Science.gov

Sample records for ag-sheathed bi-based superconducting

  1. Effect of axial strain on the critical current of Ag-sheathed Bi-based superconductors in magnetic fields up to 25 T

    SciTech Connect

    Ekin, J.W. ); Finnemore, D.K.; Li, Q. ); Tenbrink, J. ); Carter, W. )

    1992-08-17

    The irreversible strain limit {epsilon}{sub irrev} for the onset of permanent axial strain damage to Ag-sheathed Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub 8+{ital x}} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{ital x}} superconductors has been measured to be in the range of 0.2%--0.35%. This strain damage onset is about an order of magnitude higher than for {ital bulk} {ital sintered} Y-, Bi-, or Tl-based superconductors and is approaching practical values for magnet design. The measurements show that the value of {epsilon}{sub irrev} is not dependent on magnetic field, nor does the critical current depend on strain below {epsilon}{sub irrev} at least up to 25 T at 4.2 K. Both of these factors indicate that the observed strain effect in Ag-sheathed Bi-based superconductors is not intrinsic to the superconductor material. Rather, the effect is extrinsic and arises from superconductor fracture. Thus, the damage onset is amenable to further enhancement. Indeed, the data suggest that subdividing the superconductor into fine filaments or adding Ag to the superconductor powder prior to processing significantly enhances the damage threshold {epsilon}{sub irrev} to above 0.6%.

  2. Irreversibility behavior in Ag-sheathed Bi-based superconducting wires

    SciTech Connect

    Dou, S.X.; Liu, H.K.; Guo, Y.C.; Wang, J.; Jin, X.J.; Hu, Q.Y.; Shi, D.L.; Salem-Sugui, S.; Wang, Z.

    1992-04-01

    Irreversibility lines for Ag/(Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y}(2223) wires prepared through a phase formation- decomposition-recovery (PFDR) process and normal annealing process were determined using both AC susceptibility measurements under DC fields and magnetisation measurements. It was found that flux pinning was enhanced in the PFDR processed samples over the normal processed samples, in particular at temperature above 77 K. The PFDR process results in high mass density, grain alignment, uniform distribution of impurity precipitates and high density of defects. The irreversibility temperatures scaled with the applied field according to H{sup 1/3}, which is in contrast to H{sup 2/3} law for YBa{sub 2}Cu{sub 3}O{sub 7-x} and conventional superconductors. The irreversibility lines for PFDR processed tapes showed a crossover with those for normal processed tapes at temperature below {Tc} of the (Bi,Pb){sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} (2212), suggesting that at temperature above {Tc} of the 2212 phase, the 2212 as nonsuperconducting region, may serve as effective pinning sites for fluxoids.

  3. Effects of rolling deformation processes on the properties of Ag-sheathed Sr1-xKxFe2As2 superconducting tapes

    NASA Astrophysics Data System (ADS)

    Huang, He; Zhang, Xianping; Yao, Chao; Dong, Chiheng; Zhang, Qianjun; Ma, Yanwei; Oguro, Hidetoshi; Awaji, Satoshi; Watanabe, Kazuo

    2016-06-01

    The powder-in-tube method is widely used in fabricating iron-based superconducting wires and tapes. To make tapes, a multi-pass rolling process is usually adopted. However, the multi-pass rolling process limits the efficiency of tapes. In this work, rolling deformation technique was studied systematically by fabricating Sr1-xKxFe2As2 superconducting tapes. The total rolling reduction ratio is about 80% and the difference of superconducting performance of tapes rolled by 2, 3, 5 and 7 passes has been investigated. The critical current density Jc, Vickers micro-hardness and microstructure of the superconducting core indicate that tapes after 2, 3, 5 and 7 rolling passes exhibit a similar trend. The width of the tapes and the area of superconducting cores increase with decreasing the number of rolling passes, but the transport Jc of tapes after different rolling passes seems to be the same, except for the tape rolled by 2 passes, whose transport Jc is lower than the other tapes. Concerning the geometry uniformity for the superconducting cores, the sausaging phenomenon was not observed from the photograph of longitudinal cross-section of all the samples. "Lobes" phenomenon on transverse cross-section can be suppressed through decreasing the rolling passes. Therefore, we can obtain uniform and high-performance Ag-sheathed iron-based superconducting tapes by cutting the number of rolling passes down to 3, which is more advantageous to the large-scale producing in the future.

  4. Magnetic properties and irreversibility behavior in Ag-sheathed Bi-based superconducting wires fabricated using a controlled melt procedure

    SciTech Connect

    Dou, S.X.; Liu, H.K.; Guo, Y.C.; Shi, D.L.; Sumption, M.D.; Collings, E.W.

    1992-12-01

    A significant enhancement of the in-field J{sub c} of Ag-clad (Bi,Pb)-Sr-Ca-Cu-0 (BPSCCO:2223) wires has been achieved using a controlled melt procedure. The greatly reduced weak linking has resulted in an extended plateau regime in the J{sub c}-H curve. J{sub c}s of 40,000 A/cm{sup 2} at 77 K (self field) and 9,000 A/cm{sup 2} at 77 K (1 T) have been achieved. The improved J. H characteristics may be attributed to microstructures consisting of uniform grain alignment throughout the entire cross section, intimate connection between grains, impurities within the grains, and an optimal level of dispersed 2212 phase. Irreversibility line measurements using both AC susceptibility in DC fields (reported elsewhere), and magnetization measurements, have indicated that flux pinning can be enhanced in the melt-processed samples over the results of normal solid-state processing with its less-than optimal 2212-phase content. But sufficiently long annealing times during the ``normal`` route may achieve 2212-phase content and J{sub c}s which are comparable to those of melt-processed samples.

  5. Magnetic properties and irreversibility behavior in Ag-sheathed Bi-based superconducting wires fabricated using a controlled melt procedure

    SciTech Connect

    Dou, S.X.; Liu, H.K.; Guo, Y.C. . School of Materials Science and Engineering); Shi, D.L. ); Sumption, M.D.; Collings, E.W. )

    1992-12-01

    A significant enhancement of the in-field J[sub c] of Ag-clad (Bi,Pb)-Sr-Ca-Cu-0 (BPSCCO:2223) wires has been achieved using a controlled melt procedure. The greatly reduced weak linking has resulted in an extended plateau regime in the J[sub c]-H curve. J[sub c]s of 40,000 A/cm[sup 2] at 77 K (self field) and 9,000 A/cm[sup 2] at 77 K (1 T) have been achieved. The improved J. H characteristics may be attributed to microstructures consisting of uniform grain alignment throughout the entire cross section, intimate connection between grains, impurities within the grains, and an optimal level of dispersed 2212 phase. Irreversibility line measurements using both AC susceptibility in DC fields (reported elsewhere), and magnetization measurements, have indicated that flux pinning can be enhanced in the melt-processed samples over the results of normal solid-state processing with its less-than optimal 2212-phase content. But sufficiently long annealing times during the normal'' route may achieve 2212-phase content and J[sub c]s which are comparable to those of melt-processed samples.

  6. RAPID COMMUNICATION: Radio frequency response of Ag-sheathed (Bi, Pb)2Sr2Ca2Cu3O10+x superconducting tapes

    NASA Astrophysics Data System (ADS)

    Grasso, G.; Malagoli, A.; Scati, N.; Guasconi, P.; Roncallo, S.; Siri, A. S.

    2000-10-01

    The response of long (Bi,Pb)2Sr2Ca2Cu3O10 conductors fabricated by the oxide-powder-in-tube method to a radio frequency excitation was investigated while employed as the inductive part of large L-C resonating circuits. After removal of the outer silver sheath, superconducting devices cooled down to 77 K showed superior properties compared to equivalent non-superconducting circuits: Bi-based resonators, conceived for a working frequency in the range between 5 and 17 MHz, presented an improvement of the quality factor by a factor of 20. This result opens new perspectives for the application of Bi-based superconducting materials in the detection of a weak radio frequency signal, as in magnetic resonance imaging.

  7. International round robin test of the retained critical current after double bending at room temperature of Ag-sheathed Bi-2223 superconducting wires

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Nishijima, G.; Osamura, K.; Shin, H. S.; Goldacker, W.; Breschi, M.; Ribani, P.

    2016-02-01

    An international round robin test was carried out in order to establish a test method for retained critical current after double bending at room temperature of Ag-sheathed Bi-2223 superconducting wires. Tests for commercial Bi-2223 tape were conducted by six laboratories using the same guidelines. The standard uncertainties (SUs) of measurands were evaluated for these four quantities: I C0, I C/I C080, I C/I C060, I C/I C050, where, I C0 is initial critical current and I C /I C0XX is critical current after XX mm bending. Using an F test to determine where the most scatter was generated in the test results it was found that the greatest scatter in the normalized critical current measurements came from inter-laboratory scatter. In a type-B uncertainty evaluation, the major contribution was from the bending diameter and measuring temperature. The relative SU tended to increase as the bending diameter decreased. A specific mandrel diameter corresponding to a retained critical current of 95% could be determined with a relative SU of 1.3%. In order to reduce the overall scatter, the temperature difference between the critical current measurements before and after bending should be small.

  8. Microstructural characterization of Ag-sheathed Tl-Ba-Ca-Cu-O and Bi-Sr-Ca-Cu-O superconducting tapes by analytical electron microscopy

    SciTech Connect

    Hu, J.G.; Miller, D.J.; Goretta, K.C.; Poeppel, R.B.

    1992-09-01

    The microstructures of Tl(1223) and Pb-doped Bi(2223) silver tapes produced by the powder-in-tube (PM) method have been examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS). The Tl tapes annealed below the melting point exhibited fine grains and a high density of pores while tapes subjected to partial melting prior to solid state annealing were fully dense with large grains. However, these tapes also showed an increase in the size and density of impurity particles, particularly CaO and a Ba-Cu rich phase. Silver powders added to the precursors tended to promote the growth of Tl(1223) at lower temperatures but also interfered with the development of texture by providing nucleation sites of random orientations. In contrast, the Bi(2223) tape exhibited a high degree of texture and alignment. The incorporation of silver within the superconducting phase was found to be negligible for both the Tl(1223) and Bi(2223) tapes.

  9. Quench Behavior and Degradation Limit of Ag-sheathed Bi 2Sr2CaCu2Ox Round Wires

    NASA Astrophysics Data System (ADS)

    Ye, Liyang

    High field superconducting magnets are important for scientific research in a variety of disciplines. With nearly field-independent critical current density over a wide range of magnetic field at 4.2 K up to 50 T, Ag-sheathed Bi2Sr2CaCu2Ox (Bi-2212) round wires offer the possibility to generate magnetic fields of 30 T and above. One of the key issues in high field Bi-2212 magnet development is the quench detection and protection. A quench occurs when a part of a superconducting winding, after receiving a small disturbance, enters into the normal (resistive) state, and the event follows with significant temperature rise due to joule heating. An unprotected quench may degrade or even destruct an entire superconducting magnet system. This thesis focuses on experimentally investigating the quench behavior and degradation limit of the state-of-the-art multifilamentary Ag/Bi-2212 round wires to guide the development of Bi-2212 high field magnet, especially the quench detection and protection system. (Abstract shortened by ProQuest.).

  10. Microstructure, texture and critical current of Ag-sheathed 2223 multifilament tapes

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Wang, W. G.; Poulsen, H. F.; Vase, P.

    1999-06-01

    An Ag-sheathed 2223 multifilament tape was produced by the powder-in-tube method. The various parts of the tape were heat treated at different temperatures under reduced oxygen partial pressure. The microstructure and the texture were characterized by synchrotron x-ray diffraction and SEM and correlated with Jc. In the low temperature range (<826 °C), the 2223 fraction and the c-axis alignment of 2223 grains increased with increasing temperature. A significant increase of Jc (from 1 to 41 kA cm-2) was observed in this range, indicating that the phase purity and the texture were the major controlling factors. In the medium temperature range (826-830 °C), the 2223 fraction and the grain alignment tend to saturate, and Jc remains nearly constant at a level of 40 kA cm-2. In the high temperature range (830-836 °C), the 2223 fraction and the grain alignment remained unchanged but Jc decreased with increasing temperature. The drop in Jc was related to the presence of an amorphous phase and a small amount of 2201 phase, indicating that the grain connectivity has become the major current-limiting factor. The variations in the filament shape, density and alignment within the multifilament tape were characterized. The influence of the inhomogeneous structure on Jc is discussed.

  11. Ag-SHEATHED Bi2Sr2CaCu2O8 Square Wire Insulated with Oxidized Hastelloy Fiber Braid

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Nishijima, G.; Awaji, S.; Hikichi, Y.; Hasegawa, T.

    2008-03-01

    Oxidized Hastelloy X (Hx) fiber braid has been demonstrated to work well as a good electric insulation of Ag-sheathed Bi2Sr2CaCu2O8 (Ag/Bi2212) wires. In order to develop a wind-and-react processed Ag/Bi2212 superconducting magnet with a high coil current density, we fabricated a test coil employing 45 m long Ag/Bi2212 square shape wire with 50 μm Hx fiber braid. A test coil, whose size is 73 mm outer diameter, 64.5 mm inner diameter, and 74 mm coil winding height, consisted of 4 layers and 210 turns, and was heat-treated at around 890 °C in oxygen gas. The critical current Ic of the test coil was 245 A at 4.2 K in a self-field, corresponding to a 67% value of the short sample Ic heat-treated at the same time for comparison. Coil inductance was calculated to be 1.9 mH, and as a result, the same inductance value was obtained in the test coil. It was found that a Hx cloth knitting method enables us to insulate sufficiently between wires in Ag/Bi2212 square shape wire.

  12. Recent Progress in High Performance Ag-Sheathed Bi2223 Wire (DI-BSCCO®)

    NASA Astrophysics Data System (ADS)

    Kagiyama, T.; Yamazaki, K.; Kikuchi, M.; Yamade, S.; Nakashima, T.; Kobayashi, S.; Hayashi, K.; Sato, K.; Shimoyama, J.; Inoue, M.; Higashikawa, K.; Kiss, T.; Kitaguchi, H.; Kumakura, H.

    2011-10-01

    Sumitomo Electric has been developing the silver-sheathed Bi2223 multi-filamentary wires since the discovery of Bi-based superconductors. DI-BSCCO is the high performance wires produced using the controlled-overpressure (CT-OP) sintering technique. The present commercial DI-BSCCO can provide the uniform high critical current, Ic, up to 180 A with length over 2000 m, and recently 200 A were succeeded to be obtained by the same kind of 1000 m length wires, resulting from the improvement and control of the microstructure in Bi2223 multi-filaments. The short trial wires of several meters have exhibited the highest Ic over 240 A at 77K in self-field (corresponding to 580 A per 1 cm-width). Besides, the optimization of carrier density after CT-OP led to further enhancement of Ic, reached 250 A. All the derivative products also have uniform critical current properties over entire length even after lamination with the reinforcing metals. The performances of DI-BSCCO can meet the growing needs for various application of high temperature superconductor like high in-field applications, such as magnets and motors. The recent progress in transport properties of commercial DI-BSCCO and R&D short trial wires is shown.

  13. Research On Bi-Based High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Banks, Curtis; Doane, George B., III; Golben, John

    1993-01-01

    Brief report describes effects of melt sintering on Bi-based high-temperature superconductor system, as well as use of vibrating-sample magnetometer to determine hysteresis curves at 77 K for partially melt-sintered samples. Also discussed is production of high-temperature superconducting thin films by laser ablation: such films potentially useful in detection of signals of very low power.

  14. A new structural powder/wire-in-tube (PWIT) Ag-sheathed multifilamentary Bi-2223 tape and its superconducting properties

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Liu, H. K.; Dou, S. X.

    1998-05-01

    A new design of macrostructural multifilamentary tapes has been developed by parking powder and composite wires into the silver tube (PWIT) at the second stage of the powder-in-tube (PIT) process. The critical current Jc and the strain tolerance for this PWIT multifilamentary tape were significantly improved in comparison with the PIT multifilamentary tapes. The enhancement of both Jc and the strain tolerance are attributable to the increased interface between Ag and oxide superconductor. We have introduced a simple concept of the periphery length of the Ag/superconductor interface per unit area in the cross-section of tapes ( E) and have compared its properties in PWIT and PIT tapes. Both Jc and the strain tolerance were improved with increasing E. This was attributed to the improved grain alignment and crack elimination at the Ag/superconductor interface. The Jc- B properties and the Jc-strain characteristic of two tapes have been compared.

  15. Flux patterns of multifilamentary Ag-sheathed (Pb,Bi)2Sr2Ca2Cu3O10+δ tapes

    NASA Astrophysics Data System (ADS)

    Koblischka, M. R.; Johansen, T. H.; Bratsberg, H.; Půst, L.; Galkin, A.; Nálevka, P.; Maryško, M.; Jirsa, M.; Bentzon, M.; Bodin, P.; Vase, P.; Freltoft, T.

    1998-06-01

    Flux patterns of multifilamentary Ag-sheathed (Pb,Bi)2Sr2Ca2Cu3O10+δ tapes comprising 19 filaments are visualized by means of magneto-optic imaging. In low fields, the shielding currents are seen to flow mainly in the outermost filaments. With increasing external magnetic field, the inner filaments also contribute to the current flow. To compare the local flux distribution with the integral magnetization values, magnetization loops are measured by a SQUID magnetometer on the same sample following the fields used in the magneto-optic imaging (± 120 mT) and covering fields up to ±5 T at various temperatures. The magnetization loops also reveal that the multifilamentary tapes show the anomalous position of the central peak, but always less pronounced than in monofilamentary tapes.

  16. Role of internal gases and creep of Ag in controlling the critical current density of Ag-sheathed Bi2Sr2CaCu2Ox wires

    NASA Astrophysics Data System (ADS)

    Shen, T.; Ghosh, A.; Cooley, L.; Jiang, J.

    2013-06-01

    High engineering critical current density JE of > 500 A/mm2 at 20 T and 4.2 K can be regularly achieved in Ag-sheathed multifilamentary Bi2Sr2CaCu2Ox (Bi-2212) round wire when the sample length is several centimeters. However, JE(20 T) in Bi-2212 wires of several meters length, as well as longer pieces wound in coils, rarely exceeds 200 A/mm2. Moreover, long-length wires often exhibit signs of Bi-2212 leakage after melt processing that are rarely found in short, open-end samples. We studied the length dependence of JE of state-of-the-art powder-in-tube (PIT) Bi-2212 wires and gases released by them during melt processing using mass spectroscopy, confirming that JE degradation with length is due to wire swelling produced by high internal gas pressures at elevated temperatures [A. Malagoli et al. Supercond. Sci. Technol. 24, 075016 (2011) and A. Malagoli et al. Supercond. Sci. Technol. 26, 055018 (2013)]. We further modeled the gas transport in Bi-2212 wires and examined the wire expansion at critical stages of the melt processing of as-drawn PIT wires and the wires that received a degassing treatment or a cold-densification treatment before melt processing. These investigations showed that internal gas pressure in long-length wires drives creep of the Ag sheath during the heat treatment, causing wire to expand, lowering the density of Bi-2212 filaments, and therefore degrading the wire JE; the creep rupture of silver sheath naturally leads to the leakage of Bi-2212 liquid. Our work shows that proper control of such creep is the key to preventing Bi-2212 leakage and achieving high JE in long-length Bi-2212 conductors and coils.

  17. Screen printed Y and Bi-based superconductors

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.; Hsi, Chi-Shiung

    1992-01-01

    High T(sub c) superconducting thick film was prepared by screen printing process. Y-based (YBa2Cu3O(7 - x)) superconducting thick films were printed on 211/Al2O3, SNT/Al2O3, and YSZ substrates. Because of poor adhesion of the superconducting thick films to 211/Al2O3 and SNT/Al2O3 substrates, relatively low T(sub c) and J(sub c) values were obtained from the films printed on these substrates. Critical temperatures of YBa2Cu3O(7 - x) thick films deposited on 211/Al2O3 and SNT/Al2O3 substrates were about 80 K. The critical current densities of these films were less than 2 A/cm(exp 2). Higher T(sub c) and J(sub c) films were printed on the YSZ substrates; T(sub c) = 86.4 K and J(sub c) = 50.4 A/cm(exp 2). Multiple lead samples were also prepared on the YSZ substrates. These showed lower T(sub c) and J(sub c) values than plain samples. The heat treatment conditions of the multiple lead samples are still under investigation. Bi-based superconductor thick films have been obtained so far. Improving the superconducting properties of the BSCCO screen printed thick films will be emphasized in future work.

  18. Superconductivity

    SciTech Connect

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries.

  19. ALTERNATING CURRENT LOSSES IN AG-SHEATHED BSCCO (2212 AND 2223) TAPES AND WIRES AND YBCO (123) COATED CONDUCTORS

    SciTech Connect

    Dr. John S. Hurley

    2000-01-01

    In this study, we focus on the examination of ac losses in conductors utilizing Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O [BSCCO (2223)] high TC superconductors (HTS). In addition, we seek to assist other facilities such as the University of Wisconsin-Madison Applied Superconductivity Center (UW-ASC), Brookhaven National Laboratory, and other DoE facilities investigating the use of HTS in electric power applications (e.g., generators, motors, and transformers). To accomplish this we will develop an ac losses capability at Clark Atlanta University to complement the established ac losses efforts at Brookhaven National Laboratory (BSCCO) on BSCCO/Ag and various material characterization efforts taking place at the UW-ASC. Our goal is through this effort to gain a greater understanding of the effects on ac losses due to parameters such as ac/dc current, J{sub c}, tape geometry, voltage tap placement, field orientation, material anisotropy, surface irregularities, percolations and filament coupling effects. As a result, we expect to better understand how to minimize ac losses in applications requiring real or practical conductors. HTS conductors based on BSCCO-2223 are now being routinely produced in industrial lengths of high quality. Vendors such as Southwire and ASC are producing multi-filamentary tapes in lengths of 6 km or more carrying critical current densities of up to 3 kA/cm**2 at 77 K. While this is approaching the level of performance where some large-scale applications are considered to be economically viable, a number of problems remain to be solved. The remaining issues include: rapid reduction in JC in magnetic fields; and power dissipation due to varying magnetic fields or currents (ac losses).

  20. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  1. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  2. New experiments elucidating the current limiting mechanisms of Ag-sheathed (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} tapes.

    SciTech Connect

    Anderson, J.W.; Babcock, S.E.; Cai, X.Y.; Dorris, S.E.; Feldmann, M.; Jiang, J.; Larbalestier, D.C.; Li, Q.; Parrell, J.A.; Parrella, R.; Polak, M.; Polyanskii, A.; Riley, G.N. Jr.; Rupich, M.; Wu, Y.

    1999-01-15

    Multiple current limiting mechanisms exist from the nanometer to millimeter scale in Ag-sheathed (Bi,Pb)-2223 tapes. Recent studies of the zero-field critical current density (J{sub c} (0T, 77K)), the irreversibility field (H*) and the crack microstructure elucidate these properties. We show that H*(77K) can vary significantly over the range {approximately}120-260 mT, independently of J{sub c} (0T, 77K). Cracks, actual or incipient, exist on the sub to several hundred micron scale. Surface magneto optical imaging of whole tapes, correlated to subsequent ultrasonic fracture analysis of. the bare 2223 filaments extracted by dissolving away the Ag shows that even composites having J{sub c} (0T, 77K) values of 60 kA/cm{sup 2} exhibit strong signs of unhealed rolling damage. These combined studies show that today's very best 2223 tapes are still far from full optimization.

  3. An explanation for the rise in Tc in the Tl- and Bi-based high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Bose, S. M.; Longe, P.

    1991-01-01

    Using the plasmon exchange model for the high T(sub c) superconductor, it is shown that the T(sub c) rises with an increase in the number of CuO layers per unit cell, which is in agreement with recent observations in the Tl- and Bi-based compounds. The calculation also suggests that the sample will become superconducting in successive stages and that there is a saturation effect, i.e., that T(sub c) cannot be raised indefinitely by increasing the number of CuO layers.

  4. Recent Advances in Layered Metal Chalcogenides as Superconductors and Thermoelectric Materials: Fe-Based and Bi-Based Chalcogenides.

    PubMed

    Mizuguchi, Yoshikazu

    2016-04-01

    Recent advances in layered (Fe-based and Bi-based) chalcogenides as superconductors or functional materials are reviewed. The Fe-chalcogenide (FeCh) family are the simplest Fe-based high-Tc superconductors. The superconductivity in the FeCh family is sensitive to external or chemical pressure, and high Tc is attained when the local structure (anion height) is optimized. The Bi-chalcogenide (BiCh2 ) family are a new group of layered superconductors with a wide variety of stacking structures. Their physical properties are also sensitive to external or chemical pressure. Recently, we revealed that the emergence of superconductivity and the Tc in this family correlate with the in-plane chemical pressure. Since the flexibility of crystal structure and electronic states are an advantage of the BiCh2 family for designing functionalities, I briefly review recent developments in this family as not only superconductors but also other functional materials. PMID:26821763

  5. Fabrication of superconducting joints for Ag-clad BSCCO conductors

    SciTech Connect

    Iyer, A.N.; Huang, J.Y.; Jammy, R.

    1995-07-01

    Potential applications of high-T{sub c} superconductors include motors, generators, transmission cables, magnets, etc. At present, resistive connections are used to connect various high-T{sub c} components for such applications. However, to improve efficiency, it is imperative that the resistive connection be replaced by a true superconducting joint. Using a novel etching technique, we have fabricated superconducting lap and butt joints between Ag-clad BSCCO conductors. The Ag sheath from one side of the tape was selectively etched to expose the underlying superconductor core. Joints were formed by bringing the two tapes together and heat treating them. Detailed microstructural analysis and current transport measurements of the joints have been performed. Critical current (I{sub c}) through a monofilament lap- and butt-joint were 10 and 23 A, respectively. I{sub c} within the joint for mono- and multifilament conductors were 37 and 21 A, respectively. Additionally, effects of various joint configurations, processing techniques, and strain on the transport property of the joint are also being studied.

  6. Enhancement of critical currents in (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconducting tapes.

    SciTech Connect

    Balachandran, U.

    1998-11-11

    The performance of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconducting tapes in magnetic fields at 77 K is critical for winding this material into high-field magnets. We have recently enhanced the transport current (I{sub c}) of multifilament Ag-clad Bi-2223 tapes in a self-field at 77 K by increasing the packing density of the precursor powder improving the mechanical deformation, optimizing the conductor design, and adjusting the cooling rate. I{sub c} values of >40 A were obtained repeatedly. However, a transport current of 42 A in a self-field declined to 4 A in a 0.2 T magnetic field applied parallel to the c-axis at 77 K. A new composite tape was then fabricated in which a YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (Y-123) film was deposited on the top of the Ag-sheathed Bi-2223 tape to shield the applied magnetic field and protect the central Bi-2223 filaments. Magnetization measurements showed that the critical current densities of the Y-123-coated, Ag-sheathed Bi-2223 tapes were higher than those of an uncoated tape. These preliminary results may provide the basis for further improving the processing of long-length Bi-2223 tapes for high-field applications.

  7. Microwave properties of high transition temperature superconducting thin films

    NASA Technical Reports Server (NTRS)

    Gordon, W. L.

    1991-01-01

    Extensive studies of the interaction of microwaves with YBa2Cu3O(7-delta), Bi-based, and Tl-based superconducting thin films deposited in several microwave substrates were performed. The data were obtained by measuring the microwave power transmitted through the film in the normal and the superconducting state and by resonant cavity techniques. The main motives were to qualify and understand the physical parameters such as the magnetic penetration depth, the complex conductivity, and the surface impedance, of high temperature superconducting (HTS) materials at microwave frequencies. Based on these parameters, the suitability of these HTS thin films is discussed for microwave applications.

  8. Superconductivity and ceramic superconductors II; Proceedings of the Symposium, Orlando, FL, Nov. 12-15, 1990

    NASA Astrophysics Data System (ADS)

    Nair, K. M.; Balachandran, U.; Chiang, Y.-M.; Bhalla, A. S.

    The present symposium on superconductivity and ceramic superconductors discusses fundamentals and general principles, powder processing and properties, fabrication and properties, and device reliability and applications. Attention is given to phase formation in the Tl-Ca-Ba-Cu-O system, comparative defect studies in La2CuO4 and La2NiO4, solid solution and defect behavior in high Tc oxides, oxygen ion transport and disorder in cuprates, and Sr-free Bi-Ln-Ca-Cu-O superconductors. Topics addressed include the preparation of superconductor Y-Ba-Cu-O powder by single-step calcining in air, low-temperature synthesis of YBa2Cu3O(7-x), synthesis of high-phase purity ceramic oxide superconductors by the xerogel method, and the preparation and characterization of the BYa2Cu4O8 superconductor. Also discussed are optical studies of humidity-based corrosion effects on thin film and bulk ceramic YBa2Cu3O(7-delta), thermomechanical processing of YBa2Cu3O(x)/Ag sheathed wires, and the expansion of high-Tc superconducting ceramics.

  9. Overview of superconductivity in Japan Strategy road map and R&D status

    NASA Astrophysics Data System (ADS)

    Tsukamoto, O.

    2008-09-01

    Superconducting technology benefits society in broad fields; environment/energy, life science, manufacturing industry and information and communication. Superconducting equipments and devices used in various fields are divided into two categories, electric and electronic applications. Technologies in those applications are progressing remarkably owing to firm and consistent supports by various national projects. The final target of the NEDO R&D project of fundamental technology for superconductivity applications to develop 500 m long coated conductors (CCs) of the critical current 300 A/cm (at 77 K, 0 T) will be fulfilled by the end of JFY 2007 and manufacturing process to produce extremely low-cost CCs is to be developed to make the applications realistic. Preliminary works to develop power apparatuses using CCs have started in the frame of the R&D project for the fundamental technology and have produced significant results. Performance of BSCCO/Ag-sheathed wires has been improved greatly and various applications using those wires are being developed. R&D projects for SMES, power cable, flywheel energy storage and rotating machines are going to introduce those equipments to the real world. Technologies of SQUID and SFQ, basic devices of the electronic applications, are progressing dramatically also owing to various national projects. In this back ground the technology strategy map in the field of superconducting technology was formulated to prioritize investments in R&D by clearly defining the objectives and inspire autonomous R&D actives in various fields of industries. R&D activities in the superconducting technologies are to be scheduled following this strategy map.

  10. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  11. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  12. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  13. Correlation between fabrication factor and superconducting properties of the Tl-and-Bi-based high-Tc superconductor

    NASA Technical Reports Server (NTRS)

    Maki, Naoki; Okada, Michiya; Doi, Toshiya J.; Kanai, Tsuneyuki; Sato, Junichi; Higashiyama, Kazutoshi

    1995-01-01

    Large critical current densities (J(sub c)) were obtained in c axis oriented Tl-1 223/Ag composite tapes fabricated by spraying methods without a vacuum. Transport measurements at 77K under a zero field indicated a J(sub c) of 9 x 10(exp 4) A/sq cm and 7 x 10(exp 3) A/sq cm at 1T for the tapes fabricated by spray pyrolysis. The novel GPM method was also applied for Bi-2212/Ag PIT composite wire, and found to be very effective for improving the distribution of voids, which caused from the melt-solidifying process. The GPM showed a marked effect for obtaining homogeneous long wire. A 1 T class coil was successfully fabricated with monocore wire.

  14. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  15. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  16. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  17. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  18. Thermally activated depinning in polycrystalline Bi-based high- T sub c superconductors

    SciTech Connect

    Gupta, A.; Esquinazi, P.; Braun, H.F. ); Neumuller, H. )

    1989-10-23

    With the vibrating-reed technique we have studied the coupling of the flux-line-lattice (FLL) to the atomic lattice between 4.2 and 100 K at constant applied fields 0.014T{le}{ital B}{sub {ital a}}{le}4 T in three different Bi-based polycrystalline samples. Depinning of the FLL is observed at temperatures above {ital T}{sub {ital D}} where a peak occurs in the damping of the vibrating sample. With increasing temperature, the FLL dissipation changes at {ital T}{sub {ital D}} from a hysteretic to a viscous regime. The depinning temperature {ital T}{sub {ital D}}{lt}T{sub c}(B{sub a}) follows a logarithmic magnetic field dependence which is similar to the dependence of the depinning temperature {ital T}{sup *} obtained from measurements of the electrical resistivity due to thermally activated flux motion.

