- Abstract: Nanocrystalline gallium nitride was synthesized by a solid-state reaction of metallic magnesium powder, gallium sesquioxide and sodium amide in a stainless steel autoclave at a relatively low temperature (400–550 °C). The structures and morphologies of the obtained products were derived from X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). XRD patterns indicated that the products were hexagonal GaN (JCPDS card no. 76-0703). The influence of reaction temperature on size of the products was studied by XRD and TEM. Furthermore, the thermal stability and oxidation resistance of the nanocrystalline GaN were also investigated. It had good thermal stability and oxidation resistance below 800 °C in air.

  20. MOLECULAR DYNAMICS STUDY OF DIFFUSIONAL CREEP IN NANOCRYSTALLINE UO2

    SciTech Connect

    Tapan G. Desai; Paul C. Millett; Dieter Wolf

    2008-09-01

    We present the results of molecular dynamics (MD) simulations to study hightemperature deformation of nanocrystalline UO2. In qualitative agreement with experimental observations, the oxygen sub-lattice undergoes a structural transition at a temperature of about 2200 K (i.e., well below the melting point of 3450 K of our model system), whereas the uranium sub-lattice remains unchanged all the way up to melting. At temperatures well above this structural transition, columnar nanocrystalline model microstructures with a uniform grain size and grain shape were subjected to constantstress loading at levels low enough to avoid microcracking and dislocation nucleation from the GBs. Our simulations reveal that in the absence of grain growth, the material deforms via GB diffusion creep (also known as Coble creep). Analysis of the underlying self-diffusion behavior in undeformed nanocrystalline UO2 reveals that, on our MD time scale, the uranium ions diffuse only via the grain boundaries (GBs) whereas the much faster moving oxygen ions diffuse through both the lattice and the GBs. As expected for the Coble-creep mechanism, the creep activation energy agrees well with that for GB diffusion of the slowest moving species, i.e., of the uranium ions.

  1. Tensile Properties of Electrodeposited Nanocrystalline Ni-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Dai, P. Q.; Zhang, C.; Wen, J. C.; Rao, H. C.; Wang, Q. T.

    2016-02-01

    Nanocrystalline Ni-Cu alloys with a Cu content of 6, 10, 19, and 32 wt.% were prepared by pulse electrodeposition. The microstructure and tensile properties of the nanocrystalline Ni-Cu alloys were characterized by x-ray diffraction, transmission electron microscopy, and tensile testing. The x-ray diffraction analysis indicates that the structure of the nanocrystalline Ni-Cu alloys is a face-centered cubic, single-phase solid solution with an average grain size of 18 to 24 nm, and that the average grain size decreased with increasing Cu content. The ultimate tensile strength (~1265 to 1640 MPa) and elongation to failure (~5.8 to 8.9%) of the Ni-Cu alloys increased with increasing Cu content. The increase in tensile strength results from the solid solution and fine-grain strengthening. Elemental Cu addition results in a decrease in stacking fault energy, an increase in work hardening rate, a delay in plasticity instability, and consequently, a higher plasticity.

  2. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    PubMed Central

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-01-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content. PMID:26269034

  3. Thermoluminescence characteristics of LiF: Cu nanocrystalline phosphor

    NASA Astrophysics Data System (ADS)

    Seth, Pooja; Aggarwal, Shruti

    2016-05-01

    Copper (Cu) activated LiF phosphor in nanocrystalline form has been prepared by the chemical co-precipitation method for radiation dosimetry application. The formation of nanocrystalline structure has been confirmed by X-ray diffraction and Scanning electron microscopy. Cubical shaped nanostructure with average particle size of 33nm has been formed. The sample was prepared at different concentration of Cu from 0.01mol% to 3 mol%. TL properties were investigated by studying the glow curve after irradiating the phosphor to gamma ray Co60 source with dose of 15 Gy. It has been found that nanocrystalline LiF: Cu show simple glow curve structure with a single glow peak at 404 K where as commercially available phosphors exhibits multi peak complex glow curve structure. The effect of different normality on the TL properties of phosphor has been studied. Maximum TL intensity for LiF: Cu (0.1mol %) phosphor is observed at the normality of 0.5N and annealing temperature of 200°C. The phosphor showed good linearity up to 10 KGy.

  4. MSRC-based defective nanocrystalline soft magnetic ribbon detection

    NASA Astrophysics Data System (ADS)

    He, Zaixing; Zhao, Xinyue

    2015-09-01

    The traditional manual inspection of nanocrystalline soft magnetic materials based on metallographic samples is a time-consuming and somewhat unreliable task. It is also difficult to achieve high accuracy by simply adopting existing automatic signal processing methods as an alternative. To address the issue, a novel automatic microscopic defect recognition method for nanocrystalline soft magnetic ribbon using high-resolution optical microscopic images is proposed. The target problem is viewed as a pattern recognition problem, in which images are classified as non-defective and defective. An effective and highly efficient random feature is used to describe the structures of the nanocrystalline soft magnetic ribbons. Then the extracted features are used to recognize defects via a modified sparse representation-based classifier (MSRC). In the experiment, two well-known features, LBP (local binary pattern) and PCA (principal component analysis), and different classifiers, SVM (support vector machine) and SRC (sparse representation classifier), are compared. The experimental results demonstrate that the proposed method can provide low error rates in recognizing ribbon defects.

  5. Laser microfabrication of hydroxyapatite-osteoblast-like cell composites.

    PubMed

    Doraiswamy, A; Narayan, R J; Harris, M L; Qadri, S B; Modi, R; Chrisey, D B

    2007-03-01

    We have developed a novel approach for layer-by-layer growth of tissue-engineered materials using a direct writing process known as matrix assisted pulsed laser evaporation direct write (MAPLE DW). Unlike conventional cell-seeding methods, this technique provides the possibility for cell-material integration prior to artificial tissue fabrication. This process also provides greater flexibility in selection and processing of scaffold materials. In addition, MAPLE DW offers rapid computer-controlled deposition of mesoscopic voxels at high spatial resolutions. We have examined MAPLE DW processing of zirconia and hydroxyapatite scaffold materials that can provide a medical device with nearly inert and bioactive implant-tissue interfaces, respectively. We have also demonstrated codeposition of hydroxyapatite, MG 63 osteoblast-like cells, and extracellular matrix using MAPLE DW. We have shown that osteoblast-like cells remain viable and retain the capacity for proliferation when codeposited with bioceramic scaffold materials. Our results on MG 63-hydroxyapatite composites can be extended to develop other integrated cell-scaffold structures for medical and dental applications.

  6. Controlled synthesis and thermal stability of hydroxyapatite hierarchical microstructures

    SciTech Connect

    Sun, Ruixue; Chen, Kezheng; Liao, Zhongmiao; Meng, Nan

    2013-03-15

    Highlights: ► Hydroxyapatite hierarchical microstructures have been synthesized by a facile method. ► The morphology and size of the building units of 3D structures can be controlled. ► The hydroxyapatite with 3D structure is morphologically and structurally stable up to 800 °C. - Abstract: Hydroxyapatite (HAp) hierarchical microstructures with novel 3D morphology were prepared through a template- and surfactant-free hydrothermal homogeneous precipitation method. Field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) were used to characterize the morphology and composition of the synthesized products. Interestingly, the obtained HAp with 3D structure is composed of one-dimensional (1D) nanorods or two-dimensional (2D) nanoribbons, and the length and morphology of these building blocks can be controlled through controlling the pH of the reaction. The building blocks are single crystalline and have different preferential orientation growth under different pH conditions. At low pH values, octacalcium phosphate (OCP) phase formed first and then transformed into HAp phase due to the increased pH value caused by the decomposition of urea. The investigation on the thermal stability reveals that the prepared HAp hierarchical microstructures are morphologically and structurally stable up to 800 °C.

  7. Synthesis of nanogranular Fe3O4/biomimetic hydroxyapatite for potential applications in nanomedicine: structural and magnetic characterization

    NASA Astrophysics Data System (ADS)

    Del Bianco, L.; Lesci, I. G.; Fracasso, G.; Barucca, G.; Spizzo, F.; Tamisari, M.; Scotti, R.; Ciocca, L.

    2015-06-01

    We realized the synthesis of a novel nanogranular system consisting of magnetite nanoparticles embedded in biomimetic carbonate hydroxyapatite (HA), for prospective uses in bone tissue engineering. An original two-step method was implemented: in the first step, magnetite nanoparticles are prepared by refluxing an aqueous solution of Fe(SO4) and Fe2(SO4)3 in an excess of tetrabutilammonium hydroxide acting as surfactant; then, the magnetite nanoparticles are coated with a Ca(OH)2 layer, to induce the growth of HA directly on their surface, by reaction of Ca(OH)2 with HPO42-. Two nanogranular samples were collected with magnetite content ˜0.8 and ˜4 wt%. The magnetite nanoparticles and the composite material were investigated by x-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. These analyses provided information on the structure of the nanoparticles (mean size ˜6 nm) and revealed the presence of surface hydroxyl groups, which promoted the subsequent growth of the HA phase, featuring a nanocrystalline lamellar structure. The magnetic study, by a superconducting quantum interference device magnetometer, has shown that both the as-prepared and the HA-coated magnetite nanoparticles are superparamagnetic at T = 300 K, but the magnetization relaxation process is dominated by dipolar magnetic interactions of comparable strength. In the three samples, a collective frozen magnetic regime is established below T ˜ 20 K. These results indicate that the magnetite nanoparticles tend to form agglomerates in the as-prepared state, which are not substantially altered by the HA growth, coherently with the creation of electrostatic hydrogen bonds among the surface hydroxyl groups.

  8. Ag doped silicon nitride nanocomposites for embedded plasmonics

    NASA Astrophysics Data System (ADS)

    Bayle, M.; Bonafos, C.; Benzo, P.; Benassayag, G.; Pécassou, B.; Khomenkova, L.; Gourbilleau, F.; Carles, R.

    2015-09-01

    The localized surface plasmon-polariton resonance (LSPR) of noble metal nanoparticles (NPs) is widely exploited for enhanced optical spectroscopies of molecules, nonlinear optics, photothermal therapy, photovoltaics, or more recently in plasmoelectronics and photocatalysis. The LSPR frequency depends not only of the noble metal NP material, shape, and size but also of its environment, i.e., of the embedding matrix. In this paper, Ag-NPs have been fabricated by low energy ion beam synthesis in silicon nitride (SiNx) matrices. By coupling the high refractive index of SiNx to the relevant choice of dielectric thickness in a SiNx/Si bilayer for an optimum antireflective effect, a very sharp plasmonic optical interference is obtained in mid-range of the visible spectrum (2.6 eV). The diffusion barrier property of the host SiNx matrix allows for the introduction of a high amount of Ag and the formation of a high density of Ag-NPs that nucleate during the implantation process. Under specific implantation conditions, in-plane self-organization effects are obtained in this matrix that could be the result of a metastable coarsening regime.

  9. Ag doped silicon nitride nanocomposites for embedded plasmonics

    SciTech Connect

    Bayle, M.; Bonafos, C. Benzo, P.; Benassayag, G.; Pécassou, B.; Carles, R.; Khomenkova, L.; Gourbilleau, F.

    2015-09-07

    The localized surface plasmon-polariton resonance (LSPR) of noble metal nanoparticles (NPs) is widely exploited for enhanced optical spectroscopies of molecules, nonlinear optics, photothermal therapy, photovoltaics, or more recently in plasmoelectronics and photocatalysis. The LSPR frequency depends not only of the noble metal NP material, shape, and size but also of its environment, i.e., of the embedding matrix. In this paper, Ag-NPs have been fabricated by low energy ion beam synthesis in silicon nitride (SiN{sub x}) matrices. By coupling the high refractive index of SiN{sub x} to the relevant choice of dielectric thickness in a SiN{sub x}/Si bilayer for an optimum antireflective effect, a very sharp plasmonic optical interference is obtained in mid-range of the visible spectrum (2.6 eV). The diffusion barrier property of the host SiN{sub x} matrix allows for the introduction of a high amount of Ag and the formation of a high density of Ag-NPs that nucleate during the implantation process. Under specific implantation conditions, in-plane self-organization effects are obtained in this matrix that could be the result of a metastable coarsening regime.

  10. Comparison of the Weibull characteristics of hydroxyapatite and strontium doped hydroxyapatite.

    PubMed

    Yatongchai, Chokchai; Wren, Anthony W; Curran, Declan J; Hornez, Jean-Christophe; Mark R, Towler

    2013-05-01

    The effects of two strontium (Sr) additions, 5% and 10% of the total calcium (Ca) content, on the phase assemblage and Weibull statistics of hydroxyapatite (HA) are investigated and compared to those of undoped HA. Sintering was carried out in the range of 900-1200 °C in steps of 1000 °C in a conventional furnace. Sr content had little effect on the mean particulate size. Decomposition of the HA phase occurred with Sr incorporation, while β-TCP stabilization was shown to occur with 10% Sr additions. Porosity in both sets of doped samples was at a comparable level to porosity in the undoped HA samples, however the 5% Sr-HA samples displayed the greatest reduction in porosity with increasing temperature while the porosity of the 10% Sr-HA samples remain relatively constant over the full sintering temperature range. The undoped HA samples displayed the greatest Weibull strengths and the porosity was determined to be the major controlling factor. However, with the introduction of decompositional phases in the Sr-HA samples, the dependence of strength on porosity is reduced and the phase assemblage becomes the more dominant factor for Weibull strength. The Weibull modulus is relatively independent of the porosity in the undoped HA samples. The 5% Sr-HA samples experience a slight increase in Weibull modulus with porosity, indicating a possible relationship between the parameters. However the 10% Sr-HA samples show the highest Weibull modulus with a value of approximately 15 across all sintering temperatures. It is postulated that this is due to the increased amount of surface and lattice diffusion that these samples undergo, which effectively smooths out flaws in the microstructure, due to a saturation of Sr content occurring in grain boundary movement. PMID:23524073

  11. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    SciTech Connect

    Sarah C. Larson; Vicki H. Grassian

    2006-12-31

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NO{sub x}) and ammonia (NH{sub 3}) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO{sub 2} was observed at room temperature in the presence of NH{sub 3} as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO{sub 2} reduction with NH{sub 3} relative to nanocrystalline NaY.

  12. Nanocrystalline silicon quantum dots thin films prepared by magnetron reaction sputtering

    NASA Astrophysics Data System (ADS)

    Zhao, Weiping; Deng, Jinxiang; Yang, Bing; Yu, Zhenrui; Aceves, Mariano

    2009-07-01

    Silicon is a kind of excellent semiconductor material and is one of the core material of microelectronics. But it is not a fine luminescent material. The photoluminescence(PL) will be obtained by excitation only when the size of silicon partials reduced to a certain value. Nanocrystalline silicon films have special structure and many excellent optoelectronic properties and are supposed to be applied in optoelectronic devices and large scale integrated circuits. In this paper, Nanocrystalline silicon films was deposited on silicon substrate by RF magnetron sputtering with pure Si target. And the working gas is the mixture of oxygen and argon .The content of O2 in working gas (O2/ O2 + Ar) and the power of sputtering were changed separately .However, the substrate temperature, working gas pressure and other conditions were definite. After annealing in the stove, we got the Nanocrystalline silicon particles in the thin films. Fourier transform infrared(FTIR) transmittance measurement was carried out to characterized Nanocrystalline silicon films. X-ray photoelectron spectroscopy (XPS) measurement was also performed to estimate the atom ratio of the Nanocrystalline silicon films. Raman scattering measurements was also taken in to characterize the Nanocrystalline silicon films. The formation of Nanocrystalline silicon filmswere depended partly on the parameters of experiment. The annealed silicon films were researched that the size of the Nanocrystalline silicon particles proved to be largely impacted by the annealing temperature in the thin film

  13. Characterization and inhibitive study of gel-grown hydroxyapatite crystals at physiological temperature

    NASA Astrophysics Data System (ADS)

    Parekh, Bharat; Joshi, Mihir; Vaidya, Ashok

    2008-04-01

    Hydroxyapatite is very useful for various biomedical applications, due to its chemical similarity with mineralized bone of human. Hydroxyapatite is also responsible for arthropathy (joint disease). In the present study, the growth of hydroxyapatite crystals was carried out by using single-diffusion gel growth technique in silica hydro gel media, at physiological temperature. The growth of hydroxyapatite crystals under slow and controlled environment in gel medium can be simulated in a simple manner to the growth in human body. The crystals, formed in the Liesegang rings, were characterized by powder XRD, FTIR and dielectric study. The diffusion study is also carried out for the hydroxyapatite crystals using the moving boundary model. The inhibitive influence of various Ayurvedic medicinal plant extracts such as Boswellia serrata gum resin , Tribulus terrestris fruits, Rotula aquatica roots, Boerhaavia diffusa roots and Commiphora wightii, on the growth of hydroxyapatite was studied. Roots of R. aquatica and B. diffusa show some inhibition of the hydroxyapatite crystals in vitro. This preclinical study will be helpful to design the therapy for prevention of hydroxyapatite-based ailments.

  14. FORMATION OF CHLOROPYROMORPHITE IN A LEAD-CONTAMINATED SOIL AMENDED WITH HYDROXYAPATITE

    EPA Science Inventory

    To evaluate conversion of soil Pb to pyromorphite, a Pb contaminated soil collected adjacent to a historical smelter was reacted with hydroxyapatite in a traditional incubation experiment and in a dialysis system in which the soil and hydroxyapatite solids were separated by a dia...

