Science.gov

Sample records for ag-doped zno thin

  1. Synthesis and Characterization of Varying Concentrations of Ag-doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Hachlica, Justin; Wadie-Ibrahim, Patrick; Sahiner, M. Alper

    Silver doped ZnO is a promising compound for photovoltaic solar cell use. Doping this compound with varying amounts of silver will theoretically make this type of thin film more efficient by reducing the overall resistance and increasing the voltage and current output. The extent of this promise is being tested experimentally, by analysis of both the electrical and the surface roughness properties of the cells. Ag-doped Zinc Oxide is deposited by method of Pulsed Laser Deposition (PLD) onto Indium Tin Oxide (ITO) coated Glass. Annealing effects were also observed by varying the temperature at which the annealing occurred after synthesis of the sample. Thickness is confirmed by use of Ellipsometery. X-Ray Diffraction (XRD) measurements confirmed a ZnO crystal structure on the thin films. The active dopant carrier concentrations were determined using a Hall Effect Measuring System. Finally, the photovoltaic properties of the film are recorded by using a Keithley Source Meter. The structural characterization and electrical results of the effect of Ag doping on ZnO will then be discussed.

  2. Hydrogen in Ag-doped ZnO: theoretical calculations.

    PubMed

    He, H Y; Hu, J; Pan, B C

    2009-05-28

    Based on density functional theory calculations, we systematically investigate the behaviors of a H atom in Ag-doped ZnO involving the preference sites, diffusion behaviors, the electronic structures, and vibrational properties. We find that a H atom can migrate to the doped Ag to form a Ag-H complex by overcoming energy barriers of 0.3-1.0 eV. The lowest-energy site for H location is the bond center of a Ag-O in the basal plane. Moreover, H can migrate between this site and its equivalent sites with energy cost of less than 0.5 eV. In contrast, dissociation of such a Ag-H complex needs energy of about 1.1-1.3 eV. This implies that the Ag-H complexes can commonly exist in the Ag-doped ZnO, which have a negative effect on the desirable p-type carrier concentrations of Ag-doped ZnO. In addition, based on the frozen phonon calculation, the vibrational properties of ZnO with a Ag-H complex are predicted. Some new vibrational modes associated with the Ag-H complex present in the vibrational spectrum of the system.

  3. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    SciTech Connect

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mahmood, Arshad

    2014-04-21

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects in ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn{sup 2+} interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.

  4. Ag-doped ZnO nanorods synthesized by two-step method

    NASA Astrophysics Data System (ADS)

    Chen, Xian-Mei; Ji, Yong; Gao, Xiao-Yong; Zhao, Xian-Wei

    2012-11-01

    A two-step method is adopted to synthesize Ag-doped ZnO nanorods. A ZnO seed layer is first prepared on a glass substrate by thermal decomposition of zinc acetate. Ag-doped ZnO nanorods are then assembled on the ZnO seed layer using the hydrothermal method. The influences of the molar percentage of Ag ions to Zn ions (RAg/Zn) on the structural and optical properties of the ZnO nanorods obtained are carefully studied using X-ray diffractometry, scanning electron microscopy and spectrophotometry. Results indicate that Ag ions enter into the crystal lattice through the substitution of Zn ions. The (002) c-axis-preferred orientation of the ZnO nanorods decreases as RAg/Zn increases. At RAg/Zn > 1.0%, ZnO nanorods lose their c-axis-preferred orientation and generate Ag precipitates from the ZnO crystal lattice. The average transmissivity in the visible region first increases and then decreases as RAg/Zn increases. The absorption edge is first blue shifted and then red shifted. The influence of Ag doping on the average head face, and axial dimensions of the ZnO nanorods may be optimized to improve the average transmissivity at RAg/Zn < 1.0%.

  5. Dynamic fatigue behaviour of Ag-doped Bi-2212 textured thin rods

    NASA Astrophysics Data System (ADS)

    Madre, M. A.; Rasekh, Sh; Diez, J. C.; Sotelo, A.

    2009-03-01

    The flexural strength of 1 wt.% Ag-doped Bi2Sr2CaCu2O8+δ thin rods textured by a laser heated floating zone was measured as a function of the environmental conditions (air versus water) at room temperature. Loading rates spanning three orders of magnitude (1, 10 and 100 μm/min) were used to explore their susceptibility to the environmental conditions. These mechanical tests were completed with electrical characterization (critical current at 77K and resistivity from 77 to 300 K) of samples submerged in distilled water for different time lengths (0, 12 and 120h). While Bi2Sr2CaCu2O8+δ has been shown, in previous works, to be unstable during contact with water molecules, the Ag-doped Bi-2212 textured rods tested in this work are very inert to the water environment, with respect to their mechanical and electrical properties, due to the presence of a narrow (approx150 μm) low textured outer ring formed in the growth process.

  6. Tuning of Ag doped core-shell ZnO NWs/Cu2O grown by electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Makhlouf, Houssin; Messaoudi, Olfa; Souissi, Ahmed; Ben Assaker, Ibtissem; Oueslati, Mihrez; Bechelany, Mikhael; Chtourou, Radhouane

    2015-09-01

    ZnO nanowires (NWs)/Cu2O-Ag core-shell nanostructures (NSs) have been synthesized by electrochemical deposition method on ITO-coated glass substrates in order to improve the efficiency of the type-II transition of core-shell ZnO NWs/Cu2O-Ag NSs. The morphologies of the obtained NSs were studied by scanning electron microscopy confirming the presence of core-shell NSs. The crystalline proprieties were analyzed by x-ray diffraction and micro-Raman measurement: wurtzite ZnO and cuprit Cu2O phase were founded. The presence of Ag content in core-shell NS was detected by EDX. Optical measurement reveals an additional contribution δE at about 1.72 eV attributed to the type-II interfacial transition between the valance band of cuprit-Cu2O and the conduction band of W-ZnO. The effect of the Ag doping into the type-II transition was investigated. A red shift of the type-II transition was detected according to the Ag concentration. These materials could have potential applications in photocatalytic and photovoltaic fields.

  7. Spectroscopic studies on photoelectron transfer from 2-(furan-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole to ZnO, Cu-doped ZnO and Ag-doped ZnO.

    PubMed

    Thanikachalam, V; Arunpandiyan, A; Jayabharathi, J; Karunakaran, C; Ramanathan, P

    2014-09-01

    The 2-(furan-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole [FPI] has been designed and synthesized as fluorescent sensor for nanoparticulate ZnO. The present work investigates the photoelectron transfer (PET) from FPI to ZnO, Cu-doped ZnO and Ag- doped ZnO nanoparticles using electronic and life time spectral measurements. Broad absorption along with red shift indicates the formation of charge-transfer complex [FPI-Nanoparticles]. The photophysical studies indicate lowering of HOMO and LUMO energy levels of FPI on adsorption on ZnO due to FPI- ZnO interaction. The obtained binding constant implies that the binding of FPI with nanoparticles was influenced by the surface modification of ZnO nanoparticles with Cu and Ag.

  8. Enhanced Raman scattering and nonlinear conductivity in Ag-doped hollow ZnO microspheres

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph W.; Levie, Harold W.; McCall, Scott K.; Teslich, Nick E.; Wall, Mark A.; Orme, Christine A.; Matthews, Manyalibo J.

    2012-10-01

    Hollow spherical ZnO particles doped with Ag were synthesized with a two-step oxidation and sublimation furnace annealing process. Ag nanoparticle precipitates, as observed by transmission electron microscopy, were present in the polycrystalline ZnO matrix at Ag concentrations below 0.02 mol%, significantly below the 0.8 mol% solubility limit for Ag in ZnO. Enhanced Raman scattering of ZnO phonon modes is observed, increasing with Ag nanoparticle concentration. A further enhancement in Raman scattering due to resonance effects was observed for LO phonons excited by 2.33-eV photons as compared with Raman scattering under 1.96-eV excitation. Room-temperature photoluminescence spectra showed both a near-band-edge emission due to free exciton transitions and a mid-gap transition due to the presence of singly ionized oxygen vacancies. ZnO:Ag particles were measured electrically in a packed column and in monolithic form, and in both cases displayed nonlinear current-voltage characteristics similar to those previously observed in sintered ZnO:Ag monoliths where Ag-enhanced disorder at grain boundaries is thought to control current transport. We demonstrate therefore that Ag simultaneously modifies the electrical and optical properties of ZnO particles through the introduction of vacancies and other defects.

  9. Low-Temperature Preparation of Ag-Doped ZnO Nanowire Arrays, DFT Study, and Application to Light-Emitting Diode.

    PubMed

    Pauporté, Thierry; Lupan, Oleg; Zhang, Jie; Tugsuz, Tugba; Ciofini, Ilaria; Labat, Frédéric; Viana, Bruno

    2015-06-10

    Doping ZnO nanowires (NWs) by group IB elements is an important challenge for integrating nanostructures into functional devices with better and tuned performances. The growth of Ag-doped ZnO NWs by electrodeposition at 90 °C using a chloride bath and molecular oxygen precursor is reported. Ag acts as an electrocatalyst for the deposition and influences the nucleation and growth of the structures. The silver atomic concentration in the wires is controlled by the additive concentration in the deposition bath and a content up to 3.7 atomic % is reported. XRD analysis shows that the integration of silver enlarges the lattice parameters of ZnO. The optical measurements also show that the direct optical bandgap of ZnO is reduced by silver doping. The bandgap shift and lattice expansion are explained by first principle calculations using the density functional theory (DFT) on the silver impurity integration as an interstitial (Ag(i)) and as a substitute of zinc atom (Ag(Zn)) in the crystal lattice. They notably indicate that Ag(Zn) doping forms an impurity band because of Ag 4d and O 2p orbital interactions, shifting the Fermi level toward the valence band. At least, Ag-doped ZnO vertically aligned nanowire arrays have been epitaxially grown on GaN(001) substrate. The heterostructure has been inserted in a light emitting device. UV-blue light emission has been achieved with a low emission threshold of 5 V and a tunable red-shifted emission spectrum related to the bandgap reduction induced by silver doping of the ZnO emitter material. PMID:25990263

  10. Surface resistance and residual losses of Ag-doped YBa2Cu3O7 - delta thin films on sapphire

    NASA Astrophysics Data System (ADS)

    Pinto, R.; Apte, P. R.; Hegde, M. S.; Kumar, Dhananjay

    1995-04-01

    High-quality Ag-doped YBa2Cu3O7-δ thin films have been grown by laser ablation on R-plane <11¯02> sapphire without any buffer layer. Thin films have been found to be highly c-axis oriented with Tc=90 K, transition width ΔT≤1 K, and transport Jc=1.2×106 A cm-2 at 77 K in self-field conditions. The microwave surface resistance of these films measured on patterned microstrip resonators has been found to be 530 μΩ at 10 GHz at 77 K which is the lowest reported on unbuffered sapphire. Improved in-plane epitaxy and reduced reaction rate between the substrate and the film caused due to Ag in the film are believed to be responsible for this greatly improved microwave surface resistance.

  11. Influence of Ag doping concentration on structural and optical properties of CdS thin film

    SciTech Connect

    Kumar, Pragati; Saxena, Nupur; Gupta, Vinay; Agarwal, Avinash

    2015-05-15

    This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.

  12. Photoluminescence study of p-type vs. n-type Ag-doped ZnO films

    SciTech Connect

    Myers, M. A.; Jian, J.; Khranovskyy, V.; Lee, J. H.; Wang, Han; Wang, Haiyan E-mail: hwang00@tamu.edu

    2015-08-14

    Silver doped ZnO films have been grown on sapphire (0001) substrates by pulsed laser deposition. Hall measurements indicate that p-type conductivity is realized for the films deposited at 500 °C and 750 °C. Transmission electron microscopy images show more obvious and higher density of stacking faults (SFs) present in the p-type ZnO films as compared to the n-type films. Top view and cross sectional photoluminescence of the n- and p-type samples revealed free excitonic emission from both films. A peak at 3.314 eV, attributed to SF emission, has been observed only for the n-type sample, while a weak neutral acceptor peak observed at 3.359 eV in the p-type film. The SF emission in the n-type sample suggests localization of acceptor impurities nearby the SFs, while lack of SF emission for the p-type sample indicates the activation of the Ag acceptors in ZnO.

  13. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    SciTech Connect

    Das, Sayantan; Alford, T. L.

    2013-06-28

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  14. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    NASA Astrophysics Data System (ADS)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  15. The growth mode and microstructure of Ag-doped YBa 2Cu 3O 7-δ thin films prepared by dual beam pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Xu, S. Y.; Ong, C. K.; You, L. P.; Li, J.; Wang, S. J.

    Ag-doped c-axis YBa 2Cu 3O 7-δ thin films were fabricated by using dual-beam pulsed-laser deposition. When a small amount of silver was doped in the film grown at 700 °C, the Jc value was obviously enhanced. The temperature dependence of Jc was found proportional to ( 1- T/T c0 ) {3}/{2} at T close to Tc). In the films grown at 730 °C, we observed long bar-like structures with lengths in tens of μm, oriented along or at 45° to the a/ b axes of the film. The bars consisted mainly a-axis YBCO grains and a mixture of polycrystalline and amorphous oxides. Defects on substrate surface and growth temperature were found dominating in formation of the bars, which could be attributed to a Ag-assisted diffusion mechanism during the deposition process.

  16. A comparative study of optical and radiative characteristics of X-ray-induced luminescent defects in Ag-doped glass and LiF thin films and their applications in 2-D imaging

    NASA Astrophysics Data System (ADS)

    Kurobori, T.; Miyamoto, Y.; Maruyama, Y.; Yamamoto, T.; Sasaki, T.

    2014-05-01

    We report novel disk-type X-ray two-dimensional (2-D) imaging detectors utilising Ag-doped phosphate glass and lithium fluoride (LiF) thin films based on the radiophotoluminescence (RPL) and photoluminescence (PL) phenomena, respectively. The accumulated X-ray doses written in the form of atomic-scale Ag-related luminescent centres in Ag-doped glass and F-aggregated centres in LiF thin films were rapidly reconstructed as a dose distribution using a homemade readout system. The 2-D images reconstructed from the RPL and PL detectors are compared with that from the optically stimulated luminescence (OSL) detector. In addition, the optical and dosimetric characteristics of LiF thin films are investigated and evaluated. The possibilities of dose distributions with a high spatial resolution on the order of microns over large areas, a wide dynamic range covering 11 orders of magnitude and a non-destructive readout are successfully demonstrated by combining the Ag-doped glass with LiF thin films.

  17. The distribution of Ag in Ag-doped YBa2Cu3O7-δ thin film prepared by dual-beam pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Zhou, W. Z.; Chua, D. H. C.; Xu, S. Y.; Ong, C. K.; Feng, Y. P.; Osipowicz, T.; Chen, M. S.

    1999-06-01

    The Ag distribution in Ag-doped YBa2Cu3O7-δ (YBCO) thin films fabricated by dual-beam pulsed-laser deposition on SrTiO3 (100) substrates has been studied by Auger electron spectroscopy, microproton-induced x-ray emission, atomic force microscopy and scanning electron microscopy. All the results consistently show that Ag aggregated in the bar-like structures observed in the film. These bars are aligned along the a-b-axis or at 45° to the a-b-axis of the YBCO thin film. The main body of the long bars aligned with the a-b-axes of the film was found to be a combination of metallic Ag with other precipitates of YBCO film that may grow from the substrate surface to the YBCO film surface. There were other precipitates aggregating as well at the surface of these bars, such as oxides of Cu and Ba. The short bars that aligned along 45° to the a-b-axes of the film were found to be deficient in Ag but rich in Cu, Ba and O, which could be oxide precipitates of YBCO. The growth mechanisms of the two types of bars seem quite different.

  18. Microstructure and temperature dependence of microwave penetration depth of Ag doped Y 1Ba 2Cu 3O 7- x thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Davinder; Pai, S. P.; Jesudasan, J.; Pinto, R.

    2004-06-01

    We report the measurements of magnetic penetration depth λ( T) of Ag-doped YBa 2Cu 3O 7- δ (YBCO) thin films in the thickness range 1500-4000 A and temperature range 18-88 K. The films are in situ grown by laser ablation on <1 0 0> LaAlO 3 substrates. The penetration depth measurements are performed by microstrip resonator technique. A correlation of λ( T) with the film microstructure observed with atomic force microscopy has shown that λ( T) depends critically on the film microstructure. Temperature dependence of magnetic penetration depth has also been studied for best quality films. The experimental results are discussed in terms of BCS theory (s-wave pairing) and d-wave Pairing with and without unitary scattering. The results are found to be best fitted to the d-wave model with unitary scattering limit. Near Tc, we have also compare the (3D) XY critical regime and the Ginzburg-Landau (GL) behaviour.

  19. Effect of Ag doping and annealing on thermoelectric properties of PbTe

    SciTech Connect

    Bala, Manju Tripathi, T. S.; Avasthi, D. K.; Asokan, K.; Gupta, Srashti

    2015-06-24

    The present study reveals that annealing Ag doped PbTe thin films enhance thermoelectric properties. Phase formation was identified by using X-ray diffraction measurement. Annealing increases the crystallinity of both undoped and Ag doped PbTe. Electrical resistivity and thermoelectric power measurements are done using four probe and bridge method respectively. The increase in thermoelectric power of Ag doped PbTe is 29 % in comparison to undoped PbTe and it further increases to 34 % after annealing at 250{sup o} C for 1 hour whereas thermoelectric power increases by 14 % on annealing undoped PbTe thin films at same temperature.

  20. Room temperature ferromagnetism in ZnO using non-magnetic dopants

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Atri, Asha; Singh, Budhi; Ghosh, Subhasis

    2016-05-01

    We studied the magnetic properties of Ag and Cu doped ZnO thin films deposited by magnetron sputtering. Robust room temperature ferromagnetism is observed in the films. Comparative to Cu doped films Ag doped films shows significant increase in ferromagnetism. Spectroscopic ellipsometry studies are also done to see the change in band structure with different metal doping content.

  1. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  2. Synthesis and characterization of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Anilkumar T., S.; Girija M., L.; Venkatesh, J.

    2016-05-01

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivity of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.

  3. Nanoporous structures on ZnO thin films

    NASA Astrophysics Data System (ADS)

    Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma

    2010-01-01

    Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.

  4. Li doped ZnO thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Serrao, F. J.; Dharmaprakash, S. M.

    2016-05-01

    We have prepared undoped (ZnO) and Li doped ZnO (LZO) thin films using cost effective sol gel spin coating method.The structural properties were analyzed by X-ray diffraction, and it showed that Li ions occupied interstitial positions in the LZO film. The optical properties like band bending effect, absorption length, band edge sharpness, which have direct impact on solar cell performance has been calculated. The room temperature photoluminescence spectra of the films showed dominant blue emission with CIE coordinate numbers (0.1384, 0.0836) for ZnO and (0.1356, 0.0910) for LZO. The dominating wavelength of the blue emission is present at 470.9 nm and 472.3 nm for ZnO and LZO films respectively. The structural and optical parameters determined in the present study could be used in LED applications.

  5. ZnO Thin Film Electronics for More than Displays

    NASA Astrophysics Data System (ADS)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  6. A high power ZnO thin film piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Qin, Weiwei; Li, Tao; Li, Yutong; Qiu, Junwen; Ma, Xianjun; Chen, Xiaoqiang; Hu, Xuefeng; Zhang, Wei

    2016-02-01

    A highly efficient and large area piezoelectric ZnO thin film nanogenerator (NG) was fabricated. The ZnO thin film was deposited onto a Si substrate by pulsed laser ablation at a substrate temperature of 500 °C. The deposited ZnO film exhibited a preferred c-axis orientation and a high piezoelectric value of 49.7 pm/V characterized using Piezoelectric Force Microscopy (PFM). Thin films of ZnO were patterned into rectangular power sources with dimensions of 0.5 × 0.5 cm2 with metallic top and bottom electrodes constructed via conventional semiconductor lithographic patterning processes. The NG units were subjected to periodic bending/unbending motions produced by mechanical impingement at a fixed frequency of 100 Hz at a pressure of 0.4 kg/cm2. The output electrical voltage, current density, and power density generated by one ZnO NG were recorded. Values of ∼95 mV, 35 μA cm-2 and 5.1 mW cm-2 were recorded. The level of power density is typical to that produced by a PZT NG on a flexible substrate. Higher energy NG sources can be easily created by adding more power units either in parallel or in series. The thin film ZnO NG technique is highly adaptable with current semiconductor processes, and as such, is easily integrated with signal collecting circuits that are compatible with mass production. A typical application would be using the power harvested from irregular human foot motions to either to operate blue LEDs directly or to drive a sensor network node in mille-power level without any external electric source and circuits.

  7. Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Son, Nguyen Thanh; Noh, Jin-Seo; Park, Sungho

    2016-08-01

    The effect of ZnO thin film on the growth of ZnO nanorods was investigated. ZnO thin films were sputter-deposited on Si substrate with varying the thickness. ZnO nanorods were grown on the thin film using a chemical bath deposition (CBD) method at 90 °C. The ZnO thin films showed granular structure and vertical roughness on the surface, which facilitated the vertical growth of ZnO nanorods. The average grain size and the surface roughness of ZnO film increased with an increase in film thickness, and this led to the increase in both the average diameter and the average length of vertically grown ZnO nanorods. In particular, it was found that the average diameter of ZnO nanorods was very close to the average grain size of ZnO thin film, confirming the role of ZnO film as a seed layer for the vertical growth of ZnO nanorods. The CBD growth on ZnO seed layers may provide a facile route to engineering vertically aligned ZnO nanorod arrays.

  8. Semiconducting properties of Al doped ZnO thin films.

    PubMed

    Al-Ghamdi, Ahmed A; Al-Hartomy, Omar A; El Okr, M; Nawar, A M; El-Gazzar, S; El-Tantawy, Farid; Yakuphanoglu, F

    2014-10-15

    Aluminum doped ZnO (AZO) thin films were successfully deposited via spin coating technique onto glass substrates. Structural properties of the films were analyzed by X-ray diffraction, atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy. X-ray diffraction results reveal that all the films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction (002) plane. The crystallite size of ZnO and AZO films was determined from Scherrer's formula and Williamson-Hall analysis. The lattice parameters of the AZO films were found to decrease with increasing Al content. Energy dispersive spectroscopy (EDX) results indicate that Zn, Al and O elements are present in the AZO thin films. The electrical conductivity, mobility carriers and carrier concentration of the films are increased with increasing Al doping concentration. The optical band gap (Eg) of the films is increased with increasing Al concentration. The AZO thin films indicate a high transparency in the visible region with an average value of 86%. These transparent AZO films may be open a new avenue for optoelectronic and photonic devices applications in near future. PMID:24840493

  9. Surface Morphological and Nanomechanical Properties of PLD-Derived ZnO Thin Films

    PubMed Central

    2008-01-01

    This study reports the surface roughness and nanomechanical characteristics of ZnO thin films deposited on the various substrates, obtained by means of atomic force microscopy (AFM), nanoindentation and nanoscratch techniques. ZnO thin films are deposited on (a- and c-axis) sapphires and (0001) 6H-SiC substrates by using the pulsed-laser depositions (PLD) system. Continuous stiffness measurements (CSM) technique is used in the nanoindentation tests to determine the hardness and Young’s modulus of ZnO thin films. The importance of the ratio (H/Efilm) of elastic to plastic deformation during nanoindentation of ZnO thin films on their behaviors in contact-induced damage during fabrication of ZnO-based devices is considered. In addition, the friction coefficient of ZnO thin films is also presented here.

  10. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  11. Synthesis and annealing study of RF sputtered ZnO thin film

    NASA Astrophysics Data System (ADS)

    Singh, Shushant Kumar; Sharma, Himanshu; Singhal, R.; Kumar, V. V. Siva; Avasthi, D. K.

    2016-05-01

    In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structure of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.

  12. Influence of Al-, Co-, Cu-, and In-doped ZnO buffer layers on the structural and the optical properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kim, Younggyu; Choe, Jongyun; Nam, Giwoong; Kim, Ikhyun; Leem, Jae-Young; Lee, Sang-heon; Kim, Soaram; Kim, Do Yeob; Kim, Sung-O.

    2015-01-01

    Zinc oxide (ZnO) thin films without a buffer layer and with Al-, Co-, Cu-, and In-doped ZnO buffer layers were prepared by using the sol-gel spin-coating method. For the first time, the effects of the ZnO buffer layers doped with different metal materials on the structural and the optical properties of the ZnO thin films are investigated. The surface morphologies of the ZnO thin films having wrinkle structures significantly depended on the type of buffer layer. The largest crystallite size and the highest c-axis orientation were observed for the ZnO thin film with a Co-doped ZnO buffer layer. However, the transmittance for the ZnO thin films with metal-doped buffer layers was slightly decreased compared to that without the buffer layer, and metal-doped ZnO buffer layers hardly affected the optical band gap of the ZnO thin films.

  13. Influence of POST Annealing on Sol-Gel Deposited ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Bhadane, Hemalata; Samuel, Edmund; Gautam, Dinesh Kumar

    2014-05-01

    The effect of annealing temperature on sol-gel deposited ZnO thin films have been studied. The average crystallite size determined from XRD shows that the deposited films are nanocrystalline. FTIR confirms deposition of ZnO thin films. The transmittance of annealed ZnO thin films is greater than 80% in visible region with bandgap ranging from 3.25-3.19 eV. The films annealed at 450°C temperature shows lower resistivity value of 527.241 Ωm. The deposited nanocrystalline films are suitable for biosensing applications due to its higher surface area.

  14. Laser nanostructuring of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N.; Koleva, M.; Nikov, R.; Atanasov, P.; Nakajima, Y.; Takami, A.; Shibata, A.; Terakawa, M.

    2016-06-01

    In this work, results on laser processing of thin zinc oxide films deposited on metal substrate are presented. ZnO films are obtained by classical nanosecond pulsed laser deposition method in oxygen atmosphere on tantalum substrate. The produced films are then processed by nanosecond laser pulses at wavelength of 355 nm. The laser processing parameters and the film thickness are varied and their influence on the fabricated structures is estimated. The film morphology after the laser treatment is found to depend strongly on the laser fluence as two regimes are defined. It is shown that at certain conditions (high fluence regime) the laser treatment of the film leads to formation of a discrete nanostructure, composed of spherical like nanoparticles with narrow size distribution. The dynamics of the melt film on the substrate and fast cooling are found to be the main mechanisms for fabrication of the observed structures. The demonstrated method is an alternative way for direct fabrication of ZnO nanostructures on metal which can be easy implemented in applications as resistive sensor devices, electroluminescent elements, solar cell technology.

  15. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  16. Selective growth of ZnO thin film nanostructures: Structure, morphology and tunable optical properties

    NASA Astrophysics Data System (ADS)

    Krishnakanth, Katturi Naga; Rajesh, Desapogu; Sunandana, C. S.

    2016-05-01

    The ZnO nanostructures (spherical, rod shape) have been successfully fabricated via a thermal evaporation followed by dip coating method. The pure, doped ZnO thin films were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM) and UV-Vis spectroscopy, respectively. A possible growth mechanism of the spherical, rod shape ZnO nanostructures are discussed. XRD patterns revealed that all films consist of pure ZnO phase and were well crystallized with preferential orientation towards (002) direction. Doping by PVA, PVA+Cu has effective role in the enhancement of the crystalline quality and increases in the band gap.

  17. Radio-frequency magnetron sputtering and wet thermal oxidation of ZnO thin film

    NASA Astrophysics Data System (ADS)

    Liu, H. F.; Chua, S. J.; Hu, G. X.; Gong, H.; Xiang, N.

    2007-08-01

    The authors studied the growth and wet thermal oxidation (WTO) of ZnO thin films using a radio-frequency magnetron sputtering technique. X-ray diffraction reveals a preferred orientation of [101¯0]ZnO(0002)//[112¯0]Al2O3(0002) coexisted with a small amount of ZnO (101¯1) and ZnO (101¯3) crystals on the Al2O3 (0001) substrate. The ZnO (101¯1) and ZnO (101¯3) crystals, as well as the in-plane preferred orientation, are absent from the growth of ZnO on the GaAs(001) substrate. WTO at 550 °C improves the crystalline and the photoluminescence more significantly than annealing in air, N2 and O2 ambient; it also tends to convert the crystal from ZnO (101¯1) and ZnO (101¯3) to ZnO (0002). The evolution of the photoluminescence upon WTO and annealing reveals that the green and orange emissions, centered at 520 and 650 nm, are likely originated from oxygen vacancies and oxygen interstitials, respectively; while the 420 nm emission, which is very sensitive to the postgrowth thermal processing regardless of the substrate and the ambient gas, is likely originated from the surface-state related defects.

  18. Assembly of ordered ZnO porous thin films by cooperative assembly method using polystyrene spheres and ultrafine ZnO particles

    SciTech Connect

    Liu Zhifeng; Jin Zhengguo . E-mail: zhgjin@tju.edu.cn; Li Wei; Qiu Jijun

    2006-01-05

    Ordered ZnO porous thin films were fabricated by cooperative assembly method using polystyrene sphere (PS) and ultrafine ZnO particles, in which ultrafine ZnO particles were directly assembled in the voids of PS while the template was being assembled by capillary forces. The influence of experimental parameters, such as evaporation temperature, ZnO concentration and the concentration ratio of PS/ZnO on morphology of the porous structure was mainly studied. The results showed that an ordered porous structure could be obtained by this method. X-ray diffraction (XRD) spectra indicated the porous ZnO thin film was wurtzite structure. The transmissivity decreased with the decrease of wavelength, but still kept above 80% beyond the wavelength of 550 nm. Optical band gap of the ZnO thin film was 3.13 eV.

  19. Structural, optical and electronic structure studies of Al doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Devi, Vanita; Kumar, Manish; Shukla, D. K.; Choudhary, R. J.; Phase, D. M.; Kumar, Ravindra; Joshi, B. C.

    2015-07-01

    Structural, optical and electronic structure of Al doped ZnO thin films grown using pulsed laser deposition on glass substrate are investigated. X-ray diffraction measurements reveal that all the films are textured along the c-axis and have wurtzite structure. Al doping in ZnO films leads to increase in grain size due to relaxation in compressive stress. Enhancement in band gap of ZnO films with the Al doping is also noticed which can be ascribed to the Brustein-Moss shift. The changes in the electronic structure caused by Al in the doped thin film samples are understood through X-ray absorption measurements.

  20. Biotinylation of ZnO nanoparticles and thin films: a two-step surface functionalization study.

    PubMed

    SelegArd, Linnéa; Khranovskyy, Volodymyr; Söderlind, Fredrik; Vahlberg, Cecilia; Ahrén, Maria; Käll, Per-Olov; Yakimova, Rositza; Uvdal, Kajsa

    2010-07-01

    This study reports ZnO nanoparticles and thin film surface modification using a two-step functionalization strategy. A small silane molecule was used to build up a stabilizing layer and for conjugation of biotin (vitamin B7), as a specific tag. Biotin was chosen because it is a well-studied bioactive molecule with high affinity for avidin. ZnO nanoparticles were synthesized by electrochemical deposition under oxidizing condition, and ZnO films were prepared by plasma-enhanced metal-organic chemical vapor deposition. Both ZnO nanoparticles and ZnO thin films were surface modified by forming a (3-mercaptopropyl)trimethoxysilane (MPTS) layer followed by attachment of a biotin derivate. Iodoacetyl-PEG2-biotin molecule was coupled to the thiol unit in MPTS through a substitution reaction. Powder X-ray diffraction, transmission electron microscopy, X-ray photoemission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy were used to investigate the as-synthesized and functionalized ZnO materials. The measurements showed highly crystalline materials in both cases with a ZnO nanoparticle diameter of about 5 nm and a grain size of about 45 nm for the as-grown ZnO thin films. The surface modification process resulted in coupling of silanes and biotin to both the ZnO nanoparticles and ZnO thin films. The two-step functionalization strategy has a high potential for specific targeting in bioimaging probes and for recognition studies in biosensing applications.

  1. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis

    NASA Astrophysics Data System (ADS)

    Abdel-wahab, M. Sh.; Jilani, Asim; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-06-01

    Pure and Ni-doped ZnO thin films with different concentration of Ni (3.5 wt%, 5 wt%, 7 wt%) were prepared by DC/RF magnetron sputtering technique. The X-rays diffraction pattern showed the polycrystalline nature of pure and Ni-doped ZnO thin films. The surface morphology of pure and Ni doped ZnO thin films were investigated through atomic force microscope, which indicated the increase in the grain dimension and surface roughness with increasing the Ni doping. The UV-Visible transmission spectra showed the decrease in the transmittance of doped ZnO thin films with the incorporation of Ni dopants. The surface and chemical state analysis of pure and Ni doped ZnO thin films were investigated by X-rays photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by an aqueous solution of methyl green dye. The tungsten lamp of 500 W was used as a source of visible light for photocatalytic study. The degradation results showed that the Ni-doped ZnO thin films exhibit highly enhanced photocatalytic activity as compared to the pure ZnO thin films. The enhanced photocatalytic activities of Ni-doped ZnO thin films were attributed to the enhanced surface area (surface defects), surface roughness and decreasing the band gap of Ni-doped ZnO thin films. Our work supports the applications of thin film metal oxides in waste water treatment.

  2. Room Temperature Ferromagnetism in Cu Doped ZnO Thin Films

    SciTech Connect

    Khan, Zaheer Ahmed; Ghosh, Subhasis

    2011-07-15

    We report on the growth of Cu doped ZnO thin films for different Cu concentration from 0.1%, to10% by RF magnetron sputtering. The X-ray diffraction study has shown single phase wurtzite type ZnO thin films with no evidence of copper/copper oxide or any other secondary phases. Room temperature ferromagnetism was observed in RF sputtered Cu doped ZnO films with magnetic moment per Cu atom first increasing and then decreasing with an increasing Cu content. Decrease of band gap with Cu doping, indicating strong p-d mixing of O and Cu is clear by the absorption spectroscopy study. The surface morphology by AFM of pure and Cu doped ZnO thin films show average grain size of 110nm and RMS surface roughness of 2.15 nm.

  3. Properties of antimony doped ZnO thin films deposited by spray pyrolysis technique

    SciTech Connect

    Sadananda Kumar, N. Bangera, Kasturi V.; Shivakumar, G. K.

    2015-07-15

    Antimony (Sb) doped zinc oxide (ZnO) thin films were deposited on the glass substrate at 450°C using spray pyrolysis technique. Effect of Sb doping on surface morphology structural, optical and electrical properties were studied. X-ray diffraction (XRD) analysis showed that both the undoped and doped ZnO thin films are polycrystalline in nature with (101) preferred orientation. SEM analysis showed a change in surface morphology of Sb doped ZnO thin films. Doping results in a marked increase in conductivity without affecting the transmittance of the films. ZnO films prepared with 3 at % Sb shows the lowest resistivity of 0.185 Ohm cm with a Hall mobility of 54.05 cm{sup 2} V{sup –1} s{sup –1}, and a hole concentration of 6.25 × 10{sup 17} cm{sup –3}.

  4. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  5. Reaction mechanism of electroless metal deposition using ZnO thin film (I): Process of catalyst formation

    SciTech Connect

    Yoshiki, Hajime; Hashimoto, Kazuhito; Fujishima, Akira

    1995-02-01

    The reaction mechanism of electroless metal deposition proceeding selectively on a ZnO thin film coated on a glass substrate was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and inductively coupled plasma measurements. The ZnO thin film was activated for electroless metal deposition just by immersion in 1.1 mM PdCl{sub 2} solution adjusted to pH 2.5. In this process, PD(II) was selectively adsorbed on the ZnO thin film while simultaneously the ZnO underwent dissolution. The dissolution of ZnO thin film easily occurred on the (002) face with polarity. The strongly adsorbed Pd(II) was reduced to Pd(0) by a reducing agent in the electroless plating bath and this served as a catalyst center. As a result, metal layers were obtained selectively on the ZnO thin film in the electroless plating bath.

  6. Ohmic-Rectifying Conversion of Ni Contacts on ZnO and the Possible Determination of ZnO Thin Film Surface Polarity

    PubMed Central

    Saw, Kim Guan; Tneh, Sau Siong; Tan, Gaik Leng; Yam, Fong Kwong; Ng, Sha Shiong; Hassan, Zainuriah

    2014-01-01

    The current-voltage characteristics of Ni contacts with the surfaces of ZnO thin films as well as single crystal (0001) ZnO substrate are investigated. The ZnO thin film shows a conversion from Ohmic to rectifying behavior when annealed at 800°C. Similar findings are also found on the Zn-polar surface of (0001) ZnO. The O-polar surface, however, only shows Ohmic behavior before and after annealing. The rectifying behavior observed on the Zn-polar and ZnO thin film surfaces is associated with the formation of nickel zinc oxide (Ni1-xZnxO, where x = 0.1, 0.2). The current-voltage characteristics suggest that a p-n junction is formed by Ni1-xZnxO (which is believed to be p-type) and ZnO (which is intrinsically n-type). The rectifying behavior for the ZnO thin film as a result of annealing suggests that its surface is Zn-terminated. Current-voltage measurements could possibly be used to determine the surface polarity of ZnO thin films. PMID:24466144

  7. Influence of surface defects in ZnO thin films on its biosensing response characteristic

    SciTech Connect

    Saha, Shibu; Gupta, Vinay

    2011-09-15

    Highly c-axis oriented zinc oxide (ZnO) thin films deposited by rf magnetron sputtering under varying processing pressure (20-50 mT) in a reactive gas mixture of argon and oxygen were studied for biosensing application. The as-deposited ZnO thin films were in a state of compressive stress having defects related to interstitial Zn and antisite oxygen. Glucose oxidase has been chosen as the model enzyme in the present study and was immobilized on the surface of ZnO thin films deposited on indium tin oxide coated Corning Glass substrate. The studies reveal a correlation between the biosensing characteristic and the presence of defects in the ZnO films. The ZnO films deposited under high pressure (50 mT) are found to be more sensitive for biosensing application due to availability of more surface area for effective immobilization of biomolecules and exhibits a suitable microenvironment with good electron transfer characteristic. The obtained results highlight the importance of desired microstate besides availability of suitable native defects in the ZnO thin film for exhibiting enhanced biosensing response.

  8. Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells

    PubMed Central

    Tseng, Zong-Liang; Chiang, Chien-Hung; Wu, Chun-Guey

    2015-01-01

    Sputtering made ZnO thin film was used as an electron-transport layer in a regular planar perovskite solar cell based on high quality CH3NH3PbI3 absorber prepared with a two-step spin-coating. An efficiency up to 15.9% under AM 1.5G irradiation is achieved for the cell based on ZnO film fabricated under Ar working gas. The atmosphere of the sputtering chamber can tune the surface electronic properties (band structure) of the resulting ZnO thin film and therefore the photovoltaic performance of the corresponding perovskite solar cell. Precise surface engineering of ZnO thin film was found to be one of the key steps to fabricate ZnO based regular planar perovskite solar cell with high power conversion efficiency. Sputtering method is proved to be one of the excellent techniques to prepare ZnO thin film with controllable properties. PMID:26411577

  9. Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells.

    PubMed

    Tseng, Zong-Liang; Chiang, Chien-Hung; Wu, Chun-Guey

    2015-01-01

    Sputtering made ZnO thin film was used as an electron-transport layer in a regular planar perovskite solar cell based on high quality CH3NH3PbI3 absorber prepared with a two-step spin-coating. An efficiency up to 15.9% under AM 1.5G irradiation is achieved for the cell based on ZnO film fabricated under Ar working gas. The atmosphere of the sputtering chamber can tune the surface electronic properties (band structure) of the resulting ZnO thin film and therefore the photovoltaic performance of the corresponding perovskite solar cell. Precise surface engineering of ZnO thin film was found to be one of the key steps to fabricate ZnO based regular planar perovskite solar cell with high power conversion efficiency. Sputtering method is proved to be one of the excellent techniques to prepare ZnO thin film with controllable properties. PMID:26411577

  10. Defect assisted saturable absorption characteristics in Al and Li doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    K. M., Sandeep; Bhat, Shreesha; S. M., Dharmaprakash; P. S., Patil; Byrappa, K.

    2016-09-01

    The influence of different doping ratios of Al and Li on the nonlinear optical properties, namely, a two-photon absorption and a nonlinear refraction using single beam Z-scan technique, of nano-crystalline ZnO thin films has been investigated in the present study. A sol-gel spin-coated pure ZnO, Al-doped ZnO (AZO), and Li-doped ZnO (LZO) thin films have been prepared. The stoichiometric deviations induced by the occupancy of Al3+ and Li+ ions at the interstitial sites injects the compressive stress in the AZO and LZO thin films, respectively, while the extended defect states below the conduction band leads to a redshift of energy band gap in the corresponding films as compared to pure ZnO thin film. Switching from an induced absorption in ZnO and 1 at. wt. % doped AZO and LZO films to a saturable absorption (SA) in 2 at. wt. % doped AZO and LZO films has been observed, and it is attributed to the saturation of a linear absorption of the defect states. The closed aperture Z-scan technique revealed the self-focusing (a positive nonlinear refractive index) in all the films, which emerge out of the thermo-optical effects due to the continuous illumination of laser pulses. A higher third-order nonlinear optical susceptibility χ(3) of the order 10-3 esu has been observed in all the films.

  11. Investigation of thin ZnO layers in view of laser desorption-ionization

    NASA Astrophysics Data System (ADS)

    Grechnikov, A. A.; Georgieva, V. B.; Alimpiev, S. S.; Borodkov, A. S.; Nikiforov, S. M.; Simanovsky, Ya O.; Dimova-Malinovska, D.; Angelov, O. I.

    2010-04-01

    Thin zinc oxide films (ZnO) were developed as a matrix-free platform for surface assisted laser desorption-ionization (SALDI) time-of-flight mass spectrometry. The ZnO films were deposited by RF magnetron sputtering of ZnO ceramic targets in Ar atmospheres on monocrystalline silicon. The generation under UV (355 nm) laser irradiation of positive ions of atenolol, reserpine and gramicidin S from the ZnO layers deposited was studied. All analytes tested were detected as protonated molecules with no or very structure-specific fragmentation. The mass spectra obtained showed low levels of chemical background noise. All ZnO films studied exhibited high stability and good reproducibility. The detection limits for test analytes are in the 10 femtomol range.

  12. Rectifying properties of ZnO thin films deposited on FTO by electrodeposition technique

    NASA Astrophysics Data System (ADS)

    Lv, Jianguo; Sun, Yue; Zhao, Min; Cao, Li; Xu, Jiayuan; He, Gang; Zhang, Miao; Sun, Zhaoqi

    2016-03-01

    ZnO thin films were successfully grown on fluorine-doped tin oxide glass by electrodeposition technique. The crystal structure, surface morphology and optical properties of the thin films were investigated. The average crystallite size and intensity of A1(LO) mode increase with improving the absolute value of deposition potential. The best preferential orientation along c-axis and the richest oxygen interstitial defects have been observed in the sample deposited at -0.8 V. A heterojunction device consisting of ZnO thin film and n-type fluorine-doped tin oxide was fabricated. The current-voltage (I-V) characteristic of the p-n heterojunction device deposited at -0.8 V shows the best rectifying diode behavior. The p-type conductivity of the ZnO thin film could be attributed to complex defect of unintentional impurity and interstitial oxygen.

  13. Formation of ST12 phase Ge nanoparticles in ZnO thin films

    NASA Astrophysics Data System (ADS)

    Ceylan, Abdullah; Gumrukcu, Emre; Ozcan, Sadan

    2015-03-01

    In this work, we investigate the effects of reactive and nonreactive growth of ZnO on the rapid thermal annealing (RTA) induced formation of Ge nanoparticles (Ge-np) in ZnO: Ge nanocomposite thin films. The samples were deposited by sequential sputtering of ZnO and Ge thin film layers with a total thickness of about 600 nm on Si substrates followed by an ex-situ (RTA) at 600°C for 30, 60, 90, 120, 150, 180, and 210 s under forming gas atmosphere. In order for the reactive sputtering of ZnO layer, 5 mTorr Oxygen was introduced to the growth chamber. XRD and Raman analyses were utilized to investigate the effect of RTA time on the structural evolution of the samples. It has been realized that crystal structure of Ge nanoparticles is significantly affected by the growth method of the embedding ZnO layer. While reactive deposition of ZnO layers results in a mixture of diamond cubic (DC) and simple tetragonal (ST12) Ge-np, nonreactive deposition of ZnO layers leads to the formation of pure DC Ge-np upon RTA process. Formation of these two phases has been discussed based on the existence of native point defects such as oxygen vacancies and Zn interstitials.

  14. Ab inito study of Ag-related defects in ZnO

    NASA Astrophysics Data System (ADS)

    Wan, Qixin; Xiong, Zhihua; Li, Dongmei; Liu, Guodong

    2008-12-01

    Using first-principles calculations, we investigated the structure and electronic properties of Ag-related defects in ZnO. The calculation results indicate that AgZn behaves as acceptor. Simultaneously, by comparing the formation energy and electronic structure of Ag-related defects in ZnO, Oi-AgZn behaves as acceptor in Ag-doped ZnO and it is better to gain p-type ZnO. However, Hi-AgZn complex has the lowest formation energy. Thus, the formation of the other point defects is greatly suppressed by the formation of Hi in Ag-doped ZnO. Moreover, the H atoms can be easily dissociated from hydrogen-passivated complexes by post-annealing at moderate temperatures, thus, codoping Ag with H may be a good method to achieve p-type in Ag-doped ZnO.

  15. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    NASA Astrophysics Data System (ADS)

    Shafura, A. K.; Sin, N. D. Md.; Azhar, N. E. I.; Saurdi, I.; Uzer, M.; Mamat, M. H.; Shuhaimi, A.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    CH4 gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10-3 S/cm and 11.5%, respectively.

  16. Improved performance of Ag-doped TiO2 synthesized by modified sol-gel method as photoanode of dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Gupta, Arun Kumar; Srivastava, Pankaj; Bahadur, Lal

    2016-08-01

    Ag-doped TiO2 with Ag content ranging from 1 to 7 mol% was synthesized by a modified sol-gel route, and its performance as the photoanode of dye-sensitized solar cells (DSSCs) was compared with undoped TiO2 photoanode. Titanium(IV)isopropoxide was used as precursor and hexamethylenetetramine as the capping agent. XRD results show the formation of TiO2 nanoparticles with an average crystallite size of 5 nm (1 % Ag-doped TiO2) and 9 nm (undoped TiO2), respectively. The TiO2 nanopowder was used to prepare its thin film photoelectrode using doctor's blade method. Significant improvement in light-to-energy conversion efficiency was achieved when thin films of 1 % Ag-doped TiO2 were applied as photoanode in DSSC taking N719 as the sensitizer dye. As evidenced by EIS measurements, the electron lifetime of DSSC with Ag-doped TiO2 increased from 1.33 (for undoped TiO2) to 2.05 ms. The short-circuit current density ( J sc), open-circuit voltage ( V oc), fill factor (FF) and the overall energy conversion efficiency ( η) were 1.07 mA cm-2, 0.72 V, 0.73 and 0.40 %, respectively, with the use of 1 % Ag-doped TiO2 photoanode, whereas with undoped TiO2 under similar conditions, J sc = 0.63 mA cm-2, V oc = 0.70 V, fill factor 0.45 and conversion efficiency 0.14 % could be obtained. Therefore, compared with the reference DSSC containing an undoped TiO2 photoanode, the power conversion efficiency of the cell based on Ag-doped TiO2 has been remarkably enhanced by ~70 %. The substantial improvement in the device performance is attributed to the reduced band-gap energy, retarded charge recombination and greater surface coverage of the sensitizing dye over Ag-doped TiO2, which ultimately resulted in improved IPCE, J SC and η values.

  17. Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tan, K. S.; Gan, W. C.; Velayutham, T. S.; Abd Majid, W. H.

    2014-12-01

    A thin film of pyroelectric composite with 0-3 connectivity was fabricated from zinc oxide (ZnO) nanopowder and polyvinylidene fluoride (PVDF) with different volume fraction from 0-0.25 wt%. The dielectric and pyroelectric properties of the samples were investigated. It was found that the presence of a small amount of ZnO nanoparticles (0.25 wt%) has significantly increased the pyroelectric coefficient of the PVDF by 25%. Furthermore, the nanocomposite films required lower poling field to form polar-δ phase compared to pure PVDF thin films. Analysis of the complex permittivity in a wide range of frequency was carried out indicating that the dielectric constant and loss of PVDF/ZnO nanocomposite thin films increase when doped with ZnO. Havriliak-Negami (HN) empirical function has been employed to obtain the α-relaxation time of the nanocomposite thin films before and after poling. The α-relaxation time does not vary with the increase of ZnO wt%; however, the effect of poling has lengthened the relaxation time of the thin films. FTIR and XRD results supports the fact that the addition of ZnO nanoparticles into PVDF polymer thin films do not cause any significant effect on the structure of the PVDF thin films. In fact, ZnO nanoparticle has enhanced the overall pyroelectricity of PVDF by facilitating the poling process in the composites and led to phase transformation of PVDF from α- to δ-phase as supported by a marked reduction of (100) x-ray diffraction intensities.

  18. Electrical and optical properties of in and Al doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Park, Sang-Uk; Koh, Jung-Hyuk

    2013-07-01

    In this study, to improve the electrical and optical properties of aluminium (Al) doped zinc oxide thin films, we have added small amounts of indium (In) to Al doped ZnO thin films. We will present the results of In and Al doped ZnO thin film on glass substrates prepared by the sol-gel processing method. A rapid thermal annealing process was applied to cure the thin film properties. Different amounts of In were used to dope the AZO thin films to find the optimum process condition. The effects of crystallinity were analyzed by an x-ray diffraction method. In addition, the optical transmittance and electrical proprties of In doped AZO thin films were investigated.

  19. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    SciTech Connect

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-27

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 {mu}A mM{sup -1} cm{sup -2} and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  20. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM-1 cm-2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  1. Structural, optical and electronic properties of Fe doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Singh, Karmvir; Devi, Vanita; Dhar, Rakesh; Mohan, Devendra

    2015-09-01

    Fe doped ZnO thin films have been deposited by pulsed laser deposition technique on quartz substrate to study structural, optical and electronic structure using XRD, AFM, UV-visible and X-ray absorption spectroscopy. XRD study reveals that Fe doping has considerable effect on stress, strain, grain size and crystallinity of thin films. UV-visible study determines that band gap of pristine ZnO decreases with Fe doping, which can be directly correlated to transition tail width and grain size. Change in electronic structure with Fe doping has been examined by XAS study.

  2. Preparation of ZnO Thin Films on Free-Standing Diamond Substrates

    NASA Astrophysics Data System (ADS)

    Tang, Ke; Wang, Linjun; Huang, Jian; Xu, Run; Lai, Jianming; Wang, Jun; Min, Jiahua; Shi, Weimin; Xia, Yiben

    2009-10-01

    Highly c-axis-oriented ZnO films were deposited successfully on the nucleation sides of free-standing diamond (FD) films by the direct current (DC) magnetron sputtering method. The effect of the sputtering parameters, such as power, gas pressure and sputtering plasma composition of Ar-to-O2, on the properties of ZnO thin films was investigated in detail. X-ray diffraction (XRD) measurements showed that, at a sputtering power of 200 W, gas pressure of 0.5 Pa and an Ar-to-O2 composition of 1:1, a higher intensity of the (002) diffraction peak and a narrower full width at half maximum (FWHM) were detected which meant high c-axis orientation and high quality of the ZnO films. To improve the quality of the ZnO film, a thin ZnO layer was pre-grown as a homo-buffer layer. XRD measurements showed that this buffer layer had a beneficial effect on the structural and morphological properties of the post-grown ZnO film.

  3. Magnetic properties of high Li doped ZnO sol–gel thin films

    SciTech Connect

    Vettumperumal, R.; Kalyanaraman, S.; Santoshkumar, B.; Thangavel, R.

    2014-02-01

    Highlights: • Ferromagnetism in high Li doped ZnO films. • Magnetic properties observed by Guoy's and VSM method. • The rod and wrinkle like structures are observed from the surface of the films. • Band gap of ZnO does not get altered by high Li doping. - Abstract: Undoped and Li doped ZnO thin films were deposited on a glass substrate using the sol–gel dip coating method. The films were prepared at 5 mol.% and 10 mol.% of Li doped ZnO at 550 °C annealing temperature and the deposited films were characterized by X-ray diffraction (XRD), microscopic studies, Gouy's method, vibrating sample magnetometer (VSM) and UV–visible spectroscopy. All the deposited thin films had a hexagonal wurtzite structure with polycrystalline grains at random. Primarily magnetic properties of pure and Li doped ZnO films were observed by Guoy's method which depicted Dia and Para magnetic behavior at room temperature. VSM measurement reveals a coercivity of 97.7 Oe in the films. An inverse relative ferromagnetism was perceived in Li doped ZnO films which had an average transmission of <90%.

  4. Low temperature atomic layer deposited ZnO photo thin film transistors

    SciTech Connect

    Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci; Biyikli, Necmi; Okyay, Ali K.; Yu, Hyun Yong

    2015-01-01

    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250 °C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80 °C; I{sub on}/I{sub off} ratio is extracted as 7.8 × 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80 °C. I{sub D}–V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.

  5. Optical, Electrical, and Adhesive Properties of ZnO Thin Films.

    PubMed

    Chen, Yuan-Tsung

    2016-01-01

    ZnO films were sputtered onto glass substrates to thicknesses from 100 A to 500 A under the following conditions; (a) as-deposited films were maintained at room temperature (RT); (b) films were post-annealed at 150 °C for 1 h, and (c) films were post-annealed at 250 °C for 1 h. X-ray diffraction (XRD) result thus obtained demonstrate that ZnO has a wurtzite structure with a (002) texture diffraction peak with a 2θ of 34° range. The intensity of the ZnO (002) peak increased with film thickness and upon post-annealing. As the ZnO thin film thickness increased and post-annealing was carried out, the grains became larger. A spectral analyzer was utilized to measure transmittance for various thicknesses. Post-annealing treatment promoted the growth of grains, yielding a large mean grain size and, therefore, low transmittance. The as-deposited ZnO thin film with a thickness of 100 Å had a transmittance maximum of approximately 88% and a reflectance minimum of around 12%. Additionally, the four-point probe measurements revealed that p decreased as the ZnO thickness increased and with post-annealing treatment because grain boundaries and the surface of thin films scatter electrons, so thinner films have a greater resistance. ZnO with a thickness of 500 Å that underwent post-annealing treatment at 250 °C had a minimum resistivity of 7.6 x 10⁻³ Ω · cm. Adhesion critically influences the surface energy of films. The surface energy of as-deposited ZnO films was higher than that following post-annealing treatments, revealing that the adhesion of the as-deposited ZnO films was stronger than that following post-annealing treatment because the degree of crystallinity was lower. Accordingly, the thickness and crystallinity of ZnO importantly affects its optical, electrical, and adhesive characteristics. Finally, thinner as-deposited ZnO films exhibited better optical and adhesive properties. PMID:27398504

  6. Structural, electronic and magnetic properties of Er implanted ZnO thin films

    NASA Astrophysics Data System (ADS)

    Murmu, P. P.; Kennedy, J.; Ruck, B. J.; Leveneur, J.

    2015-09-01

    We report the structural, electronic and magnetic properties of Er implanted and annealed ZnO thin films. The effect of annealing in oxygen-deficient and oxygen-rich conditions was investigated. Rutherford backscattering spectrometry results revealed that the Er atoms are located at the implantation depth of around 13 nm, and annealing conditions had no adverse effect on the Er concentration in the layer. Raman spectroscopy results showed peak related to E2(high) mode of ZnO indicating enhanced crystalline quality of the Er implanted and annealed ZnO films. X-ray absorption near edge spectroscopy results demonstrated pre-edge features in O K-edge which are attributed to the structural defects in the films. Room temperature magnetic ordering was observed in Er implanted and annealed films, and is mainly assigned to the intrinsic defects in ZnO.

  7. The Synthesis of Ag-Doped Mesoporous TiO2

    SciTech Connect

    Li, Xiaohong S.; Fryxell, Glen E.; Wang, Chong M.; Engelhard, Mark H.

    2008-04-15

    Ag-doped mesoporous titanium oxide was prepared using non-ionic surfactants and easily handled titanium precursors, under mild reaction conditions. In contrast to the stabilizing effect of Cd-doping on mesoporous TiO2, Ag-doping was found to significantly destabilize the mesoporous structure.

  8. Influence of Substrate Nature and Annealing on Electro-Optical Properties of ZnO Thin Films

    SciTech Connect

    Iacomi, Felicia; Baban, C.; Prepelita, Petronela; Luca, D.; Iftimie, Nicoleta

    2007-04-23

    ZnO thin films were grown on different substrates (glass, quartz, silicon wafers, etc) by vacuum thermal evaporation. Different thermal treatments were performed in order to obtain transparent and conductive or high resistive ZnO thin films. The optical and electrical properties of ZnO thin films are dependent on the crucible temperature, annealing conditions and on the substrate nature. The thin films are transparent and have an electrical resistivity in 10-4 {omega}m regio. The annealing process performed in vacuum at 573K or under UV irradiation determines a decrease in the electrical resistivity of films.

  9. Laser ablated ZnO thin film for amperometric detection of urea

    NASA Astrophysics Data System (ADS)

    Batra, Neha; Tomar, Monika; Jain, Prateek; Gupta, Vinay

    2013-09-01

    Zinc oxide (ZnO) thin films deposited onto indium tin oxide (ITO) coated corning glass substrates using pulsed laser deposition (PLD) technique at two different oxygen pressures (50 mT and 100 mT) have been used as efficient matrix for realization of efficient urea biosensors after immobilization of urease (Urs) enzyme onto ZnO film surface. The bioelectrode Urs/ZnO/ITO/glass having ZnO matrix grown at 100 mT is found to be exhibiting an enhanced sensitivity of 36 μΑ mΜ-1 cm-2 for urea over a wide detection range of 5-200 mg/dl. The relatively low value of Michaelis-Menten constant (Km = 0.82 mM) indicates high affinity of the immobilized urease towards the analyte (urea). The prepared sensor exhibits high selectivity towards detection of urea and retains 90% of its activity for more than 12 weeks. The observed enhanced response characteristics of bioelectrode is attributed to the growth of highly c-axis oriented ZnO thin film by PLD at 100 mT oxygen pressure with desired rough and porous surface morphology besides high electron communication feature. The results confirm the promising application of PLD grown ZnO thin film as an efficient matrix for urea detection.

  10. Synthesis, structural and optical characterization of undoped, N-doped ZnO and co-doped ZnO thin films

    SciTech Connect

    Pathak, Trilok Kumar Kumar, R.; Purohit, L. P.

    2015-05-15

    ZnO, N-doped ZnO and Al-N co-doped ZnO thin films were deposited on ITO coated corning glass by spin coater using sol-gel method. The films were annealed in air at 450°C for one hour. The crystallographic structure and morphology of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The X-ray diffraction results confirm that the thin films are of wurtzite hexagonal with a very small distortion. The optical properties were investigated by transmission spectra of different films using spectrophotometer (Shimadzu UV-VIS-NIR 3600). The results indicate that the N doped ZnO thin films have obviously enhanced transmittance in visible region. Moreover, the thickness of the films has strong influences on the optical constants.

  11. Fe doped ZnO thin film for mediator-less biosensing application

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Tomar, Monika; Gupta, Vinay

    2012-05-01

    Fe doped ZnO (FZO) thin film is prepared by pulsed laser deposition for its application as mediator-less biosensing matrix. Fe doping introduces redox centre in ZnO along with shallow donor level and promotes the electron transfer capability due to substitution of Fe at Zn sites. Glucose oxidase (GOx), chosen as model enzyme, was immobilized on surface of the prepared matrix. Cyclic voltammetry and photometric assay show that the developed bio-electrode, GOx/FZO/indium tin oxide/Glass is sensitive to glucose concentration with enhanced response (0.2 µA mM-1 cm-2) and low Km (3.01 mM). The results show promising application of Fe doped ZnO thin film as an attractive matrix for mediator-less biosensing.

  12. Synthesis and Characterization of Molybdenum Doped ZnO Thin Films by SILAR Deposition Method

    NASA Astrophysics Data System (ADS)

    Radha, R.; Sakthivelu, A.; Pradhabhan, D.

    2016-08-01

    Molybdenum (Mo) doped zinc oxide (ZnO) thin films were deposited on the glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) deposition method. The effect of Mo dopant concentration of 5, 6.6 and 10 mol% on the structural, morphological, optical and electrical properties of n-type Mo doped ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the Mo doped ZnO thin films were polycrystalline with wurtzite structure. The field emission scanning electron microscopy (FESEM) studies shows that the surface morphology of the films changes with Mo doping. A blue shift of the optical band gap was observed in the optical studies. Effect of Mo dopant concentration on electrical conductivity was studied and it shows comparatively high electrical conductivity at 10 mol% of Mo doping concentration.

  13. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis

    NASA Astrophysics Data System (ADS)

    Abdel-wahab, M. Sh.; Jilani, Asim; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-06-01

    Pure and Ni-doped ZnO thin films with different concentration of Ni (3.5 wt%, 5 wt%, 7 wt%) were prepared by DC/RF magnetron sputtering technique. The X-rays diffraction pattern showed the polycrystalline nature of pure and Ni-doped ZnO thin films. The surface morphology of pure and Ni doped ZnO thin films were investigated through atomic force microscope, which indicated the increase in the grain dimension and surface roughness with increasing the Ni doping. The UV-Visible transmission spectra showed the decrease in the transmittance of doped ZnO thin films with the incorporation of Ni dopants. The surface and chemical state analysis of pure and Ni doped ZnO thin films were investigated by X-rays photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by an aqueous solution of methyl green dye. The tungsten lamp of 500 W was used as a source of visible light for photocatalytic study. The degradation results showed that the Ni-doped ZnO thin films exhibit highly enhanced photocatalytic activity as compared to the pure ZnO thin films. The enhanced photocatalytic activities of Ni-doped ZnO thin films were attributed to the enhanced surface area (surface defects), surface roughness and decreasing the band gap of Ni-doped ZnO thin films. Our work supports the applications of thin film metal oxides in waste water treatment.

  14. CdS quantum dots sensitized Cu doped ZnO nanostructured thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Poornima, K.; Gopala Krishnan, K.; Lalitha, B.; Raja, M.

    2015-07-01

    ZnO nanorods and Cu doped ZnO nanorods thin films have been prepared by simple hydrothermal method. CdS quantum dots are sensitized with Cu doped ZnO nanorod thin films using successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction study reveals that ZnO nanorods, and CdS quantum dot sensitized Cu doped ZnO nanorods exhibit hexagonal structure. The scanning electron microscope image shows the presence of ZnO nanorods. The average diameter and length of the aligned nanorod is 300 nm and 1.5 μm respectively. The absorption spectra shows that the absorption edge of CdS quantum dot sensitized ZnO nanorod thin film is shifted toward longer wavelength region when compared to the absorption edge of ZnO nanorods film. The conversion efficiency of the CdS quantum dot sensitized Cu doped ZnO nanorod thin film solar cell is 1.5%.

  15. Growth and characterization of seed layer-free ZnO thin films deposited on porous silicon by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Kim, Min Su; Yim, Kwang Gug; Kim, Do Yeob; Kim, Soaram; Nam, Giwoong; Lee, Dong-Yul; Kim, Sung-O.; Kim, Jin Soo; Kim, Jong Su; Son, Jeong-Sik; Leem, Jae-Young

    2012-02-01

    Catalyst- and seed layer-free zinc oxide (ZnO) thin films were grown on porous silicon (PS) by a hydrothermal method. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and photoluminescence (PL) were carried out to investigate the structural and optical properties of the PS and the ZnO thin films. The ZnO thin films have an extraordinary tendency to grow along the a-axis with a hexagonal wurtzite structure. The growth rate of the ZnO thin films was increased with the increase in the precursor concentration. The crystal quality of the ZnO thin films was improved, and the residual stress was decreased as their thickness increased. Monochromatic indigo and red light emission peaks were observed from the ZnO thin films and the PS, respectively. At an excessively high precursor concentration, a green light emission peak was also observed in the ZnO thin films. The luminescent efficiency of the indigo light emission peak was enhanced with the increase in the precursor concentration.

  16. Dopant-induced modifications in structural and optical properties of ZnO thin films prepared by PLD

    NASA Astrophysics Data System (ADS)

    Hashmi, Jaweria Z.; Siraj, K.; Naseem, S.; Shaukat, S.

    2016-09-01

    The objective of the present work is to study the effect of yttrium doping concentration on the microstructure and optical behavior of ZnO thin films, deposited by pulsed laser deposition on silicon (001) substrates. The microstructural analysis of doped ZnO thin films shows columnar growth of the ZnO (002) plane under tensile stress, confirmed by Raman shifts of the E2 (high) mode. The optical properties are investigated by using a spectroscopic ellipsometer. Undoped and yttrium-doped ZnO films show high transparency in the visible region, and the estimated optical band gap energy is randomly shifted in the range 2.93-3.1 eV by increasing the yttrium doping level. Yttrium doping in ZnO is limited, which means that at doping concentrations higher than 3 wt.% of yttrium, the structural and optical properties show a shift towards those of undoped ZnO.