  19. Superconducting Memristors

    NASA Astrophysics Data System (ADS)

    Peotta, Sebastiano; Di Ventra, Massimiliano

    2014-09-01

    In his original work, Josephson predicted that a phase-dependent conductance should be present in superconducting tunnel junctions, an effect difficult to detect, mainly because it is hard to single it out from the usual nondissipative Josephson current. We propose a solution for this problem that consists of using different superconducting materials to realize the two junctions of a superconducting interferometer. According to the Ambegaokar-Baratoff relation the two junctions have different conductances if the critical currents are equal, thus the Josephson current can be suppressed by fixing the magnetic flux in the loop at half of a flux quantum without canceling the phase-dependent conductance. Our proposal can be used to study the phase-dependent conductance, an effect present in principle in all superconducting weak links. From the standpoint of nonlinear circuit theory, such a device is in fact an ideal memristor with possible applications to memories and neuromorphic computing in the framework of ultrafast and low-energy-consumption superconducting digital circuits.

  20. Near-net-shape fabrication of continuous Ag-Clad Bi-Based superconductors

    SciTech Connect

    Lanagan, M. T. et al.

    1998-04-01

    We have developed a near-net-shape process for Ag-clad Bi-2212 superconductors as an alternative to the powder-in-tube process. This new process offers the advantages of nearly continuous processing, minimization of processing steps, reasonable ability to control the Bi-2212/Ag ratio, and early development of favorable texture of the Bi-2212 grains. Superconducting properties are discussed.

  1. Superconductive articles

    SciTech Connect

    Wu, X.D.; Muenchausen, R.E.

    1991-12-31

    An article of manufacture including a substrate, a patterned interlayer of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of oxides of Ce, Y, Cm, Dy, Er, Eu, Fe, Gd, Ho, In, La, Mn, Lu, Nd, Pr, Pu, Sm, Tb, Tl, Tm, Y, and Yb over the entire exposed surface of the intermediate article, and, a ceramic superconductive material layer as an overcoat upon the buffer layer whereby the ceramic superconductive material situated directly above the substrate has a crystal structure substantially different than the ceramic superconductive material situated above the overcoated patterned interlayer.

  2. Superconducting magnets

    SciTech Connect

    Willen, E.; Dahl, P.; Herrera, J.

    1985-01-01

    This report provides a self-consistent description of a magnetic field in the aperture of a superconducting magnet and details how this field can be calculated in a magnet with cos theta current distribution in the coils. A description of an apparatus that can be used to measure the field uniformity in the aperture has been given. Finally, a detailed description of the magnet being developed for use in the Superconducting Super Collider is given. When this machine is built, it will be by far the largest application of superconductivity to date and promises to make possible the experimental discoveries needed to understand the basic laws of nature governing the world in which we live.

  3. Interdiffusion studies in Bi-based layered systems with nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Missana, T.; Afonso, C. N.; da Silva, M. F.

    1994-12-01

    Interdiffusion processes are induced by nanosecond laser pulses from an excimer laser. The Bi-based systems studied are formed by a Bi layer and a Sb or Ge layer. Configurations with Bi at the surface layer or at the innermost layer are both studied. Real-time reflectivity measurements are performed during the irradiation to determine the process kinetics and times and Rutherford backscattering spectrometry is used to obtain the concentration depth profiles. It will be shown that there is an interfacially initiated diffusion process in the Bi-Sb system and that the diffusion coefficients of this system within the liquid phase are in the 10-5 10-6 cm2/s range. The Bi-Ge system shows instead little mixing, the diffusion coefficients of the system within the liquid phase being at least two orders of magnitude lower. The differences observed when Bi is the surface layer or the innermost one are related to the different thermal responses of the system.

  4. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  5. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  6. Characterization and thermophysical properties of bi-based ceramic superconductors. Final report

    SciTech Connect

    Gamble, Brian K.

    2001-05-31

    The BES supported research at Clemson University and South Carolina State University (1994-1999) on the BiSCCO high temperature superconductors, as well as other research at Clemson and elsewhere on a range of conducting and superconducting materials, revealed substantial evidence that dimensionality plays a key role in their magnetic and transport properties. Previous theoretical and experimental activities have shown that high magnetic fields can have novel and large effects on the ground state of low dimensional systems. Much new physics is expected to result from these interactions, not only the suppression or restoration of superconductivity, but also the enhancement (or even field induced) charge density wave nesting and the destruction of density wave states.

  7. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  8. SUPERCONDUCTING PHOTOINJECTOR

    SciTech Connect

    BEN-ZVI,I.; BURRILL, A.; CALAGA, R.; CHANG, X.; GROVER, R.; GUPTA, R.; HAHN, H.; HAMMONS, L.; KAYRAN, D.; KEWISCH, J.; LAMBIASE, R.; LITVINENKO, V.; MCINTYRE, G.; NAIK, D.; PATE, D.; PHILLIPS, D.; POZDEYEV, E.; RAO, T.; SMEDLEY, J.; THAN, R.; TODD, R.; WEISS, D.; WU, Q.; ZALTSMAN, A.; ET AL.

    2007-08-26

    One of the frontiers in FEL science is that of high power. In order to reach power in the megawatt range, one requires a current of the order of one ampere with a reasonably good emittance. The superconducting laser-photocathode RF gun with a high quantum efficiency photocathode is the most natural candidate to provide this performance. The development of a 1/2 cell superconducting photoinjector designed to operate at up to a current of 0.5 amperes and beam energy of 2 MeV and its photocathode system are the subjects covered in this paper. The main issues are the photocathode and its insertion mechanism, the power coupling and High Order Mode damping. This technology is being developed at BNL for DOE nuclear physics applications such as electron cooling at high energy and electron ion colliders..

  9. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  10. Silver-sheathed multifilament wires

    NASA Astrophysics Data System (ADS)

    Wu, C. T.; Goretta, K. C.; Shi, D.; Lanagan, M. T.; Poeppel, R. B.

    1991-01-01

    The process for manufacturing Ag-sheathed multifilament superconducting wires was investigated. Bi2Sr(1.7)CaCu2O(x), Pb-doped Bi2Sr2Ca2Cu3O(x), or YBa2Cu3O(x) powders were packed into Ag tubes and swaged into long wires. Pieces were cut from each wire, packed into a second Ag tube and swaged or rolled into multifilament wires. Each wire was then sintered to produce a superconductor. Processing considerations included the sheath workability, effects of compacting and residual stresses, and heat treatment schedules. The superconducting properties of the Bi-based wires were superior to those of the YBa2Cu3O(x) wires at 4.2 K, but not at 77 K.

  11. A mechanism for resistive dissipation in Ag sheathed Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}

    SciTech Connect

    Suenaga, M.; Li, Q.; Sabatini, R.L.; Shibutani, K.; Hayoashi, S.; Ogawa, R.; Kawate, Y.; Motowidlo, L.

    1993-11-01

    Detailed measurements of the V-I curves for a number of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag composite tapes were made at 4.2, 27, and 64-77 K as a function of applied magnetic field as well as the angle between the tape face and the direction of applied field. Results suggest that the weak vortex-pinning strength, and the amount of the weakly coupled grain boundaries and of the non-superconducting volume are primary limiting factors for critical current densities in Bi(2212)/Ag and Bi(2223)/Ag, respectively. Furthermore, in both cases, the dissipative voltages arise from the interior of the gains.

  12. Itinerant effects and enhanced magnetic interactions in Bi-based multilayer cuprates

    SciTech Connect

    Dean, M. P. M.; James, A. J. A.; Walters, A. C.; Bisogni, V.; Jarrige, I.; Hücker, M.; Giannini, E.; Fujita, M.; Pelliciari, J.; Huang, Y. B.; Konik, R. M.; Schmitt, T.; Hill, J. P.

    2014-12-04

    The cuprate high temperature superconductors exhibit a pronounced trend in which the superconducting transition temperature, T c, increases with the number of CuO₂ planes, n, in the crystal structure. We compare the magnetic excitation spectrum of Bi₂₊xSr₂₋xCuO₆+δ (Bi-2201) and Bi₂Sr₂Ca₂Cu₃O₁₀₊δ (Bi-2223), with n = 1 and n = 3 respectively, using Cu L₃-edge resonant inelastic x-ray scattering (RIXS). Near the anti-nodal zone boundary we find the paramagnon energy in Bi-2223 is substantially higher than that in Bi-2201, indicating that multilayer cuprates host stronger effective magnetic exchange interactions, providing a possible explanation for the Tc vs. n scaling. In contrast, the nodal direction exhibits very strongly damped, almost non-dispersive excitations. As a result, we argue that this implies that the magnetism in the doped cuprates is partially itinerant in nature.

  13. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  14. Influence of the precipitation pH on the compositions and properties of Bi-based oxyiodide photocatalysts

    SciTech Connect

    Li, Yongyu; Yao, Hongchang; Wang, Jianshe; Wang, Ning; Li, Zhongjun

    2011-02-15

    Graphical abstract: A series of Bi-based oxyiodide photocatalysts with different compositions were synthesized via a precipitation-filtration process followed by hydrothermal treatment. The effects of the precipitation pH values on the compositions and photocatalytic activities of the bismuth oxyiodides were investigated. Research highlights: {yields} BiOI, Bi{sub 4}O{sub 5}I{sub 2}, Bi{sub 7}O{sub 9}I{sub 3} and Bi{sub 5}O{sub 7}I were obtained via a precipitation-filtration process followed by hydrothermal treatment. {yields} The compositions of the bismuth oxyiodides could be controlled by adjusting the precipitation pH values. {yields} All the bismuth oxyiodides exhibit photocatalytic activity on decomposing methyl orange. -- Abstract: A series of Bi-based oxyiodide photocatalysts with different compositions were synthesized via a precipitation-filtration process followed by hydrothermal treatment. The compositions of the bismuth oxyiodides could be controlled by adjusting the precipitation pH values. The effects of the precipitation pH values on the compositions and photocatalytic activities of the bismuth oxyiodides were investigated and the relationship between structure and photocatalytic property is discussed. All the as-prepared powders exhibit photocatalytic activity on decomposing methyl orange under visible light irradiation. The activity increases with increasing content of iodine in the bismuth oxyiodides.

  15. Itinerant effects and enhanced magnetic interactions in Bi-based multilayer cuprates

    DOE PAGESBeta

    Dean, M. P. M.; James, A. J. A.; Walters, A. C.; Bisogni, V.; Jarrige, I.; Hücker, M.; Giannini, E.; Fujita, M.; Pelliciari, J.; Huang, Y. B.; et al

    2014-12-04

    The cuprate high temperature superconductors exhibit a pronounced trend in which the superconducting transition temperature, T c, increases with the number of CuO₂ planes, n, in the crystal structure. We compare the magnetic excitation spectrum of Bi₂₊xSr₂₋xCuO₆+δ (Bi-2201) and Bi₂Sr₂Ca₂Cu₃O₁₀₊δ (Bi-2223), with n = 1 and n = 3 respectively, using Cu L₃-edge resonant inelastic x-ray scattering (RIXS). Near the anti-nodal zone boundary we find the paramagnon energy in Bi-2223 is substantially higher than that in Bi-2201, indicating that multilayer cuprates host stronger effective magnetic exchange interactions, providing a possible explanation for the Tc vs. n scaling. In contrast, themore » nodal direction exhibits very strongly damped, almost non-dispersive excitations. As a result, we argue that this implies that the magnetism in the doped cuprates is partially itinerant in nature.« less

  16. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  17. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  18. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  19. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  20. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. PMID:25666075

  1. Spin-orbit coupling enhanced superconductivity in Bi-rich compounds ABi3 (A = Sr and Ba)

    PubMed Central

    Shao, D. F.; Luo, X.; Lu, W. J.; Hu, L.; Zhu, X. D.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2016-01-01

    Recently, Bi-based compounds have attracted attentions because of the strong spin-orbit coupling (SOC). In this work, we figured out the role of SOC in ABi3 (A = Sr and Ba) by theoretical investigation of the band structures, phonon properties, and electron-phonon coupling. Without SOC, strong Fermi surface nesting leads to phonon instabilities in ABi3. SOC suppresses the nesting and stabilizes the structure. Moreover, without SOC the calculation largely underestimates the superconducting transition temperatures (Tc), while with SOC the calculated Tc are very close to those determined by measurements on single crystal samples. The SOC enhanced superconductivity in ABi3 is due to not only the SOC induced phonon softening, but also the SOC related increase of electron-phonon coupling matrix elements. ABi3 can be potential platforms to construct heterostructure of superconductor/topological insulator to realize topological superconductivity. PMID:26892681

  2. A novel Bi-based oxybromide SrBiO{sub 2}Br: Synthesis, optical property and photocatalytic activity

    SciTech Connect

    He, Ying; Huang, Hongwei Zhang, Yihe Li, Xiaowei; Tian, Na; Guo, Yuxi; Luo, Yi

    2015-04-15

    Highlights: • SrBiO{sub 2}Br was first explored as a novel photocatalyst. • SrBiO{sub 2}Br has been successfully synthesized by a solid state reaction. • We systematically synthesized SrBiO{sub 2}Br in different temperature. • SrBiO{sub 2}Br calcinated at 700 °C exhibited the highest photocatalytic activity. - Abstract: A novel Bi-based photocatalyst SrBiO{sub 2}Br with layered structure was successfully synthesized via a solid state reaction method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectra (DRS). SrBiO{sub 2}Br has an indirect-transition optical band-gap of 2.58 eV. Density functional calculations revealed that conduction band (CB) were composed of the Bi 6p and Br 4s orbitals, and valence band (VB) were occupied by Br 4p and O 2p. The photodecomposition of rhodamine-B (RhB) experiments demonstrated SrBiO{sub 2}Br can be used as photocatalysts under ultraviolet (UV) light and visible light irradiation (λ > 400 nm). The results revealed that SrBiO{sub 2}Br calcinated at 700 °C exhibited the highest photocatalytic activity among the obtained SrBiO{sub 2}Br samples.

  3. Superconducting levitating bearing

    NASA Technical Reports Server (NTRS)

    Moon, Francis C. (Inventor)

    1996-01-01

    A superconducting bearing assembly includes a coil field source that may be superconducting and a superconducting structure. The coil field source assembly and superconducting structure are positioned so as to enable relative rotary movement therebetween. The structure and coil field source are brought to a supercooled temperature before a power supply induces a current in the coil field source. A Meissner-like effect is thereby obtained and little or no penetration of the field lines is seen in the superconducting structure. Also, the field that can be obtained from the superconducting coil is 2-8 times higher than that of permanent magnets. Since the magnetic pressure is proportioned to the square of the field, magnetic pressures from 4 to 64 times higher are achieved.

  4. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  5. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  6. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  7. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  8. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  9. Superconductivity of magnesium diboride

    SciTech Connect

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  10. Superconductivity of magnesium diboride

    NASA Astrophysics Data System (ADS)

    Bud'ko, Sergey L.; Canfield, Paul C.

    2015-07-01

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In this article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. In particular, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  11. Superconductivity in bad metals

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is argued that many synthetic metals, including high temperature superconductors are ``bad metals`` with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described.

  12. Superconducting gyroscope research

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.; Karr, G. R.

    1985-01-01

    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture.

  13. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element. PMID:17750320

  14. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  15. Development of superconductive magnets

    NASA Technical Reports Server (NTRS)

    Laurence, J. C.

    1970-01-01

    Survey of superconductive magnets considers - stabilization problems, advances in materials and their uses, and design evolution. Uses of superconducting magnets in particle accelerators and bubble chambers, as well as possible applications in magnetohydrodynamic and thermonuclear power generation and levitation are discussed.

  16. Superconductivity of magnesium diboride

    DOE PAGESBeta

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  17. Superconducting Graphene Nanoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Wang, Joel; Zaffalon, Michele; Jarillo-Herrero, Pablo

    2010-03-01

    Graphene, a single atom-thick sheet of graphite discovered in recent years, has attracted tremendous attention due to its exotic electronic properties. At low energy, its gapless linear band structure results in transport properties described by the Dirac equation, making it an ideal system for the study of exotic quantum phenomena and other new physics. Graphene may also exhibit many novel transport characteristics in the superconducting regime. New phenomena, such as pseudo-diffusive dynamics of ballistic electrons, the relativistic Josephson effect, and specular Andreev reflection are predicted by theoretical models combining relativistic quantum mechanics and superconductivity. We study these phenomena experimentally with superconductor-graphene-superconductor junctions. The supercurrent in graphene is induced by the superconducting contacts through proximity effect. Various superconducting materials are considered for different explorations. Preliminary tests indicate clean electrical contact with graphene and superconducting properties as expected.

  18. Superconductivity in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  19. Metal optics and superconductivity

    SciTech Connect

    Golovashkin, A.L.

    1989-01-01

    The articles contained in this collection are dedicated to the study of the electron structure of transition metals and superconducting alloys and compounds based on them. The study of the electron structure of materials is one of the central problems of solid-state physics and defines the solution of a number of problems. One of them is the problem of high-temperature superconductivity which has attracted exceptional attention from physicists in connection with the discovery of new classes of ceramic oxides which are superconducting at liquid-nitrogen temperature. The electron structure is one of the three whales on which all of superconductivity rests. It is frequently our ignorance of the electronic properties of a metal, alloy or compound in its normal state which makes it impossible to predict superconductivity in the material, preventing use from calculating the parameters of the superconducting state. There are now a number of effective methods for investigation of the electron structure of the metals and allows. This collection discusses metal optics, tunneling and magnetic measurements in superconductors. These methods are quite informative and allow us to obtain many important electron characteristics and temperature relations. Various characteristics of the superconducting compounds Nb{sub 3}Ge, Nb{sub 3}Al, nb{sub 3}Sn and Nb{sub 3}Ga with A15 structure and NbN with B1 structure, having rather high critical temperatures, are experimentally studied.

  20. Ferromagnetic/Superconducting Multilayers

    NASA Astrophysics Data System (ADS)

    Bader, S. D.

    1998-03-01

    Although it is well known that magnetism influences superconductivity, the converse issue has been less well explored. Recent theoretical predictions for ferromagnetic/ superconducting/ ferromagnetic trilayers exhibiting interlayer magnetic coupling in the normal state indicate that the coupling should be suppressed below the superconducting transition temperature.(C.A. R. Sá de Melo, Phys. Rev. Lett. 79), 1933 (1997); O. Sipr, B.L. Györffy, J. Phys. Cond. Matt. 7, 5239 (1995). To realize such a situation, a requirement (when the magnetic layers are thick) is that the superconducting layer thickness must simultaneously be less than the range over which the magnetic interlayer coupling decays, but greater than the superconducting coherence length. This introduces serious materials constraints. The present work describes initial explorations of three sputtered multilayer systems in an attempt to observe coupling of the ferromagnetic layers across a superconducting spacer:((a) J.E. Mattson, R.M. Osgood III, C.D. Potter, C.H. Sowers, and S.D. Bader, J. Vac. Sci. Technol. A 15), 1774 (1997); (b) J.E. Mattson, C.D. Potter, M.J. Conover, C.H. Sowers, and S.D. Bader, Phys. Rev. B 55, 70 (1997), and (c) R.M. Osgood III, J.E. Pearson, C.H. Sowers, and S.D. Bader, submitted (1997). (a) Ni/Nb, (b) Fe_4N/NbN, and (c) GdN/NbN. In these systems we have retained thinner superconducting layers than had been achieved previously, but interlayer magnetic coupling is not observed even in the normal state. For Ni/Nb the interfacial Ni loses its moment, which also reduces the superconducting pair-breaking. GdN is an insulating ferromagnet, so itinerancy is sacrificed, and, probably as a result of this, no coupling is observed. Each system gives rise to interesting and anisotropic superconducting properties. Thus, although the goal remains elusive, our search highlights the challenges and opportunities.

  1. Structures behind superconductivity

    SciTech Connect

    Rotman, D.

    1988-07-01

    The previously reported preparation and structures of superconducting materials are reviewed. The two systems, Y-Ba-Cu-O and La-Cu-O, previously reported with high transition temperatures are discussed in some detail. The new systems introduced in 1987 that were not based on a rare earth but including Bi-Sr-Cu-O are also reviewed. Superconductive materials including thallium rather than bismuth that have been reported but not thoroughly studied are discussed briefly. It is pointed out that many superconducting materials have been prepared, but good documentation of the structures and properties of these materials need much more study.

  2. Superconductivity in doped insulators

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  3. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  4. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  5. Tunneling in superconducting structures

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  6. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  7. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  8. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  9. Supertubes and Superconducting Membranes

    SciTech Connect

    Cordero, Ruben; Miguel-Pilar, Zelin

    2007-02-09

    We show the equivalence between configurations that arise from string theory of type IIA, called supertubes, and superconducting membranes at the bosonic level. We find equilibrium and oscillating configurations for a tubular membrane carrying a current along its axis.

  10. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  11. Superconductive ceramic oxide combination

    SciTech Connect

    Chatterjee, D.K.; Mehrotra, A.K.; Mir, J.M.

    1991-03-05

    This patent describes the combination of a superconductive ceramic oxide which degrades in conductivity upon contact of ambient air with its surface and, interposed between the ceramic oxide surface and ambient air in the amount of at least 1 mg per square meter of surface area of the superconductive ceramic oxide, a passivant polymer selected from the group consisting of a polyester ionomer and an alkyl cellulose.

  12. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  13. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. PMID:25971511

  14. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P.; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C. Stephen; Levy, Jeremy

    2015-05-01

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity.

  15. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  16. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  17. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  18. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  19. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  20. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  1. Macroscopic Models of Superconductivity

    NASA Astrophysics Data System (ADS)

    Chapman, S. J.

    Available from UMI in association with The British Library. Requires signed TDF. After giving a description of the basic physical phenomena to be modelled, we begin by formulating a sharp -interface free-boundary model for the destruction of superconductivity by an applied magnetic field, under isothermal and anisothermal conditions, which takes the form of a vectorial Stefan model similar to the classical scalar Stefan model of solid/liquid phase transitions and identical in certain two-dimensional situations. This model is found sometimes to have instabilities similar to those of the classical Stefan model. We then describe the Ginzburg-Landau theory of superconductivity, in which the sharp interface is 'smoothed out' by the introduction of an order parameter, representing the number density of superconducting electrons. By performing a formal asymptotic analysis of this model as various parameters in it tend to zero we find that the leading order solution does indeed satisfy the vectorial Stefan model. However, at the next order we find the emergence of terms analogous to those of 'surface tension' and 'kinetic undercooling' in the scalar Stefan model. Moreover, the 'surface energy' of a normal/superconducting interface is found to take both positive and negative values, defining Type I and Type II superconductors respectively. We discuss the response of superconductors to external influences by considering the nucleation of superconductivity with decreasing magnetic field and with decreasing temperature respectively, and find there to be a pitchfork bifurcation to a superconducting state which is subcritical for Type I superconductors and supercritical for Type II superconductors. We also examine the effects of boundaries on the nucleation field, and describe in more detail the nature of the superconducting solution in Type II superconductors--the so-called 'mixed state'. Finally, we present some open questions concerning both the modelling and analysis of

  2. Superconducting wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abrahamsen, A. B.; Mijatovic, N.; Seiler, E.; Zirngibl, T.; Træholt, C.; Nørgård, P. B.; Pedersen, N. F.; Andersen, N. H.; Østergård, J.

    2010-03-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  3. Electron Pairing Without Superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy; Cheng, G.; Tomczyk, M.; Lu, S.; Veazey, J. P.; Huang, M.; Irvin, P.; Ryu, S.; Lee, H.; Eom, C.-B.; Hellberg, C. S.

    2015-03-01

    Strontium titanate (SrTiO3) exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. We describe transport experiments with nanowire-based quantum dots localized at the interface between SrTiO3 and LaAlO3. Electrostatic gating of the quantum dot reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical magnetic field Bp 1-4 Tesla, an order of magnitude larger than the superconducting critical magnetic field. For B Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as T = 900 mK, far above the superconducting transition temperature (Tc 300 mK). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by an attractive-U Hubbard model that describes real-space electron pairing as a precursor to superconductivity. This work was supported by ARO MURI W911NF-08-1-0317 (J.L.), AFOSR MURI FA9550-10-1-0524 (C.-B.E., J.L.) and FA9550-12-1-0342 (C.-B.E.), and grants from the National Science Foundation DMR-1104191 (J.L.), DMR.

  4. The thermopower in the temperature range T{sub c}-1000K and the bank spectrum of Bi-based superconductors

    SciTech Connect

    Gasumyants, V.E.; Vladimirskaya, E.V.; Smirnov, V.I.; Kazanskiy, S.V.

    1995-04-01

    The temperature dependencies of thermopower, S, in the range T = T{sub c}-1000K as well as of resistivity and Hall coefficient in the range T = T{sub c}-300K for the single-phase ceramic samples Bi2Sr2Ca(1-x)Nd(x)Cu2O(y) have been measured. It was found that the S(T) dependencies in normal phase have three characteristic regions. Despite the fact that the S(T) dependencies in Bi-based high-T{sub c} superconductors (HTSC) differ essentially from ones in Y-based HTSC at T = T{sub c}-300K, the main feature of theirs (S(T) = const at high temperatures) retains in samples investigated at T is greater than 620K. The results obtained have been analyzed on the basis of the narrow-band model with the use of assumption of slight asymmetry of the conductive band. The band spectrum parameters of the samples studied have been calculated. An analysis of the tendencies in these parameters changes with samples composition varying enables to make the conclusion about the similarity of the main features of the conductive band structure in Y- and Bi-based HTSC.

  5. The thermopower in the temperature range T(sub c)-1000K and the bank spectrum of Bi-based superconductors

    NASA Technical Reports Server (NTRS)

    Gasumyants, V. E.; Vladimirskaya, E. V.; Smirnov, V. I.; Kazanskiy, S. V.

    1995-01-01

    The temperature dependencies of thermopower, S, in the range T = T(sub c)-1000K as well as of resistivity and Hall coefficient in the range T = T(sub c)-300K for the single-phase ceramic samples Bi2Sr2Ca(1-x)Nd(x)Cu2O(y) have been measured. It was found that the S(T) dependencies in normal phase have three characteristic regions. Despite the fact that the S(T) dependencies in Bi-based high-T(sub c) superconductors (HTSC) differ essentially from ones in Y-based HTSC at T = T(sub c)-300K, the main feature of theirs (S(T) = const at high temperatures) retains in samples investigated at T is greater than 620K. The results obtained have been analyzed on the basis of the narrow-band model with the use of assumption of slight asymmetry of the conductive band. The band spectrum parameters of the samples studied have been calculated. An analysis of the tendencies in these parameters changes with samples composition varying enables to make the conclusion about the similarity of the main features of the conductive band structure in Y- and Bi-based HTSC.

  6. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  7. Magnetically levitated superconducting bearing

    SciTech Connect

    Weinberger, B.R.; Lynds, L. Jr.

    1993-10-26

    A magnetically levitated superconducting bearing includes a magnet mounted on a shaft that is rotatable around an axis of rotation and a Type II superconductor supported on a stator in proximity to the magnet. The superconductor is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet to produce an attractive force that levitates the magnet and supports a load on the shaft. The interaction between the superconductor and magnet also produces surface screening currents that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature. The bearing could also be constructed so the magnet is supported on the stator and the superconductor is mounted on the shaft. The bearing can be operated by cooling the superconductor to its superconducting state in the presence of a magnetic field. 6 figures.

  8. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  9. Superconductivity in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Bustarret, E.

    2015-07-01

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  10. Midwest Superconductivity Consortium

    SciTech Connect

    Liedl, G.L.

    1992-01-01

    The Midwest Superconductivity Consortium's, MISCON, mission is to advance the science and understanding of high {Tc} superconductivity. Programmatic research focuses upon key materials-related problems: synthesis and processing; and limiting features in transport phenomena. During the past twenty-one projects produced over eighty-seven talks and seventy-two publications. Key achievements this past year expand our understanding of processing phenomena relating to crystallization and texture, metal superconductor composites, and modulated microstructures. Further noteworthy accomplishments include calculations on 2-D superconductor insulator transition, prediction of flux line lattice melting, and an expansion of our understanding and use of microwave phenomena as related to superconductors.

  11. Technology of RF superconductivity

    SciTech Connect

    1995-08-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams.

  12. Gambling with Superconducting Fluctuations

    NASA Astrophysics Data System (ADS)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  13. Spin-orbit-coupled superconductivity

    PubMed Central

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C.-T.

    2014-01-01

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature Tc, clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < Tc, the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity. PMID:24961726

  14. Free-standing superconductive articles

    SciTech Connect

    Wu, X.D.; Muenchausen, R.E.

    1991-12-31

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer, the ceramic superconductive material layer and the protective material layer, removing the protective material layer from the composite structure whereby a substrate-free, free-standing ceramic superconductive film remains.

  15. Applications of Superconductivity

    ERIC Educational Resources Information Center

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  16. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  17. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  18. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  19. Langmuir vacuum and superconductivity

    NASA Astrophysics Data System (ADS)

    Veklenko, B. A.

    2012-06-01

    It is shown that, in the "jelly" model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  20. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  1. Superconducting thermometer for cryogenics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1977-01-01

    Digital electronic device uses superconducting filaments as sensors. Simple solid-state circuitry combined with filaments comprise highly-reliable temperature monitor. Device has ability to track very fast thermal transients and "on/off" output is adaptable to remote sensing and telemetry.

  2. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  3. Superconductive electromagnet apparatus

    SciTech Connect

    Mine, S.

    1982-12-14

    Disclosed is a superconductive electromagnet apparatus having a coil with a coiled conductor with a channel between adjacently disposed the paths of the coil conductor of which width is selected in accordance with amounts of heat produced at the corresponding portions of the coil section as viewed in cross section.

  4. New research in Superconductivity

    NASA Astrophysics Data System (ADS)

    Khorrami, Mona

    2013-03-01

    Superconductors are materials that have no resistance to electricity's flow; they are one of the last great frontiers of scientific discovery. The theories that explain superconductor behavior seem to be constantly under review. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike Kamerlingh Onnes When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-452F, -269C), its resistance suddenly disappeared. It was necessary for Onnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity. In 1933 German researchers Walther Meissner and Robert Ochsenfeld discovered that a superconducting material will repel a magnetic field. A magnet moving by a conductor induces currents in the conductor, but, in a superconductor the induced currents exactly mirror the field that would have otherwise penetrated the superconducting material - causing the magnet to be repulsed. This phenomenon is known as strong diamagnetism and is today often referred to as the ``Meissner effect'' (an eponym). Later on the theory developed by American physicists John Bardeen, Leon Cooper, and John Schrieffer together with extensions and refinements of the theory, which followed in the years after 1957, succeeded in explaining in considerable detail the properties of superconductors.

  5. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  6. Superconducting magnets 1992

    SciTech Connect

    Not Available

    1993-06-01

    This report discusses the following topics on Superconducting Magnets; SSC Magnet Industrialization; Collider Quadrupole Development; A Record-Setting Magnet; D20: The Push Beyond 10T; Nonaccelerator Applications; APC Materials Development; High-T{sub c} at Low Temperature; Cable and Cabling-Machine Development; and Analytical Magnet Design.

  7. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  8. Structure, Magnetism and Superconductivity in oxide based Superlattices

    NASA Astrophysics Data System (ADS)

    Santamaria, Jacobo

    2002-03-01

    Artificial superlattices can be used as model systems to study various condensed matter physics problems due to the possibility of matching layer thickness and /or modulation length to characteristic length scales of the phenomena under study. Many interesting new phenomena have been observed due to the reduced dimensionality in one direction; examples are giant magnetoresistance, low dimensional superconductivity, magnetic surface anisotropy, anomalous mechanical properties, etc. Since in modern growth techniques (sputtering, MBE...) film growths in conditions far from the thermodynamic equilibrium, film properties can seriously differ from those of the bulk. Additionally, depending on the constituent materials and on the growth conditions, significant disorder can appear at the interfaces like step disorder, interdiffusion, strain, etc. Consequently a detailed structural characterization is a necessary step before going into the dimensionality problems. X ray diffraction and electron microscopy are complementary techniques to obtain quantitative information at atomic scale. In the first part of this talk I will discuss dimensional effects in high Tc [YBa2Cu3O7/PrBa2Cu3O7] superconducting superlattices. Optimally doped YBa2Cu3O7 is a 3D strongly anisotropic superconductor due to the Josephson coupling of CuO planes in neighboring cells. Introducing a 5 unit cells PrBa2Cu3O7 spacer between one unit cell thick YBa2Cu3O7 layers decouples CuO blocks and the superconductor turns into 2D. The reduction of the vortex length in the c direction has important implications in the magnetotransport properties in this system which is similar to the strongly anisotropic Tl or Bi based superconductors but with a much smaller critical temperature. In a second part I will present data on [YBa2Cu3O7/ La0.7Ca0.3MnO3] superlattices showing magnetism and superconductivity. Interestingly, magnetism and superconductivity persist down to nanometric thicknesses of the individual layers

  9. Superstructures and superconductivity

    SciTech Connect

    Fisk, Z.; Aeppli, G.