  15. Containment of uranium in the proposed Egyptian geologic repository for radioactive waste using hydroxyapatite.

    SciTech Connect

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Headley, Thomas Jeffrey; Sanchez, Charles Anthony; Zhao, Hongting; Salas, Fred Manuel; Hasan, Mahmoud A.; Holt, Kathleen Caroline

    2004-04-01

    Currently, the Egyptian Atomic Energy Authority is designing a shallow-land disposal facility for low-level radioactive waste. To insure containment and prevent migration of radionuclides from the site, the use of a reactive backfill material is being considered. One material under consideration is hydroxyapatite, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, which has a high affinity for the sorption of many radionuclides. Hydroxyapatite has many properties that make it an ideal material for use as a backfill including low water solubility (K{sub sp}>10{sup -40}), high stability under reducing and oxidizing conditions over a wide temperature range, availability, and low cost. However, there is often considerable variation in the properties of apatites depending on source and method of preparation. In this work, we characterized and compared a synthetic hydroxyapatite with hydroxyapatites prepared from cattle bone calcined at 500 C, 700 C, 900 C and 1100 C. The analysis indicated the synthetic hydroxyapatite was similar in morphology to 500 C prepared cattle hydroxyapatite. With increasing calcination temperature the crystallinity and crystal size of the hydroxyapatites increased and the BET surface area and carbonate concentration decreased. Batch sorption experiments were performed to determine the effectiveness of each material to sorb uranium. Sorption of U was strong regardless of apatite type indicating all apatite materials evaluated. Sixty day desorption experiments indicated desorption of uranium for each hydroxyapatite was negligible.

  16. Containment of uranium in the proposed Egyptian geologic repository for radioactive waste using hydroxyapatite.

    SciTech Connect

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Headley, Thomas Jeffrey; Sanchez, Charles Anthony; Zhao, Hongting; Salas, Fred Manuel; Hasan, Mahmoud A.; Holt, Kathleen Caroline

    2003-08-01

    Currently, the Egyptian Atomic Energy Authority is designing a shallow-land disposal facility for low-level radioactive waste. To insure containment and prevent migration of radionuclides from the site, the use of a reactive backfill material is being considered. One material under consideration is hydroxyapatite, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, which has a high affinity for the sorption of many radionuclides. Hydroxyapatite has many properties that make it an ideal material for use as a backfill including low water solubility (K{sub sp} > 10{sup -40}), high stability under reducing and oxidizing conditions over a wide temperature range, availability, and low cost. However, there is often considerable variation in the properties of apatites depending on source and method of preparation. In this work, we characterized and compared a synthetic hydroxyapatite with hydroxyapatites prepared from cattle bone calcined at 500 C, 700 C, 900 C and 1100 C. The analysis indicated the synthetic hydroxyapatite was similar in morphology to 500 C prepared cattle hydroxyapatite. With increasing calcination temperature the crystallinity and crystal size of the hydroxyapatites increased and the BET surface area and carbonate concentration decreased. Batch sorption experiments were performed to determine the effectiveness of each material to sorb uranium. Sorption of U was strong regardless of apatite type indicating all apatite materials evaluated. Sixty day desorption experiments indicated desorption of uranium for each hydroxyapatite was negligible.

  17. Synthesis and release of trace elements from hollow and porous hydroxyapatite spheres

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Grandfield, Kathryn; Schwenke, Almut; Engqvist, Håkan

    2011-07-01

    It is known that organic species regulate fabrication of hierarchical biological forms via solution methods. However, in this study, we observed that the presence of inorganic ions plays an important role in the formation and regulation of biological spherical hydroxyapatite formation. We present a mineralization method to prepare ion-doped hydroxyapatite spheres with a hierarchical structure that is free of organic surfactants and biological additives. Porous and hollow strontium-doped hydroxyapatite spheres were synthesized via controlling the concentration of strontium ions in a calcium and phosphate buffer solution. Similarly, fluoride and silicon-doped hydroxyapatite spheres were synthesized. While spherical particle formation was attainable at low and high temperature for Sr-doped hydroxyapatite, it was only possible at high temperature in the F/Si-doped system. The presence of inorganic ions not only plays an important role in the formation and regulation of biological spherical hydroxyapatite, but also could introduce pharmaceutical effects as a result of trace element release. Such ion release results showed a sustained release with pH responsive behavior, and significantly influenced the hydroxyapatite re-precipitation. These ion-doped hydroxyapatite spheres with hollow and porous structure could have promising applications as bone/tooth materials, drug delivery systems, and chromatography supports.

  18. PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model.

    PubMed

    Arabmotlagh, Mohammad; Bachmaier, Samuel; Geiger, Florian; Rauschmann, Michael

    2014-11-01

    Polymethylmethacrylate (PMMA) is the most commonly used void filler for augmentation of osteoporotic vertebral fracture, but the differing mechanical features of PMMA and osteoporotic bone result in overload and failure of adjacent bone. The aim of this study was to compare fatigue failure of bone after augmentation with PMMA-nanocrystalline hydroxyapatite (HA) composite material or with plain PMMA in a sheep model. After characterization of the mechanical properties of a composite material consisting of PMMA and defined amounts (10, 20, and 30% volume fraction) of HA, the composite material with 30% volume fraction HA was implanted in one distal femur of sheep; plain PMMA was implanted in the other femur. Native non-augmented bone served as control. Three and 6 months after implantation, the augmented bone samples were exposed to cyclic loading and the evolution of damage was investigated. The fatigue life was highest for the ovine native bone and lowest for bone-PMMA specimens. Bone-composite specimens showed significantly higher fatigue life than the respective bone-PMMA specimens in both 3- and 6-month follow-up groups. These results suggest that modification of mechanical properties of PMMA by addition of HA to approximate those of cancellous bone retards fatigue failure of the surrounding bone compared to augmented bone with plain PMMA. PMID:24652676

  19. Parathyroid hormone-related protein (107-111) improves the bone regeneration potential of gelatin-glutaraldehyde biopolymer-coated hydroxyapatite.

    PubMed

    Lozano, Daniel; Sánchez-Salcedo, Sandra; Portal-Núñez, Sergio; Vila, Mercedes; López-Herradón, Ana; Ardura, Juan Antonio; Mulero, Francisca; Gómez-Barrena, Enrique; Vallet-Regí, María; Esbrit, Pedro

    2014-07-01

    Biopolymer-coated nanocrystalline hydroxyapatite (HA) made as macroporous foams which are degradable and flexible are promising candidates as orthopaedic implants. The C-terminal (107-111) epitope of parathyroid hormone-related protein (PTHrP) exhibits osteogenic properties. The main aim of this study was to evaluate whether PTHrP (107-111) loading into gelatin-glutaraldehyde biopolymer-coated HA (HAGlu) scaffolds would produce an optimal biomaterial for tissue engineering applications. HAGlu scaffolds with and without PTHrP (107-111) were implanted into a cavitary defect performed in both distal tibial metaphysis of adult rats. Animals were sacrificed after 4 weeks for histological, microcomputerized tomography and gene expression analysis of the callus. At this time, bone healing occurred only in the presence of PTHrP (107-111)-containing HAGlu implant, related to an increase in bone volume/tissue volume and trabecular thickness, cortical thickness and gene expression of osteocalcin and vascular cell adhesion molecule 1, but a decreased gene expression of Wnt inhibitors, SOST and dickkopf homolog 1. The autonomous osteogenic effect of the PTHrP (107-111)-loaded HAGlu scaffolds was confirmed in mouse and human osteoblastic cell cultures. Our findings demonstrate the advantage of loading PTHrP (107-111) into degradable HAGlu scaffolds for achieving an optimal biomaterial that is promising for low load bearing clinical applications.

  20. PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model.

    PubMed

    Arabmotlagh, Mohammad; Bachmaier, Samuel; Geiger, Florian; Rauschmann, Michael

    2014-11-01

    Polymethylmethacrylate (PMMA) is the most commonly used void filler for augmentation of osteoporotic vertebral fracture, but the differing mechanical features of PMMA and osteoporotic bone result in overload and failure of adjacent bone. The aim of this study was to compare fatigue failure of bone after augmentation with PMMA-nanocrystalline hydroxyapatite (HA) composite material or with plain PMMA in a sheep model. After characterization of the mechanical properties of a composite material consisting of PMMA and defined amounts (10, 20, and 30% volume fraction) of HA, the composite material with 30% volume fraction HA was implanted in one distal femur of sheep; plain PMMA was implanted in the other femur. Native non-augmented bone served as control. Three and 6 months after implantation, the augmented bone samples were exposed to cyclic loading and the evolution of damage was investigated. The fatigue life was highest for the ovine native bone and lowest for bone-PMMA specimens. Bone-composite specimens showed significantly higher fatigue life than the respective bone-PMMA specimens in both 3- and 6-month follow-up groups. These results suggest that modification of mechanical properties of PMMA by addition of HA to approximate those of cancellous bone retards fatigue failure of the surrounding bone compared to augmented bone with plain PMMA.

  1. Processing-structure-property relationships in ultrafine grain and nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Koch, C. C.

    2009-01-01

    This paper will review selected aspects of the processingstructureproperty relationships in ultrafine grained (ufg- grain sizes 100 to 500 nm) and nanocrystalline (nc- grain sizes < 100 nm) materials. Of the various processing methods to obtain fine grain size materials, the two that have provided bulk artifactfree samples are electrodeposition and severe plastic deformation. The processing methods and important variables will be described for these techniques. Since the stability of the nanocrystalline microstructure is important for both processing (e.g. consolidation of powders) and elevated temperature mechanical property studies, the stability of nanocrystalline grain sizes as influenced by solute additions will be discussed. While hardness and strength usually increase with decreasing grain size, ductility is typically poor. There are now, however, a number of examples of nanocrystalline materials which combine high strength with good ductility. An example from the author's laboratory on nanocrystalline Cu with optimized mechanical properties will be presented.

  2. Influence of Starting Powders on Hydroxyapatite Coatings Fabricated by Room Temperature Spraying Method.

    PubMed

    Seo, Dong Seok; Lee, Jong Kook; Hwang, Kyu Hong; Hahn, Byung Dong; Yoon, Seog Young

    2015-08-01

    Three types of raw materials were used for the fabrication of hydroxyapatite coatings by using the room temperature spraying method and their influence on the microstructure and in vitro characteristics were investigated. Starting hydroxyapatite powders for coatings on titanium substrate were prepared by a heat treatment at 1100 °C for 2 h of bovine bone, bone ash, and commercial hydroxyapatite powders. The phase compositions and Ca/P ratios of the three hydroxyapatite coatings were similar to those of the raw materials without decomposition or formation of a new phase. All hydroxyapatite coatings showed a honeycomb structure, but their surface microstructures revealed different features in regards to surface morphology and roughness, based on the staring materials. All coatings consisted of nano-sized grains and had dense microstructure. Inferred from in vitro experiments in pure water, all coatings have a good dissolution-resistance and biostability in water.

  3. Influence of Starting Powders on Hydroxyapatite Coatings Fabricated by Room Temperature Spraying Method.

    PubMed

    Seo, Dong Seok; Lee, Jong Kook; Hwang, Kyu Hong; Hahn, Byung Dong; Yoon, Seog Young

    2015-08-01

    Three types of raw materials were used for the fabrication of hydroxyapatite coatings by using the room temperature spraying method and their influence on the microstructure and in vitro characteristics were investigated. Starting hydroxyapatite powders for coatings on titanium substrate were prepared by a heat treatment at 1100 °C for 2 h of bovine bone, bone ash, and commercial hydroxyapatite powders. The phase compositions and Ca/P ratios of the three hydroxyapatite coatings were similar to those of the raw materials without decomposition or formation of a new phase. All hydroxyapatite coatings showed a honeycomb structure, but their surface microstructures revealed different features in regards to surface morphology and roughness, based on the staring materials. All coatings consisted of nano-sized grains and had dense microstructure. Inferred from in vitro experiments in pure water, all coatings have a good dissolution-resistance and biostability in water. PMID:26369193

  4. [Using Metronidazole and Hydroxyapatite for preventing dry socket after extraction of impacted mandibular 3rd molar

    PubMed

    Xue, Z X; Mao, T Q

    1993-03-01

    Dry socket is one of the most frequent complications after teeth extraction,especially in impacted mandibular third molars.The etilogy and prevention is not clear.This study id based on principles of clinical epidemiology.Randomized double-blind method was carried out in 549 patients to test the value of the prophylactic use of Hydroxyapatite,to test the value of the prophylactic use of Hydroxyapatite and Metronidazole,placed in the sockets of extracted impacted mandibular third molars.The results of the incidence of DS was 7.1% of Metronidazole treated sockets,and 2.1% of Hydroxyapatite treated sockets,It is concluded that Hydroxyapatite is an effective preventive factor for dry socket,The possible mechanism of Hydroxyapatite and the dry socket etiology were discussed. PMID:15159869

  5. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.

    PubMed

    Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2016-05-01

    The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion.

  6. [In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].

    PubMed

    Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei

    2015-08-01

    In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.

  7. Is hydroxyapatite a reliable fixation option in unicompartmental knee arthroplasty? A 5- to 13-year experience with the hydroxyapatite-coated unix prosthesis.

    PubMed

    Epinette, Jean-Alain; Manley, Michael T

    2008-10-01

    Hydroxyapatite-coated unicompartmental knee arthroplasty (UKA) is a debatable approach to unicompartmental knee arthritis because UKA isoften viewed as a short-term solution, at best, fora condition that will eventually require a total knee arthroplasty (TKA). Unicompartmental knee arthroplasty is a more technically demanding procedure than TKA, and appropriate patient selection, careful surgical technique, and correct choice of implant geometry are all critical components to its success. A fundamental issue surrounding UKA is whether hydroxyapatite-coated unicompartmental components can provide a long-term solution to unicondylar arthritis. We address this issue in the current study, which is based on a prospective series of 125 hydroxyapatite-coated Unix knee prostheses implanted consecutively between 1994 and 2002, with a 5-year minimum follow-up and a 13-year maximum follow-up. The results of our study indicate that uncemented hydroxyapatite-coated UKA can be successful in the long term.

  8. Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition.

    PubMed

    Eraković, Sanja; Janković, Ana; Veljović, Djordje; Palcevskis, Eriks; Mitrić, Miodrag; Stevanović, Tatjana; Janaćković, Djordje; Mišković-Stanković, Vesna

    2013-02-14

    Hydroxyapatite is the most suitable biocompatible material for bone implant coatings. However, its brittleness is a major obstacle, and that is why, recently, research focused on creating composites with various biopolymers. In this study, hydroxyapatite coatings were modified with lignin in order to attain corrosion stability and surface porosity that enables osteogenesis. Incorporating silver, well known for its antimicrobial properties, seemed the best strategy for avoiding possible infections. The silver/hydroxyapatite (Ag/HAP) and silver/hydroxyapatite/lignin (Ag/HAP/Lig) coatings were cathaphoretically deposited on titanium from ethanol suspensions, sintered at 900 °C in Ar, and characterized by X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, attenuated total reflection Fourier transform infrared, and X-ray photoelectron spectroscopy. The corrosion stability of electrodeposited coatings was evaluated in vitro in Kokubo's simulated body fluid (SBF) at 37 °C using electrochemical impedance spectroscopy. Bioactivity was estimated by immersion in SBF to evaluate the formation of hydroxyapatite on the coating surface. A microcrystalline structure of newly formed plate-shaped carbonate-hydroxyapatite was detected after only 7 days, indicating enhanced bioactive behavior. Both coatings had good corrosion stability during a prolonged immersion time. Among the two, the Ag/HAP/Lig coating had a homogeneous surface, less roughness, and low values of contact angle.

  9. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  10. Morphological, luminescence and structural properties of nanocrystalline silicon thin films

    SciTech Connect

    Ali, Atif Mossad; Kobayashi, Hikaru; Inokuma, Takao; Al-Hajry, Ali

    2013-03-15

    Highlights: ► The PL spectra showed two stronger peaks and one weaker peak. ► The PL peak energies and optical band-gap values were found higher than 1.12 eV. ► The structural change from an amorphous to nanocrystalline with increasing [SiH{sub 4}]. - Abstract: Nanocrystalline silicon (nc-Si) thin films deposited by plasma-enhanced chemical vapor deposition at various silane flow rates ([SiH{sub 4}]) are studied. The characterization of these films by high-resolution transmission electron microscopy, Raman spectroscopy and X-ray diffraction reveals that no film and very thin film is deposited at [SiH{sub 4}] = 0.0 and 0.1 sccm, respectively. In addition, the structural change from an amorphous to a nanocrystalline phase occurs at around [SiH{sub 4}] = 0.2 sccm. In this study, the importance of arriving species at surfaces and precursors is clearly demonstrated by the effect of a small addition of SiH{sub 4} on the frequency and width of a Raman peak and the structure of the grown film. The infrared spectroscopic analysis shows no hydrogen incorporation in the nc-Si film deposited at the low value of [SiH{sub 4}]. However, the intensity of the peak around 2100 cm{sup −1} due to SiH decreases with increasing [SiH{sub 4}]. All fabricated films give photoluminescence in the range between 1.7 and 2.4 eV at room temperature, indicating enlargement of the band-gap energy. The presence of very small crystallites leads to the appearance of quantum confinement effects. The variations of the photoluminescence energy and spectral width are well correlated with the structural properties of the films such as crystallite size, crystalline volume fraction, and the density of Si-H bonds.

  11. Synthesis and structure of nanocrystalline mixed Ce–Yb silicates

    SciTech Connect

    Małecka, Małgorzata A. Kępiński, Leszek

    2013-07-15

    Graphical abstract: - Highlights: • New method of synthesis of nanocrystalline mixed lanthanide silicates is proposed. • Formation of A-type (Ce{sub 1−y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} in well dispersed Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)}–SiO{sub 2} system. • Formation of Yb{sub y}Ce{sub 9.33−y}(SiO{sub 4}){sub 6}O{sub 2} in agglomerated Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)}–SiO{sub 2} system. - Abstract: This work presents results of studies on synthesis and structure of mixed, nanocrystalline Ce–Yb silicates. Using TEM, XRD and FTIR we showed that heat treatment of nanocrystalline Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)} (x = 0.3, 0.5) mixed oxide supported on amorphous silica in reducing atmosphere, results in formation of Ce–Yb mixed silicates. Dispersion of the oxide on the silica surface and thus a local lanthanide/Si atomic ratio determines the stoichiometry of the silicate. Oxide crystallites uniformly dispersed on the silica surface transformed into A-(Ce{sub 1−y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} disilicate, while the agglomerated nanoparticles converted into Yb{sub y}Ce{sub 9.33−y}(SiO{sub 4}){sub 6}O{sub 2} oxyapatite silicate as an intermediate phase.