  17. Heteroepitaxial growth of nonpolar Cu-doped ZnO thin film on MnS-buffered (100) Si substrate

    NASA Astrophysics Data System (ADS)

    Nakamura, Tatsuru; Nguyen, Nam; Nagata, Takahiro; Takahashi, Kenichiro; Ri, Sung-Gi; Ishibashi, Keiji; Suzuki, Setsu; Chikyow, Toyohiro

    2015-06-01

    The preparation of nonpolar ZnO and Cu-doped ZnO thin films on Si substrates was studied for the application to the fabrication of green-light-emitting diodes. The use of rocksalt MnS and wurtzite AlN as buffer layers is a key technology for achieving the heteroepitaxial growth of nonpolar ZnO thin film on a (100) Si substrate. X-ray diffraction and photoluminescence measurements revealed that deposition under a high oxygen partial pressure (∼1 Torr) can enhance the nonpolar crystallization of undoped ZnO, and can simultaneously suppress the formation of defects such as oxygen vacancies. These techniques can be also applied to the growth of Cu-doped ZnO. A room-temperature photoluminescence study revealed that nonpolar [11\\bar{2}0]-oriented Cu-doped ZnO film exhibits enhanced green emission owing to the doped Cu ions.

  18. Electrochemically deposited nanostructured ZnO thin films for biosensor applications

    NASA Astrophysics Data System (ADS)

    Bhadane, Hemalata; Samuel, Edmund; Gautam, D. K.

    2014-04-01

    Zinc Oxide thin films have been deposited by electrochemical method on stainless steel using Zinc nitrate hexahydrate as precursor and 0.05 M potassium chloride (KCl) as supporting electrolyte. The paper reveals thorough investigation of effect of concentration of Zinc nitrate. Further, morphological, structural and optical analysis has been carried out using the FESEM, XRD and PL spectroscopy respectively. From FESEM hexagonal shape nanorods ZnO films fabricated for 1 hour using 0.05M and 0.1M concentration are clearly observed. The XRD of ZnO thin films shows strong peaks along c-axis with (0 0 2) orientation of ZnO nanorods which implies deposited nanorods are perpendicular to the substrate surface and wurtzite hexagonal phase. The hexagonal ZnO nanorod grown using a 0.05M zinc nitrate concentration exhibited the sharpest and most intense PL peak in at 382 nm near UV band edge, indicates the enhanced crystalline structure of ZnO film.

  19. Investigations into the impact of various substrates and ZnO ultra thin seed layers prepared by atomic layer deposition on growth of ZnO nanowire array

    PubMed Central

    2012-01-01

    The impact of various substrates and zinc oxide (ZnO) ultra thin seed layers prepared by atomic layer deposition on the geometric morphology of subsequent ZnO nanowire arrays (NWs) fabricated by the hydrothermal method was investigated. The investigated substrates included B-doped ZnO films, indium tin oxide films, single crystal silicon (111), and glass sheets. Scanning electron microscopy and X-ray diffraction measurements revealed that the geometry and aligment of the NWs were controlled by surface topography of the substrates and thickness of the ZnO seed layers, respectively. According to atomic force microscopy data, we suggest that the substrate, fluctuate amplitude and fluctuate frequency of roughness on ZnO seed layers have a great impact on the alignment of the resulting NWs, whereas the influence of the seed layers' texture was negligible. PMID:22759838

  20. Synthesis of nano-dimensional ZnO and Ga doped ZnO thin films by vapor phase transport and study as transparent conducting oxide.

    PubMed

    Ghosh, S; Saurav, M; Pandey, B; Srivastava, P

    2008-05-01

    We report synthesis of polycrystalline ZnO and Ga doped ZnO (ZnO:Ga) thin films (approximately 80 nm) on Si and quartz substrates in a non-vacuum muffle furnace, a simple and cost-effective route, without any catalyst/reactive carrier gases, at relatively low processing temperature of 550 degrees C. The crystalline phases of the films are identified by grazing angle X-ray diffraction (GAXRD). The growth of ZnO films is examined with scanning electron microscope (SEM) as a function of deposition time. An optical transmission of approximately 90% is observed for pure ZnO film having a resistivity of approximately 2.1 Omega-cm as measured by van der Pauw technique. Doping with Ga results in single phase ZnO:Ga films, retaining an optical transmission of about 80% and three orders of magnitude decrease in resistivity as compared to pure ZnO film. PMID:18572702

  1. A comparative study of ultraviolet photoconductivity relaxation in zinc oxide (ZnO) thin films deposited by different techniques

    SciTech Connect

    Yadav, Harish Kumar; Gupta, Vinay

    2012-05-15

    Photoresponse characteristics of ZnO thin films deposited by three different techniques namely rf diode sputtering, rf magnetron sputtering, and electrophoretic deposition has been investigated in the metal-semiconductor-metal (MSM) configuration. A significant variation in the crystallinity, surface morphology, and photoresponse characteristics of ZnO thin film with change in growth kinetics suggest that the presence of defect centers and their density govern the photodetector relaxation properties. A relatively low density of traps compared to the true quantum yield is found very crucial for the realization of practical ZnO thin film based ultraviolet (UV) photodetector.

  2. Controlling growth rate anisotropy for formation of continuous ZnO thin films from seeded substrates.

    PubMed

    Zhang, R H; Slamovich, E B; Handwerker, C A

    2013-05-17

    Solution-processed zinc oxide (ZnO) thin films are promising candidates for low-temperature-processable active layers in transparent thin film electronics. In this study, control of growth rate anisotropy using ZnO nanoparticle seeds, capping ions, and pH adjustment leads to a low-temperature (90 ° C) hydrothermal process for transparent and high-density ZnO thin films. The common 1D ZnO nanorod array was grown into a 2D continuous polycrystalline film using a short-time pure solution method. Growth rate anisotropy of ZnO crystals and the film morphology were tuned by varying the chloride (Cl(-)) ion concentration and the initial pH of solutions of zinc nitrate and hexamethylenetetramine (HMTA), and the competitive adsorption effects of Cl(-) ions and HMTA ligands on the anisotropic growth behavior of ZnO crystals were proposed. The lateral growth of nanorods constituting the film was promoted by lowering the solution pH to accelerate the hydrolysis of HMTA, thereby allowing the adsorption effects from Cl(-) to dominate. By optimizing the growth conditions, a dense ∼100 nm thickness film was fabricated in 15 min from a solution of [Cl(-)]/[Zn(2+)] = 1.5 and pH=  4.8 ± 0.1. This film shows >80% optical transmittance and a field-effect mobility of 2.730 cm(2) V(-1) s(-1) at zero back-gate bias. PMID:23595114

  3. Controlling growth rate anisotropy for formation of continuous ZnO thin films from seeded substrates.

    PubMed

    Zhang, R H; Slamovich, E B; Handwerker, C A

    2013-05-17

    Solution-processed zinc oxide (ZnO) thin films are promising candidates for low-temperature-processable active layers in transparent thin film electronics. In this study, control of growth rate anisotropy using ZnO nanoparticle seeds, capping ions, and pH adjustment leads to a low-temperature (90 ° C) hydrothermal process for transparent and high-density ZnO thin films. The common 1D ZnO nanorod array was grown into a 2D continuous polycrystalline film using a short-time pure solution method. Growth rate anisotropy of ZnO crystals and the film morphology were tuned by varying the chloride (Cl(-)) ion concentration and the initial pH of solutions of zinc nitrate and hexamethylenetetramine (HMTA), and the competitive adsorption effects of Cl(-) ions and HMTA ligands on the anisotropic growth behavior of ZnO crystals were proposed. The lateral growth of nanorods constituting the film was promoted by lowering the solution pH to accelerate the hydrolysis of HMTA, thereby allowing the adsorption effects from Cl(-) to dominate. By optimizing the growth conditions, a dense ∼100 nm thickness film was fabricated in 15 min from a solution of [Cl(-)]/[Zn(2+)] = 1.5 and pH=  4.8 ± 0.1. This film shows >80% optical transmittance and a field-effect mobility of 2.730 cm(2) V(-1) s(-1) at zero back-gate bias.

  4. ZrO2-ZnO composite thin films for humidity sensing

    NASA Astrophysics Data System (ADS)

    Velumani, M.; Meher, S. R.; Balakrishnan, L.; Sivacoumar, R.; Alex, Z. C.

    2016-05-01

    ZrO2-ZnO composite thin films were grown by reactive DC magnetron sputtering. X-ray diffraction studies reveal the composite nature of the films with separate ZnO and ZrO2 phase. Scanning electron microscopy studies confirm the nanocrystalline structure of the films. The films were studied for their impedometric relative humidity (RH) sensing characteristics. The complex impedance plot was fitted with a standard equivalent circuit consisting of an inter-granular resistance and a capacitance in parallel. The DC resistance was found to be decreasing with increase in RH.

  5. X-Ray Absorption Spectroscopy Study of Copper Doped ZnO Thin Films

    SciTech Connect

    Ma Qing

    2007-02-02

    X-ray absorption spectroscopy technique is used to study copper-doped ZnO thin films, prepared by pulsed-laser deposition. The samples with various doping levels are examined. It is found that the samples contain metallic clusters with the sizes {<=} 2 nm as well as Cu1+ and Cu2+ states. The Cu1+ states exist as stable oxide clusters, while the Cu2+ ones participate in the ZnO lattice some of which may be pertaining to the surfaces of the Cu clusters as well. The copper clusters of {approx}1 nm are unstable and fragment under monochromatic x-ray beam illumination.

  6. Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Zhang, B. P.; Binh, N. T.; Segawa, Y.

    2004-07-01

    Second harmonic generation (SHG) from ZnO thin films fabricated by metalorganic chemical vapor deposition (MOCVD) technique was carried out. By comparing the second harmonic signal generated in a series of ZnO films with different deposition temperatures, we conclude that a significant part of second harmonic signal is generated at the film deposited with appropriate temperature. The second-order susceptibility tensor χ(2)zzz=9.2 pm/V was deduced for a film deposited at 250 °C.

  7. A model bismuth oxide intergranular thin film in a ZnO twist grain boundary.

    PubMed

    Domingos, H S

    2010-04-14

    The electronic properties of a model bismuth oxide intergranular film in ZnO were investigated using density functional plane wave calculations. It was found that oxygen excess plays a fundamental role in the appearance of electrical activity. The introduction by oxygen interstitials or zinc vacancies results in depletion of the charge in deep gap states introduced by the bismuth impurities. This makes the boundary less metallic and promotes the formation of acceptor states localized to the boundary core, resulting in Schottky barrier enhancement. The results indicate that the origin of electrical activity in thin intergranular bismuth oxide films is probably not distinct from that in decorated ZnO boundaries. PMID:21389532

  8. Growth and optical characteristics of high-quality ZnO thin films on graphene layers

    SciTech Connect

    Park, Suk In; Tchoe, Youngbin; Baek, Hyeonjun; Hyun, Jerome K.; Yi, Gyu-Chul E-mail: gcyi@snu.ac.kr; Heo, Jaehyuk; Jo, Janghyun; Kim, Miyoung; Kim, Nam-Jung E-mail: gcyi@snu.ac.kr

    2015-01-01

    We report the growth of high-quality, smooth, and flat ZnO thin films on graphene layers and their photoluminescence (PL) characteristics. For the growth of high-quality ZnO thin films on graphene layers, ZnO nanowalls were grown using metal-organic vapor-phase epitaxy on oxygen-plasma treated graphene layers as an intermediate layer. PL measurements were conducted at low temperatures to examine strong near-band-edge emission peaks. The full-width-at-half-maximum value of the dominant PL emission peak was as narrow as 4 meV at T = 11 K, comparable to that of the best-quality films reported previously. Furthermore, the stimulated emission of ZnO thin films on the graphene layers was observed at the low excitation energy of 180 kW/cm{sup 2} at room temperature. Their structural and optical characteristics were investigated using X-ray diffraction, transmission electron microscopy, and PL spectroscopy.

  9. Nanostructured hybrid ZnO thin films for energy conversion

    PubMed Central

    2011-01-01

    We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc) and Eosin-Y (EoY). Both the morphology and porosity of hybrid ZnO films are highly dependent on the type of dyes used in the synthesis. High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films. Despite a higher absorption coefficient of TS-CuPc than EoY, in ZnO/EoY hybrid films, the excited photoelectrons between the EoY levels can be extracted through ZnO, and the porosity of ZnO/EoY can also be controlled. PMID:21711909

  10. Transparent conductive Nd-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Nistor, M.; Millon, E.; Cachoncinlle, C.; Seiler, W.; Jedrecy, N.; Hebert, C.; Perrière, J.

    2015-03-01

    Transparent Nd-doped ZnO films with thickness in the range of 70 to 250 nm were grown by pulsed-laser deposition (PLD) on c-cut sapphire substrates at various oxygen pressures and substrate temperatures. A wide range of optical and electrical properties of the films were obtained and correlated to the composition and crystalline structure. The Nd-doped ZnO films are smooth, dense, and display the wurtzite phase. Different epitaxial relationships between films and substrate as a function of growth pressure and substrate temperature were evidenced by asymmetric x-ray diffraction measurements. By varying PLD growth conditions, the films can be tuned to have either metallic or semiconductor characteristics, with good optical transmittance in the visible range. Moreover, a low-temperature metal-insulator transition may be observed in Nd-doped ZnO films grown under low oxygen pressure. Resistivities as low as 6 × 10-4 Ω cm and 90% optical transmittance in the visible range and different near-infrared transmittance are obtained with approximately 1.0-1.5 at.% Nd doping and growth temperature of approximately 500 °C.

  11. Enhanced optical band-gap of ZnO thin films by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Raghu, P.; Naveen, C. S.; Shailaja, J.; Mahesh, H. M.

    2016-05-01

    Transparent ZnO thin films were prepared using different molar concentration (0.1 M, 0.2 M & 0.8 M) of zinc acetate on soda lime glass substrates by the sol-gel spin coating technique. The optical properties revealed that the transmittance found to decrease with increase in molar concentration. Absorption edge showed that the higher concentration film has increasingly red shifted. An increased band gap energy of the thin films was found to be direct allowed transition of ˜3.9 eV exhibiting their relevance for photovoltaic applications. The extinction coefficient analysis revealed maximum transmittance with negligible absorption coefficient in the respective wavelengths. The results of ZnO thin film prepared by sol-gel technique reveal its suitability for optoelectronics and as a window layer in solar cell applications.

  12. Structural and optical properties of Cu doped ZnO thin films by co-sputtering.

    PubMed

    Chung, Sung Mook; Shin, Jae-Heon; Lee, Jeong-Min; Ryu, Min Ki; Cheong, Woo-Seok; Park, Sang Hee Ko; Hwang, Chi-Sun; Cho, Kyoung Ik

    2011-01-01

    This paper reports on the structural and optical properties of ZnCuO thin films that were prepared by co-sputtering for the application of p-type-channel transparent thin-film transistors (TFTs). Pure ceramic ZnO and metal Cu targets were prepared for the co-sputtering of the ZnCuO thin films. The effects of the Cu concentration on the structural, optical, and electrical properties of the ZnCuO films were investigated after their heat treatment. It was observed from the XRD measurements that the ZnCuO films with a Cu concentration of 7% had ZnO(002), Cu2O(111), and Cu2O(200) planes. The 7% Cu-doped ZnO films also showed a band-gap energy of approximately 2.05 eV, an average transmittance of approximately 62%, and a p-type carrier density of approximately 1.33 x 10(19) cm-3 at room temperature. The bottom-gated TFTs that were fabricated with the ZnCuO thin film as a p-type channel exhibited an on-off ratio of approximately 6. These results indicate the possibility of applying ZnCuO thin films with variable band-gap energies to ZnO-based optoelectronic devices.

  13. Electrical characteristics of ZnO nanorods reinforced polymer nanocomposite thin films

    SciTech Connect

    Bhattacharjee, Snigdha; Roy, Asim

    2015-05-15

    ZnO nanorods have been prepared by simple chemical method, which is used to fabricate organic bistable devices (OBDs). OBDs are fabricated by incorporating different weight percent (wt %) of chemically synthesized Zinc Oxide (ZnO) nanorods into polymethylmethacrylate (PMMA). Current-voltage (I-V) measurements of the spin coated ZnO+PMMA nanocomopsite thin film on indium tin oxide (ITO) coated glass substrate showed current hysteresis behaviour, which is an indication of memory effect. The samples exhibit two distinct resistance states, ON and OFF states, characterised by relatively low and high resistance of the OBDs, respectively. It is also observed that with change in ZnO dopant concentration the value of ON/OFF current changes. Higher ON/OFF current ratio is desired for practical applications. Current conduction mechanism of the devices has been explained invoking various existing models, and it has been found that the trapped-charge-limited conduction mechanism was dominant in our samples.

  14. Al doped ZnO thin films - microstructure, physical and sensor properties

    NASA Astrophysics Data System (ADS)

    Starbov, N.; Balabanov, S.; Bineva, I.; Rachkova, A.; Krumov, E.; Starbova, K.

    2012-12-01

    Thin ZnO films doped with Al are deposited by spray pyrolysis onto glass substrates using starting solution of Zn-acetate + n.AlCl (where 0.1 < n < 30 at.%). The ZnO phase composition and surface morphology are revealed via X-ray diffraction or atomic force and scanning electron microscopy respectively. UV/VIS transmittance/reflectance, as well as DC-conductivity measurements are applied in order to reveal the influence of the Al doping on the optical and electrical transport properties of the films studied. The sensing efficiency of the pure as well as of doped ZnO films for detection of noxious gases is checked via resistivity measurements under saturated vapours of ethanol, acetone, ammonia, dimethylamine and formalin at room temperature. Finally the results obtained are discussed concerning the application of the ZnO:Al films studied in the field of sensor technique.

  15. Role of Ni doping on transport properties of ZnO thin films

    SciTech Connect

    Dar, Tanveer Ahmad Agrawal, Arpana; Sen, Pratima

    2015-06-24

    Nickel doped (Ni=0.05) and undoped Zinc Oxide (ZnO) thin films have been prepared by Pulsed laser deposition (PLD) technique. The structural analysis of the films was done by X-ray diffraction (XRD) studies which reveal absence of any secondary phase in the prepared samples. UV transmission spectra show that Ni doping reduces the transparency of the films. X-ray Photoelectron spectroscopy (XPS) also shows the presence of metallic Ni along with +2 oxidation state in the sample. Low temperature magneto transport properties of the ZnO and NiZnO films are also discussed in view of Khosla fisher model. Ni doping in ZnO results in decrease in magnitude of negative MR.

  16. Influence of water content in mixed solvent on surface morphology, wettability, and photoconductivity of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zhao, Min; Shang, Fengjiao; Lv, Jianguo; Song, Ying; Wang, Feng; Zhou, Zhitao; He, Gang; Zhang, Miao; Song, Xueping; Sun, Zhaoqi; Wei, Yiyong; Chen, Xiaoshuang

    2014-09-01

    ZnO thin films have been synthesized by means of a simple hydrothermal method with different solvents. The effect of deionized water content in the mixed solvents on the surface morphology, crystal structure, and optical property has been investigated by scanning electron microscopy, X-ray diffraction, and UV-Vis spectrophotometer. A large number of compact and well-aligned hexagonal ZnO nanorods and the maximal texture coefficient have been observed in the thin film, which is grown in the mixed solvent with x = 40%. A lot of sparse, diagonal, and pointed nanorods can be seen in the ZnO thin film, which is grown in the 40-mL DI water solution. The optical band gap decreases firstly and then increases with the increase of x. Reversible wettability of ZnO thin films were studied by home-made water contact angle apparatus. Reversible transition between hydrophobicity and hydrophilicity may be attributed to the change of surface chemical composition, surface roughness and the proportion of nonpolar planes on the surface of ZnO thin films. Photocurrent response of ZnO thin films grown at different solvents were measured in air. The response duration of the thin film, which is grown in the solvent with x = 40%, exhibits a fast growth in the beginning but cannot approach the saturate current value within 100 s. The theoretical mechanism for the slower growth or decay duration of the photocurrent has been discussed in detail.

  17. Characterization of Flexible CIGS Thin Film Solar Cells or Stainless Steel with Intrinsic ZnO Diffusion Barriers.

    PubMed

    Kim, Chae-Woong; Kim, Hye Jin; Kim, Jin Hyeok; Jeong, Chaehwan

    2016-05-01

    ZnO diffusion barrier layer was deposited by RF magnetron sputtering by using the same method as intrinsic ZnO layer. The CIGS solar cells were fabricated on stainless steel substrate. The 50-200 nm thin ZnO diffusion barriers effectively reduced the diffusion of Fe and Cr, from stainless steel substrates into the CIGS absorbers. The CIGS solar cells with ZnO diffusion barriers increased the J(sc) and FF, which resulted in an increase of cell efficiency from 5.9% up to 9.06%. PMID:27483885

  18. Microfluidic pumps employing surface acoustic waves generated in ZnO thin films

    SciTech Connect

    Du, X. Y.; Flewitt, A. J.; Milne, W. I.; Fu, Y. Q.; Luo, J. K.

    2009-01-15

    ZnO thin film based surface acoustic wave (SAW) devices have been utilized to fabricate microfluidic pumps. The SAW devices were fabricated on nanocrystalline ZnO piezoelectric thin films deposited on Si substrates using rf magnetron sputtering and use a Sezawa wave mode for effective droplet motion. The as-deposited ZnO surface is hydrophilic, with a water contact angle of {approx}75 deg., which prevents droplet pumping. Therefore, the ZnO surface was coated using a self-assembled monolayer of octadecyltrichlorosilane which forms a hydrophobic surface with a water contact angle of {approx}110 deg. Liquid droplets between 0.5 and 1 {mu}l in volume were successfully pumped on the hydrophobic ZnO surface at velocities up to 1 cm s{sup -1}. Under acoustic pressure, the water droplet on an hydrophilic surface becomes deformed, and the asymmetry in the contact angle at the trailing and leading edges allow the force acting upon the droplet to be calculated. These forces, which increase with input voltage above a threshold level, are found to be in the range of {approx}100 {mu}N. A pulsed rf signal has also been used to demonstrate precision manipulation of the liquid droplets. Furthermore, a SAW device structure is demonstrated in which the ZnO piezoelectric only exists under the input and output transducers. This structure still permits pumping, while avoiding direct contact between the piezoelectric material and the fluid. This is of particular importance for biological laboratory-on-a-chip applications.

  19. ZnO thin film as MSG for sensitive biosensor

    NASA Astrophysics Data System (ADS)

    Iftimie, N.; Savin, A.; Steigmann, R.; Faktorova, D.; Salaoru, I.

    2016-08-01

    In this paper, we investigate the cholesterol sensors consisting of a mixture of cholesterol oxidase (ChOx) and zinc oxide (ZnO) nanoparticles were grown on ITO/glass substrates by vacuum thermal evaporation method and their sensing characteristics are examined in air. Also, the interest in surface waves appeared due to evanescent waves in the metallic strip grating in sub-wavelength regime. Before testing the transducer with metamaterials lens in the sub-wavelength regime, a simulation of the evanescent wave's formation has been performed at the edge of Ag strips, with thicknesses in the range of micrometers.

  20. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Sarkar, D. K.; Chen, X.-Grant

    2015-02-01

    Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  1. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.

    PubMed

    Wang, Peihong; Du, Hejun

    2015-07-01

    Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s(2). By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration.

  2. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.

    PubMed

    Wang, Peihong; Du, Hejun

    2015-07-01

    Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s(2). By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration. PMID:26233403

  3. Characterization and Fabrication of ZnO Nanowires Grown on AlN Thin Film

    SciTech Connect

    Yousefi, Ramin; Kamaluddin, Burhanuddin; Ghoranneviss, Mahmood; Hajakbari, Fatemeh

    2009-07-07

    In this paper, we report ZnO nanowires grown on AlN thin film deposited on glass as substrate by physical vapour deposition. The temperature of substrates was kept between 600 deg. C and 500 deg. C during the growth. The typical average diameters of the obtained nanowires on substrate at 600 deg. C and 500 deg. C was about 57 nm and 22 nm, respectively with several micrometers in lengths. X-ray diffraction and Auger spectroscopy results showed Al diffused from AlN thin film into ZnO nanowires for sample at high temperature zone. In the photoluminescence spectra two emission bands appeared, one related to ultraviolet emission with a strong peak at 380-382 nm, and another related to deep level emission with a weak peak at 510 nm.

  4. Linear and nonlinear optical investigations of nano-scale Si-doped ZnO thin films: spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Jilani, Asim; Abdel-wahab, M. Sh.; Zahran, H. Y.; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-09-01

    Pure and Si-doped ZnO (SZO) thin films at different concentration of Si (1.9 and 2.4 wt%) were deposited on highly cleaned glass substrate by radio frequency (DC/RF) magnetron sputtering. The morphological and structural investigations have been performed by atomic force electron microscope (AFM) and X-ray diffraction (XRD). The X-ray photoelectron spectroscopy was employed to study the composition and the change in the chemical state of Si-doped ZnO thin films. The optical observations like transmittance, energy band gap, extinction coefficient, refractive index, dielectric loss of pure and Si-doped ZnO thin films have been calculated. The linear optical susceptibility, nonlinear refractive index, and nonlinear optical susceptibility were also studied by the spectroscopic approach rather than conventional Z-scan method. The energy gap of Si-doped ZnO thin films was found to increase as compared to pure ZnO thin films. The crystallinity of the ZnO thin films was effected by the Si doping. The O1s spectra in pure and Si-doped ZnO revealed the bound between O-2 and Zn+2 ions and reduction in the surface oxygen with the Si doping. The chemical state analysis of Si 2p showed the conversation of Si to SiOx and SiO2. The increase in the first-order linear optical susceptibility χ (1) and third-order nonlinear optical susceptibility χ (3) was observed with the Si doping. The nonlinear studies gave some details about the applications of metal oxides in nonlinear optical devices. In short, this study showed that Si doping through sputtering has effected on the structural, surface and optical properties of ZnO thin films which could be quite useful for advanced applications such as metal-oxide-based optical devices.

  5. Improved sensing response of photo activated ZnO thin film for hydrogen peroxide detection.

    PubMed

    Parthasarathy, S; Nandhini, V; Jeyaprakash, B G

    2016-11-15

    The nanostructured ZnO thin films were deposited using spray pyrolysis technique. Formation of polycrystalinity with hexagonal wurtzite structure was observed from the structural study. Highly dense spherical shaped nanoparticles with fine crystallites were observed from the surface morphological studies. The light induced hydrogen peroxide vapour sensing was done using chemi-resistive method and its effect on the sensing response was studied and reported.

  6. Improved sensing response of photo activated ZnO thin film for hydrogen peroxide detection.

    PubMed

    Parthasarathy, S; Nandhini, V; Jeyaprakash, B G

    2016-11-15

    The nanostructured ZnO thin films were deposited using spray pyrolysis technique. Formation of polycrystalinity with hexagonal wurtzite structure was observed from the structural study. Highly dense spherical shaped nanoparticles with fine crystallites were observed from the surface morphological studies. The light induced hydrogen peroxide vapour sensing was done using chemi-resistive method and its effect on the sensing response was studied and reported. PMID:27491004

  7. Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S. I.; Georgieva, V.; Yordanov, R.; Raicheva, Z.; Szilágyi, I. M.

    2016-11-01

    Applying atomic layer deposition (ALD), very thin zinc oxide (ZnO) films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The gas sensing of the ZnO films to NO2 was tested in the concentration interval between 10 and 5000 ppm. On the basis of registered frequency change of the QCM, for each concentration the sorbed mass was calculated. Further characterization of the films was carried out by various techniques, i.e. by SEM-EDS, XRD, ellipsometry, and FTIR spectroscopy. Although being very thin, the films were gas sensitive to NO2 already at room temperature and could register very well as low concentrations as 100 ppm, while the sorption was fully reversible. Our results for very thin ALD ZnO films show that the described fast, simple and cost-effective technology could be implemented for producing gas sensors working at room temperature and being capable to detect in real time low concentrations of NO2.

  8. Photovoltaic performance of Gallium-doped ZnO thin film/Si nanowires heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Aksoy Akgul, Funda; Emrah Unalan, Husnu; Turan, Rasit

    2016-04-01

    In this work, photovoltaic performance of Ga-doped ZnO thin film/Si NWs heterojunction diodes was investigated. Highly dense and vertically well-aligned Si NW arrays were successfully synthesised on a p-type (1 0 0)-oriented Si wafer through cost-effective metal-assisted chemical etching technique. Ga-doped ZnO thin films were deposited onto Si NWs via radio frequency magnetron sputtering to construct three-dimensional heterostructures. Photovoltaic characteristics of the fabricated diodes were determined with current density (J)-voltage (V) measurements under simulated solar irradiation of AM 1.5 G. The optimal open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency were found to be 0.37 V, 3.30 mA cm-2, 39.00 and 0.62%, respectively. Moreover, photovoltaic diodes exhibited relatively high external quantum efficiency over the broadband wavelengths between 350 and 1100 nm interval of the spectrum. The observed photovoltaic performance in this study clearly indicates that the investigated device structure composed of Ga-doped ZnO thin film/Si NWs heterojunctions could facilitate an alternative pathway for optoelectronic applications in future, and be a promising alternative candidate for high-performance low-cost new-generation photovoltaic diodes.

  9. Effect of aluminium doping on structural and optical properties of ZnO thin films by sol-gel method

    SciTech Connect

    Vijayaprasath, G.; Murugan, R.; Ravi, G. E-mail: gravicrc@gmail.com; Hayakawa, Y.

    2015-06-24

    We systematically investigated the structural, morphological and optical properties of 0.05 mol % Al doped ZnO (Al:ZnO) thin films deposited on glass substrates by sol-gel spin coating method. The influences of Al doping in ZnO thin films are characterized by Powder X-ray diffraction study. ZnO and Al:ZnO thin films have showed hexagonal wurtzite structure without any secondary phase in c-axis (002) orientation. The SEM images also proved the hexagonal rod like morphologies for both films. All the films exhibited transmittance of 70-80% in the visible range up to 800 nm and cut-off wavelength observed at ∼390 nm corresponding to the fundamental absorption of ZnO. The band gap of the ZnO thin films slightly widened with the Al doping. The photoluminescence properties have been studied for Al: ZnO thin films and the results are presented in detail.

  10. Raman scattering and photoluminescence investigations of N doped ZnO thin films: Local vibrational modes and induced ferromagnetism

    NASA Astrophysics Data System (ADS)

    Jindal, Kajal; Tomar, Monika; Katiyar, R. S.; Gupta, Vinay

    2016-10-01

    N doped ZnO (ZnO:N) thin films are prepared by pulsed laser deposition in an oxygen environment using ZnO:N targets with varying nitrogen doping concentrations (1%-10%). The impact of nitrogen incorporation on the microstructural properties of prepared ZnO:N thin films has been studied using Raman scattering. The Raman shift of E2(high) mode towards lower frequencies indicate the substitution of N at O lattice sites (NO). A local vibrational mode corresponding to Zn-N was observed at 480.3 cm-1 in N doped ZnO thin films and highlights the increased strength of the Zn-N bond in the ZnO lattice. Photoluminescence studies reveal the dominant near band edge emission peak in the ultraviolet region and the absence of deep level emission due to defects. The ZnO:N thin films are found to possess room temperature ferromagnetism. N is found to play a significant role in arising ferromagnetism in ZnO and possess a solubility limit of 8% for uniform and homogeneous atomic substitution in ZnO. The present study confirms the promising application of N doped ZnO (ZnO:N) thin films for room temperature spintronics applications.

  11. Structural and optical properties of Ni added ZnO thin films deposited by sol-gel method

    SciTech Connect

    Murugan, R.; Vijayaprasath, G.; Anandhan, N. E-mail: gravicrc@gmail.com; Ravi, G. E-mail: gravicrc@gmail.com; Mahalingam, T.

    2014-04-24

    Pure and Ni added zinc oxide thin films were prepared by sol-gel method using spin-coating technique on glass substrates. The influences of nickel on ZnO thin films are characterized by Powder X-ray diffraction study. Pure and Ni added thin films are hexagonal wurtzite structure without any secondary phase in c-axis orientation. The SEM images of thin films show uniform sphere like particles covered completely on glass substrates. All the films exhibit transmittance of 85-95% in the visible range up to 800nm and cut-off wavelength observed at 394 nm corresponding to the fundamental absorption of ZnO. The photoluminescence property for pure and Ni added ZnO thin films has been studied and results are presented in detail.

  12. Fabrication and Characterization of High-Crystalline Nanoporous ZnO Thin Films by Modified Thermal Evaporation System

    NASA Astrophysics Data System (ADS)

    Islam, M. S.; Hossain, M. F.; Razzak, S. M. A.; Haque, M. M.; Saha, D. K.

    2016-05-01

    The aim of this work is to fabricate high-crystalline nanoporous zinc oxide (ZnO) thin films by a modified thermal evaporation system. First, zinc thin films have been deposited on bare glass substrate by the modified thermal evaporation system with pressure of 0.05mbar, source-substrate distance of 3cm and source temperature 700∘C. Then, high-crystalline ZnO thin film is obtained by annealing at 500∘C for 2h in atmosphere. The prepared ZnO films are characterized with various deposition times of 10min and 20min. The structural property was investigated by X-ray diffractometer (XRD). The optical bandgap and absorbance/transmittance of these films are examined by ultraviolet/visible spectrophotometer. The surface morphological property has been observed by scanning electron microscope (SEM). ZnO films have showed uniform nanoporous surface with high-crystalline hexagonal wurtzite structure. The ZnO films prepared with 20min has excitation absorption-edge at 369nm, which is blueshifted with respect to the bulk absorption-edge appearing at 380nm. The gap energy of ZnO film is decreased from 3.14eV to 3.09eV with increase of the deposition time, which can enhance the excitation of ZnO films by the near visible light, and is suitable for the application of photocatalyst of waste water cleaning and polluted air purification.

  13. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy.

    PubMed

    Baxter, Jason B; Schmuttenmaer, Charles A

    2006-12-21

    The terahertz absorption coefficient, index of refraction, and conductivity of nanostructured ZnO have been determined using time-resolved terahertz spectroscopy, a noncontact optical probe. ZnO properties were measured directly for thin films and were extracted from measurements of nanowire arrays and mesoporous nanoparticle films by applying Bruggeman effective medium theory to the composite samples. Annealing significantly reduces the intrinsic carrier concentration in the ZnO films and nanowires, which were grown by chemical bath deposition. The complex-valued, frequency-dependent photoconductivities for all morphologies were found to be similar at short pump-probe delay times. Fits using the Drude-Smith model show that films have the highest mobility, followed by nanowires and then nanoparticles, and that annealing the ZnO increases its mobility. Time constants for decay of photoinjected electron density in films are twice as long as those in nanowires and more than 5 times those for nanoparticles due to increased electron interaction with interfaces and grain boundaries in the smaller-grained materials. Implications for electron transport in dye-sensitized solar cells are discussed.

  14. Characterization of ZnO Thin Films Prepared by Thermal Oxidation of Zn

    NASA Astrophysics Data System (ADS)

    Bouanane, I.; Kabir, A.; Boulainine, D.; Zerkout, S.; Schmerber, G.; Boudjema, B.

    2016-07-01

    Zinc oxide thin films were prepared by thermal oxidation of zinc films at a temperature of 500°C for 2 h. The Zn films were deposited onto glass substrates by magnetron RF sputtering. The sputtering time varied from 2.5 min to 15 min. The physico-chemical characterization of the ZnO films was carried out depending on the Zn sputtering time. According to x-ray diffraction, ZnO films were polycrystalline and the Zn-ZnO phase transformation was direct. The mean transmittance of the ZnO films was around 80% and the band gap increased from 3.15 eV to 3.35 eV. Photoluminescence spectra show ultraviolet, visible, and infrared emission bands. The increase of the UV emission band was correlated with the improvement of the crystalline quality of the ZnO films. The concentration of native defects was found to decrease with increasing Zn sputtering time. The decrease of the electrical resistivity as a function of Zn sputtering time was linked to extrinsic hydrogen-related defects.

  15. Photocatalytic efficiency of reusable ZnO thin films deposited by sputtering technique

    NASA Astrophysics Data System (ADS)

    Ahumada-Lazo, R.; Torres-Martínez, L. M.; Ruíz-Gómez, M. A.; Vega-Becerra, O. E.; Figueroa-Torres, M. Z.

    2014-12-01

    The photocatalytic activity of ZnO thin films with different physicochemical characteristics deposited by RF magnetron sputtering on glass substrate was tested for the decolorization of orange G dye aqueous solution (OG). The crystalline phase, surface morphology, surface roughness and the optical properties of these ZnO films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-visible spectroscopy (UV-Vis), respectively. The dye photodecolorization process was studied at acid, neutral and basic pH media under UV irradiation of 365 nm. Results showed that ZnO films grow with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a (002) preferential crystalline orientation. A clear relationship between surface morphology and photocatalytic activity was observed for ZnO films. Additionally, the recycling photocatalytic abilities of the films were also evaluated. A promising photocatalytic performance has been found with a very low variation of the decolorization degree after five consecutive cycles at a wide range of pH media.

  16. Improved UV photoresponse properties of high-quality ZnO thin films through the use of a ZnO buffer layer on flexible polyimide substrates

    NASA Astrophysics Data System (ADS)

    Kim, Mincheol; Leem, Jae-Young; Son, Jeong-Sik

    2016-03-01

    An oxidized ZnO buffer layer was prepared by using thermal oxidation of a Zn buffer layer on a polyimide (PI) substrate; then, ZnO thin films with (sample 1) and without (sample 2) an oxidized ZnO buffer layer were grown by using the sol-gel spin-coating method. The intensities of the ZnO (002) diffraction peaks observed in sample 1 were stronger than those observed in sample 2, implying that the crystal quality was enhanced by the oxidized ZnO buffer layer. Moreover, the residual stress of sample 1 was reduced compared to that of sample 2 due to the decreased number of defects. Sample 2 exhibited defect-related deep-level orange-yellow emissions, which almost disappeared with the introduction of the ZnO buffer layer (sample 1). The values of the responsivity were 0.733 (sample 1) and 0.066 (sample 2) mA/W; therefore, the proposed method could provide a pathway to the easy fabrication of fast-response UV sensors.

  17. Effect of copper doping on the photocatalytic activity of ZnO thin films prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Saidani, T.; Zaabat, M.; Aida, M. S.; Boudine, B.

    2015-12-01

    In the present work, we prepared undoped and copper doped ZnO thin films by the sol-gel dip coating method on glass substrates from zinc acetate dissolved in a solution of ethanol. The objective of our work is to study the effect of Cu doping with different concentrations on structural, morphological, optical properties and photocatalytic activity of ZnO thin films. For this purpose, we have used XRD to study the structural properties, and AFM to determine the morphology of the surface of the ZnO thin films. The optical properties and the photocatalytic degradation of the films were examined by UV-visibles spectrophotometer. The Tauc method was used to estimate the optical band gap. The XRD spectra indicated that the films have an hexagonal wurtzite structure, which gradually deteriorated with increasing Cu concentration. The results showed that the incorporation of Cu decreases the crystallite size. The AFM study showed that an increase of the concentration of Cu causes the decrease of the surface roughness, which passes from 20.2 for Un-doped ZnO to 12.16 nm for doped ZnO 5 wt% Cu. Optical measurements have shown that all the deposited films show good optical transmittance (77%-92%) in the visible region and increases the optical gap with increasing Cu concentration. The presence of copper from 1% to 5 wt% in the ZnO thin films is found to decelerate the photocatalytic process.

  18. Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls

    NASA Astrophysics Data System (ADS)

    Maiolo, L.; Mirabella, S.; Maita, F.; Alberti, A.; Minotti, A.; Strano, V.; Pecora, A.; Shacham-Diamand, Y.; Fortunato, G.

    2014-09-01

    A fully flexible pH sensor using nanoporous ZnO on extended gate thin film transistor (EGTFT) fabricated on polymeric substrate is demonstrated. The sensor adopts the Low Temperature Polycrystalline Silicon (LTPS) TFT technology for the active device, since it allows excellent electrical characteristics and good stability and opens the way towards the possibility of exploiting CMOS architectures in the future. The nanoporous ZnO sensitive film, consisting of very thin (20 nm) crystalline ZnO walls with a large surface-to-volume ratio, was chemically deposited at 90 °C, allowing simple process integration with conventional TFT micro-fabrication processes compatible with wide range of polymeric substrates. The pH sensor showed a near-ideal Nernstian response (˜59 mV/pH), indicating an ideality factor α ˜ 1 according to the conventional site binding model. The present results can pave the way to advanced flexible sensing systems, where sensors and local signal conditioning circuits will be integrated on the same flexible substrate.

  19. Porous ZnO thin films as anode electrodes for lithium ion batteries.

    PubMed

    Guler, Mehmet Oguz; Cevher, Ozgur; Akbulut, Hatem

    2012-12-01

    Zinc oxide (ZnO) nano structured thin films were prepared on Cr coated stainless substrates via a simple thermal chemical reactions vapor transport deposition method in air with a mixture of Zinc acetate anhydrate as reactants. The growth process was carried out at 200 degrees C, 300 degrees C and 400 degrees C in a stainless steel reactor with one side opened to the air. High purity oxygen gas was used as the carrier gas and kept at 1 L/min flow rate during the deposition process. There is no other metal catalyst and carrier gas in the process. The materials are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM). Their electrochemical properties as anodes of lithium ion batteries are examined by galvanostatic discharge-charge tests. The results show that porous ZnO nano structured thin films exhibit higher reversible capacities and better cyclabilities than those of commercial ZnO powders. When cycled at 0.958 mA (1 C = 1 hour charge + 1 hour discharge) for the films deposited at 200 degrees C, these nano structured pyramid-like structures deliver initial discharge and charge capacities of 954, in addition, good rate capabilities have also obtained after 20 cycles. It is believed that the porous sheet nano structure plays an important role in the electrochemical performance.

  20. Characteristics of Sputtered ZnO Thin Films for an Inverted Organic Solar Cell.

    PubMed

    Park, Yong Seob; Park, Chul Min; Lee, Jaehyeong

    2016-05-01

    Several research groups have claimed high energy conversion efficiency in organic solar cells. However, it still has low efficiency and is unstable, because organic materials are easily oxidized by atmospheric humidity and UV light. In this work, ZnO thin film as the blocking layer attributed to the interference of the injection of the hole from the P3HT and no charge carrier recombination. We obtained the maximum power conversion efficiency of 1.9% under AM 1.5 G spectral illumination of 100 MWcm(-2), when we used a ZnO film of 60 nm and the optimized P3HT:PCBM, and Au as the back electrode to solve the reaction problem of Al electrode and to control the work function between the HOMO level of P3HT and the energy level of the metal electrode. Power conversion efficiency of inverted organic solar cell (IOSC) is significantly dependent on the thickness of the ZnO thin film deposited by unbalanced magnetron sputtering method. Also, the stability of IOSC is measured under ambient conditions. PMID:27483875

  1. Photoelectrochemical properties of highly mobilized Li-doped ZnO thin films.

    PubMed

    Shinde, S S; Bhosale, C H; Rajpure, K Y

    2013-03-01

    Li-doped ZnO thin films with preferred (002) orientation have been prepared by spray pyrolysis technique in aqueous medium on to the corning glass substrates. The effect of Li-doping on to the photoelectrochemical, structural, morphological, optical, luminescence, electrical and thermal properties has been investigated. XRD and Raman study indicates that the films have hexagonal crystal structure. The transmittance, reflectance, refractive index, extinction coefficient and bandgap have been analyzed by optical study. PL spectra consist of a near band edge and visible emission due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial zinc (Zni), interstitial oxygen (Oi) and zinc vacancy (VZn). The Li-doped ZnO films prepared for 1at% doping possesses the highest electron mobility of 102cm(2)/Vs and carrier concentration of 3.62×10(19)cm(-3). Finally, degradation of 2,4,6-Trinitrotoluene using Li-doped ZnO thin films has been reported. PMID:23416707

  2. Bipolar charge storage characteristics in copper and cobalt co-doped zinc oxide (ZnO) thin film.

    PubMed

    Kumar, Amit; Herng, Tun Seng; Zeng, Kaiyang; Ding, Jun

    2012-10-24

    The bipolar charge phenomenon in Cu and Co co-doped zinc oxide (ZnO) film samples has been studied using scanning probe microscopy (SPM) techniques. Those ZnO samples are made using a pulsed laser deposition (PLD) technique. It is found that the addition of Cu and Co dopants suppresses the electron density in ZnO and causes a significant change in the work function (Fermi level) value of the ZnO film; this results in the ohmic nature of the contact between the electrode (probe tip) and codoped sample, whereas this contact exhibits a Schottky nature in the undoped and single-element-doped samples. These results are verified by Kelvin probe force microscopy (KPFM) and ultraviolet photoelectron spectroscopy (UPS) measurements. It is also found that the co-doping (Cu and Co) can stabilize the bipolar charge, whereas Cu doping only stabilizes the positive charge in ZnO thin films.

  3. Microstructured porous ZnO thin film for increased light scattering and improved efficiency in inverted organic photovoltaics.

    PubMed

    Nirmal, Amoolya; Kyaw, Aung Ko Ko; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-10-20

    Microstructured porous zinc oxide (ZnO) thin film was developed and demonstrated as an electron selective layer for enhancing light scattering and efficiency in inverted organic photovoltaics. High degree of porosity was induced and controlled in the ZnO layer by incorporation of polyethylene glycol (PEG) organic template. Scanning electron microscopy, contact angle and absorption measurements prove that the ZnO:PEG ratio of 4:1 is optimal for the best performance of porous ZnO. Ensuring sufficient pore-filling, the use of porous ZnO leads to a marked improvement in device performance compared to non-porous ZnO, with 35% increase in current density and 30% increase in efficiency. Haze factor studies indicate that the performance improvement can be primarily attributed to the improved light scattering enabled by such a highly porous structure.

  4. Comparison of ZnO thin films grown on a polycrystalline 3C-SiC buffer layer by RF magnetron sputtering and a sol-gel method

    NASA Astrophysics Data System (ADS)

    Phan, Duy-Thach; Chung, Gwiy-Sang

    2011-02-01

    Zinc oxide (ZnO) thin films were deposited on a polycrystalline (poly) 3C-SiC buffer layer using RF magnetron sputtering and a sol-gel method. The post-deposition annealing was performed on ZnO thin films prepared using both methods. The formation of ZnO piezoelectric thin films with less residual stress was due to a close lattice mismatch of the ZnO and SiC layers as obtained by the sputtering method. Nanocrystalline, porous ZnO film prepared using the sol-gel method showed strong ultraviolet UV emission at a wavelength of 380 nm. The 3C-SiC buffer layer improved the optical and piezoelectric properties of the ZnO film produced by the two deposition methods. Moreover, the different structures of the ZnO films on the 3C-SiC intermediate layer caused by the different deposition techniques were also considered and discussed.

  5. Perovskite solar cells based on nanocolumnar plasma-deposited ZnO thin films.

    PubMed

    Ramos, F Javier; López-Santos, Maria C; Guillén, Elena; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Gonzalez-Elipe, Agustin R; Ahmad, Shahzada

    2014-04-14

    ZnO thin films having a nanocolumnar microstructure are grown by plasma-enhanced chemical vapor deposition at 423 K on pre-treated fluorine-doped tin oxide (FTO) substrates. The films consist of c-axis-oriented wurtzite ZnO nanocolumns with well-defined microstructure and crystallinity. By sensitizing CH3NH3PbI3 on these photoanodes a power conversion of 4.8% is obtained for solid-state solar cells. Poly(triarylamine) is found to be less effective when used as the hole-transport material, compared to 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD), while the higher annealing temperature of the perovskite leads to a better infiltration in the nanocolumnar structure and an enhancement of the cell efficiency. PMID:24643984

  6. X-ray studies on optical and structural properties of ZnO nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Larcheri, S.; Armellini, C.; Rocca, F.; Kuzmin, A.; Kalendarev, R.; Dalba, G.; Graziola, R.; Purans, J.; Pailharey, D.; Jandard, F.

    2006-01-01

    X-ray absorption near-edge fine structure (XANES) studies have been carried out on nanostructured ZnO thin films prepared by atmospheric pressure chemical vapour deposition (APCVD). Films have been characterized by X-ray diffraction (XRD) and optical luminescence spectroscopy exciting with laser light (PL) or X-ray (XEOL). According to XRD measurements, all the APCVD samples reveal a highly (002) oriented crystalline structure. The samples have different thickness (less than 1 μm) and show significant shifts of the PL and XEOL bands in the visible region. Zn K-edge XANES spectra were recorded using synchrotron radiation at BM08 of ESRF (France), by detecting photoluminescence yield (PLY) and X-ray fluorescence yield (FLY). The differences between the PLY- and FLY-XANES confirm the possibility of studying the local environment in the luminescence centres and to correlate the structural and optical properties of ZnO nanostructured samples.

  7. Exciton and core-level electron confinement effects in transparent ZnO thin films

    PubMed Central

    Mosquera, Adolfo A.; Horwat, David; Rashkovskiy, Alexandr; Kovalev, Anatoly; Miska, Patrice; Wainstein, Dmitry; Albella, Jose M.; Endrino, Jose L.

    2013-01-01

    The excitonic light emission of ZnO films have been investigated by means of photoluminescence measurements in ultraviolet-visible region. Exciton confinement effects have been observed in thin ZnO coatings with thickness below 20 nm. This is enhanced by a rise of the intensity and a blue shift of the photoluminescence peak after extraction of the adsorbed species upon annealing in air. It is found experimentally that the free exciton energy (determined by the photoluminescence peak) is inversely proportional to the square of the thickness while core-level binding energy is inversely proportional to the thickness. These findings correlate very well with the theory of kinetic and potential confinements.

  8. Study on Solid-Phase Crystallization of Amorphized Vanadium-Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Watanabe, Akihiro; Chiba, Hiroshi; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-04-01

    The effects of post-annealing and film thickness on the solid-phase crystallization (SPC) of amorphized vanadium-doped ZnO (VZO) thin films were investigated. The 2-500-nm-thick VZO (V of about 4 at.%) thin films were deposited on a c-face sapphire substrate at room temperature by RF magnetron sputtering and subsequently were annealed at an annealing temperature (T A) from 700°C to 900°C in a nitrogen atmosphere. From in-plane x-ray diffraction (XRD) measurements, the as-deposited VZO film had a faint in-plane orientation at the initial stage of deposition. However, the ZnO(100) XRD intensity weakened with increasing film thickness and no diffraction peak was seen over 35-nm thick. That is, the pseudo-amorphous film was fabricated. By annealing the 100-nm-thick VZO film over 700°C, the sixfold symmetry appeared. The ZnO(100) XRD intensity increased sharply at a T A of 800°C and was saturated at a higher T A. The c axis orientation reached a peak at a T A of 800°C according to the ZnO(002) XRD intensity. Concerning the effect of film thickness in the case of T A = 800°C, both the in-plane and c axis orientation improved up to 100-nm thick and deteriorated over it. At a T A ≥ 850°C or film thickness ≥200 nm, where the c axis orientation was deteriorated, the secondary phase-like Zn3V2O8 was formed. As a result, it is found that the careful selection of the T A and film thickness is necessary to avoid the formation of secondary phase-like Zn3V2O8 to fabricate the high-quality buffer layer via SPC.

  9. Study of deposition parameters for the fabrication of ZnO thin films using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hashmi, Jaweria Zartaj; Siraj, Khurram; Latif, Anwar; Murray, Mathew; Jose, Gin

    2016-08-01

    Femtosecond (fs) pulsed laser deposition (fs-PLD) of ZnO thin film on borosilicate glass substrates is reported in this work. The effect of important fs-PLD parameters such as target-substrate distance, laser pulse energy and substrate temperature on structure, morphology, optical transparency and luminescence of as-deposited films is discussed. XRD analysis reveals that all the films grown using the laser energy range 120-230 μJ are polycrystalline when they are deposited at room temperature in a ~10-5 Torr vacuum. Introducing 0.7 mTorr oxygen pressure, the films show preferred c-axis growth and transform into a single-crystal-like film when the substrate temperature is increased to 100 °C. The scanning electron micrographs show the presence of small nano-size grains at 25 °C, which grow in size to the regular hexagonal shape particles at 100 °C. Optical transmission of the ZnO film is found to increase with an increase in crystal quality. Maximum transmittance of 95 % in the wavelength range 400-1400 nm is achieved for films deposited at 100 °C employing a laser pulse energy of 180 μJ. The luminescence spectra show a strong UV emission band peaked at 377 nm close to the ZnO band gap. The shallow donor defects increase at higher pulse energies and higher substrate temperatures, which give rise to violet-blue luminescence. The results indicate that nano-crystalline ZnO thin films with high crystalline quality and optical transparency can be fabricated by using pulses from fs lasers.

  10. Physical Property Evaluation of ZnO Thin Film Fabricated by Low-Temperature Process for Flexible Transparent TFT.

    PubMed

    Khafe, Adie Bin Mohd; Watanabe, Hiraku; Yamauchi, Hiroshi; Kuniyoshi, Shigekazu; Iizuka, Masaaki; Sakai, Masatoshi; Kudo, Kazuhiro

    2016-04-01

    The usual silicon-based display back planes require fairly high process temperature and thus the development of a low temperature process is needed on flexible plastic substrates. A new type of flexible organic light emitting transistor (OLET) had been proposed and investigated in the previous work. By using ultraviolet/ozone (UV/O3) assisted thermal treatments on wet processed zinc oxide field effect transistor (ZnO-FET), through low-process temperature, ZnO-FETs were fabricated which succeeded to achieve target drain current value and mobility. In this study, physical property evaluation of ZnO was conducted in term of their crystallinity, the increase composition of ZnO formed inside the thin film and the decrease of the carbon impurities originated from aqueous solution of the ZnO itself. The X-ray diffraction (XRD) evaluation showed UV/03 assisted thermal treatment has no obvious effect towards crystallinity of ZnO in the range of low process temperature. Moreover, through X-ray photoelectron spectroscopy (XPS) evaluation and Fourier transform infrared (FT-IR) spectroscopy evaluation, more carbon impurities disappeared from the ZnO thin film and the increase of composition amount of ZnO, when the thin film was subjected to UV/O3 assisted thermal treatment. Therefore, UV/O3 assisted thermal treatment contributed in carbon impurities elimination and accelerate ZnO formation in ZnO thin film, which led to the improvement in the electrical property of ZnO-FET in the low-process temperature. PMID:27451599

  11. Annealing temperature dependency of ZnO thin films memristive behavior

    NASA Astrophysics Data System (ADS)

    Shaari, N. A. A.; Kasim, S. M. M.; Rusop, M.; Herman, S. H.

    2016-07-01

    The work focuses on the effect of different annealing temperature on the ZnO-based memristive device. Zinc oxide was deposited on the ITO substrate by sol-gel spincoating technique. The deposited ZnO thin films were then annealed from 50°C to 450°C in a furnace for 60 minutes each. The electrodes Platinum (Pt) were sputtered by using JEOL JFC-1600 Auto Fine Coater. The thin film thicknesses were measured by Veeco Dektak 150 Surface Profiler. The thickness of the thin film annealed at 350°C is the thinnest, which is 54.78nm and from the electrical characterization it also shown the switching characteristic behavior. The surface morphology and topology to examine the existence of nanoparticles

  12. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

    PubMed Central

    Maldonado, Arturo; Juarez, Héctor; Pacio, Mauricio; Perez, Rene

    2015-01-01

    Summary This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm), which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process. PMID:25977868

  13. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation.

    PubMed

    Alvarado, Jose Alberto; Maldonado, Arturo; Juarez, Héctor; Pacio, Mauricio; Perez, Rene

    2015-01-01

    This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm), which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process.

  14. Structural, morphological, optical and photocatalytic investigation of Ag-doped TiO2

    NASA Astrophysics Data System (ADS)

    Kundu, Virender Singh; Singh, Davender; Maan, A. S.; Tanwar, Amit

    2016-05-01

    The pure and Ag-doped TiO2 nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO2 and 8.86 nm for 6 mol % Ag doped TiO2. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO2 and Ag-doped TiO2 nanoparticles showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc's plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO2 and Ag-doped TiO2 nanoparticles showed that Ag-doped TiO2 degrades MB dye more efficiently than pure TiO2.

  15. Influence of water content in mixed solvent on surface morphology, wettability, and photoconductivity of ZnO thin films

    PubMed Central

    2014-01-01

    ZnO thin films have been synthesized by means of a simple hydrothermal method with different solvents. The effect of deionized water content in the mixed solvents on the surface morphology, crystal structure, and optical property has been investigated by scanning electron microscopy, X-ray diffraction, and UV-Vis spectrophotometer. A large number of compact and well-aligned hexagonal ZnO nanorods and the maximal texture coefficient have been observed in the thin film, which is grown in the mixed solvent with x = 40%. A lot of sparse, diagonal, and pointed nanorods can be seen in the ZnO thin film, which is grown in the 40-mL DI water solution. The optical band gap decreases firstly and then increases with the increase of x. Reversible wettability of ZnO thin films were studied by home-made water contact angle apparatus. Reversible transition between hydrophobicity and hydrophilicity may be attributed to the change of surface chemical composition, surface roughness and the proportion of nonpolar planes on the surface of ZnO thin films. Photocurrent response of ZnO thin films grown at different solvents were measured in air. The response duration of the thin film, which is grown in the solvent with x = 40%, exhibits a fast growth in the beginning but cannot approach the saturate current value within 100 s. The theoretical mechanism for the slower growth or decay duration of the photocurrent has been discussed in detail. PMID:25249823

  16. Effect of band gap energy on the electrical conductivity in doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Benramache, Said; Belahssen, Okba; Ben Temam, Hachemi

    2014-07-01

    The transparent conductive pure and doped zinc oxide thin films with aluminum, cobalt and indium were deposited by ultrasonic spray technique on glass substrate at 350 °C. This paper is to present a new approach to the description of correlation between electrical conductivity and optical gap energy with dopants' concentration of Al, Co and In. The correlation between the electrical and optical properties with doping level suggests that the electrical conductivity of the films is predominantly estimated by the band gap energy and the concentrations of Al, Co and In. The measurement in the electrical conductivity of doped films with correlation is equal to the experimental value, the error of this correlation is smaller than 13%. The minimum error value was estimated in the cobalt-doped ZnO thin films. This result indicates that such Co-doped ZnO thin films are chemically purer and have far fewer defects and less disorder owing to an almost complete chemical decomposition.

  17. Fabrication and characterization of pristine and annealed Ga doped ZnO thin films using sputtering

    NASA Astrophysics Data System (ADS)

    Mishra, Abhisek; Mohapatra, Saswat; Gouda, Himanshu Sekhar; Singh, Udai P.

    2016-05-01

    ZnO is a wide-band gap, transparent, polar semiconductor with unparalleled optoelectronic, piezoelectric, thermal and transport properties, which make it the material of choice for a wide range of applications such as blue/UV optoelectronics, energy conversion, transparent electronics, spintronic, plasmonic and sensor devices. We report, three sets of Ga doped Zinc Oxide (GZO) were fabricated in different sputtering power (100 watt, 200 watt and 300 watt). Thereafter films were annealed in nitrogen ambient for 30 minutes at 400° C. From the optical absorption spectroscopy it was found that pristine films are showing a 75% transmittance in the visible region of light and it increases after the annealing. However, for 300 W grown sample opposite trend has been achieved for the post annealed sample. X-ray diffraction pattern of all the pristine and annealed films showed a preferable growth orientation at (002) phase. Some other weak peaks were also appeared in different angle which indicates that films are polycrystalline in nature. XRD data also reveals that crystallite size increases with sputtering power up to 200 W and thereafter it decreases with the deposition power. It also noted that the crystallite size of the annealed film increases with compare to the non annealed films. At room temperature an enhancement in electrical properties of Ga doped ZnO thin films was noted for the annealed ZnO films except for the film deposited at 300 watt. More significantly, it was found that annealed thin films showed the resistivity in the range of 10-3 ˜ 10-4 ohm-cm. Such a high optical transmittance and conducting zinc-oxide thin film can be used as a window layer in solar cell.

  18. Nitrogen-doped ZnO thin films by use of laser ablation of ZnO(1-x)Nx targets

    NASA Astrophysics Data System (ADS)

    Okato, Takeshi; Osada, Takenori; Obara, Minoru

    2005-04-01

    ZnO is inherently a strong n-type semiconductor due to its intrinsic defects. Among the group V elements (N, As, P, Sb), nitrogen is considered as teh most hopeful dopant for p-type ZnO, because substitute N (N0) is a relatively shallow acceptor. However, technical issues of the low solubility for the desirable defect and compensations from undesirable donor-like defects are imposed on the development of high mobility and low resistivity p-type ZnO. Breaking through these issues is accompanied by the optimization of dopant concentration and reduction of intrinsic defects. In this study, we have investigated the dependence of the nitrogen concentration on its electrical properties. Home-made ZnO1-xNx targets were prepared and used for KrF excimer pulsed-laser deposition (PLD) at precisely controlled growth conditions. Thin films were deposited on c-cut sapphire substrates. The nitrogen concentration was tuned by adjusting the amount of nitrogen in the ablation targets. The film properties were characterized by x-ray diffraction (XRD) and x-ray photoemission spectroscopy (XPS). The electrical properties were measured by van der Pauw method. The as-grown ZnO:N films showed n-type conductivity, however, they were converted to p-type upon post-deposition thermal treatment. Further improvement was demonstrated by introducing a ZnO low-temperature buffer layer which realized the lattice mismatch relaxation.

  19. Alternate deposition and hydrogen doping technique for ZnO thin films

    NASA Astrophysics Data System (ADS)

    Myong, Seung Yeop; Lim, Koeng Su

    2006-08-01

    We propose an alternate deposition and hydrogen doping (ADHD) technique for polycrystalline hydrogen-doped ZnO thin films, which is a sublayer-by-sublayer deposition based on metalorganic chemical vapor deposition and mercury-sensitized photodecomposition of hydrogen doping gas. Compared to conventional post-deposition hydrogen doping, the ADHD process provides superior electrical conductivity, stability, and surface roughness. Photoluminescence spectra measured at 10 K reveal that the ADHD technique improves ultraviolet and violet emissions by suppressing the green and yellow emissions. Therefore, the ADHD technique is shown to be very promising aid to the manufacture of improved transparent conducting electrodes and light emitting materials.

  20. Photoelectrocatalytic decolorization and degradation of textile effluent using ZnO thin films.

    PubMed

    Sapkal, R T; Shinde, S S; Mahadik, M A; Mohite, V S; Waghmode, T R; Govindwar, S P; Rajpure, K Y; Bhosale, C H

    2012-09-01

    Zinc oxide (ZnO) thin films have been successfully deposited onto fluorine doped tin oxide coated glass at substrate temperature of 400 °C and used as electrode in photoelectrocatalytic reactor. The untreated textile effluent was circulated through photoelectrocatalytic reactor under UVA illumination for the decolorization and degradation. Textile effluent was decolorized by 93% within 3h at room temperature with significant reduction in COD (69%). High performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR) analysis of samples before and after decolorization confirmed the degradation of dyes molecules from textile effluent into simpler oxidizable products. Phytotoxicity study revealed reduction in toxic nature of textile effluent after treatment.

  1. Surface excitons on a ZnO (000-1) thin film

    SciTech Connect

    Kuehn, S. Friede, S.; Elsaesser, T.; Sadofev, S.; Blumstengel, S.; Henneberger, F.

    2013-11-04

    Elementary excitations at the polar (000-1) surface of a 20 nm pseudomorphically grown ZnO thin film are examined by steady state and time-resolved photoluminescence spectroscopy at low temperature. We control the density of emission centers through the deposition of prototypical organic molecules with a carboxylic acid anchor group by the Langmuir-Blodgett technique. Knowledge of the precise film thickness, defect concentrations and number density of deposited molecules leads us to associate the surface exciton emission to defect-related localization centers that are generated through a photochemical process.

  2. Effect of Annealing on the Optical Properties of Transition Metal Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Mathew, Jijoy P.; Varghese, George; Mathew, Jacob

    2015-02-01

    A group of transition metal (Co,Cu,Ni) doped ZnO thin films were prepared by a low cost dip coating method. To study the effect of annealing temperature on the structural and optical properties of the grown films each film is subjected to three different annealing temperatures. From the calculation of structural parameters from the XRD spectrum, it was found that each film possesses a tensile strain and this tensile strain increases as the annealing temperature increases. This dominant behavior of tensile strain affects the optical properties of the grown film in a greater extent.

  3. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sapkal, R. T.; Shinde, S. S.; Rajpure, K. Y.; Bhosale, C. H.