    1993-04-02

    Heavy fermion materials - so named because their conduction electrons behave as though they had extra mass - are like the cuprates in that they exhibit unusual superconducting properties. By the time the cuprates had been discovered, a good understanding of these materials was in hand. Unlike theories of high-[Tc] superconductivity, however, ideas about heavy fermions have not been the subject of great controversy. Thus, most of the effort in this backwater of condensed matter physics has focused on certain details of the behavior of one particularly well-studied compounds, UPt[sub 3]. The cause for sustained interest was that the process of developing ever more elaborate explanations for ever more elaborate experiments did not seem to converage. A recent paper by Midgley et al. reporting modulations in the crystal lattice of UPt[sub 3] suggests that theory and experiment might finally converge in a way that, while it does not threaten the broad understanding of heavy fermion systems, involves a degree of freedom ignored until now even in the face of past experience with elemental metallic uranium. Their transmission electron micrograph evidence for the existence of an incommensurate lattice modulation in UPt[sub 3] implicates this modulation as a probable source of the double superconducting transitions. Remarkably, the superconducting and magnetic coherence lengths, and the now discovered modulation period, are all of the same magnitude. For some time people have felt that stacking faults might be relevant to the properties of UPt[sub 3], but these new results are distinct from this. What Midgley et al. suggest is that the complicated superconducting phase diagram of UPt[sub 3] derives from the internal strain field caused by the modulation, and that this strain field lifts the degeneracy associated with unconventional pairing.

  10. The normal state properties of nano-sized CoFe{sub 2}O{sub 4} added Bi-based superconductors in bipolaron model

    SciTech Connect

    Ben Salem, M. K.; Slimani, Y.; Hannachi, E.; Hamrita, A.; Ben Azzouz, F.; Ben Salem, M.

    2013-12-16

    The effect of nano-sized CoFe{sub 2}O{sub 4} particles (10 nm in diameter) addition on the structure and the normal state transport properties of polycrystalline Bi-based superconductors were systematically studied. The additional amount, x wt.%, of CoFe{sub 2}O{sub 4} in this case varied from 0.0 to 1 wt.% of the total mass of the sample. Phase analysis by X-ray diffraction (XRD) and Electrical resistance as a function of temperature, ρ(T) were carried out. Nano-sized particles addition modifies the electrical behavior of the normal state with increasing the CoFe{sub 2}O{sub 4} concentration. The bipolaron model can explain properly the normal state resistivity of the samples.

  11. Superconducting multipole corrector magnet

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2004-10-01

    A novel concept of superconducting multipole corrector magnet is discussed. This magnet assembled from 12 identical racetrack type coils and can generate any combination of dipole, quadrupole and sextupole magnetic fields. The coil groups are powered from separate power supplies. In the case of normal dipole, quadrupole and sextupole fields the total field is symmetrical relatively the magnet median plane and there are only five powered separately coil groups. This type multipole corrector magnet was proposed for BTeV, Fermilab project and has following advantages: universal configuration, simple manufacturing and high mechanical stability. The results of magnetic design including the field quality and magnetic forces in comparison with known shell type superconducting correctors are presented.

  12. Landscape of superconducting membranes

    SciTech Connect

    Denef, Frederik; Hartnoll, Sean A.

    2009-06-15

    The AdS/CFT correspondence may connect the landscape of string vacua and the 'atomic landscape' of condensed matter physics. We study the stability of a landscape of IR fixed points of N=2 large N gauge theories in 2+1 dimensions, dual to Sasaki-Einstein compactifications of M theory, toward a superconducting state. By exhibiting instabilities of charged black holes in these compactifications, we show that many of these theories have charged operators that condense when the theory is placed at a finite chemical potential. We compute a statistical distribution of critical superconducting temperatures for a subset of these theories. With a chemical potential of 1 mV, we find critical temperatures ranging between 0.24 and 165 K.

  13. High temperature interface superconductivity

    DOE PAGESBeta

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  14. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  15. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  16. Superconductivity in graphite intercalation compounds

    DOE PAGESBeta

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  17. Tunable superconductivity in decorated graphene

    NASA Astrophysics Data System (ADS)

    Han, Zheng; Allain, Adrien; Marty, Laetitia; Bendiab, Nedjma; Toulemonde, Pierre; Strobel, Pierre; Coraux, Johann; Bouchiat, Vincent

    2013-03-01

    Graphene offers an exposed bidimensional gas of high mobility charge carriers with gate tunable density. Its chemical inertness offers an outstanding platform to explore exotic 2D superconductivity. Superconductivity can be induced in graphene by means of proximity effect (by depositing a set of superconducting metal clusters such as lead or tin nanoparticles). The influence of decoration material, density or particles and disorder of graphene will be discussed. In the case of disordered graphene, Tin decoration leads to a gate-tunable superconducting-to-insulator quantum phase transition. Superconductivity in graphene is also expected to occur under strong charge doping (induced either by gating or under chemical decoration, in analogy with graphite intercalated compounds). I will also show preliminary results showing the influence of Calcium intercalation of few layer graphene and progress toward the demonstration of intrinsic superconductivity in such systems. Work supported by EU GRANT FP7-NMP GRENADA.

  18. Plasma model of superconducting crystals

    NASA Astrophysics Data System (ADS)

    Netesova, Nadezhda P.

    2016-04-01

    Within inharmonious plasma oscillation model the superconducting crystal AB is considered consisting of two subsystems 2AB=A2+B2. In high-temperature superconductors spontaneous division into two phases: superconducting and isolating was revealed. Phase separation was caused by plasma instability. It is obtained the transition superconducting phase temperature dependence Tc = F (q12, q1, q2, V12, V1, V2) on the isotopic substitution physical parameters: q - initial and component interaction parameters, V - volume in initial and component crystal lattices. The isotopic transition superconducting phase temperature displacement ΔTc is associated with the change of the initial and component interaction and crystal lattice parameters. From the plasma mechanism of superconductivity follows superconducting crystals exist at room temperature.

  19. Topological confinement and superconductivity

    SciTech Connect

    Al-hassanieh, Dhaled A; Batista, Cristian D

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  20. TPX superconducting PF magnets

    SciTech Connect

    Calvin, H.; Christiansen, O.; Cizek, J.

    1995-12-31

    The Westinghouse team has extended the Lawrence Livermore National Laboratory advanced conceptual design for the TPX PF magnets through preliminary design. This is the first time superconducting PF magnets have been designed for application in a tokamak. Particular challenges were encountered and solved in developing the coil insulation system, welding the helium stubs, and winding the coil. The authors fabricated a coil using copper stranded CIC conductor, to surface manufacturability issues and demonstrate the solutions.

  1. Superconducting Magnetic Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Lawson, Daniel D.

    1991-01-01

    Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.

  2. High-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Chin, Ken C.

    1990-01-01

    The current status of high-temperature superconductivity (HTSC) and near-term prospects are briefly reviewed with particular reference to Lockheed's experience. Emphasis is placed on an integrated approach to systems applications of HTSC thin films, which hold the greatest near-term promise. These new materials are applied in the production of smaller, more sensitive, and more efficient electronic components to meet the ever-increasing demands for higher-performance signal acquisition and processing systems, communications systems, and computers.

  3. Superconducting cascade electron refrigerator

    SciTech Connect

    Camarasa-Gómez, M.; Giazotto, F.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.

    2014-05-12

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  4. Supercurrent in superconducting graphene

    NASA Astrophysics Data System (ADS)

    Kopnin, N. B.; Sonin, E. B.

    2010-07-01

    The problem of supercurrent in superconducting graphene is revisited and the supercurrent is calculated within the mean-field model employing the two-component wave functions on a honeycomb lattice with pairing between different valleys in the Brillouin zone. We show that the supercurrent within the linear approximation in the order-parameter-phase gradient is always finite even if the doping level is exactly zero.

  5. Superconducting terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J

    2010-01-01

    During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.

  6. Superconducting cascade electron refrigerator

    NASA Astrophysics Data System (ADS)

    Camarasa-Gómez, M.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.; Giazotto, F.

    2014-05-01

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  7. US Navy superconductivity program

    NASA Technical Reports Server (NTRS)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  8. Navy superconductivity efforts

    NASA Technical Reports Server (NTRS)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  9. Tunable superconducting microstrip resonators

    NASA Astrophysics Data System (ADS)

    Adamyan, A. A.; Kubatkin, S. E.; Danilov, A. V.

    2016-04-01

    We report on a simple yet versatile design for a tunable superconducting microstrip resonator. Niobium nitride is employed as the superconducting material and aluminum oxide, produced by atomic layer deposition, as the dielectric layer. We show that the high quality of the dielectric material allows to reach the internal quality factors in the order of Qi˜104 in the single photon regime. Qi rapidly increases with the number of photons in the resonator N and exceeds 105 for N ˜10 -50 . A straightforward modification of the basic microstrip design allows to pass a current bias through the strip and to control its kinetic inductance. We achieve a frequency tuning δf =62 MHz around f0=2.4 GHz for a fundamental mode and δf =164 MHz for a third harmonic. This translates into a tuning parameter Qiδf /f0=150 . The presented design can be incorporated into essentially any superconducting circuitry operating at temperatures below 2.5 K.

  10. Superconducting dark energy

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Harko, Tiberiu

    2015-04-01

    Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.

  11. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  12. Silicon superconducting quantum interference device

    SciTech Connect

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F.; Chiodi, F.; Débarre, D.; Hasselbach, K.; Kirtley, J. R.

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  13. AC magnetic field losses in BSCCO-2223 superconducting tapes

    SciTech Connect

    Lelovic, M.; Mench, S.; Deis, T.

    1997-09-01

    The AC magnetic losses at power frequencies (60 Hz) were investigated for mono- and multifilament Ag-sheathed (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (BSCCO-2223) tapes with similar transport critical current (I{sub c}) values at 77 K. The multifilament sample exhibited higher losses than the monofilament under the same conditions. Loss peaks are discussed in terms of intergranular, intragranular and eddy current losses. Because of BSCCO`s anisotropy, field orientation has a large effect on the magnitude of these peaks, even at relatively small angles. Losses for fields applied parallel to the c-axis of the textured BSCCO grains are larger by more than one order of magnitude than those applied perpendicular.

  14. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  15. Superconductivity in intercalated molybdenum disulfide.

    NASA Technical Reports Server (NTRS)

    Somoano, R.; Hadek, V.; Rembaum, A.

    1972-01-01

    X-ray studies show the existence of two different types of expansions of the intercalated unit cell in both Na and K compounds. Two different phases are also indicated in the superconducting behavior of the K compound. All intercalated samples studied show a superconducting transition. K and Rb compounds become superconductors in the temperature range from 6.5 to 6.0 K. The Na compounds become superconductors at about 4.5 K. In all cases, the superconductivity disappears upon a short exposure of the sample to air. This phenomenon confirms that the superconductivity is due to the presence of the alkali metal.

  16. Superconducting linacs: some recent developments

    SciTech Connect

    Bollinger, L.M.

    1985-01-01

    The paper is a review of superconducting linacs that are of interest for heavy-ion acceleration. Most of the paper is concerned with energy boosters for projectiles from tandem electrostatic accelerators, the only application for which superconducting linacs are now used for heavy-ion acceleration. There is also a brief discussion of the concept of a superconducting injector linac being developed as a replacement of the tandem in a multi-stage acceleration system. Throughout, the emphasis is on the technology of the superconducting linac, including some attention to the relationships between resonator design parameters and accelerator performance characteristics. 21 refs., 14 figs., 3 tabs.

  17. Cosmic sparks from superconducting strings.

    PubMed

    Vachaspati, Tanmay

    2008-10-01

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents approximately 10{5} GeV. The superconducting string model predicts an event rate that falls off only as S{-1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model. PMID:18851517

  18. Cosmic Sparks from Superconducting Strings

    SciTech Connect

    Vachaspati, Tanmay

    2008-10-03

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents {approx}10{sup 5} GeV. The superconducting string model predicts an event rate that falls off only as S{sup -1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model.

  19. Superconducting tape characterization under flexion

    NASA Astrophysics Data System (ADS)

    Álvarez, A.; Suárez, P.; Cáceres, D.; Pérez, B.; Cordero, E.; Castaño, A.

    2002-08-01

    Electrotechnical applications of high temperature superconducting materials are limited by the difficulty of constructing classical windings with ceramic materials. While Bi-2223 tape may be a solution, it cannot be bent to radii less than a certain value since its superconducting capacity disappears. We describe an automated measurement system of the characteristics of this tape under flexion. It consists of a device that coils the tape over cylinders with different radii. At the same time, the parameters of its superconducting behaviour (e.g. resistance) are taken and processed. This system was developed at the “Benito Mahedero Laboratory of Superconducting Electrical Applications” in the University of Extremadura.

  20. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  1. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, J.R.

    1996-09-17

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.

  2. Superconductivity devices: Commercial use of space

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Hsi, Chi-Shiung; Li, Guang

    1992-01-01

    High T sub C superconducting thick film were prepared by a screen printing process. Y-based (YBa2Cu3O(7-x) superconducting thick film were printed on 211/Al2O3, SNT/Al2O3, and YSZ substrates. Because of poor adhesion of the superconductor thick films to 211/Al2O3 and SNT/Al2O3 substrates, relatively low T sub C and J sub C values were obtained from the films printed on these substrates. Critical temperatures (T sub C) of YBa2Cu3O(7-x) thick films deposited on 211/Al2O3 and SNT/Al2O3 substrates were about 80 K. The critical current densities (J sub C) of these films were less than 2 A/sq cm. Higher T sub C and J sub C YBa2Cu3O(7-x) thick films were printed on YSZ substrates. A YBa2Cu3O(7-x) thick film with T sub C=86.4 and J sub C= 50.4 A/sq cm was prepared by printing the film on YSZ substrate and firing at 990 C for 10 minutes. Multiple-lead samples were also prepared on the YSZ substrates. The multiple-lead samples showed lower T sub C and/or J sub C values than those of the plain samples. The electrical properties of YBa2Cu3O(7-x) thick films were determined by the microstructures of the films. The YBa2Cu3O(7-x) thick films printed on the YSZ substrates, which had the best properties among the films printed on the three different kinds of substrates, had the highest density and the best particle interconnection. The YBa2Cu3O(7-x) thick films with preferred orientation in (001) direction were obtained on the YSZ substrates. Cracks, which retard the properties of the films, were found from the films deposited on the YSZ substrates. Currently, a MSZ (Magnesium Stabilized Zirconia) substrate, which had higher thermal expansion coefficient than the YSZ substrate, is used as substrate for the YBa2Cu3O(7-x) thick film in order to eliminate the cracks on the film. Bi-based superconductor thick films were printed on polycrystalline MgO and YSZ substrates. Interactions between BSCCO thick films and the YSZ substrates were observed. Various buffer layer materials were

  3. Superconductivity devices: Commercial use of space

    NASA Astrophysics Data System (ADS)

    Haertling, Gene; Hsi, Chi-Shiung; Li, Guang

    1992-08-01

    High T sub C superconducting thick film were prepared by a screen printing process. Y-based (YBa2Cu3O(7-x) superconducting thick film were printed on 211/Al2O3, SNT/Al2O3, and YSZ substrates. Because of poor adhesion of the superconductor thick films to 211/Al2O3 and SNT/Al2O3 substrates, relatively low T sub C and J sub C values were obtained from the films printed on these substrates. Critical temperatures (T sub C) of YBa2Cu3O(7-x) thick films deposited on 211/Al2O3 and SNT/Al2O3 substrates were about 80 K. The critical current densities (J sub C) of these films were less than 2 A/sq cm. Higher T sub C and J sub C YBa2Cu3O(7-x) thick films were printed on YSZ substrates. A YBa2Cu3O(7-x) thick film with T sub C=86.4 and J sub C= 50.4 A/sq cm was prepared by printing the film on YSZ substrate and firing at 990 C for 10 minutes. Multiple-lead samples were also prepared on the YSZ substrates. The multiple-lead samples showed lower T sub C and/or J sub C values than those of the plain samples. The electrical properties of YBa2Cu3O(7-x) thick films were determined by the microstructures of the films. The YBa2Cu3O(7-x) thick films printed on the YSZ substrates, which had the best properties among the films printed on the three different kinds of substrates, had the highest density and the best particle interconnection. The YBa2Cu3O(7-x) thick films with preferred orientation in (001) direction were obtained on the YSZ substrates. Cracks, which retard the properties of the films, were found from the films deposited on the YSZ substrates. Currently, a MSZ (Magnesium Stabilized Zirconia) substrate, which had higher thermal expansion coefficient than the YSZ substrate, is used as substrate for the YBa2Cu3O(7-x) thick film in order to eliminate the cracks on the film. Bi-based superconductor thick films were printed on polycrystalline MgO and YSZ substrates. Interactions between BSCCO thick films and the YSZ substrates were observed. Various buffer layer materials were

  4. Superconducting Field-Effect Transistors

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Romanofsky, Robert R.; Tabib-Azar, Massood

    1995-01-01

    Devices offer switching speeds greater than semiconducting counterparts. High-Tc superconducting field-effect transistors (SUPEFETs) investigated for use as electronic switches in delay-line-type microwave phase shifters. Resemble semiconductor field-effect transistors in some respects, but their operation based on different principle; namely, electric-field control of transition between superconductivity and normal conductivity.

  5. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  6. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  7. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi; Foltyn, Stephen R.

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  8. A superconducting magnetic gear

    NASA Astrophysics Data System (ADS)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  9. Superconducting Nanotube Dots

    NASA Astrophysics Data System (ADS)

    Schönenberger, Christian

    2007-03-01

    In this talk, I will focus on charge transport in carbon nanotube devices with superconducting source and drain contacts in the finite-bias non-equilibrium transport regime. As contact material, bi-layers of Au and Al were used and transport has been studied at temperatures in the 0.1 K range. Because carbon nanotubes are quantum dots (qdots), we in fact explore the physics of qdots with superconducting contacts, something which only recently became possible thanks to carbon nanotubes and most recently to semiconducting nanowires. In my talk, I will first summarize our pioneering work on multiwalled carbon nanotubes in which we could demonstrate proximity induced effects both in the weak and the strong coupling regime. In the latter an intriguing interplay between superconductivity and Kondo physics appears. Then, I will discuss the physics of multiple Andreev reflection in a situation when only one resonant state is present and compare this with experimental results. Finally, I will compare our early results with our recent measurements on single-wall carbon nanotubes. This work has been supported by the Swiss Institute on Nanoscience, the Swiss National Science Foundation, EU projects DIENOW and HYSWITCH. I gratefully acknowledge contribution of the following persons to this work (in alphabetic order): B. Babic, W. Belzig, C. Bruder, M. R. Buitelaar, J.-C. Cuevas, A. Eichler, L. Forro, J. Gobrecht, M. Gr"aber, M. Iqbal, T. Kontos, A. Levy Yeyati, A. Martin-Rodero, T. Nussbaumer, S. Oberholzer, C. Strunk, H. Scharf, J. Trbovic, E. Vecino, M. Weiss

  10. Superconducting magnet cooling system

    DOEpatents

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  11. High gradient superconducting quadrupoles

    SciTech Connect

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed.

  12. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  13. Induced superconductivity in graphene

    NASA Astrophysics Data System (ADS)

    Heersche, Hubert B.; Jarillo-Herrero, Pablo; Oostinga, Jeroen B.; Vandersypen, Lieven M. K.; Morpurgo, Alberto F.

    2007-07-01

    Graphene layers, prepared by mechanical exfoliation, were contacted by superconducting electrodes consisting of a titanium-aluminium bilayer. Quantum hall measurements in the normal state confirmed the single layer nature of the graphene samples. Proximity induced supercurrents were observed in all samples, below 1 K. Using a backgate, the Fermi energy could be swept from valence to conduction band via the Charge neutrality point, demonstrating supercurrents carried by holes and electrons, respectively. Interestingly, a finite supercurrent was also observed at the charge neutrality (or Dirac) point, where the density of carrier states vanishes. Our results demonstrate phase coherence in graphene.

  14. [Determination of trace nickel in bi-based superconductor powder by inductively coupled plasma atomic emission spectroscopy after separation with anion exchange resin and extraction with methylbenzene].

    PubMed

    Fan, Li-xin; Li, Jian-qiang; Fan, Hui-li; Sun, Jian-ling; Zhang, Xia; Bao, Rui; Lu, Qing; Wang, Jie

    2011-12-01

    A new method for the determination of trace nickel in superconductor powder by ICP-AES was proposed. The instrument parameters were optimized, and the matrix effects as well as the method of eliminating interferences were also studied systemically. The results showed that matrix interference in the superconductor powder was serious when the amount of matrix increased, and the repeatability as well as the accuracy was poor, so it was necessary to used separation and preconcentration to improve the accuracy and precision. In this experiment, Ni-diacetyl dioxime complexes were enriched by toluene extraction in alkaline condition after eliminating the interference of major element Bi and partial Pb, Sr, Ca and Cu by eluting with anion exchange resin, then the Ni-complexes were back extracted by diluted hydrochloric acid. The enrichment conditions were investigated in detail and the recovery rate of Ni was higher than 95%. Under the optimal condition, an artificial sample was analysed, the result showed that the found values were identical with reference values, and the RSD and detection limit were 1.9% and 0.19 microg x g(-1), respectively. The method has been applied to the determination of trace nickel in Bi-based superconductor powder samples with satisfactory results. PMID:22295798

  15. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  16. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  17. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  18. Superconducting current transducer

    SciTech Connect

    Kuchnir, M.; Ozelis, J.P.

    1990-10-01

    The construction and performance of an electric current meter that operates in liquid He and mechanically splits apart to permit replacement of the current carrying conductor is described. It permits the measurement of currents induced in a loop of superconducting cable and expeditious exchange of such loops. It is a key component for a short sample cable testing facility that requires no high current power supplies nor high current leads. Its superconducting pickup circuit involves a non-magnetic core toroidal split-coil that surrounds the conductor and a solenoid whose field is sensed by a Hall probe. This toroidal split-coil is potted inside another compensating toroidal split-coil. The C shaped half toroids can be separated and brought precisely together from outside the cryostat. The Hall probe is energized and sensed by a lock-in amplifier whose output drives a bipolar power supply which feeds the compensating coil. The output is the voltage across a resistor in this feedback circuit. Currents of up to 10 kA can be measured with a precision of 150 mA. 3 refs., 4 figs.

  19. Overview on superconducting photoinjectors

    NASA Astrophysics Data System (ADS)

    Arnold, A.; Teichert, J.

    2011-02-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR-free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng.PSISDG0277-786X 5534, 22 (2004)10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1μmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang , in Proceedings of the 31st International Free Electron Laser Conference (FEL 09), Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009), p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  20. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  1. Nozzle for superconducting fiber production

    DOEpatents

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  2. Antiferromagnetic hedgehogs with superconducting cores

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul M.; Sheehy, Daniel E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang's SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to ``escape'' into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined.

  3. Antiferromagnetic hedgehogs with superconducting cores

    SciTech Connect

    Goldbart, P.M.; Sheehy, D.E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  4. Negative refraction and superconductivity

    NASA Astrophysics Data System (ADS)

    Amariti, Antonio; Forcella, Davide; Mariotti, Alberto; Siani, Massimo

    2011-10-01

    We discuss exotic properties of charged hydrodynamical systems, in the broken superconducting phase, probed by electromagnetic waves. Motivated by general arguments from hydrodynamics, we observe that negative refraction, namely the propagation in opposite directions of the phase velocities and of the energy flux, is expected for low enough frequencies. We corroborate this general idea by analyzing a holographic superconductor in the AdS/CFT correspondence, where the response functions can be explicitly computed. We study the dual gravitational theory both in the probe and in the backreacted case. We find that, while in the first case the refractive index is positive at every frequency, in the second case there is negative refraction at low enough frequencies. This is in agreement with hydrodynamic considerations.

  5. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  6. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  7. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  8. Superconducting energy storage

    SciTech Connect

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  9. Superconducting combined function magnets

    SciTech Connect

    Hahn, H.; Fernow, R.C.

    1983-01-01

    Superconducting accelerators and storage rings, presently under construction or in the design phase, are based on separate dipole and quadrupole magnets. It is here suggested that a hybrid lattice configuration consisting of dipoles and combined function gradient magnets would: (1) reduce the number of magnet units and their total cost; and (2) increase the filling factor and thus the energy at a given field. Coil cross sections are presented for the example of the Brookhaven Colliding Beam Accelerator. An asymmetric two-layer cable gradient magnet would have transfer functions of 10.42 G/A and 0.628 G cm/sup -1//A versus 15.77 G/A and 2.03 G cm/sup -1//A of the present separate dipoles and quadrupoles.

  10. Superconductivity in uranium compounds

    NASA Astrophysics Data System (ADS)

    Mineev, V. P.

    2014-08-01

    On the basis of microscopic theory it is demonstrated how the coupling between the electrons by means of magnetization fluctuations in ferromagnetic metals with orthorhombic symmetry gives rise to an equal-spin pairing superconducting state with the general form of the order parameter dictated by symmetry. The strong upturn of the upper critical field along the b direction above 5 T in UCoGe is explained by the increase of the pairing interaction caused by the suppression of the Curie temperature by a magnetic field parallel to the b axis. It is proposed that a similar phenomenon at a much higher field must take place also for a field directed along the magnetically hardest a direction.

  11. Microwave response of high transition temperature superconducting thin films

    NASA Technical Reports Server (NTRS)

    Miranda, Felix Antonio

    1991-01-01

    We have studied the microwave response of YBa2Cu3O(7 - delta), Bi-Sr-Ca-Cu-O, and Tl-Ba-Ca-Cu-O high transition temperature superconducting (HTS) thin films by performing power transmission measurements. These measurements were carried out in the temperature range of 300 K to 20 K and at frequencies within the range of 30 to 40 GHz. Through these measurements we have determined the magnetic penetration depth (lambda), the complex conductivity (sigma(sup *) = sigma(sub 1) - j sigma(sub 2)) and the surface resistance (R(sub s)). An estimate of the intrinsic penetration depth (lambda approx. 121 nm) for the YBa2Cu3O(7 - delta) HTS has been obtained from the film thickness dependence of lambda. This value compares favorably with the best values reported so far (approx. 140 nm) in single crystals and high quality c-axis oriented thin films. Furthermore, it was observed that our technique is sensitive to the intrinsic anisotropy of lambda in this superconductor. Values of lambda are also reported for Bi-based and Tl-based thin films. We observed that for the three types of superconductors, both sigma(sub 1) and sigma(sub 2) increased when cooling the films below their transition temperature. The measured R(sub s) are in good agreement with other R(sub S) values obtained using resonant activity techniques if we assume a quadratic frequency dependence. Our analysis shows that, of the three types of HTS films studied, the YBa2Cu3O(7 - delta) thin film, deposited by laser ablation and off-axis magnetron sputtering are the most promising for microwave applications.

  12. Impact of radiation exposure on mechanical and superconducting properties of Bi-2212 superconductor ceramics

    NASA Astrophysics Data System (ADS)

    Rahman, A. A.; Hamid, N. A.; Asbullah, M. S. N.

    2013-06-01

    In the last few years, rapid improvements have been made to improve the quality of high-temperature superconductors. Amongst the high temperature superconductors, the Bi-based (BSCCO) consists of interest for various applications. Bi2Sr2CaCu2O8 (Bi-2212) have been used to make superconducting tapes and wires. Unlike conventional compound superconductors, the critical current, Ic of oxide superconducting tapes in the elastic strain is generally almost constant and degrades suddenly when it is subject to mechanical force by a strain beyond the limit. In this research, the Bi-2212 samples were prepared by solid state reaction method. Precursors oxide powders were pressed to pallets under hydrostatic pressure around 7 tons or 70 000 psi and then sintered at temperature of 850°C for 24 hours. The effect of radiation before and after irradiation on mechanical and superconducting properties of the samples was studied. Irradiation was carried out with a beam of 3 MeV, current of 10 mA and radiation dose of 100 and 200 KGray. The x-ray diffraction analysis is used to verify Bi-2212 phase. The samples were also characterized through electrical properties by using the four-point probe method. The microstructure of the samples was studied by using the scanning electron microscopy (SEM), and compression test was also conducted using the stress-strain relationship. The phase structure and electrical properties of the samples degrade slightly with irradiation exposure. Nevertheless the microstructure showed that when initial electron radiation dose was increased up to 100 kGray, the grain growth, texture and core density improved slightly but the grain growth, size and core density begin to deteriorate after the electron radiation dose is increased to 200 kGray. This may be due to the formation of larger size defects within the microstructure of the Bi-2212 phase as the radiation dose increases.

  13. Mixed-mu superconducting bearings

    DOEpatents

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  14. Mixed-mu superconducting bearings

    DOEpatents

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  15. Search for Superconductivity in Micrometeorites

    PubMed Central

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-01-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10−12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures. PMID:25476841

  16. Superconductivity: A celebration of pairs

    NASA Astrophysics Data System (ADS)

    Norman, Michael R.

    2007-12-01

    It is fifty years since John Bardeen, Leon Cooper and Bob Schrieffer presented the microscopic theory of superconductivity. At a wonderful conference in Urbana the 'good old days' were remembered, and the challenges ahead surveyed.

  17. Superconductivity from Emerging Magnetic Moments.

    PubMed

    Hoshino, Shintaro; Werner, Philipp

    2015-12-11

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds. PMID:26705649

  18. Superconductivity from Emerging Magnetic Moments

    NASA Astrophysics Data System (ADS)

    Hoshino, Shintaro; Werner, Philipp

    2015-12-01

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds.

  19. High pressure studies of superconductivity

    NASA Astrophysics Data System (ADS)

    Hillier, Narelle Jayne

    Superconductivity has been studied extensively since it was first discovered over 100 years ago. High pressure studies, in particular, have been vital in furthering our understanding of the superconducting state. Pressure allows researchers to enhance the properties of existing superconductors, to find new superconductors, and to test the validity of theoretical models. This thesis presents a series of high pressure measurements performed in both He-gas and diamond anvil cell systems on various superconductors and on materials in which pressure-induced superconductivity has been predicted. Under pressure the alkali metals undergo a radical departure from the nearly-free electron model. In Li this leads to a superconducting transition temperature that is among the highest of the elements. All alkali metals have been predicted to become superconducting under pressure. Pursuant to this, a search for superconductivity has been conducted in the alkali metals Na and K. In addition, the effect of increasing electron concentration on Li1-xMgx alloys has been studied. Metallic hydrogen and hydrogen-rich compounds are believed to be good candidates for high temperature superconductivity. High pressure optical studies of benzene (C6H6) have been performed to 2 Mbar to search for pressure-induced metallization. Finally, cuprate and iron-based materials are considered high-Tc superconductors. These layered compounds exhibit anisotropic behavior under pressure. Precise hydrostatic measurements of dTc/dP on HgBa2CuO 4+delta have been carried out in conjunction with uniaxial pressure experiments by another group. The results obtained provide insight into the effect of each of the lattice parameters on Tc. Finally, a series of hydrostatic and non-hydrostatic measurements on LnFePO (Ln = La, Pr, Nd) reveal startling evidence that the superconducting state in the iron-based superconductors is highly sensitive to lattice strain.

  20. The challenge of unconventional superconductivity.

    SciTech Connect

    Norman, M. R.

    2011-04-08

    During the past few decades, several new classes of superconductors have been discovered that do not appear to be related to traditional superconductors. The source of the superconductivity of these materials is likely different from the electron-ion interactions that are at the heart of conventional superconductivity. Developing a rigorous theory for any of these classes of materials has proven to be a difficult challenge and will remain one of the major problems in physics in the decades to come.

  1. Magnetic Levitators With Superconductive Components

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P.