  12. Residual stress, strain, and faults in nanocrystalline palladium and copper

    SciTech Connect

    Sanders, P.G.; Witney, A.B.; Weertman, J.R.; Valiev, R.Z.; Siegel, R.W.

    1995-02-01

    Nanocrystalline Pd and Cu, prepared by inert gas condensation and warm compaction, were studied using x-ray diffraction techniques. A sample of Cu with sub-micrometer grain size produced by severe plastic deformation was also examined. The Warren-Averbach technique was used to separate the line broadening due to grain size, root-mean-squared strain, and faults. Peak shifts and asymmetry were used to determine the long range surface stresses, stacking fault probability, and twin probability. The Young`s modulus of a Pd sample was determined by an ultrasonic technique, and compared with the coarse-grained, fully-dense value.

  13. Exciton annihilation in dye-sensitized nanocrystalline semiconductor films

    NASA Astrophysics Data System (ADS)

    Namekawa, Akihiro; Katoh, Ryuzi

    2016-08-01

    Exciton annihilation in dye-sensitized nanocrystalline semiconductor (Al2O3) films has been studied through laser-induced fluorescence spectroscopy. The relative quantum yield of the fluorescence decreases with increasing excitation light intensity, the indication being that exciton annihilation occurred. The rate constants of the annihilation were estimated for three dyes, N719, D149, and MK2, that are known to be sensitizing dyes for efficient dye-sensitized solar cells. The hopping time between dye molecules and the diffusion length of excitons within their lifetime were also estimated to facilitate discussion of the relevance of exciton annihilation to primary processes in dye-sensitized solar cells.

  14. Nanocrystalline todorokite-like manganese oxide produced by bacterial catalysis.

    PubMed

    Kim, Hack-Sung; Pastén, Pablo A; Gaillard, Jean-François; Stair, Peter C

    2003-11-26

    We describe the characterization of an unknown and difficult to identify but geochemically and environmentally significant MnOx structure produced by a freshwater bacterium, Leptothrix discophora SP-6, using combined transmission electron microscopy (TEM), extended X-ray absorption fine structure (EXAFS), and UV Raman spectroscopy. The large surface-to-volume ratio of the needle-shaped nanocrystalline MnO2 formed around the bacterial cells coupled to the porous, zeolite-like structure has the potential to catalyze reactions and oxidize and adsorb metals. PMID:14624570

  15. Plasma metallurgical production of nanocrystalline borides and carbides

    NASA Astrophysics Data System (ADS)

    Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.

    2016-09-01

    he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.

  16. Stress-induced phase transformation in nanocrystalline UO2

    SciTech Connect

    Uberuaga, Blas Pedro; Desai, Tapan

    2009-01-01

    We report a stress-induced phase transfonnation in stoichiometric UO{sub 2} from fluorite to the {alpha}-PbO{sub 2} structure using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. MD simulations, performed on nanocrystalline microstructure under constant-stress tensile loading conditions, reveal a heterogeneous nucleation of the {alpha}-PbO{sub 2} phase at the grain boundaries followed by the growth of this phase towards the interior of the grain. The DFT calculations confinn the existence of the {alpha}-PbO{sub 2} structure, showing that it is energetically favored under tensile loading conditions.

  17. Osteoblastic cells trigger gate currents on nanocrystalline diamond transistor.

    PubMed

    Izak, Tibor; Krátká, Marie; Kromka, Alexander; Rezek, Bohuslav

    2015-05-01

    We show the influence of osteoblastic SAOS-2 cells on the transfer characteristics of nanocrystalline diamond solution-gated field-effect transistors (SGFET) prepared on glass substrates. Channels of these fully transparent SGFETs are realized by hydrogen termination of undoped diamond film. After cell cultivation, the transistors exhibit about 100× increased leakage currents (up to 10nA). During and after the cell delamination, the transistors return to original gate currents. We propose a mechanism where this triggering effect is attributed to ions released from adhered cells, which depends on the cell adhesion morphology, and could be used for cell culture monitoring.

  18. Mechanical properties of micro- and nanocrystalline diamond foils

    PubMed Central

    Lodes, M. A.; Kachold, F. S.; Rosiwal, S. M.

    2015-01-01

    Diamond coating of suitable template materials and subsequent delamination allows for the manufacturing of free-standing diamond foil. The evolution of the microstructure can be influenced by secondary nucleation via control of process conditions in the hot-filament chemical vapour deposition process. Bending tests show extraordinarily high strength (more than 8 GPa), especially for diamond foils with nanocrystalline structure. A detailed fractographic analysis is conducted in order to correlate measured strength values with crack-initiating defects. The size of the failure causing flaw can vary from tens of micrometres to tens of nanometres, depending on the diamond foil microstructure as well as the loading conditions. PMID:25713455

  19. Ferromagnetism in Tb doped ZnO nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Zou, W. Q.; Ge, C. N.; Venkataiah, G.; Su, H. L.; Hsu, H. S.; Huang, J. C. A.; Liu, X. C.; Zhang, F. M.; Du, Y. W.

    2012-06-01

    Nanocrystalline Tb-doped ZnO films have been prepared by ion-beam sputtering technique. Magnetic characterization showed that the films are ferromagnetic with Curie temperature (TC) higher than room temperature. By further treated with a rapid thermal annealing process, both the grain size and the carrier concentration of the films increase, while the saturation magnetization of the films decreases. This magnetic behavior can be hardly explained by either bound magnetic polaron model or free carrier mediation model, thus suggests that the grain boundaries play a key role for the origin of ferromagnetism in these films.

  20. Structural Modification of Nanocrystalline Ceria using Ion Beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D; Varga, Tamas; Moll, Sandra; Namavar, Fereydoon; Weber, William J

    2011-01-01

    Exceptional size-dependent electronic-ionic conductivity of nanostructured ceria can significantly alter materials properties in chemical, physical, electronic and optical applications. Using energetic ions, we have demonstrated effective modification of interface volume and grain size in nanocrystalline ceria from a few nm up to ~ 25 nm, which is the critical region for controlling size-dependent material property. The unique self-healing response of radiation damage at grain boundaries is applied to control the grain size at nanoscale as a function of ion dose and irradiation temperature. Structural modification by energetic ions is proposed to achieve disirable electronic-ionic conductivity.

  1. Magnetic induction heating of FeCr nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Gómez-Polo, C.; Larumbe, S.; Pérez-Landazábal, J. I.; Pastor, J. M.; Olivera, J.; Soto-Armañanzas, J.

    2012-06-01

    In this work the thermal effects of magnetic induction heating in (FeCr)73.5Si13.5Cu1B9Nb3 amorphous and nanocrystalline wires were analyzed. A single piece of wire was immersed in a glass capillary filled with water and subjected to an ac magnetic field (frequency, 320 kHz). The initial temperature rise enabled the determination of the effective Specific Absorption Rate (SAR). Maximum SAR values are achieved for those samples displaying high magnetic susceptibility, where the eddy current losses dominate the induction heating behavior. Moreover, the amorphous sample with Curie temperature around room temperature displays characteristic features of self-regulated hyperthermia.

  2. Deformation Twinning in Nanocrystalline Ni during Cryogenic Rolling

    NASA Astrophysics Data System (ADS)

    Feng, Xiu-Yan; Cheng, Zhi-Ying; Zhou, Jia; Wu, Xiao-Lei; Wang, Zi-Qiang; Hong, You-Shi

    2006-02-01

    Deformation twinning is evidenced by transmission electron microscopy examinations in electrodeposited nanocrystalline (nc) Ni with mean grain size 25 nm upon cryogenic rolling. Two twinning mechanisms are confirmed to operate in nc grains, i.e. heterogeneous formation via emission of partial dislocations from the grain boundary and homogeneous nucleation through dynamic overlapping of stacking faults, with the former being determined as the most proficient. Deformation twinning in nc Ni may be well interpreted in terms of molecular dynamics simulation based on generalized planar fault energy curves.

  3. A reduction boronation route to nanocrystalline titanium diboride

    NASA Astrophysics Data System (ADS)

    Chen, Luyang; Gu, Yunle; Shi, Liang; Yang, Zeheng; Ma, Jianhua; Qian, Yitai

    2004-04-01

    Nanocrystalline titanium diboride (TiB 2) has been prepared through a reduction-boronation route by using Ti powders and BBr 3 as titanium and boron sources, and metallic sodium as reductant at 400 °C. X-ray powder diffraction (XRD) pattern can be indexed as hexagonal TiB 2 with the lattice constants of a=3.028 and c=3.223 Å. Transmission electron microscopy images show particle morphology with average size of 15 nm. Selected area electron diffraction patterns confirm the preparation of the hexagonal TiB 2.

  4. Vibrational Properties of Nanograins and Interfaces in Nanocrystalline Materials

    SciTech Connect

    Stankov, S.; Sergueev, I.; Chumakov, A. I.; Rueffer, R.; Yue, Y. Z.; Hu, L.; Miglierini, M.; Sepiol, B.; Svec, P.

    2008-06-13

    The vibrational dynamics of nanocrystalline Fe{sub 90}Zr{sub 7}B{sub 3} was studied at various phases of crystallization. The density of phonon states (DOS) of the nanograins was separated from that of the interfaces for a wide range of grain sizes and interface thicknesses. The DOS of the nanograins does not vary with their size and down to 2 nm grains still closely resembles that of the bulk. The anomalous enhancement of the phonon states at low and high energies originates from the DOS of the interfaces and scales linearly to their atomic fraction.

  5. Synthesis of nanocrystalline rare earth oxides by glycothermal method

    SciTech Connect

    Hosokawa, Saburo; Iwamoto, Shinji; Inoue, Masashi

    2008-11-03

    The reaction of yttrium acetate hydrate in 1,2-propanediol at 300 deg. C yielded a product containing acetate groups and glycol moieties. From this product, Y{sub 2}O{sub 3} was directly crystallized at 400 deg. C without the formation of a carbonate oxide phase. The thus-obtained Y{sub 2}O{sub 3} samples had a small crystallite size (2.2 nm) and significantly large surface area (280 m{sup 2}/g). Other nanocrystalline rare earth (Gd-Yb) oxides were also obtained by this method.

  6. Aging of ceramic carbonized hydroxyapatite at room temperature

    NASA Astrophysics Data System (ADS)

    Tkachenko, M. V.; Kamzin, A. S.

    2016-08-01

    The process of aging of ceramic carbonized hydroxyapatite (CHA) produced in a dry carbon dioxide atmosphere at temperatures of 800-1200°C has been studied by chemical and X-ray structural analysis, infrared spectroscopy, and scanning electron microscopy methods. The phase composition and structure of initial prepared ceramics samples and those aged for a year have been compared. It has been shown that relaxation of internal stresses occurring during pressed sample sintering causes plastic deformation of crystallites at room temperature, accompanied by redistribution of carbonate ions between A1, A2, B1, and B2 sites and CHA decomposition with the formation of CaO separations.

  7. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites.

    PubMed

    Wang, Xuejiang; Li, Yubao; Wei, Jie; de Groot, Klass

    2002-12-01

    In this study, acicular nano-hydroxyapatite (n-HA) was used to make a new biomimetic composite with polyamide (poly hexamethylene adipamide) by a unique technique. The physical and chemical characteristics of the composites were tested. It was found that these synthesized n-HA crystals were similar to bone apatite in size, phase composition and crystal structure. The biomimetic n-HA crystals were uniformly distributed in the polymer matrix and its content can reach 65%, close to that in natural bone. Chemical binding between inorganic n-HA and polyamide was investigated and discussed. The mechanical properties of the composites were found to match well with those of natural bone.

  8. Synthesis and application of hydroxyapatite and fluoroapatite to scorodite encapsulation

    NASA Astrophysics Data System (ADS)

    Katsarou, Lydia

    Recent research has investigated the precipitation of crystalline scorodite (FeAsO4˙2H2O) as a method to stabilise arsenic for disposal due to its good stability performance according to EPA's TCLP test. It has been determined, however, that scorodite releases arsenic in significant concentrations under alkaline pH or under anoxic conditions. With the objective of enhancing the stability of scorodite, its encapsulation with minerals inert to pH and redox potential variations is considered in this work. Such encapsulation materials are hydroxyapatite (HAP-Ca5(PO4)3OH) and fluoroapatite (FAP-Ca5(PO4)3F), the two most stable of the calcium phosphates. The work described in this thesis includes: 1) the preparation of hydroxyapatite and fluoroapatite powders and their characterisation, 2) the synthesis of crystalline scorodite under atmospheric conditions and its characterisation, 3) the encapsulation of scorodite with hydroxyapatite and fluoroapatite, and 4) the long term stability testing of the encapsulated solids. Hydroxyapatite and fluoroapatite were prepared first by homogeneous precipitation from a metastable solution, to which "Ca" and "PO4" source reagents of different concentrations were added at variable rates. The crystallinity of the produced materials was found to increase with temperature. Crystalline scorodite was produced by seeded crystallisation in ambient pressure. For the encapsulation of the scorodite particles various methods of direct precipitation by controlled supersaturation were attempted, by adjusting the pH and adding/mixing feed solutions of individual calcium and phosphate source reagents. Heterogeneous deposition of HAP on scorodite proved rather difficult. Optimum results were obtained via prior conditioning of the scorodite substrate in a calcium solution and employment of low agitation regime and high (37 °C rather than 22°C) temperature. The stability tests were done in oxic and anoxic environments and their results demonstrated

  9. X-ray diffraction study of cadmium hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Nounah, A.; Maroufi, N.; Ichou, Y. Ait; Lacout, J. L.; Savariault, J. M.

    2005-03-01

    Solid solutions of cadmium and calcium hydroxyapatite [ Ca{10-x}Cdx(PO{4})6(OH){2} (0 ≤ x ≤ 10)] were synthesized by a wet process in a basic medium. The lattice dimensions of these compounds vary linearly with the atom percent cadmium. The distribution of the calcium and cadmium ions between two non-equivalent crystallographic sites, (1) and (2), were determined by the Rietveld method. The site-occupancy factors of atoms indicate a slight preference of cadmium for site (2) in the apatite structure.

  10. Ion-exchange properties of strontium hydroxyapatite under acidic conditions

    SciTech Connect

    Sugiyama, Shigeru; Nishioka, Hitoshi; Moriga, Toshihiro; Hayashi, Hiromu; Moffat, J.B.

    1998-09-01

    The ion exchange of strontium hydroxyapatite (SrHAp) with Pb{sup 2+} has been investigated under acidic conditions at 293 K. The addition of various acids to the exchanging solution enhanced the exchange capacity in the order HCl > HBr > HF > HNO{sub 3} > no acid, corresponding to the formation of halogen apatites with the former three acids or hydrogen phosphate with HNO{sub 3}. Since the ion-exchange capacity of SrHAp under nonacidic conditions is higher than that of chlorapatite, the aforementioned observations can be attributed to the participation of the protons introduced by the acids.z

  11. Hydroxyapatite-binding peptides for bone growth and inhibition

    DOEpatents

    Bertozzi, Carolyn R.; Song, Jie; Lee, Seung-Wuk

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  12. Preparation and Characterization of Fluorescence Probe from Assembly Hydroxyapatite Nanocomposite

    PubMed Central

    2010-01-01

    A new nanocomposite fluorescence probe with thioglycolic acid (TA) functional layers embedded inside the hydroxyapatite nanoribbon spherulites has been synthesized. The fluorescence intensity of the novel probe is about 1.5–3.3-fold increase compared with the probe containing no TA. When used to detect cadmium ion, the most of original assembly nanoribbon spherulites structure in the novel probe is found to have been damaged to new flake structures. The mechanism of determining cadmium ion in alcohol solution has been studied. The present systematic study provides significant information on the effect of assembly nanostructure on the metal-enhanced fluorescence phenomenon. PMID:20672031

  13. Preparation and characterization of hydroxyapatite/liposome core shell nanocomposites

    NASA Astrophysics Data System (ADS)

    Chu, Maoquan; Liu, Guojie

    2005-08-01

    Hydroxyapatite (HAP)/liposome core-shell nanocomposites have been prepared at room temperature. The liposome shells and the precipitate cores ranged in diameter mainly from 80 to 140 nm and from 40 to 120 nm, respectively. Rod-like whiskers ranging in length mainly from 10 to 30 nm were obtained after separating the precipitates from the liposomes. In contrast, the whiskers synthesized without liposomes ranged in length mainly from 70 to 140 nm. The precipitates synthesized both with and without liposomes were poorly crystalline, and had a similar chemical composition to the natural HAP.

  14. Collagen hydrolysate based collagen/hydroxyapatite composite materials

    NASA Astrophysics Data System (ADS)

    Ficai, Anton; Albu, Madalina Georgiana; Birsan, Mihaela; Sonmez, Maria; Ficai, Denisa; Trandafir, Viorica; Andronescu, Ecaterina

    2013-04-01

    The aim of this study was to study the influence of collagen hydrolysate (HAS) on the formation of ternary collagen-hydrolysate/hydroxyapatite composite materials (COLL-HAS/HA). During the precipitation process of HA, a large amount of brushite is resulted at pH = 7 but, practically pure HA is obtained at pH ⩾ 8. The FTIR data reveal the duplication of the most important collagen absorption bands due to the presence of the collagen hydrolysate. The presence of collagen hydrolysate is beneficial for the management of bone and joint disorders such as osteoarthritis and osteoporosis.