    2013-05-01

    Thin films of zinc oxide have been deposited onto glass/FTO substrates at optimized 400 °C by using a chemical spray pyrolysis technique. Deposited films are character photocatalytic activity by using XRD, an SEM, a UV-vis spectrophotometer, and a PEC single-cell reactor. Films are polycrystalline and have a hexagonal (wurtzite) crystal structure with c-axis (002) orientation growth perpendicular to the substrate surface. The observed direct band gap is about 3.22 eV for typical films prepared at 400 °C. The photocatalytic activity of starch with a ZnO photocatalyst has been studied by using a novel photoelectrocatalytic process.

  4. Electrical and optical properties of p-type codoped ZnO thin films prepared by spin coating technique

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok Kumar; Kumar, Vinod; Swart, H. C.; Purohit, L. P.

    2016-03-01

    Undoped, doped and codoped ZnO thin films were synthesized on glass substrates using a spin coating technique. Zinc acetate dihydrate, ammonium acetate and aluminum nitrate were used as precursor for zinc, nitrogen and aluminum, respectively. X-ray diffraction shows that the thin films have a hexagonal wurtzite structure for the undoped, doped and co-doped ZnO. The transmittance of the films was above 80% and the band gap of the film varied from 3.20 eV to 3.24 eV for undoped and doped ZnO. An energy band diagram to describe the photoluminescence from the thin films was also constructed. This diagram includes the various defect levels and possible quasi-Fermi levels. A minimum resistivity of 0.0834 Ω-cm was obtained for the N and Al codoped ZnO thin films with p-type carrier conductivity. These ZnO films can be used as a window layer in solar cells and in UV lasers.

  5. Characteristics of ZnO thin films doped by various elements

    NASA Astrophysics Data System (ADS)

    Kahraman, S.; Çakmak, H. M.; Çetinkaya, S.; Bayansal, F.; Çetinkara, H. A.; Güder, H. S.

    2013-01-01

    We have investigated the effects of Al, K and Co dopant elements on the properties of ZnO thin films deposited by CBD method on glass substrates. Changing in morphology, structural parameters, ionization energies of impurity levels, absorption behavior and optical band gap values were investigated through scanning electron microscopy (SEM), X-Ray diffraction (XRD), resistance-temperature measurement (R-T) and ultraviolet-visible spectroscopy (UV-vis) techniques. From the SEM observations, various morphologies (rod-like, flower-like and rice-like) were observed. Those morphological variations were attributed to the change in stable growth mechanism of intrinsic ZnO, induced by different atomic radius and different electronegativity of dopants. XRD results indicated that all orientations are well indexed to hexagonal phase crystalline ZnO. The impurity level ionization energy values (ΔE) were estimated as 0.32/0.13/0.07 eV; 0.34/0.15 eV; 0.40/0.13 eV and 0.48/0.22 eV for the Al, K, Co doped samples and i-ZnO, respectively. Optical band gap values were found that the doped samples' were higher than the intrinsic one's. This increasing (blue shift) was attributed to a deterioration which occurred in the lattice of the structures after doping. This effect was also supported by the structural results.

  6. Optoelectronics and formaldehyde sensing properties of tin-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Prajapati, C. S.; Kushwaha, Ajay; Sahay, P. P.

    2013-11-01

    Sn-doped ZnO thin films were deposited on clean glass substrates using the chemical spray pyrolysis technique. XRD analyses confirm stable ZnO hexagonal wurtzite structure of the films with crystallite size in the range of 20-28 nm. The surface roughness of the films increases on Sn doping, which favors to higher adsorption of oxygen species on the film surface, resulting in higher gas response. Optical studies reveal that the band gap decreases on Sn doping. All the films show near band edge emission, and on Sn doping the luminescence peak intensity has been found to increase. Photocurrent in the 1.5 at.% doped film enhances about three times to that observed in the undoped ZnO film. Among all the films examined, the 1.5 at.% Sn-doped film exhibits the maximum response (˜94.5 %) at the operating temperature of 275 °C for 100 ppm concentration of formaldehyde, which is much higher than the response (˜35 %) in the undoped film. The gas response of the film is attributed to the chemisorption of oxygen on the film surface and the subsequent reaction between the adsorbed oxygen species and the formaldehyde molecules.

  7. Transparent Conducting ZnO Thin Films Doped with Al and Mo

    SciTech Connect

    Duenow, J.; Gessert, T.; Wood, D.; Young, D.; Coutts, T.

    2007-01-01

    Transparent conducting oxide (TCO) thin films are a vital part of photovoltaic cells, flat-panel displays, and electrochromic windows. ZnO-based TCOs, due to the relative abundance of Zn, may reduce production costs compared to those of the prevalent TCO In2O3:Sn (ITO). Undoped ZnO, ZnO:Al (0.5, 1, and 2 wt.% Al2O3), and ZnO:Mo (2 wt.%) films were deposited by RF magnetron sputtering. Controlled incorporation of H2 in the Ar sputtering ambient increased mobility of undoped ZnO by a factor of ~20 to 48 cm2V-1s-1. H2 also appears to catalyze ionization of dopants. This enabled lightly doped ZnO:Al to provide comparable conductivity to the standard 2 wt.%-doped ZnO:Al while demonstrating reduced infrared absorption. Mo was found to be an n-type dopant of ZnO, though material properties did not match those of ZnO:Al. Scattering mechanisms were investigated using temperature-dependent Hall measurements and the method of four coefficients. This abstract is subject to government rights.

  8. Organic photovoltaic cells based on ZnO thin film electrodes.

    PubMed

    Ghica, C; Ion, L; Epurescu, G; Nistor, L; Antohe, S; Dinescu, M

    2010-02-01

    Due to its wide band-gap (ca. 3.4 eV), ZnO is a possible candidate material to be used as transparent electrode for a new class of photovoltaic (PV) cells. Also, an increased interest for the photovoltaic properties of several organic monomers and polymers (merocyanines, phthalocyanines and porphyrins) was noticed, because of their high optical absorption in the visible region of the spectrum allowing them to be used as potential inexpensive materials for solar cells. Preparation and properties of CuPc (copper phthalocyanine) based photovoltaic cells using ZnO thin films as transparent conductor electrodes are presented in this paper. ZnO layers are grown by pulsed laser deposition, while the organic layers are obtained by thermal evaporation. Structural characterization is performed by electron microscopy. Optical and transport properties of the mutilayered structures are obtained by electrical and spectro-photometric measurements. The influence of the ZnO-polymer interface on the external quantum efficiency (EQE) of the photovoltaic cell is clearly evidenced by our measurements.

  9. Synthesis and characterization of porous structured ZnO thin film for dye sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Mummoorthi, M.; Dharuman, V.

    2016-05-01

    Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.

  10. Production of ZnO and CdO-ZnO thin Films by Extraction-Pyrolytic Method

    NASA Astrophysics Data System (ADS)

    Cvetkovs, A.; Kiselova, O.; Rogulis, U.; Serga, V.; Ignatans, R.

    2016-06-01

    The extraction-pyrolytic method has been applied to produce the ZnO and CdO-ZnO thin films on glass and quartz glass substrates. According to X-ray diffraction measurements, the ZnO and CdO phases have been produced with an average size of crystallites about 8-42 nm in the films. The thickness of the layers measured by a profilometer has been up to 150 nm. The surface morphology measurements show that the surface of the films may be rough and non-continuous. The SEM results confirm the dependence between the preparation procedure and the quality of the thin film.

  11. Influence of hydrogen on the structure and stability of ultra-thin ZnO on metal substrates

    SciTech Connect

    Bieniek, Bjoern; Hofmann, Oliver T.; Rinke, Patrick

    2015-03-30

    We investigate the atomic and electronic structure of ultra-thin ZnO films (1 to 4 layers) on the (111) surfaces of Ag, Cu, Pd, Pt, Ni, and Rh by means of density-functional theory. The ZnO monolayer is found to adopt an α-BN structure on the metal substrates with coincidence structures in good agreement with experiment. Thicker ZnO layers change into a wurtzite structure. The films exhibit a strong corrugation, which can be smoothed by hydrogen (H) adsorption. An H over-layer with 50% coverage is formed at chemical potentials that range from low to ultra-high vacuum H{sub 2} pressures. For the Ag substrate, both α-BN and wurtzite ZnO films are accessible in this pressure range, while for Cu, Pd, Pt, Rh, and Ni wurtzite films are favored. The surface structure and the density of states of these H passivated ZnO thin films agree well with those of the bulk ZnO(0001{sup ¯})-2×1-H surface.

  12. Synthesis and characterization of ZnO nanowires by thermal oxidation of Zn thin films at various temperatures.

    PubMed

    Khanlary, Mohammad Reza; Vahedi, Vahid; Reyhani, Ali

    2012-05-02

    In this research high-quality zinc oxide (ZnO) nanowires have been synthesized by thermal oxidation of metallic Zn thin films. Metallic Zn films with thicknesses of 250 nm have been deposited on a glass substrate by the PVD technique. The deposited zinc thin films were oxidized in air at various temperatures ranging between 450 °C to 650 °C. Surface morphology, structural and optical properties of the ZnO nanowires were examined by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and photoluminescence (PL) measurements. XRD analysis demonstrated that the ZnO nanowires has a wurtzite structure with orientation of (002), and the nanowires prepared at 600 °C has a better crystalline quality than samples prepared at other temperatures. SEM results indicate that by increasing the oxidation temperature, the dimensions of the ZnO nanowires increase. The optimum temperature for synthesizing high density, ZnO nanowires was determined to be 600 °C. EDX results revealed that only Zn and O are present in the samples, indicating a pure ZnO composition. The PL spectra of as-synthesized nanowires exhibited a strong UV emission and a relatively weak green emission.

  13. Mixing ALD/MLD-grown ZnO and Zn-4-aminophenol layers into various thin-film structures.

    PubMed

    Sundberg, Pia; Sood, Anjali; Liu, Xuwen; Karppinen, Maarit

    2013-11-14

    Building 2D inorganic-organic hybrids by combining inorganic and organic constituents with molecular-layer precision is an attractive approach to fabricate novel materials with a tailored combination of properties from both entities. Here we demonstrate the potential of the combined atomic and molecular layer deposition (ALD/MLD) technique for the state-of-the-art synthesis of such materials and to fabricate both homogeneous thin-film mixtures and nanolaminates of ZnO and the Zn-4-aminophenol inorganic-organic hybrid. The thin films are deposited by varying the number of precursor cycles during the depositions. Diethyl zinc and 4-aminophenol (AP) are used as precursors for the Zn-AP hybrid depositions, and diethyl zinc and water for the ZnO depositions. The characterization of the mixed Zn-AP and ZnO films reveals that crystallinity, density, surface roughness, chemical stability, hardness and contact modulus are sensitively altered by even a minor insertion of Zn-AP hybrid into the ZnO structure. Fabrication of Zn-AP + ZnO nanolaminates with different thicknesses of the Zn-AP and ZnO layers provides us with an even better way to control the hardness and contact modulus, and also to enhance the chemical stability of the films.

  14. Evidence of Negative Capacitance in Piezoelectric ZnO Thin Films Sputtered on Interdigital Electrodes.

    PubMed

    Laurenti, Marco; Verna, Alessio; Chiolerio, Alessandro

    2015-11-11

    The scaling paradigm known as Moore's Law, with the shrinking of transistors and their doubling on a chip every two years, is going to reach a painful end. Another less-known paradigm, the so-called Koomey's Law, stating that the computing efficiency doubles every 1.57 years, poses other important challenges, since the efficiency of rechargeable energy sources is substantially constant, and any other evolution is based on device architecture only. How can we still increase the computational power/reduce the power consumption of our electronic environments? A first answer to this question comes from the quest for new functionalities. Within this aim, negative capacitance (NC) is becoming one of the most intriguing and studied phenomena since it can be exploited for reducing the aforementioned limiting effects in the downscaling of electronic devices. Here we report the evidence of negative capacitance in 80 nm thick ZnO thin films sputtered on Au interdigital electrodes (IDEs). Highly (002)-oriented ZnO thin films, with a fine-grained surface nanostructure and the desired chemical composition, are deposited at room temperature on different IDEs structures. Direct-current electrical measurements highlighted the semiconducting nature of ZnO (current density in the order of 1 × 10(-3) A/cm(2)). When turned into the alternating current regime (from 20 Hz to 2 MHz) the presence of NC values is observed in the low-frequency range (20-120 Hz). The loss of metal/semiconductor interface charge states under forward bias conditions, together with the presence of oxygen vacancies and piezoelectric/electrostriction effects, is believed to be at the basis of the observed negative behavior, suggesting that ZnO thin-film-based field-effect transistors can be a powerful instrument to go beyond the Boltzmann limit and the downscaling of integrated circuit elements required for the fabrication of portable and miniaturized electronic devices, especially for electric household

  15. Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers

    SciTech Connect

    Johnson, Raegan Lynn

    2005-01-01

    In Atomic Force Microscopy (AFM), a microcantilever is raster scanned across the surface of a sample in order to obtain a topographical image of the sample's surface. In a traditional, optical AFM, the sample rests on a bulk piezoelectric tube and a control loop is used to control the tip-sample separation by actuating the piezo-tube. This method has several disadvantages--the most noticeable one being that response time of the piezo-tube is rather long which leads to slow imaging speeds. One possible solution aimed at improving the speed of imaging is to incorporate a thin piezoelectric film on top of the cantilever beam. This design not only improves the speed of imaging because the piezoelectric film replaces the piezo-tube as an actuator, but the film can also act as a sensor. In addition, the piezoelectric film can excite the cantilever beam near its resonance frequency. This project aims to fabricate piezoelectric microcantilevers for use in the AFM. Prior to fabricating the cantilevers and also part of this project, a systematic study was performed to examine the effects of deposition conditions on the quality of piezoelectric ZnO thin films deposited by RF sputtering. These results will be presented. The deposition parameters that produced the highest quality ZnO film were used in the fabrication of the piezoelectric cantilevers. Unfortunately, the fabricated cantilevers warped due to the intrinsic stress of the ZnO film and were therefore not usable in the AFM. The complete fabrication process will be detailed, the results will be discussed and reasons for the warping will be examined.

  16. Synthesis, characterization, and hydrogen gas sensing properties of AuNs-catalyzed ZnO sputtered thin films

    NASA Astrophysics Data System (ADS)

    Drmosh, Q. A.; Yamani, Z. H.

    2016-07-01

    Hydrogen present in concentration up to 4 vol.% forms an explosive mixture with air. Its propensity to escape in the event of leak, could lead to quick build-up and formation of an explosive mixture with air in confined spaces, such as an automobile. This necessitates its detection at very low concentration. Zinc oxide (ZnO) is a well-known wide band gap (∼3.37 eV) semiconducting oxide that has been widely used for gas sensing applications. This work reports on the fabrication, characterization and gas sensing performance of nanogold decorated ZnO thin films made by DC reactive sputtering. The sensor films were fabricated by depositing a very thin layer of gold on the sputtered ZnO thin film. The as deposited Au@ZnO films were converted into highly crystalline ZnO film covered with gold nanostructures (AuNs@ZnO) by mild heat treatment. The structural and morphological as well as the compositional homogeneity of the as-deposited and heat-treated ZnO, Au@ZnO and AuNs@ZnO thin films were ascertained. The gas sensing behavior of the AuNs@ZnO thin films towards hydrogen as a function of temperature at different H2 concentrations was investigated and compared with that of pure and heat-treated ZnO films. The effect of the presence of gold nanoparticles on imparting improvement (in terms of higher response signal, high reproducibility and complete reversibility) was established; the optimal operating temperature was about 400 °C. A plausible mechanism for the observed enhancement in the sensing behavior of AuNs@ZnO films towards H2 is proposed.

  17. Resistive switching behavior of RF magnetron sputtered ZnO thin films

    SciTech Connect

    Rajalakshmi, R.; Angappane, S.

    2015-06-24

    The resistive switching characteristics of RF magnetron sputtered zinc oxide thin films have been studied. The x-ray diffraction studies confirm the formation of crystalline ZnO on Pt/TiO{sub 2}/SiO{sub x}/Si substrate. We have fabricated Cu/ZnO/Pt device using a shadow masking technique for resistive switching study. Our Cu/ZnO/Pt device exhibits a unipolar resistive switching behaviour. The switching observed in our device could be related to oxygen vacancies or Cu ions that generate the conducting filaments responsible for resistive switching. We found HRS to LRS resistance ratio of as high as ∼200 for our Cu/ZnO/Pt device. The higher resistance ratio and stability of Cu/ZnO/Pt device would make our RF magnetron sputtered zinc oxide thin films suitable for non volatile memory applications.

  18. Role of indium in highly crystalline ZnO thin films

    SciTech Connect

    Singh, Anil; Chaudhary, Sujeet; Pandya, Dinesh K.

    2013-02-05

    Zinc oxide and indium doped zinc oxide (ZnO:In) transparent conducting thin films were deposited on glass substrates by pulsed DC magnetron sputtering using separate Zn and In targets. The independent control of the In content in ZnO has helped us to explore the role of indium in influencing the oriented (002) growth, crystallinity, conductivity and mobility of the doped films. The lowest resistivity of ZnO:In thin film is 2.73 Multiplication-Sign 10{sup -3} ohm-cm. At the optimal condition of high (002) orientation, ZnO:In films with electrical resistivity of 7.63 Multiplication-Sign 10{sup -3} ohm.cm and mobility of 126.4 cm{sup 2}/V.s are achieved.

  19. Role of indium in highly crystalline ZnO thin films

    NASA Astrophysics Data System (ADS)

    Singh, Anil; Chaudhary, Sujeet; Pandya, Dinesh K.

    2013-02-01

    Zinc oxide and indium doped zinc oxide (ZnO:In) transparent conducting thin films were deposited on glass substrates by pulsed DC magnetron sputtering using separate Zn and In targets. The independent control of the In content in ZnO has helped us to explore the role of indium in influencing the oriented (002) growth, crystallinity, conductivity and mobility of the doped films. The lowest resistivity of ZnO:In thin film is 2.73×10-3 ohm-cm. At the optimal condition of high (002) orientation, ZnO:In films with electrical resistivity of 7.63×10-3 ohm.cm and mobility of 126.4 cm2/V.s are achieved.

  20. Room-temperature ferromagnetism in n-type Cu-doped ZnO thin films

    SciTech Connect

    Hou, D. L.; Ye, X. J.; Zhao, X. Y.; Meng, H. J.; Zhou, H. J.; Li, X. L.; Zhen, C. M.

    2007-08-01

    A series of n-type Cu-doped ZnO thin films was prepared by magnetron sputtering. Such films have shown ferromagnetic properties at room temperature. The Cu ion is in a univalent state as identified by x-ray photoelectron spectroscopy. The moment per Cu ion decreases as the Cu concentration increases. The largest moment about 0.52 {mu}{sub B}/Cu was observed for Zn{sub 0.95}Cu{sub 0.05}O thin film. The Curie temperature about 360 K was observed for Zn{sub 0.95}Cu{sub 0.05}O:N film. To explore the relationship between ferromagnetism and carrier density, nitrogen was introduced into the samples which resulted magnetization and the transition temperature decreasing. These results indicate that the electron density plays an important role in ferromagnetism.

  1. Enhanced stimulated emission in ZnO thin films using microdisk top-down structuring

    SciTech Connect

    Nomenyo, K.; Kostcheev, S.; Lérondel, G.; Gadallah, A.-S.; Rogers, D. J.

    2014-05-05

    Microdisks were fabricated in zinc oxide (ZnO) thin films using a top-down approach combining electron beam lithography and reactive ion etching. These microdisk structured thin films exhibit a stimulated surface emission between 3 and 7 times higher than that from a reference film depending on the excitation power density. Emission peak narrowing, reduction in lasing threshold and blue-shifting of the emission wavelength were observed along with enhancement in the emitted intensity. Results indicate that this enhancement is due to an increase in the internal quantum efficiency combined with an amplification of the stimulated emission. An analysis in terms of waveguiding is presented in order to explain these effects. These results demonstrate that very significant gains in emission can be obtained through conventional microstructuration without the need for more onerous top-down nanostructuration techniques.

  2. A comparison between different ohmic contacts for ZnO thin films

    NASA Astrophysics Data System (ADS)

    Ikhmayies, Shadia J.; Abu El-Haija, Naseem M.; Ahmad-Bitar, Riyad N.

    2015-03-01

    There are several metals that form ohmic contacts for ZnO thin films, such as copper, aluminum and silver. The aim of this work is to make a comparison between these ohmic contacts. To achieve this purpose, polycrystalline ZnO thin films were prepared by the spray pyrolysis technique, and characterized by the I-V measurements at room temperature. Two strips of each metal were thermally evaporated on the surface of the film and measurements were first recorded in the dark and room light, then in the dark before and after annealing for Al, which was found to be the best in the set. Films with aluminum contacts gave the smallest resistivity, best ohmicity and they are slightly affected by light as required. On the other hand, copper was found to be the worst, and films with copper contacts gave the largest resistivity, worst ohmicity and they are the most affected by light. Annealing improved the aluminum contacts due to alloying and doping.

  3. Substrate Temperature Effects on Room Temperature Sensing Properties of Nanostructured ZnO Thin Films.

    PubMed

    Reddy, Jonnala Rakesh; Mani, Ganesh Kumar; Shankar, Prabakaran; Rayappan, John Bosco Balaguru

    2016-01-01

    Zinc oxide (ZnO) thin films were deposited on glass substrates using chemical spray pyrolysis technique at different substrate temperatures such as 523, 623 and 723 K. X-ray diffraction (XRD) patterns confirmed the formation of polycrystalline films with hexagonal wurtzite crystal structure and revealed the change in preferential orientation of the crystal planes. Scanning electron micrographs showed the formation of uniformly distributed spherical shaped grains at low deposition temperature and pebbles like structure at the higher temperature. Transmittance of 85% was observed for the film deposited at 723 K. The band gap of the films was found to be increased from 3.15 to 3.23 eV with a rise in deposition temperature. The electrical conductivity of the films was found to be improved with an increase in substrate temperature. Surface of ZnO thin films deposited at 523 K, 623 K and 723 K were found to be hydrophobic with the contact angles of 92°, 105° and 128° respectively. The room temperature gas sensing characteristics of all the films were studied and found that the film deposited at 623 K showed a better response towards ammonia vapour. PMID:27398478

  4. Fabrication and characterization of ZnO nanowires by wet oxidation of Zn thin film deposited on Teflon substrate

    NASA Astrophysics Data System (ADS)

    Farhat, O. F.; Halim, M. M.; Abdullah, M. J.; Ali, M. K. M.; Ahmed, Naser M.; Bououdina, M.

    2015-10-01

    In this study, ZnO nanowires (NWs) were successfully grown for the first time on to Teflon substrate by a wet oxidation of a Zn thin film coated by RF sputtering technique. The sputtered Zn thin film was oxidized at 100 °C for 5 h under water-vapour using a horizontal furnace. This oxidation process transformed Zn thin film into ZnO with wire-like nanostructure. XRD analysis confirms the formation of single nanocrystalline ZnO phase having a low compressive strain. FESEM observations reveal high density of ZnO NWs with diameter ranging from 34 to 52 nm and length about 2.231 μm, which are well distributed in different direction. A flexible ZnO NWs-based metal-semiconductor-metal UV photodetector was fabricated. Photo-response and sensitivity measurements under low power illumination (375 nm, 1.5 mW/cm2) showed a high sensitivity of 2050%, which can be considered a relatively fast response and baseline recovery for UV detection.

  5. The porous nature of ZnO thin films deposited by sol-gel Spin-Coating technique

    NASA Astrophysics Data System (ADS)

    Karyaoui, M.; Ben Jaballah, A.; Mechiak, R.; Chtourou, R.

    2012-02-01

    Zinc oxide (ZnO) thin films were deposited on silicon and quartz substrates, by sol-gel method, using zinc acetate dehydrate [Zn(CH3COO)2.2H2O] dissolved in isopropanol and glycerol. The structural, morphologic and optical properties of ZnO thin films subsequently annealed at 700°C in air for 30 min have leads to a porous nature of these films. To calculate, the refraction index and the extinction coefficient values, Cauchy formalism is used to evaluate the Spectroscopic Ellipsometry results. Two distinct configurations were proposed for each sample: in the first, the film is considered as mixture of randomly distributed voids and ZnO crystallites while in the second, the effect of porosity gradient is highlighted. This optical analysis gives a better agreement between experiment and theory for a wide range of wavelengths regarding the second configuration.

  6. Single phase formation of Co-implanted ZnO thin films by swift heavy ion irradiation: Optical studies

    SciTech Connect

    Kumar, Ravi; Singh, Fouran; Angadi, Basavaraj; Choi, Ji-Won; Choi, Won-Kook; Jeong, Kwangho; Song, Jong-Han; Khan, M. Wasi; Srivastava, J. P.; Kumar, Ajay; Tandon, R. P.

    2006-12-01

    Low temperature photoluminescence and optical absorption studies on 200 MeV Ag{sup +15} ion irradiated Co-implanted ZnO thin films were studied. The Co clusters present in as implanted samples were observed to be dissolved using 200 MeV Ag{sup +15} ion irradiation with a fluence of 1x10{sup 12} ions/cm{sup 2}. The photoluminescence spectrum of pure ZnO thin film was characterized by the I{sub 4} peak due to the neutral donor bound excitons and the broad green emission. The Co-doped ZnO films show three sharp levels and two shoulders corresponding to 3t{sub 2g} and 2e{sub g} levels of crystal field splitted Co d orbitals, respectively. The ultraviolet-visible absorption spectroscopy also shows the systematic variation of band gap after 200 MeV Ag{sup +15} ion irradiation.

  7. Study of p-type ZnO and MgZnO Thin Films for Solid State Lighting

    SciTech Connect

    Liu, Jianlin

    2015-07-31

    This project on study of p-type ZnO and MgZnO thin films for solid state lighting was carried out by research group of Prof. Jianlin Liu of UCR during the four-year period between August 2011 and July 2015. Tremendous progress has been made on the proposed research. This final report summarizes the important findings.

  8. Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Jongnavakit, P.; Amornpitoksuk, P.; Suwanboon, S.; Ndiege, N.

    2012-08-01

    Cu-doped ZnO thin films were fabricated on glass substrates by the sol-gel dip-coating method. All samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The grain size and film thickness of the Cu-doped ZnO thin film decreased as a function of the Cu concentrations. All prepared films showed a very high transmittance above 89% in the visible region (400-800 nm). Two oxidation states of Cu in +1 and +2 were identified in the ZnO thin film by X-ray photoelectron spectroscopy (XPS). Their photocatalytic activities were investigated by the degradation of methylene blue (MB) dye under blacklight fluorescent tubes. The film prepared from the Zn2+ solution containing 0.5 mol% of copper ions had the highest photocatalytic activity. The photocatalytic degradation of methylene blue solution as a function of the initial concentrations was evaluated according to the Langmuir-Hinshelwood model. The reaction rate (k) and adsorption equilibrium constant (K) over 1 cm2 of 0.5 mol% Cu-doped ZnO thin film are 15.92 μM h-1 and 0.049 μM-1, respectively.

  9. An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity

    NASA Astrophysics Data System (ADS)

    Wu, Sen; Zhao, Yongfu; Li, Degeng; Xia, Yang; Si, Shihui

    2015-02-01

    In this study, the effect of oxygen on the potential of reduced polyaniline (PANI) was investigated. In order to enhance the air oxidation of reduced PANI, several composites of PANI doped with co-catalysts were prepared, and a reasonable flow Zn//PANI suspension cell system was designed to investigate the discharge capacity of obtained PANI composite microparticle suspension cathodes. Compared with PANI doped with Cu2+, La+, Mn2+ and zinc protoporphyrin, Ag doped PANI composite at 0.90 weight percent doping of Ag gave the highest value of discharge capacity for the half-cell potential from the initial value to -0.20 V (vs. SCE). A comparison study on the electrochemical properties of both PANI and Ag doped PANI microparticle suspension was done by using cyclic voltammetry, AC Impedance. Due to partial utilization of Zn//air fuel cell, the discharge capacity for Ag doped PANI reached 470 mA h g-1 at the current density of 20 mA cm-2. At 15 mA cm-2, the discharge capacity even reached up to 1650 mA h g-1 after 220 h constant current discharge at the final discharge voltage of 0.65 V. This work demonstrates an effective and feasible approach toward obtaining high energy and power densities by a Zn//Ag-doped PANI suspension flow battery system combined with Zn//air fuel cell.

  10. Structural, morphological, optical and compositional characterization of spray deposited Ga doped ZnO thin film for Dye-Sensitized Solar Cell application

    NASA Astrophysics Data System (ADS)

    Amala Rani, A.; Ernest, Suhashini

    2014-11-01

    Zinc Oxide and Gallium doped Zinc Oxide films have been deposited by the Spray Pyrolysis method onto preheated glass substrates using Zinc acetate and Gallium (III) acetyl acetonate as precursors for Zn and Ga ions, respectively. The effect of ZnO and Ga doping on the structural, morphological, optical and chemical properties of sprayed ZnO and Gallium doped ZnO thin films were investigated. XRD studies reveal that the films are crystalline with hexagonal (wurtzite) crystal structure. The average transparency in the visible range was around 75% for the thin film deposited using Gallium doping. X-ray Photoelectron Spectroscopy (XPS) was utilized to view the changes in the oxidation state of ZnO and Gallium doped ZnO thin films. The ZnO and Gallium doped ZnO thin film has been deposited above the Indium Tin Oxide (ITO) coated glass substrate. The efficiency of the obtained DSSC measured for 0.1 M ZnO thin film by sensitizing for 12 h was, ŋ = 2.5%. Similarly for Gallium doped Zinc Oxide, the efficiency ŋ is found to be 3.9%, 4.1% and 4.3% for every increase in doping of Gallium concentrations which is utilized for the application of Dye-Sensitized Solar Cell.

  11. Conductive ZnO:Zn Composites for High-Rate Sputtering Deposition of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Zhou, Li Qin; Dubey, Mukul; Simões, Raul; Fan, Qi Hua; Neto, Victor

    2015-02-01

    We report an electrically conductive composite prepared by sintering ZnO and metallic Zn powders. Microstructure analysis combined with electrical conductivity studies indicated that when the proportion of metallic Zn reached a threshold (˜20 wt.%), a metal matrix was formed in accordance with percolation theory. This composite has potential as a sputtering target for deposition of high-quality ZnO. Use of the ZnO:Zn composite completely eliminates target poisoning effects in reactive sputtering of the metal, and enables deposition of thin ZnO films at rates much higher than those obtained by sputtering of pure ZnO ceramic targets. The optical transmittance of the ZnO films prepared by use of this composite is comparable with that of films produced by radio frequency sputtering of pure ZnO ceramic targets. The sputtering characteristics of the conductive ZnO:Zn composite target are reported, and possible mechanisms of the high rate of deposition are also discussed.

  12. Sol-gel derived Al-Ga co-doped transparent conducting oxide ZnO thin films

    NASA Astrophysics Data System (ADS)

    Serrao, Felcy Jyothi; Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2016-05-01

    Transparent conducting ZnO doped with Al, Ga and co-doped Al and Ga (1:1) (AGZO) thin films were grown on glass substrates by cost effective sol-gel spin coating method. The XRD results showed that all the films are polycrystalline in nature and highly textured along the (002) plane. Enhanced grain size was observed in the case of AGZO thin films. The transmittance of all the films was more than 83% in the visible region of light. The electrical properties such as carrier concentration and mobility values are increased in case of AGZO compared to that of Al and Ga doped ZnO thin films. The minimum resistivity of 2.54 × 10-3 Ω cm was observed in AGZO thin film. The co-doped AGZO thin films exhibited minimum resistivity and high optical transmittance, indicate that co-doped ZnO thin films could be used in transparent electronics mainly in display applications.

  13. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    PubMed

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO.

  14. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    PubMed

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO. PMID:25835032

  15. Effects of Precursor Concentration on Structural and Optical Properties of ZnO Thin Films Grown on Muscovite Mica Substrates by Sol-Gel Spin-Coating.

    PubMed

    Kim, Younggyu; Leem, Jae-Young

    2016-05-01

    The structural and optical properties of the ZnO thin films grown on mica substrates for different precursor concentrations were investigated. The surface morphologies of all the samples indicated that they consisted of granular structures with spherical nano-sized crystallites. The thickness of the ZnO thin films increased significantly and the optical band gap exhibited a blue shift with an increase in the precursor concentration. It is remarkable that the highest I(NBE)/I(DLE) ratio was observed for the ZnO thin film with 0.8 M precursor concentration, even though cracks formed on the surface of this film. PMID:27483897

  16. Exploration of Al-Doped ZnO in Photovoltaic Thin Films

    NASA Astrophysics Data System (ADS)

    Ciccarino, Christopher; Sahiner, M. Alper

    The electrical properties of Al doped ZnO-based thin films represent a potential advancement in the push for increasing solar cell efficiency. Doping with Aluminum will theoretically decrease resistivity of the film and therefore achieve this potential as a viable option in the P-N junction phase of photovoltaic cells. The n-type semi-conductive characteristics of the ZnO layer will theoretically be optimized with the addition of Aluminum carriers. In this study, Aluminum doping concentrations ranging from 1-3% by mass were produced, analyzed, and compared. Films were developed onto ITO coated glass using the Pulsed Laser Deposition technique. Target thickness was 250 nm and ellipsometry measurements showed uniformity and accuracy in this regard. Active dopant concentrations were determined using Hall Effect measurements. Efficiency measurements showed possible applications of this doped compound, with upwards of 7% efficiency measured, using a Keithley 2602 SourceMeter set-up. XRD scans showed highly crystalline structures, with effective Al intertwining of the hexagonal wurtzile ZnO molecular structure. This alone indicates a promising future of collaboration between these two materials.

  17. Influence of solution viscosity on hydrothermally grown ZnO thin films for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Surya, S.

    2016-10-01

    Zinc oxide (ZnO) nanowire arrays (NWAs) were grown onto zinc oxide-titanium dioxide (ZnO-TiO2) seeded fluorine doped tin oxide (FTO) conductive substrate by hydrothermal technique. X-ray diffraction (XRD) patterns depict that ZnO thin films are preferentially oriented along the (002) plane with hexagonal wurtzite structure. Viscosity measurements reveal that viscosity of the solutions linearly increases as the concentrations of the polyvinyl alcohol (PVA) increase in the growth solution. Field emission scanning electron microscope (FE-SEM) images show that the NWAs are vertically grown to seeded FTO substrate with hexagonal structure, and the growth of NWAs decreases as the concentration of the PVA increases. Stylus profilometer and atomic force microscopic (AFM) studies predict that the thickness and roughness of the films decrease with increasing the PVA concentrations. The NWAs prepared at 0.1% of PVA exhibits a lower transmittance and higher absorbance than that of the other films. The band gap of the optimized films prepared at 0.0 and 0.1% of PVA is found to be 3.270 and 3.268 eV, respectively. The photo to current conversion efficiency of the DSSC based on photoanodes prepared at 0.0 and 0.1% of PVA exhibits about 0.64 and 0.82%, respectively. Electrochemical impedance spectra reveal that the DSSC based on photoanode prepared at 0.1% of PVA has the highest charge transfer recombination resistance.

  18. Plasmonic enhancement of UV emission from ZnO thin films induced by Al nano-concave arrays

    NASA Astrophysics Data System (ADS)

    Norek, Małgorzata; Łuka, Grzegorz; Włodarski, Maksymilian

    2016-10-01

    Surface plasmons (SPs) supported by Al nano-concave arrays with increasing interpore distance (Dc) were used to enhance the ultraviolet light emission from ZnO thin films. Two sets of samples were prepared: in the first set the thin ZnO films were deposited directly on Al nanoconcaves (the Al/ZnO samples) and in the second set a 10 nm - Al2O3 spacer was placed between the textured Al and the ZnO films (the Al/Al2O3-ALD/ZnO samples). In the Al/ZnO samples the enhancement was limited by a nonradiative energy dissipation due to the Ohmic loss in the Al metal. However, for the ZnO layer deposited directly on Al nanopits synthesized at 150 V (Dc = 333 ± 18 nm), the largest 9-fold enhancement was obtained by achieving the best energy fit between the near band-edge (NBE) emission from ZnO and the λ(0,1) SPP resonance mode. In the Al/Al2O3-ALD/ZnO samples the amplification of the UV emission was smaller than in the Al/ZnO samples due to a big energy mismatch between the NBE emission and the λ(0,1) plasmonic mode. The results obtained in this work indicate that better tuning of the NBE - λ(0,1) SPP resonance mode coupling is possible through a proper modification of geometrical parameters in the Al/Al2O3-ALD/ZnO system such as Al nano-concave spacing and the thickness of the corresponding layer. This approach will reduce the negative influence of the non-radiative plasmonic modes and most likely will lead to further enhancement of the SP-modulated UV emission from ZnO thin films.

  19. Electrical transport property of ZnO thin films at high H2 pressures up to 20 bar

    NASA Astrophysics Data System (ADS)

    Chu, Hyunggon; Kim, Byung Hoon; Kang, Joonhee

    2016-08-01

    We have investigated the H2 pressure-dependent (from vacuum to 20 bar) current-voltage characteristics of ZnO thin films prepared by the spin-coating method. The effect of gas pressure on the conductance ( G) was subtracted using He gas. The G increased with increasing H2 pressure up to 2 bar, and then monotonically decreased with the further increases in the H2 pressure. Using X-ray diffraction patterns and X-ray photoelectron spectroscopy before and after H2 exposure, we found that the H2 spillover effect played an important role in the variation of G in the ZnO film.

  20. Novel sol-gel synthesis of cerium-doped ZnO thin films for photocatalytic activity

    SciTech Connect

    Senthilvelan, S.; Chandraboss, V. L.; Karthikeyan, B.; Murugavelu, M.; Loganathan, B.; Natanapatham, L.

    2012-07-23

    The Ce-doped ZnO films on silica glass plates were prepared by sol-gel dip coating technique. The surface morphology of thin films was characterized by means of scanning electron microscopy (SEM). Optical properties of films have been investigated using UV-visible spectroscopy. The photocatalytic activity was established by testing the degradation of Alizarin Red (AR) from aqueous solution. The test of photocatalytic activity of the heat-treated Ce-doped ZnO films were also carried out under visible light irradiation.

  1. Evaluation of transverse piezoelectric coefficient of ZnO thin films deposited on different flexible substrates: a comparative study on the vibration sensing performance.

    PubMed

    Joshi, Sudeep; Nayak, Manjunatha M; Rajanna, K

    2014-05-28

    We report on the systematic comparative study of highly c-axis oriented and crystalline piezoelectric ZnO thin films deposited on four different flexible substrates for vibration sensing application. The flexible substrates employed for present experimental study were namely a metal alloy (Phynox), metal (aluminum), polyimide (Kapton), and polyester (Mylar). ZnO thin films were deposited by an RF reactive magnetron sputtering technique. ZnO thin films of similar thicknesses of 700 ± 30 nm were deposited on four different flexible substrates to have proper comparative studies. The crystallinity, surface morphology, chemical composition, and roughness of ZnO thin films were evaluated by respective material characterization techniques. The transverse piezoelectric coefficient (d31) value for assessing the piezoelectric property of ZnO thin films on different flexible substrates was measured by a four-point bending method. ZnO thin films deposited on Phynox alloy substrate showed relatively better material characterization results and a higher piezoelectric d31 coefficient value as compared to ZnO films on metal and polymer substrates. In order to experimentally verify the above observations, vibration sensing studies were performed. As expected, the ZnO thin film deposited on Phynox alloy substrate showed better vibration sensing performance. It has generated the highest peak to peak output voltage amplitude of 256 mV as compared to that of aluminum (224 mV), Kapton (144 mV), and Mylar (46 mV). Therefore, metal alloy flexible substrate proves to be a more suitable, advantageous, and versatile choice for integrating ZnO thin films as compared to metal and polymer flexible substrates for vibration sensing applications. The present experimental study is extremely important and helpful for the selection of a suitable flexible substrate for various applications in the field of sensor and actuator technology.

  2. Elevated temperature dependence of energy band gap of ZnO thin films grown by e-beam deposition

    SciTech Connect

    Rai, R. C.; Guminiak, M.; Wilser, S.; Cai, B.; Nakarmi, M. L.

    2012-04-01

    We report the surface, structural, electronic, and optical properties of the epitaxial ZnO thin films grown on (0001) sapphire substrate at 600 deg. C by an electron-beam deposition technique. ZnO thin films have been deposited in an oxygen environment and post-deposition annealed to improve the stoichiometry and the crystal quality. In order to investigate the free exciton binding energy and the temperature dependence of the energy bandgap, we carried out variable temperature (78-450 K) transmittance measurements on ZnO thin films. The absorption data below the energy bandgap have been modeled with the Urbach tail and a free exciton, while the data above the gap have been modeled with the charge transfer excitations. The exciton binding energy is measured to be E{sub 0}= 64 {+-} 7 meV, and the energy band gaps of the ZnO film are measured to be E{sub g}-tilde 3.51 and 3.48 eV at 78 and 300 K, respectively. The temperature dependence of the energy gap has been fitted with the Varshni model to extract the fitting parameters {alpha}= 0.00020 {+-} 0.00002 eV/K, {beta}= 325 {+-} 20 K, and E{sub g} (T = 0 K) = 3.516 {+-} 0.0002 eV.

  3. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    NASA Astrophysics Data System (ADS)

    Ceylan, Abdullah; Ozcan, Yusuf; Orujalipoor, Ilghar; Huang, Yen-Chih; Jeng, U.-Ser; Ide, Semra

    2016-06-01

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactive growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.

  4. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    DOE PAGES

    Venkatesh, S.; Baras, A.; Lee, J. -S.; Roqan, I. S.

    2016-03-24

    Here, we studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (~40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetismmore » in doped/un-doped ZnO.« less

  5. Thickness-dependent fracture behaviour of flexible ZnO : Al thin films

    NASA Astrophysics Data System (ADS)

    Mohanty, Bhaskar Chandra; Choi, Hong Rak; Muk Choi, Yong; Cho, Yong Soo

    2011-01-01

    The effects of thickness on flexibility and crack initiation in ZnO : Al thin films sputter-deposited on polyethersulfone substrates have been investigated. With an increase in thickness, root-mean-square roughness and average crystallite size increase linearly. It is found that the higher the thickness, the lower is the strain required to initiate cracks in the film. The thinnest film (~240 nm) exhibits a crack-initiating critical strain of 0.96% and a saturated crack density of 0.10 µm-1. A critical energy release rate of 68.5 J m-2 and a mode I fracture toughness of 3.2 MPa m0.5 are estimated for the films. These parameters are found to exhibit a linear dependence on film thickness.

  6. Temperature dependence of the spin relaxation in highly degenerate ZnO thin films

    SciTech Connect

    Prestgard, M. C.; Siegel, G.; Tiwari, A.; Roundy, R.; Raikh, M.

    2015-02-28

    Zinc oxide is considered a potential candidate for fabricating next-generation transparent spintronic devices. However, before this can be achieved, a thorough scientific understanding of the various spin transport and relaxation processes undergone in this material is essential. In the present paper, we are reporting our investigations into these processes via temperature dependent Hanle experiments. ZnO thin films were deposited on c-axis sapphire substrates using a pulsed laser deposition technique. Careful structural, optical, and electrical characterizations of the films were performed. Temperature dependent non-local Hanle measurements were carried out using an all-electrical scheme for spin injection and detection over the temperature range of 20–300 K. From the Hanle data, spin relaxation time in the films was determined at different temperatures. A detailed analysis of the data showed that the temperature dependence of spin relaxation time follows the linear-in-momentum Dyakonov-Perel mechanism.

  7. Preparation of dye-adsorbing ZnO thin films by electroless deposition and their photoelectrochemical properties.

    PubMed

    Nagaya, Satoshi; Nishikiori, Hiromasa

    2013-09-25

    Dye-adsorbing ZnO thin films were prepared on ITO films by electroless deposition. The films were formed in an aqueous solution containing zinc nitrate, dimethylamine-borane, and eosin Y at 328 K. The film thickness was 1.2-2.0 μm. Thinner and larger-plane hexagonal columns were produced from the solution containing a higher concentration of eosin Y. A photocurrent was observed in the electrodes containing such ZnO films during light irradiation. The photoelectrochemical performance of the film was improved by increasing the concentration of eosin Y because of increases in the amount of absorbed photons and the electronic conductivity of ZnO. PMID:24020721

  8. Concept of a thin film memory transistor based on ZnO nanoparticles insulated by a ligand shell.

    PubMed

    Hirschmann, Johannes; Faber, Hendrik; Halik, Marcus

    2012-01-21

    In this work, we report on the synthesis and the electrical properties of ZnO nanoparticles, which differ in their organic shell. The introduction of a 2-ethylhexanoate shell instead of a common acetate shell has an impact on the accessible size of the ZnO nanoparticles and changes the electrical properties of thin films in transistors. While acetate covered ZnO particles behave as a semiconductor with an electron mobility of 0.38 cm(2) V(-1) s(-1), the 2-ethylhexanoate ligand shell inhibits a charge transport resulting in insulating films (with an average ε(r) = 9.4). These films can be reconverted to semiconductive layers by removing the ligand shell with oxygen plasma treatment or they can be used as a solution processed dielectric layer in organic transistors. Its use as dielectric allows low voltage device operation and shows potential application as a charge storage layer as needed in non-volatile memory transistors.

  9. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films

    PubMed Central

    2012-01-01

    We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin films regarding crystallization and electrical and optical properties for application in transparent conducting oxide devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol–gel spin-coating process. As a starting material, AlCl3⋅6H2O, Ga(NO3)2, and Zn(CH3COO)2⋅2H2O were used. A lowest sheet resistance of 3.3 × 103 Ω/□ was obtained for the GZO thin film doped with 1.5 mol% of Ga after post-annealing at 650°C for 60 min in air. All the films showed more than 85% transparency in the visible region. We have studied the structural and microstructural properties as a function of Al and Ga concentrations through X-ray diffraction and scanning electron microscopy analysis. In addition, the optical bandgap and photoluminescence were estimated. PMID:23173885

  10. Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Isawi, Heba; El-Sayed, Magdi H.; Feng, Xianshe; Shawky, Hosam; Abdel Mottaleb, Mohamed S.

    2016-11-01

    A new approach for modification of polyamid thin film composite membrane PA(TFC) using synthesized ZnO nanoparticles (ZnO NPs) was shown to enhance the membrane performances for reverse osmosis water desalination. First, active layer of synthesis PA(TFC) membrane was activated with an aqueous solution of free radical graft polymerization of hydrophilic methacrylic acid (MAA) monomer onto the surface of the PA(TFC) membrane resulting PMAA-g-PA(TFC). Second, the PA(TFC) membrane has been developed by incorporation of ZnO NPs into the MAA grafting solution resulting the ZnO NPs modified PMAA-g-PA(TFC) membrane. The surface properties of the synthesized nanoparticles and prepared membranes were investigated using the FTIR, XRD and SEM. Morphology studies demonstrated that ZnO NPs have been successfully incorporated into the active grafting layer over PA(TFC) composite membranes. The zinc leaching from the ZnO NPs modified PMAA-g-PA(TFC) was minimal, as shown by batch tests that indicated stabilization of the ZnO NPs on the membrane surfaces. Compared with the a pure PA(TFC) and PMAA-g-PA(TFC) membranes, the ZnO NPs modified PMAA-g-PA(TFC) was more hydrophilic, with an improved water contact angle (∼50 ± 3°) over the PMAA-g-PA(TFC) (63 ± 2.5°). The ZnO NPs modified PMAA-g-PA(TFC) membrane showed salt rejection of 97% (of the total groundwater salinity), 99% of dissolved bivalent ions (Ca2+, SO42-and Mg2+), and 98% of mono valent ions constituents (Cl- and Na+). In addition, antifouling performance of the membranes was determined using E. coli as a potential foulant. This demonstrates that the ZnO NPs modified PMAA-g-PA(TFC) membrane can significantly improve the membrane performances and was favorable to enhance the selectivity, permeability, water flux, mechanical properties and the bio-antifouling properties of the membranes for water desalination.

  11. Dependence of the photoelectrochemical performance of sensitised ZnO on the crystalline orientation in electrodeposited ZnO thin films.

    PubMed

    Nonomura, K; Komatsu, D; Yoshida, T; Minoura, H; Schlettwein, D

    2007-04-21

    The influence of the crystal orientation in porous crystalline films of ZnO electrodeposited on the photoelectrochemical characteristics of the films is studied. For differently oriented ZnO thin films following removal of the respective structure-directing agent (SDA) and adsorption of a sensitiser, time-resolved photocurrent measurements, intensity modulated photocurrent spectroscopy (IMPS), intensity modulated photovoltage spectroscopy (IMVS) and current-voltage curves were measured in acetonitrile-based electrolytes containing I(3)(-)/I(-) as the redox electrolyte. The crystal orientation has a significant influence on the charge transport across such films and hence is reflected in the observed electrode kinetics. Films originally grown in the presence of, e.g., Coumarin 343 as a SDA, showed a significantly faster response to illumination. Increased electron diffusion coefficients and diffusion lengths were calculated from the results of IMPS and IMVS, caused by a faster electron movement in the films. Implications of these findings on further improvements of sensitised ZnO films prepared by electrochemical deposition are discussed.

  12. ZnO thin film deposition using colliding plasma plumes and single plasma plume: Structural and optical properties

    SciTech Connect

    Gupta, Shyam L. Thareja, Raj K.

    2013-12-14

    We report the comparative study on synthesis of thin films of ZnO on glass substrates using IR laser ablated colliding plasma plumes and conventional pulsed laser deposition using 355 nm in oxygen ambient. The optical properties of deposited films are characterized using optical transmission in the UV-visible range of spectrum and photoluminescence measurements. X-ray diffraction and atomic force microscopy are used to investigate the surface morphology of synthesized ZnO films. The films synthesized using colliding plumes created with 1064 nm are non-polar a-plane ZnO with transmission in UV-visible (300–800 nm) region ∼60% compared to polycrystalline thin film deposited using single plume which has chunk deposition and poor optical response. However, deposition with 355 nm single plume shows polar c-axis oriented thin film with average roughness (∼thickness) of ∼86 nm (∼850 nm) compared to ∼2 nm (∼3 μm) for 1064 nm colliding plumes. These observed differences in the quality and properties of thin films are attributed to the flux of mono-energetic plasma species with almost uniform kinetic energy and higher thermal velocity reaching the substrate from interaction/stagnation zone of colliding plasma plumes.

  13. Structural, spectroscopic and electrical studies of nanostructured porous ZnO thin films prepared by pulsed laser deposition.

    PubMed

    Vinodkumar, R; Navas, I; Porsezian, K; Ganesan, V; Unnikrishnan, N V; Mahadevan Pillai, V P

    2014-01-24

    ZnO thin films are grown on quartz substrates at various substrate temperatures (ranging from 573 to 973 K) under an oxygen ambience of 0.02 mbar by using pulsed laser ablation. Influence of substrate temperature on the structural, morphological, optical and electrical properties of the ZnO thin films are investigated. The XRD and micro-Raman spectra reveal the presence of hexagonal wurtzite structure of ZnO with preferred orientation (002). The particle size is calculated using Debye-Scherer equation and the average size of the crystallites are found to be in the range 17-29 nm. The AFM study reveals that the surface morphology of the film depends strongly on the substrate temperature. UV-Visible transmittance spectra show highly transparent nature of the films in visible region. The calculated optical band gap energy is found to be decrease with increase in substrate temperatures. The complex dielectric constant, the loss factor and the distribution of the volume and surface energy loss of the ZnO thin films prepared at different substrate temperatures are calculated. All the films are found to be highly porous in nature. The PL spectra show very strong emission in the blue region for all the films. The dc electrical resistivity of the film decreases with increase in substrate temperature. The temperature dependent electrical measurements done on the film prepared at substrate temperature 573 K reveals that the electric conduction is thermally activated and the activation energy is found to be 0.03911 eV which is less than the reported values for ZnO films.

  14. Structural, spectroscopic and electrical studies of nanostructured porous ZnO thin films prepared by pulsed laser deposition.

    PubMed

    Vinodkumar, R; Navas, I; Porsezian, K; Ganesan, V; Unnikrishnan, N V; Mahadevan Pillai, V P

    2014-01-24

    ZnO thin films are grown on quartz substrates at various substrate temperatures (ranging from 573 to 973 K) under an oxygen ambience of 0.02 mbar by using pulsed laser ablation. Influence of substrate temperature on the structural, morphological, optical and electrical properties of the ZnO thin films are investigated. The XRD and micro-Raman spectra reveal the presence of hexagonal wurtzite structure of ZnO with preferred orientation (002). The particle size is calculated using Debye-Scherer equation and the average size of the crystallites are found to be in the range 17-29 nm. The AFM study reveals that the surface morphology of the film depends strongly on the substrate temperature. UV-Visible transmittance spectra show highly transparent nature of the films in visible region. The calculated optical band gap energy is found to be decrease with increase in substrate temperatures. The complex dielectric constant, the loss factor and the distribution of the volume and surface energy loss of the ZnO thin films prepared at different substrate temperatures are calculated. All the films are found to be highly porous in nature. The PL spectra show very strong emission in the blue region for all the films. The dc electrical resistivity of the film decreases with increase in substrate temperature. The temperature dependent electrical measurements done on the film prepared at substrate temperature 573 K reveals that the electric conduction is thermally activated and the activation energy is found to be 0.03911 eV which is less than the reported values for ZnO films. PMID:24100297

  15. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers

    PubMed Central

    Majchrowicz, Daria; Hirsch, Marzena; Wierzba, Paweł; Bechelany, Michael; Viter, Roman; Jędrzejewska‑Szczerska, Małgorzata

    2016-01-01

    In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acquired by an optical spectrum analyzer while the length of the air cavity was varied. Thickness of the ZnO layers used in the experiments was 50 nm, 100 nm, and 200 nm. Uncoated SMF-28 fiber was also used as a reference. Based on the results of measurements, the thickness of the ZnO layers and the length of the cavity were selected in order to achieve good visibility. Following, the interferometer was used to determine the refractive index of selected liquids. PMID:27011188

  16. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers.

    PubMed

    Majchrowicz, Daria; Hirsch, Marzena; Wierzba, Paweł; Bechelany, Michael; Viter, Roman; Jędrzejewska-Szczerska, Małgorzata

    2016-01-01

    In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acquired by an optical spectrum analyzer while the length of the air cavity was varied. Thickness of the ZnO layers used in the experiments was 50 nm, 100 nm, and 200 nm. Uncoated SMF-28 fiber was also used as a reference. Based on the results of measurements, the thickness of the ZnO layers and the length of the cavity were selected in order to achieve good visibility. Following, the interferometer was used to determine the refractive index of selected liquids. PMID:27011188

  17. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers.

    PubMed

    Majchrowicz, Daria; Hirsch, Marzena; Wierzba, Paweł; Bechelany, Michael; Viter, Roman; Jędrzejewska-Szczerska, Małgorzata

    2016-03-22

    In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acquired by an optical spectrum analyzer while the length of the air cavity was varied. Thickness of the ZnO layers used in the experiments was 50 nm, 100 nm, and 200 nm. Uncoated SMF-28 fiber was also used as a reference. Based on the results of measurements, the thickness of the ZnO layers and the length of the cavity were selected in order to achieve good visibility. Following, the interferometer was used to determine the refractive index of selected liquids.

  18. Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam epitaxy

    SciTech Connect

    Wang, X. Q.; Sun, H. P.; Pan, X. Q.

    2010-10-11

    Epitaxial ZnO thin films were grown on nitrided (0001) sapphire substrates with an intervening GaN layer by rf-plasma-assisted molecular beam epitaxy. It was found that polarity of the ZnO epilayer could be controlled by modifying the GaN interlayer. ZnO grown on a distorted 3-nm-thick GaN interlayer has Zn-polarity while ZnO on a 20-nm-thick GaN interlayer with a high structural quality has O-polarity. High resolution transmission electron microscopy analysis indicates that the polarity of ZnO epilayer is controlled by the atomic structure of the interface between the ZnO buffer layer and the intervening GaN layer.

  19. An economic approach to fabricate photo sensor based on nanostructured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Huse, Nanasaheb; Upadhye, Deepak; Sharma, Ramphal

    2016-05-01

    Nanostructural ZnO Thin Films have been synthesized by simple and economic Chemical Bath Deposition technique onto glass substrate with bath temperature at 60°C for 1 hour. Structural, Optical, Electrical and topographical properties of the prepared Thin Films were investigated by GIXRD, I-V Measurement System, UV-Visible Spectrophotometer and AFM respectively. Calculated lattice parameters are in good agreement with the standard JCPDS card (36-1451) values, exhibits Hexagonal Wurtzite crystal structure. I-V Measurement curve has shown ohmic nature in dark condition and responds to light illumination which reveals Photo sensor properties. After illumination of 60W light, decrease in resistance was observed from 110.9 KΩ to 104.4 KΩ. The change in current and calculated Photo sensitivity was found to be 3.51 µA and 6.3% respectively. Optical band gap was found to be 3.24 eV. AFM images revealed uniform deposition over entire glass substrate with 32.27 nm average roughness of the film.

  20. Microstructural and Optical properties of transition metal (Cu) doped ZnO diluted magnetic semiconductor nano thin films fabricated by sol gel method

    NASA Astrophysics Data System (ADS)

    Ozturk, Ozgur; Asikuzun, Elif; Tasci, A. Tolga; Arda, Lutfi; Demirozu Senol, Sevim; Celik, Sukru; Terzioglu, Cabir

    Undoped and Cu (Copper) doped ZnO (Zn1-xCuxO) semiconductor thin films were produced by using sol-gel method. Cu was doped 1%, 2%, 3%, 4% and 5% ratio. Methanol and monoethanolamine (MEA) were used as solvent and stabilizer. In this study, the effect of Cu doping was investigated on microstructural and optical properties of ZnO DMS thin films. XRD, SEM, AFM and UV-VIS spectrometer measurements were performed for the microstructural and optical characterization. XRD, SEM and AFM results were showed that all of Cu doped ZnO based thin films have a hexagonal structure. The grain size of Cu doped ZnO thin films and morphology of surface were changed with increasing Cu doping. The optical transmittance of transition metal (Cu) doped ZnO thin films were decreased with doping. Keywords:Diluted Magnetic Semiconductor (DMS), Thin Film, Cu-doping, Bandgap Energy, ZnO. This research has been supported by the Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KU-BAP-05/2015-12 and the Scientific and Technological Research Council of Turkey (TUBITAK) Project No. 114F259.

  1. Homogeneous and stable p-type doping of graphene by MeV electron beam-stimulated hybridization with ZnO thin films

    SciTech Connect

    Song, Wooseok; Kim, Yooseok; Hwan Kim, Sung; Youn Kim, Soo; Cha, Myoung-Jun; Song, Inkyung; Jeon, Cheolho; Sung Jung, Dae; Lim, Taekyung; Lee, Sumi; Ju, Sanghyun; Chel Choi, Won; Wook Jung, Min; An, Ki-Seok; Park, Chong-Yun

    2013-02-04

    In this work, we demonstrate a unique and facile methodology for the homogenous and stable p-type doping of graphene by hybridization with ZnO thin films fabricated by MeV electron beam irradiation (MEBI) under ambient conditions. The formation of the ZnO/graphene hybrid nanostructure was attributed to MEBI-stimulated dissociation of zinc acetate dihydrate and a subsequent oxidation process. A ZnO thin film with an ultra-flat surface and uniform thickness was formed on graphene. We found that homogeneous and stable p-type doping was achieved by charge transfer from the graphene to the ZnO film.

  2. Hybrid ZnO nanowire/a-Si:H thin-film radial junction solar cells using nanoparticle front contacts

    SciTech Connect

    Pathirane, M. Iheanacho, B.; Lee, C.-H.; Wong, W. S.; Tamang, A.; Knipp, D.; Lujan, R.

    2015-10-05

    Hydrothermally synthesized disordered ZnO nanowires were conformally coated with a-Si:H thin-films to fabricate three dimensional hybrid nanowire/thin-film structures. The a-Si:H layer formed a radial junction p-i-n diode solar cell around the ZnO nanowire. The cylindrical hybrid solar cells enhanced light scattering throughout the UV-visible-NIR spectrum (300 nm–800 nm) resulting in a 22% increase in short-circuit current density compared to the reference planar p-i-n device. A fill factor of 69% and a total power conversion efficiency of 6.5% were achieved with the hybrid nanowire solar cells using a spin-on indium tin oxide nanoparticle suspension as the top contact.

  3. Optical properties of ZnO thin films grown on diamond-like carbon by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Li, Shao-lan; Zhang, Li-chun; Dong, Yan-feng; Zhao, Feng-zhou

    2012-11-01

    ZnO/diamond-like carbon (DLC) thin films are deposited by pulsed laser deposition (PLD), and the room-temperature photoluminescence (PL) is investigated. Using a fluorescence spectrophotometer, we obtain the PL spectra of DLC/Si and ZnO/Si thin films deposited at different substrate temperatures. The ZnO/DLC thin films show a broadband emission almost containing the entire visible spectrum. The Gaussian fitting curves of PL spectra reveal that the visible emission of ZnO/DLC thin films consists of three peaks centered at 381 nm, 526 nm and 682 nm, which are attributed to the radiative recombination of ZnO and DLC, respectively. The Commission International de l'Eclairage (CIE) 1931 ( x, y) chromaticity space of ZnO/DLC thin films indicates that the visible PL spectrum is very close to the standard white-light region.

  4. Transport and pinning properties of Ag-doped FeSe0.94

    NASA Astrophysics Data System (ADS)

    Nazarova, E.; Balchev, N.; Nenkov, K.; Buchkov, K.; Kovacheva, D.; Zahariev, A.; Fuchs, G.

    2015-02-01

    We investigated the superconducting transition and the pinning properties of undoped and Ag-doped FeSe0.94 at magnetic fields up to 14 T. We established that, due to Ag addition, the hexagonal phase formation in melted FeSe0.94 samples is suppressed and the grain connectivity is strongly improved. The obtained superconducting zero-field transition becomes sharp, with a transition width below 1 K. Tc and the upper critical field were found to increase, while the normal-state resistivity was significantly reduced, becoming comparable with that of FeSe single crystals. In addition, a considerable magnetoresistance was observed due to Ag doping. The resistive transition of undoped and Ag-doped FeSe0.94 is dominated by a thermally activated flux flow. From the activation energy U versus H dependence, we found a crossover from single-vortex pinning to a collective-creep pinning behavior by increasing the magnetic field.

  5. Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method

    NASA Astrophysics Data System (ADS)

    Stanić, Vojislav; Radosavljević-Mihajlović, Ana S.; Živković-Radovanović, Vukosava; Nastasijević, Branislav; Marinović-Cincović, Milena; Marković, Jelena P.; Budimir, Milica D.

    2015-05-01

    Silver doped fluorapatite nanopowders were synthesised by neutralization method, which consists of dissolving Ag2O in solution of HF and H3PO4 and addition to suspension of Ca(OH)2. The powder XRD, SEM and FTIR studies indicated the formation of a fluorapatite nanomaterials with average length of the particles is about 80 nm and a width of about 15 nm. The FTIR studies show that carbonate content in samples is very small and carbonte ions substitute both phosphate and hydroxyl groups in the crystal structure of samples, forming AB-type fluorapatite. Antibacterial studies have demonstrated that all Ag+-doped fluorapatite samples exhibit bactericidal effect against pathogens: Staphylococcus aureus, Micrococcus luteus and Kllebsiela pneumoniae. Antibacterial activity increased with the increase of Ag+ in the samples. The atomic force microscopy studies revealed extensive damage to the bacterial cell envelops in the presence of Ag+-doped fluorapatite particles which may lead to their death. The synthesized Ag+-doped fluorapatite nanomaterials are promising as antibacterial biomaterials in orthopedics and dentistry.

  6. Assessment of antimicrobial activity of nanosized Ag doped TiO(2) colloids.

    PubMed

    Yaşa, Ihsan; Lkhagvajav, Natsag; Koizhaiganova, Meruyert; Celik, Erdal; Sarı, Ozcan

    2012-07-01

    In the present research, the antimicrobial effects of nanosized silver (Ag) doped TiO(2) colloidal solutions prepared using a sol-gel technique were investigated. In order to determine the solution characteristics, the turbidity, viscosity and pH of the colloidal solutions were measured. Differential thermal analysis-thermogravimetry equipment was used to determine the chemical structures and reaction types of the films formed from these solutions. The morphology of Ag doped TiO(2) nanoparticles was evaluated by atomic force microscopy. The disc diffusion method was employed to explore antimicrobial activity, and the Broth Microdilution method was used to obtain MIC values of nanosized Ag doped TiO(2) colloidal solutions against the test microorganisms Escherichia coli, Staphylococcus aureus, Candida albicans, Bacillus subtilis, and Salmonella typhimurium. It was found that the silver doped TiO(2) nanoparticles inhibited the growth and multiplication of the test microorganisms, including the fungus C. albicans. Antimicrobial activity was observed against all tested microorganisms at a very low concentration of 1.125-2.81 μg/ml of nano silver in 1-25 % Ag-TiO(2) solutions.