    1995-01-01

    Magnetic noncontact levitators that include superconductive components provide vibration-damping suspension for cryogenic instruments, according to proposal. Because superconductive components attached to levitated cryogenic instruments, no additional coolant liquid or refrigeration power needed. Also because vibration-damping components of levitators located outside cold chambers, in ambient environment, not necessary to waste coolant liquid or refrigeration power on dissipation of vibrational energy. At least three levitating magnets and three superconductors necessary for stable levitation.

  2. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  3. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  4. Superconducting pipes and levitating magnets

    NASA Astrophysics Data System (ADS)

    Levin, Yan; Rizzato, Felipe B.

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L≳a decays, in the axial direction, with a characteristic length ξ≈0.26a . The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  5. Superconducting pipes and levitating magnets.

    PubMed

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel. PMID:17280160

  6. Electrodynamics of superconducting pnictide superlattices

    SciTech Connect

    Perucchi, A.; Pietro, P. Di; Capitani, F.; Lupi, S.; Lee, S.; Kang, J. H.; Eom, C. B.; Jiang, J.; Weiss, J. D.; Hellstrom, E. E.; Dore, P.

    2014-06-02

    It was recently shown that superlattices where layers of the 8% Co-doped BaFe{sub 2}As{sub 2} superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO{sub 3} or of oxygen-rich BaFe{sub 2}As{sub 2}, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here, we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multigap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.

  7. Fractal superconductivity near localization threshold

    SciTech Connect

    Feigel'man, M.V.; Ioffe, L.B.; Kravtsov, V.E.; Cuevas, E.

    2010-07-15

    We develop a semi-quantitative theory of electron pairing and resulting superconductivity in bulk 'poor conductors' in which Fermi energy E{sub F} is located in the region of localized states not so far from the Anderson mobility edge E{sub c}. We assume attractive interaction between electrons near the Fermi surface. We review the existing theories and experimental data and argue that a large class of disordered films is described by this model. Our theoretical analysis is based on analytical treatment of pairing correlations, described in the basis of the exact single-particle eigenstates of the 3D Anderson model, which we combine with numerical data on eigenfunction correlations. Fractal nature of critical wavefunction's correlations is shown to be crucial for the physics of these systems. We identify three distinct phases: 'critical' superconductive state formed at E{sub F} = E{sub c}, superconducting state with a strong pseudo-gap, realized due to pairing of weakly localized electrons and insulating state realized at E{sub F} still deeper inside a localized band. The 'critical' superconducting phase is characterized by the enhancement of the transition temperature with respect to BCS result, by the inhomogeneous spatial distribution of superconductive order parameter and local density of states. The major new feature of the pseudo-gapped state is the presence of two independent energy scales: superconducting gap {Delta}, that is due to many-body correlations and a new 'pseudo-gap' energy scale {Delta}{sub P} which characterizes typical binding energy of localized electron pairs and leads to the insulating behavior of the resistivity as a function of temperature above superconductive T{sub c}. Two gap nature of the pseudo-gapped superconductor is shown to lead to specific features seen in scanning tunneling spectroscopy and point-contact Andreev spectroscopy. We predict that pseudo-gapped superconducting state demonstrates anomalous behavior of the optical

  8. The road to superconducting spintronics

    NASA Astrophysics Data System (ADS)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  9. Superconductivity in doped fullerenes

    SciTech Connect

    Hebard, A.F. )

    1992-11-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C[sub 60], further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I[sub h], its high symmetry alone invites special attention. The publication in September 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C[sub 60] (and the higher fullerenes, such as C[sub 70] and C[sub 84]) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. 23 refs., 6 figs.

  10. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  11. Superconducting energy storage magnet

    NASA Technical Reports Server (NTRS)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  12. Demons and superconductivity

    SciTech Connect

    Ihm, J.; Cohen, M.L.; Tuan, S.F.

    1981-04-01

    Model calculations are used to explore the role of demons (acoustic plasmons involving light and heavy mass carriers) in superconductivity. Heavy d electrons and light s and p electrons in a transition metal are used for discussion, but the calculation presented is more general, and the results can be applied to other systems. The analysis is based on the dielectric-function approach and the Bardeen-Cooper-Schrieffer theory. The dielectric function includes intraband and interband s-d scattering, and a tight-binding model is used to examine the role of s-d hybridization. The demon contribution generally reduces the Coulomb interaction between the electrons. Under suitable conditions, the model calculations indicate that the electron-electron interaction via demons can be attractive, but the results also suggest that this mechanism is probably not dominant in transition metals and transition-metal compounds. An attractive interband contribution is found, and it is proposed that this effect may lead to pairing in suitable systems.

  13. Improved superconducting magnet wire

    DOEpatents

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  14. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  15. Interplay Between Ferromagnetism and Superconductivity

    NASA Astrophysics Data System (ADS)

    Linder, Jacob; Sudbø, Asle

    This chapter presents results on transport properties of hybrid structures where the interplay between ferromagnetism and superconductivity plays a central role. In particular, the appearance of so-called odd-frequency pairing in such structures is investigated in detail. The basic physics of superconductivity in such structures is presented, and the quasiclassical theory of Greens functions with appropriate boundary conditions is given. Results for superconductor∣ferromagnet bilayers as well as magnetic Josephson junctions and spin valves are presented. Further phenomena that are studied include transport in the presence of inhomogenous magnetic textures, spin-Josephon effect, and crossed Andreev reflection. We also investigate the possibility of intrinsic coexistence of ferromagnetism and superconductivity, as reported in a series of uranium-based heavy-fermion compounds. The nature of such a coexistence and the resulting superconducting order parameter is discussed along with relevant experimental results. We present a thermodynamic treatment for a model of a ferromagnetic supercondcutor and moreover suggest ways to experimentally determine the pairing symmetry of the superconducting gap, in particular by means of conductance spectroscopy.

  16. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  17. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  18. The Superconducting Bird: A Didactical Toy.

    ERIC Educational Resources Information Center

    Guarner, E.; Sanchez, A. M.

    1992-01-01

    Describes the design of the superconducting bird, a device to demonstrate the phenomenon of superconductivity. Discusses the utilization of the device as an example of a motor and compares it to the toy called the drinking bird. (MDH)

  19. High-temperature superconductivity in perspective

    NASA Astrophysics Data System (ADS)

    1990-04-01

    The technology of superconductivity and its potential applications are discussed; it is warned that U.S companies are investing less than their main foreign competitors in both low- and high-temperature superconductivity R and D. This is by far the most critical issue affecting the future U.S. competitive position in superconductivity, and in many other emerging technologies. The major areas covered include: Executive summary; High-temperature superconductivity - A progress report; Applications of superconductivity; The U.S. response to high-temperature superconductivity; High-temperature superconductivity programs in other countries; Comparison of industrial superconductivity R and D efforts in the United States and Japan - An OTA survey; Policy issues and options.

  20. Superconducting PM undiffused machines with stationary superconducting coils

    DOEpatents

    Hsu, John S.; Schwenterly, S. William

    2004-03-02

    A superconducting PM machine has a stator, a rotor and a stationary excitation source without the need of a ferromagnetic frame which is cryogenically cooled for operation in the superconducting state. PM material is placed between poles on the rotor to prevent leakage or diffusion of secondary flux before reaching the main air gap, or to divert PM flux where it is desired to weaken flux in the main air gap. The PM material provides hop-along capability for the machine in the event of a fault condition.

  1. Space applications of superconductivity - Digital electronics

    NASA Technical Reports Server (NTRS)

    Harris, R. E.

    1980-01-01

    Superconducting electronics offers a variety of remarkable properties including high speed and low dissipation. The paper discusses fundamental considerations which appear to suggest that superconducting (cryogenic) technology will offer significant advantages for future digital devices. It shows how the active element in superconducting electronics, the Josephson junction, works and discusses the technology for fabricating the devices. The characteristics of published circuits are briefly reviewed, and the capabilities of future superconducting computers and instruments are projected.

  2. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  3. Superconductive articles including cerium oxide layer

    SciTech Connect

    Wu, X.D.; Muenchausen, R.E.

    1991-12-31

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  4. Preparing superconducting ceramic materials

    SciTech Connect

    O'Bryan, H.M. Jr.; Rhodes, W.W.; Thomson, J. Jr.

    1991-04-09

    This patent describes the process of fabricating superconducting ceramic bodies comprising {gt}99 percent YBa{sub 2}Cu{sub 3}O{sub 7}. It comprises wet milling an aqueous slurry comprising selected proportions of starting ingredients comprising yttrium oxide, barium carbonate and cupric oxide in an approximately 1:2:3 molar ratio to form a milled slurry, the aqueous slurry including a binder, a defoaming agent and a dispersant, continuously agitating the milled slurry after the wet milling step so as to avoid non-uniform sedimentation of starting ingredients in the slurry, spray drying the milled slurry into particulate material, calcining the spray dried particulate material to produce a calcined powder, the calcining step comprising ramping the temperature within a calcining furnace containing the spray dried particulate material to 900{degrees}C in 4 hours, soaking the particulate matter at 900{degrees}C for a period of 24 hours and, thereafter, ramping the temperature to about 450{degrees}C in about 4 hours, the calcined powder comprising {ge}95 percent YBa{sub 2}Cu{sub 3}O{sub 7}, forming the calcined powder into a body having a desired form, and sintering the body, the sintering including the steps comprising ramping the temperature of a sintering furnace to 900{degrees}C in 2 hours, ramping the temperature from 900{degrees} to 975{degrees}C in 6 hours, soaking the body at 975{degrees}C for 6 hours, ramping the temperature from 975{degrees}C to 450{degrees}C in 1 hour, soaking the body at 450{degrees}C for 4 hours, and ramping the temperature from 450{degrees}C to room temperature in 1 hour.

  5. Sensing with Superconducting Point Contacts

    PubMed Central

    Nurbawono, Argo; Zhang, Chun

    2012-01-01

    Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630

  6. Strain tolerant microfilamentary superconducting wire

    DOEpatents

    Finnemore, D.K.; Miller, T.A.; Ostenson, J.E.; Schwartzkopf, L.A.; Sanders, S.C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  7. Superconductivity in magnetic multipole states

    NASA Astrophysics Data System (ADS)

    Sumita, Shuntaro; Yanase, Youichi

    2016-06-01

    Stimulated by recent studies of superconductivity and magnetism with local and global broken inversion symmetry, we investigate the superconductivity in magnetic multipole states in locally noncentrosymmetric metals. We consider a one-dimensional zigzag chain with sublattice-dependent antisymmetric spin-orbit coupling and suppose three magnetic multipole orders: monopole order, dipole order, and quadrupole order. It is demonstrated that the Bardeen-Cooper-Schrieffer state, the pair-density wave (PDW) state, and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state are stabilized by these multipole orders, respectively. We show that the PDW state is a topological superconducting state specified by the nontrivial Z2 number and winding number. The origin of the FFLO state without macroscopic magnetic moment is attributed to the asymmetric band structure induced by the magnetic quadrupole order and spin-orbit coupling.

  8. Superconducting Storage Cavity for RHIC

    SciTech Connect

    Ben-Zvi,I.

    2009-01-02

    This document provides a top-level description of a superconducting cavity designed to store hadron beams in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It refers to more detailed documents covering the various issues in designing, constructing and operating this cavity. The superconducting storage cavity is designed to operate at a harmonic of the bunch frequency of RHIC at a relatively low frequency of 56 MHz. The current storage cavities of RHIC operate at 197 MHz and are normal-conducting. The use of a superconducting cavity allows for a high gap voltage, over 2 MV. The combination of a high voltage and low frequency provides various advantages stemming from the resulting large longitudinal acceptance bucket.

  9. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  10. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improves the strain characteristics of the wire.

  11. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, T.; Klamut, C.J.; Suenaga, M.; Welch, D.

    1979-12-19

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  12. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  13. Surface superconductivity in multilayered rhombohedral graphene: Supercurrent

    NASA Astrophysics Data System (ADS)

    Kopnin, N. B.

    2011-09-01

    The supercurrent for the surface superconductivity of a flat-band multilayered rhombohedral graphene is calculated. Despite the absence of dispersion of the excitation spectrum, the supercurrent is finite. The critical current is proportional to the zero-temperature superconducting gap, i.e., to the superconducting critical temperature and to the size of the flat band in the momentum space.

  14. Silver sheathing of high-Tc superconductor wires

    NASA Astrophysics Data System (ADS)

    Wu, C. T.; Risch, G. A.; Poeppel, R. B.; Goretta, K. C.; Danyluk, S.; Herro, H. M.

    1990-10-01

    The properties of Ag sheaths on high-temperature super-conductors are examined. Ag is chemically compatible with YBa2Cu3O(x) and Bi-based superconductors can be safely coprocessed with them. Residual stresses created by differences in thermal expansion coefficients are favorable and can be controlled by proper annealing. Although Ag forms low-resistance contact with high temperature superconductors, it is not certain that effective cryogenic stabilization by Ag can occur at 77 K and above.

  15. Searching for Superconductivity in Micrometeorites

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.; Guenon, S.; Ramirez, J. G.; Basaran, A. C.; Taylor, S.; Schuller, I.

    2014-12-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening natural materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10-12 cm3of a superconductor embedded in a non-superconducting matrix. We applied our technique to search for superconductivity in micrometeorites, small extraterrestrial (ET) particles that add most of the ET mass to the present day Earth. We measured approximately 65 micrometeorites and compared their spectra with those of eight reference materials.Micrometeorites (MMs) are ideal samples with which to test our highly sensitive superconductivity probe, as individual MMs weigh 10-5 g and the large number of micrometeorites arriving on Earth, suggests some contain minerals formed under conditions that cannot be replicated in the laboratory. Minerals in meteorites formed during planetary processes associated with accretion/condensation, planetary differentiation, and segregation. Other components such as pre-solar grains, SiC, diamonds, graphite, Si3N4, and deuterium enriched organics formed under some of the most intense physical-chemical environments in the Universe, including supernovae and stellar outflows. It is during such severe processes that exotic superconducting species may have been created.The research presented here established the methodology and proved the ultrahigh sensitivity of the technique by detecting the presence of the Verwey-transition of the magnetite present in these micrometeorites. The investigated micrometeorites contained no superconducting phases. This work was supported by an AFOSR MURI grant no. F49550-09-1-0577.

  16. Four-junction superconducting circuit.

    PubMed

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J Q

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  17. Four-junction superconducting circuit

    NASA Astrophysics Data System (ADS)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-06-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit.

  18. Four-junction superconducting circuit

    PubMed Central

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  19. Excitonic superconductivity in copper oxides

    SciTech Connect

    Tesanovic, Z.; Bishop, A.R.; Martin, R.L.; Harris, C.

    1988-01-01

    We discuss the possibility of excitonic superconductivity in high T/sub c/ copper oxides. The Hamiltonians describing CuO/sub 2/ planes supports both antiferromagnetism and low-lying Cu /longleftrightarrow/ O intra- and interband charge fluctuations. One crosses from one regime to another as the number of holes per unit cell increases. The high T/sub c/ superconductivity takes place at hole concentrations most favorable for intraband charge transfer excitations. The dynamic polarizability of the environment surrounding CuO/sub 2/ planes plays an important role in enhancing T/sub c/. 15 refs., 4 figs.

  20. Freely oriented portable superconducting magnet

    DOEpatents

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  1. Free-standing oxide superconducting articles

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-12-14

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.

  2. Superconductivity in highly disordered dense carbon disulfide

    PubMed Central

    Dias, Ranga P.; Yoo, Choong-Shik; Struzhkin, Viktor V.; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-01-01

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ∼6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity. PMID:23818624

  3. Unconventional superconductivity in heavy-fermion compounds

    DOE PAGESBeta

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less

  4. Unconventional superconductivity in heavy-fermion compounds

    SciTech Connect

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  5. Photoresponse mechanism of superconducting magnesium diboride

    NASA Astrophysics Data System (ADS)

    Khafizov, Marat

    The recent discovery of superconductivity in MgB2, with its BCS-like Cooper pairing mechanism and the 40-K critical temperature, and the demonstration of efficient single-optical-photon detection in superconducting NbN nanowire meanders inspired an interest in the development of superconducting radiation detectors based on MgB2. We report the results of our experimental and theoretical studies of a photoresponse mechanism in superconducting MgB2 thin films and microbridges. We demonstrate that despite the two-gap nature of this material, the nonequilibrium superconducting recovery dynamics in MgB2 is similar to conventional one-gap, both low- and high-temperature superconductors and is governed by quasiparticle recombination, limited by the phonon bottleneck mechanism. Our measured 100-ps-wide responses in MgB2 superconducting microbridges, operated at temperatures above 20 K, make this material promising for superconducting photodetector applications.

  6. Demonstration of superconducting micromachined cavities

    SciTech Connect

    Brecht, T. Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  7. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  8. Demonstration of superconducting micromachined cavities

    NASA Astrophysics Data System (ADS)

    Brecht, T.; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-01

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  9. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  10. Rectangular configuration improves superconducting cable

    NASA Technical Reports Server (NTRS)

    Foss, M.; Laverick, C.; Lobell, G.

    1968-01-01

    Superconducting cable for a cryogenic electromagnet with improved mechanical and thermal properties consists of a rectangular cross-sectioned combination of superconductor and normal conductor. The conductor cable has superconductors embedded in a metallic coating with high electrical and mechanical conductivity at liquid helium temperatures.

  11. Nonlinear diffusion and superconducting hysteresis

    SciTech Connect

    Mayergoyz, I.D.

    1996-12-31

    Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.

  12. MICROSTRUCTURE OF SUPERCONDUCTING MGB(2).

    SciTech Connect

    ZHU,Y.; LI,Q.; WU,L.; VOLKOV,V.; GU,G.; MOODENBAUGH,A.R.

    2001-07-12

    Recently, Akimitsu and co-workers [1] discovered superconductivity at 39 K in the intermetallic compound MgB{sub 2}. This discovery provides a new perspective on the mechanism for superconductivity. More specifically, it opens up possibilities for investigation of structure/properties in a new class of materials. With the exceptions of the cuprate and C{sub 60} families of compounds, MgB{sub 2} possesses the highest superconducting transition temperature T{sub c}. Its superconductivity appears to follow the BCS theory, apparently being mediated by electron-phonon coupling. The coherence length of MgB{sub 2} is reported to be longer than that of the cuprates [2]. In contrast to the cuprates, grain boundaries are strongly coupled and current density is determined by flux pinning [2,3]. Presently, samples of MgB{sub 2} commonly display inhomogeneity and porosity on the nanoscale, and are untextured. In spite of these obstacles, magnetization and transport measurements show that polycrystalline samples may carry large current densities circulating across many grains [3,4]. Very high values of critical current densities and critical fields have been recently observed in thin films [5,6]. These attributes suggest possible large scale and electronic applications. The underlying microstructure can be intriguing, both in terms of basic science and in applied areas. Subsequent to the discovery, many papers were published [1-13], most dealing with synthesis, physical properties, and theory. There have yet been few studies of microstructure and structural defects [11, 14]. A thorough understanding of practical superconducting properties can only be developed after an understanding of microstructure is gained. In this work we review transmission electron microscopy (TEM) studies of sintered MgB{sub 2} pellets [14]. Structural defects, including second phase particles, dislocations, stacking faults, and grain boundaries, are analyzed using electron diffraction, electron

  13. High piezoelectric performance in a new Bi-based perovskite of (1-x)Bi(Ni1/2Hf1/2)O3-xPbTiO3

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Chen, Jun; Fan, Longlong; Liu, Laijun; Fang, Liang; Xing, Xianran

    2012-12-01

    Preparation, piezoelectric, and dielectric properties were investigated in a new Bi-based piezoelectric material of (1-x)Bi(Ni1/2Hf1/2)O3-xPbTiO3. The system can form a pure perovskite structure with the morphotropic phase boundary locating at x = 0.62, separating the rhombohedral and tetragonal phases. It is interesting to observe that the morphotropic phase boundary composition shows a very high piezoelectric coefficient of d33 (446 pC/N), which is comparable to BiScO3-PbTiO3 (460 pC/N). The Curie temperature of the morphotropic phase boundary is around 290 °C. Furthermore, the system has a relatively low coercive field, which makes the poling easily. Temperature dependence of dielectric properties also shows that the Bi(Ni1/2Hf1/2)O3-PbTiO3 system has a strong relaxor feature. Present new Bi-based perovskite of Bi(Ni1/2Hf1/2)O3-PbTiO3 is a competitive piezoelectric material with high piezoelectric performance.

  14. Space applications of superconductivity - Low frequency superconducting sensors

    NASA Technical Reports Server (NTRS)

    Zimmerman, J. E.

    1980-01-01

    Although this paper deals with several low-frequency instruments and devices, most of the discussion relates to SQUID (Superconducting QUantum Interference Device) magnetometers and gradiometers, since these are perceived as the instruments with the greatest potential for space applications. The discussion covers SQUID for magnetic field measurements; present state of the art of SQUID technology; ultimate potential performance; applications to magnetic measurements in space; SQUID galvanometers, voltage and current sensors, and wide-band amplifiers; magnetic shielding, and superconducting dc transformer. SQUIDS are superior to all other magnetic sensors in sensitivity, frequency response, range, and linearity. It is suggested that SQUID instruments, both magnetometers and gradiometers, would be valuable in studies of the dynamics of interplanetary and planetary fields. SQUID gradiometers are useful for detection and mapping of magnetic anomalies at short to moderate ranges.

  15. Development of high Tc (greater than 100 K) Bi, Tl and Y-based materials as superconducting circuit elements

    NASA Astrophysics Data System (ADS)

    Haertling, Gene; Grabert, Gregory; Gilmour, Phillip

    1994-07-01

    Experimental work on this project over the last four years has resulted in establishing processing and characterization techniques for producing both the Bi-based and Tl-based superconductors in their high temperature (2223) forms. In the bulk, dry pressed form, maximum critical temperatures (Tc) of 108.2 K and 117.8 K, respectively, were measured. Results have further shown that the Bi and Tl-based superconducting materials in bulk form are noticeably different from the Y-based 123 material in that superconductivity is considerably harder to achieve, maintain, and reproduce. This is due primarily to the difficulty in obtaining the higher Tc phase in pure form since it commonly co-exists with other undesirable, lower Tc phases. In particular, it has been found that long processing times for calcining and firing (20 - 200 hrs.) and close control of temperatures which are very near the melting point are required in order to obtain higher proportions of the desirable, high Tc (2223) phase. Thus far, the BSCCO bulk materials has been prepared in uniaxially pressed, hot pressed, and tapecast form. The uniaxially pressed material has been synthesized by the mixed oxide, coprecipitation, and melt quenching processes. The tapecast and hot pressed materials have been prepared via the mixed oxide process. In addition, thick films of BSCCO (2223 phase) have been prepared by screen printing on to yttria and magnesia stabilized zirconia with only moderate success; i.e., superconductivity was achieved in these thick films, but the highest Tc obtained in these films was 89.0 K. The Tc's of the bulk hot pressed, tapecast, and screen printed thick film materials were found to be 108.2, 102.4, and 89.0 K, respectively.

  16. Development of high Tc (greater than 100 K) Bi, Tl and Y-based materials as superconducting circuit elements

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Grabert, Gregory; Gilmour, Phillip

    1994-01-01

    Experimental work on this project over the last four years has resulted in establishing processing and characterization techniques for producing both the Bi-based and Tl-based superconductors in their high temperature (2223) forms. In the bulk, dry pressed form, maximum critical temperatures (Tc) of 108.2 K and 117.8 K, respectively, were measured. Results have further shown that the Bi and Tl-based superconducting materials in bulk form are noticeably different from the Y-based 123 material in that superconductivity is considerably harder to achieve, maintain, and reproduce. This is due primarily to the difficulty in obtaining the higher Tc phase in pure form since it commonly co-exists with other undesirable, lower Tc phases. In particular, it has been found that long processing times for calcining and firing (20 - 200 hrs.) and close control of temperatures which are very near the melting point are required in order to obtain higher proportions of the desirable, high Tc (2223) phase. Thus far, the BSCCO bulk materials has been prepared in uniaxially pressed, hot pressed, and tapecast form. The uniaxially pressed material has been synthesized by the mixed oxide, coprecipitation, and melt quenching processes. The tapecast and hot pressed materials have been prepared via the mixed oxide process. In addition, thick films of BSCCO (2223 phase) have been prepared by screen printing on to yttria and magnesia stabilized zirconia with only moderate success; i.e., superconductivity was achieved in these thick films, but the highest Tc obtained in these films was 89.0 K. The Tc's of the bulk hot pressed, tapecast, and screen printed thick film materials were found to be 108.2, 102.4, and 89.0 K, respectively.

  17. Characterizing Ensembles of Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Sears, Adam; Birenbaum, Jeff; Hover, David; Rosenberg, Danna; Weber, Steven; Yoder, Jonilyn L.; Kerman, Jamie; Gustavsson, Simon; Kamal, Archana; Yan, Fei; Oliver, William

    We investigate ensembles of up to 48 superconducting qubits embedded within a superconducting cavity. Such arrays of qubits have been proposed for the experimental study of Ising Hamiltonians, and efficient methods to characterize and calibrate these types of systems are still under development. Here we leverage high qubit coherence (> 70 μs) to characterize individual devices as well as qubit-qubit interactions, utilizing the common resonator mode for a joint readout. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  18. Protection of superconducting AC windings

    SciTech Connect

    Verhaege, T.; Agnoux, C.; Tavergnier, J.P. ); Lacaze, A. ); Collet, M. )

    1992-01-01

    Recent progresses on multifilamentary wires open new prospects of 50-60 Hz applications for superconductivity. The problem of AC windings protection is more critical than that of DC windings, because of high current densities, and of high matrix resistivity: one should not allow the quenched wire to carry it nominal current for longer than a few milliseconds, otherwise permanent damage could occur. After a quench initiation, the protection system therefore has to switch off or drastically reduce the current very rapidly. In this paper, the authors propose various schemes, applicable when the conductor is made of several wires: active protection involves an ultra-rapid quench detection. It is based on the measurement of the current passing through the central resistive wire, and/or of unbalanced currents in the different superconducting wires. About 20 milliseconds after detection, a fast circuit-breaker switched off the current. A complementary passive protection is provided by the resistance developing during normal phase propagation.

  19. Superconductivity in the Tungsten Bronzes

    NASA Astrophysics Data System (ADS)

    Wu, Phillip; Ishii, Satoshi; Tanabe, Kenji; Munakata, Ko; Hammond, Robert H.; Tokiwa, Kazuyasu; Geballe, Theodore H.; Beasley, Malcolm R.

    2015-03-01

    Via pulsed laser deposition and post-annealing, high quality K-doped WO3-y films with reproducible transport properties are obtained. A home built two-coil mutual inductance setup is used to probe the behavior of the films in the superconducting and normal state. The inverse penetration depths and dissipation peaks are measured as a function of temperature and field. Separately, via thin film deposition techniques, we report for the first time stable crystalline hexagonal WO3 on substrates. In order to tune the physical properties of the undoped material, we utilized an ionic liquid gating technique. We observe an insulator-to-metal transition, showing the ionic liquid gate to be a viable technique to alter the electrical transport properties of this material. By comparing the alkali and ionic liquid gated WO3, we conclude with some remarks regarding how superconductivity arises in this system.

  20. Superconducting cameras for optical astronomy

    NASA Astrophysics Data System (ADS)

    Martin, D. D. E.; Verhoeve, P.; de Bruijne, J. H. J.; Reynolds, A. P.; van Dordrecht, A.; Verveer, J.; Page, J.; Rando, N.; Peacock, A.

    2002-05-01

    superconducting Tunnel junctions (STJs) have been extensively investigated it as photon detectors covering the range from near-infrared to x-ray energies. A 6× 6 array of Tantalum junctions has performed multiple astronomical observations of optical sources using the wiliam Herschel 4.2m telescope at La Palma. Following the success of this programme, we are now developing a second generation camera. The goals of this programme are to increase the field of view of the instrument from “4× 4” to “5×9”, to optimize IR rejection filters, possibly extending the `red' response to ~ lum and to increase the electronics readout speed. For these purposes, we are developing a new Superconducting Tunnel Junction Array consisting of 10× 12 Tantalum/Aluminium devices as well as an important readout system. In this paper, we review the instrument's architecture and describe the performance of the new detector

  1. Graphene Superconducting Quantum Interference Device

    NASA Astrophysics Data System (ADS)

    Girit, Çaǧlar; Bouchiat, Vincent; Naaman, Ofer; Zhang, Yuanbo; Crommie, Michael; Zettl, Alex; Siddiqi, Irfan

    2010-03-01

    Graphene can support Cooper pair transport when contacted with two superconducting electrodes, resulting in the well-known Josephson effect. By depositing aluminum/palladium electrodes in the geometry of a loop onto a single graphene sheet, we fabricate a two junction dc superconducting quantum interference device (SQUID). Not only an the supercurrent in this device be increased by moving the electrostatic gate away from the Dirac point, but it can also be modulated periodically by an applied magnetic field---a potentially powerful probe of electronic transport in graphene. We analyze the magnetic field modulation of the critical current with the asymmetric/inductive SQUID model of Fulton and Dynes and discuss the variation of the fitting parameters with gate voltage.

  2. Tunable high-q superconducting notch filter

    DOEpatents

    Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.

    1979-11-29

    A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.

  3. Superconducting Cable Having A Felexible Former

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-15

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  4. Surface superconductivity in thin cylindrical Bi nanowire.

    PubMed

    Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W

    2015-03-11

    The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress. PMID:25658139

  5. Superconducting Cable Having A Flexible Former

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-08-30

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  6. Stimulated Superconductivity at Strong Coupling

    SciTech Connect

    Bao, Ning; Dong, Xi; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.

  7. Processing method for superconducting ceramics

    DOEpatents

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-01-01

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  8. Processing method for superconducting ceramics

    DOEpatents

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-02-02

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  9. Medium Beta Superconducting Accelerating Structures

    SciTech Connect

    Jean Delayen

    2001-09-01

    While, originally, the development of superconducting structures was cleanly divided between low-beta resonators for heavy ions and beta=1 resonators for electrons, recent interest in protons accelerators (high and low current, pulsed and cw) has necessitated the development of structures that bridge the gap between the two. These activities have resulted both in new geometries and in the adaptation of well-known geometries optimized to this intermediate velocity range. Their characteristics and properties are reviewed.

  10. Superconductivity in alkali metal fullerides

    NASA Astrophysics Data System (ADS)

    Murphy, D. W.; Rosseinsky, M. J.; Haddon, R. C.; Ramirez, A. P.; Hebard, A. F.; Tycko, R.; Fleming, R. M.; Dabbagh, G.

    1991-12-01

    The recent synthesis of macroscopic quantities of spherical molecular carbon compounds, commonly called fullerenes, has stimulated a wide variety of studies of the chemical and physical properties of this novel class of compounds. We discovered that the smallest of the known fullerenes, C 60, could be made conducting and superconducting by reaction with alkali metals. In this paper, an overview of the motivation for these discoveries and some recent results are presented.

  11. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  12. Coupled Array of Superconducting Nanowires

    NASA Astrophysics Data System (ADS)

    Ursache, Andrei

    2005-03-01

    We present experiments that investigate the collective behavior of arrays of superconducting lead nanowires with diameters smaller than the coherence length. The ultrathin (˜15nm) nanowires are grown by pulse electrodeposition into porous self-assembled P(S-b-MMA) diblock copolymer templates. The closely packed (˜24 nm spacing) 1-D superconducting nanowires stand vertically upon a thin normal (Au or Pt) film in a brush-like geometry. Thereby, they are coupled to each other by Andreev reflection at the S-N (Pb-Au) point contact interfaces. Magnetization measurements reveal that the ZFC/FC magnetic response of the coupled array system can be irreversible or reversible, depending on the orientation, perpendicular or parallel, of the applied magnetic field with respect to the coupling plane. As found by electric transport measurements, the coupled array system undergoes an in plane superconducting resistive transition at a temperature smaller than the Tc of an individual nanowire. Current-voltage characteristics throughout the transition region are also discussed. This work was supported by NSF grant DMI-0103024 and DMR-0213695.