  15. [Hemispheric hydroxyapatite coated cups in total hip arthroplasty].

    PubMed

    Blacha, J; Bednarek, A; Gagała, J

    1998-01-01

    The paper presents principles of implantation as well as clinical and radiological results of hemispheric hydroxyapatite coated cups use in total hip replacement. Eighty-seven patients (60 females, 27 males) aged from 16 to 72 years (mean 49 years) underwent 96 total hip replacements with the use of 51 ABG and 45 OCTOFIT hemispheric cups. Clinical results were satisfactory with an average Harris Hip Score of 89 to 91 at final follow-up. We have found total ingrowth and osteointegration of nearly all cups. In one case of acetabular reconstruction with bone grafts cup migration has been observed and revision was necessary.

  16. [Laboratory evaluation of tooth whitening agents in hydroxyapatite samples].

    PubMed

    Poiurovskaia, I Ia; D'iakonenko, E E; Pozharkova, M E

    2013-01-01

    The paper presents laboratory model for evaluation of the effectiveness of tooth whitening agents on pure and technical hydroxyapatite (HAP) samples. HAP samples were exposed in distilled water, and colour measurements were taken after coloration in tea extract and using of "Blend-a-med delicate bleaching" ("Procter & Gamble", Germany) toothpaste. The proposed laboratory model allows imitating discoloration by food dye (tea) and measure the whitening toothpaste effect by significant change in colour characteristics in the CIE L*a*b* system. PMID:23994846

  17. Comparison of murine fibroblast cell response to fluor-hydroxyapatite composite, fluorapatite and hydroxyapatite by eluate assay.

    PubMed

    Jantová, Sona; Letasiová, Silvia; Theiszová, Marica; Palou, M

    2009-03-01

    Fluorapatite (FA) is one of the inorganic constituents of bone or teeth used for hard tissue repairs and replacements. Fluor-hydroxyapatite (FHA) is a new synthetic composite that contains the same molecular concentration of OH(-) groups and F(-) ions. The aim of this experiment was to evaluate the cellular responses of murine fibroblast NIH-3T3 cells in vitro to solid solutions of FHA and FA and to compare them with the effect of hydroxyapatite (HA). We studied 24, 48 and 72 h effects of biomaterials on cell morphology, proliferation and cell cycle of NIH-3T3 cells by eluate assay. Furthermore, we examined the ability of FHA, FA and HA to induce cell death and DNA damage. Our cytotoxic/antiproliferative studies indicated that any of tested biomaterials did not cause the total inhibition of cell division. Biomaterials induced different antiproliferative effects increasing in the order HA < FHA < FA which were time- and concentration-dependent. None of the tested biomaterials induced necrotic/apoptotic death of NIH-3T3 cells. On the other hand, after 72 h we found that FHA and FA induced G0/G1 arrest of NIH-3T3 cells, while HA did not affect any cell cycle phases. Comet assay showed that while HA demonstrated weaker genotoxicity, DNA damage induced by FHA and FA caused G0/G1 arrest of NIH-3T3 cells. Fluoridation of hydroxyapatite and different FHA and FA structure caused different cell response of NIH-3T3 cells to biomaterials.

  18. In vitro and in vivo evaluation of silicated hydroxyapatite and impact of insulin adsorption.

    PubMed

    Lasgorceix, M; Costa, A M; Mavropoulos, E; Sader, M; Calasans, M; Tanaka, M N; Rossi, A; Damia, C; Chotard-Ghodsnia, R; Champion, E

    2014-10-01

    This study evaluates the biological behaviour, in vitro and in vivo, of silicated hydroxyapatite with and without insulin adsorbed on the material surface. Insulin was successfully adsorbed on hydroxyapatite and silicated hydroxyapatite bioceramics. The modification of the protein secondary structure after the adsorption was investigated by means of infrared and circular dichroism spectroscopic methods. Both results were in agreement and indicated that the adsorption process was likely to change the secondary structure of the insulin from a majority of α-helix to a β-sheet form. The biocompatibility of both materials, with and without adsorbed insulin on their surface, was demonstrated in vitro by indirect and direct assays. A good viability of the cells was found and no proliferation effect was observed regardless of the material composition and of the presence or absence of insulin. Dense granules of each material were implanted subcutaneously in mice for 1, 3 and 9 weeks. At 9 weeks of implantation, a higher inflammatory response was observed for silicated hydroxyapatite than for pure hydroxyapatite but no significant effect of adsorbed insulin was detected. Though the presence of silicon in hydroxyapatite did not improve the biological behaviour, the silicon substituted hydroxyapatite remained highly viable.

  19. An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating.

    PubMed

    Dong, Ying; Yang, Jingxin; Wang, Liqiang; Ma, Xiao; Huang, Yifei; Qiu, Zhiye; Cui, Fuzhai

    2014-03-01

    Titanium framework keratoprosthesis has been commonly used in the severe corneal blindness, but the tissue melting occurred frequently around titanium. Since hydroxyapatite has been approved to possess a good tissue integration characteristic, nanostructured hydroxyapatite was coated on the surface of titanium through the aerosol deposition method. In this study, nanostructured hydroxyapatite coating was characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, and auger electronic spectrometer. Biological evaluations were performed with rabbit cornea fibroblast in vitro and an animal model in vivo. The outcomes showed the coating had a grain-like surface topography and a good atomic mixed area with substrate. The rabbit cornea fibroblasts appeared a good adhesion on the surface of nanostructured hydroxyapatite in vitro. In the animal model, nanostructured hydroxyapatite-titanium implants were stably retained in the rabbit cornea, and by contrast, the corneal stroma became thinner anterior to the implants in the control. Therefore, our findings proved that nanostructured hydroxyapatite-titanium could not only provide an improved bond for substrate but also enhance the tissue integration with implants in host. As a promising material, nanostructured hydroxyapatite-titanium-based keratoprosthesis prepared by the aerosol deposition method could be utilized for the corneal blindness treatment.

  20. Cadmium uptake by hydroxyapatite synthesized in different conditions and submitted to thermal treatment.

    PubMed

    da Rocha, Nilce C C; de Campos, Reinaldo C; Rossi, Alexandre M; Moreira, Elizabeth L; Barbosa, Ademarlaudo do F; Moure, Gustavo T

    2002-04-01

    This paper intends to evaluate the uptake of cadmium ions from aqueous solution by 21 hydroxyapatite samples which have been synthesized in different conditions. It has been determined thatthe variation on the hydroxyapatite sorption capacity is neither related to sample solubility nor to hydroxyapatite Ca/P molar ratio. Cd2+ sorption is controlled by sample BET surface area, which shows a direct dependence on the hydroxyapatite crystallite dimensions. The hydroxyapatite pore distribution presented modes at 1000 and 60,000 A, corresponding to intracrystallite voids and voids between the agglomerate of these crystallites, respectively. Pores belonging to the former mode immobilize the major part of Cd2+. The influence of sample thermal treatment on Cd2+ sorption efficiency has been studied using hydroxyapatite samples calcined at temperatures ranging from 500 to 1140 degrees C. Similarly to nonthermally treat samples, the Cd2+ sorption on calcined hydroxyapatite could be described by Langmuir isotherms. The results showed that the maximum sorption capacity decreased from 0.631 mmol g(-1) for the noncalcined sample to 0.150 mmol g(-1) for the one calcined at 900 degrees C. This drop in the sorption capacity could also be explained by a reduction in its specific surface area, which is induced bythe increase of the crystal size.

  1. Biomimetic nanocrystalline apatites: Emerging perspectives in cancer diagnosis and treatment.

    PubMed

    Al-Kattan, Ahmed; Girod-Fullana, Sophie; Charvillat, Cédric; Ternet-Fontebasso, Hélène; Dufour, Pascal; Dexpert-Ghys, Jeannette; Santran, Véronique; Bordère, Julie; Pipy, Bernard; Bernad, José; Drouet, Christophe

    2012-02-14

    Nanocrystalline calcium phosphate apatites constitute the mineral part of hard tissues, and the synthesis of biomimetic analogs is now well-mastered at the lab-scale. Recent advances in the fine physico-chemical characterization of these phases enable one to envision original applications in the medical field along with a better understanding of the underlying chemistry and related pharmacological features. In this contribution, we specifically focused on applications of biomimetic apatites in the field of cancer diagnosis or treatment. We first report on the production and first biological evaluations (cytotoxicity, pro-inflammatory potential, internalization by ZR-75-1 breast cancer cells) of individualized luminescent nanoparticles based on Eu-doped apatites, eventually associated with folic acid, for medical imaging purposes. We then detail, in a first approach, the preparation of tridimensional constructs associating nanocrystalline apatite aqueous gels and drug-loaded pectin microspheres. Sustained releases of a fluorescein analog (erythrosin) used as model molecule were obtained over 7 days, in comparison with the ceramic or microsphere reference compounds. Such systems could constitute original bone-filling materials for in situ delivery of anticancer drugs.

  2. Low cost and efficient photovoltaic conversion by nanocrystalline solar cells

    SciTech Connect

    Graetzel, M.

    1996-09-01

    Solar cells are expected to provide environmentally friendly solutions to the world`s energy supply problem. Learning from the concepts used by green plants we have developed a molecular photovoltaic device whose overall efficiency for AM 1.5 solar light to electricity has already attained 8-11%. The system is based on the sensitization of nanocrystalline oxide films by transition metal charge transfer sensitizers. In analogy to photosynthesis, the new chemical solar cell achieves the separation of the light absorption and charge carrier transport processes. Extraordinary yields for the conversion of incident photons into electric current are obtained, exceeding 90% for transition metal complexes within the wavelength range of their absorption band. The use of molten salt electrolytes together with coordination complexes of ruthenium as sensitizers and adequate sealing technology has endowed these cells with a remarkable stability making practical applications feasible. Seven industrial cooperations are presently involved in the development to bring these cells to the market. The first cells will be applied to supply electric power for consumer electronic devices. The launching of production of several products of this type is imminent and they should be on the market within the next two years. Quite aside from their intrinsic merits as photovoltaic device, the mesoscopic oxide semiconductor films developed in our laboratory offer attractive possibilities for a number of other applications. Thus, the first example of a nanocrystalline rocking chair battery will be demonstrated and its principle briefly discussed.

  3. Nanocrystalline materials: recent advances in crystallographic characterization techniques.

    PubMed

    Ringe, Emilie

    2014-11-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask 'how are nanoshapes created?', 'how does the shape relate to the atomic packing and crystallography of the material?', 'how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  4. Large piezoresistive effect in surface conductive nanocrystalline diamond

    SciTech Connect

    Janssens, S. D. Haenen, K.; Drijkoningen, S.

    2014-09-08

    Surface conductivity in hydrogen-terminated single crystal diamond is an intriguing phenomenon for fundamental reasons as well as for application driven research. Surface conductivity is also observed in hydrogen-terminated nanocrystalline diamond although the electronic transport mechanisms remain unclear. In this work, the piezoresistive properties of intrinsic surface conductive nanocrystalline diamond are investigated. A gauge factor of 35 is calculated from bulging a diamond membrane of 350 nm thick, with a diameter of 656 μm and a sheet resistance of 1.45 MΩ/sq. The large piezoresistive effect is reasoned to originate directly from strain-induced changes in the resistivity of the grain boundaries. Additionally, we ascribe a small time-dependent fraction of the piezoresistive effect to charge trapping of charge carriers at grain boundaries. In conclusion, time-dependent piezoresistive effect measurements act as a tool for deeper understanding the complex electronic transport mechanisms induced by grain boundaries in a polycrystalline material or nanocomposite.

  5. New atom probe approaches to studying segregation in nanocrystalline materials.

    PubMed

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping.

  6. Electronic transport of N-type semiconductor nanocrystalline solids

    NASA Astrophysics Data System (ADS)

    Yu, Dong

    2005-07-01

    A bottleneck limiting the widespread applications of semiconductor nanocrystalline solids on optoelectronic devices such as photovoltaic cells, light emitting devices and quantum dots lasers is their poor conductivity. In this thesis, we show that the conductivity of thin films of CdSe nanocrystals is increased by many orders of magnitude when n-doped either by potassium or electrochemistry. Around half-filling of the first electronic shell, a peak in the conductivity is observed indicating shell to shell transport. Introducing conjugated ligands between nanocrystals increases the conductivities to ˜10-2 S cm. NaOH treatment of the thin films leads to a large carrier mobility and a semiconductor nanocrystals field effect transistor is produced. The temperature and electrical field dependent conductivity of n-type CdSe nanocrystal thin films is then investigated. The low field conductivity follows exp(-(T*/T)-1/2 ) and high field conductivity follows exp(-(E*/ E)-1/2). The complete behavior is very well described by the variable range hopping theory with a Coulomb gap. Finally, n-type colloidal CdSe nanocrystalline solids show large positive magnetoresistance at low temperatures (0.3K--4K). We attempted to dope Manganese (II) ions in nanocrystals, which might show interesting negative magnetoresistance. However, they still show similar positive magnetoresistance probably due to the difficulty of Mn doping. At ˜0.3K the resistance is increased by ˜150% at 10 Tesla.

  7. An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen.

    PubMed

    Vergote, G J; Vervaet, C; Van Driessche, I; Hoste, S; De Smedt, S; Demeester, J; Jain, R A; Ruddy, S; Remon, J P

    2001-05-21

    A controlled release pellet formulation using a NanoCrystal colloidal dispersion of ketoprofen was developed. In order to be able to process the aqueous NanoCrystal colloidal dispersion into a hydrophobic solid dosage form a spray drying procedure was used. The in vitro dissolution profiles of wax based pellets loaded with nanocrystalline ketoprofen are compared with the profiles of wax based pellets loaded with microcrystalline ketoprofen and of a commercial sustained release ketoprofen formulation. Pellets were produced using a melt pelletisation technique. All pellet formulations were composed of a mixture of microcrystalline wax and starch derivatives. The starch derivatives used were waxy maltodextrin and drum dried corn starch. Varying the concentration of drum dried corn starch increased the release rate of ketoprofen but the ketoprofen recovery remained problematic. To increase the dissolution yield surfactants were utilised. The surfactants were either added during the production process of the NanoCrystal colloidal dispersion (sodium laurylsulphate) or during the pellet manufacturing process (Cremophor RH 40). Both methods resulted in a sustained but complete release of nanocrystalline ketoprofen from the matrix pellet formulations.

  8. Weakened Flexural Strength of Nanocrystalline Nanoporous Gold by Grain Refinement.

    PubMed

    Gwak, Eun-Ji; Kim, Ju-Young

    2016-04-13

    High density of grain boundaries in solid materials generally leads to high strength because grain boundaries act as strong obstacles to dislocation activity. We find that the flexural strength of nanoporous gold of grain size 206 nm is 33.6% lower than that of grain size 238 μm. We prepared three gold-silver precursor alloys, well-annealed, prestrained, and high-energy ball-milled, from which nanoporous gold samples were obtained by the same free-corrosion dealloying process. Ligaments of the same size are formed regardless of precursor alloys, and microstructural aspects of precursor alloys such as crystallographic orientation and grain size is preserved in the dealloying process. While the nanoindentation hardness of three nanoporous golds is independent of microstructural variation, flexural strength of nanocrystalline nanoporous gold is significantly lower than that of nanoporous golds with much larger grain size. We investigate weakening mechanisms of grain boundaries in nanocrystalline nanoporous gold, leading to weakening of flexural strength.

  9. Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties

    SciTech Connect

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G.; Klobes, Benedikt; Koza, Michael Marek; Kudejova, Petra; Petermann, Nils; Wiggers, Hartmut; Schierning, Gabi; Hermann, Raphaël P.

    2014-12-21

    In this study, silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K-1 m-1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K-1 m-1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.

  10. Magnetic field-dependent spin structures of nanocrystalline holmium

    PubMed Central

    Szary, Philipp; Kaiser, Daniel; Bick, Jens-Peter; Lott, Dieter; Heinemann, André; Dewhurst, Charles; Birringer, Rainer; Michels, Andreas

    2016-01-01

    The results are reported of magnetic field-dependent neutron diffraction experiments on polycrystalline inert-gas condensed holmium with a nanometre crystallite size (D = 33 nm). At T = 50 K, no evidence is found for the existence of helifan(3/2) or helifan(2) structures for the nanocrystalline sample, in contrast with results reported in the literature for the single crystal. Instead, when the applied field H is increased, the helix pattern transforms progressively, most likely into a fan structure. It is the component of H which acts on the basal-plane spins of a given nanocrystallite that drives the disappearance of the helix; for nanocrystalline Ho, this field is about 1.3 T, and it is related to a characteristic kink in the virgin magnetization curve. For a coarse-grained Ho sample, concomitant with the destruction of the helix phase, the emergence of an unusual angular anisotropy (streak pattern) and the appearance of novel spin structures are observed. PMID:27047307

  11. Weakened Flexural Strength of Nanocrystalline Nanoporous Gold by Grain Refinement.

    PubMed

    Gwak, Eun-Ji; Kim, Ju-Young

    2016-04-13

    High density of grain boundaries in solid materials generally leads to high strength because grain boundaries act as strong obstacles to dislocation activity. We find that the flexural strength of nanoporous gold of grain size 206 nm is 33.6% lower than that of grain size 238 μm. We prepared three gold-silver precursor alloys, well-annealed, prestrained, and high-energy ball-milled, from which nanoporous gold samples were obtained by the same free-corrosion dealloying process. Ligaments of the same size are formed regardless of precursor alloys, and microstructural aspects of precursor alloys such as crystallographic orientation and grain size is preserved in the dealloying process. While the nanoindentation hardness of three nanoporous golds is independent of microstructural variation, flexural strength of nanocrystalline nanoporous gold is significantly lower than that of nanoporous golds with much larger grain size. We investigate weakening mechanisms of grain boundaries in nanocrystalline nanoporous gold, leading to weakening of flexural strength. PMID:26982460

  12. Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties

    DOE PAGES

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G.; Klobes, Benedikt; Koza, Michael Marek; Kudejova, Petra; Petermann, Nils; Wiggers, Hartmut; Schierning, Gabi; Hermann, Raphaël P.