  7. Improving the H2 Gas Sensitivity of ZnO Thin Films by Modifying the Annealing Conditions

    NASA Astrophysics Data System (ADS)

    Khojier, K.; Savaloni, H.

    2015-10-01

    This paper explains the influence of annealing conditions on the sensing properties of ZnO thin films that can be used for the development of H2 gas sensors. Zn thin films were deposited by the e-beam deposition technique and subsequently annealed using different temperatures (400°C and 500°C), times (30 min and 60 min), and environments (air and oxygen flow). Detailed morphological, chemical, and structural investigations were carried out on all samples by field-emission scanning electron microscopy and x-ray diffraction analysis. The electrical response of the ZnO films was tested for H2 gas (40 ppm, 80 ppm, and 120 ppm concentrations) in the temperature range of 200°C to 450°C. Results showed that the maximum response for all samples was reached at operating temperature of 400°C and variation of the annealing conditions resulted in improvement of the H2 gas sensitivity of the ZnO thin films due to a change in the concentration of carriers.

  8. Effect of the gate metal work function on water-gated ZnO thin-film transistor performance

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Yusuf Mulla, Mohammad; Vittoria Santacroce, Maria; Magliulo, Maria; Di Franco, Cinzia; Manoli, Kyriaki; Altamura, Davide; Giannini, Cinzia; Cioffi, Nicola; Palazzo, Gerardo; Scamarcio, Gaetano; Torsi, Luisa

    2016-07-01

    ZnO thin films, prepared using a printing-compatible sol-gel method involving a thermal treatment below 400 °C, are proposed as active layers in water-gated thin-film transistors (WG-TFTs). The thin-film structure and surface morphology reveal the presence of contiguous ZnO crystalline (hexagonal wurtzite) with isotropic nano-grains as large as 10 nm characterized by a preferential orientation along the a-axis. The TFT devices are gated through a droplet of deionized water by means of electrodes characterized by different work functions. The high capacitance of the electrolyte allowed operation below 0.5 V. While the Ni, Pd, Au and Pt gate electrodes are electrochemically stable in the inspected potential range, electrochemical activity is revealed for the W one. Such an occurrence leads to an increase of capacitance (and current), which is ascribed to a high output current from the dissolution of a lower capacitance W-oxide layer. The environmental stability of the ZnO WG-TFTs is quite good over a period of five months.

  9. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Bechambi, Olfa; Chalbi, Manel; Najjar, Wahiba; Sayadi, Sami

    2015-08-01

    Ag-doped ZnO photocatalysts with different Ag molar content (0.0, 0.5, 1.0, 2.0 and 4.0%) were prepared via hydrothermal method. The X-ray diffraction (XRD), Nitrogen physisorption at 77 K, Fourier transformed infrared spectroscopy (FTIR), UV--Visible spectroscopy, Photoluminescence spectra (PL) and Raman spectroscopy were used to characterize the structural, textural and optical properties of the samples. The results showed that Ag-doping does not change the average crystallite size with the Ag low content (≤1.0%) but slightly decreases with Ag high content (>1.0%). The specific surface area (SBET) increases with the increase of the Ag content. The band gap values of ZnO are decreased with the increase of the Ag doping level. The results of the photocatalytic degradation of bisphenol A (BPA) and nonylphenol (NP) in aqueous solutions under UV irradiation and in the presence of hydrogen peroxide (H2O2) showed that silver ions doping greatly improved the photocatalytic efficiency of ZnO. The TOC conversion BPA and NP are 72.1% and 81.08% respectively obtained using 1% Ag-doped ZnO. The enhancement of photocatalytic activity is ascribed to the fact that the modification of ZnO with an appropriate amount of Ag can increase the separation efficiency of the photogenerated electrons-holes in ZnO. The antibacterial activity of the catalysts which uses Escherichia coli as a model for Gram-negative bacteria confirmed that Ag-doped ZnO possessed more antibacterial activity than the pure ZnO.

  10. Influence of Gas Flow Rate for Formation of Aligned Nanorods in ZnO Thin Films for Solar-Driven Hydrogen Production

    SciTech Connect

    Shet, S.; Chen, L.; Tang, H.; Nuggehalli, R.; Wang, H.; Yan, Y.; Turner, J.; Al-Jassim, M.

    2012-04-01

    ZnO thin films have been deposited in mixed Ar/N{sub 2} gas ambient at substrate temperature of 500 C by radiofrequency sputtering of ZnO targets. We find that an optimum N{sub 2}-to-Ar ratio in the deposition ambient promotes the formation of well-aligned nanorods. ZnO thin films grown in ambient with 25% N{sub 2} gas flow rate promoted nanorods aligned along c-axis and exhibit significantly enhanced photoelectrochemical (PEC) response, compared with ZnO thin films grown in an ambient with different N{sub 2}-to-Ar gas flow ratios. Our results suggest that chamber ambient is critical for the formation of aligned nanostructures, which offer potential advantages for improving the efficiency of PEC water splitting for H{sub 2} production.

  11. Effect of Fe incorporation on the optical behavior of ZnO thin films prepared by sol-gel derived spin coating techniques

    NASA Astrophysics Data System (ADS)

    Rakkesh, R. Ajay; Malathi, R.; Balakumar, S.

    2013-02-01

    In this work, Fe doped Zinc Oxide (ZnO) thin films were fabricated on the glass substrate by sol-gel derived spin coating technique. X-ray Diffraction studies revealed that the obtained pure and Fe doped ZnO thin films were in the wurtzite and spinel phase respectively. The three well defined Raman lines at 432, 543 and 1091 cm-1 also confirmed the lattice structure of the ZnO thin film has wurtzite symmetry. While doping Fe atoms in the ZnO, there was a significant change in the phase from wurtzite to spinel structure; owing to Fe (III) ions being incorporated into the lattice through substitution of Zn (II) ions. Room temperature PL spectra showed that the role of defect mediated red emissions at 612 nm was due to radial recombination of a photogenerated hole with an electron that belongs to the Fe atoms, which were discussed in detail.

  12. Impurity-doped ZnO Thin Films Prepared by Physical Deposition Methods Appropriate for Transparent Electrode Applications in Thin-film Solar Cells

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Miyata, Toshihiro; Nomoto, Jun-ichi

    2012-04-01

    This paper describes the development of transparent conducting impurity-doped ZnO thin films that would be appropriate for applications as transparent electrodes in thin-film solar cells. Transparent conducting Al-, B- and Ga-doped ZnO (AZO, BZO and GZO) thin films were prepared in a thickness range from 500 to 2000 nm on glass substrates at 200°C using various physical deposition methods: BZO films with vacuum arc plasma evaporation, AZO and GZO films with different types of magnetron sputtering depositions (MSDs) and all films with pulsed laser deposition (PLD). The suitability and stability of the electrical properties and, in addition, the suitability of the light scattering characteristics and surface texture formation were investigated in the prepared thin films. In particular, the suitability and stability evaluation was focused on the use of AZO, BZO and GZO thin films prepared by doping each impurity at an appropriate content to attain the lowest resistivity. The higher Hall mobility obtained in impurity-doped ZnO thin films with a resistivity on the order of 10-4 Ωcm was related more to the content, i.e., the obtained carrier concentration, rather than the kind of impurity doped into the films. The stability of resistivity of the BZO thin films in long-term moisture-resistance tests (in air at 85% relative humidity and 85°C) was found to be lower than that of the AZO and GZO thin films. The surface texture formation was carried out by wet-chemical etching (in a 0.1% HCl solution at 25°C) conducted either before or after being heat-treated either with rapid thermal annealing (RTA) or without RTA. The suitability of the light scattering characteristics and the surface texture formation obtainable by wet-chemical etching (for use in transparent electrode applications) was considerably dependent on the deposition method used as well as whether the wet-chemical etching was conducted with or without RTA. A significant improvement of both transmittance and

  13. Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering

    SciTech Connect

    Liu, H. F.; Chua, S. J.; Hu, G. X.; Gong, H.; Xiang, N.

    2007-10-15

    X-ray diffractions, Nomarski microscopy, scanning electron microscopy, and photoluminescence have been used to study the effects of substrate on the structure and orientation of ZnO thin films grown by rf-magnetron sputtering. GaAs(001), GaAs(111), Al{sub 2}O{sub 3}(0002) (c-plane), and Al{sub 2}O{sub 3}(1102) (r-plane) wafers have been selected as substrates in this study. X-ray diffractions reveal that the ZnO film grown on GaAs(001) substrate is purely textured with a high c-axis orientation while that grown on GaAs(111) substrate is a single ZnO(0002) crystal; a polycrystalline structure with a large-single-crystal area of ZnO(0002) is obtained on a c-plane Al{sub 2}O{sub 3} substrate while a ZnO(1120) single crystal is formed on an r-plane Al{sub 2}O{sub 3} substrate. There is absence of significant difference between the photoluminescence spectra collected from ZnO/GaAs(001), ZnO/GaAs(111), and ZnO/Al{sub 2}O{sub 3}(0002), while the photoluminescence from ZnO/Al{sub 2}O{sub 3}(1102) shows a reduced intensity together with an increased linewidth, which is, likely, due to the increased incorporation of native defects during the growth of ZnO(1120)

  14. Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method

    SciTech Connect

    Chebil, W.; Fouzri, A.; Fargi, A.; Azeza, B.; Zaaboub, Z.; and others

    2015-10-15

    Highlights: • High quality ZnO thin films grown on different p-Si substrates were successful obtained by sol–gel process. • PL measurement revealed that ZnO thin film grown on porous Si has the better optical quality. • I–V characteristics for all heterojunctions exhibit successful diode formation. • The diode ZnO/PSi shows a better photovoltaic effect under illumination with a maximum {sub Voc} of 0.2 V. - Abstract: In this study, ZnO thin films are deposited by sol–gel technique on p-type crystalline silicon (Si) with [100] orientation, etched silicon and porous silicon. The structural analyses showed that the obtained thin films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented along the c-axis direction. Morphological study revealed the presence of rounded and facetted grains irregularly distributed on the surface of all samples. PL spectra at room temperature revealed that ZnO thin film grown on porous Si has a strong UV emission with low defects in the visible region comparing with ZnO grown on plat Si and etched Si surface. The heterojunction parameters were evaluated from the (I–V) under dark and illumination at room temperature. The ideality factor, barrier height and series resistance of heterojunction grown on different p-Si substrates are determined by using different methods. Best electrical properties are obtained for ZnO layer deposited on porous silicon.

  15. Effect of depth of traps in ZnO polycrystalline thin films on ZnO-TFTs performance

    NASA Astrophysics Data System (ADS)

    Medina-Montes, Maria I.; Baldenegro-Perez, Leonardo A.; Sanchez-Zeferino, Raul; Rojas-Blanco, Lizeth; Becerril-Silva, Marcelino; Quevedo-Lopez, Manuel A.; Ramirez-Bon, Rafael

    2016-09-01

    ZnO thin films were processed by radio frequency magnetron sputtering at room temperature on p-Si/SiO2 substrates under pure argon (Ar:O2 = 100:0 vol.%) and argon-oxygen mixture (Ar:O2 = 99:1 vol.%) gas environment. Morphological, optical and electrical characteristics of the ZnO films are reported, and they show a clear relationship with the gas mixture employed for the sputtering process. Scanning Electron Microscopy revealed the formation of grains of 15.3 and 19.9 nm average sizes and thicknesses of 59 nm and 82 nm for films growth in pure argon and argon-oxygen, respectively. Photoluminescence measurements at room temperature showed the violet emission band (centered at 3 eV) which was only detected in the ZnO film grown under pure argon. From thermally stimulated conductivity measurements two traps with 0.27 and 0.14 eV activation energies were identified for films grown in pure argon and argon-oxygen mixture, respectively. The trap at 0.27 eV is associated with a level located below the conduction band edge and it is supported by the PL band centered at 3 eV. Both types of ZnO films were used as the active channel layer in thin film transistors with thermal SiO2 as gate dielectric. Field effect mobility, threshold voltage and current ratio were improved in the devices with ZnO channel deposited with the argon-oxygen mixture (99% Ar/1% O2 vol.). Threshold voltage decreased from 25 V to 15 V, field effect mobility and current ratio increased from 0.8 to 2.4 cm2/Vs and from 102 to 106, in that order.

  16. Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters.

    PubMed

    Jeong, Yong Jin; An, Tae Kyu; Yun, Dong-Jin; Kim, Lae Ho; Park, Seonuk; Kim, Yebyeol; Nam, Sooji; Lee, Keun Hyung; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2016-03-01

    Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs. PMID:26840992

  17. Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters.

    PubMed

    Jeong, Yong Jin; An, Tae Kyu; Yun, Dong-Jin; Kim, Lae Ho; Park, Seonuk; Kim, Yebyeol; Nam, Sooji; Lee, Keun Hyung; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2016-03-01

    Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs.

  18. Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate.

    PubMed

    Huang, Chi-Hsin; Huang, Jian-Shiou; Lai, Chih-Chung; Huang, Hsin-Wei; Lin, Su-Jien; Chueh, Yu-Lun

    2013-07-10

    A bias polarity-manipulated transformation from filamentary to homogeneous resistive switching was demonstrated on a Pt/ZnO thin film/Pt device. Two types of switching behaviors, exhibiting different resistive switching characteristics and memory performances were investigated in detail. The detailed transformation mechanisms are systematically proposed. By controlling different compliance currents and RESET-stop voltages, controllable multistate resistances in low resistance states and a high resistance states in the ZnO thin film metal-insulator-metal structure under the homogeneous resistive switching were demonstrated. We believe that findings would open up opportunities to explore the resistive switching mechanisms and performance memristor with multistate storage.

  19. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method.

    PubMed

    Poongodi, G; Anandan, P; Kumar, R Mohan; Jayavel, R

    2015-09-01

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO.

  20. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Poongodi, G.; Anandan, P.; Kumar, R. Mohan; Jayavel, R.

    2015-09-01

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO.

  1. Structural, electrical, and dielectric properties of Cr doped ZnO thin films: Role of Cr concentration

    NASA Astrophysics Data System (ADS)

    Gürbüz, Osman; Okutan, Mustafa

    2016-11-01

    An undoped zinc oxide (ZnO) and different concentrations of chromium (Cr) doped ZnO CrxZnO1-x (x = 3.74, 5.67, 8.10, 11.88, and 15.96) thin films were prepared using a magnetron sputtering technique at room temperature. These films were characterized by X-ray diffraction (XRD), High resolution scanning electron microscope (HR-SEM), and Energy dispersive X-ray spectrometry (EDS). XRD patterns of all the films showed that the films possess crystalline structure with preferred orientation along the (100) crystal plane. The average crystallite size obtained was found to be between 95 and 83 nm which was beneficial in high intensity recording peak. Both crystal quality and crystallite sizes decrease with increasing Cr concentration. The crystal and grain sizes of the all film were investigated using SEM analysis. The surface morphology that is grain size changes with increase Cr concentration and small grains coalesce together to form larger grains for the Cr11.88ZnO and Cr15.96ZnO samples. Impedance spectroscopy studies were carried out in the frequencies ranging from 5 Hz to 13 MHz at room temperature. The undoped ZnO film had the highest dielectric value, while dielectric values of other films decreased as doping concentrations increased. Besides, the dielectric constants decreased whereas the loss tangents increased with increasing Cr content. This was considered to be related to the reduction of grain size as Cr content in ZnO host material increased. Furthermore, by increasing the Cr concentration, the improved electrical performance was observed. The electrical resistivity of samples decreased from 3.98 × 10-2 Ω cm to 4.03 × 10-4 Ω cm with the increase in Cr content. For these reasons, Cr doped ZnO (Cr:ZnO) thin films may be used in microwave devices as the electrical conductivity increases while dielectric constant decreases with the Cr content.

  2. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

    NASA Astrophysics Data System (ADS)

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-03-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  3. Gate insulator effects on the electrical performance of ZnO thin film transistor on a polyethersulphone substrate.

    PubMed

    Lee, Jae-Kyu; Choi, Duck-Kyun

    2012-07-01

    Low temperature processing for fabrication of transistor backplane is a cost effective solution while fabrication on a flexible substrate offers a new opportunity in display business. Combination of both merits is evaluated in this investigation. In this study, the ZnO thin film transistor on a flexible Polyethersulphone (PES) substrate is fabricated using RF magnetron sputtering. Since the selection and design of compatible gate insulator is another important issue to improve the electrical properties of ZnO TFT, we have evaluated three gate insulator candidates; SiO2, SiNx and SiO2/SiNx. The SiO2 passivation on both sides of PES substrate prior to the deposition of ZnO layer was effective to enhance the mechanical and thermal stability. Among the fabricated devices, ZnO TFT employing SiNx/SiO2 stacked gate exhibited the best performance. The device parameters of interest are extracted and the on/off current ratio, field effect mobility, threshold voltage and subthreshold swing are 10(7), 22 cm2/Vs, 1.7 V and 0.4 V/decade, respectively.

  4. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition.

    PubMed

    Lin, Yuan-Yu; Hsu, Che-Chen; Tseng, Ming-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-10-14

    Passivation is a challenging issue for the oxide thin-film transistor (TFT) technologies because it requires prolonged high-temperature annealing treatments to remedy defects produced in the process, which greatly limits its manufacturability as well as its compatibility with temperature-sensitive materials such as flexible plastic substrates. This study investigates the defect-formation mechanisms incurred by atomic layer deposition (ALD) passivation processes on ZnO TFTs, based on which we demonstrate for the first time degradation-free passivation of ZnO TFTs by a TiO2/Al2O3 nanolaminated (TAO) film deposited by a low-temperature (110 °C) ALD process. By combining the TAO passivation film with ALD dielectric and channel layers into an integrated low-temperature ALD process, we successfully fabricate flexible ZnO TFTs on plastics. Thanks to the exceptional gas-barrier property of the TAO film (water vapor transmission rate (WVTR)<10(-6) g m(-2) day(-1)) as well as the defect-free nature of the ALD dielectric and ZnO channel layers, the TFTs exhibit excellent device performance with high stability and flexibility: field-effect mobility>20 cm2 V(-1) s(-1), subthreshold swing<0.4 V decade(-1) after extended bias-stressing (>10,000 s), air-storage (>1200 h), and bending (1.3 cm radius for 1000 times). PMID:26436832

  5. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition.

    PubMed

    Lin, Yuan-Yu; Hsu, Che-Chen; Tseng, Ming-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-10-14

    Passivation is a challenging issue for the oxide thin-film transistor (TFT) technologies because it requires prolonged high-temperature annealing treatments to remedy defects produced in the process, which greatly limits its manufacturability as well as its compatibility with temperature-sensitive materials such as flexible plastic substrates. This study investigates the defect-formation mechanisms incurred by atomic layer deposition (ALD) passivation processes on ZnO TFTs, based on which we demonstrate for the first time degradation-free passivation of ZnO TFTs by a TiO2/Al2O3 nanolaminated (TAO) film deposited by a low-temperature (110 °C) ALD process. By combining the TAO passivation film with ALD dielectric and channel layers into an integrated low-temperature ALD process, we successfully fabricate flexible ZnO TFTs on plastics. Thanks to the exceptional gas-barrier property of the TAO film (water vapor transmission rate (WVTR)<10(-6) g m(-2) day(-1)) as well as the defect-free nature of the ALD dielectric and ZnO channel layers, the TFTs exhibit excellent device performance with high stability and flexibility: field-effect mobility>20 cm2 V(-1) s(-1), subthreshold swing<0.4 V decade(-1) after extended bias-stressing (>10,000 s), air-storage (>1200 h), and bending (1.3 cm radius for 1000 times).

  6. Electrical properties of solution-deposited ZnO thin-film transistors by low-temperature annealing.

    PubMed

    Lim, Chul; Oh, Ji Young; Koo, Jae Bon; Park, Chan Woo; Jung, Soon-Won; Na, Bock Soon; Chu, Hye Yong

    2014-11-01

    Flexible oxide thin-film transistors (Oxide-TFTs) have emerged as next generation transistors because of their applicability in electronic device. In particular, the major driving force behind solution-processed zinc oxide film research is its prospective use in printing for electronics. A low-temperature process to improve the performance of solution-processed n-channel ZnO thin-film transistors (TFTs) fabricated via spin-coating and inkjet-printing is introduced here. ZnO nanoparticles were synthesized using a facile sonochemical method that was slightly modified based on a previously reported method. The influence of the annealing atmosphere on both nanoparticle-based TFT devices fabricated via spin-coating and those created via inkjet printing was investigated. For the inkjet-printed TFTs, the characteristics were improved significantly at an annealing temperature of 150 degrees C. The field effect mobility, V(th), and the on/off current ratios were 3.03 cm2/Vs, -3.3 V, and 10(4), respectively. These results indicate that annealing at 150 degrees C 1 h is sufficient to obtain a mobility (μ(sat)) as high as 3.03 cm2/Vs. Also, the active layer of the solution-based ZnO nanoparticles allowed the production of high-performance TFTs for low-cost, large-area electronics and flexible devices. PMID:25958581

  7. 7-Octenyltrichrolosilane/trimethyaluminum hybrid dielectrics fabricated by molecular-atomic layer deposition on ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lee, Mingun; Lucero, Antonio T.; Cheng, Lanxia; Ha, Min-Woo; Kim, Jiyoung

    2016-06-01

    We demonstrate the fabrication of 7-octenytrichlorosilane (7-OTS)/trimethylaluminum (TMA) organic-inorganic hybrid films using molecular-atomic layer deposition (MALD). The properties of 7-OTS/TMA hybrid films are extensively investigated using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and electrical measurements. Our results suggest that uniform and smooth amorphous hybrid thin films with excellent insulating properties are obtained using the MALD process. Films have a relatively high dielectric constant of approximately 5.0 and low leakage current density. We fabricate zinc oxide (ZnO) based thin film transistors (TFTs) using 7-OTS/TMA hybrid material as a back gate dielectric with the top ZnO channel layer deposited in-situ via MALD. The ZnO TFTs exhibit a field effect mobility of approximately 0.43 cm2 V-1 s-1, a threshold voltage of approximately 1 V, and an on/off ratio of approximately 103 under low voltage operation (from -3 to 9 V). This work demonstrates an organic-inorganic hybrid gate dielectric material potentially useful in flexible electronics application.

  8. RETRACTED: Investigation of structural, optical and electronic properties in Al-Sn co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pan, Zhanchang; Tian, Xinlong; Wu, Shoukun; Yu, Xia; Li, Zhuliang; Deng, Jianfeng; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2013-01-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Figures 3 and 4 of this paper have also been presented as belonging to other materials in other publications. This observation is evidence of fraud and therefore it is not certain that the described research and conclusions of this paper belong to the presented images. Figures 3 and 4 of this paper can also be found in: Effect of annealing on the structures and properties of Al and F co-doped ZnO nanostructures, Materials Science in Semiconductor Processing, 2014, 17, 162-167, http://dx.doi.org/10.1016/j.mssp.2013.09.023 Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol-gel method, Journal of Alloys and Compounds, 2014,583, 32-38, http://dx.doi.org/10.1016/j.jallcom.2013.06.192 Properties of fluorine and tin co-doped ZnO thin films deposited by sol-gel method, Journal of Alloys and Compounds, 2013,576, 31-37, http://dx.doi.org/10.1016/j.jallcom.2013.04.132

  9. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Sheeba, N. H.; Naduvath, J.; Abraham, A.; Weiss, M. P.; Diener, Z. J.; Remillard, S. K.; DeYoung, P. A.; Philip, R. R.

    2014-10-01

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  10. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    SciTech Connect

    Sheeba, N. H.; Naduvath, J.; Abraham, A. Philip, R. R.; Weiss, M. P. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; Diener, Z. J. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; Remillard, S. K. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; DeYoung, P. A. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu

    2014-10-15

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  11. Modification of opto-electronic properties of ZnO by incorporating metallic tin for buffer layer in thin film solar cells

    SciTech Connect

    Deepu, D. R.; Jubimol, J.; Kartha, C. Sudha; Louis, Godfrey; Vijayakumar, K. P.; Kumar, K. Rajeev

    2015-06-24

    In this report, the effect of incorporation of metallic tin (Sn) on opto-electronic properties of ZnO thin films is presented. ZnO thin films were deposited through ‘automated chemical spray pyrolysis’ (CSP) technique; later different quantities of ‘Sn’ were evaporated on it and subsequently annealed. Vacuum annealing showed a positive effect on crystallinity of films. Creation of sub band gap levels due to ‘Sn’ diffusion was evident from the absorption and PL spectra. The tin incorporated films showed good photo response in visible region. Tin incorporated ZnO thin films seem to satisfy the desirable criteria for buffer layer in thin film solar cells.

  12. Surfactant mediated one- and two-dimensional ZnO nanostructured thin films for dye sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Mummoorthi, M.; Rajendran, S.; Ravi, G.

    2015-01-01

    One-dimensional (1D) and two-dimensional (2D) nanostructured zinc oxide (ZnO) thin films were electrodeposited from aqueous zinc chloride on FTO glass substrates. The effects of organic surfactant such as cetyltrimethyl ammonium bromide (CTAB) and polyvinyl alcohol (PVA) on structural, morphological, crystal quality and optical properties of electrodeposited ZnO films were investigated. The x-ray diffraction pattern revealed that the prepared thin films were pure wutrzite hexagonal structure. The thin films deposited using organic surfactant in this work showed different morphologies such as nanoplatelet and flower. The hexagonal platelet and flower-like nanostructures were obtained in the presence of CTAB and PVA surfactant, respectively. The crystal quality and atomic vacancies of the prepared nanostructured thin films were investigated by micro Raman spectroscopic technique. The emission properties and optical quality of the films were studied by photoluminescence spectrometry. PEMA-LiClO4-EC gel polymer electrolyte has been used to replace the liquid electrolyte for reducing the leakage problem. Graphene counter electrode was used as an alternative for platinum electrode. Eosin yellow dye was used as a sensitizer. J-V characterizations were carried out for different 1D and 2D nanostructures. The nanoflower structure exhibited higher efficiency (η = 0.073%) than the other two nanostructures.

  13. Influence of Fe doping on the structural, optical and acetone sensing properties of sprayed ZnO thin films

    SciTech Connect

    Prajapati, C.S.; Kushwaha, Ajay; Sahay, P.P.

    2013-07-15

    Graphical abstract: All the films are found to be polycrystalline ZnO possessing hexagonal wurtzite structure. The intensities of all the peaks are diminished strongly in the Fe-doped films, indicating their lower crystallinity as compared to the undoped ZnO film. The average crystallite size decreases from 35.21 nm (undoped sample) to 15.43 nm (1 at% Fe-doped sample). - Highlights: • Fe-doped ZnO films show smaller crystallinity with crystallite size: 15–26 nm. • Optical band gap in ZnO films decreases on Fe doping. • Fe-doped films exhibit the normal dispersion for the wavelength range 450–600 nm. • PL spectra of the Fe-doped films show quenching of the broad green-orange emission. • Acetone response of the Fe-doped films increases considerably at 300 °C. - Abstract: The ZnO thin films (undoped and Fe-doped) deposited by chemical spray pyrolysis technique have been analyzed by X-ray powder diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results show that all the films possess hexagonal wurtzite structure of zinc oxide having crystallite sizes in the range 15–36 nm. On 1 at% Fe doping, the surface roughness of the film increases which favors the adsorption of atmospheric oxygen on the film surface and thereby increase in the gas response. Optical studies reveal that the band gap decreases due to creation of some defect energy states below the conduction band edge, arising out of the lattice disorder in the doped films. The refractive index of the films decreases on Fe doping and follows the Cauchy relation of normal dispersion. Among all the films examined, the 1 at% Fe-doped film exhibits the maximum response (∼72%) at 300 °C for 100 ppm concentration of acetone in air.

  14. Optimization of the design of extremely thin absorber solar cells based on electrodeposited ZnO nanowires.

    PubMed

    Lévy-Clément, Claude; Elias, Jamil

    2013-07-22

    The properties of the components of ZnO/CdSe/CuSCN extremely thin absorber (ETA) solar cells based on electrodeposited ZnO nanowires (NWs) were investigated. The goal was to study the influence of their morphology on the characteristics of the solar cells. To increase the energy conversion efficiency of the solar cell, it was generally proposed to increase the roughness factor of the ZnO NW arrays (i.e. to increase the NW length) with the purpose of decreasing the absorber thickness, improving the light scattering, and consequently the light absorption in the ZnO/CdSe NW arrays. However, this strategy increased the recombination centers, which affected the efficiency of the solar cell. We developed another strategy that acts on the optical configuration of the solar cells by increasing the diameter of the ZnO NW (from 100 to 330 nm) while maintaining a low roughness factor. We observed that the scattering of the ZnO NW arrays occurred over a large wavelength range and extended closer to the CdSe absorber bandgap, and this led to an enhancement in the effective absorption of the ZnO/CdSe NW arrays and an increase in the solar cell characteristics. We found that the thicknesses of CuSCN above the ZnO/CdSe NW tips and the CdSe coating layer were optimized at 1.5 μm and 30 nm, respectively. Optimized ZnO/CdSe/CuSCN solar cells exhibiting 3.2% solar energy conversion efficiency were obtained by using 230 nm diameter ZnO NWs.

  15. Electronic transport in highly conducting Si-doped ZnO thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Vladimir L.; Vai, Alex T.; Al-Mamouri, Malek; Stuart Abell, J.; Pepper, Michael; Edwards, Peter P.

    2015-12-01

    Highly conducting (ρ = 3.9 × 10-4 Ωcm) and transparent (83%) polycrystalline Si-doped ZnO (SiZO) thin films have been deposited onto borosilicate glass substrates by pulsed laser deposition from (ZnO)1-x(SiO2)x (0 ≤ x ≤ 0.05) ceramic targets prepared using a sol-gel technique. Along with their structural, chemical, and optical properties, the electronic transport within these SiZO samples has been investigated as a function of silicon doping level and temperature. Measurements made between 80 and 350 K reveal an almost temperature-independent carrier concentration consistent with degenerate metallic conduction in all of these samples. The temperature-dependent Hall mobility has been modeled by considering the varying contribution of grain boundary and electron-phonon scattering in samples with different nominal silicon concentrations.

  16. Correlated effects of preparation parameters and thickness on morphology and optical properties of ZnO very thin films

    NASA Astrophysics Data System (ADS)

    Gilliot, Mickaël; Hadjadj, Aomar

    2015-08-01

    Nano-granular ZnO layers have been grown using a sol-gel synthesis and spin-coating deposition process. Thin films with thicknesses ranging from 15 to 150 nm have been obtained by varying the number of deposition cycles and prepared with different synthesis conditions. Morphologies and optical properties have been carefully investigated by joint spectroscopic ellipsometry and atomic force microscopy. A correlation between the evolution of optical properties and grains morphology has been observed. It is shown that both synthesis temperature and concentration similarly allow us to change the correlated growth and properties evolution rate. Thickness variation associated to choice of synthesis parameters could be a useful way to tune morphology and optical properties of the nanostructured ZnO layers.

  17. Al and Fe co-doped transparent conducting ZnO thin film for mediator-less biosensing application

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Gupta, Vinay

    2011-12-01

    Highly c-axis oriented Al and Fe co-doped ZnO (ZAF) thin film is prepared by pulsed laser deposition. Fe introduces redox centre along with shallow donor level while Al doping enhances conductivity of ZnO, thus removing the requirement of both mediator and bottom conducting layer in bioelectrode. Model enzyme (glucose oxidase), was immobilized on surface of ZAF matrix. Cyclic voltammetry and photometric assay show that prepared bio-electrode is sensitive to glucose concentration with enhanced response of 0.18 μAmM-1cm-2 and low Km ˜ 2.01 mM. The results illustrate that ZAF is an attractive matrix for realization of miniaturized mediator-less solid state biosensor.

  18. Control of the threshold voltage in ZnO nanobelt field-effect transistors by using MoO x thin film

    NASA Astrophysics Data System (ADS)

    Qian, Haolei; Fang, Yanjun; Gu, Lin; Lu, Ren; Zhao, Ming; Wang, Wei; Wang, Yewu; Sha, Jian

    2016-07-01

    We report on the feasible control of the threshold voltage (V th) in ultra-thin ZnO nanobelt FETs by using substoichiometric molybdenum trioxide (MoO x , x < 3) either as a modification layer on the surface of ZnO nanobelts or as electrodes instead of the widely used Ti/Au. ZnO nanobelt FETs using Ti/Au as the electrodes usually exhibit a negative threshold voltage, indicating n-channel depletion mode behavior, whereas ZnO FETs with MoO x /Au electrodes instead of Ti/Au show a positive shift of threshold voltage, exhibiting an n-channel type enhancement mode, which can be explained by a high Schottky barrier created at the interface of MoO x and the ZnO channel. In contrast, the decoration on the surface of ZnO channel by MoO x significantly increases the zero-bias conductivity and electron carrier concentration, and then negatively shifts the threshold voltage. We propose that MoO x thin film may play a passivation effect role, much more so than the doping effect role, due to the large amount of adsorbed species on as-grown ZnO nanobelts, especially oxygen species.

  19. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    SciTech Connect

    Hoye, Robert L. Z. E-mail: jld35@cam.ac.uk; MacManus-Driscoll, Judith L. E-mail: jld35@cam.ac.uk; Muñoz-Rojas, David; Nelson, Shelby F.; Illiberi, Andrea; Poodt, Paul

    2015-04-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  20. Investigation on the Electrical and Methane Gas-Sensing Properties of ZnO Thin Films Produced by Different Methods

    NASA Astrophysics Data System (ADS)

    Teimoori, F.; Khojier, K.; Dehnavi, N. Z.

    2016-10-01

    In this work, the influence of deposition method on the structural, electrical, and methane gas-sensing properties of ZnO thin films is investigated. Sol-gel spin coating, direct current (DC) magnetron sputtering, and e-beam evaporation techniques are employed for production of Zn thin films post-annealed at 500°C with a constant flow of oxygen. Detailed morphological, chemical, and structural investigations are carried out on all samples by field emission electron microscopy (FESEM) and x-ray diffraction (XRD) analyses. DC electrical resistivity of the samples was measured using a four-point probe instrument while a Hall effect instrument was used for the Hall effect measurements. The sensing performance was optimized with respect to the deposition method as well as the operating temperature. Detection limit, reproducibility, and stability of all samples produced using different methods are also identified. An optimum operating temperature of 350°C is obtained. The best sensitivity was attributed to the deposited film by the e-beam evaporation method due to its different surface morphology, which provided a larger ratio of surface-to-bulk area, and a lower carrier concentration, which caused higher electrical resistance. All ZnO thin films deposited by different methods also showed good reproducibility and stability.

  1. The Effect of Ag-DOPING on the Critical Current Density of YBa2Cu3O7-δ Superconductors

    NASA Astrophysics Data System (ADS)

    Lue, Juh Tzeng; Kung, J. H.; Yen, H. H.; Chen, Y. C.; Wu, P. T.

    The superconducting state and the transition temperature Tc of the interstitially Ag-doped YBa2 Cu3 O7-δ are not changed even when the Ag concentration is increased up to 20%, whereas the substitutionally doped YBa2 Cu3-x Agx O7-δ system ceases to be superconductive when the contents x of Ag is over 1.2. Magnetic susceptibility measurement indicates that the interstitial Ag-doping yields higher diamagnetic signal and enhances the critical current density by 15 folds. Photoelectron emission and electron spin resonance spectroscopic studies elucidate that the copper ions change from diamagnetic to paramagnetic states at some doping levels.

  2. Enhancement of photo sensor properties of nanocrystalline ZnO thin film by swift heavy ion irradiation

    SciTech Connect

    Mahajan, S. V.; Upadhye, D. S.; Bagul, S. B.; Shaikh, S. U.; Birajadar, R. B.; Siddiqui, F. Y.; Huse, N. P.; Sharma, R. B. E-mail: rps.phy@gmail.com

    2015-06-24

    Nanocrystalline Zinc Oxide (ZnO) thin film prepared by Low cost Successive Ionic Layer Adsorption and Reaction (SILAR) method. This film was irradiated by 120 MeV Ni{sup 7+} ions with the fluence of 5x10{sup 12}ions/cm{sup 2}. The X-ray diffraction study was shows polycrystalline nature with wurtzite structure. The optical properties as absorbance were determined using UV-Spectrophotometer and band gap was also calculated. The Photo Sensor nature was calculated by I-V characteristics with different sources of light 40W, 60W and 100W.

  3. Nano-structural Characteristics of N-doped ZnO Thin Films and Fabrication of Film Bulk Acoustic Resonator Devices

    SciTech Connect

    Lee, E. J.; Zhang, R. R.; Yoon, G. W.; Park, J. D.

    2011-12-23

    N-doped ZnO thin films (ZnO:N) with c-axis preferred orientation were prepared on p-Si(100) wafers, using an RF magnetron sputter deposition. For ZnO deposition, N{sub 2}O gas was employed as a dopant source and various deposition conditions such as N{sub 2}O gas fraction and RF power were applied. In addition, the film bulk acoustic resonator (FBAR) devices with three kinds of top electrodes patterns were fabricated by using the N-doped ZnO thin films as the piezoelectric layers. The depth profiles of the nitrogen [N] atoms incorporated into the ZnO thin films were investigated by an Auger Electron Spectroscopy (AES) and the nano-scale structural characteristics of the N-doped ZnO (ZnO:N) thin films were also investigated by a scanning electron microscope (SEM) technique. The fabricated resonators were evaluated by measuring the return loss (S{sub 11}) characteristics using a probe station and E8361A PNA Network Analyzer.

  4. Analysis of Band-Edge Dynamics in ZnO and MgZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Canul, Amrah

    This work investigates the temperature dependence of electron states at the band-edge in ZnO and Mg0.07Zn0.93O thin films. To investigate the band-edge dynamics, we study in-gap states via temperature dependent absorption spectroscopy in the range 77-500K. The in-gap states at the band-edge were analyzed via the Urbach energy model, where the Urbach Energy is a measure of the extent of states into the bandgap. In parallel, we also analyze the temperature dependent Urbach energy via the Wasim model, which separates the relative contributions of defect states and temperature dependent phonon modes to the in-gap states. It was found that the defect contribution to in-gap states at the band-edge was significantly higher for Mg0.07Zn0.93O than in ZnO. Additionally, the phonon contribution to in-gap states was less in Mg 0.07Zn0.93O than in ZnO. The author gratefully acknowledges the National Science Foundation and the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering under Grant No. DE-FG02-07ER46386.

  5. Broad-band three dimensional nanocave ZnO thin film photodetectors enhanced by Au surface plasmon resonance.

    PubMed

    Sun, Mengwei; Xu, Zhen; Yin, Min; Lin, Qingfeng; Lu, Linfeng; Xue, Xinzhong; Zhu, Xufei; Cui, Yanxia; Fan, Zhiyong; Ding, Yiling; Tian, Li; Wang, Hui; Chen, Xiaoyuan; Li, Dongdong

    2016-04-28

    ZnO semiconductor films with periodic 3D nanocave patterns were fabricated by the thermal nanoimprinting technology, which is promising for photodetectors with enhanced light harvesting capability. The Au nanoparticles were further introduced into the ZnO films, which boosts the UV response of ZnO films and extends the photodetection to visible regions. The best UV photoresponse was detected on the 3D nanocave ZnO-Au hybrid films, attributing to the light trapping mechanism of 3D periodic structures and the driving force of the Schottky barrier at the ZnO/Au interface, while the high visible photoresponse of ZnO-Au hybrid films mainly results from the hot electron generation and injection process over the Schottky junctions mediated by Au surface plasmon resonances. The work provides a cost-effective pathway to develop large-scale periodic 3D nanopatterned thin film photodetectors and is promising for the future deployment of high performance optoelectronic devices. PMID:27073045

  6. Plasmonic enhanced optical characteristics of Ag nanostructured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sarkar, Arijit; Gogurla, Narendar; Shivakiran Bhaktha, B. N.; Ray, Samit K.

    2016-04-01

    We have demonstrated the enhanced photoluminescence and photoconducting characteristics of plasmonic Ag–ZnO films due to the light scattering effect from Ag nanoislands. Ag nanoislands have been prepared on ITO-coated glass substrates by thermal evaporation followed by annealing. Plasmonic Ag–ZnO films have been fabricated by depositing ZnO over Ag nanoislands by sol–gel process. The band-edge emission of ZnO is enhanced for 170 nm sized Ag nanoislands in ZnO as compared to pure ZnO. The defect emission is also found to be quenched simultaneously for plasmonic Ag–ZnO films. The enhancement and quenching of photoluminescence at different wavelengths for Ag–ZnO films can be well understood from the localized surface plasmon resonance of Ag nanoislands. The Ag–ZnO M–S–M photoconductor device showed a tenfold increment in photocurrent and faster photoresponse as compared to the control ZnO device. The enhancement in photoresponse of the device is due to the increased photon absorption in ZnO films via scattering of the incident illumination.

  7. Contact potential barriers and characterization of Ag-doped composite TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Jingling; Chen, Wenzhe; Yu, Hualiang; Wu, Bo; Huang, Wenbo; Wang, Mingxiu; Huang, Shizhen; Lin, Wei; Zhang, Likun; Li, Shiping

    2014-04-01

    Ag-doping TiO2 composite nanotubes (Ag-TNTs) were synthesized by alkaline fusion followed by hydrothermal treatment. The microstructure and morphology of the materials were characterized by XRD, TEM, XPS, SPS (surface photovoltage spectroscopy), FISPS (electric field-induced surface photovoltage spectroscopy) and Raman spectroscopy. First-principles calculations based on density-functional theory (DFT) showed the formation of several impurity levels near the top of the valence band in the band gap (Eg) of rutile TiO2 due to Ag doping. A "double junction" is proposed, involving a Schottky junction and p-n junction (denoted as "Ag-p-n junction") occurring between the Ag particles and the nanotube surface, as well as forming inside TiO2 nanotubes, respectively. The strongly built-in electric field of the junctions promotes the separation of photo-holes and photoelectrons, enhancing the photocatalytic efficiency. XRD results indicated that the composite Ag-TNTs exist as a mixture of anatase and rutile phases. XPS results showed that Ti4+ is the primary state of Ti. Raman spectral analysis of Ag-TNTs revealed the presence of a new peak at 271 cm-1. The red-shift of the absorption light wavelength of Ag-TNTs was 0.16 eV (20 nm) due to a considerable narrowing of Eg by the existing impurity levels.

  8. Effect of Ag doping and insulator buffer layer on the memory mechanism of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Kaur, Jagdish; Tripathi, S. K.

    2015-07-01

    Resistive memory devices based on nanocomposites have attracted great potential for future applications in electronic and optoelectronic devices. The successful synthesis of aqueous CdSe nanoparticles has been provided with UV-Vis and Photoluminescence spectroscopy. The two terminal planar devices of CdSe nanocomposite have been fabricated. The effect of Ag doping and additional dielectric buffer layers on the memory devices have been studied by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The devices show hysteresis loops in both positive and negative bias directions. The memory window has been found to be increased with both Ag doping and PVA layer addition. The charge carrier transport mechanism in the memory devices has been studied by fitting the I-V characteristics with the theoretical model, Space charge conduction model (SCLC). C-V hysteresis loop in both positive and negative bias directions indicate that both the electrons and holes are responsible for memory mechanism of the devices. The switching mechanism of the memory devices has been explained by charge trapping/detrapping model. The retention characteristics show good stability and reliability of the devices.

  9. A pn heterojunction diode constructed with a n-type ZnO nanowire and a p-type HgTe nanoparticle thin film

    NASA Astrophysics Data System (ADS)

    Seong, Hojun; Cho, Kyoungah; Kim, Sangsig

    2009-01-01

    We demonstrate a pn heterojunction diode constructed with a n-type ZnO nanowire (NW) and a p-type HgTe nanoparticle (NP) thin film on a SiO2/p-Si substrate. For the pn heterojunction diode, the rectifying characteristics of both the dark current and the photocurrent excited by 633 nm wavelength light were observed, but the photocurrent excited by 325 nm wavelength light possesses Ohmic characteristics. The optoelectronic characteristics of the pn heterojunction diode were compared with those of the ZnO NW and HgTe NP thin film composing it.

  10. Optical properties of ZnO thin films dispersed with noble metal nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Wakaki, M.; Noguchi, T.; Yokoyama, E.

    2014-03-01

    Zinc Oxide (ZnO) is an inexpensive n-type semiconductor having a direct band gap of 3.3eV with a large exciton binding energy of 60meV. Noble metal nanoparticles show a surface plasmon resonance in the visible region due to collective oscillations of electrons at the surface of metal nanoparticles. The unique features in the composite system of dielectrics-metal nanoparticles have potential applications in optoelectronic devices such as transparent conductive films, solar cells, photocatalysts and so on. In this study, ZnO thin films dispersed with Ag or Au nanoparticles were synthesized using a sol-gel technique. X-ray diffraction peaks of ZnO films exhibited a pattern corresponding to the hexagonal wultzite structure. In the TEM analysis of ZnO-Au composite films, spherical Au nanoparticles were observed within the ZnO crystalline matrix. The distribution of the diameter of Au nanoparticles was centered at around 20nm and broadened with the half width of about 20nm. In the ZnO-Ag composite films, Ag nanoparticles grow larger as the annealing temperature becomes higher and various shape of Ag precipitations like triangular and square plates were observed in ZnO-Ag (50:50) composite films. The optical absorption peaks were observed at 580nm and 410nm due to the surface plasmon resonance of gold and silver nanoparticles, respectively. The absorption spectra were analyzed using a typical effective medium approximation of Maxwell-Garnett model and good fitting was obtained for a ZnO-Au composite film assuming spherical Au nanoparticle. The spectra were discussed relating with the size and shape of the nanoparticles, and the refractive index of the matrix.

  11. Surface modification of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors.

    PubMed

    Jang, Kwang-Suk; Wee, Duyoung; Kim, Yun Ho; Kim, Jinsoo; Ahn, Taek; Ka, Jae-Won; Yi, Mi Hye

    2013-06-11

    We report a simple approach to modify the surface of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors. It is expected that the yttrium oxide interlayer will provide a surface that is more chemically compatible with the ZnO semiconductor than is bare polyimde. The field-effect mobility and the on/off current ratio of the ZnO TFT with the YOx/polyimide gate insulator were 0.456 cm(2)/V·s and 2.12 × 10(6), respectively, whereas the ZnO TFT with the polyimide gate insulator was inactive.

  12. Investigation of ZnO thin films deposited on ferromagnetic metallic buffer layer by molecular beam epitaxy toward realization of ZnO-based magnetic tunneling junctions

    SciTech Connect

    Belmoubarik, M.; Nozaki, T.; Sahashi, M.; Endo, H.

    2013-05-07

    Deposition of ZnO thin films on a ferromagnetic metallic buffer layer (Co{sub 3}Pt) by molecular beam epitaxy technique was investigated for realization of ZnO-based magnetic tunneling junctions with good quality hexagonal ZnO films as tunnel barriers. For substrate temperature of 600 Degree-Sign C, ZnO films exhibited low oxygen defects and high electrical resistivity of 130 {Omega} cm. This value exceeded that of hexagonal ZnO films grown by sputtering technique, which are used as tunnel barriers in ZnO-MTJs. Also, the effect of oxygen flow during deposition on epitaxial growth conditions and Co{sub 3}Pt surface oxidation was discussed.

  13. Evaluation of the interface of thin GaN layers on c- and m-plane ZnO substrates by Rutherford backscattering

    SciTech Connect

    Izawa, Y.; Oga, T.; Ida, T.; Kuriyama, K.; Hashimoto, A.; Kotake, H.; Kamijoh, T.

    2011-07-11

    Lattice distortion at the interfaces between thin GaN layers with {approx}400 nm in thickness and ZnO substrates with non-polar m-plane (10-10) and polar c-plane (0001) is studied using Rutherford backscattering/ion channeling techniques. The interface between GaN/m-plane ZnO is aligned clearly to m-axis, indicating no lattice distortion, while between GaN/c-plane ZnO causes the lattice distortion in the GaN layer due to the piezoelectric field. The range of distortion exceeds {approx}90 nm from the interface of GaN/c-plane ZnO. These results are confirmed by x-ray diffraction and reflection high energy electron diffraction studies.

  14. Effects of rapid thermal annealing on the structural and local atomic properties of ZnO: Ge nanocomposite thin films

    SciTech Connect

    Ceylan, Abdullah Ozcan, Sadan; Rumaiz, Abdul K.; Caliskan, Deniz; Ozbay, Ekmel; Woicik, J. C.

    2015-03-14

    We have investigated the structural and local atomic properties of Ge nanocrystals (Ge-ncs) embedded ZnO (ZnO: Ge) thin films. The films were deposited by sequential sputtering of ZnO and Ge thin film layers on z-cut quartz substrates followed by an ex-situ rapid thermal annealing (RTA) at 600 °C for 30, 60, and 90 s under forming gas atmosphere. Effects of RTA time on the evolution of Ge-ncs were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), hard x-ray photoelectron spectroscopy (HAXPES), and extended x-ray absorption fine structure (EXAFS). XRD patterns have clearly shown that fcc diamond phase Ge-ncs of sizes ranging between 18 and 27 nm are formed upon RTA and no Ge-oxide peak has been detected. However, cross-section SEM images have clearly revealed that after RTA process, Ge layers form varying size nanoclusters composed of Ge-ncs regions. EXAFS performed at the Ge K-edge to probe the local atomic structure of the Ge-ncs has revealed that as prepared ZnO:Ge possesses Ge-oxide but subsequent RTA leads to crystalline Ge structure without the oxide layer. In order to study the occupied electronic structure, HAXPES has been utilized. The peak separation between the Zn 2p and Ge 3d shows no significant change due to RTA. This implies little change in the valence band offset due to RTA.

  15. Environmental stability of solution processed Al-doped ZnO naoparticulate thin films using surface modification technique

    NASA Astrophysics Data System (ADS)

    Vunnam, Swathi; Ankireddy, Krishnamraju; Kellar, Jon; Cross, William

    2014-12-01

    The environmental stability of solution processed Al-doped ZnO (AZO) thin films was enhanced by functionalizing the film surface with a thin self-assembled molecular layer. Functionalization of AZO films was performed using two types of molecules having identical 12-carbon alkyl chain termination but different functional groups: dodecanethiol (DDT) and dodecanoic acid (DDA). Surface modified AZO films were examined using electrical resistivity measurements, contact angle measurements and quantitative nanomechanical property mapping atomic force microscopy. The hydrophobic layer inhibits the penetration of oxygen and water into the AZO's grain boundaries thus significantly increasing the environmental stability over unmodified AZO. Surface modified AZO films using DDT exhibited lower electrical resistivity compared to DDA functionalized AZO films. Our study demonstrates a new approach for improving the physical properties of oxide based nanoparticulate films for device applications.

  16. Correlation between crystallite size-optical gap energy and precursor molarities of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Benramache, S.; Belahssen, O.; Guettaf, A.; Arif, A.

    2014-04-01

    We investigated the structural and optical properties of ZnO thin films as an n-type semiconductor. The films were deposited at different precursor molarities using an ultrasonic spray method. In this paper we focused our attention on a new approach describing a correlation between the crystallite size and optical gap energy with the precursor molarity of ZnO thin films. The results show that the X-ray diffraction (XRD) spectra revealed a preferred orientation of the crystallites along the c-axis. The maximum value of the crystallite size of the films is 63.99 nm obtained at 0.1 M. The films deposited with 0.1 M show lower absorption within the visible wavelength region. The optical gap energy increased from 3.08 to 3.37 eV with increasing precursor molarity of 0.05 to 0.1 M. The correlation between the structural and optical properties with the precursor molarity suggests that the crystallite size of the films is predominantly influenced by the band gap energy and the precursor molarity. The measurement of the crystallite size by the model proposed is equal to the experimental data. The minimum error value was estimated by Eq. (4) in the higher crystallinity.

  17. ZnO thin film transistors and electronic connections for adjustable x-ray mirrors: SMART-X telescope

    NASA Astrophysics Data System (ADS)

    Johnson-Wilke, R. L.; Wilke, R. H. T.; Wallace, M.; Ramirez, J. I.; Prieskorn, Z.; Nikoleyczik, J.; Cotroneo, V.; Allured, R.; Schwartz, D. A.; McMuldroch, S.; Reid, P. B.; Burrows, D. N.; Jackson, T. N.; Trolier-McKinstry, S.

    2014-09-01

    The proposed SMART-X telescope consists of a pixelated array of a piezoelectric lead zirconate titanate (PZT) thin film deposited on flexible glass substrates. These cells or pixels are used to actively control the overall shape of the mirror surface. It is anticipated that the telescope will consist of 8,000 mirror panels with 400-800 cells on each panel. This creates an enormous number (6.4 million) of traces and contacts needed to address the PZT. In order to simplify the design, a row/column addressing scheme using ZnO thin film transistors (TFTs) is proposed. In addition, connection of the gate and drain lines on the mirror segment to an external supply via a flexible cable was investigated through use of an anisotropic conductive film (ACF). This paper outlines the design of the ZnO TFTs, use of ACF for bonding, and describes a specially designed electronics box with associated software to address the desired cells.

  18. Post-annealing effect on the room-temperature ferromagnetism in Cu-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Hu, Yu-Min; Li, Sih-Sian; Kuang, Chein-Hsiun; Han, Tai-Chun; Yu, Chin-Chung

    2015-05-01

    In this work, we investigated the structural and magnetic properties of both as-deposited and post-annealed Cu-doped ZnO thin films for better understanding the possible mechanisms of room-temperature ferromagnetism (RT-FM) in ZnO-based diluted magnetic oxides. All of the films have a c-axis-oriented wurtzite structure and display RT-FM. X-ray photoelectron spectroscopy results showed that the incorporated Cu ions in as-deposited films are in 1+ valence state merely, while an additional 2+ valence state occurs in post-annealed films. The presence of Cu2+ state in post-annealed film accompanies a higher magnetization value than that of as-deposited film and, in particular, the magnetization curves at 10 K and 300 K of the post-annealed film separate distinctly. Since Cu1+ ion has a filled 3d band, the RT-FM in as-deposited Cu-doped ZnO thin films may stem solely from intrinsic defects, while that in post-annealed films is enhanced due to the presence of CuO crystallites.

  19. Post-annealing effect on the room-temperature ferromagnetism in Cu-doped ZnO thin films

    SciTech Connect

    Hu, Yu-Min Kuang, Chein-Hsiun; Han, Tai-Chun; Yu, Chin-Chung; Li, Sih-Sian

    2015-05-07

    In this work, we investigated the structural and magnetic properties of both as-deposited and post-annealed Cu-doped ZnO thin films for better understanding the possible mechanisms of room-temperature ferromagnetism (RT-FM) in ZnO-based diluted magnetic oxides. All of the films have a c-axis-oriented wurtzite structure and display RT-FM. X-ray photoelectron spectroscopy results showed that the incorporated Cu ions in as-deposited films are in 1+ valence state merely, while an additional 2+ valence state occurs in post-annealed films. The presence of Cu{sup 2+} state in post-annealed film accompanies a higher magnetization value than that of as-deposited film and, in particular, the magnetization curves at 10 K and 300 K of the post-annealed film separate distinctly. Since Cu{sup 1+} ion has a filled 3d band, the RT-FM in as-deposited Cu-doped ZnO thin films may stem solely from intrinsic defects, while that in post-annealed films is enhanced due to the presence of CuO crystallites.

  20. Resistive switching: An investigation of the bipolar–unipolar transition in Co-doped ZnO thin films

    SciTech Connect

    Santos, Daniel A.A.; Zeng, Hao; Macêdo, Marcelo A.

    2015-06-15

    Highlights: • A purely bipolar behavior on a Co-doped ZnO thin film has been demonstrated. • We have shown what can happen if a unipolar test is performed in a purely bipolar device. • An explanation for how a sample can show a purely bipolar switching behavior was suggested. • An important open issue about resistive switching effect was put in debate. - Abstract: In order to investigate the resistive switching effect we built devices in a planar structure in which two Al contacts were deposited on the top of the film and separated by a small gap using a shadow mask. Therefore, two samples of 10% Co-doped ZnO thin films were sputtered on glass substrate. High resolution X-ray diffraction (HRXRD) revealed a highly c-axis oriented crystalline structure, without secondary phase. The high resolution scanning electron microscopy (HRSEM) showed a flat surface with good coverage and thickness about 300 nm. A Keithley 2425 semiconductor characterization system was used to perform the resistive switching tests in the bipolar and unipolar modes. Considering only the effect of compliance current (CC), the devices showed a purely bipolar behavior since an increase in CC did not induce a transition to unipolar behavior.

  1. Plasmonic control of near-interface exciton dynamics in defect-rich ZnO thin films

    SciTech Connect

    Lawrie, Benjamin J; Mu, Richard; HaglundJr., Richard F

    2012-01-01

    ZnO is an attractive material for many electro-optical applications, but the control of impurities remains an issue in device fabrication. For this paper, the dynamics of defect states produced by annealing ZnO thin-films at temperatures of 400-800C were probed by band-edge pump probe spectroscopy in differential reflection and transmission. The distinction between the differential reflection and transmission spectra allowed for the analysis of ultrafast near-interface dynamics, which cannot be separated from the bulk thin film dynamics by traditional ultrafast spectroscopies. In particular, simulataneous differential reflection and transmission spectroscopy provided clear evidence that the band-edge recombination dynamics in samples annealed at 400C were absent near the ZnO/substrate interface. However, the Purcell enhancement observed in Ag/ZnO heterostructures resulted in the dramatic emergence of the band-edge recombination signal where none was previously observable due to the dominant defect luminescence. Plasmon-exciton coupling enhances band-edge exciton recombination by nearly two orders of magnitude over the defect luminescence. This indicates that the spatial range of the Purcell effect is at least twice as large as inferred from photoluminescence studies.

  2. Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices

    NASA Astrophysics Data System (ADS)

    Yao, I.-Chuan; Lee, Dai-Ying; Tseng, Tseung-Yuen; Lin, Pang

    2012-04-01

    This study investigates the resistive switching behavior of Ga-doped ZnO (GZO) nanorod thin films with various Ga/Zn molar ratios. Vertically well-aligned and uniform GZO nanorod thin films were successfully grown on Au/Ti/SiO2/p-Si substrates using an aqueous solution method. X-ray diffraction (XRD) results indicate that GZO nanorods have [0001] highly preferred orientation. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show the formation of highly ordered and dense nanorod thin films. These compact GZO nanorod thin films can be used to make resistive switching memory devices. Such memory devices can be reversibly switched between ON and OFF states, with a stable resistance ratio of ten times, narrow dispersion of ON and OFF voltages, and good endurance performance of over 100 cycles. The resistive switching mechanism in these devices is related to the formation and rupture of conducting filaments consisting of oxygen vacancies, occurring at interfaces between GZO nanorods (grain boundaries). Results show that the resulting compact GZO nanorod thin films have a high potential for resistive memory applications.

  3. Ag-doped FeSe0.94 polycrystalline samples obtained through hot isostatic pressing with improved grain connectivity

    NASA Astrophysics Data System (ADS)

    Gajda, G.; Morawski, A.; Rogacki, K.; Cetner, T.; Zaleski, A. J.; Buchkov, K.; Nazarova, E.; Balchev, N.; Hossain, M. S. A.; Diduszko, R.; Gruszka, K.; Przysłupski, P.; Fajfrowski, Ł.; Gajda, D.

    2016-09-01

    We evaluate the effects of high pressure during annealing on the structural and superconducting properties of Ag-doped FeSe bulks. The results obtained in this work indicate that the annealing at high pressure increases the critical temperature, upper critical field and irreversibility field due to the improved uniformity and grain connectivity.

  4. Enhanced ZnO Thin-Film Transistor Performance Using Bilayer Gate Dielectrics.

    PubMed

    Alshammari, Fwzah H; Nayak, Pradipta K; Wang, Zhenwei; Alshareef, Husam N

    2016-09-01

    We report ZnO TFTs using Al2O3/Ta2O5 bilayer gate dielectrics grown by atomic layer deposition. The saturation mobility of single layer Ta2O5 dielectric TFT was 0.1 cm(2) V(-1) s(-1), but increased to 13.3 cm(2) V(-1) s(-1) using Al2O3/Ta2O5 bilayer dielectric with significantly lower leakage current and hysteresis. We show that point defects present in ZnO film, particularly VZn, are the main reason for the poor TFT performance with single layer dielectric, although interfacial roughness scattering effects cannot be ruled out. Our approach combines the high dielectric constant of Ta2O5 and the excellent Al2O3/ZnO interface quality, resulting in improved device performance.

  5. Enhanced ZnO Thin-Film Transistor Performance Using Bilayer Gate Dielectrics.

    PubMed

    Alshammari, Fwzah H; Nayak, Pradipta K; Wang, Zhenwei; Alshareef, Husam N

    2016-09-01

    We report ZnO TFTs using Al2O3/Ta2O5 bilayer gate dielectrics grown by atomic layer deposition. The saturation mobility of single layer Ta2O5 dielectric TFT was 0.1 cm(2) V(-1) s(-1), but increased to 13.3 cm(2) V(-1) s(-1) using Al2O3/Ta2O5 bilayer dielectric with significantly lower leakage current and hysteresis. We show that point defects present in ZnO film, particularly VZn, are the main reason for the poor TFT performance with single layer dielectric, although interfacial roughness scattering effects cannot be ruled out. Our approach combines the high dielectric constant of Ta2O5 and the excellent Al2O3/ZnO interface quality, resulting in improved device performance. PMID:27553091

  6. Cotton Fabric Surface Modification by Sol-Gel Deposition of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Vihodceva, S.; Kukle, S.

    2012-08-01

    One of the main tasks of research is to impact the additional value on natural textiles by adding to them ultraviolet (UV) absorption and antimicrobial protection properties with ZnO nano-level coatings. ZnO shows high absorption in the UV region of the light spectrum, in comparison with organic absorbers conventionally used in the textile industry shows no significant degradation, is stable and classified as non-toxic material. Nanosols were prepared by using the sol-gel process. In this work comparison of samples coated by nanosols with zinc acetate (Zn (CH3COO)2-2H2O) and zinc sulphate (ZnSO4) was made. Scanning electron microscopy (SEM) was used to examine the nature of the surface modification with ZnO coating by the sol-gel technique as also after exploitation of samples; energy dispersive X-ray spectroscopy was used for the analysis of elemental composition of coated fabric samples.

  7. Tuning of structural, optical, and magnetic properties of ultrathin and thin ZnO nanowire arrays for nano device applications

    PubMed Central

    2014-01-01

    One-dimensional (1-D) ultrathin (15 nm) and thin (100 nm) aligned 1-D (0001) and (0001¯) oriented zinc oxide (ZnO) nanowire (NW) arrays were fabricated on copper substrates by one-step electrochemical deposition inside the pores of polycarbonate membranes. The aspect ratio dependence of the compressive stress because of the lattice mismatch between NW array/substrate interface and crystallite size variations is investigated. X-ray diffraction results show that the polycrystalline ZnO NWs have a wurtzite structure with a = 3.24 Å, c = 5.20 Å, and [002] elongation. HRTEM and SAED pattern confirmed the polycrystalline nature of ultrathin ZnO NWs and lattice spacing of 0.58 nm. The crystallite size and compressive stress in as-grown 15- and 100-nm wires are 12.8 nm and 0.2248 GPa and 22.8 nm and 0.1359 GPa, which changed to 16.1 nm and 1.0307 GPa and 47.5 nm and 1.1677 GPa after annealing at 873 K in ultrahigh vacuum (UHV), respectively. Micro-Raman spectroscopy showed that the increase in E2 (high) phonon frequency corresponds to much higher compressive stresses in ultrathin NW arrays. The minimum-maximum magnetization magnitude for the as-grown ultrathin and thin NW arrays are approximately 8.45 × 10−3 to 8.10 × 10−3 emu/g and approximately 2.22 × 10−7 to 2.190 × 10−7 emu/g, respectively. The magnetization in 15-nm NW arrays is about 4 orders of magnitude higher than that in the 100 nm arrays but can be reduced greatly by the UHV annealing. The origin of ultrathin and thin NW array ferromagnetism may be the exchange interactions between localized electron spin moments resulting from oxygen vacancies at the surfaces of ZnO NWs. The n-type conductivity of 15-nm NW array is higher by about a factor of 2 compared to that of the 100-nm ZnO NWs, and both can be greatly enhanced by UHV annealing. The ability to tune the stresses and the structural and relative occupancies of ZnO NWs in a wide range by annealing has

  8. Defect Chemistry Study of Nitrogen Doped ZnO Thin Films

    SciTech Connect

    Miami University: Dr. Lei L. Kerr Wright State University: Dr. David C. Look and Dr. Zhaoqiang Fang

    2009-11-29

    Our team has investigated the defect chemistry of ZnO:N and developed a thermal evaporation (vapor-phase) method to synthesis p-type ZnO:N. Enhanced p-type conductivity of nitrogen doped ZnO via nano/micro structured rods and Zn-rich Co-doping process were studied. Also, an extended X-Ray absorption fine structure study of p-type nitrogen doped ZnO was conducted. Also reported are Hall-effect, photoluminescence, and DLTS studies.