  13. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  14. Cryogenic Technology for Superconducting Accelerators

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2012-01-01

    Superconducting devices such as magnets and cavities are key components in the accelerator field for increasing the beam energy and intensity, and at the same time making the system compact and saving on power consumption in operation. An effective cryogenic system is required to cool and keep the superconducting devices in the superconducting state stably and economically. The helium refrigeration system for application to accelerators will be discussed in this review article. The concept of two cooling modes -- the liquefier and refrigerator modes -- will be discussed in detail because of its importance for realizing efficient cooling and stable operation of the system. As an example of the practical cryogenic system, the TRISTAN cryogenic system of KEK Laboratory will be treated in detail and the main components of the cryogenic system, including the high-performance multichannel transfer line and liquid nitrogen circulation system at 80K, will also be discussed. In addition, we will discuss the operation of the cryogenic system, including the quench control and safety of the system. The satellite refrigeration system will be discussed because of its potential for wide application in medium-size accelerators and in industry.

  15. Superconducting electron and hole lenses

    NASA Astrophysics Data System (ADS)

    Cheraghchi, H.; Esmailzadeh, H.; Moghaddam, A. G.

    2016-06-01

    We show how a superconducting region (S), sandwiched between two normal leads (N), in the presence of barriers, can act as a lens for propagating electron and hole waves by virtue of the so-called crossed Andreev reflection (CAR). The CAR process, which is equivalent to Cooper pair splitting into two N electrodes, provides a unique possibility of constructing entangled electrons in solid state systems. When electrons are locally injected from an N lead, due to the CAR and normal reflection of quasiparticles by the insulating barriers at the interfaces, sequences of electron and hole focuses are established inside another N electrode. This behavior originates from the change of momentum during electron-hole conversion beside the successive normal reflections of electrons and holes due to the barriers. The focusing phenomena studied here are fundamentally different from the electron focusing in other systems, such as graphene p-n junctions. In particular, due to the electron-hole symmetry of the superconducting state, the focusing of electrons and holes is robust against thermal excitations. Furthermore, the effects of the superconducting layer width, the injection point position, and barrier strength are investigated on the focusing behavior of the junction. Very intriguingly, it is shown that by varying the barrier strength, one can separately control the density of electrons or holes at the focuses.

  16. Superconductivity in the palladium-hydrogen system

    NASA Technical Reports Server (NTRS)

    Papaconstantopoulos, D. A.; Klein, B. M.

    1975-01-01

    Band theory and phonon measurements are used to calculate the electron-phonon coupling constant wavelength for Pd and PdD. The results indicate that superconductivity is absent in Pd metal because of the large value of the Coulomb pseudopotential, and that superconductivity occurs in PdD primarily because of coupling with the optic phonons. These results are consistent with superconducting transition-temperature measurements for these systems.

  17. Superconducting magnet for the Maglev transport system

    NASA Astrophysics Data System (ADS)

    Nakashima, Hiroshi

    1994-07-01

    Magnetically levitated vehicles (Maglev) using superconducting magnets have been under development in Japan for the past 23 years. The superconducting magnets for the Maglev system are used in a special environment compared to other applications. They have to work stably subject to both mechanical and electromagnetic disturbances. The brief history of the Maglev development in Japan, the planning of new test line, the superconducting magnet's stability and the on-board refrigeration system will be presented.

  18. Quantum fluctuations of the superconducting cosmic string

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng

    1987-01-01

    Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.

  19. Superconducting thin films on potassium tantalate substrates

    DOEpatents

    Feenstra, Roeland; Boatner, Lynn A.

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  20. Interface between topological and superconducting qubits.

    PubMed

    Jiang, Liang; Kane, Charles L; Preskill, John

    2011-04-01

    We propose and analyze an interface between a topological qubit and a superconducting flux qubit. In our scheme, the interaction between Majorana fermions in a topological insulator is coherently controlled by a superconducting phase that depends on the quantum state of the flux qubit. A controlled-phase gate, achieved by pulsing this interaction on and off, can transfer quantum information between the topological qubit and the superconducting qubit. PMID:21517365

  1. Static forces in a superconducting magnet bearing

    SciTech Connect

    Stoye, P.; Fuchs, G.; Gawalek, W.; Goernert, P.; Gladun, A.

    1995-11-01

    Static levitation forces and stiffnesses in a superconducting bearing consisting of concentric ring magnets and a superconducting YBaCuO ring are investigated. In the field-cooled mode a levitation force of 20 N has been achieved. The axial and radial stiffnesses have values of 15 N/mm and 10 N/mm, respectively. An arrangement with two bearings supporting a high speed shaft is now under development. A possible application of superconducting magnetic bearings is flywheels for energy storage.

  2. Superconducting fault current limiter for railway transport

    SciTech Connect

    Fisher, L. M. Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  3. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  4. Geometrical Aspect of Pinning in Superconducting Material

    NASA Astrophysics Data System (ADS)

    Tanaka, Izumi

    2002-12-01

    We have examined superconducting matter with disclination. The deformed medium is well described geometrically. For flat area, paramagnetic current is very small and diamagnetic current is proportional to the vector potential Aμ(x). As a result, the area exhibits the Meissner effect. On the other hand, for the domain where disclination exists, the domain does not become superconducting. Superconductivity is not maintained on the domain, and the magnetic flux breaks into the domain. When the disclination is enclosed by flat a area (i.e. being superconducting state), the extra paramagnetic current operator causes current only in enclosed domain...

  5. Superconducting fault current limiter for railway transport

    NASA Astrophysics Data System (ADS)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  6. New Advance in SuperConducting Materials

    ScienceCinema

    None

    2010-01-08

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laborator...  

  7. New Advance in SuperConducting Materials

    SciTech Connect

    2009-03-02

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laborator...  

  8. Cryogenic structural materials for superconducting magnets

    SciTech Connect

    Dalder, E.N.C.; Morris, J.W. Jr.

    1985-02-22

    This paper reviews research in the United States and Japan on structural materials for high-field superconducting magnets. Superconducting magnets are used for magnetic fusion energy devices and for accelerators that are used in particle-physics research. The cryogenic structural materials that we review are used for magnet cases and support structures. We expect increased materials requirements in the future.

  9. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  10. Understanding anisotropy to develop superconducting design principles

    NASA Astrophysics Data System (ADS)

    Ronning, Filip

    2011-03-01

    Superconductivity is often found in families of compounds which share a common building block (e.g. Cu O2 planes in cuprates, FeAs planes in pnictides, and CeIn 3 planes in a subset of heavy fermion superconductors). This fact provides a rationale to search for new superconductors, and subsequently a means to try and understand the origin of superconductivity by examining trends in superconducting behavior within a family of superconductors which hopefully transcends any one particular family of compounds. The notion of common building blocks has led us to the recent discovery of superconductivity at 2.1 K in CePt 2 In 7 , coexisting magnetism and superconductivity in PuCoIn 5 , and a correlated paramagnet in PuPt 2 In 7 . I will discuss our attempts to understand the role of reduced dimensionality and increased bandwidth within the ``115'' class of heavy fermion superconductors by examining trends in the charge and spin degrees of freedom that are correlated with superconductivity. In this way, we aim to lay the foundation for a modern, microscopic version of Matthias' rules for unconventional superconductivity from which superconducting design principles can be developed. In collaboration with Eric Bauer, Jianxin Zhu, Paul Tobash, Moaz Altarawneh, HB Rhee, Hironori Sakai, Kris Gofryk, Neil Harrison, and Joe Thompson.

  11. Beam breakup in superconducting recirculating linacs

    SciTech Connect

    Joseph J. Bisognano

    1988-05-01

    The performance and operational flexibility of superconducting recirculating linacs can be limited by a variety of collective phenomena which are grouped under the name beam breakup. In this note the various beam breakup phenomena found in recirculating superconducting radio frequency linacs are described and appraised relative to beam performance.

  12. Quantum logic gates for superconducting resonator qudits

    SciTech Connect

    Strauch, Frederick W.

    2011-11-15

    We study quantum information processing using superpositions of Fock states in superconducting resonators as quantum d-level systems (qudits). A universal set of single and coupled logic gates is theoretically proposed for resonators coupled by superconducting circuits of Josephson junctions. These gates use experimentally demonstrated interactions and provide an attractive route to quantum information processing using harmonic oscillator modes.

  13. Developing of superconducting niobium cavities for accelerators

    NASA Astrophysics Data System (ADS)

    Pobol, I. L.; Yurevich, S. V.

    2015-11-01

    The results of a study of structure and mechanical properties of welding joints, superconducting characteristics of the material after joining of welded components of superconducting radio frequency cavities are presented. The paper also describes the results of testing of the RF 1.3 GHz single-cell niobium cavity manufactured in the PTI NAS Belarus.

  14. Improved thermal isolation for superconducting magnet systems

    NASA Technical Reports Server (NTRS)

    Wiebe, E. R.

    1974-01-01

    Closed-cycle refrigerating system for superconductive magnet and maser is operated in vacuum environment. Each wire leading from external power source passes through cooling station which blocks heat conduction. In connection with these stations, switch with small incandescent light bulb, which generates heat, is used to stop superconduction.

  15. Heterogeneous magneto-superconducting systems

    NASA Astrophysics Data System (ADS)

    Erdin, Serkan

    2002-09-01

    We first present a new method to calculate the vortex and magnetization arrangement for a system of interacting superconductors and ferromagnets separated in space. The method is based on the static London-Maxwell equations and the corresponding energy. The possibility of superconducting (SC) vortices is included in this system. Using this method we analyze screening currents in a SC film induced by magnetic textures in a thin magnetic film. We assume that the two films are parallel and positioned close to each other, but interact exclusively via magnetic fields. We also consider the possibility of vortices within this SC film, and their interactions with the magnetic texture. As an example of such a magnetic texture we consider a single magnetic dot with magnetization perpendicular to the film. We derive the condition for which spontaneous formation of one, two or more vortices and antivortices is energetically favorable. We prove that, for a circular magnetic dot with perpendicular magnetization, when the vortex emerges in the SC film, the normal component of the magnetic field near the SC film changes sign outside of the dot range. Secondly, a square array of magnetic dots grown on a SC film in the presence of the antivortices is studied. We show that the symmetry of the array is spontaneously violated. The positions of the vortices and the antivortices are calculated, depending on the magnetization and the size of the dots. Next, ferromagnet-superconductor bilayers (FSB) are considered. The homogeneous state of a FSB with magnetization perpendicular to the layer can be unstable with respect to the formation of vortices in the superconducting layer. The developing topological instability in the FSB leads to formation of domains in which the direction of the magnetization in the magnetic film and the direction of vorticity in the superconducting film both alternate. These domain structures are studied both in the continuum and the discrete regimes.

  16. Use of high-temperature superconducting films in superconducting bearings.

    SciTech Connect

    Cansiz, A.

    1999-07-14

    We have investigated the effect of high-temperature superconductor (HTS) films deposited on substrates that are placed above bulk HTSs in an attempt to reduce rotational drag in superconducting bearings composed of a permanent magnet levitated above the film/bulk HTS combination. According to the critical state model, hysteresis energy loss is inversely proportional to critical current density, J{sub c}, and because HTS films typically have much higher J{sub c} than that of bulk HTS, the film/bulk combination was expected to reduce rotational losses by at least one order of magnitude in the coefficient of fiction, which in turn is a measure of the hysteresis losses. We measured rotational losses of a superconducting bearing in a vacuum chamber and compared the losses with and without a film present. The experimental results showed that contrary to expectation, the rotational losses are increased by the film. These results are discussed in terms of flux drag through the film, as well as of the critical state model.

  17. Microelectronic superconducting crossover and coil

    DOEpatents

    Wellstood, F.C.; Kingston, J.J.; Clarke, J.

    1994-03-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3]; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions. 13 figures.

  18. Artificial nets from superconducting nanogranules

    SciTech Connect

    Ovchinnikov, Yu. N.; Kresin, V. Z.

    2012-06-15

    We show that a large transport current can flow through superconducting nets composed of nano-clusters. Although thermal and quantum fluctuations lead to a finite value of dissipation, this value can be very small in one- and two-dimensional systems for realistic parameters of the nanoclusters and distances between them. The value of the action for vortex tunneling at zero temperature can be made sufficiently large to make the dissipation negligibly small. We estimate the temperature T{sub 0} of the transition from the thermal activation to quantum tunneling.

  19. High specific heat superconducting composite

    DOEpatents

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  20. Toward a superconducting quantum computer

    PubMed Central

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers. PMID:20431256

  1. Slip-Cast Superconductive Parts

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Buckley, John D.; Vasquez, Peter; Buck, Gregory M.; Hicks, Lana P.; Hooker, Matthew W.; Taylor, Theodore D.

    1993-01-01

    Complex shapes fabricated without machining. Nonaqueous slip-casting technique used to form complexly shaped parts from high-temperature superconductive materials like YBa(2)Cu(3)O(7-delta). Such parts useful in motors, vibration dampers, and bearings. In process, organic solvent used as liquid medium. Ceramic molds made by lost-wax process used instead of plaster-of-paris molds, used in aqueous slip-casting but impervious to organic solvents and cannot drain away liquid medium. Organic-solvent-based castings do not stick to ceramic molds as they do to plaster molds.

  2. Microelectronic superconducting crossover and coil

    DOEpatents

    Wellstood, Frederick C.; Kingston, John J.; Clarke, John

    1994-01-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T.sub.c superconductor thin film, a second insulating thin film comprising SrTiO.sub.3 ; and a third high T.sub.c superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions.

  3. The interminable adolescence of superconductivity

    SciTech Connect

    Kolm, H.H.

    1988-12-01

    The author contends that superconductivity has failed to mature into a practical technology seventy-seven years after its discovery because Americans have lacked the curiosity to understand it, the imagination to appreciate it, and the spirit of enterprise to develop it, and that America is about to miss its last chance to regain technical leadership and economic security if it continues to pretend that higher transition temperature materials alone will change the situation. He goes on to discuss a range of applications, including high-gradient magnetic separation and filtration magnetically levitated transportation and makes recommendations for future materials and application research.

  4. Glass-Derived Superconductive Ceramic

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Farrell, D. E.

    1992-01-01

    Critical superconducting-transition temperature of 107.2 K observed in specimen made by annealing glass of composition Bi1.5Pb0.5Sr2Ca2Cu3Ox for 243 h at 840 degrees C. PbO found to lower melting temperature and viscosity of glass, possibly by acting as fluxing agent. Suggested partial substitution of lead into bismuth oxide planes of crystalline phase having Tc of 110 K stabilizes this phase and facilitates formation of it.

  5. Exotic Superconductivity in Correlated Electron Systems

    SciTech Connect

    Mu, Gang; Sandu, Viorel; Li, Wei; Shen, Bing

    2015-05-25

    Over the past decades, the search for high-Tc superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high-c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge, spin, orbital, and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.

  6. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  7. Molybdenum-rhenium superconducting suspended nanostructures

    NASA Astrophysics Data System (ADS)

    Aziz, Mohsin; Christopher Hudson, David; Russo, Saverio

    2014-06-01

    Suspended superconducting nanostructures of MoRe 50%/50% by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO2 sacrificial layer. Suspended superconducting channels as narrow as 50 nm and length 3 μ m have a critical temperature of ≈ 6.5 K , which can increase by 0.5 K upon annealing at 400 ° C . A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel widths reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.

  8. Molybdenum-rhenium superconducting suspended nanostructures

    SciTech Connect

    Aziz, Mohsin; Christopher Hudson, David; Russo, Saverio

    2014-06-09

    Suspended superconducting nanostructures of MoRe 50%/50% by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO{sub 2} sacrificial layer. Suspended superconducting channels as narrow as 50 nm and length 3 μm have a critical temperature of ≈6.5 K, which can increase by 0.5 K upon annealing at 400 °C. A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel widths reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.

  9. Gauge Model of High-Tc Superconductivity

    NASA Astrophysics Data System (ADS)

    Kui Ng, Sze

    2012-12-01

    A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-Tc superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature Tc is related to the ionization energies of elements and can be computed by a formula of Tc. For the high-Tc superconductors such as La2-xSrxCuO4, Y Ba2Cu3O7, and MgB2, the computational results of Tc agree with the experimental results.

  10. Exotic Superconductivity in Correlated Electron Systems

    DOE PAGESBeta

    Mu, Gang; Sandu, Viorel; Li, Wei; Shen, Bing

    2015-05-25

    Over the past decades, the search for high-Tc superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high-c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge, spin, orbital,more » and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.« less

  11. Superconducting magnet needs for the ILC

    SciTech Connect

    Tompkins, J.C.; Kashikhin, Vl.; Parker, B.; Palmer, M.A. /; Clarke, J.A.; /Daresbury

    2007-06-01

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the ILC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  12. SUPERCONDUCTING MAGNET NEEDS FOR THE ILC.

    SciTech Connect

    PARKER,B.; TOMPKINS, J.C.; KASHIKHIN, VI.; PALMER, M.A.; CLARKE, J.A.

    2007-06-25

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the lLC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  13. Superconducting Radio Frequency Technology: An Overview

    SciTech Connect

    Peter Kneisel

    2003-06-01

    Superconducting RF cavities are becoming more often the choice for larger scale particle accelerator projects such as linear colliders, energy recovery linacs, free electron lasers or storage rings. Among the many advantages compared to normal conducting copper structures, the superconducting devices dissipate less rf power, permit higher accelerating gradients in CW operation and provide better quality particle beams. In most cases these accelerating cavities are fabricated from high purity bulk niobium, which has superior superconducting properties such as critical temperature and critical magnetic field when compared to other superconducting materials. Research during the last decade has shown, that the metallurgical properties--purity, grain structure, mechanical properties and oxidation behavior--have significant influence on the performance of these accelerating devices. This contribution attempts to give a short overview of the superconducting RF technology with emphasis on the importance of the material properties of the high purity niobium.

  14. Recent Progress in the Superconductivity Research Field

    NASA Astrophysics Data System (ADS)

    Ichinose, Ataru

    Major developments in the research field of superconductivity have been achieved in 2008. Since the discovery of high-Tc superconductors, their practical application has been studied by many researchers. Coated conductors consisting of an YBa2Cu3Oy superconducting layer deposited on metal tapes buffered oxide layers were developed in the NEDO project between FY2003 and FY2007. These technologies for coated conductors are expected to be applicable to electrical power equipment. A new NEDO project that started in FY2008 is focusing on the development of superconducting electric power equipment such as power cables, superconducting magnetic energy storage devices (SMES) and transformers. Furthermore, a new family of high-Tc superconductors, Fe-As-O-based superconductors, has been discovered. The highest reported critical temperature, Tc, has rapidly increased owing to the considerable effort of many researchers. A new social environment based on superconductivity technology might indeed be realized in the near future.

  15. Free-standing oxide superconducting articles

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  16. Focus on superconducting properties of iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2012-10-01

    Since the discovery of iron-based superconductors, much attention has been given to the exploration of new superconducting compounds. Numerous superconducting iron compounds have been found and categorized into five groups: LnFeAsO (Ln = lanthanide), BaFe2As2, KFeAs, FeSe and FeAs with perovskite blocking layers. Among them, FeSe has the simplest crystal structure. Since the crystal structure is composed of only superconducting Fe layers, the FeSe family must be the best material to investigate the mechanism of iron-based superconductivity. FeSe shows very strong pressure effects. The superconducting transition temperature (Tc) of FeSe is approximately 8 K at ambient pressure. However Tc dramatically increases up to 37 K under applied pressure of 4-6 GPa. This is the third highest Tc value among binary superconductors, surpassed only by CsC60 under pressure (Tc = 38 K) and MgB2 (Tc = 39 K). On the other hand, despite FeTe having a crystal structure analogous to that of FeSe, FeTe shows antiferromagnetic properties without superconductivity. Doping of small ions, either Se or S, however, can induce superconductivity in FeTe1-xSex or FeTe1-xSx . The superconductivity is very weak for small x values, and annealing under certain conditions is required to obtain strong superconductivity, for instance annealing in oxygen or alcoholic beverages such as red wine. The following selection of papers describe many important experimental and theoretical studies on iron chalcogenide superconductors including preparation of single crystals, bulk samples and thin films; NMR measurements; photoemission spectroscopy; high-pressure studies; annealing effects and research on new BiS2-based superconductors. I hope this focus issue will help researchers understand the frontiers of iron chalcogenide superconductors and assist in the discovery of new phenomena related to iron-based superconductivity.

  17. High-temperature superconducting thin films and their application to superconducting-normal-superconducting devices

    SciTech Connect

    Mankiewich, P.M.

    1993-01-01

    The existence of the proximity effect between the high temperature superconductor YBa[sub 2]Cu[sub 3]O[sub 7] (YBCO) and normal metal thin films has been demonstrated, and this effect has been exploited to produce lithographically fabricated superconducting-normal-superconducting (SNS) Josephson junctions. Improvement of the fabrication processes has led to new methods of in-situ film growth and plasma etching of YBCO, as well a YBCO-compatible processes for the deep-ultraviolet and electron-beam lithography required to fabricate submicron device structures. This proximity effect approach helps to circumvent the short coherence length ([xi] [approximately] 3 nm) characteristic of the high T[sub c] superconductors. In a clean normal metal such as gold or silver the relevant coherence length is governed by the higher Fermi velocity and longer mean free path. A Josephson device containing a normal metal weak link can be longer than an ideal all-YBCO microbridge (dimensions comparable to [xi]). Initially, SNS devices were fabricated and showed evidence for a supercurrent through the normal region. Properly spaced Shapiro steps as a function of microwave frequency were observed. This result was evidence for a proximity effect between a normal metal and YBCO. The fabrication process was not sufficiently reproducible, so new techniques were developed. In-situ film growth and fabrication is desirable to minimize contamination of and damage to the surface of the superconductor. In-situ reactive coevaporation of YBCO was demonstrated. Patterning of these in-situ films in to a structure required the development of a low-damage reactive ion etch. New lithographic techniques were developed to minimize chemical degradation of the superconductor. Deposition of gold onto heated device structures was demonstrated to produce a superior SNS device. The application of YBCO thin films to passive microwave devices and to active superconducting circuits was evaluated.

  18. Superconducting UBe 13 thin films

    NASA Astrophysics Data System (ADS)

    Quateman, J. H.; Tedrow, P. M.

    1985-12-01

    Of the known heavy fermion superconductors only UBe 13 can have a low resistivity ratio and still go superconducting. In addition, it is a line compound with a melting temperature of nearly twice that of the constituents. These facts make UBe 13 a promising choice for fabrication in thin film form. We have successfully made 2000 Å UBe 13 films by coevaporation of uranium and beryllium on 700°C substrates which were then heated in situ to 1100°C. These films were polycrystalline as shown by X-ray diffraction and have Tc's of 0.85 K, that of the bulk. The resistivity rise at approximately 2 K and the strong negative magnetoresistance were also of the same magnitude as that of the bulk, as were both the perpendicular and parallel critical fields. Thin films of UBe 13 will make more accessible tunneling and proximity effect experiments which can help elucidate the nature of the superconductivity of this compound.

  19. The Hardest Superconducting Metal Nitride

    SciTech Connect

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  20. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  1. The Hardest Superconducting Metal Nitride

    PubMed Central

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-01-01

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements. PMID:26333418

  2. Recent developments in superconducting receivers

    SciTech Connect

    Richards, P.L.

    1990-09-01

    A description is given of recent work at Berkeley on superconducting mixers and detectors for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. The next report describes accurate measurements and also theoretical modeling of an SIS quasiparticle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high {Tc} superconductor YBCO from 750 GHz to 21 THz. Finally, there are reports on the design and experimental performance of two different types of high {Tc} bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer.

  3. The Hardest Superconducting Metal Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-01

    Transition-metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock-salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10-20 GPa. Here, we report high-pressure synthesis of hexagonal δ-MoN and cubic γ-MoN through an ion-exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 - 80 μm. Based on indentation testing on single crystals, hexagonal δ-MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ-MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo-N network than that in cubic phase. The measured superconducting transition temperatures for δ-MoN and cubic γ-MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  4. The Hardest Superconducting Metal Nitride

    DOE PAGESBeta

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  5. Superconducting coil and method of stress management in a superconducting coil

    DOEpatents

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  6. Method for making mirrored surfaces comprising superconducting material

    DOEpatents

    Early, James T.; Hargrove, R. Steven

    1989-01-01

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40.degree. K. and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  7. Method for making mirrored surfaces comprising superconducting material

    DOEpatents

    Early, J.T.; Hargrove, R.S.

    1989-12-12

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  8. Superconductivity in the ferromagnetic semiconductor samarium nitride

    NASA Astrophysics Data System (ADS)

    Anton, E.-M.; Granville, S.; Engel, A.; Chong, S. V.; Governale, M.; Zülicke, U.; Moghaddam, A. G.; Trodahl, H. J.; Natali, F.; Vézian, S.; Ruck, B. J.

    2016-07-01

    Conventional wisdom expects that making semiconductors ferromagnetic requires doping with magnetic ions and that superconductivity cannot coexist with magnetism. However, recent concerted efforts exploring new classes of materials have established that intrinsic ferromagnetic semiconductors exist and that certain types of strongly correlated metals can be ferromagnetic and superconducting at the same time. Here we show that the trifecta of semiconducting behavior, ferromagnetism, and superconductivity can be achieved in a single material. Samarium nitride (SmN) is a well-characterized intrinsic ferromagnetic semiconductor, hosting strongly spin-ordered 4 f electrons below a Curie temperature of 27 K. We have now observed that it also hosts a superconducting phase below 4 K when doped to electron concentrations above 1021cm-3 . The large exchange splitting of the conduction band in SmN favors equal-spin triplet pairing with p -wave symmetry. Significantly, superconductivity is enhanced in superlattices of gadolinium nitride (GdN) and SmN. An analysis of the robustness of such a superconducting phase against disorder leads to the conclusion that the 4 f bands are crucial for superconductivity, making SmN a heavy-fermion-type superconductor.

  9. Superconductivity in Ca-doped graphene laminates

    NASA Astrophysics Data System (ADS)

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-03-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  10. Superconductivity in Ca-doped graphene laminates.

    PubMed

    Chapman, J; Su, Y; Howard, C A; Kundys, D; Grigorenko, A N; Guinea, F; Geim, A K; Grigorieva, I V; Nair, R R

    2016-01-01

    Despite graphene's long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc's strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp. PMID:26979564

  11. Superconductivity in Ca-doped graphene laminates

    PubMed Central

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-01-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp. PMID:26979564

  12. The integration of cryogenic cooling systems with superconducting electronic systems

    SciTech Connect

    Green, Michael A.

    2003-07-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  13. Dimensionality of high temperature superconductivity in oxides

    NASA Technical Reports Server (NTRS)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  14. Superconductivity in two-dimensional boron allotropes

    NASA Astrophysics Data System (ADS)

    Zhao, Yinchang; Zeng, Shuming; Ni, Jun

    2016-01-01

    We use ab initio evolutionary algorithm and first-principles calculations to investigate structural, electronic, vibrational, and superconducting properties of two-dimensional (2 D ) boron allotropes. Remarkably, we show that conventional BCS superconductivity in the stable 2 D boron structures is ubiquitous with the critical temperature Tc above the liquid hydrogen temperature for certain configurations. Due to the electronic states of the Fermi surface originating from both σ and π electrons, the superconductivity of the 2 D structures arises from multiple phonon modes. Our results support that 2 D boron structure may be a pure single-element material with the highest Tc on conditions without high pressure and external strain.

  15. Interface between Topological and Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Jiang, Liang; Kane, Charles; Preskill, John

    2011-03-01

    We propose and analyze an interface between a topological qubit and a superconducting flux qubit. In our scheme, the interaction between Majorana fermions in a topological insulator is coherently controlled by a superconducting phase that depends on the quantum state of the flux qubit. A controlled phase gate, achieved by pulsing this interaction on and off, can transfer quantum information between the topological qubit and the superconducting qubit. This work was supported by the Sherman Fairchild Foundation, by NSF grants DMR-0906175 and PHY-0803371, by DOE grant DE-FG03-92-ER40701, and by NSA/ARO grant W911NF-09-1-0442.

  16. Nb-Pb Superconducting RF Gun

    SciTech Connect

    Sekutowicz, J.; Iversen, J.; Kreps, G.; Moller, W.D.; Singer, W.; Singer, X.; Ben-Zvi, I.; Burrill, A.; Smedley, J.; Rao, T.; Ferrario, M.; Kneisel, P.; Langner, J.; Strzyzewski, P.; Lefferts, R.; Lipski, A.; Szalowski, K.; Ko, K.; Xiao, L.; /SLAC

    2006-03-29

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  17. Nb-Pb superconducting RF gun

    SciTech Connect

    J. Sekutowicz; J. Iversen; G. Kreps; W.D. Moller; W. Singer; X. Singer; I. Ben-Zvi; A. Burrill; J. Smedley; T. Rao; M. Ferrario; P. Kneisel; J. Langner; P. Strzyzewski; R. Lefferts; A. Lipski; K. Szalowski; K. Ko; L. Xiao

    2006-04-14

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  18. The design and evaluation of superconducting connectors

    NASA Technical Reports Server (NTRS)

    Payne, J. E.

    1982-01-01

    The development of a superconducting connector for superconducting circuits on space flights is described. It is proposed that such connectors be used between the superconducting readout loop and the SQUID magnetometer in the Gravity Probe B experiment. Two types of connectors were developed. One type employs gold plated niobium wires making pressure connections to gold plated niobium pads. Lead-plated beryllium-copper spring contacts can replace the niobium wires. The other type is a rigid solder or weld connection between the niobium wires and the niobium pads. A description of the methods used to produce these connectors is given and their performance analyzed.

  19. Superconducting wire and cable for RHIC

    SciTech Connect

    Garber, M.; Ghosh, A.K.; Greene, A.; McChesney, D.; Morgillo, A.; Shah, R.; DelRe, S.; Epstein, G.; Hong, S.; Lichtenwalner, J.

    1994-06-01

    The superconducting dipole and quadrupole magnets in the RHIC accelerator ring are to be fabricated from 30-strand superconducting cable. The RHIC wire has a diameter of 0.65 mm, copper-to-superconductor ratio of 2.25, filament diameter of 6 {mu}m and high critical current density. Primary emphasis during manufacturing has been on uniformity of materials, processes and performance. Near final results are presented on a production program which has extended over two years. Measured parameters are described which are important for design of superconducting accelerator magnets.

  20. High-temperature superconducting vector switch

    SciTech Connect

    Chelluri, B.; Barber, J.; Clements, N.; Johnson, D. ); Spyker, R.; Sarkar, A.K.; Kozlowoski, G. )

    1991-04-15

    The feasibility of a high-temperature superconducting switch based on the principle of the superconducting vector switch (SVS) is discussed. This switch exploits the anisotropy in electrical conductivities of the high-temperature superconductors. Underlying the SVS mechanism is the ability to turn on/off large superconducting currents confined to the CuO{sub 2} planes that characterize these materials using lower currents flowing normal to the planes. The required conditions to optimize the switch and increase the gain are presented.

  1. Superconductivity in transuranium elements and compounds

    NASA Astrophysics Data System (ADS)

    Griveau, Jean-Christophe; Colineau, Éric

    2014-08-01

    We present here an overview of the properties of transuranium superconductors, but also of the (non-superconducting) transuranium analogues of uranium superconductors. We briefly review superconductivity in actinide elements and uranium compounds and focus in particular on the PuTX5 (T=Co,Rh; X=Ga,In) series, the largest superconducting system in actinides and NpPd5Al2, the so far unique neptunium superconductor. The effects of chemical substitution, ageing and pressure on the properties of transuranium superconductors are also discussed. xml:lang="fr"

  2. Superconducting-wire fabrication. Final report

    SciTech Connect

    Glad, W.E.; Chase, G.G.

    1990-05-01

    Experiments were done leading to the fabrication of high-temperature superconducting composite wire. Bulk superconductor was characterized by using optical microscopy, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. The chemical compatibility of superconducting materials with a number of metal sheathing candidates was tested, with silver offering the best compatibility. Wire was fabricated by drawing 0.250-inch-diameter silver tubing packed with superconducting powder. Single core wires were drawn to 0.037-inch diameter. The best critical current performance (660 A/cm2) for leaded bismuth 2-2-2-3 material was achieved by flattening single-core wire before heat treatment.

  3. Superconductivity in Pd, Ir, and Pt chalcogenide

    NASA Astrophysics Data System (ADS)

    Oh, Yoon Seok; Yang, Junjie; Choi, Y. J.; Hogan, A.; Horibe, Y.; Cheong, S.-W.