    2014-12-21

    In this study, silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K-1 m-1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured,more » which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K-1 m-1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.« less

  13. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    PubMed Central

    Ringe, Emilie

    2014-01-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133

  14. Photoreduction of Sm(3+) in Nanocrystalline BaFCl.

    PubMed

    Riesen, Nicolas; François, Alexandre; Badek, Kate; Monro, Tanya M; Riesen, Hans

    2015-06-18

    We demonstrate that exposure of nanocrystalline BaFCl:Sm(3+) X-ray storage phosphor to blue laser pulses with peak power densities on the order of 10 GW/cm(2) results in conversion of Sm(3+) to Sm(2+). This photoreduction is found to be strongly power-dependent with an initial fast rate, followed by a slower rate. The photoreduction appears to be orders of magnitude more efficient than that for previously reported systems, and it is estimated that up to 50% of the samarium ions can be photoreduced to the divalent state. The main mechanism is most likely based on multiphoton electron-hole creation, followed by subsequent trapping of the electrons in the conduction band at the Sm(3+) centers. Nanocrystalline BaFCl:Sm(3+) is an efficient photoluminescent X-ray storage phosphor with possible applications as dosimetry probes, and the present study shows for the first time that the power levels of the blue light have to be kept relatively low to avoid the generation of Sm(2+) in the readout process. A system comprising the BaFCl:Sm(3+) nanocrystallites embedded into a glass is also envisioned for 3D memory applications.

  15. Nanocrystalline silicon: lattice dynamics and enhanced thermoelectric properties.

    PubMed

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G; Klobes, Benedikt; Koza, Michael Marek; Kudejova, Petra; Petermann, Nils; Wiggers, Hartmut; Schierning, Gabi; Hermann, Raphaël P

    2014-12-21

    Silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K(-1) m(-1) at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K(-1) m(-1), which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators. PMID:24848359

  16. Implantation induced hardening of nanocrystalline titanium thin films.

    PubMed

    Krishnan, R; Amirthapandian, S; Mangamma, G; Ramaseshan, R; Dash, S; Tyagi, A K; Jayaram, V; Raj, Baldev

    2009-09-01

    Formation of nanocrystalline TiN at low temperatures was demonstrated by combining Pulsed Laser Deposition (PLD) and ion implantation techniques. The Ti films of nominal thickness approximatly 250 nm were deposited at a substrate temperature of 200 degrees C by ablating a high pure titanium target in UHV conditions using a nanosecond pulsed Nd:YAG laser operating at 1064 nm. These films were implanted with 100 keV N+ ions with fluence ranging from 1.0 x 10(16) ions/cm2 to 1.0 x 10(17) ions/cm2 The structural, compositional and morphological evolutions were tracked using Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectrometry (SIMS) and Atomic Force Microscopy (AFM), respectively. TEM analysis revealed that the as-deposited titanium film is an fcc phase. With increasing ion fluence, its structure becomes amorphous phase before precipitation of nanocrystalline fcc TIN phase. Compositional depth profiles obtained from SIMS have shown the extent of nitrogen concentration gradient in the implantation zone. Both as-deposited and ion implanted films showed much higher hardness as compared to the bulk titanium. AFM studies revealed a gradual increase in surface roughness leading to surface patterning with increase in ion fluence.

  17. Light source with carbon nanotubes field emission cathode and rare-earth doped nanocrystalline phosphors

    NASA Astrophysics Data System (ADS)

    Psuja, P.; Strek, W.

    2007-09-01

    In this work we report a new carbon nanotubes field emission (CNT-FED) light source with nanocrystalline phosphors. The nanocrystalline powders of cerium doped yttrium aluminum garnet were obtained by modified Pechini method. The phosphor has been electrophoretically deposited on ITO-glass substrates. The cathode composed of carbon nanotubes was fabricated in the same manner. A light source was assembled and tested. Low-voltage cathodoluminescent spectra and I-V characteristics of fabricated cathodes were measured. A possibility of application of Ce doped nanocrystalline YAG phosphor in the field emission displays (FEDs) was discussed.

  18. Indentation creep of nanocrystalline Cu-TiC alloys prepared by mechanical alloying

    SciTech Connect

    Shen, B.L.; Itoi, T.; Yamasaki, T.; Ogino, Y.

    2000-04-01

    In recent years, nanocrystalline materials have attracted much attention in materials research because they behave differently from conventional materials. For example, the nanocrystalline materials exhibit enhanced mechanical properties, such as high strength and hardness. The present study was performed to investigate the indentation creep mechanism of nanocrystalline Cu-TiC alloys which were prepared by HIP (Hot Isostatic Press) processing of MA (Mechanical Alloying) powders and hot rolling afterwards. As these materials have high densities and high structural stability, the authors could investigate creep behavior at wide temperature ranges below 0.5Tm (Tm is the melting temperature of copper).

  19. The electrochemical corrosion of bulk nanocrystalline ingot iron in acidic sulfate solution.

    PubMed

    Wang, S G; Shen, C B; Long, K; Zhang, T; Wang, F H; Zhang, Z D

    2006-01-12

    The corrosion properties of bulk nanocrystalline ingot iron (BNII) fabricated from conventional polycrystalline ingot iron (CPII) by severe rolling were investigated by means of immersion test, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) tests, and scanning electron microscopy (SEM) observation. These experimental results indicate that BNII possesses excellent corrosion resistance in comparison with CPII in acidic sulfate solution at room temperature. It may mainly result from different surface microstructures between CPII and BNII. However, the corrosion resistance of nanocrystalline materials is usually degraded because of their metastable microstructure nature, and the residual stress in nanocrystalline materials also can result in degradation of corrosion resistance according to the traditional point of view.

  20. Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Sima, Felix; Axente, Emanuel; Fini, Milena; Mihailescu, Ion N; Bigi, Adriana

    2015-06-15

    Both strontium and zoledronate (ZOL) are known to be useful for the treatment of bone diseases associated to the loss of bone substance. In this work, we applied an innovative technique, Combinatorial Matrix-Assisted Pulsed Laser Evaporation (C-MAPLE), to deposit gradient thin films with variable compositions of Sr-substituted hydroxyapatite (SrHA) and ZOL modified hydroxyapatite (ZOLHA) on Titanium substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. The coatings display good crystallinity and granular morphology, which do not vary with composition. Osteoblast-like MG63 cells and human osteoclasts were co-cultured on the thin films up to 21 days. The results show that Sr counteracts the negative effect of relatively high concentration of ZOL on osteoblast viability, whereas both Sr and ZOL enhance extracellular matrix deposition. In particular, ZOL promotes type I collagen production, whereas Sr increases the production of alkaline phosphatase. Moreover, ZOL exerts a greater effect than Sr on osteoprotegerin/RANKL ratio and, as a consequence, on the reduction of osteoclast proliferation and activity. The deposition method allows to modulate the composition of the thin films and hence the promotion of bone growth and the inhibition of bone resorption. PMID:25706198

  1. A highly reproducible continuous process for hydroxyapatite nanoparticles synthesis.

    PubMed

    Gomes, Paulo J; Silva, Viviana M T M; Quadros, Paulo A; Dias, Madalena M; Lopes, José C B

    2009-06-01

    This work presents a continuous process for producing hydroxyapatite nanoparticles (NanoXIM) in a network reactor, NETmix, fed by a calcium solution, a phosphorus solution and an alkaline solution. Hydroxyapatite is considered a biomaterial, used as: food additives and nutritional supplements; bone graft for bone replacement, growth and repair; biocements and coating of metallic implant. Some of the most recent applications include their use in cosmetics, toothpaste and in esthetical treatments for diminishing wrinkles by stimulating conjunctive tissue formation. The proposed process enables the micromixing control, which is essential to form nanometric structures, but it is also a determining factor in the crystals purity, crystallinity and morphology. The reactants distribution scheme at the inlet of the reactor and along the reactor, performed continuously or varying in time, is also a crucial factor to programme the properties of reactant media along the reactor, such as the pH, the supersaturation degree, the Ca/P molar ratio, and the temperature. The calcium phosphate nanoparticles suspension that exits the reactor is submitted to further aging, separation, drying, sintering and milling processes. PMID:19504858

  2. Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Sima, Felix; Axente, Emanuel; Fini, Milena; Mihailescu, Ion N; Bigi, Adriana

    2015-06-15

    Both strontium and zoledronate (ZOL) are known to be useful for the treatment of bone diseases associated to the loss of bone substance. In this work, we applied an innovative technique, Combinatorial Matrix-Assisted Pulsed Laser Evaporation (C-MAPLE), to deposit gradient thin films with variable compositions of Sr-substituted hydroxyapatite (SrHA) and ZOL modified hydroxyapatite (ZOLHA) on Titanium substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. The coatings display good crystallinity and granular morphology, which do not vary with composition. Osteoblast-like MG63 cells and human osteoclasts were co-cultured on the thin films up to 21 days. The results show that Sr counteracts the negative effect of relatively high concentration of ZOL on osteoblast viability, whereas both Sr and ZOL enhance extracellular matrix deposition. In particular, ZOL promotes type I collagen production, whereas Sr increases the production of alkaline phosphatase. Moreover, ZOL exerts a greater effect than Sr on osteoprotegerin/RANKL ratio and, as a consequence, on the reduction of osteoclast proliferation and activity. The deposition method allows to modulate the composition of the thin films and hence the promotion of bone growth and the inhibition of bone resorption.

  3. Functionally Graded Hydroxyapatite Coatings Doped with Antibacterial Components

    SciTech Connect

    Bai, Xiao; More, Karren Leslie; Rouleau, Christopher M; Rabiei, Afsaneh

    2010-01-01

    A series of functionally graded hydroxyapatite (FGHA) coatings incorporated with various percentages of silver were deposited on titanium substrates using ion beam assisted deposition (IBAD). The analysis of the coating s cross-section using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM), equipped with energy dispersive X-ray spectroscopy (EDS), has shown a decreased crystallinity as well as a distribution of nano scale (10 ~ 50nm) silver particles from the coating/substrate interface to top surface. Both X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) results revealed the presence of hydroxyapatite within the coatings. The amount of Ag (wt. %) on the outer surface of the FGHA, as determined from X-ray photoelectron spectroscopy (XPS), ranged from 1.09 ~ 6.59, which was about half of the average Ag wt. % incorporated in the entire coating. Average adhesion strengths evaluated by pull-off tests were in the range of 83 6 - 88 3 MPa, which is comparable to 85 MPa for FGHA without silver. Further optical observations of failed areas illustrated that the dominant failure mechanism was epoxy failure and FGHA coating delamination was not observed.

  4. Novel selenium-doped hydroxyapatite coatings for biomedical applications.

    PubMed

    Rodríguez-Valencia, C; López-Álvarez, M; Cochón-Cores, B; Pereiro, I; Serra, J; González, P

    2013-03-01

    Nowadays there is a short-term need of investigating in orthopedic implants with a greater functionality, including an improved osseointegration and also antibacterial properties. The coating of metallic implants with hydroxyapatite (HA) remains to be the main proposal, but superior quality HA coatings with compositions closer to natural bone apatites, including carbonates, trace elements are required. Selenium is an essential nutrient in biological tissues and, at the same time, it also presents antibacterial properties. A pioneering study on the fabrication of selenium-doped carbonated hydroxyapatite (iHA:Se) coatings by Pulsed Laser Deposition (PLD) is presented. Different proportions of selenium were incorporated to obtain the iHA:Se coatings. Their physicochemical characterization, performed by SEM/EDS, FTIR, FT-Raman, Interferometric Profilometry and XPS, revealed typical columnar growth of HA in globular aggregates and the efficient incorporation of selenium into the HA coatings by the, most probably, substitution of SeO(3)(2-) groups in the CO(3)(2-) sites. Biological evaluation illustrated the absence of cytotoxicity when an amount of 0.6 at.% of Se was added to the iHA:Se coatings and excellent proliferation of the MC3T3-E1 preosteoblasts. Antibacterial properties were also proved with the inhibition of P. aeruginosa and S. aureus from establishing bacterial biofilms.

  5. Molecular Recognition at the Protein-Hydroxyapatite Interface

    SciTech Connect

    Stayton, Partick S.; Drobny, G. P.; Shaw, Wendy J.; Long, Joanna R.; Gilbert, Michelle R.

    2003-09-01

    Proteins found in mineralized tissues act as nature's crystal engineers, where they play a key role in promoting or inhibiting the growth of minerals, such as hydroxyapitite (bones/teeth) and calcium oxalate (kidney stones). Despite their importance in hard-tissue formation and remodeling, and in pathological processes such as stone formation and arterial calcification, there is little known of the protein structure-function relationships that govern hard-tissue engineering. Here we review early studies that have utilized solid-state NMR (ssNMR) techniques to provide in situ secondary-structure determination of statherin and statherin peptides on their biologically relevant hydroxyapatite (HAP) surfaces. In addition to direct structural study, molecular dynamics studies have provided considerable insight into the protein-binding footprint on hydroxyapatite. The molecular insight provided by these studies has also led to the design of biomimetic fusion peptides that utilize nature's crystal-recognition mechanism to display accessible and dynamic bioactive sequences from the HAP surface. These peptides selectively engage adhesion receptors and direct specific outside-in signaling pathway activation in osteoblast-like cells.

  6. Coating of titanium with hydroxyapatite leads to decreased bone formation

    PubMed Central

    Bøe, B. G.; Støen, R. Ø.; Solberg, L. B.; Reinholt, F. P.; Ellingsen, J. E.; Nordsletten, L.

    2012-01-01

    Objectives An experimental rabbit model was used to test the null hypothesis, that there is no difference in new bone formation around uncoated titanium discs compared with coated titanium discs when implanted into the muscles of rabbits. Methods A total of three titanium discs with different surface and coating (1, porous coating; 2, porous coating + Bonemaster (Biomet); and 3, porous coating + plasma-sprayed hydroxyapatite) were implanted in 12 female rabbits. Six animals were killed after six weeks and the remaining six were killed after 12 weeks. The implants with surrounding tissues were embedded in methyl methacrylate and grinded sections were stained with Masson-Goldners trichrome and examined by light microscopy of coded sections. Results Small amounts of bone were observed scattered along the surface of five of the 12 implants coated with porous titanium, and around one out of 12 porous coated surfaces with Bonemaster. No bone formation could be detected around porous coated implants with plasma-sprayed hydroxyapatite. Conclusion Porous titanium coating is to some degree osteoinductive in muscles. PMID:23610682

  7. Phase purity of sol-gel-derived hydroxyapatite ceramic.

    PubMed

    Hsieh, M F; Perng, L H; Chin, T S; Perng, H G

    2001-10-01

    Calcium oxide was reported in the sol-gel-derived hydroxyapatite (HA) as an unavoidable major impurity. In this study phase purity of HA synthesized by sol-gel route was explored using precursors of calcium nitrate tetrahydrate and triethyl phosphate. Two different drying methods, the fast drying of as-prepared precursors and the slow drying of aged precursors were adopted as major processing variables. The dried gels were subsequently calcined up to 600 degrees C. In the calcined powder from fast-dried gel, X-ray diffraction (XRD) patterns revealed an intense CaO peak. For the slow-dried gel, thermogravimetric analysis revealed a 2-step weight-loss behavior during heating. XRD analysis of the calcined powder, corresponding to the second weight-loss step, showed major peaks of hydroxyapatite and a very weak CaO peak. P-31 NMR analysis indicated formation of calcium phosphate complex during aging. Complete incorporation of Ca(NO3)2 into the complex due to proper aging therefore diminishes CaO formation. It was also found that the minor CaO derived in the slow drying method can be easily and completely washed out just by distilled water.

  8. Hydroxyapatite synthesis on solid surfaces using a biological approach

    NASA Astrophysics Data System (ADS)

    Wang, A.; Mei, J.; Tse, Y. Y.; Jones, I. P.; Sammons, R. L.

    2012-12-01

    Many naturally occurring mineralisation processes yield hydroxyapatite (HA) or related salts, but biological routes to calcification have not generally been exploited for production of hydroxyapatite for clinical and industrial applications. Serratia sp. NCIMB 40259 is a non-pathogenic Gram-negative bacterium which is capable of growing as a biofilm on many surfaces and can be used to form HA coatings on a variety of polymeric and metallic materials, including titanium. Here we review previous work and report the results of more recent studies on the influence of titanium compositional and surface properties on Serratia adherence and proliferation and biomineralisation on commercially pure titanium (cp Ti) discs and a Ti mesh. Bacterial adherence was equivalent on cpTi and Ti6Al4V, and biofilms formed on both rough and mirror-polished cpTi surfaces. Embedded alumina particles and alkali treatment did not noticeably alter the precipitation of Serratia HA, nor the structure of the coating in comparison with non-treated substrates. Coatings were retained after sintering at 800°C in argon, although the original curved plate-like crystals changed to nano-scale β-tricalcium phosphate particles. A phosphorous-rich diffusion zone formed at the coating-titanium interface. Bacterial mineralisation may have applications as a method for producing coatings on implants in non load-bearing sites, and non-clinical applications where a high surface area is the major concern.

  9. Phosphate reduction in a hydroxyapatite fluoride removal system

    NASA Astrophysics Data System (ADS)

    Egner, A.