  9. Local order origin of thermal stability enhancement in amorphous Ag doping GeTe

    NASA Astrophysics Data System (ADS)

    Xu, L.; Li, Y.; Yu, N. N.; Zhong, Y. P.; Miao, X. S.

    2015-01-01

    We demonstrate the impacts of Ag doping on the local atomic structure of amorphous GeTe phase-change material. The variations of phonon vibrational modes, boding nature, and atomic structure are shown by Raman, X-ray photoelectron spectroscopy, and ab initio calculation. Combining the experiments and simulations, we observe that the number of Ge atoms in octahedral site decreases and that in tetrahedral site increases. This modification in local order of GeTe originating from the low valence element will affect the crystallization behavior of amorphous GeTe, which is verified by differential scanning calorimetry and transmission electron microscope results. This work not only gives the analysis on the structural change of GeTe with Ag dopants but also provides a method to enhance the thermal stability of amorphous phase-change materials for memory and brain-inspired computing applications.

  10. Local order origin of thermal stability enhancement in amorphous Ag doping GeTe

    SciTech Connect

    Xu, L.; Li, Y.; Yu, N. N.; Zhong, Y. P.; Miao, X. S.

    2015-01-19

    We demonstrate the impacts of Ag doping on the local atomic structure of amorphous GeTe phase-change material. The variations of phonon vibrational modes, boding nature, and atomic structure are shown by Raman, X-ray photoelectron spectroscopy, and ab initio calculation. Combining the experiments and simulations, we observe that the number of Ge atoms in octahedral site decreases and that in tetrahedral site increases. This modification in local order of GeTe originating from the low valence element will affect the crystallization behavior of amorphous GeTe, which is verified by differential scanning calorimetry and transmission electron microscope results. This work not only gives the analysis on the structural change of GeTe with Ag dopants but also provides a method to enhance the thermal stability of amorphous phase-change materials for memory and brain-inspired computing applications.

  11. Smart chemical sensors using ZnO semiconducting thin films for freshness detection of foods and beverages

    NASA Astrophysics Data System (ADS)

    Nanto, Hidehito; Kobayashi, Toshiki; Dougami, Naganori; Habara, Masaaki; Yamamoto, Hajime; Kusano, Eiji; Kinbara, Akira; Douguchi, Yoshiteru

    1998-07-01

    The sensitivity of the chemical sensor, based on the resistance change of Al2O3-doped and SnO2-doped ZnO (ZnO:Al and ZnO:SnO2) thin film, is studied for exposure to various gases. It is found that the ZnO:Al and ZnO:Sn thin film chemical sensor has a high sensitivity and excellent selectivity for amine (TMA and DMA) gas and ethanol gas, respectively. The ZnO:Al (5.0 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to odors from rotten sea foods, such as salmon, sea bream, oyster, squid and sardine, responds to the freshness change of these sea foods. The ZnO:SnO2 (78 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to aroma from alcohols, such as wine, Japanese sake, and whisky, responds to the freshness change of these alcohols.

  12. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing.

    PubMed

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-05-16

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10(-2) Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. PMID:24763438

  13. Thin film epitaxy and structure property correlations for non-polar ZnO films

    SciTech Connect

    Pant, Punam; Budai, John D; Aggarwal, R; Narayan, Roger; Narayan, Jagdish

    2009-01-01

    Heteroepitaxial growth and strain relaxation were investigated in non-polar a-plane (11-20)ZnO films grown on r-plane (10-12)sapphire substrates in the temperature range 200-700 C by pulsed laser deposition. The lattice misfit in the plane of the film for this orientation varied from -1.26% in [0001] to ?18.52% in the [-1100] direction. The alignment of (11-20)ZnO planes parallel to (10-12)sapphire planes was confirmed by X-ray diffraction {theta}-2{theta} scans over the entire temperature range. X-ray {psi}-scans revealed the epitaxial relationship:[0001]ZnO[-1101]sap; [-1100]ZnO[-1-120]sap. Depending on the growth temperature, variations in the structural, optical and electrical properties were observed in the grown films. Room temperature photoluminescence for films grown at 700 C shows a strong band-edge emission. The ratio of the band-edge emission to green band emission is 135:1, indicating reduced defects and excellent optical quality of the films. The resistivity data for the films grown at 700 C shows semiconducting behavior with room temperature resistivity of 2.2 x 10{sup -3} {Omega}-cm.

  14. Significant mobility enhancement in extremely thin highly doped ZnO films

    SciTech Connect

    Look, David C.; Heller, Eric R.; Yao, Yu-Feng; Yang, C. C.

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H} vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.

  15. Nanosecond laser switching of surface wettability and epitaxial integration of c-axis ZnO thin films with Si(111) substrates.

    PubMed

    Molaei, R; Bayati, M R; Alipour, H M; Estrich, N A; Narayan, J

    2014-01-01

    We have achieved integration of polar ZnO[0001] epitaxial thin films with Si(111) substrates where cubic yttria-stabilized zirconia (c-YSZ) was used as a template on a Si(111) substrate. Using XRD (θ-2θ and φ scans) and HRTEM techniques, the epitaxial relationship between the ZnO and the c-YSZ layers was shown to be [0001]ZnO || [111]YSZ and [21¯1¯0]ZnO || [1¯01](c-YSZ), where the [21¯1¯0] direction lies in the (0001) plane, and the [1¯01] direction lies in the (111) plane. Similar studies on the c-YSZ/Si interface revealed epitaxy as (111)YSZ || (111)Si and in-plane (110)YSZ || (110)Si. HRTEM micrographs revealed atomically sharp and crystallographically continuous interfaces. The ZnO epilayers were subsequently laser annealed by a single pulse of a nanosecond excimer KrF laser. It was shown that the hydrophobic behavior of the pristine sample became hydrophilic after laser treatment. XPS was employed to study the effect of laser treatment on surface stoichiometry of the ZnO epilayers. The results revealed the formation of oxygen vacancies, which are envisaged to control the observed hydrophilic behavior. Our AFM studies showed surface smoothing due to the coupling of the high energy laser beam with the surface. The importance of integration of c-axis ZnO with Si(111) substrates is emphasized using the paradigm of domain matching epitaxy on the c-YSZ[111] buffer platform along with their out-of-plane orientation, which leads to improvement of the performance of the solid-state devices. The observed ultrafast response and switching in photochemical characteristics provide new opportunities for application of ZnO in smart catalysts, sensors, membranes, DNA self-assembly and multifunctional devices.

  16. Characterization of spray-deposited ZnO thin films for dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Amala Rani, A.; Ernest, Suhashini

    2016-07-01

    ZnO films have been prepared on glass plates with concentrations of 0.025, 0.05 and 0.1 M each consisting of 50 ml of solution using the spray pyrolysis technique. A dye-sensitized solar cell (DSSC) was constructed by means of the obtained film for 0.1 M which was also coated above the ITO substrate. N-719, iodide and platinum-coated ITO glass plates were used as the dye, electrolyte and counter electrode, respectively. XRD confirms that the structure of the film was polycrystalline having wurtzite structure. The surface with pores was found from the FESEM studies. The DSSC shows an optical transmittance of approximately 70 % in the visible region. The photoluminescence study reveals the electronic structure of the material. The efficiency of the DSSC measured for a 0.1 M ZnO thin film by sensitizing every 2 h was η = 0.51, 0.80, 0.54, 1.12, 2.11, 2.71, 3.15 and 3.20 %, respectively.

  17. Structure and mechanical properties of 3dTM ion doped RF sputtered ZnO thin films on Si (100)

    SciTech Connect

    Venkaiah, M. Singh, R.

    2014-04-24

    Mn, Fe and Mn-Fe doped ZnO thin films were deposited on Si (100) substrates by rf- magnetron sputtering using ceramic target in pure oxygen gas environment. The X-ray diffraction shows the polycrystalline wurtzite structure films. The average grain size varies from 32-50 nm, with lower grain size for Fe doped ZnO films. The room temperature loading and unloading curve are continuous without any pop-in. The Young's modulus and hardness are in the range 156-178 GPa and 14-15.5 GPa respectively.

  18. Correlation between electrical conductivity—optical band gap energy and precursor molarities ultrasonic spray deposition of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Benramache, Said; Belahssen, Okba; Guettaf, Abderrazak; Arif, Ali

    2013-11-01

    ZnO thin films were deposited using the simple, flexible and cost-effective spray ultrasonic technique at different precursor molarities values. The films were deposited on a glass substrate at 350 °C. This paper is to present a new approach to the description of correlation between electrical conductivity and optical gap energy with precursor molarity of ZnO thin films. The ZnO films exhibit higher electrical n-type semiconductors, whose band gap energy increased from 3.08 to 3.37 eV with an increasing of precursor molarity of 0.05 to 0.1 M. The maximum value of electrical conductivity of the films is 7.96 (ω·cm)-1 obtained in the ZnO thin film for precursor molarity 0.125 M. The correlation between the electrical and the optical properties with the precursor molarity suggests that the electrical conductivity of the films is predominantly influenced by the band gap energy and the precursor molarity. The measurement of the electrical conductivity of the films with correlation is equal to the experimental with the error is about 1% in the higher conductivity.

  19. Low-temperature growth and physical investigations of undoped and (In, Co) doped ZnO thin films sprayed on PEI flexible substrate

    NASA Astrophysics Data System (ADS)

    Ben Ameur, S.; Barhoumi, A.; Mimouni, R.; Amlouk, M.; Guermazi, H.

    2015-08-01

    ZnO thin films were deposited on polymer substrate Polyethyerimide (PEI) at 250 °C by spray pyrolysis technique. The effects of different doping elements (Co and In) on physical properties of ZnO thin films were investigated. Thin film characterizations were carried out using X-ray diffraction technique, UV-Vis-NIR spectroscopy, Photoluminescence (PL) spectroscopy and the contact angle measurement method. XRD measurement showed a successful growth of crystalline films on polymer substrate at low temperature by the spray pyrolysis process. XRD patterns revealed that all films consist of single ZnO phase and were well crystallized with preferential orientation towards (1 0 1) direction. Doping by cobalt has effective role in the enhancement of the crystalline quality, increases in the band gap according to Burstein Moss effect. Doping with indium leads rather to the decrease of both crystallinity and optical band gap energy value. Photoluminescence of the films showed UV emission (NBE) and visible emission related to defects. The contact angles were measured to study the effect of various doping elements on the hydrophobicity of the film depending on surface roughness. Results showed strong dependence on the doping element. In fact, doping with cobalt element increases the roughness of ZnO films and reinforces the surface from hydrophilic to hydrophobic (θ > 90°).

  20. Influence of Rare Earth Ho3+ Doping on Structural, Microstructure and Magnetic Properties of ZnO Bulk and Thin Film Systems

    NASA Astrophysics Data System (ADS)

    Murtaza Rai, Ghulam; Azhar Iqbal, Muhammad; Xu, Yongbing; Will, Iain Gordon; Zhang, Wen

    2011-06-01

    We have investigated the doping behavior of rare earth element holmium (Ho3+) in ZnO semiconductor. The structural, microstructure, and magnetic properties of Zn1-xHoxO (x=0.0, 0.04, and 0.05) thin films deposited on Si(100) substrate by thermal evaporation technique were studied. The ceramic targets were prepared by conventional solid state ceramic technique. The pallets used as target were final sintered at 900 °C in the presence of N2 atmosphere. The experimental results of X-ray diffraction (XRD) spectra, surface morphology, and magnetic properties show that the Ho3+ doped ZnO thin films has a strong influence on the materials properties. The higher angle shift in peak position and most preferred (101) orientation were observed in XRD pattern. These spectra confirmed the substitution of Ho3+ in ZnO lattice. The surface morphology and stoichiometry for both bulk and thin films were analyzed by scanning electron microscopy and energy dispersive spectroscopy. It was observed that grain size decreases with the increase of Ho3+. Room temperature ferromagnetism was observed for Zn0.95Ho0.05O films. The ferromagnetism might be attributed to the substitution of Ho ions for Zn2+ in ZnO lattices.

  1. Slope selection-driven Ostwald ripening in ZnO thin film growth

    NASA Astrophysics Data System (ADS)

    González-González, A.; Polop, C.; Vasco, E.

    2012-07-01

    The morphology evolution of polycrystalline ZnO films grown by pulsed laser deposition was investigated by atomic force microscopy and compared with morphologies simulated in 2 + 1 dimensions from a mesoscopic continuum model of selection of surface slopes. The distinctive feature of such an evolution is that the competition between grains gives rise to a singular grain coarsening mechanism, which although it matches the fingerprints of the Ostwald ripening, it remains operative under atypical growth conditions (temperatures as low as 0.28Tmelting and grains with sizes ranged between 20-500 nm) and is driven by the faceting of the grain faces. The resulting pyramidal single-crystalline grains from such a coarsening mechanism have been correlated with the enhanced ultraviolet lasing activity at room temperature of nanostructured ZnO.

  2. Effect of annealing on the properties of Sb doped ZnO thin films prepared by spray pyrolysis technique

    SciTech Connect

    Kumar, N. Sadananda; Bangera, Kasturi V.; Shivakumar, G. K.

    2014-01-28

    Sb doped ZnO thin films have been deposited on glass substrate at 450°C using spray pyrolysis technique. The X-ray diffraction studies revealed that the as deposited films are polycrystalline in nature with (100) preferred orientation. Whereas the films annealed at 450° C for 6h show a preferential orientation along (101) direction. Crystallites size varies from 15.7 nm to 34.95 nm with annealing duration. The Scanning electron microscopic analysis shows the plane and smooth surface of the films. The optical properties of annealed films have shown a variation in the band gap between 3.37 eV and 3.19 eV. Transparency of as grown and annealed films decreases from 78 % to 65% respectively in the visible region. The electrical conductivity of the as grown film shows an increase in the electrical conductivity by one order of magnitude with increase in the annealing duration.

  3. The ethanol sensing characteristics of ZnO thin films with low operating temperatures synthesized by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Zheng, Xuejun; Zhong, Xiangli; Deng, Shuifeng

    2012-10-01

    ZnO thin films (ZTFs) are deposited on Si (1 1 1) substrates by a pulsed laser deposition (PLD) method and characterized by x-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The ethanol sensing properties of ZTFs are investigated by exposing them to different concentrations of gaseous ethanol at various temperatures. At an operating temperature of 120 °C, the ZTFs have a high response value to 5 ppm gaseous ethanol, and the detection limit can be as low as 0.1 ppm. The corresponding response and recovery times are 20 and 15 s, respectively. The results indicate that ZTFs synthesized by PLD have potential applications for fabricating high performance ethanol sensors.

  4. Ferromagnetism induced by planar nanoscale CuO inclusions in Cu-doped ZnO thin films

    SciTech Connect

    Sudakar, C.; Lawes, G.; Naik, R.; Thakur, J. S.; Naik, V. M.

    2007-02-01

    We report ferromagnetism above 300 K in ZnO:xCu (x in at. %) sputtered thin films. For x<1, a large magnetic moment of 1.6 {mu}{sub B}/Cu was observed, which decreases monotonically with increasing x. We find evidence that the ferromagnetic moment is due to Cu-O planar nanophase inclusions in ZnO basal planes. The presence of CuO nanophase is confirmed by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy studies. These inclusions are present even for x<3, where Cu-O structures of a few nanometers in size are observed. Field-cooled and zero-field-cooled magnetization measurements show a bifurcation for temperatures below 300 K.

  5. Influence of baking method and baking temperature on the optical properties of ZnO thin films

    SciTech Connect

    Ng, Zi-Neng; Chan, Kah-Yoong

    2015-04-24

    In this work, sol-gel spin coating technique was utilised to coat ZnO thin films on glass substrates. During the intermediate 3 minutes baking process, either hotplate or convection oven was employed to bake the samples. The temperature for the baking process was varied from 150°C to 300°C for both instruments. Avantes Optical Spectrophotometer was used to characterise the optical property. The optical transmittances of hotplate-baked and oven-baked samples showed different trends with increasing baking temperatures, ranging from below 50% transmittance to over 90% transmittance in the visible range of wavelength. The difference in baking mechanisms using hotplate and convection oven will be discussed in this paper.

  6. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays.

    PubMed

    Yan, Yinzhou; Zeng, Yong; Wu, Yan; Zhao, Yan; Ji, Lingfei; Jiang, Yijian; Li, Lin

    2014-09-22

    Here we report strong enhancement in ultraviolet-photoluminescence (UV-PL) of ZnO thin films (grown on a SiC substrate) covered by monolayer dielectric fused silica or polystyrene microspheres with diameters ranging from 0.5 to 7.5 μm. The excited light scatted in the film is collected by the microspheres to stimulate whispering gallery modes, by which the internal quantum efficiency of spontaneous emission is enhanced. Meanwhile, the microsphere monolayer efficiently couples emitted light energy from the luminescent film to the far-field for PL detection. A UV-PL enhancement up to 10-fold via a 5-µm-diameter microsphere monolayer is experimentally demonstrated in this work. The unique optical property of microsphere in photoluminescence (PL) enhancement makes them promising for high-sensitivity PL measurements as well as design of photoelectric devices with low loss and high efficiency. PMID:25321823

  7. X-ray absorption spectroscopy of Mn doped ZnO thin films prepared by rf sputtering technique

    SciTech Connect

    Yadav, Ashok Kumar; Jha, S. N.; Bhattacharyya, D.; Haque, Sk Maidul; Shukla, Dinesh; Choudhary, Ram Janay

    2015-11-15

    A set of r.f. sputter deposited ZnO thin films prepared with different Mn doping concentrations have been characterised by Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Spectroscopy (XANES) measurements at Zn, Mn and O K edges and at Mn L{sub 2,3} edges apart from long range structural characterisation by Grazing Incident X-ray Diffraction (GIXRD) technique. Magnetic measurements show room temperature ferromagnetism in samples with lower Mn doping which is however, gets destroyed at higher Mn doping concentration. The results of the magnetic measurements have been explained using the local structure information obtained from EXAFS and XANES measurements.

  8. Effect of annealing on structural and optical properties of sol-gel prepared Cd doped ZnO thin films

    SciTech Connect

    Sahoo, Guruprasad Jain, Mahaveer K.; Meher, S. R.

    2015-06-24

    Zn{sub 1-x}Cd{sub x}O thin films have been prepared by sol-gel spin coating method. Structural analysis shows that the Cd substitution into the wutrzite ZnO lattice is achieved up to about 20 mol %. The optical band gap is found to decrease with the increase in Cd content. Increase in the annealing temperature up to a certain critical temperature leads to band gap narrowing because of the proper substitution of Zn by Cd and thereafter the band gap increases due to Cd re-evaporation from the lattice sites. This critical temperature lowers down with the increase in Cd doping concentration. The resistivity decreases with the increase in Cd content and increases with the increase in annealing temperature.

  9. Electrodeposition of Mg doped ZnO thin film for the window layer of CIGS solar cell

    NASA Astrophysics Data System (ADS)

    Wang, Mang; Yi, Jie; Yang, Sui; Cao, Zhou; Huang, Xiaopan; Li, Yuanhong; Li, Hongxing; Zhong, Jianxin

    2016-09-01

    Mg doped ZnO (ZMO) film with the tunable bandgap can adjust the conduction band offset of the window/chalcopyrite absorber heterointerface to positive to reduce the interface recombination and resulting in an increasement of chalcopyrite based solar cell efficiency. A systematic study of the effect of the electrodeposition potential on morphology, crystalline structure, crystallographic orientation and optical properties of ZMO films was investigated. It is interestingly found that the prepared doped samples undergo a significant morphological change induced by the deposition potential. With negative shift of deposition potential, an obvious morphology evolution from nanorod structrue to particle covered films was observed. A possible growth mechanism for explaining the morphological change is proposed and briefly discussed. The combined optical techniques including absorption, transmission and photoluminescence were used to study the obtained ZMO films deposited at different potential. The sample deposited at -0.9 V with the hexagonal nanorods morphology shows the highest optical transparency of 92%. The photoluminescence spectra reveal that the crystallization of the hexagonal nanorod ZMO thin film deoposited at -0.9 V is much better than the particles covered ZMO thin film. Combining the structural and optical properties analysis, the obtained normal hexagonal nanorod ZMO thin film could potentially be useful in nanostructured chalcopyrite solar cells to improve the device performance.

  10. Nanostructured Zn and ZnO nanowire thin films for mechanical and self-cleaning applications

    NASA Astrophysics Data System (ADS)

    Shaik, Ummar Pasha; Purkayastha, Debarun Dhar; Krishna, M. Ghanashyam; Madhurima, V.

    2015-03-01

    Nanostructured Zn metal films were deposited by thermal evaporation, on borosilicate glass, Quartz, sapphire, lanthanum aluminate and yttria stabilized zirconia substrates. The as-deposited films are nanocrystalline and show a morphology that consists of triangular nanosheets. The films are hydrophobic with contact angles between 102° and 120° with hardness and Young's modulus between 0.15-0.8 GPa and 18-300 GPa, respectively. Thermal annealing of the films at 500 °C results only in partial oxidation of Zn to ZnO, which indicates good oxidation resistance. Annealing also causes transformation of the Zn nanosheets into ZnO nanowires that are polycrystalline in nature. The ZnO nanowires are superhydrophobic with contact angles between 159° and 162°, contact angle hysteresis between 5° and 10° and exhibit a reversible superhydrophobic-hydrophilic transition under UV irradiation. The nanowires are much softer than the as-deposited Zn metal films, with hardness between 0.02 and 0.4 GPa and Young's modulus between 3 and 35 GPa. The current study thus demonstrates a simple process for fabrication of nanostructured Zn metal films followed by a one-step transformation to nanowires with properties that will be very attractive for mechanical and self-cleaning applications.

  11. Optical absorption edge of ZnO thin films: The effect of substrate

    SciTech Connect

    Srikant, V.; Clarke, D.R.

    1997-05-01

    The optical absorption edge and the near-absorption edge characteristics of undoped ZnO films grown by laser ablation on various substrates have been investigated. The band edge of films on C [(0001)] and R-plane [(1102)] sapphire, 3.29 and 3.32 eV, respectively, are found to be very close to the single crystal value of ZnO (3.3 eV) with the differences being accounted for in terms of the thermal mismatch strain using the known deformation potentials of ZnO. In contrast, films grown on fused silica consistently exhibit a band edge {approximately}0.1eV lower than that predicted using the known deformation potential and the thermal mismatch strains. This behavior is attributed to the small grain size (50 nm) realized in these films and the effect of electrostatic potentials that exist at the grain boundaries. Additionally, the spread in the tail (E{sub 0}) of the band edge for the different films is found to be very sensitive to the defect structure in the films. For films grown on sapphire substrates, values of E{sub 0} as low as 30 meV can be achieved on annealing in air, whereas films on fused silica always show a value {gt}100meV. We attribute this difference to the substantially higher density of high-angle grain boundaries in the films on fused silica. {copyright} {ital 1997 American Institute of Physics.}

  12. Effects of Al concentration on microstructural characteristics and electrical properties of Al-doped ZnO thin films on Si substrates by atomic layer deposition.

    PubMed

    Lee, Ju Ho; Lee, Jae-Won; Hwang, Sooyeon; Kim, Sang Yun; Cho, Hyung Koun; Lee, Jeong Yong; Park, Jin-Seong

    2012-07-01

    Al-doped ZnO (AZO) thin films with various Al concentrations were synthesized on Si(001) substrates with native oxide layers by atomic layer deposition process. The effects of the Al concentration on the microstructural characteristics of the AZO thin films grown at 250 degrees C and the correlation between their microstructural characteristics and electrical properties of the AZO thin films were investigated by AFM, XRD, HRTEM and Hall measurements. The XRD and HRTEM results revealed that the crystallinity and electrical properties of the undoped ZnO thin films were enhanced by 2.48 at% Al doping. However, 12.62 at% Al doping induced the deterioration of their crystallinity and electrical properties due to the formation of nano-sized metallic Al clusters and randomly oriented ZnO-based nano-crystals. To enhance the electrical properties of the AZO thin films while maintaining their crystallinity and electrical properties, a moderate Al concentration has to be chosen under the solubility limit of Al in ZnO.

  13. Dual role of boron in improving electrical performance and device stability of low temperature solution processed ZnO thin film transistors

    SciTech Connect

    Gandla, Srinivas; Gollu, Sankara Rao; Sharma, Ramakant; Sarangi, Venkateshwarlu; Gupta, Dipti

    2015-10-12

    In this paper, we have demonstrated the dual role of boron doping in enhancing the device performance parameters as well as the device stability in low temperatures (200 °C) sol-gel processed ZnO thin film transistors (TFTs). Our studies suggest that boron is able to act as a carrier generator and oxygen vacancy suppressor simultaneously. Boron-doped ZnO TFTs with 8 mol. % of boron concentration demonstrated field-effect mobility value of 1.2 cm{sup 2} V{sup −1} s{sup −1} and threshold voltage of 6.2 V, respectively. Further, these devices showed lower shift in threshold voltage during the hysteresis and bias stress measurements as compared to undoped ZnO TFTs.

  14. Transparent Pixel Circuit with Threshold Voltage Compensation Using ZnO Thin-Film Transistors for Active-Matrix Organic Light Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Yang, Ik-Seok; Kwon, Oh-Kyong

    2009-03-01

    A transparent pixel circuit with a threshold voltage compensating scheme using ZnO thin-film transistors (TFTs) for active-matrix organic light emitting diode (AMOLED) displays is proposed. This circuit consists of five n-type ZnO TFTs and two capacitors and can compensate for the threshold voltage variation of ZnO TFTs in real time. From simulation results, the maximum deviation of the emission current of the pixel circuit with a threshold voltage variation of ±1 V is determined to be less than 10 nA. From measurement results, it is verified that the maximum deviation of measured emission currents with measurement position in a glass substrate is less than 15 nA in a higher current range, and the deviation of emission current with time is less than 3%.

  15. All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO :Al transparent conducting oxide

    NASA Astrophysics Data System (ADS)

    Gupta, Akhlesh; Compaan, Alvin D.

    2004-07-01

    Radio-frequency (rf)-sputtered Al-doped ZnO was used as the transparent front contact in the fabrication of high efficiency superstrate configuration CdS /CdTe thin-film solar cells. These cells had CdS and CdTe layers also deposited by rf sputtering at 250°C with the highest processing temperature of 387°C reached during a post-deposition treatment. The devices were tested at National Renewable Energy Laboratory and yielded an efficiency of 14.0%, which is excellent for a CdTe cell using ZnO and also for any sputtered CdTe solar cell. The low-temperature deposition process using sputtering for all semiconductor layers facilitates the use of ZnO and conveys significant advantages for the fabrication of more complex multiple layers needed for the fabrication of tandem polycrystalline solar cells and for cells on polymer materials.

  16. High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties

    SciTech Connect

    Jin, Zhengwu; Fukumura, T.; Kawasaki, M.; Ando, K.; Saito, H.; Sekiguchi, T.; Yoo, Y. Z.; Murakami, M.; Matsumoto, Y.; Hasegawa, T.

    2001-06-11

    Combinatorial laser molecular-beam epitaxy method was employed to fabricate epitaxial ZnO thin films doped with all the 3d transition metal (TM) ions in a high throughput fashion. The solubility behavior of TM ions was discussed from the viewpoints of the ionic radius and valence state. The magneto-optical responses coincident with absorption spectra were observed for Mn- and Co-doped samples. Cathodoluminescence spectra were studied for Cr-, Mn-, Fe-, and Co-doped samples, among which Cr-doped ZnO showed two sharp peaks at 2.97 eV and 3.71 eV, respectively, at the expense of the exciton emission peak of pure ZnO at 3.25 eV. Different magnetoresistance behavior was observed for the samples codoped with n-type carriers. Ferromagnetism was not observed for Cr- to Cu-doped samples down to 3 K. {copyright} 2001 American Institute of Physics.

  17. Efficient inverted organic light-emitting devices with self or intentionally Ag-doped interlayer modified cathode

    SciTech Connect

    Liu, Wenbo; Liu, Shihao; Yu, Jing; Zhang, Wei; Wen, Xuemei; Yin, Yongming; Zhang, Letian; Chen, Ping; Xie, Wenfa

    2014-03-03

    Green phosphorescent inverted organic light-emitting devices (IOLEDs) with self or intentionally Ag-doped interlayer modified cathode were demonstrated. The IOLEDs show low driving voltage and high efficiency. For example, the efficiency of inverted bottom-emitting OLED with ITO cathode is comparable with the conventional bottom-emitting OLED with ITO anode. The top-emitting IOLED with Ag cathode shows high current efficiency of 76.4 cd/A which is 2.38 times of that of the conventional bottom-emitting OLED with ITO anode. The results indicate that the electron injection from cathode was observably improved by the Ag-doped interlayer and such interlayer is cathode independent relatively.

  18. Transparent and conducting intrinsic ZnO thin films prepared at high growth-rate with c-axis orientation and pyramidal surface texture

    NASA Astrophysics Data System (ADS)

    Mondal, Praloy; Das, Debajyoti

    2013-12-01

    The growth of ZnO thin films has been optimized by adjusting the intrinsic ion vacancies, by controlling the RF power applied to the plasma in magnetron sputtering. Preferred c-axis oriented intrinsic ZnO films with largest grain size and a hexagonal wurtzite structure, exhibiting high room temperature conductivity, σ ∼ 1.37 S/cm, high transparency, ∼80-90% within 450-800 nm and ∼90-96% within 800-1900 nm, low reflectance (<5% in the visible range) was obtained at a very high deposition rate ∼214 nm/min, at 300 °C, by maintaining higher concentration of Zn interstitials or singly ionized oxygen vacancy, corresponding to an optimized RF power of 200 W. Films have lowest internal stress, smallest dissipation factor defined as ɛ2/ɛ1, and the specific pyramidal surface texture creates enough surface roughness that helps to improve the light scattering from the surface and makes it suitable for efficient use in thin-film silicon solar cells. With increasing RF power beyond 200 W, the Zn-O bond length reduces promptly and the internal stress increases monotonically approaching toward a virtual saturation. The preferred crystallographic alignment shifts from (0 0 2) to (1 0 3), i.e., from c to a-axis orientation, as the surface energy of ZnO crystal changes due to the increase in the Zn-to-ZnO ion ratio in the plasma caused by the plausible de-oxygenation of ZnO at elevated RF powers. Oxygen deficient ZnO films having the flower-like surface texture prepared with a very high deposition rate ∼554 nm/min at 500 W could indeed make the material suitable for gas and chemical sensing applications.

  19. Broadband light trapping based on periodically textured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Liu, Bofei; Liang, Xuejiao; Liang, Junhui; Bai, Lisha; Gao, Haibo; Chen, Ze; Zhao, Ying; Zhang, Xiaodan

    2015-05-01

    Transparent conductive front electrodes (TCFEs) deployed in photovoltaic devices have been extensively studied for their significance in transporting carriers, coupling and trapping the incident photons in high-performing solar cells. The trade-off between the light-transmission, electrical, and scattering properties for TCFEs to achieve a broadband improvement in light absorption in solar cells while maintaining a high electrical performance has become the key issue to be tackled. In this paper, we employ self-assembled polystyrene (PS) spheres based on a sauna-like method as a template, followed by a double-layer deposition and then successfully fabricate highly-transparent, well-conductive, and large-scale periodically-textured ZnO TCFEs with broadband light trapping properties. A sheet resistance below 15 Ω sq-1 was achieved for the periodically-textured ZnO TCFEs, with a concomitant average transmission of 81% (including the glass substrate) in the 400-1100 nm spectral range, a haze improvement in a broadband spectral range, and a wider scattering angular domain. The proposed approach affords a promising alternative method to prepare periodically-textured TCFEs, which are essential for many optoelectronic device semiconductors, such as photovoltaic and display applications.Transparent conductive front electrodes (TCFEs) deployed in photovoltaic devices have been extensively studied for their significance in transporting carriers, coupling and trapping the incident photons in high-performing solar cells. The trade-off between the light-transmission, electrical, and scattering properties for TCFEs to achieve a broadband improvement in light absorption in solar cells while maintaining a high electrical performance has become the key issue to be tackled. In this paper, we employ self-assembled polystyrene (PS) spheres based on a sauna-like method as a template, followed by a double-layer deposition and then successfully fabricate highly-transparent, well

  20. Transport and magnetotransport study of Mg doped ZnO thin films

    SciTech Connect

    Agrawal, Arpana; Dar, Tanveer A. Sen, Pratima; Phase, Deodatta M.

    2014-04-14

    We report negative magnetoresistance in pulsed laser deposited single phase ZnO and Mg{sub 0.268}Zn{sub 0.732}O films and attribute it to the presence of oxygen interstitials (O{sub i}) and zinc interstitials (Zn{sub i}) as observed in the X-ray photoelectron spectra of the films. An interesting feature of reduction of negative magnetoresistance at low temperatures and large fields in Mg{sub 0.268}Zn{sub 0.732}O film is observed and is explained by taking into account the localized scattering.

  1. Impact of low temperature annealing on structural, optical, electrical and morphological properties of ZnO thin films grown by RF sputtering for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Purohit, Anuradha; Chander, S.; Sharma, Anshu; Nehra, S. P.; Dhaka, M. S.

    2015-11-01

    This paper presents effect of low temperature annealing on the physical properties of ZnO thin films for photovoltaic applications. The thin films of thickness 50 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing radio frequency magnetron sputtering technique followed by thermal annealing within low temperature range 150-450 °C. These as-grown and annealed films were subjected to the X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) for structural, optical, electrical and surface morphological analysis respectively. The compositional analysis of the as-grown ZnO film was also carried out using energy dispersive spectroscopy (EDS). The XRD patterns reveal that the films have wurtzite structure of hexagonal phase with preferred orientation (1 0 0) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in detail. The optical band gap was found in the range 3.30-3.52 eV and observed to decrease with annealing temperature except 150 °C. The current-voltage characteristics show that the films exhibit approximately ohmic behavior. The SEM studies show that the films are uniform, homogeneous and free from crystal defects and voids. The experimental results reveal that ZnO thin films may be used as alternative materials for eco-friendly buffer layer to the thin film solar cell applications.

  2. Synthesis and Characterization of High c-axis ZnO Thin Film by Plasma Enhanced Chemical Vapor Deposition System and its UV Photodetector Application.

    PubMed

    Chao, Chung-Hua; Wei, Da-Hua

    2015-10-03

    In this study, zinc oxide (ZnO) thin films with high c-axis (0002) preferential orientation have been successfully and effectively synthesized onto silicon (Si) substrates via different synthesized temperatures by using plasma enhanced chemical vapor deposition (PECVD) system. The effects of different synthesized temperatures on the crystal structure, surface morphologies and optical properties have been investigated. The X-ray diffraction (XRD) patterns indicated that the intensity of (0002) diffraction peak became stronger with increasing synthesized temperature until 400 (o)C. The diffraction intensity of (0002) peak gradually became weaker accompanying with appearance of (10-10) diffraction peak as the synthesized temperature up to excess of 400 (o)C. The RT photoluminescence (PL) spectra exhibited a strong near-band-edge (NBE) emission observed at around 375 nm and a negligible deep-level (DL) emission located at around 575 nm under high c-axis ZnO thin films. Field emission scanning electron microscopy (FE-SEM) images revealed the homogeneous surface and with small grain size distribution. The ZnO thin films have also been synthesized onto glass substrates under the same parameters for measuring the transmittance. For the purpose of ultraviolet (UV) photodetector application, the interdigitated platinum (Pt) thin film (thickness ~100 nm) fabricated via conventional optical lithography process and radio frequency (RF) magnetron sputtering. In order to reach Ohmic contact, the device was annealed in argon circumstances at 450 (o)C by rapid thermal annealing (RTA) system for 10 min. After the systematic measurements, the current-voltage (I-V) curve of photo and dark current and time-dependent photocurrent response results exhibited a good responsivity and reliability, indicating that the high c-axis ZnO thin film is a suitable sensing layer for UV photodetector application.

  3. Temperature Dependent Thermal Conductivity and Elastic Properties of a-InGaZnO4 and a-In2Ga2ZnO7 Thin Films

    NASA Astrophysics Data System (ADS)

    Thompson, W. D.; White, B. E.

    2016-10-01

    Amorphous In-Ga-Zn-O is an important oxide semiconductor in advanced display technologies. Despite its importance, little has been reported on the thermal and elastic properties of this material. Here, the temperature dependence of the thermal conductivity, shear modulus, and internal friction of a-InGaZnO4 and a-In2Ga2ZnO7 films are presented. The thermal conductivity of a-In2Ga2ZnO7, measured from 100 K to room temperature, was found to be larger than that of a-InGaZnO4 over the entire temperature range. At room temperature the thermal conductivities were 1.9 W/m K and 1.4 W/m K for the a-In2Ga2ZnO7 and a-InGaZnO4 films, respectively. The shear modulus and internal friction of these films were measured in the temperature range of 340 mK to 65 K. At 4.2 K the shear modulus of the a-InGaZnO4 and a-In2 Ga2ZnO7 films was 44 GPa and 42 GPa, respectively. The internal friction of thin films at each composition exhibited a temperature dependence and magnitude that is in agreement with that observed in all amorphous solids. As the self-heating effect is of concern in the development of amorphous In-Ga-Zn-O based thin film transistors on low thermal conductivity substrates, a thermal model of such a device utilizing a-In2Ga2ZnO7 or a-InGaZnO4 as the active layer was explored. It was found that the temperature increase of the thin film transistor channel is essentially independent of the thermal conductivity of the active layer.

  4. A Low Temperature, Solution-Processed Poly(4-vinylphenol), YO(x) Nanoparticle Composite/Polysilazane Bi-Layer Gate Insulator for ZnO Thin Film Transistor.

    PubMed

    Shin, Hyeonwoo; Kang, Chan-Mo; Chae, Hyunsik; Kim, Hyun-Gwan; Baek, Kyu-Ha; Choi, Hyoung Jin; Park, Man-Young; Do, Lee-Mi; Lee, Changhee

    2016-03-01

    Low temperature, solution-processed metal oxide thin film transistors (MEOTFTs) have been widely investigated for application in low-cost, transparent, and flexible electronics. To enlarge the application area, solution-processed gate insulators (GI) have been investigated in recent years. We investigated the effects of the organic/inorganic bi-layer GI to ZnO thin film transistors (TFTs). PVP, YO(x) nanoparticle composite, and polysilazane bi-layer showed low leakage current (-10(-8) A/cm2 in 2 MV), which are applicable in low temperature processed MEOTFTs. Polysilazane was used as an interlayer between ZnO and PVP, YO(x) nanoparticle composite as a good charge transport interface with ZnO. By applying the PVP, YO(x), nanoparticle composite/polysilazane bi-layer structure to ZnO TFTs, we successfully suppressed the off current (I(off)) to -10(-11) and fabricated good MEOTFTs in 180 degrees C.

  5. A Low Temperature, Solution-Processed Poly(4-vinylphenol), YO(x) Nanoparticle Composite/Polysilazane Bi-Layer Gate Insulator for ZnO Thin Film Transistor.

    PubMed

    Shin, Hyeonwoo; Kang, Chan-Mo; Chae, Hyunsik; Kim, Hyun-Gwan; Baek, Kyu-Ha; Choi, Hyoung Jin; Park, Man-Young; Do, Lee-Mi; Lee, Changhee

    2016-03-01

    Low temperature, solution-processed metal oxide thin film transistors (MEOTFTs) have been widely investigated for application in low-cost, transparent, and flexible electronics. To enlarge the application area, solution-processed gate insulators (GI) have been investigated in recent years. We investigated the effects of the organic/inorganic bi-layer GI to ZnO thin film transistors (TFTs). PVP, YO(x) nanoparticle composite, and polysilazane bi-layer showed low leakage current (-10(-8) A/cm2 in 2 MV), which are applicable in low temperature processed MEOTFTs. Polysilazane was used as an interlayer between ZnO and PVP, YO(x) nanoparticle composite as a good charge transport interface with ZnO. By applying the PVP, YO(x), nanoparticle composite/polysilazane bi-layer structure to ZnO TFTs, we successfully suppressed the off current (I(off)) to -10(-11) and fabricated good MEOTFTs in 180 degrees C. PMID:27455680

  6. Effect of different dopant elements (Al, Mg and Ni) on microstructural, optical and electrochemical properties of ZnO thin films deposited by spray pyrolysis (SP)

    NASA Astrophysics Data System (ADS)

    Benzarouk, Hayet; Drici, Abdelaziz; Mekhnache, Mounira; Amara, Abdelaziz; Guerioune, Mouhamed; Bernède, Jean Christian; Bendjffal, Hacen

    2012-09-01

    In the present work we studied the influence of the dopant elements and concentration on the microstructural and electrochemical properties of ZnO thin films deposited by spray pyrolysis. Transparent conductive thin films of zinc oxide (ZnO) were prepared by the spray pyrolysis process using an aqueous solution of zinc acetate dehydrate [Zn(CH3COO)2·2H2O] on soda glass substrate heated at 400 ± 5 °C. AlCl3, MgCl2 and NiCl2 were used as dopant. The effect of doping percentage (2-4%) has been investigated. Afterwards the samples were thermally annealed in an ambient air during one hour at 500 °C. X-ray diffraction showed that films have a wurtzite structure with a preferential orientation along the (0 0 2) direction for doped ZnO. The lattice parameters a and c are estimated to be 3.24 and 5.20 Ǻ, respectively. Transmission allowed to estimate the band gaps of ZnO layers. The electrochemical studies revealed that the corrosion resistance of the films depended on the concentration of dopants.

  7. Structural, Electrical, and Optical Properties of ZnO Film Used as Buffer Layer for CIGS Thin-Film Solar Cell.

    PubMed

    Choi, Eun Chang; Cha, Ji-Hyun; Jung, Duk-Young; Hong, Byungyou

    2016-05-01

    The CuIn(x)Ga(1-x)Se2 (CIGS) using the solution-based fabrication method is attractive for thin film solar cells because of its possibilities for large-area and low-cost production. ZnO films between transparent conductive oxide (TCO) and the CdS films can improve the performances of CIGS thin-film solar cells. In this study, we investigated the characteristics of ZnO film between TCO and CIGS layers in a solar cell (AZO/ZnO/CdS/CIGS/Mo), which were deposited at various thicknesses to investigate the role of the films in CIGS solar cells. It was confirmed that the conversion efficiency of a CIGS solar cell depends on the ZnO film. For a ZnO film thickness of 80 nm, the highest power conversion efficiency that a solar cell achieved was J(sc) of 18.73 mA/cm2. PMID:27483877

  8. PEMOCVD of ZnO thin films, doped by Ga and some of their properties

    NASA Astrophysics Data System (ADS)

    Khranovskyy, V.; Grossner, U.; Lazorenko, V.; Lashkarev, G.; Svensson, B. G.; Yakimova, R.

    2006-01-01

    Zinc oxide (ZnO) is a promising semiconductor material with a great variety of applications, for example for highly conductive films for transparent electronics. Recently, Ga has been proposed as a dopant, exhibiting the advantages of a very similar atomic radius compared to Zn, a smaller reactivity, and a higher resistivity to oxidation compared to its competitor Al. In this study ZnO films, doped by Ga, were produced on Al 2O 3(0001) substrates by PEMOCVD. The doping was realized with 1, 3, 5 and 10 wt% gallium precursor content in the mixture. The resistivity of the prepared films, as well as the morphology and the transmittance, was investigated. All the deposited films have demonstrated a high optical transmittance above 93% in the range between 400 and 800 nm. A strong correlation between the electrical resistivity and the optical band gap depending on the Ga content was observed. An AFM analysis demonstrated highly uniform and smooth surfaces. The average grain size and route mean square roughness decreased with increasing Ga content.

  9. Assessment of structural, optical and conduction properties of ZnO thin films in the presence of acceptor impurities

    NASA Astrophysics Data System (ADS)

    Plugaru, R.; Plugaru, N.

    2016-06-01

    The structural, optical and electrical conduction properties of (Li/Cu,N):ZnO codoped thin films synthesized by the sol-gel method were investigated by field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), transmission and absorption, photoluminescence (PL) and I-V measurements in order to bring evidence of the formation of acceptor centers by dual-acceptor codoping processes. The (Li 3%,N 5%):ZnO films consist of crystallites with average size of 15 nm, show 95% transmission in the visible region, and an optical band gap of 3.22 eV. The PL spectra show emission maxima at 3.21 and 2.96 eV which are related to the emission of acceptor centers and the presence of defects, respectively. Li occupies interstitial sites and may form Lii-N(O) defect complexes that act as acceptor centers. The (Cu 3%,N 5%):ZnO films consist of crystallites with average size of 12 nm, and exhibit 90% transmission in the visible region. The PL spectra reveal band edge emission at 3.23 eV and defect related emission at 2.74 eV. In the (Cu,N) codoped films, copper substitutes zinc and adopts mainly the Cu1+ state. A possible defect complex involving Cu and N determines the transition from n- to p-type conductivity. These findings are in agreement with results of electronic structure calculations at the GGA-PBE level.

  10. Influence of oxygen partial pressure on optical and structural properties of RF sputtered ZnO thin films

    NASA Astrophysics Data System (ADS)

    Murkute, P.; Saha, S.; Pandey, S. K.; Chatterjee, A.; Datta, D.; Chakrabarti, S.

    2016-02-01

    In this paper we report a detailed investigation of ZnO thin film properties deposited on Si<100> substrate at 400°C using RF sputtering. To reduce oxygen induced vacancies and interstitial defects in samples, variable oxygen flow rate during deposition followed by post growth annealing in oxygen ambient were carried out. Four samples were deposited under constant temperature condition but with variable oxygen partial pressure of 0%, 20%, 50% and 80% in Argon and Oxygen mixture, namely sample S1, S2 , S3 and S4 respectively. Deposited films were further annealed at 700, 800, 900 and 1000°C in oxygen ambient for 10s. Photoluminescence (PL) measurements carried at low temperature (18K) demonstrated near band edge emission peak of ZnO at 3.37eV. Increment in PL intensity was observed with increasing annealing temperature and a particular sample S4 annealed at 900 measured narrowest full width half maxima (FWHM) of ~0.1272eV. Defects peaks observed at lower energies were suppressed with increasing oxygen flow and post growth annealing, indicating improvement in film quality. From HRXRD measurement it was observed S4 sample annealed at 900°C has the highest peak intensity and narrowest FWHM compared to other samples, demonstrating the best crystalline property of annealed film at 900°C. Highest XRD peak intensity measured at 34.53° corresponds to (002) crystal orientation reveals that the films were highly caxis oriented. AFM results show increase in grain size with increasing oxygen flow and annealing temperature which ensures improvement in morphological properties of the film.

  11. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A.

    2013-07-01

    Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur-Ag-SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV-visible diffuse reflectance spectra (UV-vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag-SnO2 and Cur-Ag-SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur-Ag-SnO2 shows better photocatalytic activity than that of Ag-SnO2 and SnO2. The superior photocatalytic activity of Cur-Ag-SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur-Ag-SnO2 were tested.

  12. Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots

    PubMed Central

    2010-01-01

    Highly luminescent Ag-ion-doped Cd1−xZnxS (0 ≤ x ≤ 1) alloy nanocrystals were successfully synthesized by a novel wet chemical precipitation method. Influence of dopant concentration and the Zn/Cd stoichiometric variations in doped alloy nanocrystals have been investigated. The samples were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) to investigate the size and structure of the as prepared nanocrystals. A shift in LO phonon modes from micro-Raman investigations and the elemental analysis from the energy dispersive X-ray analysis (EDAX) confirms the stoichiometry of the final product. The average crystallite size was found increasing from 1.0 to 1.4 nm with gradual increase in Ag doping. It was observed that photoluminescence (PL) intensity corresponding to Ag impurity (570 nm), relative to the other two bands 480 and 520 nm that originates due to native defects, enhanced and showed slight red shift with increasing silver doping. In addition, decrease in the band gap energy of the doped nanocrystals indicates that the introduction of dopant ion in the host material influence the particle size of the nanocrystals. The composition dependent bandgap engineering in CdZnS:Ag was achieved to attain the deliberate color tunability and demonstrated successfully, which are potentially important for white light generation. PMID:20652135

  13. Influence of Postdeposition Cooling Atmosphere on Thermoelectric Properties of 2% Al-Doped ZnO Thin Films Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Saini, S.; Mele, P.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Luna, L. Molina; Hopkins, P. E.

    2015-06-01

    We have investigated the thermoelectric properties of 2% Al-doped ZnO (AZO) thin films depending on the postdeposition cooling atmosphere [in oxygen pressure (AZO-O) or vacuum (AZO-V)]. Thin films were grown by pulsed laser deposition on sapphire () substrates at various deposition temperatures ( to ). All films were c-axis oriented. The electrical conductivity of AZO-V thin films was higher than that of AZO-O thin films across the whole temperature range from 300 K to 600 K, due to the optimal carrier concentration () of AZO-V samples. Furthermore, the thermoelectric performance of AZO-V films increased with the deposition temperature; for instance, the highest power factor of and dimensionless figure of merit of 0.07 at 600 K were found for AZO-V thin film deposited at.

  14. Investigation of the biaxial stress of Al-doped ZnO thin films on a flexible substrate with RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ting; Chen, Hsi-Chao; Cheng, Po-Wei; Chang, Jhe-Ming

    2016-01-01

    Transparent conductive Al-doped ZnO (AZO) thin films were deposited onto poly(ethylene terephthalate) (PET) substrate, using the radio frequency (RF) magnetron sputtering method. The residual stress of flexible electronics was investigated by a double beam shadow moiré interferometer with phase shifting interferometry (PSI). Moreover, the biaxial stress of AZO thin films can be graphically represented by using Mohr’s circle of stress. The residual stress of AZO thin films becomes more compressive with the increase in sputtering power. The maximum residual stress is -1115.74 MPa, and the shearing stress is 490.57 MPa at a sputtering power of 200 W. The trends of residual stress were evidenced by the X-ray diffraction (XRD) patterns and optical properties of AZO thin films. According to the evaluation results of the refractive index and the extinction coefficient, the AZO thin films have better quality when the sputtering power less than 100 W.

  15. Studies on the Controlling of the Microstructural and Morphological Properties of Al Doped ZnO Thin Films Prepared by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Gil Gang, Myeng; Shin, Seung Wook; Gurav, K. V.; Wang, YinBo; Agawane, G. L.; Lee, Jeong Yong; Moon, Jong-Ha; Hyeok Kim, Jin

    2013-10-01

    Al doped ZnO (AZO) thin films were prepared on ZnO coated glass substrates by hydrothermal synthesis technique using aqueous solutions containing zinc nitrate hexahydrate, ammonium hydroxide, and different sodium citrate concentrations at 60 °C for 6 h. The effects of different trisodium citrate concentrations on the microstructural, crystallinity, morphological, optical, and chemical properties of thin films were investigated. X-ray diffraction studies showed that the AZO thin films were grown as a polycrystalline wurtzite hexagonal phase with a c-axis preferred orientation and without an unwanted second phase regardless of trisodium citrate concentrations. The thickness and grain sizes of AZO thin films decreased with increasing trisodium citrate concentration. The microstructure of AZO thin films was changed from flat to needle shaped and the morphology was smoother with increasing trisodium citrate concentrations. The AZO thin films have a high transmittance in the visible region ranging from 75 to 85% and a sharp edge from 366 to 374 nm.

  16. The Effects of UV Treatment on Thermal and Plasma-Enhanced Atomic Layer Deposition of ZnO Thin Film Transistor

    SciTech Connect

    Kim, Jae-Min; Kim, Doyoung; Kim, Hyungjun; Lim, S. J.

    2011-12-23

    We investigated the ultraviolet (UV) light photostability of plasma-enhanced and thermal atomic layer deposition of ZnO thin film transistor (TFT). The negative shift of threshold voltage was similarly observed in both cases by UV exposure due to the increment of carrier concentration. Additionally, the transfer curves of TFT using thermal ALD ZnO:N active layer were exhibited recovery characteristics.

  17. Spectroscopy and control of near-surface defects in conductive thin film ZnO

    NASA Astrophysics Data System (ADS)

    Kelly, Leah L.; Racke, David A.; Schulz, Philip; Li, Hong; Winget, Paul; Kim, Hyungchul; Ndione, Paul; Sigdel, Ajaya K.; Brédas, Jean-Luc; Berry, Joseph J.; Graham, Samuel; Monti, Oliver L. A.

    2016-03-01

    The electronic structure of inorganic semiconductor interfaces functionalized with extended π-conjugated organic molecules can be strongly influenced by localized gap states or point defects, often present at low concentrations and hard to identify spectroscopically. At the same time, in transparent conductive oxides such as ZnO, the presence of these gap states conveys the desirable high conductivity necessary for function as electron-selective interlayer or electron collection electrode in organic optoelectronic devices. Here, we report on the direct spectroscopic detection of a donor state within the band gap of highly conductive zinc oxide by two-photon photoemission spectroscopy. We show that adsorption of the prototypical organic acceptor C60 quenches this state by ground-state charge transfer, with immediate consequences on the interfacial energy level alignment. Comparison with computational results suggests the identity of the gap state as a near-surface-confined oxygen vacancy.

  18. Bendable ZnO thin film surface acoustic wave devices on polyethylene terephthalate substrate

    SciTech Connect

    He, Xingli; Guo, Hongwei; Chen, Jinkai; Wang, Wenbo; Xuan, Weipeng; Xu, Yang E-mail: jl2@bolton.ac.uk; Luo, Jikui E-mail: jl2@bolton.ac.uk

    2014-05-26

    Bendable surface acoustic wave (SAW) devices were fabricated using high quality c-axis orientation ZnO films deposited on flexible polyethylene terephthalate substrates at 120 °C. Dual resonance modes, namely, the zero order pseudo asymmetric (A{sub 0}) and symmetric (S{sub 0}) Lamb wave modes, have been obtained from the SAW devices. The SAW devices perform well even after repeated flexion up to 2500 με for 100 times, demonstrating its suitability for flexible electronics application. The SAW devices are also highly sensitive to compressive and tensile strains, exhibiting excellent anti-strain deterioration property, thus, they are particularly suitable for sensing large strains.

  19. Spray deposited ZnO: Au thin films for solar cell application

    NASA Astrophysics Data System (ADS)

    Tarwal, N. L.; Harale, N. S.; Jadhav, P. R.; Patil, P. S.

    2012-06-01

    In the present investigation, the ZnO-Au thin films are deposited in-situ with the simple and cost-effective spray pyrolysis technique. The preparative parameters were fine-tuned to yield better quality samples. A surface Plasmon resonance (SPR) induced absorption bands in the visible region have been observed for both the samples deposited at 450°C. The structural evolution of Au-ZnO thin films with doping concentrations are reflected in the XRD patterns. The surface morphological study of the synthesized thin films was carried out using FESEM micrographs. The evolution of the SPR absorption with concentration of the Gold incorporation is discussed. The optical studies were carried out by using UV-Vis Spectrophotometer and spectrofluorometer (JASCO FP-750) at room temperature. These thin films were used for photoelectrochemical (PEC) application. Encouraging results are obtained.

  20. Roughness-based monitoring of transparency and conductivity in boron-doped ZnO thin films prepared by spray pyrolysis

    SciTech Connect

    Gaikwad, Rajendra S.; Bhande, Sambhaji S.; Mane, Rajaram S.; Pawar, Bhagwat N.; Gaikwad, Sanjay L.; Han, Sung-Hwan; Joo, Oh-Shim

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► We report surface roughness dependent transparency and conductivity in ZnO films. ► The surface roughness with respected to boron doping concentrations is studied. ► Boron doped and pristine Zinc oxide thin films have showed ≥95% transmittance. ► Increased carrier concentration of 9.21 × 10{sup 21} cm{sup −3} revealed from Hall measurement. -- Abstract: Sprayed polycrystalline ZnO and boron-doped ZnO thin films composed of spherical grains of 25–32 nm in diameters are used in roughness measurement and further correlated with the transparency and the conductivity characteristics. The surface roughness is increased up to Zn{sub 0.98}B{sub 0.02}O and then declined at higher boron concentrations. The sprayed ZnO films revealed ≥95% transmittance in the visible wavelength range, 1.956 × 10{sup −4} Ω cm electrical resistivity, 46 cm{sup 2}/V s Hall mobility and 9.21 × 10{sup 21} cm{sup −3} charge carrier concentration. The X-ray photoelectron spectroscopy study has confirmed 0.15 eV binding energy change for Zn 2p{sub 3/2} when 2 at% boron content is mixed without altering electro-optical properties substantially. Finally, using soft modeling importance of these textured ZnO over non-textured films for enhancing the solar cells performance is explored.

  1. Spectroscopic Ellipsometry Studies of Ag and ZnO Thin Films and Their Interfaces for Thin Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Sainju, Deepak

    Many modern optical and electronic devices, including photovoltaic devices, consist of multilayered thin film structures. Spectroscopic ellipsometry (SE) is a critically important characterization technique for such multilayers. SE can be applied to measure key parameters related to the structural, optical, and electrical properties of the components of multilayers with high accuracy and precision. One of the key advantages of this non-destructive technique is its capability of monitoring the growth dynamics of thin films in-situ and in real time with monolayer level precision. In this dissertation, the techniques of SE have been applied to study the component layer materials and structures used as back-reflectors and as the transparent contact layers in thin film photovoltaic technologies, including hydrogenated silicon (Si:H), copper indium-gallium diselenide (CIGS), and cadmium telluride (CdTe). The component layer materials, including silver and both intrinsic and doped zinc oxide, are fabricated on crystalline silicon and glass substrates using magnetron sputtering techniques. These thin films are measured in-situ and in real time as well as ex-situ by spectroscopic ellipsometry in order to extract parameters related to the structural properties, such as bulk layer thickness and surface roughness layer thickness and their time evolution, the latter information specific to real time measurements. The index of refraction and extinction coefficient or complex dielectric function of a single unknown layer can also be obtained from the measurement versus photon energy. Applying analytical expressions for these optical properties versus photon energy, parameters that describe electronic transport, such as electrical resistivity and electron scattering time, can be extracted. The SE technique is also performed as the sample is heated in order to derive the effects of annealing on the optical properties and derived electrical transport parameters, as well as the

  2. Ultrafast dynamics of the indoline dye D149 on electrodeposited ZnO and sintered ZrO2 and TiO2 thin films.

    PubMed

    Oum, Kawon; Lohse, Peter W; Flender, Oliver; Klein, Johannes R; Scholz, Mirko; Lenzer, Thomas; Du, Juan; Oekermann, Torsten

    2012-11-28

    The ultrafast photoinjection and subsequent relaxation steps of the indoline dye D149 were investigated in detail for a mesoporous electrodeposited ZnO thin film and compared with experiments on sintered TiO(2) and ZrO(2) thin films, all in contact with air, using pump-supercontinuum probe (PSCP) transient absorption spectroscopy in the range 370-770 nm. D149 efficiently injects electrons into the ZnO surface with time constants from ≤70 fs (time-resolution-limited) up to 250 fs, without the presence of slower components. Subsequent spectral dynamics with a time constant of 20 ps and no accompanying change in the oscillator strength are assigned to a transient Stark shift of the electronic absorption spectrum of D149 molecules in the electronic ground state due to the local electric field exerted by the D149˙(+) radical cations and conduction band electrons in ZnO. This interpretation is consistent with the shape of the relaxed PSCP spectrum at long times, which resembles the first derivative of the inverted steady-state absorption spectrum of D149. In addition, steady-state difference absorption spectra of D149˙(+) in solution from spectroelectrochemistry display a bleach band with distinctly different position, because no first-order Stark effect is present in that case. Interference features in the PSCP spectra probably arise from a change of the refractive index of ZnO caused by the injected electrons. The 20 ps component in the PSCP spectra is likely a manifestation of the transition from an initially formed bound D149˙(+)-electron complex to isolated D149˙(+) and mobile electrons in the ZnO conduction band (which changes the external electric field experienced by D149) and possibly also reorientational motion of D149 molecules in response to the electric field. We identify additional spectral dynamics on a similar timescale, arising from vibrational relaxation of D149˙(+) by interactions with ZnO. TiO(2) exhibits similar dynamics to ZnO. In the case of

  3. Radical modification of the wetting behavior of textiles coated with ZnO thin films and nanoparticles when changing the ambient pressure in the pulsed laser deposition process

    NASA Astrophysics Data System (ADS)

    Popescu, A. C.; Duta, L.; Dorcioman, G.; Mihailescu, I. N.; Stan, G. E.; Pasuk, I.; Zgura, I.; Beica, T.; Enculescu, I.; Ianculescu, A.; Dumitrescu, I.

    2011-09-01

    Cotton/polyester woven fabrics were functionalized with ZnO thin films or nanoparticles by pulsed laser deposition, using a KrF* excimer laser source. Depending on the number of applied laser pulses, well-separated nanoparticles (for 10 pulses) or compact thin films (for 100 pulses) were deposited. The synthesized nanostructures were evaluated morphologically by scanning electron microscopy and atomic force microscopy, physico-chemically by x-ray diffraction and functionally by the contact angle method. By modifying the ambient gas nature and pressure in the deposition chamber, hydrophilic or hydrophobic surfaces were obtained. When using an oxygen flux, both the deposited thin films and nanoparticles were hydrophilic. After deposition in vacuum, the nanoparticles were hydrophobic, but the thin films were super-hydrophobic. This radical modification of wetting behavior was assigned to the differences in microstructure features and surface electrical charging in the two cases.

  4. Investigation of the Gate Bias Stress Instability in ZnO Thin Film Transistors by Low-Frequency Noise Analysis

    NASA Astrophysics Data System (ADS)

    Jeong, Kwang-Seok; Yun, Ho-Jin; Kim, Yu-Mi; Yang, Seung-Dong; Lee, Sang-Youl; Kim, Young-Su; Lee, Hi-Deok; Lee, Ga-Won

    2013-04-01

    To investigate the electrical instability mechanism under the application of gate bias stress and relaxation, the 1/f noise spectra of two different ZnO thin-film transistors (TFTs) were analyzed. In terms of gate bias dependence (SIDS/IDS), both devices followed a mobility fluctuation model based on the traps in their channel layers prior to and after stress. Device A (channel thickness: 20 nm), recovered its initial noise parameter (αapp) after relaxation, in exact agreement with the current-voltage (I-V) measurement results; this shows that in device A, the dominant phenomenon under the application of stress was temporary charge trapping at grain boundary traps. However, in device B (channel thickness: 80 nm), αapp did not recover its initial values after relaxation, and transfer parameters, such as VTH, mobility, SS, and Nt, degraded after the gate bias stress. Moreover, after the stress, device B showed a reduced gate insulator breakdown voltage. The electrical degradation seen in device B can be explained by trap creation and/or charge injection near channel/gate oxide interfaces, including those within the channel layer.

  5. On the sol pH and the structural, optical and electrical properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Meziane, K.; El Hichou, A.; El Hamidi, A.; Mansori, M.; Liba, A.; Almaggoussi, A.

    2016-05-01

    Zinc oxide thin films were prepared by the sol-gel method and deposed on glass substrate using spin coating technique. The variation of the structural, optical and electrical properties with various pH values is investigated. pH values of the sol were adjusted with glacial acetic acid and ammonia. X-ray diffraction analysis showed that the films with alkaline sol are crystallized while those with acidic sol are amorphous. High values of texture coefficient and a high diffraction intensity of the (002) peak, ensuring better growth along c-axis, were obtained for an optimal pH value of 9.5. The crystallite size of the obtained films strongly depends on the sol pH. Scanning Electron Microscopy (SEM) images confirm that the morphology and grain size of the films are affected significantly by pH. The optical transmission was recorded to analyze the optical properties of the studied films. It was found that the optical gap increased with pH. The electrical properties were measured by Hall-effect and reveal an increase of the resistivity when the sol pH increases. A minimum residual intrinsic electrons density suitable for p-type ZnO was reached.

  6. Electronic transport in highly conducting Si-doped ZnO thin films prepared by pulsed laser deposition

    SciTech Connect

    Kuznetsov, Vladimir L.; Vai, Alex T.; Edwards, Peter P.; Al-Mamouri, Malek; Stuart Abell, J.; Pepper, Michael

    2015-12-07

    Highly conducting (ρ = 3.9 × 10{sup −4} Ωcm) and transparent (83%) polycrystalline Si-doped ZnO (SiZO) thin films have been deposited onto borosilicate glass substrates by pulsed laser deposition from (ZnO){sub 1−x}(SiO{sub 2}){sub x} (0 ≤ x ≤ 0.05) ceramic targets prepared using a sol-gel technique. Along with their structural, chemical, and optical properties, the electronic transport within these SiZO samples has been investigated as a function of silicon doping level and temperature. Measurements made between 80 and 350 K reveal an almost temperature-independent carrier concentration consistent with degenerate metallic conduction in all of these samples. The temperature-dependent Hall mobility has been modeled by considering the varying contribution of grain boundary and electron-phonon scattering in samples with different nominal silicon concentrations.