    2012-02-01

    Large spin-orbit coupling in materials with heavy chalcogens can result in unique quantum states or functional properties such as topological insulator, giant thermoelectric power, and superconductivity. When materials contain heavy cations in addition to heavy chalcogens, spin-orbit coupling can be further enhanced. For these reasons, we have studied the superconductivity of Pd, Ir, and Pt tellurides and selenides. In the exploration of these chalcogenides, we have focused on the competition between superconductivity and charge density wave that is associated with superlattice reflections.

  4. Nanoelectromechanics of superconducting weak links (Review Article)

    NASA Astrophysics Data System (ADS)

    Parafilo, A. V.; Krive, I. V.; Shekhter, R. I.; Jonson, M.

    2012-04-01

    Nanoelectromechanical effects in superconducting weak links are considered. Three different superconducting devices are studied: (i) a single-Cooper-pair transistor, (ii) a transparent SNS junction, and (iii) a single-level quantum dot coupled to superconducting electrodes. The electromechanical coupling is due to electrostatic or magnetomotive forces acting on a movable part of the device. It is demonstrated that depending on the frequency of mechanical vibrations the electromechanical coupling could either suppress or enhance the Josephson current. Nonequilibrium effects associated with cooling of the vibrational subsystem or pumping energy into it at low bias voltages are discussed.

  5. Accelerator magnet designs using superconducting magnetic shields

    SciTech Connect

    Brown, B.C.

    1990-10-01

    Superconducting dipoles and quadrupoles for existing accelerators have a coil surrounded by an iron shield. The shield limits the fringe field of the magnet while having minimal effect on the field shape and providing a small enhancement of the field strength. Shields using superconducting materials can be thinner and lighter and will not experience the potential of a large de-centering force. Boundary conditions for these materials, material properties, mechanical force considerations, cryostat considerations and some possible geometrical configurations for superconducting shields will be described. 7 refs., 3 figs., 3 tabs.

  6. Superconducting bearings with levitation control configurations

    SciTech Connect

    Flom, Y.; Royston, J.D.

    1992-05-26

    This patent describes a superconducting rotating assembly. It comprises first and second bearing means comprising a material exhibiting superconducting properties; a rotatable member having two extremities aligned along a common axis; magnet means at each extremity; means for maintaining each the bearing means at a temperature where the superconducting properties are manifest; means for rotating the rotatable member; means for sensing the position of the rotatable member relative to each the bearing means; and means for controlling the levitation forces exerted on the rotatable member by each the bearing means.

  7. The SNS Superconducting Linac System

    SciTech Connect

    Claus Rode

    2001-07-01

    The SNS has adopted superconducting RF technology for the high-energy end of its linac. The design uses cavities of {beta} = 0.61 and 0.81 to span the energy region from 186 MeV up to a maximum of 1.3 GeV. Thirty-three of the lower {beta} cavities are contained in 11 cryomodules, and there could be as many as 21 additional cryomodules, each containing four of the higher {beta} cavities, to reach the maximum energy. The design uses a peak surface gradient of 35 MV/m. Each cavity will be driven by a 550 kW klystron. Cryomodules will be connected to the refrigerator by a pair of ''tee'' shape transfer lines. The refrigerator will produce 120 g/sec of refrigeration at 2.1 K, 15 g/sec of liquefaction at 4.5 K, and 8,300 W of 50 K shield refrigeration.

  8. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  9. An experimental superconducting helical undulator

    SciTech Connect

    Caspi, S.; Taylor, C.

    1995-12-31

    Improvements in the technology of superconducting magnets for high energy physics and recent advancements in SC materials with the artificial pinning centers (APC){sup 2}, have made a bifilar helical SC device an attractive candidate for a single-pass free electron laser (FEL){sup 3}. Initial studies have suggested that a 6.5 mm inner diameter helical device, with a 27 mm period, can generate a central field of 2-2.5 Tesla. Additional studies have also suggested that with a stored energy of 300 J/m, such a device can be made self-protecting in the event of a quench. However, since the most critical area associated with high current density SC magnets is connected with quenching and training, a short experimental device will have to be built and tested. In this paper we discuss technical issues relevant to the construction of such a device, including a conceptual design, fields, and forces.

  10. Global relaxation of superconducting qubits

    SciTech Connect

    Ojanen, T.; Niskanen, A. O.; Nakamura, Y.; Abdumalikov, A. A. Jr.

    2007-09-01

    We consider coupled quantum two-state systems (qubits) exposed to a global relaxation process. The global relaxation refers to the assumption that qubits are coupled to the same quantum bath with approximately equal strengths, appropriate for long-wavelength environmental fluctuations. We show that interactions do not spoil the picture of Dicke's subradiant and super-radiant states where quantum interference effects lead to striking deviations from the independent relaxation picture. Remarkably, the system possess a stable entangled state and a state decaying faster than single qubit excitations. We propose a scheme for how these effects can be experimentally accessed in superconducting flux qubits and, possibly, used in constructing long-lived entangled states.

  11. Theory of superconductivity in oxides

    NASA Astrophysics Data System (ADS)

    Anderson, Philip W.

    1991-11-01

    During the period of this grant the theory of superconductivity in high Technetium cuprates matured into a reasonable, consistent, complete theory which has the capability, often realized, of confronting all of the puzzling experimental properties of the materials. During the period of the grant occurred the Cargese NATO Summer School (June 1990) attended by several of us who were being funded by the grant, and at that school I summarized progress up to that time. B. Doucot who had been one of our group was the local organizer. Perhaps the best summary of the situation at that time was given in my Chapter 2 setting out what I called the Central Dogmas of the theory, which is enclosed. At that meeting was formulated the justification of the Luttinger liquid hypothesis via a finite Fermi surface phase shift which led to several papers, especially the PRL and 'response' on the subject showing how the Fermi liquid theory breaks down.

  12. Advanced Manufacturing of Superconducting Magnets

    NASA Technical Reports Server (NTRS)

    Senti, Mark W.

    1996-01-01

    The development of specialized materials, processes, and robotics technology allows for the rapid prototype and manufacture of superconducting and normal magnets which can be used for magnetic suspension applications. Presented are highlights of the Direct Conductor Placement System (DCPS) which enables automatic design and assembly of 3-dimensional coils and conductor patterns using LTS and HTS conductors. The system enables engineers to place conductors in complex patterns with greater efficiency and accuracy, and without the need for hard tooling. It may also allow researchers to create new types of coils and patterns which were never practical before the development of DCPS. The DCPS includes a custom designed eight-axis robot, patented end effector, CoilCAD(trademark) design software, RoboWire(trademark) control software, and automatic inspection.

  13. Coherent controlization using superconducting qubits

    PubMed Central

    Friis, Nicolai; Melnikov, Alexey A.; Kirchmair, Gerhard; Briegel, Hans J.

    2015-01-01

    Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexible implementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect. PMID:26667893

  14. Subranging technique using superconducting technology

    DOEpatents

    Gupta, Deepnarayan

    2003-01-01

    Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.

  15. Superconducting magnet and fabrication method

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1994-01-01

    A method of trapping a field in a block of superconductor material, includes providing (i) a block of material defining a bore, (ii) a high permeability core within the bore that defines a low reluctance path through the bore, (iii) a high permeability external structure on the exterior of the block of material that defines a low reluctance path between opposite ends of the core, and (iv) an electromagnet configured to apply a magnetic field around the high permeability core. The method proceeds by energizing the electromagnet to produce an applied magnetic field around the high permeability core, cooling the block of material sufficiently to render the block of material superconducting, de-energizing the electromagnet to result in a trapped magnetic field, and at least partially removing the low reluctance path defined by the core and the external structure in order to increase the magnetic flux density of the trapped magnetic field.

  16. FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2008-12-01

    Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  17. Superconductivity in colloidal lead nanocrystals

    NASA Astrophysics Data System (ADS)

    Zolotavin, Pavlo

    Monodisperse colloidal lead nanoparticles with diameters ranging from 4.4 to 20 nm were prepared by a self-limiting growth method. The nanoparticles are protected from oxidation by an amorphous lead-tin oxide shell of 1.5-2 nm thickness. The magnetic susceptibility of the particles was measured as a function of size, temperature and magnetic field. The Meissner effect was observed indicating the superconducting transition. For the 20 and 16 nm particles, the critical temperature is suppressed to 6.9 K from the bulk value of 7.2 K and is further reduced for smaller particles. Depending on the size of the particles, the critical field is enhanced by 60 to 140 times. The coupling between particles was in situ controlled through the conversion of the oxides present on the surface of the nanoparticles to chalcogenides. This transformation allows for a 109-fold increase in the conductivity. The temperature of the onset of the superconductivity was found to depend upon the degree of coupling of the nanoparticles in the vicinity of the insulator - superconductor transition. The critical current density of the best sample of Pb/PbSe nanocrystals at zero magnetic field was determined to be 4 x 103 A/cm 2. In turn, the critical field of the sample shows 50-fold enhancement compared to bulk Pb. A method to convert the original Pb/PbO nanocrystals into colloidal Pb/PbS (Se, Te) particle was developed. This alleviates the necessity of chemical post processing and provides a truly colloidal superconductor. Paramagnetic Meissner effect of abnormally large amplitude is observed for Pb/PbTe nanocrystal assemblies. The material described in this manuscript is the first nanostructured superconductor prepared by the bottom-up approach starting from colloidal nanoparticles.

  18. High-temperature superconductivity: A conventional conundrum

    DOE PAGESBeta

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  19. Techniques for Connecting Superconducting Thin Films

    NASA Technical Reports Server (NTRS)

    Mester, John; Gwo, Dz-Hung

    2006-01-01

    Several improved techniques for connecting superconducting thin films on substrates have been developed. The techniques afford some versatility for tailoring the electronic and mechanical characteristics of junctions between superconductors in experimental electronic devices. The techniques are particularly useful for making superconducting or alternatively normally conductive junctions (e.g., Josephson junctions) between patterned superconducting thin films in order to exploit electron quantum-tunneling effects. The techniques are applicable to both low-Tc and high-Tc superconductors (where Tc represents the superconducting- transition temperature of a given material), offering different advantages for each. Most low-Tc superconductors are metallic, and heretofore, connections among them have been made by spot welding. Most high-Tc superconductors are nonmetallic and cannot be spot welded. These techniques offer alternatives to spot welding of most low-Tc superconductors and additional solutions to problems of connecting most high-Tc superconductors.

  20. End fields of CBA superconducting magnets

    SciTech Connect

    Kirk, H.G.; Herrera, J.; Willen, E.

    1983-01-01

    Measurements of the two dimensional harmonic content of the end fields generated by the Brookhaven CBA dipole and quadrupole superconducting magnets are presented. Both the local longitudinal structure and the integrated end effects are examined.

  1. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  2. Operational experience with superconducting synchrotron magnets

    SciTech Connect

    Martin, P.S.

    1987-03-01

    The operational experience with the Fermilab Tevatron is presented, with emphasis on reliability and failure modes. Comprisons are made between the operating efficiencies for the superconducting machine and for he conventional Main Ring.

  3. All-metal superconducting planar microwave resonator

    NASA Astrophysics Data System (ADS)

    Horsley, Matt; Pereverzev, Sergey; Dubois, Jonathon; Friedrich, Stephan; Qu, Dongxia; Libby, Steve; Lordi, Vincenzo; Carosi, Gianpaolo; Stoeffl, Wolfgang; Chapline, George; Drury, Owen; Quantum Noise in Superconducting Devices Team

    There is common agreement that noise and resonance frequency jitter in superconducting microwave planar resonators are caused by presence of two-level systems, or fluctuators, in resonator materials- in dielectric substrate, in superconducting and dielectric layers and on the boundaries and interfaces. Scaling of noise with device dimensions indicate that fluctuators are likely concentrated around boundaries; physical nature of those fluctuators remains unclear. The presence of dielectrics is not necessary for the superconducting device functionality, and one can ask question about properties of all-metal device, where dielectric substrate and oxide films on metal are absent. Resonator made from of thin conducting layer with cuts in it is usually called slot line resonator. We report on the design, fabrication and initial testing of multiple split rings slot line resonator made out of thin molybdenum plate. This work is being funded as part of a three year strategic initiative (LDRD 16-SI-004) to better understand noise in superconducting devices.

  4. Future development of large superconducting generators

    SciTech Connect

    Singh, S.K.; Mole, C.J.

    1989-03-01

    Large superconducting generators are being developed worldwide. The use of superconductors to reduce the electrical power dissipation in power equipment has been a technological possibility ever since the discovery of superconductivity, even though their use in power equipment remained an impractical dream for a long time. However, scientific and technological progress in superconductivity and cryogenics has brought this dream much closer to reality. Results obtained so far establish the technical feasibility of these machines. Analytical developments have been providing a sound basis for the design of superconducting machines and results of these design studies have shown improvements in power density of up to a factor of 10 higher than the power density for conventional machines. This paper describes the recently completed USA programs, the current foreign and USA programs, and then proposes a USA development program to maintain leadership in the field.

  5. Generalized superconducting flows -- Plasma confinement, organization

    SciTech Connect

    Mahajan, S.M.

    1997-01-01

    Complete expulsion of magnetic vorticity is used to characterize the superconducting flow. It is shown that a simple, intuitive, but speculative generalization can serve as a paradigm for a variety of organized flows.

  6. Emergent phenomena: Light-induced superconductivity

    NASA Astrophysics Data System (ADS)

    Demsar, Jure

    2016-03-01

    Intense light pulses irradiating a sample of K3C60 result in dramatic changes of its high-frequency (terahertz) conductivity. Could these be signatures of fleeting superconductivity at 100 K and beyond?

  7. Quartz crystal and superconductive resonators and oscillators

    NASA Technical Reports Server (NTRS)

    Besson, R. S.

    1978-01-01

    A general overview of piezoelectric resonators is given with emphasis on evolution of the resonator design. Superconducting cavities and crystals at low temperature and the use of resonant frequencies are also discussed.

  8. Degreasing and cleaning superconducting RF Niobium cavities

    SciTech Connect

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  9. Superconducting inductive displacement detection of a microcantilever

    SciTech Connect

    Vinante, A.

    2014-07-21

    We demonstrate a superconducting inductive technique to measure the displacement of a micromechanical resonator. In our scheme, a type I superconducting microsphere is attached to the free end of a microcantilever and approached to the loop of a dc Superconducting Quantum Interference Device (SQUID) microsusceptometer. A local magnetic field as low as 100 μT, generated by a field coil concentric to the SQUID, enables detection of the cantilever thermomechanical noise at 4.2 K. The magnetomechanical coupling and the magnetic spring are in good agreement with image method calculations assuming pure Meissner effect. These measurements are relevant to recent proposals of quantum magnetomechanics experiments based on levitating superconducting microparticles.

  10. Superconductive niobium films coating carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Lucci, M.; Ottaviani, I.; Cirillo, M.; Behabtu, N.; Young, C. C.; Pasquali, M.; Vecchione, A.; Fittipaldi, R.; Corato, V.

    2014-11-01

    Superconducting niobium (Nb) has been successfully obtained by sputter deposition on carbon nanotube fibers. The transport properties of the niobium coating the fibers are compared to those of niobium thin films deposited on oxidized Si substrates during the same deposition run. For niobium films with thicknesses above 300 nm, the niobium coating the fibers and the thin films show similar normal state and superconducting properties with critical current density, measured at T = 4.2 K, of the order of 105 A cm-2. Thinner niobium layers coating the fibers also show the onset of the superconducting transition in the resistivity versus temperature dependence, but zero resistance is not observed down to T = 1 K. We evidence by scanning electron microscopy (SEM) and current-voltage measurements that the granular structure of the samples is the main reason for the lack of true global superconductivity for thicknesses below 300 nm.

  11. Magnetic Fields in Superconducting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Lander, S. K.

    2013-02-01

    The interior of a neutron star is likely to be predominantly a mixture of superfluid neutrons and superconducting protons. This results in the quantization of the star’s magnetic field into an array of thin flux tubes, producing a macroscopic force very different from the Lorentz force of normal matter. We show that in an axisymmetric superconducting equilibrium the behavior of a magnetic field is governed by a single differential equation. Solving this, we present the first self-consistent superconducting neutron star equilibria with poloidal and mixed poloidal-toroidal fields and also give the first quantitative results for the corresponding magnetically induced distortions to the star. The poloidal component is dominant in all our configurations. We suggest that the transition from normal to superconducting matter in a young neutron star may cause a large-scale field rearrangement.

  12. New Advances in SuperConducting Materials

    ScienceCinema

    None

    2014-08-12

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laboratory, new materials science concepts are bringing this essential technology closer to widespread industrial use.

  13. Superconducting technology program Sandia 1996 annual report

    SciTech Connect

    Roth, E.P.

    1997-02-01

    Sandia`s Superconductivity Technology Program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) Process development and characterization of thallium-based high-temperature superconducting closed system wire and tape, (2) Investigation of the synthesis and processing of thallium-based thick films using two-zone processing, and (3) Cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY96 in each of these areas.

  14. Phonon-mediated superconductivity in borophenes

    NASA Astrophysics Data System (ADS)

    Zhao, Yinchang; Zeng, Shuming; Ni, Jun

    2016-06-01

    We use first-principles calculations to systematically investigate electronic, vibrational, and superconducting properties in borophenes (boron monolayer sheets). Remarkably, superconducting transition temperature Tc is a V-like function of hexagon hole density and has a similar tendency to the variations of the total energy and density of states at the Fermi level, which shows that the larger density of states at the Fermi level corresponds to the higher Tc. In consideration of substrate, the Ag(111) surfaces weaken the superconductivity in borophenes, which results in Tcμ*=0.1 of about 5.2 K in the buckled triangular sheet. As synthesis of borophenes was reported, superconducting boron sheets are feasible.

  15. Superconductivity for electric power systems: Program overview

    SciTech Connect

    Not Available

    1995-02-01

    Largely due to government and private industry partnerships, electric power applications based upon high-temperature superconductivity are now being designed and tested only seven years after the discovery of the high-temperature superconductors. These applications offer many benefits to the national electric system including: increased energy efficiency, reduced equipment size, reduced emissions, increased stability/reliability, deferred expansion, and flexible electricity dispatch/load management. All of these benefits have a common outcome: lower electricity costs and improved environmental quality. The U.S. Department of Energy (DOE) sponsors research and development through its Superconductivity Program for Electric Power Systems. This program will help develop the technology needed for U.S. industries to commercialize high-temperature superconductive electric power applications. DOE envisions that by 2010 the U.S. electric power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition.

  16. Superconductive microstrip exhibiting negative differential resistivity

    DOEpatents

    Huebener, R.P.; Gallus, D.E.

    1975-10-28

    A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

  17. A high temperature superconductivity communications flight experiment

    NASA Technical Reports Server (NTRS)

    Ngo, P.; Krishen, K.; Arndt, D.; Raffoul, G.; Karasack, V.; Bhasin, K.; Leonard, R.

    1992-01-01

    The proposed high temperature superconductivity (HTSC) millimeter-wave communications flight experiment from the payload bay of the Space Shuttle Orbiter to the Advanced Communications Technology Satellite (ACTS) in geosynchronous orbit is described. The experiment will use a Ka-band HTSC phased array antenna and front-end electronics to receive a downlink communications signal from the ACTS. The discussion covers the system configuration, a description of the ground equipment, the spacecraft receiver, link performance, thermal loading, and the superconducting antenna array.

  18. Superconductivity in alkali-doped C60

    NASA Astrophysics Data System (ADS)

    Ramirez, Arthur P.

    2015-07-01

    Superconductivity in alkali-doped C60 (A3C60, A = an alkali atom) is well described by an s-wave state produced by phonon mediated pairing. Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures (Tc) up to 33 K in single-phase material. The good understanding of pairing in A3C60 offers a paradigm for the development of new superconducting materials.

  19. ZGS roots of superconductivity: People and devices

    SciTech Connect

    Pewitt, E.G.

    1994-12-31

    The ZGS community made basic contributions to the applications of superconducting magnets to high energy physics as well as to other technological areas. ZGS personnel pioneered many significant applications until the time the ZGS was shutdown in 1979. After the shutdown, former ZGS personnel developed magnets for new applications in high energy physics, fusion, and industrial uses. The list of superconducting magnet accomplishments of ZGS personnel is impressive.

  20. Passive energy dump for superconducting coil protection

    DOEpatents

    Luton, J.N. Jr.

    1973-01-16

    The patent describes a passive resistance type energy dump for the protection of the coils of a superconducting magnet. Insertion heaters are immersed in a rigid container filled with a fusible alloy. The energy dump is connected across the coils of the superconducting magnet wherein individual heater elements are connected singly to the windings or otherwise according to the energy dumping requirements upon transition of the magnet to a normal state.

  1. Experimenting with a Superconducting Levitation Train

    ERIC Educational Resources Information Center

    Miryala, Santosh; Koblischka, M. R.

    2014-01-01

    The construction and operation of a prototype high-"Tc" superconducting train model is presented. The train is levitated by a melt-processed GdBa[subscript 2]Cu[subscript 3]O[subscript x] (Gd-123) superconducting material over a magnetic rail (track). The oval shaped track is constructed in S-N-S or PM3N configuration arranged on an iron…

  2. Heterogeneous Superconducting Low-Noise Sensing Coils

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Penanen, Konstantin I.; Ho Eom, Byeong

    2008-01-01

    A heterogeneous material construction has been devised for sensing coils of superconducting quantum interference device (SQUID) magnetometers that are subject to a combination of requirements peculiar to some advanced applications, notably including low-field magnetic resonance imaging for medical diagnosis. The requirements in question are the following: The sensing coils must be large enough (in some cases having dimensions of as much as tens of centimeters) to afford adequate sensitivity; The sensing coils must be made electrically superconductive to eliminate Johnson noise (thermally induced noise proportional to electrical resistance); and Although the sensing coils must be cooled to below their superconducting- transition temperatures with sufficient cooling power to overcome moderate ambient radiative heat leakage, they must not be immersed in cryogenic liquid baths. For a given superconducting sensing coil, this combination of requirements can be satisfied by providing a sufficiently thermally conductive link between the coil and a cold source. However, the superconducting coil material is not suitable as such a link because electrically superconductive materials are typically poor thermal conductors. The heterogeneous material construction makes it possible to solve both the electrical- and thermal-conductivity problems. The basic idea is to construct the coil as a skeleton made of a highly thermally conductive material (typically, annealed copper), then coat the skeleton with an electrically superconductive alloy (typically, a lead-tin solder) [see figure]. In operation, the copper skeleton provides the required thermally conductive connection to the cold source, while the electrically superconductive coating material shields against Johnson noise that originates in the copper skeleton.

  3. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  4. Architecture for high critical current superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.

    2002-01-01

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

  5. Three-Axis Superconducting Gravity Gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung

    1987-01-01

    Gravity gradients measured even on accelerating platforms. Three-axis superconducting gravity gradiometer based on flux quantization and Meissner effect in superconductors and employs superconducting quantum interference device as amplifier. Incorporates several magnetically levitated proof masses. Gradiometer design integrates accelerometers for operation in differential mode. Principal use in commercial instruments for measurement of Earth-gravity gradients in geo-physical surveying and exploration for oil.

  6. Dissipative hydride precipitates in superconducting niobium cavities

    SciTech Connect

    Romanenko, A.; Cooley, L.D.; Ciovati, G.; Wu, G.; /Argonne

    2011-10-01

    We report the first direct observation of the microstructural features exhibiting RF losses at high surface magnetic fields of above 100 mT in field emission free superconducting niobium cavities. The lossy areas were identified by advanced thermometry. Surface investigations using different techniques were carried out on cutout samples from lossy areas and showed the presence of dendritic niobium hydrides. This finding has possible implications to the mechanisms of RF losses in superconducting niobium at all field levels.

  7. Controlling superconductivity by tunable quantum critical points.

    PubMed

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-01-01

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5. PMID:25737108

  8. Armored spring-core superconducting cable and method of construction

    DOEpatents

    McIntyre, Peter M.; Soika, Rainer H.

    2002-01-01

    An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).

  9. Phase transformations in superconducting and non-superconducting perovskites

    SciTech Connect

    Mitchell, T.E.

    1992-01-01

    Most of the high {Tc} superconductors and other perovskite-related cuprates exhibit some kind of structural instability. For example, tetragonal-to-orthorhombic phase transformations occur in the Y-Ba-Cu-O and La-Sr-Cu-O systems while crystal structures in the Bi-Ca-Sr-Cu-O and Tl-Ba-Ca-Cu-O systems have incommensurate periodicities associated with displacements of the heavy cations. In YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}, the transformation is due to the ordering of oxygen vacancies while in La{sub 2-x}Sr{sub x}CuO{sub 4} the transformation is accompanied by tilting of the (CuO{sub 6}) octahedra. Such tilting and distortion of the co-ordination octahedra commonly occur in perovskite-related compounds and transformations between the structures are frequently martensitic. Phase transformations in the superconducting cuprates have been investigated by transmission electron microscopy but none of them appear to be martensitic. The phase transformations are accompanied by twinning and the resulting configurations are used to calculate twin boundary energies.

  10. Phase transformations in superconducting and non-superconducting perovskites

    SciTech Connect

    Mitchell, T.E.

    1992-07-01

    Most of the high {Tc} superconductors and other perovskite-related cuprates exhibit some kind of structural instability. For example, tetragonal-to-orthorhombic phase transformations occur in the Y-Ba-Cu-O and La-Sr-Cu-O systems while crystal structures in the Bi-Ca-Sr-Cu-O and Tl-Ba-Ca-Cu-O systems have incommensurate periodicities associated with displacements of the heavy cations. In YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}, the transformation is due to the ordering of oxygen vacancies while in La{sub 2-x}Sr{sub x}CuO{sub 4} the transformation is accompanied by tilting of the [CuO{sub 6}] octahedra. Such tilting and distortion of the co-ordination octahedra commonly occur in perovskite-related compounds and transformations between the structures are frequently martensitic. Phase transformations in the superconducting cuprates have been investigated by transmission electron microscopy but none of them appear to be martensitic. The phase transformations are accompanied by twinning and the resulting configurations are used to calculate twin boundary energies.

  11. Review of superconducting booster linacs

    NASA Astrophysics Data System (ADS)

    Storm, D. W.

    1993-04-01

    Several superconducting boosters have been built and more are planned or under construction. These all use a number of independently phased resonators to permit acceleration of a wide variety of ion masses. For heavy ions, vhf frequencies are involved, and operation of the superconductors at 4.3 K, the normal boiling point of He, is practical. (Because fundamental losses in superconductors depend on frequency, some electron accelerators using much higher frequencies require colder resonators.) For boosters the resonator technology has evolved toward the use of quarter wave resonators with straight loading arms. The superconducting material is either niobium or lead. The latter is deposited as a film on copper, while the former may be sheet metal, may be bonded to copper, or may be (in principle) applied as a film on copper. The trade-offs involved and the successes of the various techniques are discussed. The rf must be controlled accurately both with regard to amplitude and phase. Because of the high unloaded Q of the resonators, additional loading is provided at some temperature well above that of the superconductor, in order to increase the bandwidth to a manageable point. Most boosters provide active control of phase by shifting the driving phase, although at least one system uses a frequency switching technique. Cross talk between independent resonator control systems must be avoided. The cryogenic systems have evolved toward a system based on a large helium refrigerator using turbine expansion and providing gas cooling to heat shields. Conservative design provides excess capacity beyond the expected requirements of the accelerator. Cryogenic distribution must be done carefully to avoid losses, and the system should be designed with capacity to match that of anticipated upgrades of the refrigerator. Most boosters use an approximately periodic focusing system with radial phase advance near 90° per unit cell. At Legnaro, however, waist to waist focusing is

  12. ASC 84: applied superconductivity conference. Final program and abstracts

    SciTech Connect

    Not Available

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  13. Superconducting analog-to-digital converters. Final report

    SciTech Connect

    Schoen, J.M.

    1991-09-01

    The contents include: superconducting analog-to-digital converter work at MITRE; development of a rapidly tunable microwave source; design and evaluation of a Josephson array oscillator; obtaining high-accuracy measurements from low-accuracy measurements; superconducting microwave transmission lines; high performance, superconducting analog-to-digital converter; edge sharpening with Josephson Junction; design evaluation of a subranging superconducting analog-to-digital converter; feasibility study of a superconducting sigma-delta analog-to-digital converter, and VHDL simulation study of superconducting sigma delta modulators.

  14. Collapse of superconductivity in Graphene decorated by diluted triangular arrays of superconducting dots

    NASA Astrophysics Data System (ADS)

    Han, Zheng; Allain, Adrien; Arjmandi-Tash, Hadi; Tikhonov, Konstantin; Feigel'Man, Mikhail; Sacepe, Benjamin; Marty, Laetitia; Bouchiat, Vincent

    2014-03-01

    The easily accessible 2D electron gas offered by graphene provides interesting phenomena when the network of adsorbates can induce electronic order within the underlying graphene substrate, such as magnetic or superconducting correlations. We have experimentally studied the case of macroscopic graphene decorated with an array of superconducting tin clusters, which induce via percolation of proximity effect a global but tunable 2D superconducting state. We will show that by adjusting the graphene disorder and its charge carrier density on one side , the geometry and size of the superconducting dot network on the other side, the superconducting state can exhibit very different behaviors, allowing to test different regimes and quantum phase transition from a granular superconductor to either metallic or insulating states. We thank fundations from ANR-BLANC projects SuperGraph, TRICO and Cleangraph DEFI Nano ERC Advanced Grant MolNanoSpin, Cible program of Région Rhone-Alpes, and Nanosciences foundation.

  15. Fabrication of joint Bi-2223/Ag superconducting tapes with BSCCO superconducting powders by diffusion bonding

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Zou, Guisheng; Wu, Aiping; Zhou, Fangbing; Ren, Jialie

    2010-05-01

    61-Filaments Bi-2223/Ag superconducting tapes have been successfully joined with BSCCO superconducting powder interlayer by diffusion bonding. The electrical properties of the diffusion bonding joints were tested by standard four probe method and the microstructures of the joints were also examined by SEM. Additionally, the phase constituents of the superconducting powders between the tapes before and after bonding process were evaluated by XRD analysis. The result shows that the diffusion bonding joints are superconductive. The microstructures of the joint display a good bonding with no cracks and discontinuities. The joining zones are mainly composed of Bi-2223 phase, Bi-2212 phase and a small amount of CuO, Ca 2PbO 4. At last, the phase transformations of the superconducting powders in the bonding process are discussed.

  16. Theory of Topological Superconductivity in Ferromagnetic Metal Chains on Superconducting Substrates

    NASA Astrophysics Data System (ADS)

    Chen, Hua

    2015-03-01

    Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity based on transition metal atom chains formed on a superconducting substrate can be realized experimentally when the chain behaves like a ferromagnetic macrospin. In this talk I will address the structural and bonding considerations which determine whether or not a particular atom chain will have magnetic and electronic properties favorable for topological superconductivity. By using a Slater-Koster tight-binding model to account for important features of transition metal electronic structure, I conclude that topological states are common for ferromagnetic chains on superconductors and that they are nearly universal when ferromagnetic transition metal chains form straight lines on superconducting substrates. The proximity induced superconducting gap on the chain is ~ ΔEso / J where Δ is the s-wave pair-potential on the chain, Eso is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and J is the exchange-splitting of the ferromagnetic chain d-bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. I will specifically discuss the spatial decay length of the Majorana end modes which can be much shorter than the coherence length from the induced p-wave gap on the chain due to its strong coupling to the three-dimensional superconducting substrate, in agreement with experimental results. Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong s - wave pairing and strong Rashba spin-orbit coupling, but there seems to be considerable scope to optimize the 1D topological superconductivity by varying the atomic composition and structure of the chain. The authors acknowledge support from the Office of Naval Research under Grant ONR-N00014-14-1-0330.

  17. Superconductivity in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Maiti, Saurabh

    Iron based superconductors(FeSC) are a new class of high temperature superconductors with very intriguing properties. These materials cannot be explained using the 'conventional' logic of the 'conventional' superconductors, and is also different from the Cuprates-the other popular class of high temperature superconductors. A complete description of the superconducting state in these materials requires a thorough understanding of its superconducting order parameter and the mechanism that leads to superconductivity-both of which are unsettled issues. In this thesis, we attempt to tackle some aspects of these issues. We first discuss, keeping the wisdom of Fermi-liquid theory in mind, the criteria for the superconducting instability in FeSC which is a lattice based system. Superconductivity in lattice based systems is different from well known BCS superconductivity. We make the point that the presence of electron and hole like carriers are crucial for the manifestations of such properties in the FeSCs. We then present a prescription to analyze the symmetries and structure of the superconducting order parameter (the gap) in generic lattice based systems where only the interaction amongst fermions close to the Fermi surface is important. We demonstrate the effectiveness of this prescription by applying it to the case of FeSCs where we study the evolution of the gap with injecting of carriers (of both hole and electron like). This prescription avoids use of heavy numerical studies and still gives results in excellent agreement with numerical and experimental studies. Elaborating more on the intriguing nature of FeSCs, we also point to the possibility of a new time reversal symmetry breaking s+is state that is unique to systems like these (due to presence of multiple Fermi pockets of the carriers) and discuss its experimental consequences.