    2012-12-01

    Fluorosis is a widespread disease that occurs as a result of excess fluoride consumption and can cause severe tooth and bone deformations. To combat fluorosis, several previous studies have examined the potential to replace traditional bone char filters with synthetic hydroxyapatite. Calcite particles with a synthetic hydroxyapatite coating have been shown to effectively removed fluoride, yet the low-cost method for forming these particles leaves high amounts of phosphate both in synthesis waste-water and in filter effluent. High phosphate in filter effluent is problematic because consumption of extremely high phosphate can leach calcium from bones, further exacerbating the fluoride effect. This study examines ways of reducing and reusing waste. In particular, a method of fluoride removal is explored in which fluorapatite coatings may be formed directly. In preliminary studies, batches of 4.1g of Florida limestone (<710 μm) were equilibrated with 100 mL of 10ppm fluoride. In a control batch containing lime but no added phosphate, 14% treatment was achieved, but with added phosphate, 100% treatment was achieved in all batches. Batches with lower levels of phosphate took longer to reach 100% treatment, ranging from less than 24 hours in the highest phosphate batches to approximately 42 hours in the lowest batches. The lower levels tested were well within reasonable levels for drinking water and reached 0ppm fluoride in 42 hours or less.

  10. Properties of pulsed laser deposited fluorinated hydroxyapatite films on titanium

    SciTech Connect

    Rau, J.V.; Smirnov, V.V.; Laureti, S.; Generosi, A.; Varvaro, G.; Fosca, M.; Ferro, D.; Cesaro, S. Nunziante; Albertini, V. Rossi; Barinov, S.M.

    2010-09-15

    Fluorinated hydroxyapatite coated titanium was investigated for application as implant coating for bone substitute materials in orthopaedics and dentistry. Pulsed laser deposition technique was used for films preparation. Fluorinated hydroxyapatite target composition, Ca{sub 10}(PO{sub 4}){sub 6}F{sub 1.37}(OH){sub 0.63}, was maintained at 2 J/cm{sup 2} of laser fluence and 500-600 {sup o}C of the substrate temperature. Prepared films had a compact microstructure, composed of spherical micrometric-size aggregates. The average surface roughness resulted to be of 3 nm for the film grown at 500 {sup o}C and of 10 nm for that grown at 600 {sup o}C, showing that the temperature increase did not favour the growth of a more fine granulated surface. The films were polycrystalline with no preferential growth orientation. The films grown at 500-600 {sup o}C were about 8 {mu}m thick and possessed a hardness of 12-13 GPa. Lower or higher substrate temperature provides the possibility to obtain coatings with different fine texture and roughness, thus tayloring them for various applications.

  11. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation.

    PubMed

    Bellucci, Devis; Sola, Antonella; Anesi, Alexandre; Salvatori, Roberta; Chiarini, Luigi; Cannillo, Valeria

    2015-06-01

    Bioactive glass/hydroxyapatite composites for bone tissue repair and regeneration have been produced and discussed. The use of a recently developed glass, namely BG_Ca/Mix, with its low tendency to crystallize, allowed one to sinter the samples at a relatively low temperature thus avoiding several adverse effects usually reported in the literature, such as extensive crystallization of the glassy phase, hydroxyapatite (HA) decomposition and reaction between HA and glass. The mechanical properties of the composites with 80wt.% BG_Ca/Mix and 20wt.% HA are sensibly higher than those of Bioglass® 45S5 reference samples due to the presence of HA (mechanically stronger than the 45S5 glass) and to the thermal behaviour of the BG_Ca/Mix, which is able to favour the sintering process of the composites. Biocompatibility tests, performed with murine fibroblasts BALB/3T3 and osteocites MLO-Y4 throughout a multi-parametrical approach, allow one to look with optimism to the produced composites, since both the samples themselves and their extracts do not induce negative effects in cell viability and do not cause inhibition in cell growth.

  12. Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery

    SciTech Connect

    Li, Dongdong; Zhu, Yuntao; Liang, Zhiqiang

    2013-06-01

    Highlights: ► The synthesized mesoporous hydroxyapatite has nanostructure and bioactivity. ► The materials have high surface area and amino group. ► The materials show higher drug loading and slower release rate than pure HAP. - Abstract: Mesoporous nanosized hydroxyapatite (HAP) functionalized by alendronate (ALN) was synthesized using cationic surfactant CTAB as template. The structural, morphological and textural properties were fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N{sub 2} adsorption/desorption. Then the obtained materials were performed as drug delivery carriers using ibuprofen (IBU) as a model drug to investigate their drug storage/release properties in simulated body fluid (SBF). The materials showed relatively slower release rate compared with HAP due to the ionic interaction between -NH{sub 3}{sup +} on the matrix and -COO{sup −}belongs to IBU. The system provides a new concept for improving the drug loading or slowing down the release rate.

  13. Biopolymers for Medical Applications: Polyglycerol Sebacate (PGS) doped Hydroxyapatite (HA)

    NASA Astrophysics Data System (ADS)

    Teruel, Maria; Kuthirummal, Narayanan; Levi, Nicole; Wake College Team

    2011-04-01

    In the investigation to engineer the ideal scaffolding device for cleft palate repair, polyglycerol sebacate (PGS) doped with hydroxyapatite (HA) were chosen for their elastomeric and biodegradable properties, as well as their cost-effective synthesis. Hydroxyapatite was integrated into the PGS to form a composite with high porosity and improved mechanical properties yielding a good substrate for cell attachment during the repair process. FT-IR scans were performed to characterize the composite polymer. Differential Scanning Calorimetry (DSC) was utilized to identify an acceptable glass transition temperature (Tg), between -18 and - 21°C. At this Tg, it was determined that the material was sufficiently polymerized to a point where it was durable yet pliable enough to use for cleft palate devices. In the synthesis of PGS 3% and 5% HA, a Tg of - 20.10°C and - 21.72°C, respectively, was achieved and further analytical tests were then performed on the polymers. Methods of analysis included X-Ray Diffraction and Tensile Strength Testing. Acknowledgements to the Research Department of Plastic and Reconstructive Surgery, Wake Forest University and College of Charleston.

  14. The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics

    SciTech Connect

    Laasri, S.; Taha, M.; Laghzizil, A.; Hlil, E.K.; Chevalier, J.

    2010-10-15

    This paper reports the effects of processing densification on the mechanical properties of hydroxyapatite bioceramics. Densification of synthetic hydroxyapatite is conducted in the range 1000-1300 {sup o}C. X-ray diffraction and SEM microscopy are used to check the microstructure transformations. Vickers hardness, toughness and Young's modulus are analyzed versus the density and grain size. The sintering temperature and the particle size influence strongly the densification and the resulting mechanical properties. In addition, the critical sintering temperature appears around 1200 {sup o}C and the declined strength at the temperature up to 1200 {sup o}C is found sensitive to the dehydroxylation process of hydroxyapatite.

  15. [Effects of hydroxyapatite on growth and quality of potato (Solanum tuberosum L.) in Cd polluted soil].

    PubMed

    Song, Yong; He, Tan; Liu, Ming-Yue; Zeng, Min; Liao, Bo-Han

    2010-09-01

    A pot experiment was conducted in a glasshouse to study effects of hydroxyapatite amending Cd polluted soil on growth and quality of potato (Solanum tuberosum L.). In the experiment, 3 levels of Cd pollution (0, 5, and 10 mg x kg(-1)) and 6 levels of hydroxyapatite application (0, 4, 8, 10, 16, and 30 g x kg(-1)) in soil were prepared to plant 2 potato varieties (Zhongshusanhao and Daxiyang in Chinese system). The results showed that Cd pollution in soil resulted in decrease in yield per plant of potato; for example, in the soils with 5 and 10 mg x kg(-1) of Cd, the yield per plant decreased 24%-31% and 41%-45%, respectively. Applying hydroxyapatite to Cd pollution could greatly increase yield per plant of potato. Compared to the soil without hydroxyapatite, 10 or 30 g x kg(-1) hydroxyapatite added to the soil with 5 or 10 mg x kg(-1) of Cd increased 17%-9% or 45%-58% in yield per plant. Due to hydroxyapatite amending Cd polluted soil, chlorophyll contents in leaves and superoxide dismutase (SOD) activities in tubers enhanced and malondialdehyde (MDA) contents in tubers declined apparently. Meanwhile, quality of potato tubers was obviously improved, such as increase in vitamin C contents, starch contents, and protein contents in potato tubers. With hydroxyapatite applying from 0 to 30 g x kg(-1), Cd contents in potato tubers deceased from 0.87-0.95 mg x kg(-1) to 0.13-0.21 mg x kg(-1) by 78%-85% in the soils with 5 mg x kg(-1) of Cd, and from 1.86-1.93 mg x kg(-1) to 0.52-0.65 mg x kg(-1) by 66%-72% in the soils with 10 mg x kg(-1) of Cd. The experiment indicated that the mechanism of hydroxyapatite alleviating soil Cd toxicity main included rising soil pH values, reducing effective Cd contents in soil, and Ca from hydroxyapatite blocking soil Cd moving to potato. However, ability of hydroxyapatite alleviating soil Cd toxicity was limited, and excessive hydroxyapatite to soil exhibited stress effects on growth and quality of potato. In the Cd polluted soils with

  16. "Bulk" Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    NASA Astrophysics Data System (ADS)

    Tschopp, M. A.; Murdoch, H. A.; Kecskes, L. J.; Darling, K. A.

    2014-06-01

    It is a new beginning for innovative fundamental and applied science in nanocrystalline materials. Many of the processing and consolidation challenges that have haunted nanocrystalline materials are now more fully understood, opening the doors for bulk nanocrystalline materials and parts to be produced. While challenges remain, recent advances in experimental, computational, and theoretical capability have allowed for bulk specimens that have heretofore been pursued only on a limited basis. This article discusses the methodology for synthesis and consolidation of bulk nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta system, consolidated via equal channel angular extrusion, with properties rivaling that of nanocrystalline pure Ta. Moreover, modeling and simulation approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are briefly reviewed and discussed. Integrating experiments and computational materials science for synthesizing bulk nanocrystalline materials can bring about the next generation of ultrahigh strength materials for defense and energy applications.

  17. Synthesis of nanocrystalline barium-hexaferrite from nanocrystalline goethite using the hydrothermal method: Particle size evolution and magnetic properties

    SciTech Connect

    Penn, R.L.; Banfield, J.F.; Voigt, J.

    1997-03-01

    To characterize particle size/magnetic property relationships, 9 to 50 nm in diameter barium hexaferrite, BaFe{sub 12}O{sub 19} (BHF), particles were prepared using a new synthesis route. By replacing the conventional 50 to 100 nm particles of goethite with nanocrystalline goethite produced via the microwave anneal method of Knight and Sylva, nanocrystalline BHF was synthesized using the hydrothermal method. Evolution of particle size and morphology with respect to concentration and heat treatment time is reported. Hysteresis properties, including coercivity (0.2--1.0 kOe), magnetization saturation (0.1--33.4 emu/g), and magnetization remanence (0.004--22.5 emu/g) are discussed as a function of particle size. The magnetization saturation and remanence of the 7 nm particles is nearly zero, suggesting the superparamagnetic threshold size for BHF is around this size. In addition, the equilibrium morphology of BHF crystals was calculated to be truncated hexagonal prisms which was verified by experiment, and the isoelectric point, pH of 4.1, was measured for 18 nm BHF particles.

  18. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: dissolution behaviour and biological properties after crystallisation.

    PubMed

    Tredwin, Christopher J; Young, Anne M; Abou Neel, Ensanya A; Georgiou, George; Knowles, Jonathan C

    2014-01-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) were synthesised by the sol-gel method as possible implant coating or bone-grafting materials. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride were incorporated for the preparation of the FHA and FA sol-gels. After heating and powdering the sol-gels, dissolution behaviour was assessed using ion chromatography to measure Ca(2+) and PO4 (3-) ion release. Biological behaviour was assessed using cellular proliferation with human osteosarcoma cells and alamarBlue™ assay. Statistical analysis was performed with a two way analysis of variance and post hoc testing with a Bonferroni correction. Increasing fluoride substitution into an apatite structure decreased the dissolution rate. Increasing the firing temperature of the HA, FHA and FA sol-gels up to 1,000 °C decreased the dissolution rate. There was significantly higher cellular proliferation on highly substituted FHA and FA than on HA or Titanium. The properties of an implant coating or bone grafting material can be tailored to meet specific requirements by altering the amount of fluoride that is incorporated into the original apatite structure. The dissolution behaviour can further be altered by the temperature at which the sol-gel is fired.

  19. Characterization of Sr-substituted hydroxyapatite thin film by sputtering technique from mixture targets of hydroxyapatite and strontium apatite.

    PubMed

    Ozeki, K; Goto, T; Aoki, H; Masuzawa, T

    2014-01-01

    Sr-substituted hydroxyapatite thin films were prepared by sputtering technique from mixture targets of hydroxyapatite (HA) and strontium apatite (SrAp). The HA and SrAp powders were mixed at 0-100% Sr/(Sr+Ca) target ratios. The coated films were recrystallized by a hydrothermal treatment to reduce film dissolution. The films were then characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectrometry (ICP). The osteocompatiblity of the films was also evaluated by the size of the bone formation area in osteoblast cells.In the XRD patterns, peaks shifted to lower 2θ values with increasing Sr/(Sr+Ca) target ratios, which indicated Sr incorporation into the HA lattice. In the SEM observation of the hydrothermally treated films, the surface was covered with globular particles, and the size of the globular particles increased from Sr0 to Sr40, and then the size decreased from Sr60 to Sr100. The ICP analysis showed that the Sr/(Sr+Ca) film ratios were almost the same as the target ratios. In the cell culture, the bone formation area on the Sr-substituted HA films increased with increasing Sr concentration, and saturated at Sr60. PMID:24642972

  20. Towards the synthesis of hydroxyapatite/protein scaffolds with controlled porosities: bulk and interfacial shear rheology of a hydroxyapatite suspension with protein additives.

    PubMed

    Maas, Michael; Bodnar, Pedro Marcus; Hess, Ulrike; Treccani, Laura; Rezwan, Kurosch

    2013-10-01

    The synthesis of porous hydroxyapatite scaffolds is essential for biomedical applications such as bone tissue engineering and replacement. One way to induce macroporosity, which is needed to support bone in-growth, is to use protein additives as foaming agents. Another reason to use protein additives is the potential to introduce a specific biofunctionality to the synthesized scaffolds. In this work, we study the rheological properties of a hydroxyapatite suspension system with additions of the proteins bovine serum albumin (BSA), lysozyme (LSZ) and fibrinogen (FIB). Both the rheology of the bulk phase as well as the interfacial shear rheology are studied. The bulk rheological data provides important information on the setting behavior of the thixotropic suspension, which we find to be faster with the addition of FIB and LSZ and much slower with BSA. Foam bubble stabilization mechanisms can be rationalized via interfacial shear rheology and we show that it depends on the growth of interfacial films at the suspension/air interface. These interfacial films support the stabilization of bubbles within the ceramic matrix and thereby introduce macropores. Due to the weak interaction of the protein molecules with the hydroxyapatite particles of the suspension, we find that BSA forms the most stable interfacial films, followed by FIB. LSZ strongly interacts with the hydroxyapatite particles and thus only forms thin films with very low elastic moduli. In summary, our study provides fundamental rheological insights which are essential for tailoring hydroxyapatite/protein suspensions in order to synthesize scaffolds with controlled porosities.

  1. In situ observation of deformation processes in nanocrystalline face-centered cubic metals

    PubMed Central

    Kobler, Aaron; Brandl, Christian; Hahn, Horst

    2016-01-01

    Summary The atomistic mechanisms active during plastic deformation of nanocrystalline metals are still a subject of controversy. The recently developed approach of combining automated crystal orientation mapping (ACOM) and in situ straining inside a transmission electron microscope was applied to study the deformation of nanocrystalline PdxAu1− x thin films. This combination enables direct imaging of simultaneously occurring plastic deformation processes in one experiment, such as grain boundary motion, twin activity and grain rotation. Large-angle grain rotations with ≈39° and ≈60° occur and can be related to twin formation, twin migration and twin–twin interaction as a result of partial dislocation activity. Furthermore, plastic deformation in nanocrystalline thin films was found to be partially reversible upon rupture of the film. In conclusion, conventional deformation mechanisms are still active in nanocrystalline metals but with different weighting as compared with conventional materials with coarser grains. PMID:27335747

  2. In situ observation of deformation processes in nanocrystalline face-centered cubic metals.

    PubMed

    Kobler, Aaron; Brandl, Christian; Hahn, Horst; Kübel, Christian

    2016-01-01

    The atomistic mechanisms active during plastic deformation of nanocrystalline metals are still a subject of controversy. The recently developed approach of combining automated crystal orientation mapping (ACOM) and in situ straining inside a transmission electron microscope was applied to study the deformation of nanocrystalline Pd x Au1- x thin films. This combination enables direct imaging of simultaneously occurring plastic deformation processes in one experiment, such as grain boundary motion, twin activity and grain rotation. Large-angle grain rotations with ≈39° and ≈60° occur and can be related to twin formation, twin migration and twin-twin interaction as a result of partial dislocation activity. Furthermore, plastic deformation in nanocrystalline thin films was found to be partially reversible upon rupture of the film. In conclusion, conventional deformation mechanisms are still active in nanocrystalline metals but with different weighting as compared with conventional materials with coarser grains. PMID:27335747

  3. SiH{sub x} film growth precursors during high-rate nanocrystalline silicon deposition

    SciTech Connect

    Kessels, W. M. M.; Nadir, K.; Sanden, M. C. M. van de

    2006-04-01

    The densities of the silane radicals Si, SiH, and SiH{sub 3} have been measured in a remote SiH{sub 4} plasma for various H{sub 2} dilution ratios yielding amorphous and nanocrystalline silicon film growth. The measurements carried out under high deposition rate conditions of nanocrystalline silicon reveal typical densities of {approx}10{sup 12} cm{sup -3} for SiH{sub 3} and {approx}10{sup 11} cm{sup -3} for both Si and SiH. It is concluded that SiH{sub 3} is the dominant silane radical in the plasma for both amorphous and nanocrystalline silicon depositions although the importance of Si and SiH to film growth increases drastically when going from amorphous to nanocrystalline material.