  7. On the relevance of large scale pulsed-laser deposition: Evidence of structural heterogeneities in ZnO thin films

    NASA Astrophysics Data System (ADS)

    Perrière, J.; Hebert, C.; Jedrecy, N.; Seiler, W.; Zanellato, O.; Portier, X.; Perez-Casero, R.; Millon, E.; Nistor, M.

    2014-09-01

    Pulsed-laser deposition is known as a well-suited method for growing thin films of oxide compounds presenting a wide range of functional properties. A limitation of this method for industrial process is the very anisotropic expansion dynamics of the plasma plume, which induces difficulties to grow on large scale films with homogeneous thickness and composition. The specific aspect of the crystalline or orientation uniformity has not been investigated, despite its important role on oxide films properties. In this work, the crystalline parameters and the texture of zinc oxide films are studied as a function of position with respect to the central axis of the plasma plume. We demonstrate the existence of large non-uniformities in the films. The stoichiometry, the lattice parameter, and the distribution of crystallites orientations drastically depend on the position with respect to the plume axis, i.e., on the oblique incidence of the ablated species. The origin of these non-uniformities, in particular, the unexpected tilted orientation of the ZnO c-axis may be attributed to the combined effects of the oblique incidence and of the ratio between oxygen and zinc fluxes reaching the surface of the growing film.

  8. Al-doped ZnO Nanostructured Thin Films: Density Functional Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Sarma, J. V. N.; Rahman, A.; Jayaganthan, R.; Chowdhury, Rajib; Haranath, D.

    2015-06-01

    Nanostructured Al-doped ZnO (AZO) films are deposited on glass substrates by electroless deposition technique in the present work. AZO films with Al concentration from 1 at.% to 5 at.% are investigated for their structural and morphological properties by X-ray diffraction (XRD), and atomic force microscopy (AFM). An excellent homogeneity is achieved with average crystallite sizes of below 32 nm and a nearly constant root mean square (RMS) surface roughness between 1 nm and 3 nm, for various Al doping concentrations. These smooth and uniform films are characterized for their optical and photoluminescence (PL) properties. A higher value of average transparency between 79% and 92% in the wavelength range of 300-800 nm is achieved, and the PL intensity is found to be a strong function of doping. Density functional theory (DFT) calculations agree with the measured transmittance values, in addition to their predicted electronic structure. Moreover, time-resolved PL measurements indicate that the luminescence decay time decreases with increased doping concentration.

  9. Quantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy

    PubMed Central

    Maragliano, C.; Lilliu, S.; Dahlem, M. S.; Chiesa, M.; Souier, T.; Stefancich, M.

    2014-01-01

    In the last years there has been a renewed interest for zinc oxide semiconductor, mainly triggered by its prospects in optoelectronic applications. In particular, zinc oxide thin films are being widely used for photovoltaic applications, in which the determination of the electrical conductivity is of great importance. Being an intrinsically doped material, the quantification of its doping concentration has always been challenging. Here we show how to probe the charge carrier density of zinc oxide thin films by Scanning Kelvin Probe Microscopy, a technique that allows measuring the contact potential difference between the tip and the sample surface with high spatial resolution. A simple electronic energy model is used for correlating the contact potential difference with the doping concentration in the material. Limitations of this technique are discussed in details and some experimental solutions are proposed. Two-dimensional doping concentration images acquired on radio frequency-sputtered intrinsic zinc oxide thin films with different thickness and deposited under different conditions are reported. We show that results inferred with this technique are in accordance with carrier concentration expected for zinc oxide thin films deposited under different conditions and obtained from resistivity and mobility measurements. PMID:24569599

  10. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Structural and Electrical Properties of Single Crystalline Ga-Doped ZnO Thin Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lu, Zhong-Lin; Zou, Wen-Qin; Xu, Ming-Xiang; Zhang, Feng-Ming; Du, You-Wei

    2009-11-01

    High-quality Ga-doped ZnO (ZnO:Ga) single crystalline films with various Ga concentrations are grown on a-plane sapphire substrates using molecular-beam epitaxy. The site configuration of doped Ga atoms is studied by means of x-ray absorption spectroscopy. It is found that nearly all Ga can substitute into ZnO lattice as electrically active donors, a generating high density of free carriers with about one electron per Ga dopant when the Ga concentration is no more than 2%. However, further increasing the Ga doping concentration leads to a decrease of the conductivity due to partial segregation of Ga atoms to the minor phase of the spinel ZnGa2O4 or other intermediate phase. It seems that the maximum solubility of Ga in the ZnO single crystalline film is about 2 at.% and the lowest resistivity can reach 1.92 × 10-4 Ω·cm at room temperature, close to the best value reported. In contrast to ZnO:Ga thin film with 1% or 2% Ga doping, the film with 4% Ga doping exhibits a metal semiconductor transition at 80 K. The scattering mechanism of conducting electrons in single crystalline ZnO:Ga thin film is discussed.

  11. The different roles of contact materials between oxidation interlayer and doping effect for high performance ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Huang, Chun-Wei; Abliz, Ablat; Hua, Yang; Liao, Lei; Wu, Wen-Wei; Xiao, Xiangheng; Jiang, Changzhong; Liu, Wei; Li, Jinchai

    2015-02-01

    To improve the performance of ZnO thin film transistors (TFTs) by using appropriate metal contacts, the different roles of contact materials between oxidation interlayer and doping effect are investigated. With careful characterization, an oxidation interlayer has been verified at the interface between ZnO film and Al or Ti contact, which is suggested to be responsible for contact resistance and thermal reliability. On the other hand, it is observed that the doping effect is the main reason for the Sn or Cu contact characteristics. The superior contact using Sn is due to an oxidation-free interface, donor doping effect, and a low barrier height. By using a metal contact with a high Gibbs free energy, the metal layer would hardly consume oxygen from channel layer during sputtering and easily form no oxidation interlayer. Thus, choosing a metal contact is important when fabricating high-performance metal-oxide TFTs for flat-panel displays.

  12. Ferromagnetism in 200-MeV Ag{sup +15}-ion-irradiated Co-implanted ZnO thin films

    SciTech Connect

    Angadi, Basavaraj; Jung, Y.S.; Choi, Won-Kook; Kumar, Ravi; Jeong, K.; Shin, S.W.; Lee, J.H.; Song, J.H.; Wasi Khan, M.; Srivastava, J.P.

    2006-04-03

    Structural, electrical resistivity, and magnetization properties of 200-MeV Ag{sup +15}-ion-irradiated Co-implanted ZnO thin films are presented. The structural studies show the presence of Co clusters whose size is found to increase with increase of Co implantation. The implanted films were irradiated with 200-MeV Ag{sup +15} ions to fluence of 1x10{sup 12} ions/cm{sup 2}. The Co clusters on irradiation dissolve in the ZnO matrix. The electrical resistivity of the irradiated samples is lowered to half. The magnetization hysteresis measurements show ferromagnetic behavior at 300 K, and the coercive field increases with the Co implantation. The ferromagnetism at room temperature is confirmed by magnetic force microscopy measurements. The results are explained on the basis of the close interplay between the electrical and the magnetic properties.

  13. Characterization of deep acceptor level in as-grown ZnO thin film by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Asghar, M.; K., Mahmood; A. Hasan, M.; T. Ferguson, I.; Tsu, R.; Willander, M.

    2014-09-01

    We report deep level transient spectroscopy results from ZnO layers grown on silicon by molecular beam epitaxy (MBE). The hot probe measurements reveal mixed conductivity in the as-grown ZnO layers, and the current—voltage (I—V) measurements demonstrate a good quality p-type Schottky device. A new deep acceptor level is observed in the ZnO layer having activation energy of 0.49 ±0.03 eV and capture cross-section of 8.57 × 10-18 cm2. Based on the results from Raman spectroscopy, photoluminescence, and secondary ion mass spectroscopy (SIMS) of the ZnO layer, the observed acceptor trap level is tentatively attributed to a nitrogen-zinc vacancy complex in ZnO.

  14. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli.

    PubMed

    Gupta, Kiran; Singh, R P; Pandey, Ashutosh; Pandey, Anjana

    2013-01-01

    This paper reports the structural and optical properties and comparative photocatalytic activity of TiO2 and Ag-doped TiO2 nanoparticles against different bacterial strains under visible-light irradiation. The TiO2 and Ag-doped TiO2 photocatalysts were synthesized by acid catalyzed sol-gel technique and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectroscopy and photoluminescence (PL). The XRD pattern revealed that the annealed sample of TiO2 has both anatase and rutile phases while only an anatase phase was found in Ag-doped TiO2 nanoparticles. The decreased band-gap energy of Ag-doped TiO2 nanoparticles in comparison to TiO2 nanoparticles was investigated by UV-vis spectroscopy. The rate of recombination and transfer behaviour of the photoexcited electron-hole pairs in the semiconductors was recorded by photoluminescence. The antimicrobial activity of TiO2 and Ag-doped TiO2 nanoparticles (3% and 7%) was investigated against both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. As a result, the viability of all three microorganisms was reduced to zero at 60 mg/30 mL culture in the case of both (3% and 7% doping) concentrations of Ag-doped TiO2 nanoparticles. Annealed TiO2 showed zero viability at 80 mg/30 mL whereas doped Ag-TiO2 7% showed zero viability at 40 mg/30 mL culture in the case of P. aeruginosa only.

  15. Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Hsing; Chang, Chiao-Lu

    2016-05-01

    ZnO is a wide bandgap semiconductor that has many potential applications such as solar cells, thin film transistors, light emitting diodes, and gas/biological sensors. In this study, a composite ceramic ZnO target containing 1 wt% Al2O3 and 1.5 wt% ZnF2 was prepared and used to deposit transparent conducting Al and F co-doped zinc oxide (AFZO) thin films on glass substrates by radio frequency magnetron sputtering. The effect of substrate temperatures ranging from room temperature (RT) to 200 °C on structural, morphological, electrical, chemical, and optical properties of the deposited thin films were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), Hall effect measurement, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and UV-vis spectrophotometer. The XRD results showed that all the AFZO thin films had a (0 0 2) diffraction peak, indicating a typical wurtzite structure with a preferential orientation of the c-axis perpendicular to the substrate. The FE-SEM and AFM analyses indicated that the crystallinity and grain size of the films were enhanced while the surface roughness decreased as the substrate temperature increased. Results of Hall effect measurement showed that Al and F co-doping decreased the resistivity more effectively than single-doping (either Al or F doping) in ZnO thin films. The resistivity of the AFZO thin films decreased from 5.48 × 10-4 to 2.88 × 10-4 Ω-cm as the substrate temperature increased from RT to 200 °C due to the increased carrier concentration and Hall mobility. The optical transmittances of all the AFZO thin films were over 92% in the wavelength range of 400-800 nm regardless of substrate temperature. The blue-shift of absorption edge accompanied the rise of the optical band gap, which conformed to the Burstein-Moss effect. The developed AFZO thin films are suitable as transparent conducting electrodes for various optoelectronic

  16. Structural, linear and nonlinear optical properties of co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Shaaban, E. R.; El-Hagary, M.; Moustafa, El Sayed; Hassan, H. Shokry; Ismail, Yasser A. M.; Emam-Ismail, M.; Ali, A. S.

    2016-01-01

    Different compositions of Co-doped zinc oxide [(Zn(1- x)Co x O) ( x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10)] thin films were evaporated onto highly clean glass substrates by thermal evaporation technique using a modified source. The structural properties investigated by X-ray diffraction revealed hexagonal wurtzite ZnO-type structure. The crystallite size of the films was found to decrease with increasing Co content. The optical characterization of the films has been carried out using spectral transmittance and reflectance obtained in the wavelength range from 300 to 2500 nm. The refractive index has been found to increase with increasing Co content. It was further found that optical energy gap decreases from 3.28 to 3.03 eV with increasing Co content from x = 0 to x = 0.10, respectively. The dispersion of refractive index has been analyzed in terms of Wemple-DiDomenico (WDD) single-oscillator model. The oscillator parameters, the single-oscillator energy ( E o), the dispersion energy ( E d), and the static refractive index ( n 0), were determined. The nonlinear refractive index of the Zn(1- x)Co x O thin films was calculated and revealed well correlation with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system.

  17. Modulation of microstructure and optical properties of Mo-doped ZnO thin films by substrate temperature

    SciTech Connect

    Zhang, J.W.; He, G.; Li, T.S.; Liu, M.; Chen, X.S.; Liu, Y.M.; Sun, Z.Q.

    2015-05-15

    Highlights: • Mo-doped ZnO films are obtained by sputtering at various substrate temperatures. • High-quality MZO thin films with good crystalline have been obtained at 200 °C. • Deposition temperature affects the amount of defects in the crystalline structure - Abstract: Mo-doped ZnO(MZO) films were deposited on Si (1 1 1) substrates by radio frequency sputtering at different substrate temperatures of 200, 300 and 400 °C. The effect of the substrate temperature on the structural and optical properties of the MZO films has been investigated. X-ray diffraction results reveal that all the films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction (0 0 2) plane. The crystallinity and surface morphologies of the films are strongly dependent on the growth temperature, which in turn exerts a great effect on microstructural and optical properties of the MZO films. The optical absorption measurements show high ultraviolet (UV) absorbance property of MZO with sharp and intense absorption band in this region and the optical band gap (E{sub g}) are 3.18, 3.22, 3.25 and 3.21 eV for the films deposited at room temperature, 200, 300 and 400 °C. The photoluminescence (PL) intensity of a strong broad violet–blue emission from MZO nanostructures with increasing deposited temperature was also observed. X-ray photoelectron spectroscopy (XPS) was employed to investigate the surface chemical composition of growth products.

  18. Effect of annealing on the structural and nonlinear optical properties of ZnO thin films under cw regime

    NASA Astrophysics Data System (ADS)

    Nagaraja, K. K.; Pramodini, S.; Poornesh, P.; Nagaraja, H. S.

    2013-02-01

    We report on the studies of the effects of annealing on the structural and third-order nonlinear optical properties of ZnO thin films deposited on quartz substrates by the RF magnetron sputtering technique. The films were annealed in the temperature range 400-1000 °C. The third-order nonlinear optical studies were carried out using the z-scan technique under continuous wave (cw) He-Ne laser irradiation at 633 nm wavelength. The effects of annealing on the structural properties were examined using x-ray diffraction and atomic force microscopy (AFM). The (0 0 2) preferred orientation increased with increase in annealing temperature up to 800 °C. The crystalline phases of SiO2 were observed at higher annealing temperatures. The appearance of an extraneous phase was confirmed by AFM images and optical transmittance spectra. The samples exhibited nonlinear absorption and nonlinear refraction under the experimental conditions. The negative sign of the nonlinear refractive index n2 indicated that the films exhibit self-defocusing property due to thermal nonlinearity. The nonlinear refractive index n2, the nonlinear absorption coefficient βeff and the third-order optical susceptibility χ(3) were found to be of the highest orders. The estimated value of third-order optical susceptibility χ(3) was of the order of 10-3 esu. Multiple diffraction rings were observed when the samples were exposed to the laser beam. The appearance of rings was due to the refractive index change and thermal lensing. With increase in laser intensity, the variations of the self-diffraction ring patterns were studied experimentally. The films also exhibited strong optical limiting properties under cw laser excitation, and reverse saturable absorption was the dominant process leading to the observed nonlinear behaviour.

  19. Growth, structure, and electronic properties of nonpolar thin films on a polar substrate: Cr2O3 on ZnO (0001) and ZnO (000 1 ¯ )

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Morales-Acosta, M. D.; Shen, J.; Walker, F. J.; Cha, J. J.; Altman, E. I.

    2015-10-01

    The growth and geometric and electronic structures of Cr2O3 layers on the polar ZnO surfaces were characterized to determine how polar substrates can influence the properties of nonpolar films. X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy (UPS), high resolution transmission electron microscopy (HRTEM), reflection high energy electron diffraction, low energy electron diffraction, x-ray diffraction (XRD), and x-ray reflectivity (XRR) were employed to characterize the growth mode, film quality, and interfacial electronic properties. Chromium oxide growth on ZnO (000 1 ¯ ) and (0001 ) followed the same trends: two-dimensional growth with initial disorder followed by the formation of epitaxial Cr2O3 (0001 ) . Despite the initial disorder, HRTEM and XRD/XRR measurements on thicker films revealed an abrupt interface with the Cr2O3 lattice extending all the way to the interface. This indicates that above a critical thickness of 10-15 Cr -O3-Cr repeat units, the entire film reorganizes into an ordered structure. It is postulated that the oxygen remained ordered throughout the growth but that the chromium initially filled interstices randomly in the oxygen sublattice, which allowed the film to eventually grow with a well-defined epitaxial relationship with the substrate. The polar interfaces showed a small band offset that decayed with increasing film thickness, suggesting that the compensating charges at the interface may partially migrate to the film surface. No evidence of formal changes in the Cr oxidation state at the interfaces was seen. On the other hand, statistical analyses of UPS valence band spectra revealed an enhanced density of states near the valence band edge for Cr2O3 on ZnO (0001 ) , consistent with stabilization of the positive interface by filling surface electronic states. In contrast, no significant valence band differences were observed between bulk Cr2O3 and thin Cr2O3 layers on ZnO (000 1 ¯ ) , suggesting a different

  20. Influence of Sn doping on structural, optical and electrical properties of ZnO thin films prepared by cost effective sol-gel process

    NASA Astrophysics Data System (ADS)

    Vishwas, M.; Narasimha Rao, K.; Arjuna Gowda, K. V.; Chakradhar, R. P. S.

    Tin (Sn) doped zinc oxide (ZnO) thin films were synthesized by sol-gel spin coating method using zinc acetate di-hydrate and tin chloride di-hydrate as the precursor materials. The films were deposited on glass and silicon substrates and annealed at different temperatures in air ambient. The agglomeration of grains was observed by the addition of Sn in ZnO film with an average grain size of 60 nm. The optical properties of the films were studied using UV-VIS-NIR spectrophotometer. The optical band gap energies were estimated at different concentrations of Sn. The MOS capacitors were fabricated using Sn doped ZnO films. The capacitance-voltage (C-V), dissipation vs. voltage (D-V) and current-voltage (I-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated. The porosity and surface area of the films were increased with the doping of Sn which makes these films suitable for opto-electronic applications.

  1. Observation of dopant-profile independent electron transport in sub-monolayer TiOx stacked ZnO thin films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Saha, D.; Misra, P.; Das, Gangadhar; Joshi, M. P.; Kukreja, L. M.

    2016-01-01

    Dopant-profile independent electron transport has been observed through a combined study of temperature dependent electrical resistivity and magnetoresistance measurements on a series of Ti incorporated ZnO thin films with varying degree of static-disorder. These films were grown by atomic layer deposition through in-situ vertical stacking of multiple sub-monolayers of TiOx in ZnO. Upon decreasing ZnO spacer layer thickness, electron transport smoothly evolved from a good metallic to an incipient non-metallic regime due to the intricate interplay of screening of spatial potential fluctuations and strength of static-disorder in the films. Temperature dependent phase-coherence length as extracted from the magnetotransport measurement revealed insignificant role of inter sub-monolayer scattering as an additional channel for electron dephasing, indicating that films were homogeneously disordered three-dimensional electronic systems irrespective of their dopant-profiles. Results of this study are worthy enough for both fundamental physics perspective and efficient applications of multi-stacked ZnO/TiOx structures in the emerging field of transparent oxide electronics.

  2. Photocatalytic activity of V doped ZnO nanoparticles thin films for the removal of 2- chlorophenol from the aquatic environment under natural sunlight exposure.

    PubMed

    Salah, Numan; Hameed, A; Aslam, M; Babkair, Saeed S; Bahabri, F S

    2016-07-15

    Vanadium doped ZnO powders were used as precursors to deposit thin films of V(5+) incorporated ZnO nanoparticles on glass substrates by the pulsed laser deposition technique. The observed variations in Raman signals, visible region shift in the diffuse reflectance spectra along with a small shift in the (101) reflections of the X-ray diffraction (XRD) confirmed the insertion of V(5+) ions in ZnO lattice. No other additional reflection in the XRD results other than ZnO further endorsed the occupation of lattice positions by V entities rather than independent oxide formation. The asymmetric XPS peaks of Zn2p and V2p core levels confirmed the existence of both in the vicinity. The existence of minimal proportion of V(3+) along with V(5+) states varied the alteration of the oxidation states V in the synthetic route. The SEM images at various resolutions displayed the uniform distribution identical nanoparticles without the presence of additional phases in the deposited films. The SEM cross-section measurements revealed the uniform thickness of ∼90 nm of each film, whereas the surface studies of the films were performed by AFM. The as-synthesized films were tested for photocatalytic activity in sunlight illumination for the removal of 2-chlorophenol. The unique feature of the study was the estimation of the photocatalytic activity 20 ppm of 2-chlorophenol by exposing the low exposed area. The degradation of the substrate was measured by liquid phase UV-vis spectroscopy, whereas total organic carbon measurement revealed the mineralization of the substrate. The released Cl(-) ions were also measured by ion chromatography. The estimated flatband potentials and pHzpc values of the V doped materials, by Mott-Schottky analysis and zeta potential measurements respectively, were correlated with the photocatalytic activity. The kinetics of the photocatalytic degradation/mineralization process was estimated and results were correlated with the plausible mechanism.

  3. Photocatalytic degradation of gaseous toluene over Ag-doping TiO₂ nanotube powder prepared by anodization coupled with impregnation method.

    PubMed

    Li, Xinyong; Zou, Xuejun; Qu, Zhenping; Zhao, Qidong; Wang, Lianzhou

    2011-04-01

    In this work, Ag-doping TiO(2) nanotubes were prepared and employed as the photocatalyst for the degradation of toluene. The TiO(2) nanotube powder was produced by the rapid-breakdown potentiostatic anodization of Ti foil in chloride-containing electrolytes, and then doped with Ag through an incipient wetness impregnation method. The samples were characterized by scanning electron microscope, high-resolution transmission electron microscopy, X-ray diffraction, surface photovoltage measurements, X-ray photoelectron spectroscopy and N(2) adsorption. The nanotubular TiO(2) photocatalysts showed an outer diameter of approximately 40nm, fine mesoporous structure and high specific surface area. The photocatalytic activity of Ag-doping TiO(2) nanotube powder was evaluated through photooxidation of gaseous toluene. The results indicated that the degradation efficiency of toluene could get 98% after 4h reaction using the Ag-doping TiO(2) nanotubes as the photocatalyst under UV light illumination, which was higher than that of the pure TiO(2) nanotubes, Ag-doping P25 or P25. Benzaldehyde species could be observed during the photocatalytic oxidation monitored by in situ FTIR, and the formed benzaldehyde intermediate during reaction would be partially oxidized into CO(2) and H(2)O. PMID:21435692

  4. High Performance Flexible Actuator of Urchin-Like ZnO Nanostructure/Polyvinylenefluoride Hybrid Thin Film with Graphene Electrodes for Acoustic Generator and Analyzer.

    PubMed

    Cheong, Oug Jae; Lee, James S; Kim, Jae Hyun; Jang, Jyongsik

    2016-05-01

    A bass frequency response enhanced flexible polyvinylidene fluoride (PVDF) based thin film acoustic actuator is successfully fabricated. High concentrations of various zinc oxide (ZnO) is embedded in PVDF matrix, enhancing the β phase content and the dielectric property of the composite thin film. ZnO acts as a nucleation agent for the crystallization of PVDF. A chemical vapor deposition grown graphene is used as electrodes, enabling high electron mobility for the distortion free acoustic signals. The frequency response of the fabricated acoustic actuator is studied as a function of the film thickness and filler content. The optimized film has a thickness of 80 μm with 30 wt% filler content and shows 72% and 42% frequency response enhancement in bass and midrange compared to the commercial PVDF, respectively. Also, the total harmonic distortion decreases to 82% and 74% in the bass and midrange regions, respectively. Furthermore, the composite film shows a promising potential for microphone applications. Most of all, it is demonstrated that acoustic actuator performance is strongly influenced by degree of PVDF crystalline.

  5. High Performance Flexible Actuator of Urchin-Like ZnO Nanostructure/Polyvinylenefluoride Hybrid Thin Film with Graphene Electrodes for Acoustic Generator and Analyzer.

    PubMed

    Cheong, Oug Jae; Lee, James S; Kim, Jae Hyun; Jang, Jyongsik

    2016-05-01

    A bass frequency response enhanced flexible polyvinylidene fluoride (PVDF) based thin film acoustic actuator is successfully fabricated. High concentrations of various zinc oxide (ZnO) is embedded in PVDF matrix, enhancing the β phase content and the dielectric property of the composite thin film. ZnO acts as a nucleation agent for the crystallization of PVDF. A chemical vapor deposition grown graphene is used as electrodes, enabling high electron mobility for the distortion free acoustic signals. The frequency response of the fabricated acoustic actuator is studied as a function of the film thickness and filler content. The optimized film has a thickness of 80 μm with 30 wt% filler content and shows 72% and 42% frequency response enhancement in bass and midrange compared to the commercial PVDF, respectively. Also, the total harmonic distortion decreases to 82% and 74% in the bass and midrange regions, respectively. Furthermore, the composite film shows a promising potential for microphone applications. Most of all, it is demonstrated that acoustic actuator performance is strongly influenced by degree of PVDF crystalline. PMID:27028524

  6. Photocatalytic activity of undoped and Ag-doped TiO{sub 2}-supported zeolite for humic acid degradation and mineralization

    SciTech Connect

    Lazau, C.; Ratiu, C.; Orha, C.; Pode, R.; Manea, F.

    2011-11-15

    Highlights: {yields} Hybrid materials based on natural zeolite and TiO{sub 2} obtained by solid-state reaction. {yields} XRD proved the presence of anatase form of undoped and Ag-doped TiO{sub 2} onto zeolite. {yields} FT-IR spectra evidenced the presence on TiO{sub 2} bounded at the zeolite network. {yields} Ag-doped TiO{sub 2} onto zeolitic matrix exhibited an enhanced photocatalytic activity. -- Abstract: The hybrid materials based on natural zeolite and undoped and Ag-doped TiO{sub 2}, i.e., Z-Na-TiO{sub 2} and Z-Na-TiO{sub 2}-Ag, were successfully synthesized by solid-state reaction in microwave-assisted hydrothermal conditions. Undoped TiO{sub 2} and Ag-doped TiO{sub 2} nanocrystals were previously synthesized by sol-gel method. The surface characterization of undoped TiO{sub 2}/Ag-doped TiO{sub 2} and natural zeolite hybrid materials has been investigated by X-ray diffraction, DRUV-VIS spectroscopy, FT-IR spectroscopy, BET analysis, SEM microscopy and EDX analysis. The results indicated that anatase TiO{sub 2} is the dominant crystalline type as spherical form onto zeolitic matrix. The presence of Ag into Z-Na-TiO{sub 2}-Ag was confirmed by EDX analysis. The DRUV-VIS spectra showed that Z-Na-TiO{sub 2}-Ag exhibited absorption within the range of 400-500 nm in comparison with Z-Na-TiO{sub 2} catalyst. The enhanced photocatalytic activity of Z-Na-TiO{sub 2}-Ag catalyst is proved through the degradation and mineralization of humic acid under ultraviolet and visible irradiation.

  7. Cu ions induced reorientation of crystallite in ZnO nano/micro rod arrays thin films

    NASA Astrophysics Data System (ADS)

    Soundarrajan, P.; Sankarasubramanian, K.; Sampath, M.; Logu, T.; Sethuraman, K.; Ramamurthi, K.

    2015-07-01

    Undoped and Cu doped ZnO nano/microrod arrays (N/MRAs) films were grown on seeded glass substrates by chemical bath deposition technique. The structural and morphological characterizations (X-ray diffraction and scanning electron microscopy) clearly illustrate that the pure ZnO N/MRAs has well-defined hexagonal prismatic cross-sectional crystallographic facets and its crystallographic plane is more vertically grown along (002) crystallographic direction. The horizontally aligned (100) crystallographic plane is induced at 20% Cu doping level. Morphological structure of ZnO N/MRAs changed into nanoplates/microballs with increasing of Cu doping level. Hexagonal crystal structure of undoped and Cu doped ZnO N/MRAs is then confirmed by μ-Raman scattering. Energy band gaps are found to be decreased with Cu doping and reached a minimum of 3.04 eV when doping level is 20%. The defect related peak intensity is suppressed in ZnO N/MRAs by Cu doping.

  8. Thermoelectric properties optimization of Al-doped ZnO thin films prepared by reactive sputtering Zn-Al alloy target

    NASA Astrophysics Data System (ADS)

    Fan, Ping; Li, Ying-zhen; Zheng, Zhuang-hao; Lin, Qing-yun; Luo, Jing-ting; Liang, Guang-xing; Zhang, Miao-qin; Chen, Min-cong

    2013-11-01

    Al-doped ZnO (AZO) has practical applications in the industry for thermoelectric generation, owing to its nontoxicity, low-cost and stability at high temperatures. In this study, AZO thin films with high quality were deposited on BK7 glass substrates at room-temperature by direct current reactive magnetron sputtering using Zn-Al alloy target. The deposited thin films were annealed at various temperatures ranging from 623 K to 823 K with a space of 50 K. It is found that the absolute value of Seebeck coefficient of AZO thin film annealed at 723 K increases stably with increasing of measuring temperature and reaches a value of ∼60 μV/K at 575 K. After that, Al-doping content was varied to further optimize the thermoelectric properties of AZO thin films. The power factor of AZO thin films with Al content of 3 wt% increased with increase of measuring temperature and the maximum power factor of 1.54 × 10-4 W m-1K-2 was obtained at 550 K with the maximum absolute values of Seebeck coefficient of 99 μV/K, which is promising for high temperature thermoelectric application.

  9. Growth, structural and optoelectronic properties tuning of nitrogen-doped ZnO thin films synthesized by means of reactive pulsed laser deposition

    SciTech Connect

    Naouar, M.; Ka, I.; Gaidi, M.; Alawadhi, H.; Bessais, B.; Khakani, M.A.El

    2014-09-15

    Highlights: • PLD technique has been used to elaborate N doped ZnO. • A maximum incorporation of 0.7 at.% has been achieved at a pressure of 25 mTorr. • Increasing the N{sub 2} pressure decreases the nitrogen content with the creation of more defects. • Optical transmission and PL spectra have confirmed the band gap narrowing. - Abstract: Pulsed laser deposition has been successfully used to achieve in-situ nitrogen doping of zinc oxide thin films at a temperature as low as 300 °C. Nitrogen-doped zinc oxide (ZnO:N) thin films with a maximum nitrogen content of 0.7 at.% were obtained by varying the nitrogen background pressure in the range of 0–150 mTorr. The ZnO:N thin films were found to present hexagonal crystalline structure with dense and smooth surface. X-ray photoelectron spectroscopy analysis confirms the effective incorporation of nitrogen into ZnO thin films. Optical transmission together with room temperature photoluminescence measurements show that the band gap of the ZnO:N films shifts from 3.3 eV to 3.1 eV as nitrogen concentration varies in the range of 0.2–0.7 at.%. The narrower band gap is obtained at an optimal nitrogen concentration of 0.22 at.%. This band gap narrowing is found to be caused by both nitrogen incorporation and nitrogen-induced defects in the ZnO:N films.

  10. Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition.

    PubMed

    Zhai, Chen-Hui; Zhang, Rong-Jun; Chen, Xin; Zheng, Yu-Xiang; Wang, Song-You; Liu, Juan; Dai, Ning; Chen, Liang-Yao

    2016-12-01

    The tuning of structural, optical, and electrical properties of Al-doped ZnO films deposited by atomic layer deposition technique is reported in this work. With the increasing Al doping level, the evolution from (002) to (100) diffraction peaks indicates the change in growth mode of ZnO films. Spectroscopic ellipsometry has been applied to study the thickness, optical constants, and band gap of AZO films. Due to the increasing carrier concentration after Al doping, a blue shift of band gap and absorption edge can be observed, which can be interpreted by Burstein-Moss effect. The carrier concentration and resistivity are found to vary significantly among different doping concentration, and the optimum value is also discussed. The modulations and improvements of properties are important for Al-doped ZnO films to apply as transparent conductor in various applications.

  11. Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhai, Chen-Hui; Zhang, Rong-Jun; Chen, Xin; Zheng, Yu-Xiang; Wang, Song-You; Liu, Juan; Dai, Ning; Chen, Liang-Yao

    2016-09-01

    The tuning of structural, optical, and electrical properties of Al-doped ZnO films deposited by atomic layer deposition technique is reported in this work. With the increasing Al doping level, the evolution from (002) to (100) diffraction peaks indicates the change in growth mode of ZnO films. Spectroscopic ellipsometry has been applied to study the thickness, optical constants, and band gap of AZO films. Due to the increasing carrier concentration after Al doping, a blue shift of band gap and absorption edge can be observed, which can be interpreted by Burstein-Moss effect. The carrier concentration and resistivity are found to vary significantly among different doping concentration, and the optimum value is also discussed. The modulations and improvements of properties are important for Al-doped ZnO films to apply as transparent conductor in various applications.

  12. Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition.

    PubMed

    Zhai, Chen-Hui; Zhang, Rong-Jun; Chen, Xin; Zheng, Yu-Xiang; Wang, Song-You; Liu, Juan; Dai, Ning; Chen, Liang-Yao

    2016-12-01

    The tuning of structural, optical, and electrical properties of Al-doped ZnO films deposited by atomic layer deposition technique is reported in this work. With the increasing Al doping level, the evolution from (002) to (100) diffraction peaks indicates the change in growth mode of ZnO films. Spectroscopic ellipsometry has been applied to study the thickness, optical constants, and band gap of AZO films. Due to the increasing carrier concentration after Al doping, a blue shift of band gap and absorption edge can be observed, which can be interpreted by Burstein-Moss effect. The carrier concentration and resistivity are found to vary significantly among different doping concentration, and the optimum value is also discussed. The modulations and improvements of properties are important for Al-doped ZnO films to apply as transparent conductor in various applications. PMID:27639580

  13. Dye-sensitized solar cell based on spray deposited ZnO thin film: Performance analysis through DFT approach

    NASA Astrophysics Data System (ADS)

    Parthiban, R.; Balamurugan, D.; Jeyaprakash, B. G.

    2015-02-01

    A dye-sensitized solar cell based on a spray deposited zinc oxide (ZnO) photoanode with Evans blue as a sensitizer was fabricated. Structural analysis confirms the hexagonal wurtzite phase of the ZnO photoanode with c-axis orientation. Surface morphology of the ZnO photoanode shows uniform distribution of spherically-shaped grains, ranging from 18 nm to 25 nm. The power conversion efficiency of the device was measured as 0.1%. Density functional theory was adopted to study the observed photovoltaic performance of the fabricated device. The analysis of the electronic properties of Evans blue dye showed that it has a pronounced effect on the observed device performance.

  14. Dye-sensitized solar cell based on spray deposited ZnO thin film: performance analysis through DFT approach.

    PubMed

    Parthiban, R; Balamurugan, D; Jeyaprakash, B G

    2015-02-01

    A dye-sensitized solar cell based on a spray deposited zinc oxide (ZnO) photoanode with Evans blue as a sensitizer was fabricated. Structural analysis confirms the hexagonal wurtzite phase of the ZnO photoanode with c-axis orientation. Surface morphology of the ZnO photoanode shows uniform distribution of spherically-shaped grains, ranging from 18 nm to 25 nm. The power conversion efficiency of the device was measured as 0.1%. Density functional theory was adopted to study the observed photovoltaic performance of the fabricated device. The analysis of the electronic properties of Evans blue dye showed that it has a pronounced effect on the observed device performance. PMID:25459624

  15. Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100°C

    PubMed Central

    2011-01-01

    Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10-xAgx(PO4)6(OH)2 (x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp (x = 0) and Ag:HAp (x = 0.2). The Ag:Hap nanopowder showed higher inhibition. PMID:22136671

  16. Growth of Cu{sub 2}O on Ga-doped ZnO and their interface energy alignment for thin film solar cells

    SciTech Connect

    Wong, L. M.; Chiam, S. Y.; Wang, S. J.; Pan, J. S.; Huang, J. Q.; Chim, W. K.

    2010-08-15

    Cu{sub 2}O thin films are deposited by direct current reactive magnetron sputtering on borofloat glass and indium tin oxide (ITO) coated glass at room temperature. The effect of oxygen partial pressure on the structures and properties of Cu{sub 2}O thin films are investigated. We show that oxygen partial pressure is a crucial parameter in achieving pure phases of CuO and Cu{sub 2}O. Based on this finding, we fabricate heterojunctions of p-type Cu{sub 2}O with n-type gallium doped ZnO (GZO) on ITO coated glass substrates by pulsed laser deposition for GZO thin films. The energy band alignment for thin films of Cu{sub 2}O/GZO on ITO glass is characterized using high-resolution x-ray photoelectron spectroscopy. The energy band alignment for the Cu{sub 2}O/GZO heterojunctions is determined to be type II with a valence band offset of 2.82 eV and shows negligible effects of variation with gallium doping. The higher conduction band of the Cu{sub 2}O relative to that of GZO in the obtained band alignment shows that the heterojunctions are suitable for solar cell application based on energy levels consideration.

  17. Highly transparent and lower resistivity of yttrium doped ZnO thin films grown on quartz glass by sol-gel method

    NASA Astrophysics Data System (ADS)

    Kaur, Narinder; Sharma, Sanjeev K.; Kim, Deuk Young; Singh, Narinder

    2016-11-01

    We prepared highly transparent yttrium-doped ZnO (YZO) thin films on quartz glass by a sol-gel method, and then annealed them at 600 °C in vacuum. All samples showed hexagonal wurtzite structure with a preferential orientation along the (002) direction. We observed the average grain size of Y: 2 at% thin film to be in the range of 15-20 nm. We observed blue shift in the optical bandgap (3.29 eV→3.32 eV) by increasing the Y concentration (0-2 at%), due to increasing the number of electrons, and replacing the di-valent (Zn2+) with tri-valent (Y3+) dopants. Replacing the higher ionic radii (Y3+) with smaller ionic radii (Zn2+) expanded the local volume of the lattice, which reduced the lattice defects, and increased the intensity ratio of NBE/DLE emission (INBE/IDLE). We also observed the lowest (172 meV) Urbach energy of Y: 2 at% thin film, and confirmed the high structural quality. Incorporation of the appropriate Y concentration (2 at%) improved the crystallinity of YZO thin films, which led to less carrier scattering and lower resistivity.

  18. Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Wong, L. M.; Chiam, S. Y.; Huang, J. Q.; Wang, S. J.; Pan, J. S.; Chim, W. K.

    2010-08-01

    Cu2O thin films are deposited by direct current reactive magnetron sputtering on borofloat glass and indium tin oxide (ITO) coated glass at room temperature. The effect of oxygen partial pressure on the structures and properties of Cu2O thin films are investigated. We show that oxygen partial pressure is a crucial parameter in achieving pure phases of CuO and Cu2O. Based on this finding, we fabricate heterojunctions of p-type Cu2O with n-type gallium doped ZnO (GZO) on ITO coated glass substrates by pulsed laser deposition for GZO thin films. The energy band alignment for thin films of Cu2O/GZO on ITO glass is characterized using high-resolution x-ray photoelectron spectroscopy. The energy band alignment for the Cu2O/GZO heterojunctions is determined to be type II with a valence band offset of 2.82 eV and shows negligible effects of variation with gallium doping. The higher conduction band of the Cu2O relative to that of GZO in the obtained band alignment shows that the heterojunctions are suitable for solar cell application based on energy levels consideration.

  19. Hydrothermal growth and conductivity enhancement of (Al, Cu) co-doped ZnO nanorods thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mohua; Mahapatra, Preetilata; Thangavel, R.

    2016-05-01

    The incorporation of Al, Cu co-doping in ZnO host lattice plays an important role in modification of structural, optical and electrical properties in optoelectronic devices. In the present work, we were grown one dimensional ZnO nanorods (NRs) doped with different concentration of Al (0%~5%) and Cu was kept 20 M% on ITO glass substrates using a facile hydrothermal method, and investigated the effect of the codoping on the surface morphology and the electrical and optical performances of the doped ZnO NRs as photo anodes for solar water splitting applications. The crystallite size of NRs shows tuning in the band gap between 3.194 (Zn0.79Al0.01Cu0.2O) to 3.212 eV (Zn0.75Al0.05Cu0.2O) with Aluminium doping concentration and a remarkable improvement in current density (J) from 0.05 mA/cm2 to 4.98 mA/cm2 was achieved by incorporating Al and Cu has a critical effect of ZnO nanorods.

  20. Impact of 100 MeV Ag7+ SHI irradiation fluence and N incorporation on structural, optical, electrical and gas sensing properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Balakrishnan, L.; Gokul Raj, S.; Meher, S. R.; Asokan, K.; Alex, Z. C.

    2015-06-01

    In the present study, we have investigated the influence of Ag7+ ion irradiation fluence and N incorporation on structural, optical, electrical and gas sensing properties of ZnO thin films. The X-ray diffraction analysis reveals the retainment of ZnO wurtzite structure even at higher fluence irradiation with slight decrease in crystallinity. Photoluminescence and Hall effect measurement analysis showed an increase in density of defects for high ion fluence irradiation. Atomic force microscope analysis shows that the films irradiated at high ion fluence have vertical standing needle-like morphology and also have high value of roughness compared with the films irradiated at low ion fluence. The ammonia and methanol gas sensing properties of the films have been studied at different operating temperature and gas concentration. It conveys that the films have selectivity towards ammonia than methanol and also that the films irradiated at high ion fluence exhibit better sensitivity, low response and recovery times compared with the films irradiated at low ion fluence. The film grown in oxygen ambience and irradiated at high ion fluence showed good sensing characteristics at all temperatures even at room temperature.

  1. Effect of Sn Doping on the Properties of Nano-Structured ZnO Thin Films Deposited by Co-Sputtering Technique.

    PubMed

    Islam, M A; Rahman, K S; Haque, F; Khan, N A; Akhtaruzzaman, M; Alam, M M; Ruslan, H; Sopian, K; Amin, N

    2015-11-01

    In this study, tin doped zinc oxide (ZnO:Sn) nano-structured thin films were successfully deposited by co-sputtering of ZnO and Sn on top of glass substrate. The effect of Sn doping on the microstructure, phase, morphology, optical and electrical properties of the films were extensively investigated by means of XRD, EDX, SEM, AFM, Hall Effect measurement, and UV-Vis spectrometry. The results showed that the undoped ZnO film exhibited preferred orientation along the c-axis of the hexagonal wurtzite structure. With increase of Sn doping, the peak position of the (002) plane was shifted to the higher 20 values, and ultimately changed to amorphous structure. The absorption edge was shifted to blue region which confirmed the excitonic quantum confinement effect in the films. Consequently, improved surface morphology with optical bandgap, reduced average particle size, reduced resistivity, enhanced Hall mobility and carrier concentration were observed in the doped films after vacuum annealing. Among all of the as-deposited and annealed ZnO:Sn films investigated in this study, annealed film doped with 8 at.% of Sn concentration exhibited the best properties with a bandgap of 3.84 eV, RMS roughness of 2.51 nm, resistivity of 2.36 ohm-cm, and Hall mobility of 83 cm2 V(-1) s(-1).

  2. Effect of Sn Doping on the Properties of Nano-Structured ZnO Thin Films Deposited by Co-Sputtering Technique.

    PubMed

    Islam, M A; Rahman, K S; Haque, F; Khan, N A; Akhtaruzzaman, M; Alam, M M; Ruslan, H; Sopian, K; Amin, N

    2015-11-01

    In this study, tin doped zinc oxide (ZnO:Sn) nano-structured thin films were successfully deposited by co-sputtering of ZnO and Sn on top of glass substrate. The effect of Sn doping on the microstructure, phase, morphology, optical and electrical properties of the films were extensively investigated by means of XRD, EDX, SEM, AFM, Hall Effect measurement, and UV-Vis spectrometry. The results showed that the undoped ZnO film exhibited preferred orientation along the c-axis of the hexagonal wurtzite structure. With increase of Sn doping, the peak position of the (002) plane was shifted to the higher 20 values, and ultimately changed to amorphous structure. The absorption edge was shifted to blue region which confirmed the excitonic quantum confinement effect in the films. Consequently, improved surface morphology with optical bandgap, reduced average particle size, reduced resistivity, enhanced Hall mobility and carrier concentration were observed in the doped films after vacuum annealing. Among all of the as-deposited and annealed ZnO:Sn films investigated in this study, annealed film doped with 8 at.% of Sn concentration exhibited the best properties with a bandgap of 3.84 eV, RMS roughness of 2.51 nm, resistivity of 2.36 ohm-cm, and Hall mobility of 83 cm2 V(-1) s(-1). PMID:26726665

  3. Growth characteristics and properties of Ga-doped ZnO (GZO) thin films grown by thermal and plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Nam, Taewook; Lee, Chang Wan; Kim, Hyun Jae; Kim, Hyungjun

    2014-03-01

    The growth characteristics and electrical and optical properties of gallium-doped ZnO (GZO) grown by thermal atomic layer deposition (Th-ALD) and plasma-enhanced atomic layer deposition (PE-ALD) were investigated as a function of key growth parameters including the growth temperature. While GZO films are generally deposited at high growth temperatures above 300 °C, room temperature deposition is possible using PE-ALD. The chemical properties of the films were analyzed by X-ray photoelectron spectroscopy and their electrical properties including the carrier concentration, mobility, and resistivity were investigated by Hall measurements. The lowest resistivity of 1.49 × 10-3 Ω cm was obtained for the Th-ALD GZO film grown at 300 °C. The transmittance was enhanced to over 85% in the visible light range when Ga was doped on a ZnO film. In addition, a GZO bottom-gated thin film transistor (TFT) was fabricated and exhibited good electrical properties.

  4. Dielectric function of very thin nano-granular ZnO layers with different states of growth.

    PubMed

    Gilliot, Mickaël; Hadjadj, Aomar; En Naciri, Aotmane

    2015-04-01

    Zinc oxide (ZnO) layers consisting of grains closely packed together are grown using a solgel synthesis and spin-coating deposition process. The morphologies are characterized by atomic force microscopy and X-ray diffraction, and their optical properties are investigated by spectroscopic ellipsometry at the different stages of the growth process. The optical observations are correlated with evolution of morphology and orientation. Two remarkable evolutions are observed: gradual evolution of morphology, crystallinity, and excitonic contribution with the first deposition steps; and transformation from a poorly oriented to a c-axis oriented crystalline state featuring a large contribution of bound excitons after thermal annealing. A modified Elliott model is used to obtain the optical parameters of ZnO, including bandgap and exciton energies. A simple growth mechanism is proposed to explain the evolution of the layers in accordance with the different deposition steps.

  5. Ultrafast dynamics of the dielectric functions of ZnO and BaTiO{sub 3} thin films after intense femtosecond laser excitation

    SciTech Connect

    Acharya, S.; Seifert, G.; Chouthe, S.; Graener, H.; Böntgen, T.; Sturm, C.; Schmidt-Grund, R.; Grundmann, M.

    2014-02-07

    The ultrafast carrier dynamics of epitaxial ZnO and BaTiO{sub 3} thin films after intense excitation at 3.10 eV and 4.66 eV photon energy has been studied by femtosecond absorption spectroscopy. Modelling the transient transmission changes on the basis of spectroscopic ellipsometry data and pertinent equilibrium model dielectric functions extended by additional terms for the effects at high carrier density (P-band luminescence and stimulated emission from electron-hole-plasma), a self-consistent parameterized description was obtained for both materials. Excited carrier lifetimes in the range of ≈2 to ≈60 ps and long-lived thermal effects after several hundred ps have been identified in both materials. These findings form a reliable basis to quantitatively describe future femtosecond studies on ZnO/BaTiO{sub 3} heterolayer systems.

  6. Tuning the phase transition of ZnO thin films through lithography: an integrated bottom-up and top-down processing.

    PubMed

    Malfatti, Luca; Pinna, Alessandra; Enzo, Stefano; Falcaro, Paolo; Marmiroli, Benedetta; Innocenzi, Plinio

    2015-01-01

    An innovative approach towards the physico-chemical tailoring of zinc oxide thin films is reported. The films have been deposited by liquid phase using the sol-gel method and then exposed to hard X-rays, provided by a synchrotron storage ring, for lithography. The use of surfactant and chelating agents in the sol allows easy-to-pattern films made by an organic-inorganic matrix to be deposited. The exposure to hard X-rays strongly affects the nucleation and growth of crystalline ZnO, triggering the formation of two intermediate phases before obtaining a wurtzite-like structure. At the same time, X-ray lithography allows for a fast patterning of the coatings enabling microfabrication for sensing and arrays technology. PMID:25537604

  7. Stress-induced anomalous shift of optical band gap in Ga-doped ZnO thin films: Experimental and first-principles study

    SciTech Connect

    Wang, Yaqin; Tang, Wu E-mail: lan.zhang@mail.xjtu.edu.cn; Liu, Jie; Zhang, Lan E-mail: lan.zhang@mail.xjtu.edu.cn

    2015-04-20

    In this work, highly c-axis oriented Ga-doped ZnO thin films have been deposited on glass substrates by RF magnetron sputtering under different sputtering times. The optical band gap is observed to shift linearly with the electron concentration and in-plane stress. The failure of fitting the shift of band gap as a function of electron concentration using the available theoretical models suggests the in-plane stress, instead of the electron concentration, be regarded as the dominant cause to this anomalous redshift of the optical band gap. And the mechanism of stress-dependent optical band gap is supported by the first-principles calculation based on density functional theory.

  8. Synthesis and characterization of hierarchical multilayered flower-like assemblies of Ag doped Bi2WO6 and their photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Dumrongrojthanath, Phattharanit; Thongtem, Titipun; Phuruangrat, Anukorn; Thongtem, Somchai

    2013-12-01

    In this research, 0-3 mol% Ag doped Bi2WO6 hierarchical multilayered flower-like assemblies were successfully synthesized by a simple hydrothermal method at 180 °C for 24 h. The XRD, FE-SEM, FTIR and Raman analyses revealed the presence of flower-like Russellite Bi2WO6 structures which were constructed from a large number of orderly arranged 2D layers of interconnected nanoplates. Their photocatalytic activities were evaluated by photodegradation of rhodamine B (RhB) under Xe visible light irradiation (λ > 420 nm). The 3 mol% Ag doped Bi2WO6 showed the highest photocatalytic activities of 98.20% within 180 min.

  9. Development and characterization of ZnO, Au/ZnO and Pd/ZnO thin films through their adsorptive and catalytic properties.

    PubMed

    Giannoudakos, A; Agelakopoulou, T; Asteriadis, I; Kompitsas, M; Roubani-Kalantzopoulou, F

    2008-04-11

    In this paper, we report (a) the development of ZnO thin films prepared by pulsed laser deposition and partially covered with nano-particles Pd or Au and (b) their physicochemical study, in order to investigate their catalytic and/or adsorptive properties. It is the first time where two different and popular methods, namely pulsed laser deposition and reversed flow-inverse gas chromatography, are combined. The inverse gas chromatographic technique with the corresponding time-resolved analysis is used for the first time in order to characterise compounds in the nano-scale domain. We focus on the determination of physicochemical quantities mainly concerning the adsorption in thin films, with (Pd/ZnO) or without (Au/ZnO) catalytic behaviour. Thus, entropy and other important physicochemical quantities are calculated which reveal the mechanism of adsorption as well as of isomerization-hydrogenation of 1-butene and contribute to the study of heterogeneity of thin film surfaces. The programs used have been written in Fortran. An important achievement is also the determination of the standard deviations of the kinetic constants. PMID:18313683

  10. Highly Conducting Gallium-Doped ZnO Thin Film as Transparent Schottky Contact for Organic- Semiconductor-Based Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Ghosh, Subhasis

    2015-08-01

    Highly conducting and transparent Ga-doped ZnO (GZO) thin films have been grown on transparent substrates at different growth temperatures with Ga content varying from 0.01% to 10%. All films showed pronounced c-axis orientation corresponding to hexagonal wurtzite structure. The minimum resistivity of 4.3 × 10-4 Ω cm was reproducibly obtained in GZO thin film doped with 2% Ga and grown at 600°C. We have further shown that highly conducting transparent GZO thin film can be used as a Schottky contact in copper phthalocyanine (CuPc)-based Schottky diodes. The capacitance-voltage characteristics of the Al/CuPc/Au and GZO/CuPc/Au Schottky diodes show similar built-in potential ( V bi) of 0.98 V, which is close to the difference in work function between Au (5.2 eV) and Al or GZO (4.2 eV), establishing that GZO behaves as a metal electrode with work function similar to Al. Similar values of acceptor concentration (˜1015 cm-3) in CuPc were obtained from the capacitance-voltage characteristics of the Al/CuPc/Au and GZO/CuPc/Au Schottky diodes. These observations indicate the absence of interface states at the metal/organic interface in CuPc-based Schottky diodes.

  11. Doping effect on SILAR synthesized crystalline nanostructured Cu-doped ZnO thin films grown on indium tin oxide (ITO) coated glass substrates and its characterization

    NASA Astrophysics Data System (ADS)

    Dhaygude, H. D.; Shinde, S. K.; Velhal, Ninad B.; Takale, M. V.; Fulari, V. J.

    2016-08-01

    In the present study, a novel chemical route is used to synthesize the undoped and Cu-doped ZnO thin films in aqueous solution by successive ionic layer adsorption and reaction (SILAR) method. The synthesized thin films are characterized by x-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDAX), contact angle goniometer and UV-Vis spectroscopic techniques. XRD study shows that the prepared films are polycrystalline in nature with hexagonal crystal structure. The change in morphology for different doping is observed in the studies of FE-SEM. EDAX spectrum shows that the thin films consist of zinc, copper and oxygen elements. Contact angle goniometer is used to measure the contact angle between a liquid and a solid interface and after detection, the nature of the films is initiated from hydrophobic to hydrophilic. The optical band gap energy for direct allowed transition ranging between 1.60-2.91 eV is observed.

  12. Doping effect on SILAR synthesized crystalline nanostructured Cu-doped ZnO thin films grown on indium tin oxide (ITO) coated glass substrates and its characterization

    NASA Astrophysics Data System (ADS)

    Dhaygude, H. D.; Shinde, S. K.; Velhal, Ninad B.; Takale, M. V.; Fulari, V. J.

    2016-08-01

    In the present study, a novel chemical route is used to synthesize the undoped and Cu-doped ZnO thin films in aqueous solution by successive ionic layer adsorption and reaction (SILAR) method. The synthesized thin films are characterized by x-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDAX), contact angle goniometer and UV–Vis spectroscopic techniques. XRD study shows that the prepared films are polycrystalline in nature with hexagonal crystal structure. The change in morphology for different doping is observed in the studies of FE-SEM. EDAX spectrum shows that the thin films consist of zinc, copper and oxygen elements. Contact angle goniometer is used to measure the contact angle between a liquid and a solid interface and after detection, the nature of the films is initiated from hydrophobic to hydrophilic. The optical band gap energy for direct allowed transition ranging between 1.60–2.91 eV is observed.

  13. p-type conduction from Sb-doped ZnO thin films grown by dual ion beam sputtering in the absence of oxygen ambient

    SciTech Connect

    Kumar Pandey, Sushil; Kumar Pandey, Saurabh; Awasthi, Vishnu; Kumar, Ashish; Mukherjee, Shaibal; Deshpande, Uday P.; Gupta, Mukul

    2013-10-28

    Sb-doped ZnO (SZO) thin films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system in the absence of oxygen ambient. The electrical, structural, morphological, and elemental properties of SZO thin films were studied for films grown at different substrate temperatures ranging from 200 °C to 600 °C and then annealed in situ at 800 °C under vacuum (pressure ∼5 × 10{sup −8} mbar). Films grown for temperature range of 200–500 °C showed p-type conduction with hole concentration of 1.374 × 10{sup 16} to 5.538 × 10{sup 16} cm{sup −3}, resistivity of 66.733–12.758 Ω cm, and carrier mobility of 4.964–8.846 cm{sup 2} V{sup −1} s{sup −1} at room temperature. However, the film grown at 600 °C showed n-type behavior. Additionally, current-voltage (I–V) characteristic of p-ZnO/n-Si heterojunction showed a diode-like behavior, and that further confirmed the p-type conduction in ZnO by Sb doping. X-ray diffraction measurements showed that all SZO films had (002) preferred crystal orientation. X-ray photoelectron spectroscopy analysis confirmed the formation of Sb{sub Zn}–2V{sub Zn} complex caused acceptor-like behavior in SZO films.

  14. Photocatalytic characteristics for the nanocrystalline TiO2 on the Ag-doped CaAl2O4:(Eu,Nd) phosphor

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Sik; Sung, Hyun-Je; Kim, Bum-Joon

    2015-04-01

    This study investigated the photocatalytic behavior of nanocrystalline TiO2 deposited on Ag-doped long-lasting phosphor (CaAl2O4:Eu2+,Nd3+). The CaAl2O4:Eu2+,Nd3+ phosphor powders were prepared via conventional sintering using CaCO3, Al2O3, Eu2O3, and Nd2O3 as raw materials according to the appropriate molar ratios. Silver nanoparticles were loaded on the phosphor by mixing with an aqueous Ag-dispersion solution. Nanocrystalline TiO2 was deposited on Ag-doped CaAl2O4:Eu2+,Nd3+ powders via low-pressure chemical vapor deposition (LPCVD). The TiO2 coated on the phosphor was actively photo-reactive under irradiation with visible light and showed much faster benzene degradation than pure TiO2, which is almost non-reactive. The coupling of TiO2 with phosphor may result in an energy band bending in the junction region, which then induces the TiO2 crystal at the interface to be photo-reactive under irradiation with visible light. In addition, the intermetallic compound of CaTiO3 that formed at the interface between TiO2 and the CaAl2O4:(Eu2+,Nd3+) phosphor results in the formation of oxygen vacancies and additional electrons that promote the photodecomposition of benzene gas. The addition of Ag nanoparticles enhanced the photocatalytic reactivity of the TiO2/CaAl2O4:Eu2+,Nd3+ phosphor. TiO2 on the Ag-doped phosphor presented a higher benzene gas decomposition rate than the TiO2 did on the phosphor without Ag-doping under both irradiation with ultraviolet and visible light.

  15. Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance.

    PubMed

    Ou, Kai-Lin; Ehamparam, Ramanan; MacDonald, Gordon; Stubhan, Tobias; Wu, Xin; Shallcross, R Clayton; Richards, Robin; Brabec, Christoph J; Saavedra, S Scott; Armstrong, Neal R

    2016-08-01

    This report focuses on the evaluation of the electrochemical properties of both solution-deposited sol-gel (sg-ZnO) and sputtered (sp-ZnO) zinc oxide thin films, intended for use as electron-collecting interlayers in organic solar cells (OPVs). In the electrochemical studies (voltammetric and impedance studies), we used indium-tin oxide (ITO) over coated with either sg-ZnO or sp-ZnO interlayers, in contact with either plain electrolyte solutions, or solutions with probe redox couples. The electroactive area of exposed ITO under the ZnO interlayer was estimated by characterizing the electrochemical response of just the oxide interlayer and the charge transfer resistance from solutions with the probe redox couples. Compared to bare ITO, the effective electroactive area of ITO under sg-ZnO films was ca. 70%, 10%, and 0.3% for 40, 80, and 120 nm sg-ZnO films. More compact sp-ZnO films required only 30 nm thicknesses to achieve an effective electroactive ITO area of ca. 0.02%. We also examined the electrochemical responses of these same ITO/ZnO heterojunctions overcoated with device thickness pure poly(3-hexylthiophehe) (P3HT), and donor/acceptor blended active layers (P3HT:PCBM). Voltammetric oxidation/reduction of pure P3HT thin films on ZnO/ITO contacts showed that pinhole pathways exist in ZnO films that permit dark oxidation (ITO hole injection into P3HT). In P3HT:PCBM active layers, however, the electrochemical activity for P3HT oxidation is greatly attenuated, suggesting PCBM enrichment near the ZnO interface, effectively blocking P3HT interaction with the ITO contact. The shunt resistance, obtained from dark current-voltage behavior in full P3HT/PCBM OPVs, was dependent on both (i) the porosity of the sg-ZnO or sp-ZnO films (as revealed by probe molecule electrochemistry) and (ii) the apparent enrichment of PCBM at ZnO/P3HT:PCBM interfaces, both effects conveniently revealed by electrochemical characterization. We anticipate that these approaches will be

  16. Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance.

    PubMed

    Ou, Kai-Lin; Ehamparam, Ramanan; MacDonald, Gordon; Stubhan, Tobias; Wu, Xin; Shallcross, R Clayton; Richards, Robin; Brabec, Christoph J; Saavedra, S Scott; Armstrong, Neal R

    2016-08-01

    This report focuses on the evaluation of the electrochemical properties of both solution-deposited sol-gel (sg-ZnO) and sputtered (sp-ZnO) zinc oxide thin films, intended for use as electron-collecting interlayers in organic solar cells (OPVs). In the electrochemical studies (voltammetric and impedance studies), we used indium-tin oxide (ITO) over coated with either sg-ZnO or sp-ZnO interlayers, in contact with either plain electrolyte solutions, or solutions with probe redox couples. The electroactive area of exposed ITO under the ZnO interlayer was estimated by characterizing the electrochemical response of just the oxide interlayer and the charge transfer resistance from solutions with the probe redox couples. Compared to bare ITO, the effective electroactive area of ITO under sg-ZnO films was ca. 70%, 10%, and 0.3% for 40, 80, and 120 nm sg-ZnO films. More compact sp-ZnO films required only 30 nm thicknesses to achieve an effective electroactive ITO area of ca. 0.02%. We also examined the electrochemical responses of these same ITO/ZnO heterojunctions overcoated with device thickness pure poly(3-hexylthiophehe) (P3HT), and donor/acceptor blended active layers (P3HT:PCBM). Voltammetric oxidation/reduction of pure P3HT thin films on ZnO/ITO contacts showed that pinhole pathways exist in ZnO films that permit dark oxidation (ITO hole injection into P3HT). In P3HT:PCBM active layers, however, the electrochemical activity for P3HT oxidation is greatly attenuated, suggesting PCBM enrichment near the ZnO interface, effectively blocking P3HT interaction with the ITO contact. The shunt resistance, obtained from dark current-voltage behavior in full P3HT/PCBM OPVs, was dependent on both (i) the porosity of the sg-ZnO or sp-ZnO films (as revealed by probe molecule electrochemistry) and (ii) the apparent enrichment of PCBM at ZnO/P3HT:PCBM interfaces, both effects conveniently revealed by electrochemical characterization. We anticipate that these approaches will be

  17. Effect of deposition times on structure of Ga-doped ZnO thin films as humidity sensor

    SciTech Connect

    Khalid, Faridzatul Shahira; Awang, Rozidawati

    2014-09-03

    Gallium doped zinc oxide (GZO) has good electrical property. It is widely used as transparent electrode in photovoltaic devices, and sensing element in gas and pressure sensors. GZO thin film was prepared using magnetron sputtering. Film deposition times were set at 10, 15, 20, 25 and 30 minutes to get samples of different thickness. X-ray diffraction (XRD) was used to determine the structure of GZO thin films. Structure for GZO thin film is hexagonal wurtzite structure. Morphology and thickness of GZO thin films was observed from FESEM micrographs. Grain size and thickness of thin films improved with increasing deposition times. However, increasing the thickness of thin films occur below 25 minutes only. Electrical properties of GZO thin films were studied using a four-point probe technique. The changes in the structure of the thin films lead to the changed of their electrical properties resulting in the reduction of the film resistance. These thin films properties significantly implying the potential application of the sample as a humidity sensor.

  18. Domain matched epitaxial growth of (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films on (0001) Al{sub 2}O{sub 3} with ZnO buffer layer

    SciTech Connect

    Krishnaprasad, P. S. E-mail: mkj@cusat.ac.in; Jayaraj, M. K. E-mail: mkj@cusat.ac.in; Antony, Aldrin; Rojas, Fredy

    2015-03-28

    Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BST thin films show significantly improved tunable performance over polycrystalline thin films.

  19. The effect of the solution flow rate on the properties of zinc oxide (ZnO) thin films deposited by ultrasonic spray

    SciTech Connect

    Attaf, A. Benkhetta, Y.; Saidi, H.; Bouhdjar, A.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-03-30

    In this work, we used a system based on ultrasonic spray pyrolysis technique. By witch, we have deposited thin films of zinc oxide (ZnO) with the variation of solution flow rate from 50 ml / h to 150 ml / h, and set other parameters such as the concentration of the solution, the deposition time, substrate temperature and the nozzel -substrate distance. In order to study the influence of the solution flow rate on the properties of the films produced, we have several characterization techniques such as X-ray diffraction to determine the films structure, the scanning electron microscopy SEM for the morphology of the surfaces, EDS spectroscopy for the chemical composition, UV-Visible-Nir spectroscopy for determination the optical proprieties of thin films.The experimental results show that: the films have hexagonal structure at the type (wurtzite), the average size of grains varies from 20.11 to 32.45 nm, the transmittance of the films equals 80% in visible rang and the band gap is varied between 3.274 and 3.282 eV, when the solution flow rate increases from 50 to 150 ml/h.