  18. BNL Direct Wind Superconducting Magnets

    SciTech Connect

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  19. Freely Oriented, Portable Superconducting Magnet

    NASA Astrophysics Data System (ADS)

    Schmierer, E. N.; Charles, B.; Efferson, R.; Hill, D.; Jankowski, T.; Laughon, G.; Prenger, C.

    2008-03-01

    A high-field low-temperature superconducting solenoidal magnet was developed that is portable and can be operated in any orientation relative to gravity. The design consists of several features that make this feasible; 1) bulk liquid cryogen storage occurs in a separate Dewar rather than as part of the magnet assembly, which allows single-person transport due to each component of the system having low relative weight, 2) vapor generated pressurization that circulates cryogenic fluid to and from the magnet with flexible transfer lines allowing operation in any orientation, and 3) composite, low-conducting structural members are used to suspend the magnet and shield layers within the vacuum vessel that provide a robust low heat loss design. Cooling is provided to the magnet through fluid channels that are in thermal contact with the magnet. The overall design of this magnet system, some of the analyses performed that address unique behavior of this system (pressure rise during a magnet quench and transient cooldown), and test results are presented.

  20. Low noise multiwasher superconducting interferometer

    SciTech Connect

    Carelli, P.; Castellano, M.G.; Torrioli, G.; Leoni, R.

    1998-01-01

    The dc-superconducting quantum interference device (SQUID) is a low-noise converter from magnetic flux to voltage which can have, in principle, an energy sensitivity near the quantum limit of {h_bar}/2. A critical parameter for the ideal performance is the device inductance, which must be kept as small as possible. Minimizing the SQUID inductance, however, is a major concern for a practical device; this requirement implies a small SQUID ring and hence magnetic coupling with an external signal is more difficult to achieve. Here we present an original scheme (called multiwasher) to circumvent this problem, and its implementation in an all-refractory thin-film device. Our scheme not only provides good magnetic coupling with a large input coil (0.5 {mu}H) and very low SQUID inductance, but also shielding from outside uniform fields, such as those generated by ambient disturbances. The measured coupled spectral energy sensitivity in the white region at about 1 kHz is 28{h_bar} at 4.2 K and 5.5{h_bar} in a pumped helium bath at 0.9 K. The flux noise spectral density at 0.1 Hz and 0.9 K is {Phi}{sub n}=1{times}10{sup {minus}6}{Phi}{sub 0}/{radical} (Hz) . {copyright} {ital 1998 American Institute of Physics.}

  1. Topological Superconductivity with Magnetic Atoms

    NASA Astrophysics Data System (ADS)

    Glazman, Leonid

    2015-03-01

    Chains of magnetic impurities embedded in a conventional s-wave superconductor may induce the formation of a topologically non-trivial superconducting phase. If such a phase is formed along a chain, then its ends carry Majorana fermions. We investigate this possibility theoretically by developing a tight-binding Bogoliubov-de Gennes description, starting from the Shiba bound states induced by the individual magnetic impurities. While the resulting Hamiltonian has similarities with the Kitaev model for one-dimensional spinless p-wave superconductors, there are also important differences, most notably the long-range (power-law) nature of hopping and pairing as well as the complex hopping amplitudes. We develop an analytical theory, complemented by numerical approaches, which accounts for the electron long-range pairing and hopping along the chain, inhomogeneous magnetic order in the chain of embedded impurities or spin-orbit coupling in the host superconductor, and the possibility of direct electron hopping between the impurity atoms. This allows us to elucidate the domain of parameters favoring the formation of a topological phase and to find the spatial structure of Majorana states appearing in that phase. This talk is based on joint work with F. von Oppen, Falko Pientka, and Yang Peng.

  2. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  3. Superconductive digital readout for IR FPA sensors

    NASA Astrophysics Data System (ADS)

    Durand, D. J.; Abelson, L. A.; Dalrymple, B. J.; Eaton, L.; Heflinger, L. O.; Leung, M.; Pham, T.; Sandell, R. D.; Silver, A. H.; Spargo, J. W.

    1992-07-01

    We have built and demonstrated an all superconductive digital readout for use in an IR focal plane array sensor. High performance, ultralow power superconductive circuits perform the functions of low noise preamplification and analog to digital conversion. The superconductive readout was tested with a variety of detectors, including InSb, Si:As, and a thin film NbN superconducting detector. Light sources included a HeNe laser (0.6 micron), a CO2 laser (10 microns), and a blackbody (400 to 900 K). In each case, the detector and readout circuitry was assembled into a 2 inch diameter, 6 inch long test package cooled in a single dewar. We demonstrated the functionality of the detector/readout channel from input photons to output digital signal. The superconductive readout reported here used Nb-based circuits operating at 4 K. An NbN squid amplifier and detector have subsequently been demonstrated above 10 K. We discuss the extension of the entire digital readout to operating temperatures above 10 K.

  4. Superconducting state parameters of binary metallic glasses

    NASA Astrophysics Data System (ADS)

    Vora, Aditya

    2008-06-01

    Ashcroft's empty core (EMC) model potential is used to study the superconducting state parameters (SSPs) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature T C, isotope effect exponent αand effective interaction strength N O V of some binary metallic glasses based on the superconducting (S), conditional superconducting (S') and non-superconducting (NS) elements of the periodic table. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used for the first time with EMC potential in the present investigation to study the screening influence on the aforesaid properties. The T C obtained from the H-local field correction function are in excellent agreement with available theoretical or experimental data. In the present computation, the use of the pseudo-alloy-atom model (PAA) was proposed and found successful. Present work results are in qualitative agreement with such earlier reported experimental values which confirm the superconducting phase in all metallic glasses. A strong dependency of the SSPs of the metallic glasses on the valence `Z' is identified.

  5. Superconducting state parameters of binary metallic glasses

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2008-06-01

    Ashcroft’s empty core (EMC) model potential is used to study the superconducting state parameters (SSPs) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature T C , isotope effect exponent αand effective interaction strength N O V of some binary metallic glasses based on the superconducting (S), conditional superconducting (S’) and non-superconducting (NS) elements of the periodic table. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used for the first time with EMC potential in the present investigation to study the screening influence on the aforesaid properties. The T C obtained from the H-local field correction function are in excellent agreement with available theoretical or experimental data. In the present computation, the use of the pseudo-alloy-atom model (PAA) was proposed and found successful. Present work results are in qualitative agreement with such earlier reported experimental values which confirm the superconducting phase in all metallic glasses. A strong dependency of the SSPs of the metallic glasses on the valence ‘Z’ is identified.

  6. Simulation of an HTS Synchronous Superconducting Generator

    NASA Astrophysics Data System (ADS)

    Zermeno, Victor M. R.; Abrahamsen, Asger B.; Mijatovic, Nenad; Sorensen, Mads Peter; Jensen, Bogi B.; Pedersen, Niels F.

    In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, mechanical torque fluctuations, etc. Unlike regular conductors, superconductors, experience high losses when exposed to AC fields. Thus, calculation of such losses is relevant for machine design to avoid quenches and increase performance. Superconducting coated conductors are well known to exhibit nonlinear resistivity, thus making the computation of heating losses a cumbersome task. Furthermore, the high aspect ratio of the superconducting materials involved adds a penalty in the time required to perform simulations.The chosen strategy for simulation is as follows: A mechanical torque signal together with an electric load is used to drive the finite element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings of the rotor. Finally, heating losses are computed as a response to the electric load. The model is used to evaluate the transient response of the generator.

  7. Fabrication and Characterization of Superconducting Resonators.

    PubMed

    Cataldo, Giuseppe; Barrentine, Emily M; Brown, Ari D; Moseley, Samuel H; U-Yen, Kongpop; Wollack, Edward J

    2016-01-01

    Superconducting microwave resonators are of interest for a wide range of applications, including for their use as microwave kinetic inductance detectors (MKIDs) for the detection of faint astrophysical signatures, as well as for quantum computing applications and materials characterization. In this paper, procedures are presented for the fabrication and characterization of thin-film superconducting microwave resonators. The fabrication methodology allows for the realization of superconducting transmission-line resonators with features on both sides of an atomically smooth single-crystal silicon dielectric. This work describes the procedure for the installation of resonator devices into a cryogenic microwave testbed and for cool-down below the superconducting transition temperature. The set-up of the cryogenic microwave testbed allows one to do careful measurements of the complex microwave transmission of these resonator devices, enabling the extraction of the properties of the superconducting lines and dielectric substrate (e.g., internal quality factors, loss and kinetic inductance fractions), which are important for device design and performance. PMID:27284966

  8. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  9. Overview of Superconductivity and Challenges in Applications

    NASA Astrophysics Data System (ADS)

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.

  10. Superconducting circuitry for quantum electromechanical systems

    NASA Astrophysics Data System (ADS)

    LaHaye, Matthew D.; Rouxinol, Francisco; Hao, Yu; Shim, Seung-Bo; Irish, Elinor K.

    2015-05-01

    Superconducting systems have a long history of use in experiments that push the frontiers of mechanical sensing. This includes both applied and fundamental research, which at present day ranges from quantum computing research and e orts to explore Planck-scale physics to fundamental studies on the nature of motion and the quantum limits on our ability to measure it. In this paper, we first provide a short history of the role of superconducting circuitry and devices in mechanical sensing, focusing primarily on efforts in the last decade to push the study of quantum mechanics to include motion on the scale of human-made structures. This background sets the stage for the remainder of the paper, which focuses on the development of quantum electromechanical systems (QEMS) that incorporate superconducting quantum bits (qubits), superconducting transmission line resonators and flexural nanomechanical elements. In addition to providing the motivation and relevant background on the physical behavior of these systems, we discuss our recent efforts to develop a particular type of QEMS that is based upon the Cooper-pair box (CPB) and superconducting coplanar waveguide (CPW) cavities, a system which has the potential to serve as a testbed for studying the quantum properties of motion in engineered systems.

  11. Local and global superconductivity in bismuth

    NASA Astrophysics Data System (ADS)

    Baring, Luis A.; da Silva, Robson R.; Kopelevich, Yakov

    2011-10-01

    We performed magnetization M(H, T) and magnetoresistance R(T, H) measurements on powdered (grain size ˜149 μm) as well as highly oriented rhombohedral (A7) bismuth (Bi) samples consisting of single crystalline blocks of size ˜1 × 1 mm in the plane perpendicular to the trigonal c axis. The obtained results revealed the occurrence of (1) local superconductivity in powdered samples with Tc(0) = (8.75 ± 0.05) K, and (2) global superconductivity at Tc(0) = (7.3 ± 0.1) K in polycrystalline Bi triggered by low-resistance ohmic contacts with silver (Ag) normal metal. The results provide evidence that the superconductivity in Bi is localized in a tiny volume fraction, probably at intergrain or Ag/Bi interfaces. On the other hand, the occurrence of global superconductivity observed for polycrystalline Bi can be accounted for by enhancement of the superconducting order parameter phase stiffness induced by the normal metal contacts, the scenario proposed in the context of "pseudogap regime" in cuprates [E. Berg et al., Phys. Rev. B 78, 094509 (2008)].

  12. Superconducting magnets for toroidal fusion reactors

    SciTech Connect

    Haubenreich, P.N.

    1980-01-01

    Fusion reactors will soon be employing superconducting magnets to confine plasma in which deuterium and tritium (D-T) are fused to produce usable energy. At present there is one small confinement experiment with superconducting toroidal field (TF) coils: Tokamak 7 (T-7), in the USSR, which operates at 4 T. By 1983, six different 2.5 x 3.5-m D-shaped coils from six manufacturers in four countries will be assembled in a toroidal array in the Large Coil Test Facility (LCTF) at Oak Ridge National Laboratory (ORNL) for testing at fields up to 8 T. Soon afterwards ELMO Bumpy Torus (EBT-P) will begin operation at Oak Ridge with superconducting TF coils. At the same time there will be tokamaks with superconducting TF coils 2 to 3 m in diameter in the USSR and France. Toroidal field strength in these machines will range from 6 to 9 T. NbTi and Nb/sub 3/Sn, bath cooling and forced flow, cryostable and metastable - various designs are being tried in this period when this new application of superconductivity is growing and maturing.

  13. Superconductivity at Dawn of the Iron Age

    ScienceCinema

    Tesanovic, Zlatko [Johns Hopkins University, Baltimore, Maryland, United States

    2010-09-01

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all of physics. From fundamental theories of the universe to strange goings-on in exotic materials to medical imaging and cell phones, its conceptual and practical dimensions span a reach as wide as anything in science. Twenty-odd years ago, the discovery of copper oxides ushered in a new era of high-temperature superconductivity, and the joyous exuberance that followed - with physicists throwing everything from fancy gauge theories to synchrotron radiation into its kitchen sink - only recently began to show any signs of waning. In the spring of 2008, as if on cue, a new family of iron pnictide high-temperature superconductors burst on the scene, hinting at an alternative route to room-temperature superconductivity and all of its momentous consequences. Fueled by genuine excitement - and a bit of hype - the iron-based superconductivity turned into a science blockbuster of 2009. I will present a pedagogical review of this new field, contrast the physics of iron- and copper-based systems, and speculate on the microscopic origins of the two types of high-temperature superconductivity.

  14. Superconductivity at Dawn of the Iron Age

    SciTech Connect

    Tesanovic, Zlatko

    2010-03-03

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all of physics. From fundamental theories of the universe to strange goings-on in exotic materials to medical imaging and cell phones, its conceptual and practical dimensions span a reach as wide as anything in science. Twenty-odd years ago, the discovery of copper oxides ushered in a new era of high-temperature superconductivity, and the joyous exuberance that followed - with physicists throwing everything from fancy gauge theories to synchrotron radiation into its kitchen sink - only recently began to show any signs of waning. In the spring of 2008, as if on cue, a new family of iron pnictide high-temperature superconductors burst on the scene, hinting at an alternative route to room-temperature superconductivity and all of its momentous consequences. Fueled by genuine excitement - and a bit of hype - the iron-based superconductivity turned into a science blockbuster of 2009. I will present a pedagogical review of this new field, contrast the physics of iron- and copper-based systems, and speculate on the microscopic origins of the two types of high-temperature superconductivity.

  15. Unusual magnetic properties of superconducting Bi/Ni bilayers

    NASA Astrophysics Data System (ADS)

    Zhou, Hexin; Jin, Xiaofeng; Jin Group Team

    Superconductivity and ferromagnetism are two incompatible phenomena. However, the interaction between them attracts numerous physicists' interests for both theoretical and experimental purposes. Recently, increasing experimental discoveries reveal unconventional effects in superconductor and ferromagnet hybrids, which stimulates a new field called superconducting spintronics. In present work, we report various intriguing magnetic properties of an unexpected superconducting bilayer consisting of non-superconducting Bi and ferromagnetic Ni. A large spontaneous magnetization is induced when the temperature is decreased below the superconductivity transition temperature, which indicates a complex interaction between superconductivity and ferromagnetism in this bilayer. The zero field cooling results show normal Meissner effect while the field cooling results show paramagnetic Meissner effect. Besides, magnetic hysteresis loops in low temperatures show flux pinning and flux jumping effects. Our findings pave the way for exploring unconventional superconductivity coupled to ferromagnetism and potential applications in superconducting spintronics.

  16. A Simple Demonstration of High Tc Superconductive Powder.

    ERIC Educational Resources Information Center

    Baker, Roger; Thompson, James C.

    1987-01-01

    Described is a simple demonstration that provides a way to determine if a given sample contains even a small fraction of superconducting material. The repulsion of the powder from a magnetic field is indicative of superconductivity. (RH)

  17. Stable superconducting magnet. [high current levels below critical temperature

    NASA Technical Reports Server (NTRS)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  18. Method and means for separating and classifying superconductive particles

    DOEpatents

    Park, Jin Y.; Kearney, Robert J.

    1991-01-01

    The specification and drawings describe a series of devices and methods for classifying and separating superconductive particles. The superconductive particles may be separated from non-superconductive particles, and the superconductive particles may be separated by degrees of susceptibility to the Meissner effect force. The particles may also be simultaneously separated by size or volume and mass to obtain substantially homogeneous groups of particles. The separation techniques include levitation, preferential sedimentation and preferential concentration. Multiple separation vector forces are disclosed.

  19. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  20. A superconducting large-angle magnetic suspension

    NASA Technical Reports Server (NTRS)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  1. Superconducting properties of BaBi3

    NASA Astrophysics Data System (ADS)

    Haldolaarachchige, Neel; Kushwaha, S. K.; Gibson, Quinn; Cava, R. J.

    2014-10-01

    We report the superconducting properties of single crystals of the intermetallic compound BaBi3, whose crystal structure is perovskite related. The superconducting transition temperature ({{T}_{c}}=5.82 K) was obtained from heat capacity measurements. Using the measured values for the critical fields {{H}_{c1}},{{H}_{c2}}, and the specific heat C, we estimate the thermodynamic critical field H c (0), coherence length ξ(0), Debye temperature {{\\Theta }_{D}} and coupling constant λep. \\Delta C/\\gamma {{T}_{c}} and λep suggest that BaBi3 is a weakly coupled superconductor. Electronic band structure calculations show a complex Fermi surface and a moderately high DOS at the Fermi level. Further analysis of the electronic specific heat shows that the superconducting properties are dominated by s-wave gap.

  2. Phonon limited superconducting correlations in metallic nanograins

    NASA Astrophysics Data System (ADS)

    Croitoru, M. D.; Shanenko, A. A.; Vagov, A.; Milošević, M. V.; Axt, V. M.; Peeters, F. M.

    2015-11-01

    Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electron-phonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest Tc achievable by quantum confinement.

  3. Paramagnetic supercurrent in a mesoscopic superconducting disk

    NASA Astrophysics Data System (ADS)

    Kanda, Akinobu; Ootuka, Youiti

    2003-05-01

    We report an experimental evidence for the paramagnetic supercurrent flowing along the periphery of a mesoscopic superconducting disk in decreasing perpendicular magnetic fields. The sample is an Al superconducting disk with a thin drain lead. Several Cu leads are connected to different parts of the ring periphery through highly resistive tunnel junctions. From voltage drop across a tunnel junction, we study the change in the local superconducting energy gap as a function of perpendicular magnetic field. We find that the energy gap at the ring periphery decreases with decreasing the magnetic field, showing that the circulating supercurrent is in the direction supporting the external magnetic field ( paramagnetic). The condition for the observation is the same as that for the paramagnetic Meissner effect (Geim et al., Nature 390 (1997) 259), implying that the origin of the paramagnetic Meissner effect is the paramagnetic supercurrent.

  4. Advantages and Challenges of Superconducting Accelerators

    NASA Astrophysics Data System (ADS)

    Krischel, Detlef

    After a short review of the history toward high-energy superconducting (SC) accelerators for ion beam therapy (IBT), an overview is given on material properties and technical developments enabling to use SC components in a medical accelerator for full body cancer treatment. The design concept and the assembly of a commercially available SC cyclotron for proton therapy (PT) are described and the potential advantages for applying superconductivity are assessed. The discussion includes the first years of operation experience with regard to cryogenic and magnetic performance, automated beam control, and maintenance aspects. An outlook is given on alternative machine concepts for protons-only or for heavier ions. Finally, it is discussed whether the application of superconductivity might be expanded in the future to a broader range of subsystems of clinical IBT accelerators such as SC magnets for transfer beam lines or gantries.

  5. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, John R.; Clem, John R.

    1983-01-01

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  6. Detection of geometric phases in superconducting nanocircuits

    NASA Astrophysics Data System (ADS)

    Falci, Giuseppe; Fazio, Rosario; Palma, G. Massimo; Siewert, Jens; Vedral, Vlatko

    2000-09-01

    When a quantum-mechanical system undergoes an adiabatic cyclic evolution, it acquires a geometrical phase factor in addition to the dynamical one; this effect has been demonstrated in a variety of microscopic systems. Advances in nanotechnology should enable the laws of quantum dynamics to be tested at the macroscopic level, by providing controllable artificial two-level systems (for example, in quantum dots and superconducting devices). Here we propose an experimental method to detect geometric phases in a superconducting device. The setup is a Josephson junction nanocircuit consisting of a superconducting electron box. We discuss how interferometry based on geometrical phases may be realized, and show how the effect may be applied to the design of gates for quantum computation.

  7. Optical detection of the superconducting proximity effect

    SciTech Connect

    Greene, L.H.; Abeyta, A.C.; Roshchin, I.V.; Robinson, I.K.; Dorsten, J.F.; Tanzer, T.A.; Bohn, P.W.

    1996-12-31

    The authors present the first detection of a superconducting proximity effect by optical techniques. Raman scattering on n{sup +}-InAs is performed through very thin, high-quality, superconducting Nb films grown directly on the (100) InAs surface. The 6 to 10 nm thick Nb films exhibit {Tc}`s of 2.5 to 5.5 K, as measured by electronic transport, and are flat to {approximately}0.5 nm, as measured by x-ray reflectivity. As the Nb/InAs structure is cooled below the superconducting transition temperature, the magnitude of the unscreened LO phonon mode, associated with the surface charge accumulation layer in the InAs, is observed to be enhanced by more than 40%. This reversible change is observed only when the Nb is in good electrical contact with the InAs.

  8. Phonon limited superconducting correlations in metallic nanograins

    PubMed Central

    Croitoru, M. D.; Shanenko, A. A.; Vagov, A.; Milošević, M. V.; Axt, V. M.; Peeters, F. M.

    2015-01-01

    Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electron-phonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest Tc achievable by quantum confinement. PMID:26565073

  9. Ultra-Stable Superconducting-Maser Oscillator

    NASA Technical Reports Server (NTRS)

    Strayer, Donald M.; Dick, G. John

    1989-01-01

    Unprecedented stability of frequency in superconducting, triple-cavity ruby maser oscillator achieved by incorporation of amplitude-control subsystem. New design enhances ultra-stable measurements of time by reducing fluctuations to 2 X 10 to negative 19th power routinely, and to as little as 10 to negative 20th power in exceptional cases. Currents induced in superconducting pickup coil by changes in magnetic field in ruby. Currents from coil fed to superconducting quantum-interference device (SQUID) magnetometer, output used to generate control signal for electronically variable attenuator. Attenuator varies pump-signal amplitude in response to magnetic-field fluctuations in ruby. Very high feedback-loop gain used for sensitivity of control and adequate compensation of fluctuations.

  10. Superconducting technology for electric propulsion. Master's thesis

    SciTech Connect

    Keamy, E.F.

    1988-06-01

    This thesis analyzes the superconducting technology for a shipboard electric propulsion system. Superconductor operational operational limits, and magnet-design requirements were established. The magnetic-field requirements for a large-scale superconducting propulsion plant were analyzed from experimental information on copper and aluminum-stabilized NbTi superconductors. Experimental results were followed with a feasibility study in the conversion of a DD963 Spruance Class Destroyer from mechanical to superconducting electric drive. The results of the conversion are an increase in survivability, speed, usable deck area (4,954 ftS, maintainability, propeller efficiency and endurance range (+71%) along with a decrease in displacement (-2.83%) and self-radiated noise without compromising existing mission capabilities. The estimated cost of the conversion is $118.8 million dollars.

  11. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, J.R.; Clem, J.R.

    1983-10-11

    Disclosed are a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped. 5 figs.

  12. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, J.R.

    1982-07-09

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  13. Microwave mode structure of superconducting metamaterial resonators

    NASA Astrophysics Data System (ADS)

    Wang, Haozhi; Rouxinol, Francisco; Lahaye, Matthew; Plourde, Britton

    2015-03-01

    Arrays of lumped circuit elements can be used to form metamaterial resonant structures that exhibit novel behavior compared to resonators made from conventional distributed transmission lines. By engineering the parameters and configurations of the lumped elements composing the unit cell of such a metamaterial resonator, one can generate spectra with wide stop-bands as well as pass-bands with dense microwave modes. If the metamaterials are fabricated from superconducting traces, the losses can be low enough to allow for these dense modes to be resolved and potentially coupled to quantum systems, such as superconducting qubits. We will present our low-temperature measurements of a variety of superconducting metamaterial resonators and we will compare these with numerical simulations of the microwave properties.

  14. Sr2IrO4: Gateway to cuprate superconductivity?

    DOE PAGESBeta

    Mitchell, J. F.

    2015-06-05

    High temperature superconductivity in cuprates remains a defining challenge in condensed matter physics. Recently, a new set of related compounds based on Ir rather than Cu has been discovered that may be on the verge of superconductivity themselves or be able to shed new light on the underlying interactions responsible for superconductivity in the cuprates.

  15. Energy spectrum and wavefunction of electrons in hybrid superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Kruchinin, S. P.

    2016-03-01

    Recent experiments have fabricated structured arrays. We study hybrid nanowires, in which normal and superconducting regions are in close proximity, by using the Bogoliubov-de Gennes equations for superconductivity in a cylindrical nanowire. We succeed to obtain the quantum energy levels and wavefunctions of a superconducting nanowire. The obtained spectra of electrons remind Hofstadter’s butterfly.

  16. The advantages and challenges of superconducting magnets in particle therapy

    NASA Astrophysics Data System (ADS)

    Gerbershagen, Alexander; Calzolaio, Ciro; Meer, David; Sanfilippo, Stéphane; Schippers, Marco

    2016-08-01

    This paper provides an overview of the current developments in superconducting magnets for applications in proton and ion therapy. It summarizes the benefits and challenges regarding the utilization of these magnets in accelerating systems (e.g. superconducting cyclotrons) and gantries. The paper also provides examples of currently used superconducting particle therapy systems and proposed designs.

  17. Proposed experimental test of the theory of hole superconductivity

    NASA Astrophysics Data System (ADS)

    Hirsch, J. E.

    2016-06-01

    The theory of hole superconductivity predicts that in the reversible transition between normal and superconducting phases in the presence of a magnetic field there is charge flow in direction perpendicular to the normal-superconductor phase boundary. In contrast, the conventional BCS-London theory of superconductivity predicts no such charge flow. Here we discuss an experiment to test these predictions.

  18. Improved Superconducting Wire for Wind Generators: Superconducting Wires for Direct-Drive Wind Generators

    SciTech Connect

    2012-01-01

    REACT Project: Brookhaven National Laboratory will develop a low-cost superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. Brookhaven National Laboratory will develop a high-performance superconducting wire that can handle significantly more electrical current, and will demonstrate an advanced manufacturing process that has the potential to yield a several-fold reduction in wire costs while using a using negligible amount of rare earth material. This design has the potential to make a wind turbine generator lighter, more powerful, and more efficient, particularly for offshore applications.

  19. Development of superconducting contacts for the CRESST II 66-channel superconducting quantum interference device readout system.

    PubMed

    Majorovits, B; Henry, S; Kraus, H

    2007-07-01

    The CRESST experiment is designed to search for weakly interacting massive particle dark matter with cryogenic detectors. CRESST II will use up to 33 CaWO(4) crystals with a total mass of approximately 10 kg. These many detectors require a readout system based on 66-channel superconducting quantum interference devices (SQUIDs). In this article we report on the development of a modular superconducting connector for the 66-channel SQUID readout circuit. We show that the technique developed reliably produces superconducting contacts. PMID:17672757

  20. Development of superconducting contacts for the CRESST II 66-channel superconducting quantum interference device readout system

    SciTech Connect

    Majorovits, B.; Henry, S.; Kraus, H.

    2007-07-15

    The CRESST experiment is designed to search for weakly interacting massive particle dark matter with cryogenic detectors. CRESST II will use up to 33 CaWO{sub 4} crystals with a total mass of {approx}10 kg. These many detectors require a readout system based on 66-channel superconducting quantum interference devices (SQUIDs). In this article we report on the development of a modular superconducting connector for the 66-channel SQUID readout circuit. We show that the technique developed reliably produces superconducting contacts.

  1. High-Temperature Monoclinic Cc Phase with Reduced c/a Ratio in Bi-based Perovskite Compound Bi2ZnTi1-xMnxO6.

    PubMed

    Yu, Runze; Matsuda, Narumi; Tominaga, Ken; Shimizu, Keisuke; Hojo, Hajime; Sakai, Yuki; Yamamoto, Hajime; Oka, Kengo; Azuma, Masaki

    2016-06-20

    Monoclinic phases with Cm, Pm, and Cc space groups are indispensable to understand the high performance of electromechanical properties at the morphotropic phase boundary (MPB) of lead-based perovskite oxides Pb(ZrxTi1-x)O3 (PZT), [Pb(Mg1/3Nb2/3)O3]1-x-(PbTiO3)x (PMN-PT), and [Pb(Zn1/3Nb2/3)O3]1-x-(PbTiO3)x (PZN-PT). Here, a nearly single monoclinic phase with space group Cc was observed in the Bi-based lead-free perovskite compound Bi2ZnTi1-xMnxO6 at x = 0.4. This phase was the same as the low-temperature phase of the MPB composition of PZT but existed at a much higher temperature. Despite the reduced pseudo c/a ratio of 1.065, which is the same as that of PbTiO3 at room temperature, ionic model calculation based on the Rietveld refinement data indicated the polarization of Bi2ZnTi0.6Mn0.4O6 is 95.8 μC/cm(2). The tilting and significant anisotropic distortion of the octahedron were found to cause the c/a ratio to reduce. Accordingly, the effective piezoelectric constant d33 of Bi2ZnTi0.6Mn0.4O6 thin film was found to be 12 pm/V. PMID:27254112

  2. Thermal fluctuation effects on the magnetization above and below the superconducting transition in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} crystals in the weak magnetic field limit

    SciTech Connect

    Mosqueira, J.; Ramallo, M.V.; Torron, C.; Vidal, F.

    1996-12-01

    The authors present detailed experimental data of the magnetization, M{sub ab}(T,H), of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} crystals on both sides of the superconducting transition, for magnetic fields, H, applied perpendicularly to the ab (CuO{sub 2}) planes. The data are analyzed in terms of thermal fluctuations in the weak H limit: In the reversible mixed state below the transition, by taking into account the vortex fluctuations, as first proposed by Bulaevskii, Ledvij and Kogan, which are much more important in the Bi-based compounds. Above the transition, by taking into account the order parameter amplitude fluctuations (OPF), through a generalization to multilayered superconductors of the Schmidt-like approach.

  3. Can doping graphite trigger room temperature superconductivity? Evidence for granular high-temperature superconductivity in water-treated graphite powder.

    PubMed

    Scheike, T; Böhlmann, W; Esquinazi, P; Barzola-Quiquia, J; Ballestar, A; Setzer, A

    2012-11-14

    Granular superconductivity in powders of small graphite grains (several tens of micrometers) is demonstrated after treatment with pure water. The temperature, magnetic field and time dependence of the magnetic moment of the treated graphite powder provides evidence for the existence of superconducting vortices with some similarities to high-temperature granular superconducting oxides but even at temperatures above 300 K. Room temperature superconductivity in doped graphite or at its interfaces appears to be possible. PMID:22949348

  4. The high temperature superconductivity space experiment

    NASA Technical Reports Server (NTRS)

    Webb, Denis C.; Nisenoff, M.

    1991-01-01

    The history and the current status of the high temperature superconductivity space experiment (HTSSE) initiated in 1988 are briefly reviewed. The goal of the HTSSE program is to demonstrate the feasibility of incorporating high temperature superconductivity (HTS) technology into space systems. The anticipated payoffs include the development of high temperature superconductor devices for space systems; preparation and space qualification of a cryogenically cooled experimental package containing HTS devices and components; and acquisition of data for future space experiments using more complex HTS devices and subsystems. The principal HTSSE systems and devices are described.

  5. Superconducting fault current controller/current controller

    DOEpatents

    Cha, Yung S.