  4. Bio resorbability of the modified hydroxyapatite in Tris-HCL buffer

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Izmailov, R. R.; Ghyngazov, S. A.

    2016-02-01

    The solubility of carbonated hydroxyapatite powders and granulated carbonated hydroxyapatite produced from the synovial biofluid model solution has been studied. The kinetic characteristics of dissolution were determined. It was found that the solubility of carbonated hydroxyapatite is higher as compared to that of hydroxyapatite. The impact of the organic matrix on the rate of sample dissolution was revealed. For HA-gelatin composites, as the gelatin concentration grows, the dissolution rate becomes greater, and a sample of 6.0 g / L concentration has higher resorbability. The results of the research can be used to study the kinetics of dissolution and the biocompatibility of ceramic materials for medicine, namely for reconstructive surgery, dentistry, and development of drug delivery systems.

  5. Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy

    PubMed Central

    Sneha, Murugesan; Sundaram, Nachiappan Meenakshi

    2015-01-01

    Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability. In this study, we prepared nanocomposites of iron oxide and hydroxyapatite and analyzed their physicochemical properties. The results suggest that these composites have superparamagnetic as well as biocompatible properties. This type of material architecture would be well suited for bone cancer therapy and other biomedical applications. PMID:26491311

  6. Optical Imaging of Hydroxyapatite in the Calcified Vasculature of Transgenic Animals

    PubMed Central

    Zaheer, Atif; Murshed, Monzur; De Grand, Alec M.; Morgan, Timothy G.; Karsenty, Gerard; Frangioni, John V.

    2009-01-01

    Objective To detect the hydroxyapatite component of vascular calcification in vivo so that the process of calcium deposition can be studied in transgenic model systems. Methods and Results We have previously developed a near-infrared fluorescent bisphosphonate derivative that binds with high affinity and specificity to hydroxyapatite, and an intraoperative near-infrared fluorescence imaging system for small animals. Using these tools, and a transgenic mouse strain with homozygous deletion of the matrix GLA protein (mgp−/−), we demonstrate that the hydroxyapatite component of vascular calcification can be detected in vivo with high sensitivity, specificity and resolution. Conclusions The hydroxyapatite component of vascular calcification can be detected optically, in real-time, without sacrifice of the animal. It is now possible to study the earliest events associated with vascular mineralization, at the cell and organ level, and to monitor the process in living animals. PMID:16484598

  7. Organically modified porous hydroxyapatites: A comparison between alkylphosphonate grafting and citrate chelation

    SciTech Connect

    El-Hammari, L.; Marroun, H.; Laghzizil, A.; Saoiabi, A.; Roux, C.; Livage, J.; Coradin, T.

    2008-04-15

    Two alternative methods to prepare organically modified porous hydroxyapatites following a 'one pot' approach were compared. The partial substitution of inorganic phosphates by alkylphosphonates leads to mesoporous materials with high specific surface area (>200 m{sup 2} g{sup -1}). The incorporation of the organic moieties within the hydroxyapatite structure is confirmed by Infra-red and solid-state NMR spectroscopy and depends on the nature of the alkyl chain. However, it induces a significant loss of the material crystallinity. In contrast, the introduction of citrate, a calcium-chelating agent, to the precursor solution does not improve the material specific surface area but allows a better control of the hydroxyapatite structure, both in terms of crystallinity and pore size distribution. - Graphical abstract: Evolution of pore size distribution of hydroxyapatite (HAp) after alkylphosphonate grafting (20% TPOH) or citrate addition (c-HAp) demonstrates the formation of organically modified mesoporous materials.

  8. Synthesis and cellular biocompatibility of two nanophase hydroxyapatite with different Ca/P ratio.

    PubMed

    Zhao, Yantao; Zhang, Yumei; Zhao, Yimin; Hou, Shuxun; Chu, Paul K

    2011-12-01

    The cellular biocompatibility of two types of nanophase hydroxyapatites including nanophase standard hydroxyapatite (n-HA) and nanophase calcium deficient hydroxyapatite (n-CDHA) synthesized by a wet chemical method were assessed using primary cultured osteoblasts. Cytotoxicity of both materials was investigated with L929 cell line. The MTT method was used to evaluate the proliferation of osteoblasts on the third day and ALP activity assay was carried out on the fifth day. SEM was used to observe the morphology of the osteoblasts on the third day. Two types of nanophase hydroxyapatite both showed no cytotoxicity. Higher cell proliferation was observed on n-CDHA than n-HA. At the same time, cells spread more actively on the n-CDHA group. The ALP level of n-CDHA was also significantly higher on the former. Our results show that the n-CDHA is more suitable for osteoblasts growth and is also helpful for ALP synthesis.

  9. Simple and Rapid Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatments via a Mechanochemical Route

    PubMed Central

    Iwasaki, Tomohiro; Nakatsuka, Ryo; Murase, Kenya; Takata, Hiroshige; Nakamura, Hideya; Watano, Satoru

    2013-01-01

    This paper presents a simple method for the rapid synthesis of magnetite/hydroxyapatite composite particles. In this method, superparamagnetic magnetite nanoparticles are first synthesized by coprecipitation using ferrous chloride and ferric chloride. Immediately following the synthesis, carbonate-substituted (B-type) hydroxyapatite particles are mechanochemically synthesized by wet milling dicalcium phosphate dihydrate and calcium carbonate in a dispersed suspension of magnetite nanoparticles, during which the magnetite nanoparticles are incorporated into the hydroxyapatite matrix. We observed that the resultant magnetite/hydroxyapatite composites possessed a homogeneous dispersion of magnetite nanoparticles, characterized by an absence of large aggregates. When this material was subjected to an alternating magnetic field, the heat generated increased with increasing magnetite concentration. For a magnetite concentration of 30 mass%, a temperature increase greater than 20 K was achieved in less than 50 s. These results suggest that our composites exhibit good hyperthermia properties and are promising candidates for hyperthermia treatments. PMID:23629669

  10. Characterization and Application of Colloidal Nanocrystalline Materials for Advanced Photovoltaics

    NASA Astrophysics Data System (ADS)

    Bhandari, Khagendra P.

    Solar energy is Earth's primary source of renewable energy and photovoltaic solar cells enable the direct conversion of sunlight into electricity. Crystalline silicon solar cells and modules have dominated photovoltaic technology from the beginning and they now constitute more than 90% of the PV market. Thin film (CdTe and CIGS) solar cells and modules come in second position in market share. Some organic, dye-sensitized and perovskite solar cells are emerging in the market but are not yet in full commercial scale. Solar cells made from colloidal nanocrystalline materials may eventually provide both low cost and high efficiency because of their promising properties such as high absorption coefficient, size tunable band gap, and quantum confinement effect. It is also expected that the greenhouse gas emission and energy payback time from nanocrystalline solar PV systems will also be least compared to all other types of PV systems mainly due to the least embodied energy throughout their life time. The two well-known junction architectures for the fabrication of quantum dot based photovoltaic devices are the Schottky junction and heterojunction. In Schottky junction cells, a heteropartner semiconducting material is not required. A low work function metal is used as the back contact, a transparent conducting layer is used as the front contact, and the layer of electronically-coupled quantum dots is placed between these two materials. Schottky junction solar cells explain the usefulness of nanocrystalline materials for high efficiency heterojunction solar cells. For heterojunction devices, n-type semiconducting materials such as ZnO , CdS or TiO2 have been used as suitable heteropartners. Here, PbS quantum dot solar cells were fabricated using ZnO and CdS semiconductor films as window layers. Both of the heteropartners are sputter-deposited onto TCO coated glass substrates; ZnO was deposited with the substrate held at room temperature and for CdS the substrate was at 250

  11. Surface modification for titanium implants by hydroxyapatite nanocomposite

    PubMed Central

    Family, Roxana; Solati-Hashjin, Mehran; Namjoy Nik, Shahram; Nemati, Ali

    2012-01-01

    Background: Titanium (Ti) implants are commonly coated with hydroxyapatite (HA). However, HA has some disadvantages such as brittleness, low tensile strength and fracture toughness. It is desirable to combine the excellent mechanical properties of ZrO2 and the chemical inertness of Al2O3 with respect to the purpose of this project which was coating Ti implants with HA-ZrO2-Al2O3 to modify the surface of these implants by adding ZrO2 and Al2O3 to HA. The purpose of this study was to evaluate the efficacy of hydroxyapatite coating nonocomposite. Methods: From September 2009 to January2011, functionally graded HA-Al2O3-ZrO2 and HA coatings were applied on Ti samples. HA-Al2O3-ZrO2 and HA sols were orderly dip coated on the substrates and calcined. Scanning electron microscopy and EDS were used to estimate the particle size of the surfaces and for morphological analysis. The morphology of non-coated HA-coated HA-Al2O3-ZrO2 (composite-coated) and double-layer composite coated samples were compared with one other. Mechanical test (heat & quench) was also done for comparing single-phase (HA), composite and double-layer composite samples. Results: The morphology of HA-Al2O3-ZrO2 coating is more homogenous than HA-coated and uncoated samples. Furthermore, single-layer coating is more homogenous than double-layer coating. EDS analysis was done on HA-coated sample and showed that the Ca/P ratio in the film was similar to the theoretical value 1.67 in HA. Conclusion: Surface modification of Ti implants can be done by coating them with single-layer of HA-Al2O3-ZrO2. Single-layer hydroxyapatite-alumina-zirconia coated sample has the most homogenous morphology on the surface. PMID:24009915

  12. Transition in the deformation mode of nanocrystalline tantalum processed by high-pressure torsion

    SciTech Connect

    Ligda, J.P.; Schuster, B.E.; Wei, Q.

    2012-10-11

    We present quasi-static room temperature compression and nanoindentation data for nanocrystalline and ultrafine grained tantalum processed by high-pressure torsion. Because bulk samples possess an inherent gradient in properties, microstructures were characterized using site-specific transmission electron microscopy and synchrotron X-ray diffraction. Nanocrystalline Ta shows appreciable homogeneous plastic deformation in compression; however, specimens with the smallest grain sizes exhibit localized plastic deformation via shear bands. Microstructural changes associated with this transition in deformation mode are discussed.

  13. RAPID COMMUNICATION: Strengthening mechanism for high-strain-rate superplasticity in nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu; Ovid'ko, I. A.; Skiba, N. V.

    2003-06-01

    A theoretical model is suggested that describes the strengthening of nanocrystalline materials under superplastic deformation due to the effects of triple junctions of grain boundaries (GBs) as obstacles for GB sliding. In the framework of the model, dependences of the yield stress for the GB sliding on parameters of defects and triple junctions are revealed. The results of the model account for experimental data from nanocrystalline materials exhibiting superplasticity, reported in the literature.

  14. Effect of Pb on the Mechanical Properties of Nanocrystalline A1

    SciTech Connect

    Rajulapati, Koteswararao V; Scattergood, Ronald; Murty, K.; Duscher, Gerd J M; Koch, Carl C

    2006-01-01

    Nanocrystalline (nc) Al-Pb two phase mixtures of different Pb concentrations were made by two different routes using high energy ball milling. The microhardness measurements show a softening in nc Al-Pb composites with the increase in Pb content, contradicting the previous results reported in the literature. We conclude that interaction of Pb atoms with nanocrystalline Al grain boundaries is responsible for the softening of the nc Al matrix observed in the current study.

  15. Microstructure and aging behavior of conventional and nanocrystalline aluminum-copper-magnesium alloys with scandium additions

    NASA Astrophysics Data System (ADS)

    Zuniga, Alejandro

    The influence of small amounts of scandium (0.15 and 0.3 wt.%) on the microstructure, aging behavior and mechanical properties of 2618 (Al-Cu-Mg-Fe-Ni) and C416 (Al-Cu-Mg-Ag-Mn) alloys was studied. It was observed the overall precipitation sequence and the general morphology of the aging curve were not affected by the addition of small amounts of Sc. It was also observed that a separate population of small Al3Sc particles improved the aging response and mechanical properties of low-Cu, low-Sc Al-Cu-Mg alloys, while the formation of Al5-8Cu7-4Sc particles resulted in a decrease of the mechanical properties in high-Cu Sc-containing alloys. The Sc-modified with the best aging response (2618 + 0.15 % Sc) was cryomilled in order to produce Al-Cu-Mg-Fe-Ni-Sc nanocrystalline powders. Bulk nanocrystalline samples were consolidated from the cryomilled powder using three different techniques: hot isostatic pressing and extrusion, spark plasma sintering, cold spraying. The influence of consolidation technique on the microstructure, aging behavior and mechanical properties was analyzed. The extruded and spark plasma sintered Al-Cu-Mg-Fe-Ni-Sc nanocrystalline samples presented a bimodal grain structure consisting of coarse-grained regions located at the inter-particle region, and nanocrystalline regions at the particle interiors. The aging behavior of the nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy was characterized by softening instead of hardening. This behavior was rationalized on the basis of changes in the precipitation processes that occur in the nanocrystalline state. On the other hand, the cold spray process promoted the formation of truly nanocrystalline coatings. The mechanisms influencing the coating formation of conventional and nanocrystalline Al-Cu-Mg-Fe-Ni-Sc samples were analyzed.

  16. Silver film on nanocrystalline TiO{sub 2} support: Photocatalytic and antimicrobial ability

    SciTech Connect

    Vukoje, Ivana D.; Tomašević-Ilić, Tijana D.; Zarubica, Aleksandra R.; Dimitrijević, Suzana; Budimir, Milica D.; Vranješ, Mila R.; Šaponjić, Zoran V.; Nedeljković, Jovan M.

    2014-12-15

    Highlights: • Simple photocatalytic rout for deposition of Ag on nanocrystalline TiO{sub 2} films. • High antibactericidal efficiency of deposited Ag on TiO{sub 2} support. • Improved photocatalytic performance of TiO{sub 2} films in the presence of deposited Ag. - Abstract: Nanocrystalline TiO{sub 2} films were prepared on glass slides by the dip coating technique using colloidal solutions consisting of 4.5 nm particles as a precursor. Photoirradiation of nanocrystalline TiO{sub 2} film modified with alanine that covalently binds to the surface of TiO{sub 2} and at the same time chelate silver ions induced formation of metallic silver film. Optical and morphological properties of thin silver films on nanocrystalline TiO{sub 2} support were studied by absorption spectroscopy and atomic force microscopy. Improvement of photocatalytic performance of nanocrystalline TiO{sub 2} films after deposition of silver was observed in degradation reaction of crystal violet. Antimicrobial ability of deposited silver films on nanocrystalline TiO{sub 2} support was tested in dark as a function of time against Escherichia coli, Staphylococcus aureus, and Candida albicans. The silver films ensured maximum cells reduction of both bacteria, while the fungi reduction reached satisfactory 98.45% after 24 h of contact.

  17. Toughness enhancement in zirconium-tungsten-nitride nanocrystalline hard coatings

    NASA Astrophysics Data System (ADS)

    Dubey, P.; Srivastava, S.; Chandra, R.; Ramana, C. V.

    2016-07-01

    An approach is presented to increase the toughness (KIC) while retaining high hardness (H) of Zr-W-N nanocrystalline coatings using energetic ions bombardment. Tuning KIC and H values was made possible by a careful control over the substrate bias, i.e., the kinetic energy (Uk˜9-99 J/cm3) of the bombarding ions, while keeping the deposition temperature relatively low (200 oC). Structural and mechanical characterization revealed a maximum wear resistance (H/Er˜0.23) and fracture toughness (KIC˜2.25 MPa √{ m } ) of ZrWN coatings at Uk˜72 J/cm3. A direct Uk-microstructure-KIC-H relationship suggests that tailoring mechanical properties for a given application is possible by tuning Uk and, hence, ZrWN-coatings' microstructure.

  18. Method for producing nanocrystalline multicomponent and multiphase materials

    DOEpatents

    Eastman, Jeffrey A.; Rittner, Mindy N.; Youngdahl, Carl J.; Weertman, Julia R.

    1998-01-01

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound.

  19. Science at the interface : grain boundaries in nanocrystalline metals.

    SciTech Connect

    Rodriguez, Mark Andrew; Follstaedt, David Martin; Knapp, James Arthur; Brewer, Luke N.; Holm, Elizabeth Ann; Foiles, Stephen Martin; Hattar, Khalid M.; Clark, Blythe B.; Olmsted, David L.; Medlin, Douglas L.

    2009-09-01

    Interfaces are a critical determinant of the full range of materials properties, especially at the nanoscale. Computational and experimental methods developed a comprehensive understanding of nanograin evolution based on a fundamental understanding of internal interfaces in nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size distribution possess a unique combination of high-strength, ductility and wear-resistance. We performed a combined experimental and theoretical investigation of the structure and motion of internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain boundaries are computed for an unprecedented range of boundaries. The presence of roughening transitions in grain boundaries is explored and related to dramatic changes in boundary mobility. Experimental observations show that abnormal grain growth in nanograined materials is unlike conventional scale material in both the level of defects and the formation of unfavored phases. Molecular dynamics simulations address the origins of some of these phenomena.

  20. Fabrication and Characterization of Amorphous/Nanocrystalline Thin Film Composite

    NASA Astrophysics Data System (ADS)

    Newton, Benjamin S.