  20. Suppression effect of silicon (Si) on Er3+ 1.54μm excitation in ZnO thin films

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Lu, Fei; Ma, Changdong; Fan, Ranran

    2016-08-01

    We have investigated the photoluminescence (PL) characteristics of ZnO:Er thin films on Si (100) single crystal and SiO2-on-silicon (SiO2) substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS), X-ray diffraction (XRD) and atomic force microscope (AFM) were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS). Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT), PL (1.54μm) intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak at 1.15μm from silicon (Si) appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er3+ 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er3+ was very low when compared with silicon nanocrystal (Si-NC). Both made the PL (1.54μm) intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.

  1. Growth Behavior of Ga-Doped ZnO Thin Films Deposited on Au/SiN/Si(001) Substrates by Radio Frequency Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Seo, Seon Hee; Kang, Hyon Chol

    2013-11-01

    This paper reports the growth behavior of Ga-doped ZnO (ZnO:Ga) thin films deposited on Au/SiN/Si(001) substrates by radio-frequency magnetron sputtering. The microstructures of the overgrown ZnO:Ga thin films were investigated by performing X-ray diffraction, scanning electron microcopy, and transmission electron microscopy analyses. It was confirmed that the growth process proceeds through three stages. In the first stage, nano-scale ZnO:Ga islands were grown on the SiN layer, while a fairly continuous flat structure was formed on the Au nanoparticles (NPs). In the second stage of the growth process, ZnO:Ga domains with different growth orientations, depending strongly on the crystalline planes of the host Au NPs, were nucleated. These domains then grew at different rates, resulting in a change in the morphology from the initial shape reflecting that of the Au NPs to a sunflower-type shape. In the final stage, columnar growth with a preferred (0002) orientation along the surface normal direction became dominant.

  2. Influence of Fe-doping on the structural, optical, and magnetic properties of ZnO thin films prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Goktas, A.; Mutlu, I. H.; Yamada, Y.

    2013-05-01

    Zn1-xFexO thin films with different Fe (0 ⩽ x ⩽ 0.20) content were produced by sol-gel dip coating method. The influence of Fe doping on the structural, optical and magnetic properties of ZnO thin films was investigated. X-ray diffraction has shown that the films are polycrystalline and textured with c-axis of the hexagonal structure along the growth direction. Scanning electron microscope has indicated that the surface of the films is homogeneous with no cracking and the grain sizes tend to decrease with the increase of Fe-doping concentration. Ultraviolet-visible measurements show a reduction in band gap of the films with increase in Fe content from 3.27 eV to 3.10 eV. The magnetic measurements performed at 5, 100, 200 and 300 K using a SQUID magnetometer revealed the dominant paramagnetic behavior until Fe doping ratio of 10% and clear magnetic hysteresis loops at 5 and 100 K for the highest Fe doping ratio of 20%. The observed ferromagnetic behavior is likely related to a partial incorporation of Zn into the Fe3O4, i.e. Fe3-xZnxO4 composition or disorders as well as some defects.

  3. The effects of dopant concentration and deposition temperature on the structural, optical and electrical properties of Ga-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Mahdhi, H.; Ben Ayadi, Z.; Alaya, S.; Gauffier, J. L.; Djessas, K.

    2014-08-01

    In the present work, we have deposited Ga-doped ZnO (GZO) thin films by magnetron sputtering technique using nanocrystalline particles elaborated by sol-gel method as a target material. The gallium doping concentration was varied from 1.0 to 5.0 at.%. The effect of the deposition temperature and the dopant concentration, on the physical properties of the GZO thin films was analyzed. The as-deposited films with a thickness of about 300 nm were polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (0 0 2) crystallographic direction. The crystallite size ranged from 25 to 32 nm, depending on the deposition temperature and Ga at.%. A minimum electrical resistivity value of 2.2 × 10-3 Ω cm and a maximum mobility of 16.42 cm2/V s were obtained under the optimal deposition conditions. The optical transmittance measurements show that all films are highly transparent in the visible wavelength region with an average transmittance of about 90%.

  4. Influence of annealing on the linear and nonlinear optical properties of Mn doped ZnO thin films examined by z-scan technique in CW regime

    NASA Astrophysics Data System (ADS)

    Nagaraja, K. K.; Pramodini, S.; Poornesh, P.; Rao, Ashok; Nagaraja, H. S.

    2016-08-01

    We present the studies on the influence of annealing on the third-order nonlinear optical properties of RF magnetron sputtered manganese doped zinc oxide (MZO) thin films with different doping concentration. It is revealed that the incorporation of Mn into ZnO and annealing lead to prominent changes in the third order nonlinearity. Nonlinear optical measurements were carried out by employing the z-scan technique using a continuous wave (CW) Hesbnd Ne laser of 633 nm. The z-scan results reveal that the films exhibit self-defocusing thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) was found to be of the order of 10-3 esu and 10-2 esu for annealed MZO thin films at 200 °C and 400 °C respectively. The dependence of grain size on the observed nonlinearity was revealed by atomic force microscopy analysis. Optical limiting studies were carried out for a range of input power levels and an optical limiting of about ∼8 mW was observed indicating the possible application for photonic devices.

  5. Inference on the Production Mechanism of ZnO Thin Films from Activated Water and Dimethylzinc Molecules

    NASA Astrophysics Data System (ADS)

    Umemoto, Hironobu; Ishikawa, Takuma; Nishihara, Yushin; Yasui, Kanji; Nishiyama, Hiroshi; Inoue, Yasunobu; Kashiwagi, Yusaku; Ushijima, Mitsuru

    2013-09-01

    The reaction of Zn(CH3)2 and activated H2O produced in a reaction of H2 and O2 on a Pt catalyst and effused from a nozzle was examined both experimentally and theoretically. This reaction has been shown to be effective in the preparation of high-quality ZnO films. Laser-induced fluorescence measurements showed that radical species, such as H atoms and OH radicals, do not play major roles. The rotational temperature of H2O, measured with a coherent anti-Stokes Raman scattering technique, was 250 K. This low rotational temperature suggests that H2O molecules must be accelerated along the beam axis and that the collisional energy between Zn(CH3)2 and H2O is as high as 43 kJ mol-1. This energy is higher than the potential barrier to produce HOZnCH3+CH4, 38 kJ mol-1, obtained by ab initio calculations at the MP2/LANL2DZ level of theory. HOZnCH3 thus produced can be the strongest candidate ZnO film precursor.

  6. Li—N dual-doped ZnO thin films prepared by an ion beam enhanced deposition method

    NASA Astrophysics Data System (ADS)

    Xie, Jian-Sheng; Chen, Qiang

    2014-09-01

    Li—N dual-doped ZnO films [ZnO:(Li,N)] with Li doping concentrations of 3 at.%-5 at.% were grown on a glass substrate using an ion beam enhanced deposition (IBED) method. An optimal p-type ZnO:(Li,N) film with the resistivity of 11.4 Ω·cm was obtained by doping 4 at.% of Li and 5 sccm flow ratio of N2. The ZnO:(Li,N) films exhibited a wurtzite structure and good transmittance in the visible region. The p-type conductive mechanism of ZnO:(Li,N) films are attributed to the Li substitute Zn site (LiZn) acceptor. N doping in ZnO can forms the Lii—NO complex, which depresses the compensation of Li occupy interstitial site (Lii) donors for LiZn acceptor and helps to achieve p-type ZnO:(Li,N) films. Room temperature photoluminescence measurements indicate that the UV peak (381 nm) is due to the shallow acceptors LiZn in the p-type ZnO:(Li,N) films. The band gap of the ZnO:(Li,N) films has a red-shift after p-type doping.

  7. Improvement in optical and structural properties of ZnO thin film through hexagonal nanopillar formation to improve the efficiency of a Si-ZnO heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Maity, S.; Bhunia, C. T.; Sahu, P. P.

    2016-05-01

    We propose to use ZnO thin film with hexagonal nanopillars deposited on Si substrate to enhance the efficiency of a solar cell. It has been treated chemically and thermally and various crystal orientations have been obtained. X-ray diffraction of ZnO thin film shows relatively high intensity peak at 34.3° angle (0 0 2) compared to other orientations. Photoluminescence measurements also confirm a narrow full width at half maximum peak at 3.3 eV, which is more than that obtained for as-grown (broad emission peak around 3.0 eV). The alignment of nanorod structure made by adding a dopant of 0.15 mole fraction of magnesium increases both photon collection and electron collection efficiency. As a result, the solar cell efficiency is enhanced from 10% to 20%.

  8. The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu2ZnSnS4 thin-film solar cells prepared by electrodeposition method

    NASA Astrophysics Data System (ADS)

    Mkawi, E. M.; Ibrahim, K.; Ali, M. K. M.; Farrukh, M. A.; Mohamed, A. S.

    2015-11-01

    Al-doped ZnO (AZO) thin films were potentiostatically deposited on indium tin oxide substrates. The influence of the doping level of the ZnO:Al films was investigated. The results of the X-ray diffraction and scanning electron microscopy analysis revealed that the structural properties of the AZO films were found polycrystalline with a hexagonal wurtzite-type structure along the (002) plane. The grain size of the AZO films was observed as approximately 3 μm in the film doping with 4 mol% ZnO:Al concentration. The thin films also exhibited an optical transmittance as high as 90 % in the wavelength range of 100-1,000 nm. The optical band gap increased from 3.33 to 3.45 eV. Based on the Hall studies, the lowest resistivity (4.78 × 10-3 Ω cm) was observed in the film doping with 3 mol% ZnO:Al concentration. The sheet resistant, carrier concentration and Hall mobility values were found as 10.78 Ω/ square, 9.03 × 1018 cm-3 and 22.01 cm2/v s, respectively, which showed improvements in the properties of AZO thin films. The ZnO:Al thin films were used as a buffer layer in thin-film solar cells with the structure of soda-lime glass/Mo/Cu2ZnSnS4/ZnS/ZnO/Al grid. The best solar cell efficiency was 2.3 % with V OC of 0.430 V, J SC of 8.24 mA cm-2 and FF of 68.1 %.

  9. Modelling the growth of ZnO thin films by PVD methods and the effects of post-annealing.

    PubMed

    Blackwell, Sabrina; Smith, Roger; Kenny, Steven D; Walls, John M; Sanz-Navarro, Carlos F

    2013-04-01

    Results are presented for modelling of the evaporation and magnetron sputter deposition of Zn(x)O(y) onto an O-terminated ZnO (0001¯) wurtzite surface. Growth was simulated through a combination of molecular dynamics (MD) and an on-the-fly kinetic Monte Carlo (otf-KMC) method, which finds diffusion pathways and barriers without prior knowledge of transitions. We examine the effects of varying experimental parameters, such as substrate bias, distribution of the deposition species and annealing temperature. It was found when comparing evaporation and sputtering growth that the latter process results in a denser and more crystalline structure, due to the higher deposition energy of the arriving species. The evaporation growth also exhibits more stacking faults than the sputtered growth. Post-annealing at 770 K did not allow complete recrystallization, resulting in films which still had stacking faults where monolayers formed in the zinc blende phase, whereas annealing at 920 K enabled the complete recrystallization of some films to the wurtzite structure. At the latter temperature atoms could also sometimes be locked in the zinc blende phase after annealing. When full recrystallization did not take place, both wurtzite and zinc blende phases were seen in the same layer, resulting in a phase boundary. Investigation of the various distributions of deposition species showed that, during evaporation, the best quality film resulted from a stoichiometric distribution where only ZnO clusters were deposited. During sputtering, however, the best quality film resulted from a slightly O rich distribution. Two stoichiometric distributions, one involving mainly ZnO clusters and the other involving mainly single species, showed that the distribution of deposition species makes a huge impact on the grown film. The deposition of predominantly single species causes many more O atoms at the surface to be sputtered or reflected, resulting in an O deficiency of up to 18% in the

  10. Electrochemical Characterization of CdSe-Coated ZnO Nanowire Extremely-Thin-Absorber Solar Cells

    NASA Astrophysics Data System (ADS)

    Jones, Treavor Zachary

    Four different CdSe-coated nanostructured ZnO ETA configurations as photoelectrochemical cells with polysulfide electrolyte were studied using both conventional and electrochemical characterization techniques. ETA configurations with different ZnO nanowire lengths of 500 nm and 1000 nm were varied with different CdSe absorber-layer thicknesses of 15 nm and 45 nm to examine the effects on PV performance, carrier transport, and carrier recombination. Linear-sweep voltammetry (J-V) measurements showed that longer ZnO nanowires with thinner CdSe absorber layers gave better PV performance with the 1000 nm length/15 nm CdSe thickness samples having the highest JSC ˜4.4 mA/cm2, VOC ˜0.38 V, Pmax ˜0.52 mW/cm2, and second-highest FF ˜0.32. Mott-Schottky (MS) analysis was performed on individual ETA-layer materials to obtain estimates of their ND and VFB for insight into how individual layers in an ETA cell can assist in carrier separation. MS results were shown to be irrespective of illumination, exposed area, or the electrolyte used. Annealed ZnO nanowires had an ND ˜2x10 19 cm-3, a VFB ˜(-0.4) V. versus Ag/AgCl, and were observed to be n-type. MS analysis of planar CdSe showed it to be slightly n-type and gave parameter estimates of ND ˜3x10 17 cm-3 and VFB ˜-1.1 V v. Ag/AgCl, which were also used to calculate its VBI to be ˜0.4 V, and its depletion width, W to be ˜44 nm. Carrier transport studies were performed using IMPS and photocurrent decay measurements to estimate the time constant for carrier transport, with the fastest observed for shorter nanowires and thicker CdSe absorber layers at ˜10 micros. Carrier recombination studies were also performed using IMVS, photovoltage decay, and EIS measurements to estimate the time constant for carrier recombination, with the slowest estimated for the samples with 45 nm CdSe thickness samples at ˜100 ms. Therefore, shorter nanowires with thicker CdSe absorber layers showed the best potential for improving carrier

  11. Effects of NIR annealing on the characteristics of al-doped ZnO thin films prepared by RF sputtering

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed. In this paper, the effects of near infrared ray (NIR) annealing technique on the structural, optical, and electrical properties of the AZO thin films have been researched. Experimental results showed that NIR annealing affected the microstructure, electrical resistance, and optical transmittance of the AZO thin films. X-ray diffraction analysis revealed that all films have a hexagonal wurtzite crystal structure with the preferentially c-axis oriented normal to the substrate surface. Optical transmittance spectra of the AZO thin films exhibited transmittance higher than about 80% within the visible wavelength region, and the optical direct bandgap (Eg) of the AZO films was increased with increasing the NIR energy efficiency. PMID:22673232

  12. Photocatalytic comparison of Cu- and Ag-doped TiO2/GF for bioaerosol disinfection under visible light

    NASA Astrophysics Data System (ADS)

    Pham, Thanh-Dong; Lee, Byeong-Kyu

    2015-12-01

    Photocatalysts, TiO2/glass fiber (TiO2/GF), Cu-doped TiO2/glass fiber (Cu-TiO2/GF) and Ag-doped TiO2/glass fiber (Ag-TiO2/GF), were synthesized by a sol-gel method. They were then used to disinfect Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in bioaerosols under visible light irradiation. TiO2/GF did not show any significant disinfection effect. Both Cu and Ag acted as intermediate agents to enhance separation efficiency of electron-hole pairs of TiO2, leading to improved photocatalytic activity of Cu-TiO2/GF and Ag-TiO2/GF under visible light. Cu in Cu-TiO2/GF acted as a defective agent, increasing the internal quantum efficiency of TiO2, while Ag in Ag-TiO2/GF acted as a sensitive agent, enhancing the transfer efficiency of the electrons generated. The highest disinfection efficiencies of E. coli and S. aureus by Cu-TiO2/GF were 84.85% and 65.21%, respectively. The highest disinfection efficiencies of E. coli and S. aureus by Ag-TiO2/GF were 94.46% and 73.12%, respectively. Among three humidity conditions - 40±5% (dry), 60±5% (moderate), and 80±5% (humid) - the moderate humidity condition showed the highest disinfection efficiency for both E. coli and S. aureus. This study also showed that a Gram-negative bacterium (E. coli) were more readily disinfected by the photocatalysts than a Gram-positive bacterium (S. aureus).

  13. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens

    NASA Astrophysics Data System (ADS)

    Sankar Boxi, Siddhartha; Mukherjee, Khushi; Paria, Santanu

    2016-02-01

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated •OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  14. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens.

    PubMed

    Boxi, Siddhartha Sankar; Mukherjee, Khushi; Paria, Santanu

    2016-02-26

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated (•)OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling. PMID:26808118

  15. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens.

    PubMed

    Boxi, Siddhartha Sankar; Mukherjee, Khushi; Paria, Santanu

    2016-02-26

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated (•)OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  16. Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Meier, Anne; Shah, Malay G.; Devor, Robert W.; Surma, Jan M.; Maloney, Phillip R.; Bauer, Brint M.; Mazyck, David W.

    2016-01-01

    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems.

  17. Optical, electrical and mechanical properties of Ga-doped ZnO thin films under different sputtering powers

    NASA Astrophysics Data System (ADS)

    Chang, Sheng Hsiung; Cheng, Hsin-Ming; Tien, Chuen-Lin; Lin, Shih-Chin; Chuang, Kie-Pin

    2014-12-01

    We present the optical, electrical and mechanical properties of Ga-doped zinc oxide (GZO) thin films prepared by radio-frequency (RF) magnetron sputtering at room temperature under different RF powers (80-180 W). The thickness, electron concentration, and electron mobility of the GZO thin film were determined by fitting the visible-to-near-infrared transmittance spectrum of GZO film/glass using the transfer matrix method. The bending force per unit width was measured by a home-made Twyman-Green interferometer with the fast Fourier transform method. The obtained results show that the optical, electrical and mechanical properties of GZO thin film are subject to the RF power. At an RF power of 140 W, the local minimum of bending force per unit width corresponds to the highest electron mobility in GZO thin film. This study demonstrates that the optical, electrical and mechanical properties of GZO thin film can be fully resolved by non-contact optical methods.

  18. Origins of Highly Stable Al-evaporated Solution-processed ZnO Thin Film Transistors: Insights from Low Frequency and Random Telegraph Signal Noise

    PubMed Central

    Kim, Joo Hyung; Kang, Tae Sung; Yang, Jung Yup; Hong, Jin Pyo

    2015-01-01

    One long-standing goal in the emerging field of flexible and transparent electronic devices is to meet the demand of key markets, such as enhanced output performance for metal oxide semiconductor thin film transistors (TFTs) prepared by a solution process. While solution-based fabrication techniques are cost-effective and ensure large-area coverage at low temperature, their utilization has the disadvantage of introducing large trap states into TFTs. Such states, the formation of which is induced by intrinsic defects initially produced during preparation, have a significant impact on electrical performance. Therefore, the ability to enhance the electrical characteristics of solution-processed TFTs, along with attaining a firm understanding of their physical nature, remains a key step towards extending their use. In this study, measurements of low-frequency noise and random telegraph signal noise are employed as generic alternative tools to examine the origins of enhanced output performance for solution-processed ZnO TFTs through the control of defect sites by Al evaporation. PMID:26525284

  19. Effect of Channel Thickness, Annealing Temperature and Channel Length on Nanoscale Ga2O3-In2O3-ZnO Thin Film Transistor Performance.

    PubMed

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; Lee, Ryeri; Song, Hui; Kim, Tae Heon; Choi, Boran; Jung, Gun Young

    2016-06-01

    We demonstrated the effect of active layer (channel) thickness and annealing temperature on the electrical performances of Ga2O3-In2O3-ZnO (GIZO) thin film transistor (TFT) having nanoscale channel width (W/L: 500 nm/100 μm). We found that the electron carrier concentration of the channel was decreased significantly with increasing the annealing temperature (100 degrees C to 300 degrees C). Accordingly, the threshold voltage (V(T)) was shifted towards positive voltage (-12.2 V to 10.8 V). In case of channel thickness, the V(T) was shifted towards negative voltage with increasing the channel thickness. The device with channel thickness of 90 nm annealed at 200 degrees C revealed the best device performances in terms of mobility (10.86 cm2/Vs) and V(T) (0.8 V). The effect of channel length was also studied, in which the channel width, thickness and annealing temperature were kept constant such as 500 nm, 90 nm and 200 degrees C, respectively. The channel length influenced the on-current level significantly with small variation of V(T), resulting in lower value of on/off current ratio with increasing the channel length. The device with channel length of 0.5 μm showed enhanced on/off current ratio of 10(6) with minimum V(T) of 0.26 V. PMID:27427719

  20. Deposition and composition-control of Mn-doped ZnO thin films by combinatorial pulsed laser deposition using two delayed plasma plumes

    SciTech Connect

    Sanchez-Ake, C.; Camacho, R.; Moreno, L.

    2012-08-15

    Thin films of ZnO doped with manganese were deposited by double-beam, combinatorial pulsed laser deposition. The laser-induced plasmas were studied by means of fast photography and using a Langmuir probe, whereas the films were analyzed by x-ray-diffraction and energy-dispersive x-ray spectroscopy. The effect of the relative delay between plasma plumes on the characteristics of the films was analyzed. It was found that using this parameter, it is possible to control the dopant content keeping the oriented wurtzite structure of the films. The minimum content of Mn was found for plume delays between 0 and 10 {mu}s as the interaction between plasmas scatters the dopant species away from the substrate, thus reducing the incorporation of Mn into the films. Results suggest that for delays shorter than {approx}100 {mu}s, the expansion of the second plume through the region behind the first plume affects the composition of the film.

  1. Deposition and composition-control of Mn-doped ZnO thin films by combinatorial pulsed laser deposition using two delayed plasma plumes

    NASA Astrophysics Data System (ADS)

    Sánchez-Aké, C.; Camacho, R.; Moreno, L.

    2012-08-01

    Thin films of ZnO doped with manganese were deposited by double-beam, combinatorial pulsed laser deposition. The laser-induced plasmas were studied by means of fast photography and using a Langmuir probe, whereas the films were analyzed by x-ray-diffraction and energy-dispersive x-ray spectroscopy. The effect of the relative delay between plasma plumes on the characteristics of the films was analyzed. It was found that using this parameter, it is possible to control the dopant content keeping the oriented wurtzite structure of the films. The minimum content of Mn was found for plume delays between 0 and 10 μs as the interaction between plasmas scatters the dopant species away from the substrate, thus reducing the incorporation of Mn into the films. Results suggest that for delays shorter than ˜100 μs, the expansion of the second plume through the region behind the first plume affects the composition of the film.

  2. Optimization of process parameters for the electrical properties in Ga-doped ZnO thin films prepared by r.f. magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, D. L.; Wang, Q.; Han, S.; Cao, P. J.; Liu, W. J.; Jia, F.; Zeng, Y. X.; Ma, X. C.; Lu, Y. M.

    2014-04-01

    Ga-doped ZnO (GZO) transparent conductive thin films have been deposited on quartz substrates by r.f. magnetron sputtering. The optimization of four process parameters (i.e., vacuum annealing temperature, r.f. power, sputtering pressure, and Ar flow rate) based on Taguchi method has been systematically studied in order to obtain the minimum resistivity. Compared to the optimal parameter set selected from orthogonal array by Taguchi method, the optimal prediction design can receive an improvement of 22.3% in electrical resistivity, and the corresponding resistivity is 8.08 × 10-4 Ω cm. The analysis of variance shows that vacuum annealing temperature is the most significant influencing parameter on the electrical properties in GZO films. X-ray photoelectron spectroscopy and photoluminescence results exhibit that the enhancement in electrical conductivity after vacuum annealing is ascribed to the variation of the chemical states of oxygen in GZO films. With the increase in annealing temperature, the content of absorbed oxygen and interstitial oxygen as acceptors will decrease.

  3. Origins of Highly Stable Al-evaporated Solution-processed ZnO Thin Film Transistors: Insights from Low Frequency and Random Telegraph Signal Noise

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyung; Kang, Tae Sung; Yang, Jung Yup; Hong, Jin Pyo

    2015-11-01

    One long-standing goal in the emerging field of flexible and transparent electronic devices is to meet the demand of key markets, such as enhanced output performance for metal oxide semiconductor thin film transistors (TFTs) prepared by a solution process. While solution-based fabrication techniques are cost-effective and ensure large-area coverage at low temperature, their utilization has the disadvantage of introducing large trap states into TFTs. Such states, the formation of which is induced by intrinsic defects initially produced during preparation, have a significant impact on electrical performance. Therefore, the ability to enhance the electrical characteristics of solution-processed TFTs, along with attaining a firm understanding of their physical nature, remains a key step towards extending their use. In this study, measurements of low-frequency noise and random telegraph signal noise are employed as generic alternative tools to examine the origins of enhanced output performance for solution-processed ZnO TFTs through the control of defect sites by Al evaporation.

  4. Origins of Highly Stable Al-evaporated Solution-processed ZnO Thin Film Transistors: Insights from Low Frequency and Random Telegraph Signal Noise.

    PubMed

    Kim, Joo Hyung; Kang, Tae Sung; Yang, Jung Yup; Hong, Jin Pyo

    2015-01-01

    One long-standing goal in the emerging field of flexible and transparent electronic devices is to meet the demand of key markets, such as enhanced output performance for metal oxide semiconductor thin film transistors (TFTs) prepared by a solution process. While solution-based fabrication techniques are cost-effective and ensure large-area coverage at low temperature, their utilization has the disadvantage of introducing large trap states into TFTs. Such states, the formation of which is induced by intrinsic defects initially produced during preparation, have a significant impact on electrical performance. Therefore, the ability to enhance the electrical characteristics of solution-processed TFTs, along with attaining a firm understanding of their physical nature, remains a key step towards extending their use. In this study, measurements of low-frequency noise and random telegraph signal noise are employed as generic alternative tools to examine the origins of enhanced output performance for solution-processed ZnO TFTs through the control of defect sites by Al evaporation. PMID:26525284

  5. Structural, electrical and optical properties of boron doped ZnO thin films using LSMCD method at room temperature

    NASA Astrophysics Data System (ADS)

    Kim, Gilho; Bang, Jungsik; Kim, Yunseok; Rout, S. K.; Woo, Seong Ihl

    2009-12-01

    Zn1- x B x O (0≤ x≤0.04) thin films were deposited by the liquid source misted chemical vapor deposition (LSMCD) method. The thin films were polycrystalline with grain sizes of 16 nm to 22 nm. The structural, optical, and electrical properties were investigated by X-ray diffraction, UV-visible spectrophotometry, Raman spectroscopy, and Hall effect measurement. Also scanning electron (SEM) and atomic force microscopy (AFM) techniques were used in order to determine the morphological and topological characteristics of the films. The optimal result of Zn1- x B x O films was obtained at x=0.02, with a low resistivity of ≈10-2 Ω cm, and a high transmittancy of 85% in the visible light spectrum (300 nm ˜ 800 nm).

  6. Microstructure and micromorphology of ZnO thin films: Case study on Al doping and annealing effects

    NASA Astrophysics Data System (ADS)

    Ţălu, Ştefan; Bramowicz, Miroslaw; Kulesza, Slawomir; Solaymani, Shahram; Ghaderi, Atefeh; Dejam, Laya; Elahi, Seyed Mohammad; Boochani, Arash

    2016-05-01

    The aim of this work is to investigate the three-dimensional (3-D) surface texture of Aliminium doped Zinc Oxide (AZO) thin films deposited by Radio Frequency sputtering method on the quartz substrates. Deposited samples were annealed under argon flux at three different temperatures: 400 °C, 500 °C, and 600 °C, followed by gradual cooling down to room temperature. To characterize the structure of samples X-ray diffraction (XRD) patterns and Rutherford Back Scattering (RBS) spectra were applied. The Scanning electron microscope (SEM) and the atomic force microscope (AFM) were applied to study the samples' surface morphology. Then statistical, fractal and functional surface characteristics were computed. The analysis of 3-D surface texture of AZO thin films is crucial to control the 3-D surface topography features and to correct interpretate the surface topographic parameters. It also allows understanding the relationship between 3-D the surface topography and the functional (physical, chemical and mechanical) properties of AZO thin films.

  7. Sol-gel production of p-type ZnO thin film by using sodium doping

    NASA Astrophysics Data System (ADS)

    Bu, Ian Y. Y.

    2016-08-01

    In this study, ZnO:Na thin films doped with 1-5 at.% of Na were synthesized on glass substrates by the sol-gel deposition technique. The morphology and optoelectronic properties of the thin films were characterized by using the environmental scanning electron microscope (SEM), X-ray diffraction (XRD), UV-Vis spectroscopy and Hall effect measurements. The SEM images and XRD pattern both indicated a substantial change in the film structure as the Na content increases due to the oversupply of the OH- ions in the initial precursor solution. UV-Vis spectroscopy measurements revealed that the increase in Na doping resulted in the decreases of the optical transmittance and the optical band gap due to the formation recombination centers. Hall effect measurements confirmed that the ZnO:Na films doped with >2 at.% of Na are stable with p-type conduction behaviour. As a demonstration, a ZnO-based junction was fabricated using the synthesized ZnO:Na/ZnO thin films on indium tin oxide glass substrates.

  8. Simultaneous electrochemical determination of nitrate and nitrite in aqueous solution using Ag-doped zeolite-expanded graphite-epoxy electrode.

    PubMed

    Manea, Florica; Remes, Adriana; Radovan, Ciprian; Pode, Rodica; Picken, Stephen; Schoonman, Joop

    2010-11-15

    In this work a new electrochemical sensor based on an Ag-doped zeolite-expanded graphite-epoxy composite electrode (AgZEGE) was evaluated as a novel alternative for the simultaneous quantitative determination of nitrate and nitrite in aqueous solutions. Cyclic voltammetry was used to characterize the electrochemical behavior of the electrode in the presence of individual or mixtures of nitrate and nitrite anions in 0.1M Na(2)SO(4) supporting electrolyte. Linear dependences of current versus nitrate and nitrite concentrations were obtained for the concentration ranges of 1-10mM for nitrate and 0.1-1mM for nitrite using cyclic voltammetry (CV), chronoamperometry (CA), and multiple-pulsed amperometry (MPA) procedures. The comparative assessment of the electrochemical behavior of the individual anions and mixtures of anions on this modified electrode allowed determining the working conditions for the simultaneous detection of the nitrite and nitrate anions. Applying MPA allowed enhancement of the sensitivity for direct and indirect nitrate detection and also for nitrite detection. The proposed sensor was applied in tap water samples spiked with known nitrate and nitrite concentrations and the results were in agreement with those obtained by a comparative spectrophotometric method. This work demonstrates that using multiple-pulse amperometry with the Ag-doped zeolite-expanded graphite-epoxy composite electrode provides a real opportunity for the simultaneous detection of nitrite and nitrate in aqueous solutions. PMID:21035645

  9. Fabrication of tantalum and nitrogen codoped ZnO (Ta, N-ZnO) thin films using the electrospay: twin applications as an excellent transparent electrode and a field emitter.

    PubMed

    Mahmood, Khalid; Park, Seung Bin; Sung, Hyung Jin

    2013-05-01

    The realization of stable p-type nitrogen-doped ZnO thin films with durable and controlled growth is important for the fabrication of nanoscale electronic and optoelectronic devices. ZnO thin films codoped with tantalum and nitrogen (Ta, N-ZnO) were fabricated by using the electrospraying method at an atmospheric pressure. X-ray diffraction (XRD) studies demonstrated that all the prepared films were polycrystalline in nature with hexagonal wurtzite structure. In addition, a shift in the XRD patterns was observed, and the crystal orientation was changed at a certain amount of nitrogen (>6 at.%) in the starting solution. Analysis of X-ray diffraction patterns and X-ray photoelectron spectra revealed that nitrogen which was combined with the zinc atom (N-Zn) was successfully doped into the ZnO crystal lattice. It was also observed that 2 at.% tantalum and 6 at.% nitrogen (2 at.% Ta and 6 at.% N) were the optimal dopant amounts to achieve the minimum resistivity of about 9.70 × 10(-5) Ω cm and the maximum transmittance of 98% in the visible region. Consequently, the field-emission characteristics of such a Ta, N-ZnO emitter can exhibit the higher current density of 1.33 mA cm(-2), larger field-enhancement factor (β) of 4706, lower turn-on field of 2.6 V μm(-1), and lower threshold field of 3.5 V μm(-1) attributed to the enhanced conductivity and better crystallinity of films. Moreover, the obtained values of resistivity were closest to the lowest resistivity values among the doped ZnO films as well as to the indium tin oxide (ITO) resistivity values that were previously studied. We confirmed that the tantalum and nitrogen atoms substitution in the ZnO lattice induced positive effects in terms of enhancing the free carrier concentration which will further improve the electrical, optical, and field-emission properties. The proposed electrospraying method was well suitable for the fabrication of Ta, N-ZnO thin films at optimum conditions with superior electrical

  10. Aging effects of the precursor solutions on the properties of spin coated Ga-doped ZnO thin films

    SciTech Connect

    Serrao, Felcy Jyothi Dharmaprakash, S. M.

    2015-06-24

    In this study, gallium doped zinc oxide thin films (GZO) were grown on a glass substrate by a simple sol-gel process and spin coating technique using zinc acetate and gallium nitrate (3at%) as precursors for Zn and Ga ions respectively. The effects of aging time of the precursor solution on the structural and optical properties of the GZO films were investigated. The surface morphology, grain size, film thickness and optical properties of the GZO films were found to depend directly on the sol aging time. XRD studies reveal that the films are polycrystalline with a hexagonal wurtzite structure and show the c-axis grain orientation. Optical transmittance spectra of all the films exhibited transmittance higher than about 82% within the visible wavelength region. A sharp fundamental absorption edge with a slight blue shifting was observed with an increase in sol aging time which can be explained by Burstein-Moss effect. The result indicates that an appropriate aging time of the sol is important for the improvement of the structural and optical properties of GZO thin films derived from sol-gel method.

  11. Aging effects of the precursor solutions on the properties of spin coated Ga-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Serrao, Felcy Jyothi; Dharmaprakash, S. M.

    2015-06-01

    In this study, gallium doped zinc oxide thin films (GZO) were grown on a glass substrate by a simple sol-gel process and spin coating technique using zinc acetate and gallium nitrate (3at%) as precursors for Zn and Ga ions respectively. The effects of aging time of the precursor solution on the structural and optical properties of the GZO films were investigated. The surface morphology, grain size, film thickness and optical properties of the GZO films were found to depend directly on the sol aging time. XRD studies reveal that the films are polycrystalline with a hexagonal wurtzite structure and show the c-axis grain orientation. Optical transmittance spectra of all the films exhibited transmittance higher than about 82% within the visible wavelength region. A sharp fundamental absorption edge with a slight blue shifting was observed with an increase in sol aging time which can be explained by Burstein-Moss effect. The result indicates that an appropriate aging time of the sol is important for the improvement of the structural and optical properties of GZO thin films derived from sol-gel method.

  12. Zinc vacancy and erbium cluster jointly promote ferromagnetism in erbium-doped ZnO thin film

    SciTech Connect

    Chen, Hong-Ming; Zhou, Ren-Wei; Li, Fei; Liu, Xue-Chao Zhuo, Shi-Yi; Shi, Er-Wei; Xiong, Ze

    2014-04-15

    Zn{sub 1-x}Er{sub x}O (0.005 ≤ x ≤ 0.04) thin films have been prepared by inductively coupled plasma enhanced physical vapor deposition method. Ferromagnetism, crystal structure, microstructure and photoluminescence properties of the films were characterized. It is found that the chemical valence state of Er is trivalent, and the Er{sup 3+} cations play an important role in ferromagnetism. Both saturated magnetization (M{sub s}) and zinc vacancy (V{sub Zn}) are decreased with the increase of x from 0.005 to 0.03. However, further increasing x to 0.04, the M{sub s} is quenched due to the generation of Er clusters. It reveals that the intensity of M{sub s} is not only associated with the V{sub Zn} concentration, but also related to the Er clusters. The V{sub Zn} concentration and the Er clusters can jointly boost the ferromagnetism in the Zn{sub 1-x}Er{sub x}O thin films.

  13. Utilizing Transparent ZnO Thin Film as Permeation Barrier to Improve Light Outcoupling and Longevity of Top-Emission Polymer Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Liu, Kou-Chen; Lu, Yen-Hsun; Liao, Yung-Hsin; Huang, Bor-shiun

    2008-04-01

    The polymer light-emitting diodes (PLEDs) encapsulated with a ZnO UV-cured epoxy resin passivation layer were investigated. The ZnO film not only serves as an encapsulation layer but also acts as a UV blocking layer during UV cured to protect the organic layer from damage from UV light because ZnO has a high transmittance of up to 95% in the 490-540 nm wavelength range and a low transmittance in the UV region. The index of refraction (n = 2) for ZnO acting as a capping layer facilitates more light outcoupling from the top side of the PLED. The PLEDs encapsulated with ZnO film were fabricated under oxygen-free conditions and the substrate was maintained at room temperature to avoid damaging the PLEDs and to promote the formation of amorphous ZnO which prevents moisture and oxygen penetration. Because the ZnO film was deposited after a transparent conducting oxide cathode, the novel passivation method did not influence the electrical behavior, for instance, turn-on voltage, leakage current, and the EL characteristic of the device. PLEDs encapsulated with ZnO/UV-cured epoxy resin and glass (reference device) both exhibited a similar lifetime.

  14. Study on the electrical properties of ZnO thin film transistors using pyrochlore Bi1.5Zn(1+y)Nb1.5O(7+y) gate insulators fabricated by RF sputtering

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Ren, Wei; Shi, Peng; Jiang, Zhuangde

    2016-06-01

    A series of ZnO thin film transistors (TFTs) using pyrochlore Bi1.5ZnNb1.5O (BZN) thin films as gate insulators by RF sputtering has been fabricated. The relations between the zinc content and performance of BZN thin films and ZnO-TFTs are studied. The electrical properties of the ZnO-TFTs with BZN gate insulators as a function of Zn content are discussed. The research results showed that excess Zn (5 mol.%) can significantly enhance the performance of BZN thin films and ZnO-TFTs, which is mainly attributed to the compensation of Zn volatility during fabrication of BZN thin films. At an applied electric field of 250 kV/cm, the leakage current density of BZN thin films with 5 mol.% excess Zn is approximately four order of magnitude lower than that of BZN thin films without excess Zn. The subthreshold and surface state density of ZnO-TFTs were decreased from 684 and 350 mV/dec to 4.5×1012 and 2×1012 cm-2, respectively, as Zn content was increased.

  15. RETRACTED: P-type Zno thin films fabricated by Al-N co-doping method at different substrate temperature

    NASA Astrophysics Data System (ADS)

    Yuan, Guodong; Ye, Zhizhen; Qian, Qing; Zhu, Liping; Huang, Jingyun; Zhao, Binghui

    2005-01-01

    This article has been retracted at the request of the Editor-in-Chief. Please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy). The editors and publisher would like to confirm the retraction of this paper at the request of the author Guodong Yuan. Reason: The SIMS profile published in this paper had already been included in articles published in Mater. Lett., 58 (2004) 3741-3744, and Thin Solid Films, 484 (2005) 420-425 describing a sample prepared under different conditions. The author did not notify either the Journal of Crystal Growth Editors or the coauthors of this fact. The author apologizes sincerely to the readers, referees, and Editors for violating the guidelines of ethical publication.Also the author apologizes to the coauthors for mishandling of the manuscript.

  16. Spin wave study and optical properties in Fe-doped ZnO thin films prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Lmai, F.; Moubah, R.; El Amiri, A.; Abid, Y.; Soumahoro, I.; Hassanain, N.; Colis, S.; Schmerber, G.; Dinia, A.; Lassri, H.

    2016-07-01

    We investigate the magnetic and optical properties of Zn1-xFexO (x = 0, 0.03, 0.05, and 0.07) thin films grown by spray pyrolysis technique. The magnetization as a function of temperature [M (T)] shows a prevailing paramagnetic contribution at low temperature. By using spin wave theory, we separate the M (T) curve in two contributions: one showing intrinsic ferromagnetism and one showing a purely paramagnetic behavior. Furthermore, it is shown that the spin wave theory is consistent with ab-initio calculations only when oxygen vacancies are considered, highlighting the key role played by structural defects in the mechanism driving the observed ferromagnetism. Using UV-visible measurements, the transmittance, reflectance, band gap energy, band tail, dielectric coefficient, refractive index, and optical conductivity were extracted and related to the variation of the Fe content.

  17. Obtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes

    SciTech Connect

    Roqan, I. S. Venkatesh, S.; Zhang, Z.; Hussain, S.; Bantounas, I.; Flemban, T. H.; Schwingenschlogl, U.; Franklin, J. B.; Zou, B.; Petrov, P. K.; Ryan, M. P.; Alford, N. M.; Lee, J.-S.

    2015-02-21

    We demonstrate the fabrication of reproducible long-range ferromagnetism (FM) in highly crystalline Gd{sub x}Zn{sub 1−x}O thin films by controlling the defects. Films are grown on lattice-matched substrates by pulsed laser deposition at low oxygen pressures (≤25 mTorr) and low Gd concentrations (x ≤ 0.009). These films feature strong FM (10 μ{sub B} per Gd atom) at room temperature. While films deposited at higher oxygen pressure do not exhibit FM, FM is recovered by post-annealing these films under vacuum. These findings reveal the contribution of oxygen deficiency defects to the long-range FM. We demonstrate the possible FM mechanisms, which are confirmed by density functional theory study, and show that Gd dopants are essential for establishing FM that is induced by intrinsic defects in these films.

  18. Room-temperature NH3 gas sensors based on Ag-doped γ-Fe2O3/SiO2 composite films with sub-ppm detection ability.

    PubMed

    Tang, Yongliang; Li, Zhijie; Zu, Xiaotao; Ma, Jinyi; Wang, Lu; Yang, Jing; Du, Bo; Yu, Qingkai

    2015-11-15

    In this report, NH3 gas sensors based on Ag-doped γ-Fe2O3/SiO2 composite films are investigated. The composite films were prepared with a sol-gel process, and the films' electrical resistance responded to the change of NH3 concentration in the environment. The SEM and AFM investigations showed that the films had a porous structure, and the XRD investigation indicated that the size of Ag particles changed with the modification of Ag loading content. Through a comparative gas sensing study among the Ag-doped composite films, undoped composite film, γ-Fe2O3 film, and SiO2 film, the Ag-doped composite films were found to be much more sensitive than the sensors based on the undoped composite film and γ-Fe2O3 film at room temperature, indicating the significant influences of the SiO2 and Ag on the sensing property. Moreover, the sensor based on Ag-doped (4%) γ-Fe2O3/SiO2 composite film was able to detect the NH3 gas at ppb level. Conversely, the responses of the sensor to other test gases (C2H5OH, CO, H2, CH4 and H2S) were all markedly low, suggesting excellent selectivity.

  19. Room-temperature NH3 gas sensors based on Ag-doped γ-Fe2O3/SiO2 composite films with sub-ppm detection ability.

    PubMed

    Tang, Yongliang; Li, Zhijie; Zu, Xiaotao; Ma, Jinyi; Wang, Lu; Yang, Jing; Du, Bo; Yu, Qingkai

    2015-11-15

    In this report, NH3 gas sensors based on Ag-doped γ-Fe2O3/SiO2 composite films are investigated. The composite films were prepared with a sol-gel process, and the films' electrical resistance responded to the change of NH3 concentration in the environment. The SEM and AFM investigations showed that the films had a porous structure, and the XRD investigation indicated that the size of Ag particles changed with the modification of Ag loading content. Through a comparative gas sensing study among the Ag-doped composite films, undoped composite film, γ-Fe2O3 film, and SiO2 film, the Ag-doped composite films were found to be much more sensitive than the sensors based on the undoped composite film and γ-Fe2O3 film at room temperature, indicating the significant influences of the SiO2 and Ag on the sensing property. Moreover, the sensor based on Ag-doped (4%) γ-Fe2O3/SiO2 composite film was able to detect the NH3 gas at ppb level. Conversely, the responses of the sensor to other test gases (C2H5OH, CO, H2, CH4 and H2S) were all markedly low, suggesting excellent selectivity. PMID:26057440

  20. Thermoelectric and Magneto-Thermoelectric Properties of Ga-DOPED ZnO Thin Films by RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Liu, H.; Fang, L.; Wu, F.; Tian, D. X.; Li, W. J.; Lu, Y.; Kong, C. Y.; Zhang, S. F.

    2014-04-01

    Zn(1-x)GaxO thin films (x = 0.01, 0.03, 0.05, 0.07 named as GZO1, GZO2, GZO3, GZO4, respectively) were deposited on glass substrates by RF magnetron sputtering. The crystal structure, electrical, thermoelectric and magneto-thermoelectric properties of GZO films were investigated. It is found that all the GZO films are polycrystalline and preferentially oriented in the c-axis. The electrical resistivity of GZO films decreased first with increasing Ga doping content before it reached a minimum at x = 0.05, and then increased with further increasing Ga doping content. The magnetic fields (B) ranging from 0 to 1.5 T are perpendicularly applied to the films to study the magneto-thermoelectric properties. It is observed that the absolute values of Seebeck coefficients (|S|) of GZO1, GZO2, GZO3 show marked variation with magnetic field and obtain the maximum value at B = 0.5 T. Whereas the |S| value of GZO4 fluctuates slightly with magnetic field and reaches its peak at B = 1.0 T. The magneto-thermoelectric properties are analyzed and we propose that this behavior is mainly attributed to the effect of magnetic field on the electron transport.

  1. Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films

    PubMed Central

    Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O

    2015-01-01

    We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity. PMID:25897486

  2. Structural and optical properties of dense vertically aligned ZnO nanorods grown onto silver and gold thin films by galvanic effect with iron contamination

    SciTech Connect

    Scarpellini, D.; Paoloni, S.; Medaglia, P.G.; Pizzoferrato, R.; Orsini, A.; Falconi, C.

    2015-05-15

    Highlights: • ZnO nanorods were grown on Au and Ag films in aqueous solution by galvanic effect. • The method is prone to metal contamination which can influence the ZnO properties. • Iron doping improves the lattice matching between ZnO and the substrate. • Energy levels of point defects are lowered and the light emission is red-shifted. • Galvanic-induced nucleation starts and proceeds continuously during the growth. - Abstract: Dense arrays of vertically aligned ZnO nanorods have been grown onto either silver or gold seedless substrates trough a simple hydrothermal method by exploiting the galvanic effect between the substrate and metallic parts. The nanorods exhibit larger bases and more defined hexagonal shapes, in comparison with standard non-galvanic wet-chemistry synthesis. X-ray diffraction (XRD) shows that the iron contamination, associated with the galvanic contact, significantly improves the in-plane compatibility of ZnO with the Au and Ag cubic lattice. Photoluminescence (PL) measurements indicate that the contamination does not affect the number density of localized defects, but lowers their energy levels uniformly; differently, the band-edge emission is not altered appreciably. Finally, we have found that the ZnO hetero-nucleation by galvanic effect initiates at different times in different sites of the substrate area. Our results can be useful for the fabrication of high performance piezonanodevices comprising high-density metal-to-ZnO nanoscaled junctions without intermediate polycrystalline layers.

  3. Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films.

    PubMed

    Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O

    2015-04-21

    We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity.

  4. One-pot synthesis of Ag+ doped BiVO4 microspheres with enhanced photocatalytic activity via a facile hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zhu, Shiwen; Li, Quanguo; Li, Feng; Cao, Wei; Li, Taohai

    2016-05-01

    The Ag+/BiVO4 photocatalyst was fabricated through a facile hydrothermal method by using K6V10O28·9H2O as the vanadium source. The impact of Ag+ on the product's structure and morphology was studied. It was shown that the amount of Ag+ has no effect on the product's crystal phases but plays an important role on the morphology of the nanoparticles that construct the shell of BiVO4 microspheres. In addition, the Ag+-doped photocatalysts have much higher photocatalytic activities in removing RhB and MB under the UV light illumination than the pure BiVO4. A possible photocatalytic mechanism was proposed in photoexcitation of the BiVO4 electrons which subsequently captured by the dopant. The present work may offer a novel route to reach higher photocatalytic activity by doping the Ag+ in the semiconductor catalysts.

  5. Synthesis of Ag-doped TiO2 nanoparticles by combining laser decomposition of titanium isopropoxide and ablation of Ag for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Al-Kamal, Ahmed Kamal

    Nanostructured powders of TiO2 and Ag-doped TiO2 are synthesized by a novel pulsed-laser process that combines laser ablation of a silver (Ag) disc with laser decomposition of a titanium tetra-isopropoxide (TTIP) solution. Nanoparticles are formed by rapid condensation of vaporized species in the plasma plume generated by the high power laser, resulting in the formation of rapidly quenched Ag-doped TiO2 nanoparticles that have far-from-equilibrium or metastable structures. The uniqueness of the new ablation process is that it is a one-step process, in contrast to the two-step process developed by previous researchers in the field. Moreover, its ability to synthesize an extended-solid solution phase of Ag in TiO 2 may also be unique. The present work implies that other oxide phases, such as Al2O3, MgO and MgAl2O4, can be doped with normally insoluble metals, such as Pt and Ir, thus opening new opportunities for catalytic applications. Again, there is the prospect of being able to synthesize nanopowders of diamond, c-BN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor. A wet-chemistry method is also investigated, which has much in common with that adopted by previous workers in the field. However, photo-voltaic properties do not measure up to expectations based on published data. A possible explanation is that the selected Ag concentrations are too high, so that recombination of holes and electrons occurs via a quantum-tunneling mechanism reduces photo-activity. Future work, therefore, will investigate lower concentrations of Ag dopant in TiO2, while also examining the effects of metastable states, including extended solid solution, amorphous, and semi-crystalline structures.

  6. Superior adsorption performance for triphenylmethane dyes on 3D architectures assembled by ZnO nanosheets as thin as ∼1.5nm.

    PubMed

    Pei, Cuijin; Han, Guoping; Zhao, Yan; Zhao, Hua; Liu, Bin; Cheng, Lijuan; Yang, Heqing; Liu, Shengzhong

    2016-11-15

    The 3-dimensional hierarchical ZnO flower-like architectures have been synthesized in a Zn(Ac)2·2H2O-Na2SeO3-KBH4-pyridine solvothermal system at 100°C for 24h. The flower-like architecture is assembled from ZnO nanosheets with a thickness of ∼1.5nm, and the flower-like architecture specific surface area is 132m(2)/g. When the ZnO flower-like architecture is used as the adsorbent for acid fuschin (AF), malachite green (MG), basic fuchsin (BF), congo red (CR) and acid red (AR) in water, the adsorption capacities for AF, MG, BF, CR and AR are 7154.9, 2587.0, 1377.9, 85.0 and 38.0mg/g, respectively. Evidently, the as-obtained ZnO flower-like architectures show excellent adsorption performances for triphenylmethane dyes, and the adsorption capacity of 7154.9mg/g for AF is the highest of all adsorbents for dyes. The adsorption mechanism can be attributed to the electrostatic attraction and the formation of ion-association complex between triphenylmethane dyes and ZnO hierarchical flower-like architectures. PMID:27493012

  7. Nitrogen [N]-incorporated ZnO piezoelectric thin films and their application for ultra-small film bulk acoustic wave resonator device fabrication

    SciTech Connect

    Lee, Eunju; Zhang Ruirui; Yoon, Giwan

    2011-10-01

    Nitrogen [N]-incorporated ZnO films with columnar grains of a preferred c-axis orientation were deposited on p-Si (100) wafers, using an RF magnetron sputter deposition technique. For the N incorporation into the ZnO films, an N{sub 2}O gas was used as a doping source and also various process conditions such as N{sub 2}O gas fraction and RF power were applied. Besides, some of the ZnO films were treated with the post annealing process. And then, the micro-structural characteristics of the N-incorporated ZnO films were investigated by a scanning electron microscope, an X-ray diffractometer, and an atomic force microscope techniques. Finally, employing the N-incorporated ZnO films, the solidly mounted resonator-type film bulk acoustic wave resonator devices were fabricated and their resonance characteristics were extracted. As a result, an excellent return loss (S{sub 11}) of- 63 dB was observed at{approx} 0.6 GHz, better than ever reported.

  8. The electrical properties of low pressure chemical vapor deposition Ga doped ZnO thin films depending on chemical bonding configuration

    NASA Astrophysics Data System (ADS)

    Jung, Hanearl; Kim, Doyoung; Kim, Hyungjun

    2014-04-01

    The electrical and chemical properties of low pressure chemical vapor deposition (LP-CVD) Ga doped ZnO (ZnO:Ga) films were systematically investigated using Hall measurement and X-ray photoemission spectroscopy (XPS). Diethylzinc (DEZ) and O2 gas were used as precursor and reactant gas, respectively, and trimethyl gallium (TMGa) was used as a Ga doping source. Initially, the electrical properties of undoped LP-CVD ZnO films depending on the partial pressure of DEZ and O2 ratio were investigated using X-ray diffraction (XRD) by changing partial pressure of DEZ from 40 to 140 mTorr and that of O2 from 40 to 80 mTorr. The resistivity was reduced by Ga doping from 7.24 × 10-3 Ω cm for undoped ZnO to 2.05 × 10-3 Ω cm for Ga doped ZnO at the TMG pressure of 8 mTorr. The change of electric properties of Ga doped ZnO with varying the amount of Ga dopants was systematically discussed based on the structural crystallinity and chemical bonding configuration, analyzed by XRD and XPS, respectively.

  9. ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Hongsingthong, Aswin; Krajangsang, Taweewat; Afdi Yunaz, Ihsanul; Miyajima, Shinsuke; Konagai, Makoto

    2010-05-01

    We successfully increased the haze value of zinc oxide (ZnO) films fabricated using metal-organic chemical vapor deposition (MOCVD) by conducting glass-substrate etching before film deposition. It was found that with increasing the glass treatment time, the surface morphology of ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like multi texture. Further, the rms roughness and the haze value of the films increased remarkably. Using ZnO films with a high haze value as front transparent conductive oxide (TCO) films in hydrogenated microcrystalline silicon (µc-Si:H) solar cells, we improved the quantum efficiency of these cells particularly in the long-wavelength region.

  10. Epitaxial ZnO/LiNbO{sub 3}/ZnO stacked layer waveguide for application to thin-film Pockels sensors

    SciTech Connect

    Akazawa, Housei Fukuda, Hiroshi

    2015-05-15

    We produced slab waveguides consisting of a LiNbO{sub 3} (LN) core layer that was sandwiched with Al-doped ZnO cladding layers. The ZnO/LN/ZnO stacked layers were grown on sapphire C-planes by electron cyclotron resonance (ECR) plasma sputtering and were subjected to structural, electrical, and optical characterizations. X-ray diffraction confirmed that the ZnO and LN layers were epitaxial without containing misoriented crystallites. The presence of 60°-rotational variants of ZnO and LN crystalline domains were identified from X-ray pole figures. Cross-sectional transmission electron microscopy images revealed a c-axis orientated columnar texture for LN crystals, which ensured operation as electro-optic sensors based on optical anisotropy along longitudinal and transversal directions. The interfacial roughness between the LN core and ZnO bottom layers as well as that between the ZnO top and the LN core layers was less than 20 nm, which agreed with surface images observed with atomic force microscopy. Outgrowth of triangular LN crystalline domains produced large roughness at the LN film surface. The RMS roughness of the LN film surface was twice that of the same structure grown on sapphire A-planes. Vertical optical transmittance of the stacked films was higher than 85% within the visible and infrared wavelength range. Following the approach adopted by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)], ac Pockels coefficients of r{sub 33} = 24-28 pm/V were derived for c-axis oriented LN films grown on low-resistive Si substrates. Light propagation within a ZnO/LN/ZnO slab waveguide as well as within a ZnO single layer waveguide was confirmed. The birefringence of these waveguides was 0.11 for the former and 0.05 for the latter.

  11. Epitaxial ZnO/LiNbO3/ZnO stacked layer waveguide for application to thin-film Pockels sensors

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei; Fukuda, Hiroshi

    2015-05-01

    We produced slab waveguides consisting of a LiNbO3 (LN) core layer that was sandwiched with Al-doped ZnO cladding layers. The ZnO/LN/ZnO stacked layers were grown on sapphire C-planes by electron cyclotron resonance (ECR) plasma sputtering and were subjected to structural, electrical, and optical characterizations. X-ray diffraction confirmed that the ZnO and LN layers were epitaxial without containing misoriented crystallites. The presence of 60°-rotational variants of ZnO and LN crystalline domains were identified from X-ray pole figures. Cross-sectional transmission electron microscopy images revealed a c-axis orientated columnar texture for LN crystals, which ensured operation as electro-optic sensors based on optical anisotropy along longitudinal and transversal directions. The interfacial roughness between the LN core and ZnO bottom layers as well as that between the ZnO top and the LN core layers was less than 20 nm, which agreed with surface images observed with atomic force microscopy. Outgrowth of triangular LN crystalline domains produced large roughness at the LN film surface. The RMS roughness of the LN film surface was twice that of the same structure grown on sapphire A-planes. Vertical optical transmittance of the stacked films was higher than 85% within the visible and infrared wavelength range. Following the approach adopted by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)], ac Pockels coefficients of r33 = 24-28 pm/V were derived for c-axis oriented LN films grown on low-resistive Si substrates. Light propagation within a ZnO/LN/ZnO slab waveguide as well as within a ZnO single layer waveguide was confirmed. The birefringence of these waveguides was 0.11 for the former and 0.05 for the latter.

  12. Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects

    SciTech Connect

    Simimol, A.; Anappara, Aji A.; Greulich-Weber, S.; Chowdhury, Prasanta; Barshilia, Harish C.

    2015-06-07

    We report the growth of un-doped and cobalt doped ZnO nanostructures fabricated on FTO coated glass substrates using electrodeposition method. A detailed study on the effects of dopant concentration on morphology, structural, optical, and magnetic properties of the ZnO nanostructures has been carried out systematically by varying the Co concentration (c.{sub Co}) from 0.01 to 1 mM. For c.{sub Co }≤ 0.2 mM, h-wurtzite phase with no secondary phases of Co were present in the ZnO nanostructures. For c.{sub Co} ≤ 0.2 mM, the photoluminescence spectra exhibited a decrease in the intensity of ultraviolet emission as well as band-gap narrowing with an increase in dopant concentration. All the doped samples displayed a broad emission in the visible range and its intensity increased with an increase in Co concentration. It was found that the defect centers such as oxygen vacancies and zinc interstitials were the source of the visible emission. The X-ray photoelectron spectroscopy studies revealed, Co was primarily in the divalent state, replacing the Zn ion inside the tetrahedral crystal site of ZnO without forming any cluster or secondary phases of Co. The un-doped ZnO nanorods exhibited diamagnetic behavior and it remained up to a c.{sub Co} of 0.05 mM, while for c.{sub Co }> 0.05 mM, the ZnO nanostructures exhibited ferromagnetic behavior at room temperature. The coercivity increased to 695 G for 0.2 mM Co-doped sample and then it decreased for c.{sub Co }> 0.2 mM. Our results illustrate that up to a threshold concentration of 0.2 mM, the strong ferromagnetism is due to the oxygen vacancy defects centers, which exist in the Co-doped ZnO nanostructures. The origin of strong ferromagnetism at room temperature in Co-doped ZnO nanostructures is attributed to the s-d exchange interaction between the localized spin moments resulting from the oxygen vacancies and d electrons of Co{sup 2+} ions. Our findings provide a new insight for tuning the

  13. High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature

    NASA Astrophysics Data System (ADS)

    Jayah, Nurul Azzyaty; Yahaya, Hafizal; Mahmood, Mohamad Rusop; Terasako, Tomoaki; Yasui, Kanji; Hashim, Abdul Manaf

    2015-01-01

    Hydrothermal zinc oxide (ZnO) thick films were successfully grown on the chemical vapor deposition (CVD)-grown thick ZnO seed layers on a-plane sapphire substrates using the aqueous solution of zinc nitrate dehydrate (Zn(NO3)2). The use of the CVD ZnO seed layers with the flat surfaces seems to be a key technique for obtaining thick films instead of vertically aligned nanostructures as reported in many literatures. All the hydrothermal ZnO layers showed the large grains with hexagonal end facets and were highly oriented towards the c-axis direction. Photoluminescence (PL) spectra of the hydrothermal layers were composed of the ultraviolet (UV) emission (370 to 380 nm) and the visible emission (481 to 491 nm), and the intensity ratio of the former emission ( I UV) to the latter emission ( I VIS) changed, depending on both the molarity of the solution and temperature. It is surprising that all the Hall mobilities for the hydrothermal ZnO layers were significantly larger than those for their corresponding CVD seed films. It was also found that, for the hydrothermal films grown at 70°C to 90°C, the molarity dependences of I UV/ I VIS resembled those of mobilities, implying that the mobility in the film is affected by the structural defects. The highest mobility of 166 cm2/Vs was achieved on the hydrothermal film with the carrier concentration of 1.65 × 1017 cm-3 grown from the aqueous solution of 40 mM at 70°C.

  14. High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature.

    PubMed

    Jayah, Nurul Azzyaty; Yahaya, Hafizal; Mahmood, Mohamad Rusop; Terasako, Tomoaki; Yasui, Kanji; Hashim, Abdul Manaf

    2015-01-01

    Hydrothermal zinc oxide (ZnO) thick films were successfully grown on the chemical vapor deposition (CVD)-grown thick ZnO seed layers on a-plane sapphire substrates using the aqueous solution of zinc nitrate dehydrate (Zn(NO3)2). The use of the CVD ZnO seed layers with the flat surfaces seems to be a key technique for obtaining thick films instead of vertically aligned nanostructures as reported in many literatures. All the hydrothermal ZnO layers showed the large grains with hexagonal end facets and were highly oriented towards the c-axis direction. Photoluminescence (PL) spectra of the hydrothermal layers were composed of the ultraviolet (UV) emission (370 to 380 nm) and the visible emission (481 to 491 nm), and the intensity ratio of the former emission (I UV) to the latter emission (I VIS) changed, depending on both the molarity of the solution and temperature. It is surprising that all the Hall mobilities for the hydrothermal ZnO layers were significantly larger than those for their corresponding CVD seed films. It was also found that, for the hydrothermal films grown at 70°C to 90°C, the molarity dependences of I UV/I VIS resembled those of mobilities, implying that the mobility in the film is affected by the structural defects. The highest mobility of 166 cm(2)/Vs was achieved on the hydrothermal film with the carrier concentration of 1.65 × 10(17) cm(-3) grown from the aqueous solution of 40 mM at 70°C.

  15. Switching photoluminescence channels between dopant Eu2+ and Eu3+ ions in ZnO thin films by varying the post-annealing conditions

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei; Shinojima, Hiroyuki

    2016-09-01

    An Eu-doped ZnO (ZnO:Eu) is an extensively investigated optical material. While most studies reported photoluminescence (PL) from Eu3+ ions resulting from the electronic transitions between 4f levels (5D0→7FJ), the evidence of emissions from Eu2+ ions remains limited. Here, we report that a violet emission in the wavelength region between 450 and 500 nm emerged from the sputter-deposited ZnO:Eu films that were post-annealed at 900 °C in an O2 ambient. This emission peak was away from the band edge and the defect green emissions of ZnO, and it was identified as being from Eu2+ ions. Simultaneous emergence of the red emission bands at wavelengths longer than 600 nm indicated that Zn vacancies (VZn) were created during a high-temperature annealing and that producing VZn promoted substitution at Zn2+ sites with Eu2+ ions. In contrast, when annealing was done in a vacuum, the defect emissions were attenuated and the PL spectra showed only band-edge emissions. Here, it can be interpreted that this reduced state, where some oxygen atoms have been removed from the ZnO lattice, has a short lifetime of excitons. In contrast, loading hydrogen atoms into the a ZnO lattice by annealing in an H2 ambient at 350 °C generated a weak Eu3+ emission at 612 nm along with an orange emission band ranging from 550 to 650 nm, which was from the OH termination at the surfaces and interfaces of the ZnO crystals. In this system, a codoping of H+ with Eu3+ ions assists the substitution at Zn2+ sites through a charge compensation. The present results, thus, demonstrate that the emergence of Eu2+ and Eu3+ emissions can be simply controlled by selecting the annealing conditions.