    2004-06-15

    A superconducting fault current controller/current controller employs a superconducting-shielded core reactor (SSCR) with a variable impedance in a secondary circuit to control current in a primary circuit such as an electrical distribution system. In a second embodiment, a variable current source is employed in a secondary circuit of an SSCR to control current in the primary circuit. In a third embodiment, both a variable impedance in one secondary circuit and a variable current source in a second circuit of an SSCR are employed for separate and independent control of current in the primary circuit.

  6. Apparatus for characterizing conductivity of superconducting materials

    DOEpatents

    Doss, J.D.

    1993-12-07

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.

  7. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect

    Struzhkin, Viktor V.

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  8. High-Tc superconducting monolithic phase shifter

    NASA Astrophysics Data System (ADS)

    Takemoto-Kobayashi, June H.; Jackson, Charles M.; Pettiette-Hall, Claire L.; Burch, John F.

    1992-03-01

    A high temperature superconducting (HTS) X-band phase shifter using a distributed Josephson inductance (DJI) approach was designed and fabricated. Phase swings of over 60 deg were measured at 65 K and below, with measurable phase shifts at temperatures above 77 K. High quality HTS films and superconducting quantum interference devices (SQUIDs) were deposited by laser ablation. A total of 40 HTS step edge SQUIDs were successfully integrated into a monolithic HTS circuit to produce a phase shifter in a resonant configuration. The magnitude of the Josephson inductance is calculated and a lumped element model is compared to measurements.

  9. Superconducting Detectors for Superlight Dark Matter.

    PubMed

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-01

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure. PMID:26799009

  10. Superconducting magnet system for the TPX Tokamak

    SciTech Connect

    Hassenzahl, W.V.; Chaplin, M.R.; Heim, J.R.

    1993-09-15

    The Tokamak Physics Experiment (TPX) will be the first Tokamak using superconducting magnets for both the poloidal and toroidal field. It is designed for advanced Tokamak physics experiments in steady-state and long-pulse operation. The TPX superconducting magnets use an advanced cable-in-conduit conductor (CICC) design similar to that developed in support of the International Thermonuclear Experimental Reactor (ITER). The toroidal field magnets provide 4.0 T at 2.25 m with a stored energy of 1.05 GJ. The poloidal field magnets provide 18.0 V-s to ohmically start and control long burns of a 2.0 MA plasma.

  11. Preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W.; Poeppel, Roger B.

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities.

  12. Can Two-Dimensional Boron Superconduct?

    PubMed

    Penev, Evgeni S; Kutana, Alex; Yakobson, Boris I

    2016-04-13

    Two-dimensional boron is expected to exhibit various structural polymorphs, all being metallic. Additionally, its small atomic mass suggests strong electron-phonon coupling, which in turn can enable superconducting behavior. Here we perform first-principles analysis of electronic structure, phonon spectra, and electron-phonon coupling of selected 2D boron polymorphs and show that the most stable structures predicted to feasibly form on a metal substrate should also exhibit intrinsic phonon-mediated superconductivity, with estimated critical temperature in the range of Tc ≈ 10-20 K. PMID:27003635

  13. Superconducting circuits for quantum information: an outlook.

    PubMed

    Devoret, M H; Schoelkopf, R J

    2013-03-01

    The performance of superconducting qubits has improved by several orders of magnitude in the past decade. These circuits benefit from the robustness of superconductivity and the Josephson effect, and at present they have not encountered any hard physical limits. However, building an error-corrected information processor with many such qubits will require solving specific architecture problems that constitute a new field of research. For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely. We offer a view on some directions for the field and speculate on its future. PMID:23471399

  14. Midwest Superconductivity Consortium. 1991 Progress report

    SciTech Connect

    Liedl, G.L.

    1992-01-01

    The Midwest Superconductivity Consortium`s, MISCON, mission is to advance the science and understanding of high {Tc} superconductivity. Programmatic research focuses upon key materials-related problems: synthesis and processing; and limiting features in transport phenomena. During the past twenty-one projects produced over eighty-seven talks and seventy-two publications. Key achievements this past year expand our understanding of processing phenomena relating to crystallization and texture, metal superconductor composites, and modulated microstructures. Further noteworthy accomplishments include calculations on 2-D superconductor insulator transition, prediction of flux line lattice melting, and an expansion of our understanding and use of microwave phenomena as related to superconductors.

  15. Superconducting nanowire single photon detector on diamond

    SciTech Connect

    Atikian, Haig A.; Burek, Michael J.; Choy, Jennifer T.; Lončar, Marko; Eftekharian, Amin; Jafari Salim, A.; Hamed Majedi, A.

    2014-03-24

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310 nm and 632 nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300 pm Root Mean Square surface roughness are obtained.

  16. Characteristics of superconducting flux-flow transistors

    SciTech Connect

    Hohenwarter, G.K.G. ); Martens, J.S.; Thompson, J.H.; Beyer, J.B.; Nordman, J.E. . Dept. of Electrical and Computer Engineering); Ginley, D.S. )

    1991-03-01

    This paper compares the operational characteristics and physics of three superconducting thin-film based transistor structures. The devices are based on the motion of quantized vortices, either Josephson fluxons in a long tunnel junction or Abrikosov fluxons in a superconducting film. The transistor amplification mechanism, in all three cases, is accomplished by controlling magnetic field at the boundaries of the structure. This paper provides an overview of present understanding of device mechanisms and of measured characteristics, including voltampere relations and small and large signal circuit parameters. Demonstrated applications and anticipated limitations are discussed.

  17. Fluxon readout of a superconducting qubit.

    PubMed

    Fedorov, Kirill G; Shcherbakova, Anastasia V; Wolf, Michael J; Beckmann, Detlef; Ustinov, Alexey V

    2014-04-25

    An experiment demonstrating a link between classical single-flux quantum digital logic and a superconducting quantum circuit is reported. We implement coupling between a moving Josephson vortex (fluxon) and a flux qubit by reading out of a state of the flux qubit through a frequency shift of the fluxon oscillations in an annular Josephson junction. The energy spectrum of the flux qubit is measured using this technique. The implemented hybrid scheme opens an opportunity to readout quantum states of superconducting qubits with the classical fluxon logic circuits. PMID:24815629

  18. Optical mirror coated with organic superconducting material

    NASA Astrophysics Data System (ADS)

    Lake, John A.; Heath, William B.

    1988-08-01

    An optical mirror has enhanced reflectivity and reduced thermal distortions when it is composed of a substrate coated with a reflective coating made of an organic superconducting material. The substrate is best constructed of materials which have the most favorable thermal expansion and thermal conduction characteristics at temperatures near 0 K. such as: silicon, diamond, copper, and sapphire. The reflective coating is only a few microns thick and composed of organometallic compounds and is cooled to superconducting or cryogenic temperatures of less than 100 K.

  19. Higgs instability in gapless superfluidity/superconductivity

    SciTech Connect

    Giannakis, Ioannis; Hou Defu; Huang Mei; Ren Haicang

    2007-01-01

    In this letter we explore the Higgs instability in the gapless superfluid/superconducting phase. This is in addition to the (chromo)magnetic instability that is related to the fluctuations of the Nambu-Goldstone bosonic fields. While the latter may induce a single-plane-wave Larkin-Ovchinnikov-Fulde-Ferrel state, the Higgs instability favors spatial inhomogeneity. In the case of the 2-flavor color superconductivity state the Higgs instability can only be partially removed by the electric Coulomb energy. But this does not exclude the possibility that it can be completely removed in other exotic states such as the gapless color-flavor locked state.

  20. Superconducting solenoid model magnet test results

    SciTech Connect

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; /Fermilab

    2006-08-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests.

  1. Advances in superconducting quantum electronic microcircuit fabrication

    NASA Technical Reports Server (NTRS)

    Kirschman, R. K.; Notarys, H. A.; Mercereau, J. E.

    1975-01-01

    Standard microelectronic fabrication techniques have been utilized to produce batch quantities of superconducting quantum electronic devices and circuits. The overall goal is a fabrication technology yielding circuits that are rugged and stable and capable of being fabricated controllably and reproducibly in sizeable quantities. Our progress toward this goal is presented, with primary emphasis on the most recent work, which includes the use of electron-beam lithography and techniques of hybrid microelectronics. Several prototype microcircuits have been successfully fabricated. These microcircuits are formed in a thin-film parent material consisting of layers of superconducting and normal metals, and use proximity-effect structures as the active circuit elements.

  2. Designing focusing solenoids for superconducting RF accelerators

    SciTech Connect

    Davis, G.; Kashikhin, V.V.; Page, T.; Terechkine, I.; Tompkins, J.; Wokas, T.; /Fermilab

    2006-08-01

    The design of a focusing solenoid for use in a superconducting RF linac requires resolving a range of problems with conflicting requirements. Providing the required focusing strength contradicts the goal of minimizing the stray field on the surfaces of adjacent superconducting RF cavities. The requirement of a compact solenoid, able to fit into a gap between cavities, contradicts the need of mechanical support necessary to restrain electromagnetic forces that can result in coil motion and subsequent quenching. In this report we will attempt to address these and other issues arising during the development of focusing solenoids. Some relevant test data will also be presented.

  3. Fluxon Readout of a Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Shcherbakova, Anastasia V.; Wolf, Michael J.; Beckmann, Detlef; Ustinov, Alexey V.

    2014-04-01

    An experiment demonstrating a link between classical single-flux quantum digital logic and a superconducting quantum circuit is reported. We implement coupling between a moving Josephson vortex (fluxon) and a flux qubit by reading out of a state of the flux qubit through a frequency shift of the fluxon oscillations in an annular Josephson junction. The energy spectrum of the flux qubit is measured using this technique. The implemented hybrid scheme opens an opportunity to readout quantum states of superconducting qubits with the classical fluxon logic circuits.

  4. Superconducting RFQ development at Los Alamos

    SciTech Connect

    Wangler, T.P.; Cimabue, A.; Merson, J.; Mills, R.S.; Wood, R.; Young, L.

    1992-10-01

    We are investigating the performance capabilities of a niobium, superconducting, radiofrequency-quadrupole (RFQ) accelerator for high- field continuous-wave operation, to provide greater acceleration and stronger focusing of low-velocity ion beams. We present the results of our RFQ beam-dynamics studies, which test new design methods for increasing the beam transmission, our cavity-design calculations, and some mechanical-design aspects of a short, superconducting RFQ 4-vane prototype structure that will be tested at high fields during the coming year.

  5. Superconducting RFQ development at Los Alamos

    SciTech Connect

    Wangler, T.P.; Cimabue, A.; Merson, J.; Mills, R.S.; Wood, R.; Young, L.

    1992-01-01

    We are investigating the performance capabilities of a niobium, superconducting, radiofrequency-quadrupole (RFQ) accelerator for high- field continuous-wave operation, to provide greater acceleration and stronger focusing of low-velocity ion beams. We present the results of our RFQ beam-dynamics studies, which test new design methods for increasing the beam transmission, our cavity-design calculations, and some mechanical-design aspects of a short, superconducting RFQ 4-vane prototype structure that will be tested at high fields during the coming year.

  6. Midwest Superconductivity Consortium: 1994 Progress report

    SciTech Connect

    Not Available

    1995-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high {Tc} superconductivity. During the past year, 27 projects produced over 123 talks and 139 publications. Group activities and interactions involved 2 MISCON group meetings (held in August and January); with the second MISCON Workshop held in August; 13 external speakers; 79 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 48 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temperature superconductors.

  7. Apparatus for characterizing conductivity of superconducting materials

    DOEpatents

    Doss, James D.

    1993-01-01

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples.

  8. Superconducting Detectors for Superlight Dark Matter

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M.

    2016-01-01

    We propose and study a new class of superconducting detectors that are sensitive to O (meV ) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, mX≳1 keV . We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  9. Tunable graphene dc superconducting quantum interference device.

    PubMed

    Girit, Caglar; Bouchiat, V; Naaman, O; Zhang, Y; Crommie, M F; Zettl, A; Siddiqi, I

    2009-01-01

    Graphene exhibits unique electrical properties on account of its reduced dimensionality and "relativistic" band structure. When contacted with two superconducting electrodes, graphene can support Cooper pair transport, resulting in the well-known Josephson effect. We report here the fabrication and operation of a two junction dc superconducting quantum interference device (SQUID) formed by a single graphene sheet contacted with aluminum/palladium electrodes in the geometry of a loop. The supercurrent in this device can be modulated not only via an electrostatic gate but also by an applied magnetic fielda potentially powerful probe of electronic transport in graphene and an ultrasensitive platform for nanomagnetometry. PMID:19090696

  10. Quantum Magnetomechanics with Levitating Superconducting Microspheres

    NASA Astrophysics Data System (ADS)

    Romero-Isart, O.; Clemente, L.; Navau, C.; Sanchez, A.; Cirac, J. I.

    2012-10-01

    We show that by magnetically trapping a superconducting microsphere close to a quantum circuit, it is possible to perform ground-state cooling and prepare quantum superpositions of the center-of-mass motion of the microsphere. Due to the absence of clamping losses and time-dependent electromagnetic fields, the mechanical motion of micrometer-sized metallic spheres in the Meissner state is predicted to be very well isolated from the environment. Hence, we propose to combine the technology of magnetic microtraps and superconducting qubits to bring relatively large objects to the quantum regime.

  11. Magnetism of MnBi-Based Nanomaterials

    SciTech Connect

    Kharel, P; Shah, VR; Skomski, R; Shield, JE; Sellmyer, DJ

    2013-07-01

    Nanostructured MnBi ribbons doped with impurity elements including B, C, Fe, Hf, Sm and Tb were prepared using the arc melting and melt-spinning techniques. The melt-spun ribbons were annealed in vacuum furnace at 350 degrees C to obtain the intended hexagonal structure. The external impurity doping made a significant change in the magnetic properties of the nanostructured MnBi ribbons including a decrease in saturation magnetization (M-s) and anisotropy energy (K) and an increase in coercivity H-c. However, Hf and C co-doping showed the opposite effect with a small increase in both M-s and K. Interestingly, the anisotropy energy of the boron doped sample increased by about 15% irrespective of the small decrease in magnetization. A significant increase in H-c of MnBi ribbons was found due to Hf, Tb and Sm doping. H-c as high as 13 kOe was achieved in Hf-doped sample after the sample was aligned in a magnetic field. A thermal hysteresis was observed at the structural phase transition of MnBi, which shifts by about 5 K towards higher temperatures due to impurity doping. The observed magnetic properties of the impurity doped MnBi ribbons are explained as the consequences of the disorder and the competing ferromagnetic and antiferromagnetic interactions.

  12. Superconductivity and Applications - Proceedings of the Taiwan International Symposium on Superconductivity

    NASA Astrophysics Data System (ADS)

    Ku, H. C.; Wu, P. T.; Lee, W. H.; Liu, R. S.

    1989-11-01

    The Table of Contents for the full book PDF is as follows: * Preface * Microstructural and Electron-Structural Anomalies, and High Temperature Superconductivity * Substitutional Chemistry and the Metal-Insulator Transition in Cuprates and Bismuthates * Processing of High Tc Superconductor/Metal-Oxide Composites * Electron Microscope Characterisation of the Structure of High-Tc Superconductors * Mechanism of Broadened Superconducting Transition in Oxides * Magnetic, Microstructure, and High-Field Studies of Superconducting 123-AgO Composites * Superconductivity Enhancement and Pairing Strength in the (Tl, Pb, Bi)m(Sr, Ba)2CuOm+4(m = 1,2) Systems * Bulk Superconductivity in a New Family of Tl-containing Septenary Oxides * Several Suggested Mechanisms for High-Temperature Superconductivity * Calculation of Isotope Effects in High Tc Superconductivity * The Evidences of Unconventional Pairing in Heavy Fermion Superconductors and High Tc Superconductors * Superconductive Energy Storage (SMES) for Electrical Utility Use * Energy Storage Study for Power System Stabilisation * Spin Fluctuation Near Zero and High Field for Pure and Impure High Tc Superconductors * Magnetisation Study of the Unconventional Type II Superconductor (Gd0.2Ca0.8)Sr2(Tl0.5Pb0.5)Cu2Oy * Superconductivity and High Temperature Resistivity of High-Tc Oxide Compounds * Superconducting and Normal State Properties of BiSrCaCuO with Ag and Pb Doping * Effects of Substitution of Fe, Zn and A1 for Cu in Bi2Ca1Sr2Cu2Oy * Electrical and Magnetic Properties of Y1-xCdxBa2Cu3O7-δ and Gd1-xBa2Cu3O7-δ * YBaCuO Thin Films: Epitaxial Growth, Properties and the Influence of Ion Irradiation * Epitaxial Growth of High-Tc Superconducting Films by Liquid Phase Epitaxy Method * Superconducting Thin Films in Tl-Ba-Ca-Cu-O System * The Kinetics of Solid State Formation of the YBa2Cu3O6.5+x Phase * Phase Relations of Equilibrium Compounds in the Bi-Ca-Sr-Cu-O System * Preparation of Tl2CaBa2Cu2O8 by a Low-Temperature Solid

  13. Plasmon and exciton superconductivity mechanisms in layered structures

    NASA Technical Reports Server (NTRS)

    Gabovich, A. M.; Pashitskiy, E. A.; Uvarova, S. K.

    1977-01-01

    Plasmon and exciton superconductivity mechanisms are discussed. Superconductivity in a three layer metal semiconductor metal and insulator semimetal insulator sandwich structure was described in terms of the temperature dependent Green function of the longitudinal (Coulomb) field. The dependences of the superconducting transition temperature on structure parameters were obtained. In a semiconducting film, as a result of interactions of degenerate free carriers with excitons, superconductivity exists only in a certain range of parameter values, and the corresponding critical temperature is much lower than in the plasmon mechanism of superconductivity.

  14. Superconducting fault current-limiter with variable shunt impedance

    DOEpatents

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  15. Hidden order as a source of interface superconductivity

    NASA Astrophysics Data System (ADS)

    Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.

    2015-02-01

    Interfacial superconductivity is observed in a variety of heterostructures composed of different materials including superconducting and nonsuperconducting (at appropriate doping and temperatures) cuprates and iron-based pnictides. The origin of this superconductivity remains in many cases unclear. Here, we propose a general mechanism of interfacial superconductivity for systems with competing order parameters. We assume that parameters characterizing the material allow formation of another order like charge- or spin-density wave competing and prevailing superconductivity in the bulk (hidden superconductivity). Diffusive electron scattering on the interface results in a suppression of this order and releasing the superconductivity. Our theory is based on the use of Ginzburg-Landau equations applicable to a broad class of systems. We demonstrate that the local superconductivity appears in the vicinity of the interface and the spatial dependence of the superconducting order parameter Δ (x ) is described by the Gross-Pitaevskii equation. Solving this equation we obtain quantized values of temperature and doping levels at which Δ (x ) appears. Remarkably, the local superconductivity shows up even in the case when the rival order is only slightly suppressed and may arise also on the surface of the sample (surface superconductivity).

  16. Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles.

    PubMed

    Zhu, Zhonghua; Gao, Daqiang; Dong, Chunhui; Yang, Guijin; Zhang, Jing; Zhang, Jinlin; Shi, Zhenhua; Gao, Hua; Luo, Honggang; Xue, Desheng

    2012-03-21

    Nanoparticles of superconducting YBa(2)Cu(3)O(7-δ) were synthesized via a citrate pyrolysis technique. Room temperature ferromagnetism was revealed in the samples by a vibrating sample magnetometer. Electron spin resonance spectra at selected temperatures indicated that there is a transition from the normal to the superconducting state at temperatures below 100 K. The M-T curves with various applied magnetic fields showed that the superconducting transition temperatures are 92 K and 55 K for the air-annealed and the post-annealed samples, respectively. Compared to the air-annealed sample, the saturation magnetization of the sample by reheating the air-annealed one in argon atmosphere is enhanced but its superconductivity is weakened, which implies that the ferromagnetism maybe originates from the surface oxygen defects. By superconducting quantum interference device measurements, we further confirmed the ferromagnetic behavior at high temperatures and interesting upturns in field cooling magnetization curves within the superconducting region are found. We attributed the upturn phenomena to the coexistence of ferromagnetism and superconductivity at low temperatures. Room temperature ferromagnetism of superconducting YBa(2)Cu(3)O(7-δ) nanoparticles has been observed in some previous related studies, but the issue of the coexistence of ferromagnetism and superconductivity within the superconducting region is still unclear. In the present work, it will be addressed in detail. The cooperation phenomena found in the spin-singlet superconductors will help us to understand the nature of superconductivity and ferromagnetism in more depth. PMID:22327377

  17. Apparatus for continuous manufacture of high temperature superconducting wires from molten superconducting oxides

    SciTech Connect

    Hed, A.Z.

    1991-09-10

    This patent describes an apparatus for making a composite high-temperature superconducting wire, comprising a refractory core having a melting point above a melt temperature of a superconducting oxide ceramic having a critical temperature T{sub c} above 23{degrees} K and a layer of the superconducting oxide ceramic on the core. It comprises means forming a controlled-atmosphere chamber; a vessel received in the chamber and formed with an opening at a bottom thereof, the vessel receiving an annular mass of the superconducting oxide ceramic in solid form surrounding a passage traversing the mass and extending upwardly from the opening; means for forming a melt of the superconductive oxide ceramic in a small pool in the mass above the passage and at a temperature slightly above a melting point of the superconducting oxide ceramic; means for drawing the refractory core through the opening, the passage and the melt in succession and depositing the melt on the core, the pool being in contact only with the mass, the core and the atmosphere; means in the chamber above the pool for cooling the melt deposited on the core by radiation and convection.

  18. Superconducting Technology Program Sandia 1994 Annual Report

    SciTech Connect

    Roth, E.P.

    1995-10-01

    Sandia`s STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) Process research on the material synthesis of high-temperature superconductors, (2) Investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films, (3) Process development and characterization of high-temperature superconducting wire and tape, and (4) Cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY94 in each of these four areas. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas.

  19. Unconventional high-Tc superconductivity in fullerides.

    PubMed

    Takabayashi, Yasuhiro; Prassides, Kosmas

    2016-09-13

    A3C60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, Tc However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter-the overlap between the outer wave functions of the constituent molecules-is controlled by the C60 (3-) molecular electronic structure via the on-molecule Jahn-Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott-Jahn-Teller state through chemical or physical pressurization yields an unconventional Jahn-Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen-Cooper-Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn-Teller and Fermi liquid metal when the Jahn-Teller distortion melts.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501971

  20. Space applications of high temperature superconductivity technology

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Aron, P. R.; Leonard, R. F.; Wintucky, E. G.

    1991-01-01

    A review is presented of the present status of high temperature superconductivity (HTS) technology and related areas of potential space application. Attention is given to areas of application that include microwave communications, cryogenic systems, remote sensing, and space propulsion and power. Consideration is given to HTS phase shifters, miniaturization of microwave filters, far-IR bolometers, and magnetic refrigeration using flux compression.

  1. The superconductivity of certain ternary molybdenum compounds

    NASA Technical Reports Server (NTRS)

    Odermatt, R.

    1978-01-01

    The objectives of this work were to measure the superconductivity and critical fields of (Cu1.5Mo4.5), (SmMo5S6), and (Pb0.9Mo5.1S6) in order to reproduce the published results, and by introduction of magnetic impurities into these semiconductors, observe the compensation effect.

  2. Regulation features of superconducting synchronous generator

    SciTech Connect

    Ilyushin, K.V.; Mironov, O.M.

    1981-01-01

    The characteristics of a transient in the rotor of a superconducting synchronous generator during regulation are considered. The critical-state region is determined for the magnetic system and the trajectory of the critical point in the region occupied by the superconductor is found.

  3. Levitating a Magnet Using a Superconductive Material.

    ERIC Educational Resources Information Center

    Juergens, Frederick H.; And Others

    1987-01-01

    Presented are the materials and a procedure for demonstrating the levitation of a magnet above a superconducting material. The demonstration can be projected with an overhead projector for a large group of students. Kits to simplify the demonstration can be purchased from the Institute for Chemical Education of the University of Wisconsin-Madison.…

  4. Superconductivity in zirconium-rhodium alloys

    NASA Technical Reports Server (NTRS)

    Zegler, S. T.

    1969-01-01

    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.

  5. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  6. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  7. Experimental prediction of performance by superconducting cables

    NASA Technical Reports Server (NTRS)

    Brooks, J. M.; Purcell, J. R.

    1969-01-01

    Broken superconductor method of short sample testing makes possible the prediction of the performance of well cooled, stabilized, superconducting cable coils. It yields a field-versus-current curve for a short sample of cable. Plots are given for the superconductor and copper currents at various magnetic field strengths.

  8. Unconventional Superconductivity of Alkali-doped Fullerenes

    NASA Astrophysics Data System (ADS)

    Potocnik, Anton; Krajnc, Andraz; Jeglic, Peter; Prassides, Kosmas; Rosseinsky, Matthew J.; Arcon, Denis

    2014-03-01

    The superconductivity of the alkali-doped fullerenes (A3C60, A = alkali metal) has been so far discussed within the standard theory of superconductivity developed by Bardeen, Cooper and Shrieffer (BCS), even thought, they exhibit relatively high critical temperatures (up to Tc = 32 K). However, after our recent high-pressure measurements on Cs3C60 such description became questionable. We have shown that the superconducting phase of A3C60, in fact, borders the antiferromagnetic insulating phase (AFI), commonly observed for high-temperature superconductors like cuprates or pnictides. In addition, we also increased the maximal Tc to 38 K. To investigate this peculiar superconductivity close to the border with AFI state we employed nuclear magnetic resonance technique on Cs3-xRbxC60 and on Cs3C60 at various high pressures. Our results could not be correctly explained either by the standard BCS or the extended BCS that includes electron-electron repulsion interaction - the Migdal-Eliashberg theory. Far better agreement is obtained by the Dynamical Mean Field Theory. Due to similarity with other unconventional superconductors these results could also be relevant to other unconventional high-temperature superconductors.

  9. Active superconducting devices formed of thin films

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  10. Fabrication techniques for superconducting readout loops

    NASA Technical Reports Server (NTRS)

    Payne, J. E.

    1982-01-01

    Procedures for the fabrication of superconducting readout loops out of niobium on glass substrates were developed. A computer program for an existing fabrication system was developed. Both positive and negative resist procedures for the production of the readout loops were investigated. Methods used to produce satisfactory loops are described and the various parameters affecting the performance of the loops are analyzed.

  11. Difficult Decisions: The Superconducting Super Collider.

    ERIC Educational Resources Information Center

    Newton, David E.; Slesnick, Irwin L.

    1990-01-01

    The fundamental principles of the superconducting super collider are presented. Arguments for the construction of this apparatus and policy issues surrounding its construction are discussed. Charts of the fundamental atomic particles and forces and the history of particle accelerators are provided. An activity for discussing this controversial…

  12. Superconducting, Magnetically Levitated Merry-Go-Round

    ERIC Educational Resources Information Center

    Byer, R. L.; And Others

    1974-01-01

    Reviews the basic theory underlying the lift and drag forces of a magnetically levitated vehicle riding over a continuous sheet guideway. Included are descriptions of the future vehicle characteristics and the students' construction of a superconducting magnetically levitated merry-go-round demonstration apparatus in a laboratory experiment. (CC)

  13. Superconducting vortex pinning with artificial magnetic nanostructures.

    SciTech Connect

    Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego

    2008-11-01

    This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

  14. Eccentric superconducting RF cavity separator structure

    DOEpatents

    Aggus, John R.; Giordano, Salvatore T.; Halama, Henry J.

    1976-01-01

    Accelerator apparatus having an eccentric-shaped, iris-loaded deflecting cavity for an rf separator for a high energy high momentum, charged particle accelerator beam. In one embodiment, the deflector is superconducting, and the apparatus of this invention provides simplified machining and electron beam welding techniques. Model tests have shown that the electrical characteristics provide the desired mode splitting without adverse effects.

  15. John Bardeen and the theory of superconductivity

    SciTech Connect

    Schrieffer, J.R. )

    1992-04-01

    Bardeen's knowledge of the experimental data had bounded the theory of superconductivity quite tightly before B, C and S developed their theory. When one speaks with John Bardeen's friends about him, one frequently hears words such as brilliant, quiet, persistent, generous, visionary, athletic, kind, thoughtful and remarkable. It is the author's good fortune to have the chance to recount some incidents from his life that are connected with the theory of superconductivity. This article draws on the author's personal memories; his many other friends and colleagues will set down their own recollections elsewhere. The evolution of the microscopic theory of superconductivity closely parallels the scientific life of Joh Bardeen. Starting with his PhD dissertation, done under the guidance of Eugene Wigner, he spent much of his life developing an understanding of electron interaction effects and transport properties of metals, semiconductors and superconductors. His fascination with the remarkable phenomenon of superconductivity goes back to his graduate student days at Princeton. Although interrupted during the war years and in the late 1940's at Bell Labs, he returned to this perplexing topic when he moved to the University of Illinois in 1951. 20 refs., 7 figs.

  16. Amorphous molybdenum silicon superconducting thin films

    SciTech Connect

    Bosworth, D. Sahonta, S.-L.; Barber, Z. H.; Hadfield, R. H.

    2015-08-15

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using W{sub x}Si{sub 1−x}, though other amorphous superconductors such as molybdenum silicide (Mo{sub x}Si{sub 1−x}) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo{sub 83}Si{sub 17}. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  17. Development of superconducting power devices in Europe

    NASA Astrophysics Data System (ADS)

    Tixador, Pascal

    2010-11-01

    Europe celebrated last year (2008) the 100-year anniversary of the first liquefaction of helium by H. Kammerling Onnes in Leiden. It led to the discovery of superconductivity in 1911. Europe is still active in the development of superconducting (SC) devices. The discovery of high critical temperature materials in 1986, again in Europe, has opened a lot of opportunities for SC devices by broking the 4 K cryogenic bottleneck. Electric networks experience deep changes due to the emergence of dispersed generation (renewable among other) and to the advances in ICT (Information Communication Technologies). The networks of the future will be “smart grids”. Superconductivity will offer “smart” devices for these grids like FCL (Fault Current Limiter) or VLI (Very Low Inductance) cable and would certainly play an important part. Superconductivity also will participate to the required sustainable development by lowering the losses and enhancing the mass specific powers. Different SC projects in Europe will be presented (Cable, FCL, SMES, Flywheel and Electrical Machine) but the description is not exhaustive. Nexans has commercialized the first two FCLs without public funds in the European grid (UK and Germany). The Amsterdam HTS cable is an exciting challenge in term of losses for long SC cables. European companies (Nexans, Air Liquide, Siemens, Converteam, …) are also very active for projects outside Europe (LIPA, DOE FCL, …).

  18. Superconducting Magnetic Energy Storage and Applications

    NASA Astrophysics Data System (ADS)

    Rao, V. Vasudeva

    2008-10-01

    This paper gives an Introduction to Superconducting Magnetic Energy Storage (SMES) systems and their applications along with an overview of their present status. Further a brief description to a Micro SMES/UPS system of 0.5 MJ capacity that was developed/tested at IIT, Kharagpur is also included.

  19. Pressure-induced superconductivity in europium metal

    SciTech Connect

    Debessai, M.; Matsuoka, T.; Hamlin, J.J.; Bi, W.; Meng, Y.; Shimizu, K.; Schilling, J.S.

    2010-05-24

    Of the 52 known elemental superconductors among the 92 naturally occurring elements in the periodic table, fully 22 only become superconducting under sufficiently high pressure. In the rare-earth metals, the strong local magnetic moments originating from the 4f shell suppress superconductivity. For Eu, however, Johansson and Rosengren have suggested that sufficiently high pressures should promote one of its 4f electrons into the conduction band, changing Eu from a strongly magnetic (J=7/2) 4f{sup 7}-state into a weak Van Vleck paramagnetic (J=0) 4f{sup 6}-state, thus opening the door for superconductivity, as in Am (5f{sup 6}). We report that Eu becomes superconducting above 1.8 K for pressures exceeding 80 GPa, T{sub c} increasing linearly with pressure to 142 GPa at the rate +15 mK/GPa. Eu thus becomes the 53rd elemental superconductor in the periodic table. Synchrotron x-ray diffraction studies to 92 GPa at ambient temperature reveal four structural phase transitions.

  20. Termination for superconducting power transmission systems

    DOEpatents

    Forsyth, E.B.; Jensen, J.E.

    1975-08-26

    This patent relates to a cold, electrical gradient, terminal section for a superconducting cable for alternating current power transmission. A cold electrical gradient section filled with a gaseous coolant acting as an insulator is provided in series with a separate thermal gradient section. (auth)