    Combining the absorption abilities of amorphous silicon and the electron transport capabilities of crystalline silicon would be a great advantage to not only solar cells but other semiconductor devices. In this work composite films were created using molecular beam epitaxy and electron beam deposition interchangeably as a method to create metallic precursors. Aluminum induced crystallization techniques were used to convert an amorphous silicon film with a capping layer of aluminum nanodots into a film composed of a mixture of amorphous silicon and nanocrystalline silicon. This layer was grown into the amorphous layer by cannibalizing a portion of the amorphous silicon material during the aluminum induced crystallization. Characterization was performed on films and metallic precursors utilizing SEM, TEM, ellipsometry and spectrophotometer.

  1. Gas sensing properties of nanocrystalline diamond at room temperature

    PubMed Central

    Kulha, Pavel; Laposa, Alexandr; Hruska, Karel; Demo, Pavel; Kromka, Alexander

    2014-01-01

    Summary This study describes an integrated NH3 sensor based on a hydrogenated nanocrystalline diamond (NCD)-sensitive layer coated on an interdigitated electrode structure. The gas sensing properties of the sensor structure were examined using a reducing gas (NH3) at room temperature and were found to be dependent on the electrode arrangement. A pronounced response of the sensor, which was comprised of dense electrode arrays (of 50 µm separation distance), was observed. The sensor functionality was explained by the surface transfer doping effect. Moreover, the three-dimensional model of the current density distribution of the hydrogenated NCD describes the transient flow of electrons between interdigitated electrodes and the hydrogenated NCD surface, that is, the formation of a closed current loop. PMID:25551062

  2. Nanocrystalline thoria powders via glycine-nitrate combustion

    NASA Astrophysics Data System (ADS)

    Purohit, R. D.; Saha, S.; Tyagi, A. K.

    2001-01-01

    Nanocrystalline thoria powders were prepared by the combustion technique using glycine as a fuel and nitrate as an oxidizer. The technique involves the exothermic decomposition of viscous liquid prepared by thermal dehydration of the aqueous solution containing thorium nitrate and glycine. Thoria powders of different crystallite sizes, surface areas and sinterabilities were prepared by starting with two different fuel-to-oxidant molar ratios. The exothermic decomposition of viscous liquid, at about 200°C, containing thorium nitrate-to-glycine in molar ratio 1:1.2 yielded the well-crystalline nano-sized ThO 2 powder. Thoria powders prepared by this technique were shown to have a higher surface area ( >50 m2/ g) and could be sintered to highly dense pellets (⩾93% th.d.) at relatively low sintering temperature of 1300°C for 3 h.

  3. LiBr passivation effect of porous nanocrystalline hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Amor, Sana Ben; Haddadi, Ikbel; Seif, El Whibi; Daik, Ridha; Bousbih, Rabaa; Dimassi, Wissem; Ezzaouia, Hatem

    2015-12-01

    Nanocrystalline hydrogenated silicon (nc-Si:H) films were deposited on a p-type silicon substrate by plasma enhanced chemical vapor deposition (PECVD), using SiH4 and H2 as reactive gases. Porous (nc-Si:H) layers were afterward obtained and immersed in a lithium bromide (LiBr) aqueous solution in order to enhance their optical and electrical properties for a potential solar cells application. A decrease in the reflectivity to about 9% for Li/porous nc-Si:H layer deposited at 75 sccm against an increase in the minority carrier lifetime were obtained. We correlate these results to the change in crystalline characteristics and chemical composition of the layers in order to understand the effect of LiBr coating on nc-Si:H Through optical and electrical characterization we have demonstrated the possibility of using such LiBr treatment to improve the properties of porous nc-Si:H.

  4. Synthesis and Characterization of a Nanocrystalline Thoria Aerogel

    SciTech Connect

    Reibold, R A; Satcher, Jr, J H; Baumann, T F; Simpson, R L; Poco, J F

    2004-02-04

    We report the synthesis and characterization for the first example of a low-density nanocrystalline thoria aerogel. The monolithic aerogels were prepared through the solgel polymerization of hydrated thorium nitrate in ethanol using ammonium hydroxide and propylene oxide as gelation initiators. The dried ThO{sub 2} aerogel was characterized by high-resolution transmission electron microscopy (HRTEM) and nitrogen adsorption/desorption analyses. The aerogel network was determined to be composed of spherical primary particles with features in the 5-20 nm range. These particles were also determined to be highly crystalline as evidenced by the higher magnification TEM examination. The thoria aerogel possesses high surface area (120 m{sup 2}/g) and pore diameters in the micro- and mesoporous range.

  5. Properties and processing of nanocrystalline materials. Quarterly report

    SciTech Connect

    Valiev, R.Z.

    1996-01-22

    The present Report completes the investigations in the frame of the project for the first year. It is important to estimate our achievements in the investigation of properties of nanocrystalline materials obtained by severe plastic deformation and their production. We think that the main results obtained can be summarized as follows: (1) We performed an improvement of the die-set for equal channel (ECA) pressing and torsion under high pressure with the aim to increase dimensions of the samples produced and to conduct processing of low ductile materials. (2) It was established that in pure metals severe plastic deformation led to the formation of an ultra fine-grained structure with a mean grain size of 100-200 nm, while in alloys due to severe plastic deformation and/or special methods of treatment (a decrease in the temperature of deformation, an increase of the pressure applied etc.) the grain size could be decreased down to a few tens of manometers.

  6. Five-fold twin formation during annealing of nanocrystalline Cu

    SciTech Connect

    Bringa, E M; Farkas, D; Caro, A; Wang, Y M; McNaney, J; Smith, R

    2009-05-20

    Contrary to the common belief that many-fold twins, or star twins, in nanophase materials are due to the action of significant external stresses, we report molecular dynamics simulations of annealing in 5 nm grain size samples annealed at 800 K for nearly 0.5 nsec at 0 external pressure showing the formation of five-fold star twins during annealing under the action of the large internal stresses responsible for grain growth and microstructural evolution. The structure of the many-fold twins is remarkably similar to those we have found to occur under uniaxial shock loading, of samples of nanocrystalline NiW with a grain size of {approx}5-30 nm. The mechanism of formation of the many-fold twins is discussed in the light of the simulations and experiments.

  7. Electronic structure studies of nanocrystalline diamond grain boundaries

    SciTech Connect

    Zapol, P.; Sternberg, M.; Frauenheim, T.; Gruen, D. M.; Curtiss, L. A.

    1999-11-29

    Diamond growth from hydrogen-poor plasmas results in diamond structures that are profoundly different from conventionally CVD-grown diamond. High concentration of carbon dimers in the microwave plasma results in a high rate of heterogeneous renucleation leading to formation of nanocrystalline diamond with a typical grain size of 3--10 nm. Therefore, up to 10% of carbon atoms are located in the grain boundaries. In this paper the authors report on density-functional based tight-binding molecular dynamics calculations of the structure of a {Sigma}13 twist (100) grain boundary in diamond. Beginning with a coincidence site lattice model, simulated annealing of the initial structure was performed at 1,500 K followed by relaxation toward lower temperatures. About one-half of the carbons in the grain boundary are found to be three-coordinated. Coordination numbers, bond length and bond angle distributions are analyzed and compared to those obtained in previous studies.

  8. Structural modification of nanocrystalline ceria by ion beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D.; Varga, Tamas; Moll, Sandra; Namavar, Fereydoon; Lan, Chune; Weber, William J.

    2011-01-01

    Exceptional size-dependent electronic–ionic conductivity of nanostructured ceria can significantly alter materials properties in chemical, physical, electronic and optical applications. Using energetic ions, we have demonstrated effective modification of interface volume and grain size in nanocrystalline ceria from a few nm up to ~25 nm, which is the critical region for controlling size-dependent material property. The grain size increases and follows an exponential law as a function of ion fluence that increases with temperature, while the cubic phase is stable under the irradiation. The unique self-healing response of radiation damage at grain boundaries is utilized to control the grain size at the nanoscale. Structural modification by energetic ions is proposed to achieve desirable electronic–ionic conductivity.

  9. Sintering characteristics of nanocrystalline TiO sub 2

    SciTech Connect

    Hahn, H.; Logas, J.; Averback, R.S. Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 )

    1990-03-01

    The microstructural development of compacted nanocrystalline TiO{sub 2} powder was studied as a function of sintering temperature up to 1000 {degree}C. Grain growth was monitored using x-ray diffraction and scanning electron microscopy. The specific surface area and total porosity were determined quantitatively using the nitrogen adsorption BET. The density was measured by gravimetry using Archimedes principle. The green body density of compacted {ital n}-TiO{sub 2} with average grain size of 14 nm is as high as 75% of theoretical bulk density. Low temperature surface diffusion leads to the disappearance of small pores, while noticeable densification commences at 600 {degree}C and reaches near theoretical values at 900 {degree}C. Grain growth also begins at 600 {degree}C, accelerating rapidly by 1000 {degree}C. Hot isostatic pressing is observed to enhance densification while suppressing grain growth.

  10. Synthesis and characterization of a nanocrystalline diamond aerogel

    SciTech Connect

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  11. Synthesis and characterization of a nanocrystalline diamond aerogel

    PubMed Central

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Joe H.

    2011-01-01

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel’s void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel. PMID:21555550

  12. In vitro collagen fibril alignment via incorporation of nanocrystalline cellulose.

    PubMed

    Rudisill, Stephen G; DiVito, Michael D; Hubel, Allison; Stein, Andreas

    2015-01-01

    This study demonstrates a method for producing ordered collagen fibrils on a similar length scale to those in the cornea, using a one-pot liquid-phase synthesis. The alignment persists throughout samples on the mm scale. The addition of nanocrystalline cellulose (NCC), a biocompatible and widely available material, to collagen prior to gelation causes the fibrils to align and achieve a narrow size distribution (36±8nm). The effects of NCC loading in the composites on microstructure, transparency and biocompatibility are studied by scanning electron microscopy, ultraviolet-visible spectroscopy and cell growth experiments. A 2% loading of NCC increases the transparency of collagen while producing an ordered microstructure. A mechanism is proposed for the ordering behavior on the basis of enhanced hydrogen bonding during collagen gel formation.

  13. Synthesis and characterization of superconducting nanocrystalline niobium nitride.

    PubMed

    Shi, Liang; Gu, Yunle; Chen, Luyang; Yang, Zeheng; Ma, Jianhua; Qian, Yitai

    2005-02-01

    Nanocrystalline niobium nitride (NbN0.9) was successfully synthesized at 600 degrees C through a solid-state reaction. The synthesis was carried out in an autoclave by using NbCl5 and NaN3 as the reactants. The X-ray powder diffraction pattern indicates the formation of cubic NbN0.9. Transmission electron microscopy images show that typical NbN0.9 crystallites are composed of uniform particles with an average size of about 30 nm and nanorod crystallites with a typical size of about 40 x 2500 nm. Magnetic measurements exhibited that a superconducting transition occurred at 15.4 K for the NbN0.9 product. PMID:15853151

  14. Method for producing functionally graded nanocrystalline layer on metal surface

    DOEpatents

    Ajayi, Oyelayo O.; Hershberger, Jeffrey G.

    2010-03-23

    An improved process for the creation or formation of nanocrystalline layers on substrates' surfaces is provided. The process involves "prescuffing" the surface of a substrate such as a metal by allowing friction to occur on the surface by a load-bearing entity making rubbing contact and moving along and on the substrate's surface. The "prescuffing" action is terminated when the coefficient of friction between the surface and the noise is rising significantly. Often, the significant rise in the coefficient of friction is signaled by a change in pitch of the scuffing action sound emanating from the buffeted surface. The "prescuffing" gives rise to a harder and smoother surface which withstands better any inadequate lubrication that may take place when the "prescuffed" surface is contacted by other surfaces.

  15. Structural and optical properties of porous nanocrystalline Ge

    NASA Astrophysics Data System (ADS)

    Kartopu, G.; Sapelkin, A. V.; Karavanskii, V. A.; Serincan, U.; Turan, R.

    2008-06-01

    Nanocrystalline Ge films were prepared by isotropic chemical etching on single-crystalline Ge substrates with 100 and 111 orientations. The structural and optical properties have been investigated by transmission electron microscopy (TEM), electron diffraction (ED), Raman photoluminescence (PL), and infrared spectroscopy. The average size of nanocrystals (NCs) was estimated by fitting of the Raman spectra using a phonon-confinement model developed for spherical semiconductor NCs. Considered collectively TEM, ED, and Raman results indicate that all films contain high density of 3-4 nm diameter, diamond-structured Ge NCs with disordered surfaces. There are indications that surface of nanoparticles is mainly hydrogen terminated even for air-stabilized samples. Red PL is observed at room temperature upon excitation by 1.96 eV with peak energy of ˜1.55 eV and correlates well with recent theoretical calculations of the enlarged optical gap in Ge NCs of similar size.

  16. Dislocation processes and deformation twinning in nanocrystalline Al.

    SciTech Connect

    Yamakov, V.; Wolf, D.; Phillpot, S.R.; Gleiter, H.

    2002-01-29

    Using a recently developed, massively parallel molecular-dynamics (MD) code for the simulation of polycrystal plasticity, we analyze for the case of nanocrystalline Al the complex interplay among various dislocation and grain-boundary processes during low-temperature deformation. A unique aspect of this work, arising from our ability to deform to rather large plastic strains and to consider a rather large grain size, is the observation of deformation under very high grain-boundary and dislocation densities, i.e., in a deformation regime where they compete on an equal footing. We are thus able to identify the intra- and intergranular dislocation and grain-boundary processes responsible for the extensive deformation twinning observed in our simulations. This illustrates the ability of this type of simulations to capture novel atomic-level insights into the underlying deformation mechanisms not presently possible experimentally. smaller grain size, mobile dislocations must be nucleated from other sources, such as the GBs or grain junctions.

  17. High Priority of Nanocrystalline Diamond as a Biosensing Platform

    NASA Astrophysics Data System (ADS)

    Wang, Xianfen; Kurihara, Shinichiro; Hasegawa, Masataka; Rahim Ruslinda, A.; Kawarada, Hiroshi

    2012-09-01

    Here we report the performance of surface functionalized diamond surfaces as biosensing platform for human immunodeficiency virus trans-activator of transcription (HIV-Tat) peptide detection. Comparative investigations were conducted on nanocrystalline diamond (NCD) and polycrystalline diamond (PCD) films. Scanning electron microscopy (SEM) images revealed the morphology differences between NCD and PCD films. X-ray photoelectron spectroscopy (XPS) data showed that functional components and corresponding coverages, demonstrating denser carboxyl acid groups and fluorinated groups on NCD than that PCD films after UV/ozone and fluorine plasma treatment respectively. Contact angle results showed the differences in surface wettability and free energy between functionalized NCD and PCD biosensors. Fluorescence observations confirmed that higher biosensing performance can be obtained on NCD biosensors with high sensitivity selectivity, and stability. The NCD films with denser surface coverages of functionalizations made NCD films much more priority as an effective biosensing candidate than PCD films.

  18. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications.

    PubMed

    Brinchi, L; Cotana, F; Fortunati, E; Kenny, J M

    2013-04-15

    The use of renewables materials for industrial applications is becoming impellent due to the increasing demand of alternatives to scarce and unrenewable petroleum supplies. In this regard, nanocrystalline cellulose, NCC, derived from cellulose, the most abundant biopolymer, is one of the most promising materials. NCC has unique features, interesting for the development of new materials: the abundance of the source cellulose, its renewability and environmentally benign nature, its mechanical properties and its nano-scaled dimensions open a wide range of possible properties to be discovered. One of the most promising uses of NCC is in polymer matrix nanocomposites, because it can provide a significant reinforcement. This review provides an overview on this emerging nanomaterial, focusing on extraction procedures, especially from lignocellulosic biomass, and on technological developments and applications of NCC-based materials. Challenges and future opportunities of NCC-based materials will be are discussed as well as obstacles remaining for their large use.

  19. The modified nanocrystalline cellulose for hydrophobic drug delivery

    NASA Astrophysics Data System (ADS)

    Qing, Weixia; Wang, Yong; Wang, Youyou; Zhao, Dongbao; Liu, Xiuhua; Zhu, Jinhua

    2016-03-01

    In this work, torispherical nanocrystalline cellulose (NCC) was synthesized, and firstly modified with a cationic surfactant cetyltrimethylammonium bromide (CTMAB). It was proved that the kinetics of NCC adsorbing CTMAB followed the pseudo-second-order kinetics equation, and the adsorption isotherm model followed Freundlich which was multi molecular layer adsorption model. The morphology and structure of NCC and CTMAB-coated NCC were characterized by transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Stabilities of NCC and CTMAB-coated NCC were assayed by zeta potential. The results showed that NCC in CTMAB solution was well-dispersed and stable. Moreover, the drug loading and release performance of CTMAB-coated NCC were studied using luteolin (LUT) and luteoloside (LUS) as model drugs.

  20. ULTRA-HIGH STRENGTH IN NANOCRYSTALLINE MATERIALS UNDER SHOCK LOADING

    SciTech Connect

    Bringa, E M; Caro, A; Wang, Y M; Victoria, M; McNaney, J; Remington, B A; Smith, R; Torralva, B; Van Swygenhoven, H

    2005-04-11

    Molecular dynamics simulations of nanocrystalline (nc) copper under shock loading show an unexpected ultra-high strength behind the shock front. The strength at high pressure can be up to twice the value at low pressure, for all grain sizes studied here (5-50 nm grains, with up to {approx}4 10{sup 8} atoms). Partial and perfect dislocations, twinning, and debris from dislocation interactions are found behind the shock front. Results are interpreted in terms of the pressure dependence of both deformation mechanisms active at these grain sizes, namely dislocation plasticity and grain boundary sliding. These simulations, together with new shock experiments on nc nickel, raise the possibility of achieving ultra-hard materials during and after shock loading.