  16. Observation of the inverse spin Hall effect in ZnO thin films: An all-electrical approach to spin injection and detection

    SciTech Connect

    Prestgard, Megan C.; Tiwari, Ashutosh

    2014-03-24

    The inverse spin Hall effect (ISHE) is a newly discovered, quantum mechanical phenomenon where an applied spin current results in the generation of an electrical voltage in the transverse direction. It is anticipated that the ISHE can provide a more simple way of measuring spin currents in spintronic devices. The ISHE was first observed in noble metals that exhibit strong spin-orbit coupling. However, recently, the ISHE has been detected in conventional semiconductors (such as Si and Ge), which possess weak spin-orbit coupling. This suggests that large-spin orbit coupling is not a requirement for observing the ISHE. In this paper, we are reporting the observation of the ISHE in an alternative semiconductor material, zinc oxide (ZnO) using all-electrical means. In our study, we found that when a spin-polarized current is injected into the ZnO film from a NiFe ferromagnetic injector via an MgO tunnel barrier layer, a voltage transverse to both the direction of the current as well as its spin-polarization is generated in the ZnO layer. The polarity of this voltage signal was found to flip on reversing the direction of the injected current as well as on reversing the polarization of the current, consistent with the predictions of the ISHE process. Through careful analysis of the ISHE data, we determined a spin-Hall angle of approximately 1.651 × 10{sup −2} for ZnO, which is two orders of magnitude higher than that of silicon. Observation of a detectable room-temperature ISHE signal in ZnO via electrical injection and detection is a groundbreaking step that opens a path towards achieving transparent spin detectors for next-generation spintronic device technology.

  17. Patterned PPy Polymer and PPy/Ag Nanocomposites Thin Films by Photo-DLICVD

    NASA Astrophysics Data System (ADS)

    Manole, C. C.; Maury, F.; Demetrescu, I.

    This work deals with the deposition of both undoped (insulator) and extrinsically Ag-doped (conductive) polypyrrole (PPy) coatings by an original Photo-DLICVD process. The uniform and conformal coverage of PPy thin films on both Si(100) wafer and liquid micro-droplets forming blisters is investigated. A self-ordered surface patterning of the blisters is achieved and discussed in relation with the substrate nature. By changing the precursor chemistry in this CVD process, conductive PPy/Ag nanocomposite films are grown. First evidence for conductive behavior of these Ag-doped PPy coatings was found. The Ag nanoparticles (NPs) reveal 1D assembly at the ledges of crystal-like facets of micron size nanocomposite particles leading to more complex arrangements of the metal NPs in the hybrid PPy/Ag coatings.

  18. The impact of oxygen incorporation during intrinsic ZnO sputtering on the performance of Cu(In,Ga)Se{sub 2} thin film solar cells

    SciTech Connect

    Lee, Kkotnim; Ok, Eun-A; Park, Jong-Keuk; Kim, Won Mok; Baik, Young-Joon; Jeong, Jeung-hyun; Kim, Donghwan

    2014-08-25

    We investigated the impact of incorporating 2% oxygen during intrinsic ZnO sputtering on the efficiency of Cu(In,Ga)Se{sub 2} solar cells. The added oxygen not only reduced the optical absorption loss of the Al-doped ZnO overlaying layer but also improved the electronic properties of the underlying CdS/Cu(In,Ga)Se{sub 2} by increasing carrier density, lowering defect level, and increasing diffusion length, eventually enhancing J{sub SC}, V{sub OC}, and fill factor. It was found that the Na doping concentration was significantly increased around the CdS/Cu(In,Ga)Se{sub 2} junction due to the plasma-activated oxygen. The improved electronic properties are better explained by the increased Na concentration than simply the oxygen-related defect passivation.

  19. Effects of silver impurity on the structural, electrical, and optical properties of ZnO nanowires

    PubMed Central

    2011-01-01

    1, 3, and 5 wt.% silver-doped ZnO (SZO) nanowires (NWs) are grown by hot-walled pulsed laser deposition. After silver-doping process, SZO NWs show some change behaviors, including structural, electrical, and optical properties. In case of structural property, the primary growth plane of SZO NWs is switched from (002) to (103) plane, and the electrical properties of SZO NWs are variously measured to be about 4.26 × 106, 1.34 × 106, and 3.04 × 105 Ω for 1, 3, and 5 SZO NWs, respectively. In other words, the electrical properties of SZO NWs depend on different Ag ratios resulting in controlling the carrier concentration. Finally, the optical properties of SZO NWs are investigated to confirm p-type semiconductor by observing the exciton bound to a neutral acceptor (A0X). Also, Ag presence in ZnO NWs is directly detected by both X-ray photoelectron spectroscopy and energy dispersive spectroscopy. These results imply that Ag doping facilitates the possibility of changing the properties in ZnO NWs by the atomic substitution of Ag with Zn in the lattice. PMID:21985620

  20. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Effect of Annealing Conditions on Properties of Sol-Gel Derived Al-Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Gao, Mei-Zhen; Zhang, Feng; Liu, Jing; Sun, Hui-Na

    2009-08-01

    Transparent conductive Al-doped ZnO (AZO) thin films are prepared on normal glass substrates by the sol-gel spin coating method. The effects of drying conditions, annealing temperature and cooling rate on the structural, electrical and optical properties of AZO films are investigated by x-ray diffraction, scanning electron microscopy, the four-point probe method and UV-VIS spectrophotometry, respectively. The deposited films show a hexagonal wurtzite structure and high preferential c-axis orientation. As the drying temperature increases from 100°C to 300°C the resistivity of AZO films decreases dramatically. In contrast to the annealed films cooled in a furnace and in air, the resistivity of the annealed film which is cooled at -15°C is greatly reduced. Increasing the cooling rate dramatically increases the electrical conductivity of AZO films.

  1. ZnO hierarchical nanostructures: simple solvothermal synthesis and growth mechanism.

    PubMed

    Dev, Apurba; Kar, Soumitra; Chaudhuri, Subhadra

    2008-09-01

    Hierarchical nano/micro structures of ZnO have been fabricated by solvothermal approach on sol-gel derived ZnO thin films. Paintbrush like nano/micro rod assembly, double-sided brush and windmill type architectures of ZnO are obtained when the ZnO thin film coated substrates were treated solvothermally in water at pH 10. Aligned nanorods are obtained at pH approximately 13.5 in water. In ethylenediamine-water solvent divergent micro/nanorod assemblies such as hemispherical dandelion, rice plant type bush of ZnO are obtained. Increase in the percentage of ethyelendiamine resulted in the formation of smaller assemblies of relatively thin nanorods. Initial slow reaction caused by the slow increase of the temperature inside the reaction medium and the different growth kinetics of the ZnO crystals are supposed to be the reason behind the architectural assemblies of the ZnO crystals.

  2. Effect of annealing temperature of Bi1.5Zn1.0Nb1.5O7 gate insulator on performance of ZnO based thin film transistors

    NASA Astrophysics Data System (ADS)

    Wei, Ye; Wei, Ren; Peng, Shi; Zhuangde, Jiang

    2016-07-01

    The bottom-gate structure ZnO based thin film transistors (ZnO-TFTs) using Bi1.5Zn1.0Nb1.5O7 (BZN) thin films as gate insulator were fabricated on Pt/SiO2/Si substrate by radio frequency magnetic sputtering. We investigated the effect of annealing temperature at 300, 400, and 500 °C on the performance of BZN thin films and ZnO-TFTs. XRD measurement confirmed that BZN thin films were amorphous in nature. BZN thin films annealed at 400 °C obtain the high capacitance density of 249 nF/cm2, high dielectric constant of 71, and low leakage current density of 10‑7 A/cm2 on/off current ratio and field effect mobility of ZnO-TFTs annealed at 400 °C are approximately one order of magnitude and two times, respectively higher than that of ZnO-TFTs annealed at 300 °C. When the annealing temperature is 400 °C, the electrical performance of ZnO-TFTs is enhanced remarkably. Devices obtain a low sub-threshold swing of 470 mV/dec and surface states density of 3.21 × 1012cm‑2. Project supported by the National Natural Science Foundation of China (Nos. 51332003, 51202184), the International Science & Technology Cooperation Program of China (Nos. 2010DFB13640, 2011DFA51880), and the “111 Project” of China (No. B14040).

  3. Effect of annealing temperature of Bi1.5Zn1.0Nb1.5O7 gate insulator on performance of ZnO based thin film transistors

    NASA Astrophysics Data System (ADS)

    Wei, Ye; Wei, Ren; Peng, Shi; Zhuangde, Jiang

    2016-07-01

    The bottom-gate structure ZnO based thin film transistors (ZnO-TFTs) using Bi1.5Zn1.0Nb1.5O7 (BZN) thin films as gate insulator were fabricated on Pt/SiO2/Si substrate by radio frequency magnetic sputtering. We investigated the effect of annealing temperature at 300, 400, and 500 °C on the performance of BZN thin films and ZnO-TFTs. XRD measurement confirmed that BZN thin films were amorphous in nature. BZN thin films annealed at 400 °C obtain the high capacitance density of 249 nF/cm2, high dielectric constant of 71, and low leakage current density of 10-7 A/cm2 on/off current ratio and field effect mobility of ZnO-TFTs annealed at 400 °C are approximately one order of magnitude and two times, respectively higher than that of ZnO-TFTs annealed at 300 °C. When the annealing temperature is 400 °C, the electrical performance of ZnO-TFTs is enhanced remarkably. Devices obtain a low sub-threshold swing of 470 mV/dec and surface states density of 3.21 × 1012cm-2. Project supported by the National Natural Science Foundation of China (Nos. 51332003, 51202184), the International Science & Technology Cooperation Program of China (Nos. 2010DFB13640, 2011DFA51880), and the “111 Project” of China (No. B14040).

  4. Fluorometric sensing of ultralow As(III) concentrations using Ag doped hollow CdS/ZnS bi-layer nanoparticles.

    PubMed

    Boxi, Siddhartha Sankar; Paria, Santanu

    2015-12-21

    Arsenic poisoning from drinking water has been an important global issue in recent years. Because of the high level toxicity of arsenic to human health, an easy, inexpensive, low level and highly selective detection technique is of great importance to take any early precautions. This study reports the synthesis of Ag doped hollow CdS/ZnS bi-layer (Ag-h-CdS/ZnS) nanoparticles for the easy fluorometric determination of As(iii) ions in the aqueous phase. The hollow bi-layer structures were synthesized by a sacrificial core method using AgBr as the sacrificial core and the core was removed by dissolution in an ammonium hydroxide solution. The synthesized nanoparticles were characterized using different instrumental techniques. A good linear relationship was obtained between fluorescence quenching intensity and As(iii) concentration in the range of 0.75-22.5 μg L(-1) at neutral pH with a limit of detection as low as 0.226 μg L(-1). PMID:26541652

  5. Buffer layer effect on ZnO nanorods growth alignment

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxu; Andreazza, Caroline; Andreazza, Pascal; Ma, Jiangang; Liu, Yichun; Shen, Dezhen

    2005-06-01

    Vertical aligned ZnO nanorods array was fabricated on Si with introducing a ZnO thin film as a buffer layer. Two different nucleation mechanisms were found in growth process. With using Au catalyst, Zn vapor could diffuse into Au nanoclusters with forming a solid solution. Then the ZnO nucleation site is mainly on the catalyst by oxidation of Au/Zn alloy. Without catalyst, nucleation could occur directly on the surface of buffer layer by homoepitaxy. The density and the size of ZnO nanorods could be governed by morphological character of catalyst and buffer layer. The nanorods growth is followed by vapor-solid mechanism.

  6. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    NASA Astrophysics Data System (ADS)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  7. Influence of in-situ annealing ambient on p-type conduction in dual ion beam sputtered Sb-doped ZnO thin films

    SciTech Connect

    Pandey, Sushil Kumar; Kumar Pandey, Saurabh; Awasthi, Vishnu; Mukherjee, Shaibal; Gupta, M.; Deshpande, U. P.

    2013-08-12

    Sb-doped ZnO (SZO) films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system and subsequently annealed in-situ in vacuum and in various proportions of O{sub 2}/(O{sub 2} + N{sub 2})% from 0% (N{sub 2}) to 100% (O{sub 2}). Hall measurements established all SZO films were p-type, as was also confirmed by typical diode-like rectifying current-voltage characteristics from p-ZnO/n-ZnO homojunction. SZO films annealed in O{sub 2} ambient exhibited higher hole concentration as compared with films annealed in vacuum or N{sub 2} ambient. X-ray photoelectron spectroscopic analysis confirmed that Sb{sup 5+} states were more preferable in comparison to Sb{sup 3+} states for acceptor-like Sb{sub Zn}-2V{sub Zn} complex formation in SZO films.

  8. Magnetism in dopant-free ZnO nanoplates.

    PubMed

    Hong, Jung-Il; Choi, Jiil; Jang, Seung Soon; Gu, Jiyeong; Chang, Yangling; Wortman, Gregory; Snyder, Robert L; Wang, Zhong Lin

    2012-02-01

    It is known that bulk ZnO is a nonmagnetic material. However, the electronic band structure of ZnO is severely distorted when the ZnO is in the shape of a very thin plate with its dimension along the c-axis reduced to a few nanometers while keeping the bulk scale sizes in the other two dimensions. We found that the chemically synthesized ZnO nanoplates exhibit magnetism even at room temperature. First-principles calculations show a growing asymmetry in the spin distribution within the distorted bands formed from Zn (3d) and O (2p) orbitals with the reduction of thickness of the ZnO nanoplates, which is suggested to be responsible for the observed magnetism. In contrast, reducing the dimension along the a- or b-axes of a ZnO crystal does not yield any magnetism for ZnO nanowires that grow along c-axis, suggesting that the internal electric field produced by the large {0001} polar surfaces of the nanoplates may be responsible for the distorted electronic band structures of thin ZnO nanoplates.

  9. 100 MeV Ni{sup +7} swift heavy ion induced magnetism in cobalt doped ZnO thin films

    SciTech Connect

    Kumar, Sunil Singh, D. P.; Kumar, Ravi

    2014-04-24

    Zn{sub 0.90}Co{sub 0.10}O thin films were prepared using Sol-Gel spin coating method. Films were irradiated with 100 MeV Ni{sub +7} Swift Heavy Ions (SHI) with fluences 1× 10{sup 13} ions/cm{sup 2} using 15 UD tandem accelerator at IUAC New Delhi and its effect were studied on the structural, optical and magnetic properties of irradiated thin films. X-ray diffraction studies show single phase films with preferred c-axis orientation after irradiation. Ultraviolet-visible absorption spectroscopy shows red shift in the band gap of irradiated thin films. Magnetic field dependence of magnetization reveals weak ferromagnetism in irradiated thin films. AFM studies shows significant increase in the grain size and the surface roughness of the films after irradiation.

  10. Spatially controlled growth of highly crystalline ZnO nanowires by an inkjet-printing catalyst-free method

    NASA Astrophysics Data System (ADS)

    Güell, Frank; Martínez-Alanis, Paulina R.; Khachadorian, Sevak; Zamani, Reza R.; Franke, Alexander; Hoffmann, Axel; Wagner, Markus R.; Santana, Guillermo

    2016-02-01

    High-density arrays of uniform ZnO nanowires with a high-crystal quality have been synthesized by a catalyst-free vapor-transport method. First, a thin ZnO film was deposited on a Si substrate as nucleation layer for the ZnO nanowires. Second, spatially selective and mask-less growth of ZnO nanowires was achieved using inkjet-printed patterned islands as the nucleation sites on a SiO2/Si substrate. Raman scattering and low temperature photoluminescence measurements were applied to characterize the structural and optical properties of the ZnO nanowires. The results reveal negligible amounts of strain and defects in the mask-less ZnO nanowires as compared to the ones grown on the ZnO thin film, which underlines the potential of the inkjet-printing approach for the growth of high-crystal quality ZnO nanowires.

  11. Effect of RF power on the optical, electrical, mechanical and structural properties of sputtering Ga-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Tien, Chuen-Lin; Yu, Kuo-Chang; Tsai, Tsung-Yo; Liu, Ming-Chung

    2015-11-01

    We present the influences of radio-frequency (RF) power on the optical, electrical, mechanical, and structural properties of Ga-doped zinc oxide (GZO) thin films by RF magnetron sputtering at room temperature. GZO thin films were grown on unheated glass and silicon substrates using radio-frequency (RF) magnetron sputtering method with different RF powers (from 60 W to 160 W). The optical properties of the GZO thin film were determined by a UV-vis spectrophotometer. The residual stress in GZO films were measured by a home-made Twyman-Green interferometer with the fast Fourier transform (FFT) method. The surface roughness of GZO films were measured by a microscopic interferometry. The microstructure, composition and crystal orientation of the GZO films were determined by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). This paper revealed that the optical, electrical, mechanical, and structural properties of GZO thin film are subject to the RF power. For the optical spectrum measurement, an average optical transmittance in the visible region of the spectra of 85% was obtained. For the characteristic measurements, all the GZO thin films deposited by RF magnetron sputtering have compressive stress at different RF powers. A minimum residual stress of 0.24 GPa is found at the RF power of 140 W. A four-point probe method was used to measure the resistivity of the GZO thin films with different powers, the results indicate that the resistivity increases with increasing of RF power. In addition, the root-mean-square (RMS) surface roughness of GZO thin films slightly increases as the RF power is increasing. We have also compared the results with the relevant literatures.

  12. N-doped ZnO films grown from hybrid target by the pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Martín-Tovar, E. A.; Chan y Díaz, E.; Acosta, M.; Castro-Rodríguez, R.; Iribarren, A.

    2016-10-01

    ZnO thin films were grown by the pulsed laser deposition technique on glass substrate using a hybrid target composed of ZnO powder embedded into a poly(ethyl cyanoacrylate) matrix. The resulting thin film presented ZnO wurtzite structure with very low stress and diffractogram very similar to that of the powder pattern. From comparing with ZnO thin films grown from traditional sintered target, it is suggested that the use of this hybrid target with a soft matrix led to ejection of ZnO clusters that conveniently disposed and adhered to substrate and previous deposited layers. Chemical measurements showed the presence of Zn-N bonds, besides Zn-O ones. Optical absorption profile confirmed the presence of low-polymerized zinc oxynitride molecular subunits, besides ZnO.

  13. Au-coated ZnO nanostructures for surface enhanced Raman spectroscopy applications

    SciTech Connect

    Dikovska, A O; Nedyalkov, N N; Imamova, S E; Atanasova, G B; Atanasov, P A

    2012-03-31

    Thin ZnO nanostructured films were produced by pulsed laser deposition (PLD) for surface enhanced Raman spectroscopy (SERS) studies. The experimental conditions used for preparation of the samples were chosen to obtain different types of ZnO nanostructures. The Raman spectra of rhodamine 6G (R6G) were measured at an excitation wavelength of 785 nm after coating the ZnO nanostructures with a thin Au layer. The influence of the surface morphology on the Raman signal obtained from the samples was investigated. High SERS signal enhancement was observed from all Au-coated ZnO nanostructures.

  14. Influence of Oblique Angle Deposition on the Nano-structure and Characteristics of ZnO Thin Films Produced by Annealing of Zn Films

    NASA Astrophysics Data System (ADS)

    Savaloni, Hadi; Abbaszadeh, Neda

    2016-07-01

    Zinc oxide films were prepared using oblique angle deposition of Zn at four deposition angles of 0°, 30°, 45°, and 60° and subsequent annealing with the flow of oxygen. Structural characteristics of the films were obtained using atomic force microscopy and field emission scanning electron microscopy while their crystallography was investigated by x-ray diffraction analysis. The largest value of void fraction and the highest preferred orientation were obtained for the ZnO(101) diffraction line for the Zn film deposited at 45°. The former is explained in the published literature on the basis of rearrangement of atoms resulting from the diffusion or thermal vibration and the available crystallographic sites and surface energy on the substrate/growing film surface for relaxation of an adatom. Zn film anisotropy due to the bundling effect resulting from oblique angle deposition was examined by sheet resistivity measurements along x and y directions of the samples. Optical spectra of the samples were measured using both polarized light and unpolarized light from which optical constants were deduced. Both direct and indirect band gap energies were obtained and compared with the reported theoretical calculations. Our results are consistent with the experimental data in the literature; while they are larger than the theoretical reported values.

  15. Intrinsic and extrinsic doping of ZnO and ZnO alloys

    NASA Astrophysics Data System (ADS)

    Ellmer, Klaus; Bikowski, André

    2016-10-01

    In this article the doping of the oxidic compound semiconductor ZnO is reviewed with special emphasis on n-type doping. ZnO naturally exhibits n-type conductivity, which is used in the application of highly doped n-type ZnO as a transparent electrode, for instance in thin film solar cells. For prospective application of ZnO in other electronic devices (LEDs, UV photodetectors or power devices) p-type doping is required, which has been reported only minimally. Highly n-type doped ZnO can be prepared by doping with the group IIIB elements B, Al, Ga, and In, which act as shallow donors according to the simple hydrogen-like substitutional donor model of Bethe (1942 Theory of the Boundary Layer of Crystal Rectifiers (Boston, MA: MIT Rad Lab.)). Group IIIA elements (Sc, Y, La etc) are also known to act as shallow donors in ZnO, similarly explainable by the shallow donor model of Bethe. Some reports showed that even group IVA (Ti, Zr, Hf) and IVB (Si, Ge) elements can be used to prepare highly doped ZnO films—which, however, can no longer be explained by the simple hydrogen-like substitutional donor model. More probably, these elements form defect complexes that act as shallow donors in ZnO. On the other hand, group V elements on oxygen lattice sites (N, P, As, and Sb), which were viewed for a long time as typical shallow acceptors, behave instead as deep acceptors, preventing high hole concentrations in ZnO at room temperature. Also, ‘self’-compensation, i.e. the formation of a large number of intrinsic donors at high acceptor concentrations seems to counteract the p-type doping of ZnO. At donor concentrations above about 1020 cm-3, the electrical activation of the dopant elements is often less than 100%, especially in polycrystalline thin films. Reasons for the electrical deactivation of the dopant atoms are (i) the formation of dopant-defect complexes, (ii) the compensation of the electrons by acceptors (Oi, VZn) or (iii) the formation of secondary phases, for

  16. Atomic layer deposition of ZnO on Cu-nanoclusters for methanol synthesis

    SciTech Connect

    Zhang Ziyu; Patterson, Matthew; Ren Maoming; Wang Ying; Flake, John C.; Sprunger, Phillip T.; Kurtz, Richard L.

    2013-01-15

    The properties of ALD-grown ZnO thin films on Cu clusters supported on ZnO(1010) have been studied with scanning tunneling and scanning electron microscopy in combination with angle-resolved x-ray photoelectron spectroscopy. Deposition at room temperature of two monolayers of Cu on ZnO(1010) results in metallic Cu{sup 0} clusters {approx}8 nm wide by 1.4 nm high. Higher coverages of 15 ML results in a similar morphology, with slightly larger cluster sizes. Following air-exposure and ALD-growth of two cycles of ZnO, the Cu exhibits Cu{sup +} species characteristic of Cu{sub 2}O and the thin ZnO coating is hydroxylated. Electrochemical studies of ALD ZnO coatings on Cu suggest that they are more active for CO{sub 2} reduction.

  17. Preparation of thin hexagonal highly-ordered anodic aluminum oxide (AAO) template onto silicon substrate and growth ZnO nanorod arrays by electrodeposition

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.

    2014-12-01

    In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).

  18. Influence of homo buffer layer thickness on the quality of ZnO epilayers.

    PubMed

    Eid, E A; Fouda, A N

    2015-10-01

    ZnO buffer layers with different thicknesses were deposited on a-plane sapphire substrates at 300 °C. ZnO epilayers were grown on ZnO buffers at 600 °C by radio-frequency magnetron sputtering and vacuum annealed at 900 °C for an hour. Influence of nucleation layer thickness on the structural and quality of ZnO thin films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and Raman spectroscopy. The best ZnO film quality was obtained with the ZnO buffer layer of 45 nm thick which provided the smoothest surface with RMS value of 0.3 nm. X-ray diffraction measurements reveal that the films have a single phase wurtzite structure with (0001) preferred crystal orientation. As evident from narrow FWHM of ZnO (0002) rocking curve, ZnO buffer can serve as a good template for the growth of high-quality ZnO films with little tilt. In addition, the micro-Raman scattering measurements at room temperature revealed the existence of Raman active phonon modes of ZnO; A1(TO), A1(LO) and E2(high). The latter two modes were not observed in thin buffer layer beside the dis-appearance of E2(low) mode in all films. PMID:25950638

  19. Effects of O2 plasma post-treatment on ZnO: Ga thin films grown by H2O-thermal ALD

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin; Chuang, Jia-Hao; Huang, Tzu-Hsuan; Ho, Chong-Long; Wu, Meng-Chyi

    2013-03-01

    Transparent conducting oxides have been widely employed in optoelectronic devices using the various deposition methods such as sputtering, thermal evaporator, and e-gun evaporator technologies.1-3 In this work, gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates via H2O-thermal atomic layer deposition (ALD) at different deposition temperatures. ALD-GZO thin films were constituted as a layer-by-layer structure by stacking zinc oxides and gallium oxides. Diethylzinc (DEZ), triethylgallium (TEG) and H2O were used as zinc, gallium precursors and oxygen source, respectively. Furthermore, we investigated the influences of O2 plasma post-treatment power on the surface morphology, electrical and optical property of ZnO:Ga films. As the result of O2 plasma post-treatment, the characteristics of ZnO:Ga films exhibit a smooth surface, low resistivity, high carrier concentration, and high optical transmittance in the visible spectrum. However, the transmittance decreases with O2 plasma power in the near- and mid-infrared regions.

  20. Effects of various oxygen partial pressures on Ti-doped ZnO thin film transistors fabricated on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Cui, Guodong; Han, Dedong; Yu, Wen; Shi, Pan; Zhang, Yi; Huang, Lingling; Cong, Yingying; Zhou, Xiaoliang; Zhang, Xiaomi; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2016-04-01

    By applying a novel active layer of titanium zinc oxide (TiZO), we have successfully fabricated fully transparent thin-film transistors (TFTs) with a bottom gate structure fabricated on a flexible plastic substrate at low temperatures. The effects of various oxygen partial pressures during channel deposition were studied to improve the device performance. We found that the oxygen partial pressure during channel deposition has a significant impact on the performance of TiZO TFTs, and that the TFT developed under 10% oxygen partial pressure exhibits superior performance with a low threshold voltage (V th) of 2.37 V, a high saturation mobility (μsat) of 125.4 cm2 V-1 s-1, a steep subthreshold swing (SS) of 195 mV/decade and a high I on/I off ratio of 3.05 × 108. These results suggest that TiZO thin films are promising for high-performance fully transparent flexible TFTs and displays.

  1. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    SciTech Connect

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2015-08-07

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  2. Control of optical and electrical properties of ZnO nanocrystals by nanosecond-laser annealing

    NASA Astrophysics Data System (ADS)

    Shimogaki, T.; Ofuji, T.; Tetsuyama, N.; Kawahara, H.; Higashihata, M.; Ikenoue, H.; Nakamura, D.; Okada, T.

    2014-03-01

    Effects of laser annealing on electrical and optical properties of Zinc oxide (ZnO) nanocrystals, which are expected as building blocks for optoelectronic devices, have been investigated in this study. In the case of fabricating p-n junction in single one-dimensional ZnO nanocrystal, phosphorus-ions implanted p-type ZnO nanocrystals were recrystallized and recovered in the optical properties by nanosecond-laser annealing using a KrF excimer laser. Antimony-doped p-type ZnO nanocrystals were synthesized by irradiating laminated structure which antimony thin film were deposited on ZnO nanocrystals with the laser beam. Additionally, it is possible to control the growth rate of ZnO nanowires by using laser annealing. Irradiating with pulsed laser a part of ZnO buffer layer deposited on the a-cut sapphire substrate, then ZnO nanowires were grown on the ZnO buffer layer by the nanoparticle assisted pulsed laser deposition method. As a result, the clear boundary of the laser annealed and non-laser annealed area was appeared. It was observed that ZnO nanowires were grown densely at non-laser annealed area, on the other hand, sparse ones were grown at the laser-annealed region. In this report, the possibility of laser annealing techniques to establish the stable and reliable fabrication process of ZnO nanowires-based LD and LED are discussed on the basis of experimental results.

  3. Piezoelectric and opto-electrical properties of silver-doped ZnO nanorods synthesized by low temperature aqueous chemical method

    SciTech Connect

    Nour, E. S. Echresh, A.; Willander, M.; Nur, O.; Liu, Xianjie; Broitman, E.

    2015-07-15

    In this paper, we have synthesized Zn{sub 1−x}Ag{sub x}O (x = 0, 0.03, 0.06, and 0.09) nanorods (NRs) via the hydrothermal method at low temperature on silicon substrate. The characterization and comparison between the different Zn{sub 1−x}Ag{sub x}O samples, indicated that an increasing Ag concentration from x = 0 to a maximum of x = 0.09; All samples show a preferred orientation of (002) direction with no observable change of morphology. As the quantity of the Ag dopant was changed, the transmittances, as well as the optical band gap were decreased. X-ray photoelectron spectroscopy data clearly indicate the presence of Ag in ZnO crystal lattice. A nanoindentation-based technique was used to measure the effective piezo-response of different concentrations of Ag for both direct and converse effects. The value of the piezoelectric coefficient (d{sub 33}) as well as the piezo potential generated from the ZnO NRs and Zn{sub 1−x}Ag{sub x}O NRs was found to decrease with the increase of Ag fraction. The finding in this investigation reveals that Ag doped ZnO is not suitable for piezoelectric energy harvesting devices.

  4. Electrodeposited ZnO thin film as an efficient alternative blocking layer for TiCl4 pre-treatment in TiO2-based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kouhestanian, E.; Mozaffari, S. A.; Ranjbar, M.; SalarAmoli, H.; Armanmehr, M. H.

    2016-08-01

    Recently, ZnO nanostructures have received considerable attention in fabrication of dye sensitized solar cell (DSSC) photoanodes due to their unique transport properties. In the present study, a chronoamperometric method was performed to fabricate the ZnO nanostructures as an appropriate alternative of TiCl4 pre-treatment to reduce the recombination reactions, while retaining the TiO2-based DSSC performance. The effect of polyvinyl alcohol (PVA) on ZnO electrodeposition to control the growth and crystallization of ZnO nanostructures was investigated. ZnO/TiO2 based-DSSCs were fabricated using N719 ruthenium dye and all photovoltaic parameters were characterized. Incident photon to current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and VOC decay techniques were employed for studying the cell properties which is resulted in a significant enhancement in cell performance.

  5. Enhancement of the photoelectric performance of dye-sensitized solar cells using Ag-doped TiO2 nanofibers in a TiO2 film as electrode.

    PubMed

    Jin, En Mei; Zhao, Xing Guan; Park, Ju-Young; Gu, Hal-Bon

    2012-01-01

    For high solar conversion efficiency of dye-sensitized solar cells [DSSCs], TiO2 nanofiber [TN] and Ag-doped TiO2 nanofiber [ATN] have been extended to be included in TiO2 films to increase the amount of dye loading for a higher short-circuit current. The ATN was used on affected DSSCs to increase the open circuit voltage. This process had enhanced the exit in dye molecules which were rapidly split into electrons, and the DSSCs with ATN stop the recombination of the electronic process. The conversion efficiency of TiO2 photoelectrode-based DSSCs was 4.74%; it was increased to 6.13% after adding 5 wt.% ATN into TiO2 films. The electron lifetime of DSSCs with ATN increased from 0.29 to 0.34 s and that electron recombination was reduced.

  6. The effects of ultraviolet-ozone-treated ultra-thin MnO-doped ZnO film as anode buffer layer on the electrical characteristics of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lu, Hsin-Wei; Kao, Po-Ching; Juang, Yung-Der; Chu, Sheng-Yuan

    2015-11-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing an MnO-doped ZnO film as a buffer layer between the indium tin oxide (ITO) electrode and the α-naphthylphenylbiphenyldiamine hole transport layer. The enhancement mechanism was systematically investigated, and the X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone-treated MnO-doped ZnO film. With this film, the work function increased from 4.8 eV (standard ITO electrode (˜ 10 ±5 Ω/◻ )) to 5.27 eV (UV-ozone-treated MnO-doped ZnO deposited on the ITO electrode with 1 wt. % for 1 nm), while the surface roughness of the UV-ozone-treated MnO-doped ZnO film was smoother than that of the ITO electrode. The deposited UV-ozone-treated MnO-doped ZnO film increased the surface energy and polarity of the ITO surface, as determined from contact angle measurements. Further, results from admittance spectroscopy showed that the inserted UV-ozone-treated MnO-doped ZnO film increased the capacitance and conductance of the OLEDs. It was also found that the carrier injection increased in the space-charge region when the UV-ozone-treated MnO-doped ZnO buffer layer was inserted. Moreover, the turn-on voltage of the devices decreased from 3.8 V to 3.2 V, the luminance increased from 7588 cd/m2 to 20 350 cd/m2, and the current efficiency increased from 3.2 cd/A to 5.8 cd/A when a 1 nm-thick UV-ozone-treated MnO-doped ZnO film with 1 wt. % was inserted as a buffer layer in the OLEDs.

  7. Insight on the SU-8 resist as passivation layer for transparent Ga2O3-In2O3-ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Olziersky, Antonis; Barquinha, Pedro; Vilà, Anna; Pereira, Luís; Gonçalves, Gonçalo; Fortunato, Elvira; Martins, Rodrigo; Morante, Juan R.

    2010-09-01

    A nonvacuum and low temperature process for passivating transparent metal oxides based thin-film transistors is presented. This process uses the epoxy-based SU-8 resist which prevents device degradation against environmental conditions, vacuum or sputtering surface damage. The incorporation of SU-8 as a passivation layer is based on the ability of this polymer to provide features with high mechanical and chemical stability. With this approach, lithography is performed to pattern the resist over the active area of the device in order to form the passivation layer. The resulting transistors demonstrate very good electrical characteristics, such as μFE=61 cm2/V s, VON=-3 V, ON/OFF=4.4×109, and S=0.28 V/dec. Electrical behavior due to the SU-8/metal oxide interface characteristics is also reported on the basis of Fourier transform infrared analysis. In contrast, we demonstrate how sputtering of SiO2 as a passivation layer results in severely degraded devices that cannot be switched-off. In order to obtain proper working devices, it is shown that SU-8 should be hard baked at 200 °C for 1 h in order to obtain a highly cross-linked polymer network. The stability of SU-8 passivated devices over the time of storage, under current bias stress and vacuum conditions is also demonstrated.

  8. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    NASA Astrophysics Data System (ADS)

    Go, Bit-Na; Kim, Yang Doo; suk Oh, Kyoung; Kim, Chaehyun; Choi, Hak-Jong; Lee, Heon

    2014-09-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively.

  9. Organic photovoltaic solar cells with cathode modified by ZnO.

    PubMed

    Kim, Hyeong Pil; Yusoff, Abd Rashid Bin Mohd; Jang, Jin

    2013-07-01

    Solution processed cathode organic photovoltaic cells (OPVs) utilizing thin layer of ZnO with 27% increase in power conversion efficiency (PCE) to control devices have been demonstrated. Devices without the presence of ZnO layer have much lower PCE than the ones with ZnO layer. Cathode modification layer can be used to reduce photogenerated excitions and finally improve the performance of the OPVs. The successful demonstrations of OPVs with an introduction of ZnO cathode layer give promise of further device progresses.

  10. Fundamental understanding of the growth, doping and characterization of aligned ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Gang

    Zinc oxide (ZnO) is a II-VI semiconductor whose wide direct bandgap (3.37 eV) and large exciton binding energy (60 meV) make it compelling for optoelectronic devices such as light emitting diodes, lasers, photodetectors, solar cells, and mechanical energy harvesting devices. One dimensional structures of ZnO (nanowires) have become significant due to their unique physical properties arising from quantum confinement, and they are ideal for studying transport mechanisms in one-dimensional systems. In this doctoral research work, ZnO nanowire (NW) arrays were synthesized on sapphire substrates through carbo-thermal reduction of ZnO powders, and the effects of growth parameters on the properties of ZnO NW arrays were studied by scanning and transmission electron microscopy, X-ray diffraction, photoluminescence and Raman spectroscopy. Based on the phonon mode selection rules in wurtzite ZnO, confocal Raman spectroscopy was used to assess the alignment of ZnO NWs in an array, thereby complementing X-ray diffraction. Al doped ZnO NW arrays were achieved by mixing Al powder into the ZnO and graphite source mixture, and the presence of Al was confirmed by Energy-dispersive X-ray spectroscopy. The incorporation of Al had the effects of lowering the electrical resistivity, slightly deteriorating crystal quality and suppressing defect related green emission. Two models of ZnO NW growth were developed by establishing the relationship between NW length and diameter for undoped and Al doped ZnO NWs separately. The growth of undoped ZnO NWs followed the diffusion-induced model which was characterized by thin wires being longer than thick wires, while the growth of Al doped ZnO was controlled by Gibbs-Thomson effect which was characterized by thin wires being shorter than thin wires. Local electrode atom probe analysis of ZnO NWs was carried out to study the crystal stoichiometry and Al incorporation. Undoped ZnO NWs were found to be high purity with no detectable impurities

  11. Effect of internal stress on the electro-optical behaviour of Al-doped ZnO transparent conductive thin films

    NASA Astrophysics Data System (ADS)

    Proost, J.; Henry, F.; Tuyaerts, R.; Michotte, S.

    2016-08-01

    In this work, we will report on scientific efforts aimed at unraveling the quantitative effect of elastic strain on the electro-optical behaviour of Al-doped zinc oxide (AZO). AZO thin films have been deposited by reactive magnetron sputtering to thicknesses from 300 to 500 nm, both on extra-clear glass substrates as well as on oxidised Si wafers. This resulted in both cases in polycrystalline, strongly textured (002) films. During deposition, the internal stress evolution in the growing film was monitored in-situ using high resolution curvature measurements. The resulting growth-induced elastic strain, which was found to depend heavily on the oxygen partial pressure, could further be modulated by appropriately choosing the deposition temperature. The latter also induces an additional extrinsic thermal stress component, whose sign depends on the substrate used. As such, a wide range of biaxial internal stresses could be achieved, from -600 MPa in compression up to 800 MPa in tension. The resulting charge carrier mobilities, obtained independently from room temperature Hall measurements, were found to range between 5 and 25 cm2/V s. Interestingly, the maximum mobility occurred at the zero-stress condition, and together with a charge carrier concentration of about 8 × 1020 cm-3, this gave rise to a resistivity of only 300 μΩ cm. From the stress-dependent optical transmission spectra in the range of 200-1000 nm, the pressure coefficient of the optical bandgap was estimated from the corresponding Tauc plots to be 31 meV/GPa, indicating a very high strain-sensitivity as well.

  12. Nanostructured ZnO Films for Room Temperature Ammonia Sensing

    NASA Astrophysics Data System (ADS)

    Dhivya Ponnusamy; Sridharan Madanagurusamy

    2014-09-01

    Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV-Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (˜30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.

  13. Breakthrough of the p-type doping bottleneck in ZnO by inserting an ultrathin ZnX (X  =  S, Se and Te) layer doped with NX or AgZn

    NASA Astrophysics Data System (ADS)

    Jiang, Xin-he; Shi, Jun-jie; Zhang, Min; Zhong, Hong-xia; Huang, Pu; Ding, Yi-min; Cao, Xiong; Wu, Meng; Liao, Zhi-min

    2016-03-01

    The worldwide problem of p-type doping in ZnO is investigated based on first-principles calculations by combining the standard density functional theory and hybrid functional methods. We find that p-type doping can be realized by inserting an ultrathin ZnX (X  =  S, Se and Te) layer, doped with NX or AgZn, into ZnO to form short-period (ZnO) m /(ZnX) n (m  >  n) superlattices. The formation energy is the lowest for NX or AgZn in the ZnX layer. The Zn-rich (Zn-poor) condition is favourable for the formation of the NX (AgZn) defect. Compensation by the native defects can be avoided for the Ag-doped (ZnO) m /(ZnX) n under the Zn-poor condition. The N (Ag) acceptor activation energy can be reduced from 0.45 (0.43) eV in ZnO to 0.33 (0.32) eV in (ZnO)5/(ZnS)1, 0.20 (0.24) eV in (ZnO)5/(ZnSe)1 and 0.12 (0.13) eV in (ZnO)5/(ZnTe)1, which is caused by the ZnX-monolayer modulation to the local structure around the NX or AgZn defect and the high-lying p-derived valence bands. Moreover, the band gaps can be tuned from 3.40 eV of ZnO to 3.21 eV of (ZnO)5/(ZnS)1, 2.41 eV of (ZnO)5/(ZnSe)1 and 2.26 eV of (ZnO)5/(ZnTe)1, which is promising for the integration of ZnO-based white light-emitting diodes.

  14. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    PubMed Central

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  15. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kuo, Shou-Yi; Lin, Hsin-I.

    2014-02-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol-gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol-gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices.

  16. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays.

    PubMed

    Kuo, Shou-Yi; Lin, Hsin-I

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol-gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol-gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  17. Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition

    PubMed Central

    2013-01-01

    The ZnO nanoflowers were synthesized by reactive vapor deposition. A secondary nucleation in the stalk/leaves interface was suggested. The photoluminescence revealed that there were many oxygen vacancies in the nanoflowers. To tune the optical properties of ZnO nanoflowers, ZnO thin films with varying thicknesses were coated on the nanoflowers by atomic layer deposition, which can distinctly improve the band-edge photoluminescence properties. PMID:23442577

  18. ZnO doped sodium silicate preionize N2 laser

    NASA Astrophysics Data System (ADS)

    M, Montaser; F, Sabry; S, A. Ibrahim

    1989-11-01

    An experimental study of the effect of ZnO doped sodium silicate thin film, used as a semiconductive preionizer on the output energy is presented. The output energy of the nitrogen laser increased by two folds. The performance of the preionizer can be controlled to match the discharge requirements.

  19. In Situ Observations of Free-Standing Graphene-like Mono- and Bilayer ZnO Membranes.

    PubMed

    Quang, Huy T; Bachmatiuk, Alicja; Dianat, Arezoo; Ortmann, Frank; Zhao, Jiong; Warner, Jamie H; Eckert, Jürgen; Cunniberti, Gianaurelio; Rümmeli, Mark H

    2015-11-24

    ZnO in its many forms, such as bulk, thin films, nanorods, nanobelts, and quantum dots, attracts significant attention because of its exciting optical, electronic, and magnetic properties. For very thin ZnO films, predictions were made that the bulk wurtzite ZnO structure would transit to a layered graphene-like structure. Graphene-like ZnO layers were later confirmed when supported over a metal substrate. However, the existence of free-standing graphene-like ZnO has, to the best of our knowledge, not been demonstrated. In this work, we show experimental evidence for the in situ formation of free-standing graphene-like ZnO mono- and bilayer ZnO membranes suspended in graphene pores. Local electron energy loss spectroscopy confirms the membranes comprise only Zn and O. Image simulations and supporting analysis confirm that the membranes are graphene-like ZnO. Graphene-like ZnO layers are predicted to have a wide band gap and different and exciting properties as compared to other ZnO structures.

  20. Effect of annealing in hydrogen atmosphere on ZnO films for field emission display

    NASA Astrophysics Data System (ADS)

    Zulkifli, Zurita; Sharma, Subash; Shinde, Sachin; Kalita, Golap; Tanemura, M.

    2015-11-01

    Surface morphology, crystallinity, conductivity and optical transmittance of ZnO films can be modified by annealing process. Hydrogen is one of the popular annealing gases as well as nitrogen, argon, oxygen and air which are commonly used for thin film cleaning or the removal of native oxide. In general, annealing is done at high temperatures (> 600degC) to improve the film properties. From a view point of environment, however, lower annealing temperature is preferable. In this work, low annealing process was challenged to understand the effect of annealing temperature on properties of ZnO thin films and nanostructured film grown on glass substrates for transparent field emission device applications. The annealing temperature employed was 100, 200 and 450°C at 100 sccm hydrogen flow rate. ZnO thin films were deposited by RF magnetron sputtering. The ZnO thin films were characterized by X-ray diffraction analysis (XRD), Atomic Force Microscopy (AFM), UV-VIS and Raman spectroscopy. The sheet resistances reduced about 15 kohm/sq at low annealing temperature. By contrast, the optical transmittance did not show any significant changes after annealing. The FE current density increased after the ZnO nanostructures film was annealed in 100°C. The results obtained could motivate a surface treatment for flexible ZnO thin film since the substrate is always suffered by heat.

  1. Characterization of the Ag/YBa2Cu3O(7-x) contact in thin films

    NASA Astrophysics Data System (ADS)

    Jia, Q. X.; Anderson, W. A.; Zheng, J. P.; Zhu, Y. Z.; Patel, S.

    1990-12-01

    Ag contacts to very thin superconducting YBa2Cu3O(7-x) films were prepared by thermal evaporation. The nature of the Ag/YBa2Cu3O(7-x) contact during thermal treatment was in situ investigated by a combination of three- and four-terminal resistance measurements. The experimental results suggested that the interaction between Ag and the YBa2Cu3O(7-x) film began at a temperature of around 370 C. The lack of reproducibility in forming a low-resistance contact to very thin YBa2Cu3O(7-x) films and the high probability of degrading the film quality after thermal treatment of the contact might be due to the excess Ag doping in YBa2Cu3O(7-x). Ag island formation, as revealed by SEM after thermal treatment of the contact, is a limitation of Ag for use as a good contact electrode for very thin superconducting films.

  2. Key Materials Aspects for Valence Control of ZnO.

    NASA Astrophysics Data System (ADS)

    Tsukazaki, Atsushi

    2006-03-01

    ZnO has significant advantages for light emitting diodes (LEDs) and lasers from the following reasons; 1) exciton binding energy in ZnO is 60 meV and can be enhanced over 100 meV in superlattices, 2) it is possible to tune the bandgap from 3 eV to 4.5 eV in Zn1-xCdxO and MgxZn1-xO alloy films having quite small lattice mismatch, and 3) large and high-quality single-crystal wafers are commercially available. In order to harvest these advantages in real devices, reliable technique for fabricating p-type ZnO has to be properly established. Recently we have reported on the improvements of undoped ZnO film quality with inserting a ZnO self-buffer layer onto lattice matched ScAlMgO4 substrate [1]. In view of point defect formation during the epitaxy, we have carefully optimized the growth conditions. We selected nitrogen as an acceptor, because the ionic radius is close to that of oxygen. Here we propose a repeated temperature modulation (RTM) technique for efficient nitrogen doping into ZnO with keeping high crystallinity [2]. By carefully optimizing the conditions, p-type ZnO with a hole concentration of 10^16 - 10^17 cm-3 can be reproducibly fabricated. We also demonstrated blue electroluminescence from p-i-n homojunction LED [3]. The details of thin film growth, characteristics of p-type ZnO and device performance will be presented. [1] A. Tsukazaki et al. Nature Mater. 4, 42 (2005). [2] A. Tsukazaki et al. Appl. Phys. Lett.83, 2784 (2003). [3]A. Tsukazaki et al. Jpn. J. Appl. Phys.Lett.44, L643 (2005).

  3. Enhanced ultraviolet photoresponse based on ZnO nanocrystals/Pt bilayer nanostructure

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Lin; Xia, Xiao-Zhi; Li, Qing-Xia

    2015-06-01

    The development of solution strategies for Zinc oxide (ZnO) quantum dots provides a pathway to utilizing ZnO nanocrystal thin films in optoelectronic devices. In this work, quasi-spherical ZnO quantum dots with a diameter of 5 nm are synthesized by using ethanol as a solvent. ZnO nanocrystal thin film is obtained by spin-coating ZnO quantum dots on a Au interdigital electrode (IDE)/Al2O3 substrate and annealing at different temperatures in order to yield the optimal photosensitive on/off ratio of ZnO. For further enhancing the responsivity, ion sputtering is utilized to deposit Pt nanoparticles on the surface of ZnO nanocrystal thin film, the responsivity of the ZnO/Pt bilayer nanostructure increases from 0.07 A/W to 54 A/W, showing that the metal/inorganic nanocrystal bilayer nanostructure can be used to improve the performance of optoelectronic devices. The excellent properties of ZnO/Pt bilayer nanostructure have important applications in future electronic and optoelectronic devices. Project supported by the National Natural Science Foundation of China (Grant No. 41176156).

  4. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  5. Electronic structure and thermoelectric properties of p-type Ag-doped Mg₂Sn and Mg₂Sn{sub 1-x}Si{sub x} (x=0.05, 0.1)

    SciTech Connect

    Kim, Sunphil; Jin, Hyungyu; Wiendlocha, Bartlomiej; Tobola, Janusz; Heremans, Joseph P.

    2014-10-21

    An experimental and theoretical study of p-type Ag-doped Mg₂Sn and Mg₂Sn{sub 1-x}Si{sub x} (x=0.05, 0.1) is presented. Band structure calculations show that behavior of Ag in Mg₂Sn depends on the site it occupies. Based on Bloch spectral functions and density of states calculations, we show that if Ag substitutes for Sn, it is likely to form a resonant level; if it substitutes for Mg, a rigid-band-like behavior is observed. In both cases, the doped system should exhibit p-type conductivity. Experimentally, thermoelectric, thermomagnetic, and galvanomagnetic properties are investigated of p-type Mg₂Sn{sub 1–x}Si{sub x} (x=0, 0.05, 0.1) samples synthesized by a co-melting method in sealed crucibles. Ag effectively dopes the samples p-type, and thermoelectric power factors in excess of 20μW cm⁻¹K⁻² are observed in optimally doped samples. From the measured Seebeck coefficient, Nernst coefficient, and mobility, we find that the combination of acoustic phonon scattering, optical phonon scattering and defect scattering results in an energy-independent scattering rate. No resonant-like increase in thermopower is observed, which correlates well with electronic structure calculations assuming the location of Ag on Mg site.

  6. Electrochemically grown ZnO nanorods for hybrid solar cell applications

    SciTech Connect

    Hames, Yakup; Alpaslan, Zuehal; Koesemen, Arif; San, Sait Eren; Yerli, Yusuf

    2010-03-15

    A hybrid solar cell is designed and proposed as a feasible and reasonable alternative, according to acquired efficiency with the employment of zinc oxide (ZnO) nanorods and ZnO thin films at the same time. Both of these ZnO structures were grown electrochemically and poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester; (P3HT:PCBM) was used as an active polymer blend, which was found to be compatible to prepared indium-tin-oxide (ITO) substrate base. This ITO base was introduced with mentioned ZnO structure in such a way that, the most efficient configuration was optimized to be ITO/ZnO film/ZnO nanorod/P3HT: PCBM/Ag. Efficiency of this optimized device is found to be 2.44%. All ZnO works were carried out electrochemically, that is indeed for the first time and at relatively lower temperatures. (author)

  7. ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction

    NASA Astrophysics Data System (ADS)

    Gao, S. Y.; Li, H. D.; Yuan, J. J.; Li, Y. A.; Yang, X. X.; Liu, J. W.

    2010-02-01

    The zinc oxide (ZnO) nanorods/plates are obtained via hydrothermal method assisted by etched porous Al film on Si substrate. The products consist of nanorods with average diameter of 100 nm and nanoplates with thickness of 200-300 nm, which are uniformly distributed widely and grown perpendicularly to the substrate. The ZnO nanoplates with thickness of 150-300 nm were grown on Si substrate coated with a thin continuous Al film (without etching) in the same aqueous solution. The growth mechanism and room temperature photoluminescence (PL) properties of ZnO nanorods/plates and nanoplates were investigated. It is found that the introduction of the etched Al film plays a key role in the formation of ZnO nanorods/plates. The annealing process is favorable to enhance the UV PL emissions of the ZnO nanorods/plates.

  8. Atomic layer deposition of epitaxial ZnO on GaN and YSZ

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Wei; Ke, Dong-Jie; Chao, Yen-Cheng; Chang, Li; Liang, Mei-Hui; Ho, Yen-Teng

    2007-01-01

    ZnO thin films were epitaxially grown by atomic layer deposition on both of GaN/c-sapphire and yttria-stabilized zirconia (YSZ) substrates for comparison. X-ray diffraction, cross-sectional transmission electron microscopy (TEM) and photoluminescence (PL) measurements show that epitaxial ZnO films have better structural qualities and optical properties on GaN than on YSZ, whereas atomic force microscopy (AFM) shows that the surface of ZnO films on YSZ is smoother than on GaN. From the ZnO thickness measured by TEM, the growth rate of ZnO on GaN is about one (0 0 0 2) monolayer per cycle, which is roughly four times of that on YSZ.

  9. Self-assembled ZnO agave-like nanowires and anomalous superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Yang, Y. H.; Li, Z. Y.; Wang, B.; Wang, C. X.; Chen, D. H.; Yang, G. W.

    2005-09-01

    Thin films of ZnO agave-like nanowires were prepared on amorphous carbon thin layers on silicon substrates using thermal chemical vapour transport and condensation without any metal catalysts. The unusual superhydrophobicity of the fabricated surface was measured; the water contact angle reaches 151.1°. On the basis of experimental and theoretical analyses, it appears likely that the biomimetic microcomposite and nanocomposite surfaces of the prepared thin films of ZnO agave-like nanowires are responsible for the excellent superhydrophobicity.

  10. Growth of hierarchical based ZnO micro/nanostructured films and their tunable wettability behavior

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, P.; Dhayal Raj, A.; Mangalaraj, D.; Nataraj, D.; Ponpandian, N.; Li, Lin; Chabrol, G.

    2011-05-01

    Hierarchical zinc oxide (ZnO) micro/nanostructured thin films were grown onto as-prepared and different annealed ZnO seed layer films by a simple two step chemical process. A cost effective successive ionic layer adsorption and reaction (SILAR) method was employed to grow the seed layer films at optimal temperature (80 °C) and secondly, different hierarchical based ZnO structured thin films were deposited over the seed layered films by chemical bath deposition (CBD). The influence of seed layer on the structural, surface morphological, optical and wettability behavior of the ZnO thin films were systematically investigated. The XRD analysis confirms the high crystalline nature of both the seed layer and corresponding ZnO micro/nanostructured films with a perfect hexagonal structure oriented along (0 0 2) direction. The surface morphology revels a complex and orientated hierarchical based ZnO structured films with diverse shapes from plates to hexagonal rod-like crystal to tube-like structure and even much more complex needle-like shapes during secondary nucleation, by changing the seed layer conditions. The water contact angle (WCA) measurements on hierarchical ZnO structured films are completely examined to study its surface wettability behavior for its suitability in future self-cleaning application. Photoluminescence (PL) spectra of the ZnO structured film exhibit UV and visible emissions in the range of 420-500 nm. The present approach demonstrates its potential for low-temperature, large-scale, controlled synthesis of crystalline hierarchical ZnO nanostructures films.

  11. Spectral response of nanocrystalline ZnO films embedded with Au nanoparticles

    SciTech Connect

    Patra, Anuradha; Manivannan, A; Kasiviswanathan, S

    2012-12-01

    The optical response of a two-phase composite consisting of Au nanoparticles (AuNPs) in a nanocrystalline ZnO thin film matrix has been systematically studied and analyzed by the Bergman–Milton spectral density formalism. The real and imaginary parts of the effective dielectric function exhibited anomalous dispersion and absorption, respectively, at the characteristic localized surface plasmon resonance (LSPR) wavelength. A multilayer structure consisting of two AuNP–ZnO composite films separated by a thin ZnO film displayed a twofold increase in the absorption at LSPR (with negligible change in FWHM), which is attributed to the increase in the number density of the AuNPs resulting from the nanocrystalline nature of the ZnO film. The results have been used to correlate the spectral density function to the morphology of AuNPs in a ZnO matrix.

  12. Investigation of photocalalytic activity of ZnO prepared by spray pyrolis with various precursors

    NASA Astrophysics Data System (ADS)

    Bourfaa, F.; Lamri Zeggar, M.; A, A.; Aida, M. S.; Attaf, N.

    2016-03-01

    Semiconductor photocatalysts such as ZnO has attracted much attention in recent years due to their various applications for the degradation of organic pollutants in water, air and in dye sensitized photovoltaic solar cell. In the present work, ZnO thin films were prepared by ultrasonic spray pyrolysis by using different precursors namely: acetate, chloride and zinc nitrate in order to investigate their influence on ZnO photocatalytic activity. The films crystalline structure was studied by mean of X- ray diffraction measurements (XRD) and the films surface morphology by Scanning Electron Microscopy (SEM). The films optical properties were studied by mean of UV-visible spectroscopy. The prepared films were tested for the degradation of the red reactive dye largely used in textile industry. As a result, we found that the zinc nitrate is the best precursor to prepare ZnO thin films suitable for a good photocatalytic activity.

  13. Tuning magnetism by biaxial strain in native ZnO.

    PubMed

    Peng, Chengxiao; Wang, Yuanxu; Cheng, Zhenxiang; Zhang, Guangbiao; Wang, Chao; Yang, Gui

    2015-07-01

    Magnetic ZnO, one of the most important diluted magnetic semiconductors (DMS), has attracted great scientific interest because of its possible technological applications in optomagnetic devices. Magnetism in this material is usually delicately tuned by the doping level, dislocations, and local structures. The rational control of magnetism in ZnO is a highly attractive approach for practical applications. Here, the tuning effect of biaxial strain on the d(0) magnetism of native imperfect ZnO is demonstrated through first-principles calculations. Our calculation results show that strain conditions have little effect on the defect formation energy of Zn and O vacancies in ZnO, but they do affect the magnetism significantly. For a cation vacancy, increasing the compressive strain will obviously decrease its magnetic moment, while tensile strain cannot change the moment, which remains constant at 2 μB. For a singly charged anion vacancy, however, the dependence of the magnetic moment on strain is opposite to that of the Zn vacancy. Furthermore, the ferromagnetic state is always present, irrespective of the strain type, for ZnO with two zinc vacancies, 2VZns. A large tensile strain is favorable for improving the Curie temperature and realizing room temperature ferromagnetism for ZnO-based native semiconductors. For ZnO with two singly charged oxygen vacancies, 2Vs, no ferromagnetic ordering can be observed. Our work points the way to the rational design of materials beyond ZnO with novel non-intrinsic functionality by simply tuning the strain in a thin film form.

  14. Synthesis, optical and electrochemical properties of ZnO nanowires/graphene oxide heterostructures

    PubMed Central

    2013-01-01

    Large-scale vertically aligned ZnO nanowires with high crystal qualities were fabricated on thin graphene oxide films via a low temperature hydrothermal method. Room temperature photoluminescence results show that the ultraviolet emission of nanowires grown on graphene oxide films was greatly enhanced and the defect-related visible emission was suppressed, which can be attributed to the improved crystal quality and possible electron transfer between ZnO and graphene oxide. Electrochemical property measurement results demonstrated that the ZnO nanowires/graphene oxide have large integral area of cyclic voltammetry loop, indicating that such heterostructure is promising for application in supercapacitors. PMID:23522184

  15. Inverse spin Hall effect induced by spin pumping into semiconducting ZnO

    SciTech Connect

    Lee, Jung-Chuan; Huang, Leng-Wei; Hung, Dung-Shing; Chiang, Tung-Han; Huang, J. C. A.; Liang, Jun-Zhi; Lee, Shang-Fan

    2014-02-03

    The inverse spin Hall effect (ISHE) of n-type semiconductor ZnO thin films with weak spin-orbit coupling has been observed by utilizing the spin pumping method. In the ferromagnetic resonance condition, the spin pumping driven by the dynamical exchange interaction of a permalloy film injects a pure spin current into the adjacent ZnO layer. This spin current gives rise to a DC voltage through the ISHE in the ZnO layer, and the DC voltage is proportional to the microwave excitation power. The effect is sizeable even when the spin backflow is considered.

  16. Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode.

    PubMed

    Baratto, C; Kumar, R; Comini, E; Faglia, G; Sberveglieri, G

    2015-07-27

    In the current paper we apply catalyst assisted vapour phase growth technique to grow ZnO nanowires (ZnO nws) on p-GaN thin film obtaining EL emission in reverse bias regime. ZnO based LED represents a promising alternative to III-nitride LEDs, as in free devices: the potential is in near-UV emission and visible emission. For ZnO, the use of nanowires ensures good crystallinity of the ZnO, and improved light extraction from the interface when the nanowires are vertically aligned. We prepared ZnO nanowires in a tubular furnace on GaN templates and characterized the p-n ZnO nws/GaN heterojunction for LED applications. SEM microscopy was used to study the growth of nanowires and device preparation. Photoluminescence (PL) and Electroluminescence (EL) spectroscopies were used to characterize the heterojunction, showing that good quality of PL emission is observed from nanowires and visible emission from the junction can be obtained from the region near ZnO contact, starting from onset bias of 6V.

  17. Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode.

    PubMed

    Baratto, C; Kumar, R; Comini, E; Faglia, G; Sberveglieri, G

    2015-07-27

    In the current paper we apply catalyst assisted vapour phase growth technique to grow ZnO nanowires (ZnO nws) on p-GaN thin film obtaining EL emission in reverse bias regime. ZnO based LED represents a promising alternative to III-nitride LEDs, as in free devices: the potential is in near-UV emission and visible emission. For ZnO, the use of nanowires ensures good crystallinity of the ZnO, and improved light extraction from the interface when the nanowires are vertically aligned. We prepared ZnO nanowires in a tubular furnace on GaN templates and characterized the p-n ZnO nws/GaN heterojunction for LED applications. SEM microscopy was used to study the growth of nanowires and device preparation. Photoluminescence (PL) and Electroluminescence (EL) spectroscopies were used to characterize the heterojunction, showing that good quality of PL emission is observed from nanowires and visible emission from the junction can be obtained from the region near ZnO contact, starting from onset bias of 6V. PMID:26367556

  18. Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition

    PubMed Central

    2012-01-01

    We demonstrate the morphological control method of ZnO nanostructures by atomic layer deposition (ALD) on an Al2O3/ZnO seed layer surface and the application of a hierarchical ZnO nanostructure for a photodetector. Two layers of ZnO and Al2O3 prepared using ALD with different pH values in solution coexisted on the alloy film surface, leading to deactivation of the surface hydroxyl groups. This surface complex decreased the ZnO nucleation on the seed layer surface, and thereby effectively screened the inherent surface polarity of ZnO. As a result, a 2-D zinc hydroxyl compound nanosheet was produced. With increasing ALD cycles of ZnO in the seed layer, the nanostructure morphology changes from 2-D nanosheet to 1-D nanorod due to the recovery of the natural crystallinity and polarity of ZnO. The thin ALD ZnO seed layer conformally covers the complex nanosheet structure to produce a nanorod, then a 3-D, hierarchical ZnO nanostructure was synthesized using a combined hydrothermal and ALD method. During the deposition of the ALD ZnO seed layer, the zinc hydroxyl compound nanosheets underwent a self-annealing process at 150 °C, resulting in structural transformation to pure ZnO 3-D nanosheets without collapse of the intrinsic morphology. The investigation on band electronic properties of ZnO 2-D nanosheet and 3-D hierarchical structure revealed noticeable variations depending on the richness of Zn-OH in each morphology. The improved visible and ultraviolet photocurrent characteristics of a photodetector with the active region using 3-D hierarchical structure against those of 2-D nanosheet structure were achieved. PMID:22672780

  19. Preparation of nitrogen doped zinc oxide nanoparticles and thin films by colloidal route and low temperature nitridation process

    NASA Astrophysics Data System (ADS)

    Valour, Arnaud; Cheviré, François; Tessier, Franck; Grasset, Fabien; Dierre, Benjamin; Jiang, Tengfei; Faulques, Eric; Cario, Laurent; Jobic, Stéphane

    2016-04-01

    Nitrogen doped zinc oxide (ZnO) nanoparticles have been synthesized using a colloidal route and low temperature nitridation process. Based on these results, 200 nm thick transparent ZnO thin films have been prepared by dip-coating on SiO2 substrate from a ZnO colloidal solution. Zinc peroxide (ZnO2) thin film was then obtained after the chemical conversion of a ZnO colloidal thin film by H2O2 solution. Finally, a nitrogen doped ZnO nanocrystalline thin film (ZnO:N) was obtained by ammonolysis at 250 °C. All the films have been characterized by scanning electron microscopy, X-ray diffraction, X-Ray photoelectron spectroscopy and UV-Visible transmittance spectroscopy.

  20. Soft solution synthesis of ZnO films with developed superstructures.

    PubMed

    Long, Tengfa; Yin, Shu; Sato, Tsugio

    2010-07-01

    A novel and simple two-step solution approach to prepare ZnO thin film consisted of 3D flower-like superstructure was demonstrated. The uniform, nano-dimensional scale and sphere-like ZnO crystals were first prepared on the borosilicate glass substrate in mild solution at 95 degrees C for 3 h, then introduced into 0.02 mol L(-1) hexamethylenetetramine (HMT, C6H12N4) aqueous solution and heated at the same temperature for 3 d. The obtained ZnO thin films were characterized by XRD, SEM and photoluminescence. The results indicated that the thin film with 3D flower-like superstructure possessed high crystallinity, high surface-volume ratio microstructure and excellent photoluminescence property. It is a potential way to prepare nano-structured materials by the mentioned simple and novel two-step solution synthesis process.